NCERT Solution Class 12 Maths

Page 1

Study Material  Downloaded from Vedantu

FREE

LIVE ONLINE

MASTER CLASSES FREE Webinars by Expert Teachers

About Vedantu Vedantu is India’s largest LIVE online teaching platform with best teachers from across the country. Vedantu offers Live Interactive Classes for JEE, NEET, KVPY, NTSE, Olympiads, CBSE, ICSE, IGCSE, IB & State Boards for

Register for FREE

Students Studying in 6-12th Grades and Droppers.

Awesome Master Teachers Anand Prakash

Pulkit Jain

Namo Kaul

B.Tech, IIT Roorkee Co-Founder, Vedantu

B.Tech, IIT Roorkee Co-Founder, Vedantu

B.Tech, Computer Science VIT-Vellore

My mentor is approachable and guides me in my future aspirations as well.

My son loves the sessions and I can

Student - Ayushi

Parent - Sreelatha

6,80,900+

Hours of LIVE Learning

3,13,100+ Happy Students

FREE MASTER CLASS SERIES 

For Grades 6-12th targeting JEE, CBSE, ICSE & much more.

Free 60 Minutes Live Interactive classes everyday.

Learn from the Master Teachers - India’s best.

already see the change.

95%

Top Results

95% Students of Regular Tuitions on Vedantu scored above 90% in exams!

Register for FREE Limited Seats!


Class XII – NCERT – Maths

Chapter 2- Inverse trigonometric functions

Exercise 2.1 Question 1:  1 Find the principal value of sin 1     2 Solution 1:  1      1 Let sin 1     y, Then sin y       sin    sin    .  2 6  6  2

   We know that the range of the principal value branch of sin 1 is   ,   2 2   1 and sin     ,  6 2

  1 Therefore, the principal value of sin 1    is  . 6  2

Question 2:  3 Find the principal value of cos 1    2  Solution 2:  3 3    cos   Let cos 1    y . Then cos y  2 6  2 

We know that the range of the principal value branch of cos 1 is 0,   3   and cos    . 6 2  3  Therefore, the principal value of cos 1   is .  2  6

Question 3: Find the principal value of cosec1 (2) Solution 3:

2.Inverse trigonometric functions

www.vedantu.com

1


Study Materials NCERT Solutions for Class 6 to 12 (Math & Science) Revision Notes for Class 6 to 12 (Math & Science) RD Sharma Solutions for Class 6 to 12 Mathematics RS Aggarwal Solutions for Class 6, 7 & 10 Mathematics Important Questions for Class 6 to 12 (Math & Science) CBSE Sample Papers for Class 9, 10 & 12 (Math & Science) Important Formula for Class 6 to 12 Math CBSE Syllabus for Class 6 to 12 Lakhmir Singh Solutions for Class 9 & 10 Previous Year Question Paper CBSE Class 12 Previous Year Question Paper CBSE Class 10 Previous Year Question Paper JEE Main & Advanced Question Paper NEET Previous Year Question Paper

Vedantu Innovations Pvt. Ltd. Score high with a personal teacher, Learn LIVE Online! www.vedantu.com


Chapter 2- Inverse trigonometric functions

Class XII – NCERT – Maths

Let cosec1 (2)  y .   Then, cosec y = 2 = cosec   . 6    We know that the range of the principal value branch of cosec -1 is   ,   0 .  2 2

Therefore, the principal value of cosec

Question 4:

Find the principal value of tan 1  3

-1

 2  is

 . 6

Solution 4: Let tan 1  3  y

Then, tan y   3   tan

   tan    . 3  3

  We know that the range of the principal value branch of tan 1 is     2 2   and tan    is  3.  3

Therefore, known that the principal value of tan 1  3 is 

 . 3

Question 5:  1 Find the principal value of cos 1     2

Solution 5:  1 Let cos 1     y.  2 1      2 Then, cos y     cos    cos      cos  2 3 3   3

 .  We know that the range of the principal value branch of cos 1 is 0,    2 and cos   3

1   . 2 

2.Inverse trigonometric functions

www.vedantu.com

2


Class XII – NCERT – Maths

Chapter 2- Inverse trigonometric functions

 1   2  Therefore, the principal value of cos 1    is  .  2  3 

Question 6: Find the principal value of tan 1  1 Solution 6: Let tan 1  1 = y.     Then, tan y  1   tan    tan    . 4  4    We know that the range of the principal value branch of tan 1 is   ,   2 2   and tan     1.  4

Therefore, the principal value of tan 1  1 is 

 . 4

Question 7:  2  Find the principal value of sec 1    3

Solution 7: 2  2    Let sec 1   sec   .   y . Then, sec y  3 6  3

  We know that the range of the principal value branch of sec1 is  0,      2   2 and sec    . 3 6  2   Therefore, the principal value of sec 1   is .  3 6

2.Inverse trigonometric functions

www.vedantu.com

3


Class XII – NCERT – Maths

Question 8: Find the principal value of cot 1

Chapter 2- Inverse trigonometric functions

 3

Solution 8: Let cot 1

 3   y . Then cot y 

  3  cot   . 6

We know that the range of the principal value branch of cot 1 is (0, )   and cot    3. 6

Therefore, the principal value of cot 1

 3  is 6 .

Question 9:  1  Find the principal value of cos 1    2 

Solution 9:  1  Let cos 1    y . 2 

Then cos y  

1      3   cos    cos      cos  4 2 4   4

 . 

We know that the range of the principal value branch of cos 1 is [0, ] 1  3  and cos     . 2  4   1  3 Therefore, the principal value of cos 1    is 4 . 2 

Question 10:

Find the principal value of cosec-1  2

Solution 10:

2.Inverse trigonometric functions

www.vedantu.com

4


Class XII – NCERT – Maths

Chapter 2- Inverse trigonometric functions

  Let cosec-1  2  y. Then, cos ec y   2   cos ec    cos ec    . 4  4 We know that the range of the principal value branch of cosec-1 is        2 , 2   {0} and cosec   4    2 .

Therefore, the principal value of cosec-1  2 is 

 . 4

Question 11:  1  1 Find the value of tan 1 1  cos 1     sin 1     2  2

Solution 11: Let tan 1 1  x.   Then, tan x =1= tan   . 4

 tan 1 1 

 4

 1 Let cos 1     y.  2 1      2 Then, cos y     cos    cos      cos  2 3 3   3

 . 

 1  2  cos-1      2 3  1 Let sin 1     z.  2

Then, sin z  

1       sin    sin    . 2 6  6

  1  sin 1      6  2  1  1  tan 1 1  cos 1     sin 1     2  2

2.Inverse trigonometric functions

www.vedantu.com

5


Chapter 2- Inverse trigonometric functions

Class XII – NCERT – Maths

 4

2   3 6

3  8  2 9 3   12 12 4

Question 12: 1 1 Find the value of cos 1    2sin 1   2 2

Solution 12: 1 Let cos 1    x. 2 1   Then, cos x   cos   . 2 3 1   cos 1    2 3 1 Let sin 1    y. 2 1   Then, sin y   sin   . 2 6 1   sin 1    2 6    2 1 1   cos 1    2sin 1     2     6 3 3 3 2 2 3

Question 13: If sin 1 x  y, then (A) 0  y  

(B) 

(C) 0  y  

(D) 

   y 2 2   2

 y

2

Solution 13:

2.Inverse trigonometric functions

www.vedantu.com

6


Class XII – NCERT – Maths

Chapter 2- Inverse trigonometric functions

It is given that sin 1 x  y .    We know that the range of the principal value branch of sin 1 is   ,  .  2 2

Therefore, 

   y . 2 2

Answer choice (B) is correct.

Question 14:

tan 1 3  sec1  2 is equal to (B)  / 3 (D) 2 / 3

(A)  (C)  / 3

Solution 14: Let tan 1 3  x. . Then, tan x  3  tan

 3

    We know that the range of the principal value branch of tan 1 is  , .  2 2

 3 1 Let sec  2  y.

 tan 1 3 

 2    Then, sec y  2   sec    sec      sec . 3 3 3    We know that the range of the principal value branch of sec1 is  0,     . 2 2  sec 1  2   3 Thus,

tan 1 

 3

 3   sec

1

 2 

2   3 3

2.Inverse trigonometric functions

www.vedantu.com

7


Class XII – NCERT – Maths

Chapter 2- Inverse trigonometric functions Exercise 2.2

Question 1:  1 1 Prove 3sin 1 x  sin 1  3 x  4 x3  , x    ,   2 2 Solution 1:

 1 1 To Prove 3sin 1 x  sin 1  3x  4 x3  , where x    ,   2 2

Let x  sin  . Then,sin 1 x   . We have, R.H.S

sin 1  3x  4 x3   sin 1  3sin   4sin 3  

 sin 1  sin 3   3  3sin 1 x  L.H .S

Question 2: 1  Prove 3cos 1 x  cos 1  4 x3  3x  , x   ,1 2 

Solution 2: 1  To Prove 3cos 1 x  cos 1  4 x3  3x  , x   ,1 2 

Let x  cos . Then, cos 1 x   We have R.H .S cos 1  4 x3  3 x 

2.Inverse trigonometric functions

www.vedantu.com

8


Class XII – NCERT – Maths

Chapter 2- Inverse trigonometric functions

 cos 1  4 cos3   3cos    cos 1  cos 3   3  3cos 1 x  L.H .S

Question 3: 1  2  1  7  1  1  Prove tan    tan    tan    11   24  2

Solution 3: 1 To prove: tan

2 7 1  tan 1  tan 1 11 24 2

L.H .S . tan 1

2 7  tan 1 11 24

2 7   tan 1 11 24 2 7  1  .   11 24   tan 1

 tan 1

 1 1 1 x  y   tan x  tan y  tan 1  xy   

11 24 11 24  14 11 24 48  77 264  14

 125  1  1   tan 1    tan    R.H.S.  250  2

2.Inverse trigonometric functions

www.vedantu.com

9


Class XII – NCERT – Maths

Chapter 2- Inverse trigonometric functions

Question 4: 1 Prove 2 tan

1 1 31  tan 1  tan 1 2 7 17

Solution 4:

1 1 31  tan 1  tan 1 2 7 17 1 1 L.H.S = 2tan -1  tan 1 2 7 1 2. 2  tan 1 1  2 tan 1 x  tan 1 2 x   tan 1 2 7  1  x 2  1 1   2 1 1  tan 1  tan 1 7 3   4 4 1  tan 1  tan 1 3 7 4 1   x y   tan 1 3 7  tan 1 x  tan 1 y  tan 1 4 1 1  xy  1 .  3 7  28  3     tan 1  21  21  4    21  31  tan 1  R.H.S. 17

1 To prove: 2 tan

Question 5: Write the function in the simplest form: tan

1

1  x2 1 ,x 0 x

Solution 5:

tan 1

1  x2 1 x

Put x  tan     tan 1 x

2.Inverse trigonometric functions

www.vedantu.com

10


Class XII – NCERT – Maths

Chapter 2- Inverse trigonometric functions

1  x2  1 1  tan 2    tan 1 x tan   sec   1  1  1  cos    tan 1    tan    tan    sin  

 tan 1

 2   2sin  2      tan 1    2sin cos    2 2     1   tan 1  tan    tan 1 x 2 2 2 

Question 6:  1  Write the function in the simplest form: tan 1  2  , x  1  x 1 

Solution 6: 1 tan 1 2 , x  1 x 1

Put x  cosec    cos ec1 x 1  tan 1 x2 1 1  tan 1 cos ec 2  1  1   tan 1    cot    tan 1  tan  

  cos ec 1 x 

 2

 sec1 x

  1 1  As, cos ec x  sec x  2 

2.Inverse trigonometric functions

www.vedantu.com

11


Class XII – NCERT – Maths

Chapter 2- Inverse trigonometric functions

Question 7:  1  cos x  Write the function in the simplest form: tan 1   , x    1  cos x 

Solution 7:  1  cos x  tan 1   , x    1  cos x 

 1  cos x  tan 1    1  cos x   2 x  2sin 2  tan 1   2 cos 2 x  2 

     

x  sin   2  tan 1  x  cos   2 x   tan 1  tan  2 

x 2

Question 8:  cos x  sin x  Write the function in the simplest form: tan 1  ,0  x    cos x  sin x 

Solution 8:  cos x  sin x  tan 1    cos x  sin x 

  sin x    1   cos x    1  tan    1   sin x     cos x     

2.Inverse trigonometric functions

www.vedantu.com

12


Chapter 2- Inverse trigonometric functions

Class XII – NCERT – Maths

 1  tan x   tan 1    1  tan x   1 x  y 1 1   tan 1  xy  tan x  tan y   

 tan 1 1  tan 1  tan x 

=

 x 4

Question 9: Write the function in the simplest form: tan 1

x a  x2 2

, x a

Solution 9: x tan 1 2 a  x2 Let, x  a sin  

 tan 1

x  x  sin   sin 1   a a

x a  x2 2

  a sin   tan 1   2 2 2  a  a sin  

 a sin    tan 1   2  a 1  sin    a sin    tan 1    a cos  

 tan 1  tan      sin 1

x a

Question 10:

 3a 2 x  x3  a a Write the function in the simplest form: tan 1  3 , a  0; x 2  3 3  a  3ax  Solution 10:

2.Inverse trigonometric functions

www.vedantu.com

13


Class XII – NCERT – Maths

Chapter 2- Inverse trigonometric functions

 3a 2 x  x3  Consider, tan  3 2   a  3ax  Let x  x x  a tan    tan     tan 1   a a 1

 3a 2 x  x3  tan 1  3 2   a  3ax   3a 2  a tan   a 3 tan 3    tan   3 2 2  a  3a  a tan   1

 3a3 tan   a3 tan 3    tan   3 3 2  a  3a tan   1

 tan 1  tan 3   3

 3 tan 1

x a

Question 11:  1   Find the value of tan 1  2 cos  2sin 1   2   

Solution 11: 1 Let sin 1  x. 2 1   Then,sin x   sin   . 2 6

 sin 1

1   2 6

 1    tan 1  2 cos  2sin 1   2         tan 1  2 cos  2    6   

2.Inverse trigonometric functions

www.vedantu.com

14


Chapter 2- Inverse trigonometric functions

Class XII – NCERT – Maths

   tan 1  2 cos  3   1  tan 1  2    2  tan 1 1 

 4

Question 12:

Find the value of cot  tan 1 a  cot 1 a  Solution 12:

cot  tan 1 a  cot 1 a     cot   2

  1 1  tan x  cot x  2 

0

Question 13: 2 1  1 2 x 1 1  y  Find the value of tan sin  cos , x  1, y  0 and xy  1 2 1  x2 1  y 2 

Solution 13: Let x  tan  . Then,  tan 1 x.

 sin 1

2x  2 tan    sin 1   2 2 1 x  1  tan    sin 1  sin 2   2  2 tan 1 x

Let y  tan  . Then,   tan 1 y.

2.Inverse trigonometric functions

www.vedantu.com

15


Class XII – NCERT – Maths

Chapter 2- Inverse trigonometric functions

 1 y2   cos  2   1 y   1  tan 2    cos 1   2  1  tan    cos 1  cos 2  1

 2  2 tan 1 y 2  1  1  2 x  1  1  y  cos  tan sin      2 2  2  1 x   1  y 

 1 1 1 x  y   As, tan x  tan y  tan 1  xy   

1  tan  2 tan 1 x  2 tan 1 y  2   x  y   tan  tan 1    1  xy    x y  1  xy

Question 14: 1   If sin  sin 1  cos 1 x   1 , then find the value of x. 5   Solution 14: 1   sin  sin 1  cos 1 x   1 5  

1 1    sin  sin 1  cos  cos 1 x   cos  sin 1  sin  cos 1 x   1 5 5    sin  A  B   sin A  cos B  cos A  sin B  1 1    x  cos  sin 1  sin  cos 1 x   1 5 5  

1 x   cos  sin 1  sin  cos 1 x   1 5 5 

Now, let sin 1

...(1)

1 y 5

Then,

2.Inverse trigonometric functions

www.vedantu.com

16


Chapter 2- Inverse trigonometric functions

Class XII – NCERT – Maths

1 y 5 1 sin y  5 sin 1

2

2 6 1  cos y  1     5 5 2 6  y  cos 1    5   sin 1

2 6 1  cos 1   5  5 

...(2)

Let cos1 x  z. Then, cos z  x  sin z  1  x 2  z  sin 1

1  x2

 cos 1 x  sin 1

.

1  x2

...(3)

From (1), (2) and (3) we have:

 x 2 6 1 2  cos  cos 1   sin sin 1  x  1 5 5   

x 2 6   1  x2  1 5 5

 x  2 6 1  x2  5  2 6 1  x2  5  x

On squaring both sides, we get:

2.Inverse trigonometric functions

www.vedantu.com

17


Chapter 2- Inverse trigonometric functions

Class XII – NCERT – Maths

 2 6  1  x   25  x 2

2

2

 10 x

  4  6  1  x 2   25  x 2  10 x  24  24 x 2  25  x 2  10 x  25 x 2  10 x  1  0   5 x  1  0 2

  5 x  1  0 x

1 5

Hence, the value of x is

1 . 5

Question 15: x 1  1 x  1  tan 1  , then find the value of x. If tan x2 x2 4 Solution 15: x 1 x 1  tan 1  tan 1  x2 x2 4

 x 1 x 1     1 x  2 x2     tan  1   x  1  x  1   4    x  2   x  2  

 1 1 1 x  y   As, tan x  tan y  tan 1  xy   

  x  1 x  2    x  1 x  2     tan 1     x  2  x  2    x  1 ( x  1)  4

 x2  x  2  x2  x  2    tan 1   x 2  4  x 2  1  4   2x2  4    tan 1    3  4

 4  2 x2    tan  tan 1  tan  3  4  

4  2 x2 1 3

2.Inverse trigonometric functions

www.vedantu.com

18


Chapter 2- Inverse trigonometric functions

Class XII – NCERT – Maths

 4  2 x2  3  2 x2  4  3  1 x

1 2

Hence, the value of x is 

1 . 2

Question 16: 2   Find the values of sin 1  sin  3  

Solution 16: 2   Consider, sin 1  sin  3  

We know that sin 1  sin x   x    If x    ,  , which is the principal value branch of sin 1 x. .  2 2

Here,

2      , 3  2 2 

2  Now, sin 1  sin 3 

  can be written as: 

2   sin 1  sin  3     2    sin 1 sin     3             sin 1  sin  , where   , 3 3  2 2   2   sin 1  sin 3 

   1    sin sin   3 3  

2.Inverse trigonometric functions

www.vedantu.com

19


Chapter 2- Inverse trigonometric functions

Class XII – NCERT – Maths

Question 17: 3   Find the values of tan 1  tan  4  

Solution 17: 3   Consider, tan 1  tan  4  

We know that tan 1  tan x   x    If x    ,  , which is the principal value branch of tan 1 x.  2 2 3     Here,    , . 4  2 2 3  Now, tan 1  tan 4  3  tan 1  tan 4 

  can be written as: 

    3    1  1    tan   tan     tan   tan      4    4    

           tan 1   tan   tan 1  tan    where     ,  4 4  2 2    4  3        1   tan 1  tan   tan  tan    4     4  4

Question 18: 3 3  Find the values of tan  sin 1  cot 1  5 2 

Solution 18: 1 3  x. Let sin 5 Then , 3 sin x  5

 cos x  1  sin 2 x   sec x 

4 5

5 4

2.Inverse trigonometric functions

www.vedantu.com

20


Chapter 2- Inverse trigonometric functions

Class XII – NCERT – Maths

 tan x  sec2 x  1 

 x  tan 1

25 3 1  16 4

3 4

3 3  sin 1  tan 1 5 4 2 1 3  tan 1 Now, cot 2 3

...(i)  1 1 1   , tan x  cot x 

...(ii)

3 3  Therefore, tan  sin 1  cot 1  5 2  3 2   tan  tan 1  tan 1  4 3 

[Using (i) and (ii)]

  3 2   1  4  3    tan  tan  3 2    1      4 3  

 1 1 1 x  y   As, tan x  tan y  tan 1  xy   

98    tan  tan 1  12  6   17  17   tan  tan 1   6 6 

Question 19: 7  Find the values of cos 1  cos 6 

( A) (C )

7 6

 3

  is equal to 

( B) ( D)

5 6

 6

Solution 19: We know that cos1  cos x   x if x 0,   , which is the principal value branch of cos1 x . Here,

7   0,   . 6

2.Inverse trigonometric functions

www.vedantu.com

21


Class XII – NCERT – Maths

7  Now, cos 1  cos 6  7  cos 1  cos 6 

  can be written as : 

7  1    cos  cos 6  

7   cos1  cos 6 

Chapter 2- Inverse trigonometric functions

5  1    cos  cos 6  

7     1    cos cos  2   6     

 cos  2  x   cos x 

 5   6

The correct answer is B.

Question 20:   1  Find the values of sin   sin 1     is equal to  2  3 1 1 (A) (B) 2 3 (D) 1 1 (C) 4

Solution 20:  1  Let sin 1    x .  2  Then , sin x 

1      sin  sin  2 6  6

 . 

    We know that the range of the principal value branch of sin 1 is  , .  2 2   1   sin 1     2  6   1       3  sin   sin 1     sin     sin   2  3 6  6 3 The correct answer is D.

2.Inverse trigonometric functions

     sin    1  2

www.vedantu.com

22


Chapter 2- Inverse trigonometric functions

Class XII – NCERT – Maths

Miscellaneous Exercise Question 1: 13   Find the value of cos 1  cos  6   Solution 1:

We Know that cos1  cos x   x if x 0,   , which is the principal value branch of cos1 x .

13   0,   . 6 13   Now, cos 1  cos  can be written as : 6   13   cos 1  cos  6        cos 1 cos  2    6    Here,

     cos 1 cos      6  13   cos 1  cos 6 

where

 6

  0,   .

     1    cos cos        6  6

Question 2: 7   Find the value of tan 1  tan  6  

Solution 2:    We know that tan 1  tan x   x if x    ,  , which is the principal value branch of tan 1 x.  2 2 7     Here,    , . 6  2 2 7  Now, tan 1  tan 6 

  can be written as: 

2.Inverse trigonometric functions

www.vedantu.com

23


Chapter 2- Inverse trigonometric functions

Class XII – NCERT – Maths

7   tan 1  tan  6     5  tan  tan  2  6   1

  5    tan 1   tan    6     5  tan 1  tan    6  

 tan  2  x    tan x 

  

 tan  2  x    tan x    

         tan 1  tan    , where    ,  6  2 2   6 

7   tan 1  tan 6 

   1    tan  tan   6 6  

Question 3: 1 Prove 2sin

3 24  tan 1 5 7

Solution 3: 3 1 3  x. Then sin x  . Let sin 5 5 2

4 3  cos x  1     5 5

 tan x 

3 4

3 3 3  sin 1  tan 1 4 5 4 Now, we have: L.H.S 3 3 2sin 1  2 tan 1 5 4  3   2  2x   1  4  2 tan 1 x  tan 1  tan 2   3  1  x 2    1     4 

 x  tan 1

2.Inverse trigonometric functions

www.vedantu.com

24


Class XII – NCERT – Maths

Chapter 2- Inverse trigonometric functions

 3     3 16   tan 1  2   tan 1    16  9 2 7     16  24  tan 1  R.H .S . 7

Question 4: 1 Prove sin

8 3 77  sin 1  tan 1 17 5 36

Solution 4: 8 sin 1  x. 17 2

8 225 15  8 Then, sin x   cos x  1      17 289 17.  17 

8 8  x  tan 1 15 15 8 8  sin 1  tan 1 17 15 3 Now, let sin 1  y 5  tan x 

…..(1)

2

3 16 4 3 Then, sin y   cos y  1      . 5 25 5 5

3 3  y  tan 1 5 4 3 3  sin 1  tan 1 5 4

 tan y 

……(2)

Now, we have: L.H.S.

sin 1

8 3  sin 1 17 5

2.Inverse trigonometric functions

www.vedantu.com

25


Class XII – NCERT – Maths

Using (1) and (2), we get 3 1 8  tan 1 = tan 15 4 8 3  1 15 4  tan 8 3 1  15 4  32  45   tan 1    60  24  77  tan 1  R.H .S . 36

Chapter 2- Inverse trigonometric functions

 1 1 1 x  y   tan x  tan y  tan 1  xy   

Question 5: 1 Prove cos

4 12 33  cos 1  cos 1 5 13 65

Solution 5: 4 Let cos 1  x 5 2

Then, cos x 

4 3 4  sin x  1     5 5 5

3 3  x  tan 1 4 4 4 3  cos 1  tan 1 ….(1) 5 4 1 12  y. Now, let cos 13 12 5 Then, cos y   sin y  . 13 13 5 5  tan y   y  tan 1 12 12 12 5  cos 1  tan 1 ….(2) 13 12  tan x 

1 Let cos

33 z 65

2.Inverse trigonometric functions

www.vedantu.com

26


Class XII – NCERT – Maths

33 56  sin z  65 65 56 56  tan z   z  tan 1 33 33 33 56  cos 1  tan 1 65 33

Chapter 2- Inverse trigonometric functions

Then, cos z 

...(3)

Now, L.H .S .

4 12 cos 1  cos 1 5 13 Using (1) and (2), we get

3 5  tan 1  tan 1 4 12  3 5      tan 1  4 12   3 5   1   4  12     

 1 1 1  x  y    tan x  tan y  tan    1  xy   

 36  20   tan 1    48  15  56  tan 1 33 56  cos 1 33  R.H .S .

Question 6: 12 3 56 Prove cos 1  sin 1  sin 1 13 5 65 Solution 6: 2

3 3 16 4 3  x. Then, sin x   cos x  1     Let sin  . 5 5 25 5 5 1

2.Inverse trigonometric functions

www.vedantu.com

27


Chapter 2- Inverse trigonometric functions

Class XII – NCERT – Maths

3 3  x  tan 1 4 4 3 3  sin 1  tan 1 ...(1) 5 4 12 Now, let cos 1  y 13

 tan x 

Then, cos y 

 tan y 

 cos 1

5 5  y  tan 1 12 12

12 5  tan 1 13 12

Let sin 1

 tan z 

...(2)

56  z. 65

Then, sin z 

 sin 1

12 5  sin y  . 13 13

56 33  cos z  . 65 65

56 56  z  tan 1 33 33

56 56  tan 1 65 33

...(3)

Now, we have L.H.S 12 3 cos 1  sin 1 13 5 5 3  tan 1  tan 1 12 4 Using (1) and (2), we get

2.Inverse trigonometric functions

www.vedantu.com

28


Class XII – NCERT – Maths

5 3  = tan -1 12 4  5 3 1  .   12 4 

Chapter 2- Inverse trigonometric functions

 1 1 1 x  y   tan x  tan y  tan 1  xy   

 20  36  = tan 1    48  15  56 = tan 1 33 56  sin 1 [Using (3)] 65

 R.H .S

Question 7: 63 5 3  sin 1  cos 1 Prove tan 1 16 13 5 Solution 7: 5 Let sin 1  x 13 5 12 Then, sin x   cos x  . 13 13 5 5  tan x   x  tan 1 12 12 5 5  sin _1  tan 1 13 12 3 Let cos 1  y. 5 3 4 Then, cos y   sin y  . 5 5 4 4 Thus, tan y   y  tan 1 3 3 3 4  cos 1  tan 1 5 3

…..(1)

….(2)

Using (1) and (2), we have R.H.S.

2.Inverse trigonometric functions

www.vedantu.com

29


Class XII – NCERT – Maths

sin 1

Chapter 2- Inverse trigonometric functions

5 3  cos 1 12 5

= tan 1

5 4  tan 1 12 3

 5 4   12  3  1  tan    1 5  4   12 3 

 1 1 1 x  y   tan x  tan y  tan 1  xy   

 15  48   tan 1    36  20  63  tan 1 16  L.H.S .

Question 8: 1 1 1 1  Prove tan 1  tan 1  tan 1  tan 1  5 7 3 8 4 Solution 8: L.H.S 1 1 1 1 tan 1  tan 1  tan 1  tan 1 5 7 3 8  1 1   1 1      38  1 1 5 7  tan    tan  1 1   1 1  1   1    5 7  3 8  75  1  8  3   tan 1    tan    35  1   24  1  12 11  tan 1  tan 1 34 23 6 11  tan 1  tan 1 17 23  6 11      tan 1  17 23   1  6  11   17 23 

2.Inverse trigonometric functions

 1 1 1 x  y   tan x  tan y  tan 1  xy   

www.vedantu.com

30


Class XII – NCERT – Maths

Chapter 2- Inverse trigonometric functions

 325  1  tan 1    tan 1 325      R.H.S. 4

Question 9: 1  1 x  Prove tan 1 x  cos 1   , x   0.1 2  1 x 

Solution 9: Let x  tan 2  . Then

x  tan     tan 1 x .

1  x 1  tan 2     cos 2 1  x 1  tan 2 

Now, we have: R.H .S 1  1 x  cos 1   2  1 x  1  cos 1  cos 2  2 1   2 =  =tan -1 x  L.H .S . 2

Question 10:  1  sin x  1  sin x  x   Prove cot 1    , x   0,    4  1  sin x  1  sin x  2

Solution 10:

2.Inverse trigonometric functions

www.vedantu.com

31


Chapter 2- Inverse trigonometric functions

Class XII – NCERT – Maths

Consider

    

1  sin x  1  sin x 1  sin x  1  sin x

 1  sin x 

1  sin x  1  sin x 1  sin x 

2

(by rationalizing)

2

1  sin x   1  sin x   2 1  sin x 1  sin x  1  sin x  1  sin x

2 1  1  sin 2 x

2sin x 1  cos x  sin x 

2 cos 2

x 2

x x 2sin cos 2 2 x  cot 2  1  sin x  1  sin x   L.H .S .  cot 1    1  sin x  1  sin x  x x   cot 1  cot    R.H .S . 2 2 

Question 11:  1 x  1 x   1 1 1 Prove tan 1   x 1    cos x,  2  1 x  1 x  4 2

Hint : putx  cos 2  Solution 11: Let, x  cos 2 then,  

1 cos 1 x. 2

Thus, we have:

2.Inverse trigonometric functions

www.vedantu.com

32


Class XII – NCERT – Maths

Chapter 2- Inverse trigonometric functions

 1 x  1 x  L.H .S .  tan 1    1 x  1 x   1  cos 2  1  cos 2  tan 1   1  cos 2  1  cos 2  2 cos 2 2  2sin 2   tan 1   2 cos 2 2  2sin 2  

  

   

 2 cos   2 sin    tan     2 cos   2 sin  

 cos   sin    tan 1    cos   sin    1  tan    tan 1    1  tan  

 1  x  y  1 1   tan    tan x  tan y   1  xy   

 tan 1 1  tan 1  tan   

 4

 

1  cos 1 x  R.H.S. 4 2

Question 12: Prove

9 9 1 1 9 1 2 2  sin  sin 8 4 3 4 3

Solution 12: 9 9 1 1 L.H.S. =  sin 8 4 3 9 1    sin 1  4 2 3 9 1   cos 1  4 3 1 Now, let cos 1  x 3

2.Inverse trigonometric functions

……(1)

  1 1  sin x  cos x  2 

www.vedantu.com

33


Class XII – NCERT – Maths

Chapter 2- Inverse trigonometric functions

2

Then, cos x 

1 2 2 1  sin x  1     . 3 3 3

 x  sin 1

2 2 1 2 2  cos 1  sin 1 3 3 3

 L.H.S. =

9 1 2 2 sin  R.H.S. 4 3

Question 13: Solve 2tan 1  cos x   tan 1  2cosec x  Solution 13:

2tan 1  cos x   tan 1  2cosec x   2cos x  1  tan 1    tan  2cosec x  2 1  cos x   2 cos x   2 cosec x 1  cos 2 x 

 1 1 2 x   2 tan x  tan 1  x 2 

2 cos x 2  2 sin x sin x

 cos x  sin x

 tan x 1 x 

 4

Question 14: 1 x 1  tan 1 x,  x  0  Solve tan 1 1 x 2 Solution 14: 1 x 1 tan 1  tan 1 x 1 x 2

2.Inverse trigonometric functions

www.vedantu.com

34


Chapter 2- Inverse trigonometric functions

Class XII – NCERT – Maths

 1 1 1 x  y   tan x  tan y  tan 1  xy   

1  tan 1 1  tan 1 x  tan 1 x 2 

 4

3 tan 1 x 2

 tan 1 x   x  tan

x 

 6

 6

1 3

Question 15:

Solve sin  tan 1 x  , x  1 is equal to (A) (C)

x

(B)

1  x2 1

(D)

1  x2

1 1  x2 x 1  x2

Solution 15: tan y  x  sin y 

x 1  x2

Let tan 1 x  y. Then,

 x   x  y  sin 1   tan 1 x  sin 1    2 2  1 x   1 x    x  x  sin  tan 1 x   sin  sin 1      2  1  x2  1 x    The correct answer is D.

2.Inverse trigonometric functions

www.vedantu.com

35


Chapter 2- Inverse trigonometric functions

Class XII – NCERT – Maths

Question 16: Solve sin 1 1  x   2sin 1 x  (A) 0,

1 2

, then x is equal to

2

(B) 1,

(C) 0

(D)

Solution 16:

sin 1 1  x   2sin 1 x   2sin 1 x 

1 2

1 2

 2

 sin 1 1  x 

2  2sin x  cos 1 1  x  1

...(1)

Let sin 1 x    sin   x  cos   1  x 2 .    cos 1

1  x2

 sin 1 x  cos 1

1  x2

Therefore, from equation (1), we have 2cos 1

1  x 2  cos 1 1  x 

Let, x  sin y . Then, we have: 2cos 1

1  sin 2 y  cos 1 1  sin y 

 2cos1  cos y   cos1 1  sin y   2 y  cos1 1  sin y 

 1  sin y  cos  2 y   cos 2 y  1  sin y  1  2sin 2 y  2sin 2 y  sin y  0

 sin y  2sin y 1  0 1 2 1  x  0 OR x  2 1 When x  , it can be observed that: 2  sin y  0 or

2.Inverse trigonometric functions

www.vedantu.com

36


Class XII – NCERT – Maths

Chapter 2- Inverse trigonometric functions

1  1 L.H.S.  sin 1 1    sin 1 2  2 1 1  sin 1    2sin 1 2 2 1   sin 1 2      R.H .S . 6 2 1  x  is not a solution of the given equation. 2 Thus, x  0. Hence, the correct answer is C.

Question 17: x x y Solve tan 1    tan 1 is equal to x y  y   (A) (B) 2 3  3 (C) (D) 4 4 Solution 17: x  x y tan 1    tan 1    y  x y  x x y     y x y  1   tan   x  x  y   1       y  x  y    x x  y  y  x  y    y  x  y 1    tan  y  x  y  x x  y    y  x  y  

 1 1 1 x  y   tan y  tan y  tan 1  xy   

 x 2  xy  xy  y 2   tan 1   2 2  xy  y  x  xy 

2.Inverse trigonometric functions

www.vedantu.com

37


Class XII – NCERT – Maths

Chapter 2- Inverse trigonometric functions

 x2  y 2    tan  2  tan 1 1  2  4 x y  Hence, the correct answer is C. 1

2.Inverse trigonometric functions

www.vedantu.com

38


Thank You for downloading the PDF

FREE LIVE ONLINE

MASTER CLASSES FREE Webinars by Expert Teachers

FREE MASTER CLASS SERIES 

For Grades 6-12th targeting JEE, CBSE, ICSE & much more.

Free 60 Minutes Live Interactive classes everyday.

Learn from the Master Teachers - India’s best.

Register for FREE Limited Seats!


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.