Mathimatika tet2

Page 1

M·ıËÌ·ÙÈο Aã¢ËÌÔÙÈÎÔ‡ M·ıËÌ·ÙÈο Ù˘ º‡Û˘ Î·È Ù˘ Zˆ‹˜

TÂÙÚ¿‰ÈÔ EÚÁ·ÛÈÒÓ ¢EYTEPO TEYXO™


™Y°°PAºEI™

KPITE™-A•IO§O°HTE™

EIKONO°PAºH™H ºI§O§O°IKH E¶IME§EIA Y¶EY£YNO™ TOY MA£HMATO™ KATA TH ™Y°°PAºH Y¶EY£YNH TOY Y¶OEP°OY

E•øºY§§O ¶POEKTY¶øTIKE™ EP°A™IE™

÷ڿϷÌÔ˜ §ÂÌÔÓ›‰Ë˜, ∫·ıËÁËÙ‹˜ ÙÔ˘ ¶·ÓÂÈÛÙËÌ›Ô˘ ¢˘ÙÈ΋˜ ª·Î‰ÔÓ›·˜ Aı·Ó¿ÛÈÔ˜ £ÂÔ‰ÒÚÔ˘, ∂Î·È‰Â˘ÙÈÎfi˜ A¯ÈÏϤ·˜ K·„¿Ï˘, K·ıËÁËÙ‹˜ ÙÔ˘ ¶·ÓÂÈÛÙËÌ›Ô˘ M·Î‰ÔÓ›·˜ ¢ËÌ‹ÙÚÈÔ˜ ¶ÓÂ˘Ì·ÙÈÎfi˜, §¤ÎÙÔÚ·˜ ÙÔ˘ ¶·ÓÂÈÛÙËÌ›Ô˘ ¢˘ÙÈ΋˜ M·Î‰ÔÓ›·˜ £ÂÔ‰fiÛÈÔ˜ Z·¯·ÚÈ¿‰Ë˜, AÓ·ÏËÚˆÙ‹˜ K·ıËÁËÙ‹˜ ÙÔ˘ ¶·ÓÂÈÛÙËÌ›Ô˘ AıËÓÒÓ M·Ú›· KÔÙÛ·ÎÒÛÙ·, ™¯ÔÏÈ΋ ™‡Ì‚Ô˘ÏÔ˜ £ÂfiÊÈÏÔ˜ T˙ÒÚÙ˙˘, ∂Î·È‰Â˘ÙÈÎfi˜

∫ˆÓÛÙ·ÓÙ›ÓÔ˜ ∞ÚÒÓ˘, ™ÎÈÙÛÔÁÚ¿ÊÔ˜-∂ÈÎÔÓÔÁÚ¿ÊÔ˜ ºÚfiÛˆ •ÈÍ‹, ºÈÏfiÏÔÁÔ˜

°ÂÒÚÁÈÔ˜ Δ‡·˜, ªfiÓÈÌÔ˜ ¶¿Ú‰ÚÔ˜ ÙÔ˘ ¶·È‰·ÁˆÁÈÎÔ‡ πÓÛÙÈÙÔ‡ÙÔ˘ M·Ú›· XÈÔÓ›‰Ô˘-MÔÛÎÔÊfiÁÏÔ˘, E›ÎÔ˘ÚÔ˜ K·ıËÁ‹ÙÚÈ· ÙÔ˘ ¶·ÓÂÈÛÙËÌ›Ô˘ AÈÁ·›Ô˘ AÓ‰Ú¤·˜ °ÎÔÏÊÈÓfiÔ˘ÏÔ˜, ∂ÈηÛÙÈÎfi˜ ∫·ÏÏÈÙ¤¯Ó˘

ACCESS °Ú·ÊÈΤ˜ T¤¯Ó˜ A.E.

°ã ∫.¶.™. / ∂¶∂∞∂∫ ππ / ∂Ó¤ÚÁÂÈ· 2.2.1. / ∫·ÙËÁÔÚ›· ¶Ú¿ÍÂˆÓ 2.2.1.·: «∞Ó·ÌfiÚʈÛË ÙˆÓ ÚÔÁÚ·ÌÌ¿ÙˆÓ ÛÔ˘‰ÒÓ Î·È Û˘ÁÁÚ·Ê‹ Ó¤ˆÓ ÂÎ·È‰Â˘ÙÈÎÒÓ ·Î¤ÙˆÓ» ¶∞π¢∞°ø°π∫√ π¡™ΔπΔ√ÀΔ√ ªÈ¯¿Ï˘ ∞Á. ¶··‰fiÔ˘ÏÔ˜ √ÌfiÙÈÌÔ˜ ∫·ıËÁËÙ‹˜ ÙÔ˘ ∞.¶.£. ¶Úfi‰ÚÔ˜ ÙÔ˘ ¶·È‰·ÁˆÁÈÎÔ‡ πÓÛÙÈÙÔ‡ÙÔ˘ ¶Ú¿ÍË Ì ٛÙÏÔ:

«™˘ÁÁÚ·Ê‹ Ó¤ˆÓ ‚È‚Ï›ˆÓ Î·È ·Ú·ÁˆÁ‹ ˘ÔÛÙËÚÈÎÙÈÎÔ‡ ÂÎ·È‰Â˘ÙÈÎÔ‡ ˘ÏÈÎÔ‡ Ì ‚¿ÛË ÙÔ ¢∂¶¶™ Î·È Ù· ∞¶™ ÁÈ· ÙÔ ¢ËÌÔÙÈÎfi Î·È ÙÔ NËÈ·ÁˆÁ›Ի ∂ÈÛÙËÌÔÓÈÎfi˜ À‡ı˘ÓÔ˜ ŒÚÁÔ˘ °ÂÒÚÁÈÔ˜ Δ‡·˜ MfiÓÈÌÔ˜ ¶¿Ú‰ÚÔ˜ ÙÔ˘ ¶·È‰·ÁˆÁÈÎÔ‡ πÓÛÙÈÙÔ‡ÙÔ˘ ∞Ó·ÏËÚˆÙ‹˜ ∂ÈÛÙËÌÔÓÈÎfi˜ À‡ı˘ÓÔ˜ ŒÚÁÔ˘ °ÂÒÚÁÈÔ˜ √ÈÎÔÓfiÌÔ˘ MfiÓÈÌÔ˜ ¶¿Ú‰ÚÔ˜ ÙÔ˘ ¶·È‰·ÁˆÁÈÎÔ‡ πÓÛÙÈÙÔ‡ÙÔ˘

ŒÚÁÔ Û˘Á¯ÚËÌ·ÙÔ‰ÔÙÔ‡ÌÂÓÔ 75% ·fi ÙÔ ∂˘Úˆ·˚Îfi ∫ÔÈÓˆÓÈÎfi Δ·ÌÂ›Ô Î·È 25% ·fi ÂıÓÈÎÔ‡˜ fiÚÔ˘˜.


À¶√Àƒ°∂π√ ∂£¡π∫∏™ ¶∞π¢∂π∞™ ∫∞𠣃∏™∫∂Àª∞Δø¡ ¶∞π¢∞°ø°π∫√ π¡™ΔπΔ√ÀΔ√

÷ڿϷÌÔ˜ §ÂÌÔÓ›‰Ë˜ Aı·Ó¿ÛÈÔ˜ £ÂÔ‰ÒÚÔ˘ A¯ÈÏϤ·˜ K·„¿Ï˘ ¢ËÌ‹ÙÚÈÔ˜ ¶ÓÂ˘Ì·ÙÈÎfi˜

ANA¢OXO™ ™Y°°PAºH™: ∂§§∏¡π∫∞ °ƒ∞ªª∞Δ∞ ∞.∂.

M·ıËÌ·ÙÈο Aã¢ËÌÔÙÈÎÔ‡ M·ıËÌ·ÙÈο Ù˘ º‡Û˘ Î·È Ù˘ Zˆ‹˜

TÂÙÚ¿‰ÈÔ EÚÁ·ÛÈÒÓ ¢EYTEPO TEYXO™

OP°ANI™MO™ EK¢O™Eø™ ¢I¢AKTIKøN BIB§IøN A£HNA


¢ÔÌ‹ ÙÔ˘ ‚È‚Ï›Ô˘ AÚÈıÌfi˜ ÎÂÊ·Ï·›Ô˘

Xڈ̷ÙÈο ۇ̂ÔÏ· K¿ı ÎÂÊ¿Ï·ÈÔ, ·Ó¿ÏÔÁ· Ì ÙË ıÂÌ·ÙÈ΋ ÂÚÈÔ¯‹ ÛÙËÓ ÔÔ›· ·Ó·Ê¤ÚÂÙ·È, ¤¯ÂÈ ¤Ó· ¯ÚÒÌ·. OÈ ÂÚÈÔ¯¤˜ Â›Ó·È ÔÈ ÂÍ‹˜: AÚÈıÌÔ›

T›ÙÏÔ˜ ÎÂÊ·Ï·›Ô˘

™‡Ì‚ÔÏÔ - ÎÏÂȉ› ÁÈ· ÙÔ Â›‰Ô˜ Ù˘ ÂÚÁ·Û›·˜ Ô˘ ·ÎÔÏÔ˘ı› *

¶Ú¿ÍÂȘ °ÂˆÌÂÙÚ›· MÂÙÚ‹ÛÂȘ ¶ÚÔ‚Ï‹Ì·Ù· E·Ó¿ÏË„Ë

EÈÎÔÓ›‰È·

(ۇ̂ÔÏ· ÎÏÂȉȿ)

™ÙËÓ Â¿Óˆ ·ÚÈÛÙÂÚ‹ ÁˆÓ›· οı ‰Ú·ÛÙËÚÈfiÙËÙ·˜ ˘¿Ú¯ÂÈ ¤Ó· ·fi Ù· ·ÎfiÏÔ˘ı· ۇ̂ÔÏ·: O ¶˘ı·ÁfiÚ·˜ Ô˘ ÛΤÊÙÂÙ·È - ™‡Ì‚ÔÏÔ ÛΤ„˘:: EÌÊ·Ó›˙ÂÙ·È Û ‰Ú·ÛÙËÚÈfiÙËÙ˜ ÓÔÂÚÒÓ ˘ÔÏÔÁÈÛÌÒÓ. H ̤ÏÈÛÛ· - ™‡Ì‚ÔÏÔ ÂÚÁ·ÙÈÎfiÙËÙ·˜: EÌÊ·Ó›˙ÂÙ·È Û ‰Ú·ÛÙËÚÈfiÙËÙ˜ ÂÊ·ÚÌÔÁ‹˜ Î·È ÂÌ¤‰ˆÛ˘. O Û·ÏÔ˜ ȯÓËÏ¿Ù˘ - ™‡Ì‚ÔÏÔ ·Ó·Î¿Ï˘„˘ : EÌÊ·Ó›˙ÂÙ·È ÛÙȘ ‰Ú·ÛÙËÚÈfiÙËÙ˜ Ô˘ ÂÈÛ¿ÁÔ˘Ó ÙÔ˘˜ Ì·ıËÙ¤˜ ÛÙË Ó¤· ÁÓÒÛË. O ÂϤʷÓÙ·˜ - ™‡Ì‚ÔÏÔ ÌÓ‹Ì˘: EÌÊ·Ó›˙ÂÙ·È ÛÙȘ ‰Ú·ÛÙËÚÈfiÙËÙ˜ Â·Ó¿Ï˄˘. OÌ¿‰· Ì·ıËÙÒÓ - ™‡Ì‚ÔÏÔ ÔÌ·‰ÈÎfiÙËÙ·˜: EÌÊ·Ó›˙ÂÙ·È Û ‰Ú·ÛÙËÚÈfiÙËÙ˜ Ô˘ Â›Ó·È ‰˘Ó·Ùfi Ó· Á›ÓÔ˘Ó Û ÔÌ¿‰Â˜.

4

AÚÈıÌfi˜ ÛÂÏ›‰·˜


˘ Ô › Ï ‚ È ¢ÔÌ‹ ÙÔ˘ ‚ AÚÈıÌfi˜ ‰Ú·ÛÙËÚÈfiÙËÙ·˜

¢È‰·ÎÙÈÎÔ› ÛÙfi¯ÔÈ ÙÔ˘ ÎÂÊ·Ï·›Ô˘

™ËÌ›ˆÛË ÁÈ· ÙÔ ‰¿ÛηÏÔ ÛÙÔ˘˜ ÓÔÂÚÔ‡˜ ˘ÔÏÔÁÈÛÌÔ‡˜

5


OÈ ‹ÚˆÂ˜ ÙÔ˘ ‚È‚ Ï›Ô˘ ¶˘ı·ÁfiÚ·˜ Ô ™¿ÌÈÔ˜

(ÂÚ›Ô˘ 600 .Ã.)

O ¶˘ı·ÁfiÚ·˜ ‹Ù·Ó ¤Ó·˜ ÛÔ˘‰·›Ô˜ Ì·ıËÌ·ÙÈÎfi˜ Ù˘ ·Ú¯·ÈfiÙËÙ·˜ Ô˘ ÁÂÓÓ‹ıËΠÛÙË ™¿ÌÔ. ÿ‰Ú˘Û ÌÈ· Û¯ÔÏ‹, ÙË Û¯ÔÏ‹ ÙˆÓ ¶˘ı·ÁÔÚ›ˆÓ, ÔÈ ÔÔ›ÔÈ ÌÂÏÂÙÔ‡Û·Ó ÙË ÊÈÏÔÛÔÊ›·, Ù· Ì·ıËÌ·ÙÈο Î·È ÙȘ ÂÈÛً̘. ∂›¯Â ‰·ÛοÏÔ˘˜ ÌÂÁ¿ÏÔ˘˜ ÛÔÊÔ‡˜ Ù˘ ·Ú¯·ÈfiÙËÙ·˜ Î·È Ù·Í›‰Â„ ÛÙËÓ ∞Û›· Î·È ÙËÓ ∞›Á˘ÙÔ fiÔ˘ ÌÂϤÙËÛ ÙËÓ ·ÈÁ˘Ùȷ΋ ÊÈÏÔÛÔÊ›·, Ù· Ì·ıËÌ·ÙÈο, ÙËÓ ·ÛÙÚÔÓÔÌ›· Î·È ÙËÓ È·ÙÚÈ΋. O ¶˘ı·ÁfiÚ·˜ ¤ÌÂÈÓ ÁÓˆÛÙfi˜ ˆ˜ Ô ¿ÓıÚˆÔ˜ Ô˘ ¤‚ÏÂ ·ÓÙÔ‡ ·ÚÈıÌÔ‡˜.

O ¶˘ı·ÁfiÚ·˜

H KÔÚ›Ó·

6


‚ È Ï ‚ › Ô ˘ ˘ Ô Ù Ú ‹ OÈ ˆÂ˜ À·Ù›· Ë ∞ÏÂÍ·Ó‰ÚÈÓ‹

(370-415 Ì.Ã.)

∏ À·Ù›· ‹Ù·Ó Ë ÚÒÙË Á˘Ó·›Î· Ì·ıËÌ·ÙÈÎfi˜ ÛÙËÓ πÛÙÔÚ›·. °ÂÓÓ‹ıËΠÛÙËÓ ∞ÏÂÍ¿Ó‰ÚÂÈ·. ◊Ù·Ó ÎfiÚË ÙÔ˘ ÊÈÏfiÛÔÊÔ˘ £¤ˆÓ·, ‰È¢ı˘ÓÙ‹ ÙÔ˘ ¶·ÓÂÈÛÙËÌ›Ô˘ Ù˘ ∞ÏÂÍ¿Ó‰ÚÂÈ·˜. °È· ÙÔ ÏfiÁÔ ·˘Ùfi ›¯Â ÙËÓ Ù‡¯Ë Ó· ·ÔÎÙ‹ÛÂÈ Û¿ÓÈ· ÌfiÚʈÛË, Û ÌÈ· ÂÔ¯‹ Ô˘ Ë ı¤ÛË Ù˘ Á˘Ó·›Î·˜ ÛÙËÓ ÎÔÈÓˆÓ›· ‹Ù·Ó Ôχ ‰È·ÊÔÚÂÙÈ΋ ·fi fi,ÙÈ Û‹ÌÂÚ·. ™˘Ó¤¯ÈÛ ÙȘ ÛÔ˘‰¤˜ Ù˘ ÛÙËÓ ∞ı‹Ó· Î·È ÙË ƒÒÌË ÂÓÙ˘ˆÛÈ¿˙ÔÓÙ·˜ fiÏÔ˘˜ fiÛÔÈ ÙËÓ Û˘Ó·Ó·ÛÙÚ¤ÊÔÓÙ·Ó Ì ÙÔ Ó‡̷, ÙË ÛÂÌÓfiÙËÙ·, ÙËÓ ÔÌÔÚÊÈ¿ Î·È ÙËÓ Â˘ÁψÙÙ›· Ù˘. ∂ÈÛÙÚ¤ÊÔÓÙ·˜ ÛÙËÓ ∞ÏÂÍ¿Ó‰ÚÂÈ· Ôχ Û‡ÓÙÔÌ· ·Ó·‰Â›¯ıËΠ۠ÌÂÁ¿ÏË ‰·ÛοϷ Ù˘ ÊÈÏÔÛÔÊ›·˜ Î·È ÙˆÓ Ì·ıËÌ·ÙÈÎÒÓ.

H Y·Ù›·

O MÂϤÙ˘

H ÿÏÓÙ· H B¿Ûˆ

7


¶ÂÚȯfiÌÂÓ·

Xڈ̷ÙÈο ۇ̂ÔÏ· AÚÈıÌÔ› ¶Ú¿ÍÂȘ E·Ó¿ÏË„Ë

°ÂˆÌÂÙÚ›· MÂÙÚ‹ÛÂȘ ¶ÚÔ‚Ï‹Ì·Ù·

8

¢ÔÌ‹ ÙÔ˘ ‚È‚Ï›Ô˘

4-5

OÈ ‹ÚˆÂ˜ ÙÔ˘ ‚È‚Ï›Ô˘

6-7

¶ÂÚȯfiÌÂÓ·

8-9


· Ó Â ¶ÂÚȯ fiÌ Aã ¶ÂÚ›Ô‰Ô˜ ∞ÚÈıÌÔ›: ¶Ú¿ÍÂȘ: °ÂˆÌÂÙÚ›·: ªÂÙÚ‹ÛÂȘ:

√È ·ÚÈıÌÔ› ̤¯ÚÈ ÙÔ 20 – Δ· ۇ̂ÔÏ· Ù˘ Û‡ÁÎÚÈÛ˘ – Δ·ÎÙÈÎÔ› ·ÚÈıÌÔ›. ¶ÚÔÛı¤ÛÂȘ Ì ·ÚÈıÌÔ‡˜ ̤¯ÚÈ ÙÔ 10. ¶ÚÔÛ·Ó·ÙÔÏÈÛÌfi˜ ÛÙÔ ¯ÒÚÔ – °ÂˆÌÂÙÚÈο Û¯‹Ì·Ù·. ™‡ÁÎÚÈÛË Û˘Ó¯ÒÓ ÌÂÁÂıÒÓ – Δ· ÓÔÌ›ÛÌ·Ù· ̤¯ÚÈ ÙÔ 10.

Bã ¶ÂÚ›Ô‰Ô˜ ∞ÚÈıÌÔ›: ¶Ú¿ÍÂȘ:

EÓfiÙËÙ· 3Ë:

√π ∞ƒπ£ª√π ª∂Ãπ Δ√ 20 – ∞£ƒ√π™ª∞Δ∞ ª∂Ãπ Δ√ 10 – ¡√ªπ™ª∞Δ∞

17 18 19 20 21

∫ÂÊ¿Ï·ÈÔ 17Ô: √È ·ÚÈıÌÔ› ·fi ÙÔ 10 ̤¯ÚÈ ÙÔ 20 . . . . . . . . . . . . . . . 10-11 ∫ÂÊ¿Ï·ÈÔ 18Ô: ∞ıÚÔ›ÛÌ·Ù· ̤¯ÚÈ ÙÔ 10 . . . . . . . . . . . . . . . . . . . . . 12-13 ∫ÂÊ¿Ï·ÈÔ 19Ô: T·ÎÙÈÎÔ› ·ÚÈıÌÔ› – Δ· ‰ÈÏ¿ ·ıÚÔ›ÛÌ·Ù· . . . . . . . . . 14-15 ∫ÂÊ¿Ï·ÈÔ 20fi: Δ· ÓÔÌ›ÛÌ·Ù· ̤¯ÚÈ ÙÔ 10 . . . . . . . . . . . . . . . . . . . 16-17

∫ÂÊ¿Ï·ÈÔ 21Ô: ¶ÚÔÛıÂÙÈ΋ ·Ó¿Ï˘ÛË ·ÚÈıÌÒÓ ·fi ÙÔ 6 ̤¯ÚÈ ÙÔ 10 . . . . . . . . . . . . . . . . . . . . . . . . 18-19

22 23

∫ÂÊ¿Ï·ÈÔ 22Ô: ¶ÚÔ‚Ï‹Ì·Ù· . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-21 ∫ÂÊ¿Ï·ÈÔ 23Ô: ∂·Ó·ÏËÙÈÎfi Ì¿ıËÌ· . . . . . . . . . . . . . . . . . . . . . . 22-23

°ÂˆÌÂÙÚ›·: ªÂÙÚ‹ÛÂȘ:

√È ·ÚÈıÌÔ› ̤¯ÚÈ ÙÔ 50 – ™‡ÛÙËÌ· ·Ú›ıÌËÛ˘, ÌÔÓ¿‰Â˜ Î·È ‰Âο‰Â˜. ∞Ê·ÈÚ¤ÛÂȘ Ì ·ÚÈıÌÔ‡˜ ̤¯ÚÈ ÙÔ 10 – ∞ıÚÔ›ÛÌ·Ù· Ì ÔÏÏÔ‡˜ fiÚÔ˘˜ – ¶ÚÔÛı¤ÛÂȘ Ì ˘¤Ú‚·ÛË Ù˘ ‰Âο‰·˜. ÿڷÍË ÁÚ·ÌÌÒÓ – ∫›ÓËÛË Û ÙÂÙÚ·ÁˆÓÈṲ̂ÓÔ ¯·ÚÙ› – °ÂˆÌÂÙÚÈο Û¯‹Ì·Ù·. ªÔÙ›‚· – √ ¯ÚfiÓÔ˜.

EÓfiÙËÙ· 4Ë:

∞º∞πƒ∂™∏ – Ã∞ƒ∞•∏ °ƒ∞ªªø¡ – ª√Δπμ∞

25 26 27 28 29 30 31 32

∫ÂÊ¿Ï·ÈÔ 25Ô: √È ·ÚÈıÌÔ› ̤¯ÚÈ ÙÔ 50 . . . . . . . . . . . . . . . . . . . . . 24-25 ∫ÂÊ¿Ï·ÈÔ 26Ô: ÿڷÍË ÁÚ·ÌÌÒÓ . . . . . . . . . . . . . . . . . . . . . . . . . 26-27 ∫ÂÊ¿Ï·ÈÔ 27Ô: ªÔÙ›‚· . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28-29 ∫ÂÊ¿Ï·ÈÔ 28Ô: ∞Ê·›ÚÂÛË Ì ·Ê·ÈÚÂÙ¤Ô ÌÈÎÚfi ·ÚÈıÌfi . . . . . . . . . 30-31 ∫ÂÊ¿Ï·ÈÔ 29Ô: ¢È¿ÎÚÈÛË ÙˆÓ Û˘Ì‚fiÏˆÓ «+» Î·È «–» . . . . . . . . . . . 32-33 ∫ÂÊ¿Ï·ÈÔ 30fi: ∞Ê·›ÚÂÛË Ì ·Ê·ÈÚÂÙ¤Ô ÌÂÁ¿ÏÔ ·ÚÈıÌfi . . . . . . . . . 34-35 ∫ÂÊ¿Ï·ÈÔ 31Ô: ΔÔ Û˘Ìϋڈ̷ . . . . . . . . . . . . . . . . . . . . . . . . . . 36-37 ∫ÂÊ¿Ï·ÈÔ 32Ô: ∂·Ó·ÏËÙÈÎfi Ì¿ıËÌ·

. . . . . . . . . . . . . . . . . . . . . 38-39

9


17

OÈ ·ÚÈıÌÔ› ·fi ÙÔ 10 ̤¯ÚÈ ÙÔ 20

1

¢È·‚¿˙ˆ ÙÔ˘˜ ·ÚÈıÌÔ‡˜.

14

17

12

16

19

13

20 2

K¿ı ̷ıËÙ‹˜ ı· ¤¯ÂÈ Ì›· ÙÛ¿ÓÙ·;

3 ªÂÙÚÒ Î·È ‚¿˙ˆ Û ·ÎÏÔ ÙÔ ÛˆÛÙfi ·ÚÈıÌfi.

16

17 10

18 17 19 18

1. OÈ Ì·ıËÙ¤˜ ‰È·‚¿˙Ô˘Ó ÙÔ˘˜ ·ÚÈıÌÔ‡˜ Ô˘ ‚Ú›ÛÎÔÓÙ·È Û οı Ï·›ÛÈÔ.


Ë

ÂÓfiÙËÙ· 3

4 ∏ Ì›· ηڷ̤Ϸ ÎÔÛÙ›˙ÂÈ 1 ÏÂÙfi.

1 ÏÂÙfi

O ¶˘ı·ÁfiÚ·˜: ñ ÃÚÂÈ¿˙ÂÙ·È

ÏÂÙ¿ ÁÈ· Ó· ·ÁÔÚ¿ÛÂÈ

ÙȘ Ú¿ÛÈÓ˜ ηڷ̤Ϙ. ñ XÚÂÈ¿˙ÂÙ·È

ÏÂÙ¿ ÁÈ· Ó· ·ÁÔÚ¿ÛÂÈ

ÙȘ ÎfiÎÎÈÓ˜ ηڷ̤Ϙ. ñ ÃÚÂÈ¿˙ÂÙ·È

ÏÂÙ¿ ÁÈ· Ó· ·ÁÔÚ¿ÛÂÈ

fiϘ ÙȘ ηڷ̤Ϙ.

5 ™˘ÌÏËÚÒÓˆ ÙȘ ϤÍÂȘ Î·È ÙÔ˘˜ ·ÚÈıÌÔ‡˜ Ô˘ Ï›Ô˘Ó.

‰¤Î·

7

6 Ìˉ¤Ó

9

8 11


18

∞ıÚÔ›ÛÌ·Ù· ̤¯ÚÈ ÙÔ 10

1 O ¶¤ÙÚÔ˜ ›¯Â 7 ·˘ÙÔÎÈÓËÙ¿ÎÈ·. ∞ÁfiÚ·ÛÂ

·ÎfiÌ·. ¶fiÛ· ·˘ÙÔÎÈÓËÙ¿ÎÈ· ¤¯ÂÈ ÙÒÚ·;

... + ... = ... OÈ Î·ÛÂÙ›Ó˜ ¤¯Ô˘Ó ̤۷ ÌÔχ‚È·. ¶fiÛ· Â›Ó·È fiÏ· Ù· ÌÔχ‚È· Ì·˙›;

5

5 + 4 = ....

4

7

7 + 3 = ...

3 2

ÀÔÏÔÁ›˙ˆ Ù· ·ıÚÔ›ÛÌ·Ù·.

12

5 + 2 = ...

6 + 3 = ...

5 + 4 = ...

9 + 1 = ...

8 + 2 = ...

6 + 4 = ...


Ë

ÂÓfiÙËÙ· 3 ÀÔÏÔÁ›˙ˆ ·ıÚÔ›ÛÌ·Ù· ̤¯ÚÈ ÙÔ 10.

¶fiÛ· Â›Ó·È fiÏ·; ÀÔÏÔÁ›˙ˆ Î·È Áڿʈ Ù· ·ıÚÔ›ÛÌ·Ù·.

... + ... = ...

3

4

.....................

4

6

.....................

..................... 5

ÀÔÏÔÁ›˙ˆ Î·È Û˘ÌÏËÚÒÓˆ Ù· ·ıÚÔ›ÛÌ·Ù·.

4 + 2 = ...

7 + 3 = ...

6 + 3 = ...

2 + 4 = ...

3 + 7 = ...

3 + 6 = ...

2 + 8 = ...

5 + 4 = ...

7 + 2 = ...

8 + 2 = ...

4 + 5 = ...

2 + 7 = ...

3. ∏ ‰·ÛοϷ ÚÔÙ›ÓÂÈ ¤Ó· ¿ıÚÔÈÛÌ· ̤¯ÚÈ ÙÔ 10. OÈ Ì·ıËÙ¤˜ ˘ÔÏÔÁ›˙Ô˘Ó ÓÔÂÚ¿ ÙÔ ¿ıÚÔÈÛÌ· Î·È ÙÔ ÁÚ¿ÊÔ˘Ó Ì ÙË ¯Ú‹ÛË Û˘Ì‚fiÏˆÓ Ì¤Û· ÛÙÔ Ï·›ÛÈÔ.

13


19

T·ÎÙÈÎÔ› ·ÚÈıÌÔ› – Δ· ‰ÈÏ¿ ·ıÚÔ›ÛÌ·Ù·

1

¶ÚÔÊÔÚÈ΋ ·Ú›ıÌËÛË ÙˆÓ Ù·ÎÙÈÎÒÓ ·ÚÈıÌÒÓ.

2Ô˜

1Ô˜

...

10Ô˜ 2

ΔÔ Êȉ¿ÎÈ

™¯Â‰›·Û ÙÔ ·ÓÙÈΛÌÂÓÔ ÛÙÔ ÔÔ›Ô ¤ÊÙ·ÛÂ Ô ¶˘ı·ÁfiÚ·˜.

∏ À·Ù›· ¤ÊÙ·Û ÛÙÔ

ΔÈ ·ÚÈıÌfi ¤Ù˘¯Â Ì ٷ ˙¿ÚÈ·; °Ú¿Êˆ ÙÔÓ ·ÚÈıÌfi Ù˘ ı¤Û˘ ÛÙËÓ ÔÔ›· ‚Ú›ÛÎÂÙ·È Î¿ı ÂÈÎfiÓ·.

3 ∂ÓÒÓˆ ÌÂ ÌÈ· ÁÚ·ÌÌ‹ ÙÔ ÛˆÛÙfi ¿ıÚÔÈÛÌ·.

1+1 1 14

2

2+2

3+3

4+4

5+5

3

5

7

9 10

4

6

8

1. ∑ËÙԇ̠·fi ÙÔ˘˜ Ì·ıËÙ¤˜ Ó· ··ÁÁ›ÏÔ˘Ó ÙÔ˘˜ Ù·ÎÙÈÎÔ‡˜ ·ÚÈıÌÔ‡˜ ̤¯ÚÈ ÙÔ 10.


Ë

ÂÓfiÙËÙ· 3

4

¢ÈÏ¿ ·ıÚÔ›ÛÌ·Ù·

5

ΔÔ ÌÈÛfi

μ¿˙ˆ Û ·ÎÏÔ Ù· ÌÈÛ¿. °Ú¿Êˆ fiÛ· Â›Ó·È Ù· ÌÈÛ¿.

2

6 μ¿˙ˆ Û ·ÎÏÔ Ù· ‰ÈÏ¿ ·ıÚÔ›ÛÌ·Ù·.

3+1=4

2+2=4

6+2 =8

6+1=7

1+1=2

2+3=5

5+3=8

3+3=6

1+4=5

4+4=8

5 + 5 = 10

7+2=9

4. ∏ ‰·ÛοϷ ÚÔÙ›ÓÂÈ ‰ÈÏ¿ ·ıÚÔ›ÛÌ·Ù· ̤¯ÚÈ ÙÔ 10. OÈ Ì·ıËÙ¤˜ ˘ÔÏÔÁ›˙Ô˘Ó ÓÔÂÚ¿ Ù· ·ıÚÔ›ÛÌ·Ù· Î·È Ù· ÁÚ¿ÊÔ˘Ó Ì ÙË ¯Ú‹ÛË Û˘Ì‚fiÏˆÓ Ì¤Û· ÛÙ· Ï·›ÛÈ·.

15


20

Δ· ÓÔÌ›ÛÌ·Ù· ̤¯ÚÈ ÙÔ 10

1 ¶ÔÈÔ˜ ÌÔÚ› Ó· ·ÁÔÚ¿ÛÂÈ ÙÔ ·ÚÎÔ˘‰¿ÎÈ;

∏ À·Ù›· ¤¯ÂÈ ... ∂Àƒø.

O ¡›ÎÔ˜ ¤¯ÂÈ ... ∂Àƒø.

∏ ∫ÔÚ›Ó· ¤¯ÂÈ ... ∂Àƒø. ΔÔ ·ÚÎÔ˘‰¿ÎÈ ÌÔÚ› Ó· ÙÔ ·ÁÔÚ¿ÛÂÈ ............

2 ∏ À·Ù›· ¤¯ÂÈ 9 ∂Àƒø. μ¿˙ˆ Û ·ÎÏÔ ÙÔ ÔÚÙÔÊfiÏÈ Ù˘.

16


Ë

ÂÓfiÙËÙ· 3 ÀÔÏÔÁ›˙ˆ ·ıÚÔ›ÛÌ·Ù· ̤¯ÚÈ ÙÔ 10.

μ¿˙ˆ Û ·ÎÏÔ ÙÔ ÔÚÙÔÊfiÏÈ Ô˘ ı· ¿ÚÂÈ Ô ¶˘ı·ÁfiÚ·˜.

3

4

O ¶˘ı·ÁfiÚ·˜ ı¤ÏÂÈ Ó· ·ÓÙ·ÏÏ¿ÍÂÈ Ù· ÓÔÌ›ÛÌ·Ù¿ ÙÔ˘ Ì ÓÔÌ›ÛÌ·Ù· ÙÔ˘ ÂÓfi˜ ÏÂÙÔ‡.

∏ NfiË ¤¯ÂÈ 6 ú. ™¯Â‰È¿˙ˆ Ù· ÓÔÌ›ÛÌ·Ù· Û ∂Àƒø Ô˘ ÌÔÚ› Ó· ¤¯ÂÈ.

O £·Ó¿Û˘ ¤¯ÂÈ 10 ú. ™¯Â‰È¿˙ˆ Ù· ÓÔÌ›ÛÌ·Ù· Û ∂Àƒø Ô˘ ÌÔÚ› Ó· ¤¯ÂÈ.

3. ∏ ‰·ÛοϷ ÚÔÙ›ÓÂÈ ·ıÚÔ›ÛÌ·Ù· ̤¯ÚÈ ÙÔ 10. OÈ Ì·ıËÙ¤˜ ˘ÔÏÔÁ›˙Ô˘Ó ÓÔÂÚ¿ οı ÊÔÚ¿ ÙÔ ¿ıÚÔÈÛÌ· Î·È ÙÔ ÁÚ¿ÊÔ˘Ó Ì ÙË ¯Ú‹ÛË Û˘Ì‚fiÏˆÓ Ì¤Û· ÛÙÔ Ï·›ÛÈÔ.

5

17


21

¶ÚÔÛıÂÙÈ΋ ·Ó¿Ï˘ÛË ·ÚÈıÌÒÓ ·fi ÙÔ 6 ̤¯ÚÈ ÙÔ 10 YÔÏÔÁ›˙ˆ Ù· ‰ÈÏ¿ ·ıÚÔ›ÛÌ·Ù·.

1

2 H EϤÓË ı¤ÏÂÈ Ó· ÙÔÔıÂÙ‹ÛÂÈ Ù· ‚È‚Ï›· Û ‰‡Ô Ú¿ÊÈ· ÛÙË ‚È‚ÏÈÔı‹ÎË Ù˘ ·‰ÂÏÊ‹˜ Ù˘. AÓ ¤¯ÂÈ 6 ‚È‚Ï›·, Ì fiÛÔ˘˜ ‰È·ÊÔÚÂÙÈÎÔ‡˜ ÙÚfiÔ˘˜ ÌÔÚ› Ó· Ù· ÙÔÔıÂÙ‹ÛÂÈ ÛÙ· Ú¿ÊÈ·;

6+0=6 5+1=6 ... + ... = ... + ... = ... + ... = ... + ... = ... + ... =

AÓ ¤¯ÂÈ 7 ‚È‚Ï›·, Ì fiÛÔ˘˜ ‰È·ÊÔÚÂÙÈÎÔ‡˜ ÙÚfiÔ˘˜ ÌÔÚ› Ó· Ù· ÙÔÔıÂÙ‹ÛÂÈ ÛÙ· Ú¿ÊÈ·;

7+0=7 6+1=7 ... + ... = ... + ... = ... + ... = ... + ... = ... + ... = ... + ... =

18

AÓ ¤¯ÂÈ 8 ‚È‚Ï›·, Ì fiÛÔ˘˜ ‰È·ÊÔÚÂÙÈÎÔ‡˜ ÙÚfiÔ˘˜ ÌÔÚ› Ó· Ù· ÙÔÔıÂÙ‹ÛÂÈ ÛÙ· Ú¿ÊÈ·;

8+0=8 7+1=8 ... + ... = ... + ... = ... + ... = ... + ... = ... + ... = ... + ... = ... + ... =

1. ¶ÚÔÙ›ÓÔ˘Ì ÛÙÔ˘˜ Ì·ıËÙ¤˜ ·ıÚÔ›ÛÌ·Ù· Ù˘ ÌÔÚÊ‹˜ Ó + Ó, ‰ËÏ·‰‹ 1 + 1, 2 + 2, 3 + 3, 4 + 4 Î·È 5 + 5.


Ë

ÂÓfiÙËÙ· 3

3 Aӷχˆ Ì ‰È·ÊÔÚÂÙÈÎÔ‡˜ ÙÚfiÔ˘˜ ÙÔÓ ·ÚÈıÌfi 9 Û ¿ıÚÔÈÛÌ·.

0+9 1+8

9

4 YÔÏÔÁ›˙ˆ Ù· ·ıÚÔ›ÛÌ·Ù·.

5 + 2 = ...

4 + 4 = ...

5 + 5 = ...

4 + 3 = ...

4 + 6 = ...

8 + 2 = ...

6 + 2 = ...

5 + 3 = ...

5 + 4 = ...

7 + 3 = ...

3 + 6 = ...

2 + 7 = ... 19


22

¶ÚÔ‚Ï‹Ì·Ù·

1

¶fiÛ˜ ηڤÎϘ ı· ¯ÚÂÈ·ÛÙԇ̠·ÎfiÌ· ÁÈ· Ó· ηı›ÛÔ˘Ó 10 ηÏÂṲ̂ÓÔÈ;

10 2

¢¤Î· Ó¿ÓÔÈ Ì¤ÓÔ˘Ó Û ‰‡Ô ÛÈÙ¿ÎÈ·. μÚ›ÛΈ fiÏÔ˘˜ ÙÔ˘˜ ÙÚfiÔ˘˜ Ì ÙÔ˘˜ ÔÔ›Ô˘˜ Â›Ó·È ‰˘Ó·ÙfiÓ Ó· ÌÔÈÚ·ÛÙÔ‡Ó ÛÙ· ‰‡Ô ÛÈÙ¿ÎÈ·.

0 + + + + + + 20

= = = = = =

10 10 10 10 10 10

+ + + + +

= = = = =

10 10 10 10 10


Ë

ÂÓfiÙËÙ· 3

3 ¶fiÛ˜ ÂÙ·ÏÔ‡‰Â˜ Ú¤ÂÈ Ó· ÂÙ¿ÍÔ˘Ó ·fi ÙÔ ÎfiÎÎÈÓÔ ÛÙÔ Î›ÙÚÈÓÔ ÏÔ˘ÏÔ‡‰È, ¤ÙÛÈ ÒÛÙ ٷ ‰‡Ô ÏÔ˘ÏÔ‡‰È· Ó· ¤¯Ô˘Ó ÙÔÓ ›‰ÈÔ ·ÚÈıÌfi ÂÙ·ÏÔ‡‰ˆÓ;

4 ºÙÈ¿¯Óˆ ¤Ó· ‰ÈÎfi ÌÔ˘ Úfi‚ÏËÌ· Î·È ÙÔ Ï‡Óˆ.

21


23

E·Ó·ÏËÙÈÎfi Ì¿ıËÌ·

1

ÀÔÏÔÁ›˙ˆ ·ıÚÔ›ÛÌ·Ù· ÌÂ ÙÔÓ ·ÚÈıÌfi 5.

2 Δ· 10 Ô˘ÏÈ¿ ı· ηı›ÛÔ˘Ó ÛÙ· ‰‡Ô ‰¤ÓÙÚ·. ªÂ fiÛÔ˘˜ ‰È·ÊÔÚÂÙÈÎÔ‡˜ ÙÚfiÔ˘˜ ÌÔÚÔ‡Ó Ó· ηı›ÛÔ˘Ó; ™˘ÌÏËÚÒÓˆ Ù· ·ıÚÔ›ÛÌ·Ù·:

0 + 10 = 10 ... + ... = 10 ... + ... = ... ... + ... = ... ... + ... = ... ... + ... = ...

... + ... = ... ... + ... = ... ... + ... = ... ... + ... = ... ... + ... = ...

√È ÛÔÎÔÏ¿Ù˜ ∫¿ı ÛÔÎÔÏ¿Ù· ¤¯ÂÈ 10 ÎÔÌÌ¿ÙÈ·. ¶fiÛ· ÎÔÌÌ¿ÙÈ· ÛÔÎÔÏ¿Ù·˜ ˘¿Ú¯Ô˘Ó Û οı ÂÚ›ÙˆÛË;

13

22

1. ¶ÚÔÙ›ÓÔ˘Ì ÛÙÔ˘˜ Ì·ıËÙ¤˜ ·ıÚÔ›ÛÌ·Ù· Ù˘ ÌÔÚÊ‹˜ 5 + Ó, ‰ËÏ·‰‹ 5 + 1, 5 + 2, 5 + 3, 5 + 4 Î·È 5 + 5.

3


Ë

ÂÓfiÙËÙ· 3 ¶ÚÔÊÔÚÈ΋ ·Ú›ıÌËÛË ÙˆÓ Ù·ÎÙÈÎÒÓ ·ÚÈıÌÒÓ.

1Ô˜

2Ô˜

4

10Ô˜ 5

¶ÔÈÔ˜ ÌÔÚ› Ó· ·ÁÔÚ¿ÛÂÈ ÙÔ ·È¯Ó›‰È;

∏ ª·Ú›· ¤¯ÂÈ ... ∂Àƒø

O Ã·Û¿Ó ¤¯ÂÈ ... ∂Àƒø.

∏ ÕÚÙÂÌË ¤¯ÂÈ ... ∂Àƒø. ΔÔ ·È¯Ó›‰È ÌÔÚ› Ó· ÙÔ ·ÁÔÚ¿ÛÂÈ ..............

6 ÀÔÏÔÁ›˙ˆ Î·È Û˘ÌÏËÚÒÓˆ Ù· ·ıÚÔ›ÛÌ·Ù·.

3 + 3 = ... 5 + 2 = ...

7 + 3 = ... 4 + 4 = ...

5 + 5 = ... 8 + 2 = ...

6 + 4 = ...

5 + 3 = ...

4 + 5 = ...

4. ∑ËÙԇ̠·fi ÙÔ˘˜ Ì·ıËÙ¤˜ Ó· ··ÁÁ›ÏÔ˘Ó ÙÔ˘˜ Ù·ÎÙÈÎÔ‡˜ ·ÚÈıÌÔ‡˜ ̤¯ÚÈ ÙÔ 10.

23


25

OÈ ·ÚÈıÌÔ› ̤¯ÚÈ ÙÔ 50

μÚ›ÛΈ ÙÔÓ ÚÔËÁÔ‡ÌÂÓÔ Î·È ÙÔÓ ÂfiÌÂÓÔ ·ÚÈıÌfi ηıÒ˜ Î·È ÙË ‰Âο‰·.

20

1

40

30

2 ™˘ÌÏËÚÒÓˆ ÙÔ˘˜ ·ÚÈıÌÔ‡˜.

10

‰¤Î·

¤Ó‰Âη

‰Ò‰Âη

‰ÂηÙÚ›·

‰Âη٤ÛÛÂÚ·

‰Âη¤ÓÙÂ

‰Âη¤ÍÈ

‰ÂηÂÙ¿

‰ÂηÔÎÙÒ

‰ÂηÂÓÓ¤·

›ÎÔÛÈ

3 °Ú¿Êˆ ÙÔ˘˜ ·ÚÈıÌÔ‡˜ ÁÈ· Ó· Û˘ÌÏËÚˆıÔ‡Ó ÔÈ ÛÂÈÚ¤˜.

22

25

27

36

37

48 45 4

¶·Ú·ÙËÚÒ Î·È Û˘Ó¯›˙ˆ.

5 10 30 35 10 20 3 6 24

15

... ... ...

... ... ... ...

... 50 ... ...

...

...

...

21

...

...

50

1. ¶ÚÔÙ›ÓÔ˘Ì ÛÙÔ˘˜ Ì·ıËÙ¤˜ ·ÚÈıÌÔ‡˜ ̤¯ÚÈ ÙÔ 50 Î·È ·˘ÙÔ› ‚Ú›ÛÎÔ˘Ó ÙÔÓ ÂfiÌÂÓÔ Î·È ÙÔÓ ÚÔËÁÔ‡ÌÂÓÔ ·ÚÈıÌfi. ∂›Û˘ ÚÔÙ›ÓÔ˘Ì ÛÙÚÔÁÁ˘Ï¤˜ ‰Âο‰Â˜ (.¯. 30) Î·È ÔÈ Ì·ıËÙ¤˜ ‚Ú›ÛÎÔ˘Ó ÙËÓ ÂfiÌÂÓË Î·È ÙËÓ ÚÔËÁÔ‡ÌÂÓË ‰Âο‰· (40, 20).


Ë

ÂÓfiÙËÙ· 4

5

ªÂÙÚÒ ·Ó¿ 5 ̤¯ÚÈ ÙÔ 50.

5

50 6 ªÂÙÚÒ Ù· ΢‚¿ÎÈ· Î·È ˘ÔÏÔÁ›˙ˆ ÙÔ ¿ıÚÔÈÛÌ¿ Ùo˘˜. ŸÏ· ›ӷÈ

10+ 5

...........

ŸÏ· ›ӷÈ

...........

ŸÏ· ›ӷÈ

7 ªÂÙÚÒ Î·È Û˘ÌÏËÚÒÓˆ ÙÔ˘˜ ·ÚÈıÌÔ‡˜.

5. Δ· ·È‰È¿ ÌÂÙÚÔ‡Ó ·Ó¿ 5 ̤¯ÚÈ ÙÔ 50. ™ÙË Û˘Ó¤¯ÂÈ· ÁÚ¿ÊÔ˘Ó ÙÔ˘˜ ·ÚÈıÌÔ‡˜ ̤۷ ÛÙ· ΢ÎÏÈο Ï·›ÛÈ·.

25


26

X¿Ú·ÍË ÁÚ·ÌÌÒÓ

1 X·Ú¿˙ˆ ÙȘ ÁÚ·Ì̤˜ Ì ÙÔ ¯¿Ú·Î· ÁÈ· Ó· Û¯ËÌ·Ù›Ûˆ ÙÔ ÛÈÙ¿ÎÈ.

2 ™˘ÌÏËÚÒÓˆ ÙÔ ¯ÚÈÛÙÔ˘ÁÂÓÓÈ¿ÙÈÎÔ ‰¤ÓÙÚÔ.

26


Ë

ÂÓfiÙËÙ· 4

3 ™¯Â‰È¿˙ˆ Ù· ÂÚÈÁÚ¿ÌÌ·Ù·.

™˘Ó¯›˙ˆ ÙË ÁÚ·ÌÌ‹.

4 ™˘ÌÏËÚÒÓˆ ÙËÓ Î¿Ùˆ ÂÈÎfiÓ· ÒÛÙ ӷ Â›Ó·È ›‰È· Ì ÙËÓ Â¿Óˆ.

27


27

ªÔÙ›‚·

1 ™˘Ó¯›˙ˆ ÙÔ ¯ÚˆÌ·ÙÈÛÌfi Ì ÙÔÓ ›‰ÈÔ ÙÚfiÔ.

™˘Ó¯›˙ˆ ÙË ¯¿Ú·ÍË Ù˘ ÁÚ·ÌÌ‹˜ Î·È Û˘ÌÏËÚÒÓˆ ÙÔ ¯ÚˆÌ·ÙÈÛÌfi.

2 ™¯Â‰È¿˙ˆ Ù· ›‰È· Û¯‹Ì·Ù·.

28


Ë

ÂÓfiÙËÙ· 4

3 ÷ڿ˙ˆ ÙËÓ ÌÏ ÁÚ·ÌÌ‹ Î·È ¤ÂÈÙ· ÙËÓ ÎfiÎÎÈÓË.

™˘Ó¯›˙ˆ ÙË ¯¿Ú·ÍË ÙˆÓ ÁÚ·ÌÌÒÓ Ì ÙÔÓ ›‰ÈÔ ÙÚfiÔ.

4 ¢ËÌÈÔ˘ÚÁÒ ‰Èο ÌÔ˘ ÌÔÙ›‚·.

29


28

∞Ê·›ÚÂÛË Ì ·Ê·ÈÚÂÙ¤Ô ÌÈÎÚfi ·ÚÈıÌfi

1

∞ÚÈıÌÒ ·ÓÙ›ÛÙÚÔÊ· ÍÂÎÈÓÒÓÙ·˜ ·fi ÙÔ 20.

20

19

18

...

1 2

ΔÔ Î·Ï¿ıÈ Â›¯Â 10 ηÚfiÙ·. ΔÔ ÎÔ˘Ó¤ÏÈ ¤Ê·Á 3 ηÚfiÙ·. ¶fiÛ· ηÚfiÙ· ¤ÌÂÈÓ·Ó Ì¤Û· ÛÙÔ Î·Ï¿ıÈ;

... – ... = ...

10

O ªÂӤϷԘ ›¯Â 8 ÁÚ·ÌÌ·ÙfiÛËÌ· ÛÙË Û˘ÏÏÔÁ‹ ÙÔ˘. Œ‰ˆÛÂ

ÁÚ·ÌÌ·ÙfiÛËÌ· ÛÙÔÓ ¡›ÎÔ. ¶fiÛ· ÁÚ·ÌÌ·ÙfiÛËÌ· ¤¯ÂÈ ÙÒÚ·;

... – ... = ... 30

1. OÈ Ì·ıËÙ¤˜ ·ÚÈıÌÔ‡Ó ÚÔÊÔÚÈο ·ÓÙ›ÛÙÚÔÊ· ÍÂÎÈÓÒÓÙ·˜ ·fi ÙÔÓ ·ÚÈıÌfi 20.


Ë

ÂÓfiÙËÙ· 4

3 ™˘ÌÏËÚÒÓˆ ÙÔ˘˜ ·ÚÈıÌÔ‡˜ ÛÙȘ ÈÛfiÙËÙ˜.

5 – 2 = ...

... – ... = ...

... – ... = ...

... – ... = ...

... – ... = ...

... – ... = ... 4

ÀÔÏÔÁ›˙ˆ ÙȘ Ú¿ÍÂȘ Î·È Û˘ÌÏËÚÒÓˆ ÙÔ˘˜ ·ÚÈıÌÔ‡˜.

4 – 1 = ...

3 – 1 = ...

7 – 1 = ...

3 + 1 = ...

2 + 1 = ...

6 + 1 = ...

5 – 3 = ...

6 – 1 = ...

4 – 2 = ...

2 + 3 = ...

5 + 1 = ...

2 + 2 = ... 31


29

¢È¿ÎÚÈÛË ÙˆÓ Û˘Ì‚fiÏˆÓ (+) Î·È (–)

1 °Ú¿Êˆ ÙȘ ÛˆÛÙ¤˜ Ú¿ÍÂȘ ̤۷ ÛÙ· ¤Ù·Ï· ÙˆÓ ÏÔ˘ÏÔ˘‰ÈÒÓ.

7–1 4+1

4+1 5

7–2 4+2 2+3 8–2

6

3+3 8–3

μ¿Êˆ Ù· Ì·ÏfiÓÈ· Ì ÙÔ ¯ÚÒÌ· Ô˘ Ù·ÈÚÈ¿˙ÂÈ.

3+2

2+2

5–1

6–2

6–1

3+3

5+1

4 5

32

6

2


Ë

ÂÓfiÙËÙ· 4

°Ú¿Êˆ ÙȘ ÚÔÛı¤ÛÂȘ Î·È ÙȘ ·Ê·ÈÚ¤ÛÂȘ Î·È ˘ÔÏÔÁ›˙ˆ Ù· ·ÔÙÂϤÛÌ·Ù·.

3

4 §‡Óˆ Ù· ÚÔ‚Ï‹Ì·Ù· Î·È Áڿʈ ÙȘ Ú¿ÍÂȘ. Œ¯ˆ 5 ú Î·È ·ÁÔÚ¿˙ˆ ÌÈ· ÛÔÎÔÏ¿Ù· ŸÏ· Ù· ÎÂÚÈ¿ ‹Ù·Ó 4. ŒÛ‚ËÛ·Ó Ô˘ ÎÔÛÙ›˙ÂÈ 2 ú. ¶fiÛ· Ú¤ÛÙ· ı· ¿Úˆ; Ù· 3. ¶fiÛ· ÎÂÚÈ¿ ̤ÓÔ˘Ó ·Ó·Ì̤ӷ;

2ú °Ú¿Êˆ ÙËÓ Ú¿ÍË:

°Ú¿Êˆ ÙËÓ Ú¿ÍË:

5 ∞fi ÙËÓ ÚfiÛıÂÛË ‚Ú›ÛΈ ÙȘ ‰‡Ô ·Ê·ÈÚ¤ÛÂȘ.

3+2=5

5–3=2

4+2=6

5–2=3

3+1=4

4+3=7

3. ∏ ‰·ÛοϷ ÚÔÙ›ÓÂÈ ÚÔ‚Ï‹Ì·Ù· ÚfiÛıÂÛ˘ Î·È ·Ê·›ÚÂÛ˘. OÈ Ì·ıËÙ¤˜ ÁÚ¿ÊÔ˘Ó ÙȘ Ú¿ÍÂȘ Î·È ÙÔ ·ÔÙ¤ÏÂÛÌ·.

33


30

∞Ê·›ÚÂÛË Ì ·Ê·ÈÚÂÙ¤Ô ÌÂÁ¿ÏÔ ·ÚÈıÌfi

1

ªÂÙÚÒ ·Ó¿ 2.

2

4

6

...

20 2

ª¤Û· ÛÙÔ ÎÔ˘Ù› ˘¿Ú¯Ô˘Ó 7 ‚fiÏÔÈ. μÁ¿˙Ô˘Ì ÙÔ˘˜ 5. ¶fiÛÔÈ ‚fiÏÔÈ ¤ÌÂÈÓ·Ó;

7

= 3

∞fi ÙËÓ ÚfiÛıÂÛË ‚Ú›ÛΈ ÙȘ ‰‡Ô ·Ê·ÈÚ¤ÛÂȘ.

6 + 4 = 10

10– 4 = ...

6+2=8

10– 6 = ...

5+4=9

34

5+2=7

1. Δ· ·È‰È¿ ·ÚÈıÌÔ‡Ó ·Ó¿ 2 ̤¯ÚÈ ÙÔ 20.


Ë

ÂÓfiÙËÙ· 4

4 ■ Δ· Úfi‚·Ù· Â›Ó·È ...... ■ Δ· ÁÔ˘ÚÔ‡ÓÈ· Â›Ó·È ...... ■ Δ· Úfi‚·Ù· Â›Ó·È ...... ÂÚÈÛÛfiÙÂÚ·.

... – ... = ... 5 ¢È·Ù˘ÒÓˆ ¤Ó· ‰ÈÎfi ÌÔ˘ Úfi‚ÏËÌ·.

10 – 8 = ... 9 – 7 = ...

6 – 5 = ... 6

ÀÔÏÔÁ›˙ˆ Î·È Û˘ÌÏËÚÒÓˆ ÙȘ ·Ú·Î¿Ùˆ Ú¿ÍÂȘ.

7 + 3 = ... 10 – 5 = ...

5 + 3 = ...

10 – 7 = ...

1 + 7 = ...

8 – 5 = ...

5 + 5 = ...

8 – 7 = ...

8 – 3 = ... 35


31

ΔÔ Û˘Ìϋڈ̷

1

ÀÔÏÔÁ›˙ˆ ÙÔ Û˘Ìϋڈ̷ ÙÔ˘ ·ÚÈıÌÔ‡ 10.

2 Ãڈ̷ٛ˙ˆ Ì ÎfiÎÎÈÓÔ ¯ÚÒÌ· Ù· Ì·ÏfiÓÈ· Ô˘ ¤¯Ô˘Ó ¿ıÚÔÈÛÌ· ›ÛÔ Ì 10.

9+1

4+6

8+2

4+5

5+5

7+2

6+3

3+7

10 3 ™˘ÌÏËÚÒÓˆ ÙÔ˘˜ ·ÚÈıÌÔ‡˜ Ô˘ Ï›Ô˘Ó.

3 6

5 9

36

4

10

1

2 1

7

10

1. ∏ ‰·ÛοϷ ϤÂÈ Î¿ı ÊÔÚ¿ ¤Ó·Ó ·ÚÈıÌfi Î·È ÚˆÙ¿ ÙÔ˘˜ Ì·ıËÙ¤˜ fiÛ· ¯ÚÂÈ¿˙ÔÓÙ·È ·ÎfiÌË ÁÈ· Ó· Á›ÓÔ˘Ó 10. OÈ Ì·ıËÙ¤˜ ÁÚ¿ÊÔ˘Ó Û οı Ï·›ÛÈÔ ÙÔ ÛˆÛÙfi ¿ıÚÔÈÛÌ· (.¯. 8 + 2).


Ë

ÂÓfiÙËÙ· 4

4

∏ À·Ù›· ¤¯ÂÈ ÃÚÂÈ¿˙ÂÙ·È ·ÎfiÌ·

∂Àƒø. ∂Àƒø

10 ¢ÚÒ

ÁÈ· Ó· ·ÁÔÚ¿ÛÂÈ ÙÔ ‚È‚Ï›Ô.

5 ÀÔÏÔÁ›˙ˆ Î·È Û˘ÌÏËÚÒÓˆ ÙÔ˘˜ ·ÚÈıÌÔ‡˜ Ô˘ Ï›Ô˘Ó.

10– 2 = ...

4 + ... = 7 10– 7 = ...

10– 5 = ... 10– 4 = ...

8 – 6 = ...

7 – 5 = ... 10– 9 = ... 7 + ... = 10 5 + ... = 10

5 + ... = 9

7 + ... = 9 37


32

E·Ó·ÏËÙÈÎfi Ì¿ıËÌ· ∞ÚÈıÌÒ ·ÓÙ›ÛÙÚÔÊ· ÍÂÎÈÓÒÓÙ·˜ ·fi ÙÔ 20.

20

19

18

...

1

1 2

™˘Ó¯›˙ˆ ÙË ¯¿Ú·ÍË ÙˆÓ ÁÚ·ÌÌÒÓ Ì ÙÔ ¯¿Ú·Î·.

™˘ÌÏËÚÒÓˆ ÙÔ˘˜ ·ÚÈıÌÔ‡˜ Ô˘ Ï›Ô˘Ó.

38

1. OÈ Ì·ıËÙ¤˜ ·ÚÈıÌÔ‡Ó ÚÔÊÔÚÈο ·ÓÙ›ÛÙÚÔÊ· ÍÂÎÈÓÒÓÙ·˜ ·fi ÙÔÓ ·ÚÈıÌfi 20.

3


Ë

ÂÓfiÙËÙ· 4 ÀÔÏÔÁ›˙ˆ ÙÔ Û˘Ìϋڈ̷ ÙÔ˘ ·ÚÈıÌÔ‡ 10.

4

5 ∞fi ÙËÓ ÚfiÛıÂÛË ‚Ú›ÛΈ ÙȘ ‰‡Ô ·Ê·ÈÚ¤ÛÂȘ.

8 + 2 = 10

10– 2 = ...

6+3=9

10– 8 = ...

4+3=7

7 + 3 = 10

6 ÀÔÏÔÁ›˙ˆ Î·È Û˘ÌÏËÚÒÓˆ ÙÔ˘˜ ·ÚÈıÌÔ‡˜ Ô˘ Ï›Ô˘Ó.

8 – 2 = ...

7 – 3 = ... 10– 2 = ...

5 – 1 = ... 10– 4 = ...

9 – 7 = ...

9 – 3 = ...

8 – 6 = ...

10– 2 = ...

7 + ... = 9 8 + ... = 10 4 + ... = 10 4. ∏ ‰·ÛοϷ ϤÂÈ Î¿ı ÊÔÚ¿ ¤Ó·Ó ·ÚÈıÌfi Î·È ÚˆÙ¿ ÙÔ˘˜ Ì·ıËÙ¤˜ fiÛ· ¯ÚÂÈ¿˙ÔÓÙ·È ·ÎfiÌË ÁÈ· Ó· Á›ÓÔ˘Ó 10. OÈ Ì·ıËÙ¤˜ ÁÚ¿ÊÔ˘Ó Û οı Ï·›ÛÈÔ ÙÔ ÛˆÛÙfi ¿ıÚÔÈÛÌ· (.¯. 6 + 4 = 10).

39


ªÂ ·fiÊ·ÛË Ù˘ ∂ÏÏËÓÈ΋˜ ∫˘‚¤ÚÓËÛ˘ Ù· ‰È‰·ÎÙÈο ‚È‚Ï›· ÙÔ˘ ¢ËÌÔÙÈÎÔ‡, ÙÔ˘ °˘ÌÓ·Û›Ô˘ Î·È ÙÔ˘ §˘Î›Ԣ Ù˘ÒÓÔÓÙ·È ·fi ÙÔÓ √ÚÁ·ÓÈÛÌfi ∂ΉfiÛˆ˜ ¢È‰·ÎÙÈÎÒÓ μÈ‚Ï›ˆÓ Î·È ‰È·Ó¤ÌÔÓÙ·È ‰ˆÚÂ¿Ó ÛÙ· ¢ËÌfiÛÈ· ™¯ÔÏ›·. Δ· ‚È‚Ï›· ÌÔÚ› Ó· ‰È·Ù›ıÂÓÙ·È ÚÔ˜ ÒÏËÛË, fiÙ·Ó Ê¤ÚÔ˘Ó ‚È‚ÏÈfiÛËÌÔ ÚÔ˜ ·fi‰ÂÈÍË Ù˘ ÁÓËÛÈfiÙËÙ¿˜ ÙÔ˘˜. ∫¿ı ·ÓÙ›Ù˘Ô Ô˘ ‰È·Ù›ıÂÙ·È ÚÔ˜ ÒÏËÛË Î·È ‰Â ʤÚÂÈ ‚È‚ÏÈfiÛËÌÔ, ıˆÚÂ›Ù·È ÎÏ„›Ù˘Ô Î·È Ô ·Ú·‚¿Ù˘ ‰ÈÒÎÂÙ·È Û‡Ìʈӷ Ì ÙȘ ‰È·Ù¿ÍÂȘ ÙÔ˘ ¿ÚıÚÔ˘ 7, ÙÔ˘ ¡fiÌÔ˘ 1129 Ù˘ 15/21 ª·ÚÙ›Ô˘ 1946 (ºEK 1946, 108, Aã).

BIB§IO™HMO

∞·ÁÔÚ‡ÂÙ·È Ë ·Ó··Ú·ÁˆÁ‹ ÔÔÈÔ˘‰‹ÔÙ ÙÌ‹Ì·ÙÔ˜ ·˘ÙÔ‡ ÙÔ˘ ‚È‚Ï›Ô˘, Ô˘ ηχÙÂÙ·È ·fi ‰ÈηÈÒÌ·Ù· (copyright), ‹ Ë ¯Ú‹ÛË ÙÔ˘ Û ÔÔÈ·‰‹ÔÙ ÌÔÚÊ‹, ¯ˆÚ›˜ ÙË ÁÚ·Ù‹ ¿‰ÂÈ· ÙÔ˘ ¶·È‰·ÁˆÁÈÎÔ‡ πÓÛÙÈÙÔ‡ÙÔ˘.


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.