Solution Manual For Precalculus, 11th Edition By Michael Sullivan

Page 1


INSTRUCTOR’S SOLUTIONS MANUAL TIM BRITT Jackson State Community College

PRECALCULUS ELEVENTH EDITION

Michael Sullivan Chicago State University


The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development, research, and testing of the theories and programs to determine their effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this book. The author and publisher shall not be liable in any event for incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of these programs. Reproduced by Pearson from electronic files supplied by the author. Copyright © 2020, 2016, 2012 Pearson Education, Inc. Publishing as Pearson, 21 River Street, Hoboken, NJ 07030. All rights reserved All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.

ISBN-13: 978-0-13-518957-3 ISBN-10: 0-13-518957-8


Appendix B Graphing Utilities Section B.1 1.

 1, 4  ; Quadrant II

2. (3, 4); Quadrant I 3. (3, 1); Quadrant I 4.

 6, 4  ; Quadrant III

5. X min  6 X max  6 X scl  2 Y min  4 Y max  4 Y scl  2

6. X min  3 X max  3 X scl  1 Y min  2 Y max  2 Y scl  1 7. X min  6 X max  6 X scl  2 Y min  1 Y max  3 Y scl  1 8. X min  9 X max  9 X scl  3 Y min  12 Y max  4 Y scl  4

9. X min  3 X max  9 X scl  1 Y min  2 Y max  10 Y scl  2 10. X min  22 X max  10 X scl  2 Y min  4 Y max  8 Y scl  1

In Problems 11 – 16, answers will vary. One possible setting is given. 11.

X min  11 X max  5 X scl  1 Y min  3 Y max  6 Y scl  1

12.

X min  3 X max  7 X scl  1 Y min  4 Y max  9 Y scl  1

13.

X min  30 X max  50 X scl  10 Y min  90 Y max  50 Y scl  10

1537 Copyright © 2020 Pearson Education, Inc.


Appendix B: Graphing Utilities 14.

X min  90 X max  30 X scl  10 Y min  50

2.

a.

Y max  70 Y scl  10

15.

X min  10 X max  110 X scl  10 Y min  10

b.

Y max  160 Y scl  10

16.

X min  20 X max  110 X scl  10 Y min  10 Y max  60 Y scl  10

3.

a.

b.

Section B.2 1.

a.

4.

a.

b.

b.

1538 Copyright © 2020 Pearson Education, Inc.


Section B.2: Using a Graphing Utility to Graph Equations 5.

a.

8.

b.

b.

6.

a.

9.

a.

b.

a.

b.

b.

7.

a.

10.

a.

b.

1539 Copyright © 2020 Pearson Education, Inc.


Appendix B: Graphing Utilities 11.

14.

a.

b.

b.

12.

15.

a.

b.

13.

a.

a.

b.

a.

16.

b.

a.

b.

1540 Copyright © 2020 Pearson Education, Inc.


Section B.2: Using a Graphing Utility to Graph Equations are  3,1 ,  2, 0  , and  0, 2  .

17. 21.

Each ordered pair from the table corresponds to a point on the graph. Three points on the graph are  3, 1 ,  2, 0  , and  1,1 .

Each ordered pair from the table corresponds to a point on the graph. Three points on the graph are  3, 4  ,  2, 2  , and  1, 0  .

18. 22.

Each ordered pair from the table corresponds to a point on the graph. Three points on the graph are  3, 5  ,  2, 4  , and  1, 3 .

Each ordered pair from the table corresponds to a point on the graph. Three points on the graph are  3, 8  ,  2, 6  , and  1, 4  .

19. 23.

Each ordered pair from the table corresponds to a point on the graph. Three points on the graph are  3,5  ,  2, 4  , and  1,3 . 20.

Each ordered pair from the table corresponds to a point on the graph. Three points on the graph are  3,8  ,  2, 6  , and  1, 4  .

Each ordered pair from the table corresponds to a point on the graph. Three points on the graph 1541 Copyright © 2020 Pearson Education, Inc.


Appendix B: Graphing Utilities 24.

27.

Each ordered pair from the table corresponds to a point on the graph. Three points on the graph are  3, 7  ,  2, 2  , and  1,1 .

Each ordered pair from the table corresponds to a point on the graph. Three points on the graph are  3, 4  ,  2, 2  , and  1, 0  . 28.

25.

Each ordered pair from the table corresponds to a point on the graph. Three points on the graph are  3, 11 ,  2, 6  , and  1, 3 .

Each ordered pair from the table corresponds to a point on the graph. Three points on the graph are  3,11 ,  2, 6  , and  1,3 . 29.

26.

Each ordered pair from the table corresponds to a point on the graph. Three points on the graph are  3, 7.5  ,  2, 6  , and  1, 4.5  .

Each ordered pair from the table corresponds to a point on the graph. Three points on the graph are  3, 7  ,  2, 2  , and  1, 1 .

1542 Copyright © 2020 Pearson Education, Inc.


Section B.3: Using a Graphing Utility to Locate Intercepts and Check for Symmetry 30.

32.

Each ordered pair from the table corresponds to a point on the graph. Three points on the graph are  3,1.5  ,  2, 0  , and  1, 1.5  .

Each ordered pair from the table corresponds to a point on the graph. Three points on the graph are  3, 7.5  ,  2, 6  , and  1, 4.5  .

31.

Each ordered pair from the table corresponds to a point on the graph. Three points on the graph are  3, 1.5  ,  2, 0  , and  1,1.5  .

Section B.3 1.

The smaller x-intercept is roughly 4.65 . 3.

The smaller x-intercept is roughly 3.41 . 2.

The smaller x-intercept is roughly 1.71 .

1543 Copyright © 2020 Pearson Education, Inc.


Appendix B: Graphing Utilities 8.

4.

The smaller x-intercept is roughly 1.43 .

The positive x-intercept is 2.00. 9.

5.

The smaller x-intercept is roughly 0.28 .

The positive x-intercept is 4.50. 10.

6.

The positive x-intercept is 1.70.

The smaller x-intercept is roughly 0.22 . 11.

7.

The positive x-intercepts are 1.00 and 23.00.

The positive x-intercept is 3.00.

1544 Copyright © 2020 Pearson Education, Inc.


Section B.5: Square Screens 6. Answers will vary. X max  X min  10   6  16

12.

We want a ratio of 8:5, so the difference between Ymax and Ymin should be 10. In order to see the

point  4,8  , the Ymax value must be greater than 8. We might choose Ymax  10 , which means 10  Ymin  10 , or Ymin  0 . Since our range of Y values is more than 10, we might consider using a scale of 2. Thus, Ymin  0 , Ymax  10 , and Yscl  1 will make the point  4,8  visible and

The positive x-intercept is 1.07

have a square screen.

Section B.5 Problems 1-4 assume that a ratio of 3:2 is required for a square screen, as with a TI-84 Plus. 1.

X max  X min 6   6  12   3 Ymax  Ymin 2   2  4

for a ratio of 3:1, resulting in a screen that is not square. 2.

X max  X min 5   5  10 5    Ymax  Ymin 4   4  8 4

for a ratio of 5:4, resulting in a screen that is not square. 3.

4.

X max  X min 16  0 16 8    Ymax  Ymin 8   2 10 5 for a ratio of 8:5, resulting in a square screen.

X max  X min 14   10 24 8    Ymax  Ymin 8   7  15 5 for a ratio of 8:5, resulting in a square screen.

5. Answers will vary. X max  X min  12   4  16

We want a ratio of 8:5, so the difference between Ymax and Ymin should be 10. In order to see the

point  4,8  , the Ymax value must be greater than 8. We might choose Ymax  10 , which means 10  Ymin  10 , or Ymin  0 . Since we are on the order of 10, we would use a scale of 1. Thus, Ymin  0 , Ymax  10 , and Yscl  1 will make the

point  4,8  visible and have a square screen.

1545 Copyright © 2020 Pearson Education, Inc.


Appendix A Review 17. A  0, 2, 6, 7, 8

Section A.1 1. variable

18. C  0, 2, 5, 7, 8, 9

2. origin

19. A  B  1, 3, 4, 5, 9  2, 4, 6, 7, 8

3. strict

 4  0, 1, 2, 3, 5, 6, 7, 8, 9

4. base; exponent or power

20. B  C  2, 4, 6, 7, 8  1, 3, 4, 6

5. d 6. b

 1, 2, 3, 4, 6, 7, 8  0, 5, 9

7. a

21. A  B  0, 2, 6, 7, 8  0, 1, 3, 5, 9  0, 1, 2, 3, 5, 6, 7, 8, 9

8. True 9. False; the absolute value of a real number is nonnegative. 0  0 which is not a positive

22. B  C  0, 1, 3, 5, 9  0, 2, 5, 7, 8, 9  0, 5, 9

number. 10. True

23.

11. A  B  1, 3, 4,5, 9  2, 4, 6, 7,8



 1, 2,3, 4, 5, 6, 7,8, 9

12. A  C  1, 3, 4,5, 9  1, 3, 4, 6  1, 3, 4, 5, 6, 9

13. A  B  1, 3, 4,5, 9  2, 4, 6, 7,8  4

15.

1 0 2

( A  B)  C

26. 5  6

 1, 3, 4,5, 9  2, 4, 6, 7,8   1,3, 4, 6

27. 1  2

 1, 2,3, 4,5, 6, 7,8,9  1,3, 4, 6

16.

25.

5 2

 1, 3, 4, 6

28. 3  

( A  B)  C

29.   3.14

 1, 3, 4,5, 9  2, 4, 6, 7,8   1,3, 4, 6  4  1, 3, 4, 6  1,3, 4, 6

3 4

 

1 3

24.  

14. A  C  1, 3, 4,5, 9  1, 3, 4, 6  1, 3, 4



30.

2  1.41

31.

1  0.5 2

1462 Copyright © 2020 Pearson Education, Inc.

5 2

2 3 3 2


Section A.1: Algebra Essentials

32.

53. 5 xy  2  5( 2)(3)  2  30  2   28

1  0.33 3

54.  2 x  xy   2( 2)  ( 2)(3)  4  6   2

2 33.  0.67 3

34.

1  0.25 4

55.

2( 2)  4 4 2x    x  y  2  3 5 5

56.

x  y 23 1 1    x  y  2  3 5 5

57.

3x  2 y 3( 2)  2(3)  6  6 0    0 2 y 23 5 5

58.

2 x  3 2( 2)  3  4  3 7    y 3 3 3

59.

x  y  3  ( 2)  1  1

60.

x  y  3  ( 2)  5  5

61.

x  y  3  2  3 2  5

62.

x  y  3  2  3 2 1

63.

x 3 3   1 x 3 3

64.

y 2 2    1 y 2 2

65.

4 x  5 y  4(3)  5( 2)

35. x  0 36. z  0 37. x  2 38. y  5 39. x  1 40. x  2 41. Graph on the number line: x  2 



42. Graph on the number line: x  4 

43. Graph on the number line: x  1 

44. Graph on the number line: x  7 

 12  10

45. d (C , D)  d (0,1)  1  0  1  1

 22  22

46. d (C , A)  d (0, 3)   3  0   3  3 47. d ( D, E )  d (1,3)  3  1  2  2 48. d (C , E )  d (0,3)  3  0  3  3

66.

3 x  2 y  3(3)  2( 2)  9  4  5  5

67.

4x  5 y

 4(3)  5( 2)  12   10

49. d ( A, E )  d (3,3)  3  (3)  6  6

 12  10  2

50. d ( D, B)  d (1, 1)   1  1   2  2

2

51. x  2 y   2  2  3   2  6  4 52. 3x  y  3( 2)  3   6  3  3 1463 Copyright © 2020 Pearson Education, Inc.


Appendix A: Review

68. 3 x  2 y  3 3  2  2

76.

 33  2  2  94  13

69.

70.

71.

72.

73.

x2  1 x Part (c) must be excluded. The value x  0 must be excluded from the domain because it causes division by 0.

77.

x2  1 x Part (c) must be excluded. The value x  0 must be excluded from the domain because it causes division by 0.

78.

x x  x 2  9 ( x  3)( x  3) Part (a) , x  3 , must be excluded because it causes the denominator to be 0.

79.

x x 9 None of the given values are excluded. The domain is all real numbers. 2

80.

x2 x 1 None of the given values are excluded. The domain is all real numbers. 2

4 x 5 x  5 must be exluded because it makes the denominator equal 0. Domain   x x  5 6 x4 x  4 must be excluded sine it makes the denominator equal 0. Domain   x x  4

x x4 x  4 must be excluded sine it makes the denominator equal 0. Domain   x x  4 x2 x6 x  6 must be excluded sine it makes the denominator equal 0. Domain   x x  6

5 5 5 81. C  ( F  32)  (32  32)  (0)  0C 9 9 9

x3 x3  74. 2 x  1 ( x  1)( x  1) Parts (b) and (d) must be excluded. The values x  1, and x  1 must be excluded from the domain because they cause division by 0.

75.

9 x 2  x  1 9 x 2  x  1  x3  x x( x 2  1) Part (c) must be excluded. The value x  0 must be excluded from the domain because it causes division by 0.

5 5 5 82. C  ( F  32)  (212  32)  (180)  100C 9 9 9 5 5 5 83. C  ( F  32)  (77  32)  (45)  25C 9 9 9

x 2  5 x  10 x 2  5 x  10  3 x( x  1)( x  1) x x Parts (b), (c), and (d) must be excluded. The values x  0, x  1, and x  1 must be excluded from the domain because they cause division by 0.

5 5 84. C  ( F  32)  ( 4  32) 9 9 5  (36) 9   20C

85. ( 4) 2  ( 4)( 4)  16 86.  42  (4) 2  16

1464

Copyright © 2020 Pearson Education, Inc.


Section A.1: Algebra Essentials

87. 42 

1 1  42 16

88.  42  

103.

( 2)3 x 4 ( y z ) 2 32 x y 3 z

89. 36  34  36  4  32 

1 1  32 9

90. 42  43  42 3  41  4 91.

3   3    3  9

92.

 2   2    2  8

2 1

1 3

2

1 3

25  52  5

94.

36  62  6

95.

 4 2  4  4

96.

 32  3  3

97.

8x   8  x   64 x

98.

 4 x   41x   41x

99.

100.

101.

102.

2

104.

4 x 2 ( y z ) 1 3 4

2 x y

3

93.

3 2

 3x 1  105.  1   4y 

3 2

2

 5 x 2  106.  2   6y 

6

3

2

3

1 3

1 2

3

4 2

3 3

4 2

107. 2 xy 1 

3 3

x y2

 x 2 1 y1 2  x 3 y 1 

2

42 x 2 16 x 2  4x     2 2  3 y 9 y2  3y 

3

 6 x2   2   5y 

3

2 3

3

6 6

2x 2  2   4 y  1

108. 3x 1 y 

x2 y3 x  x 2 1 y 3 4  x1 y 1  y xy 4 x 2 y

2

 5 y2   2   6x 

3

 x y    x   y  x y  xy 1

 3y     4x 

   216 x  125 y 5 y 

2

 x y    x    y   x y  xy 2 2

4 x 2 y 1 z 1 8x4 y 4  x 2 4 y 11 z 1 8 1  x 6 y 2 z 1 2 1  6 2 2x y z 

63 x 2

2 1

2 1 2

9 x y3 z

 8 4 1 2 3 2 1 x y z 9  8 3 1 1 x y z  9 8 x3 z  9y

1 1  2 16 4

2 1

 8x4 y2 z 2

3 y 3  1 3   x 2  2

109. x 2  y 2   2    1  4  1  5 2

1 x3 y

2

110. x 2 y 2   2   1  4 1  4 2

2

111.

 xy 2   2   1    2 2  4

112.

 x  y 2   2   1   12  1

113.

2

2

x2  x  2  2

1465

Copyright © 2020 Pearson Education, Inc.


Appendix A: Review

114. 115.

 x  x  2

125. (6.1) 3  0.004

2

2

2

x y 

 2    1  2

2

126. (2.2)5  0.019

4 1  5

127. ( 2.8)6  481.890 116.

x 2  y 2  x  y  2  1  2  1  3

117. x y  21 

128.  (2.8)6   481.890

1 2

129. ( 8.11) 4  0.000

118. y x   1  1 2

130.  (8.11) 4  0.000

119. If x  2, 3

131. A  lw 2

3

2

2 x  3x  5 x  4  2  2  3  2  5  2  4

132. P  2  l  w 

 16  12  10  4  10

133. C   d

If x  1, 2 x3  3 x 2  5 x  4  2 13  3 12  5 1  4

134. A 

1 bh 2

135. A 

3 2 x 4

 235 4 0

120. If x  1,

136. P  3x

4 x3  3x 2  x  2  4 13  3 12  1  2

4 137. V   r 3 3

 4  3 1  2 8 If x  2,

138. S  4 r 2

4 x3  3x 2  x  2  4  23  3  22  2  2

139. V  x3

 32  12  2  2

140. S  6 x 2

 44 4

121.

(666) 4  666  4    3  81 (222) 4  222 

141. a.

If x  1000, C  4000  2 x  4000  2(1000)  4000  2000  $6000 The cost of producing 1000 watches is $6000.

b.

If x  2000, C  4000  2 x  4000  2(2000)  4000  4000  $8000 The cost of producing 2000 watches is $8000.

3

3 1 122. (0.1)3 (20)3      2 10   10  1  3  23 103 10  23  8

123. (8.2)6  304, 006.671 124. (3.7)5  693.440

1466

Copyright © 2020 Pearson Education, Inc.


Section A.2: Geometry Essentials 142. 210  80  120  25  60  32  5  $98 His balance at the end of the month was $98.

 1.4  1.4  1.5 100˚F is not unhealthy.

143. We want the difference between x and 4 to be at least 6 units. Since we don’t care whether the value for x is larger or smaller than 4, we take the absolute value of the difference. We want the inequality to be non-strict since we are dealing with an ‘at least’ situation. Thus, we have x4  6

149.

151. No. For any positive number a, the value

152. We are given that 1  x 2  10 . This implies that 1  x  10 . Since x  10  3.162 and x    3.142 , the number could be 3.15 or 3.16 (which are between 1 and 10 as required). The number could also be 3.14 since numbers such as 3.146 which lie between  and 10 would equal 3.14 when truncated to two decimal places.

x  110  108  110   2  2  5

x  110  104  110   6  6  5

104 volts is not acceptable. 146. a.

x  220  214  220   6  6  8

153. Answers will vary.

214 volts is acceptable. b.

154. Answers will vary. 5 < 8 is a true statement because 5 is further to the left than 8 on a real number line.

x  220  209  220   11  11  8

209 volts is not acceptable. 147. a.

x  3  2.999  3   0.001  0.001  0.01 A radius of 2.999 centimeters is acceptable.

b.

Section A.2 1. right; hypotenuse

x  3  2.89  3   0.11

2. A 

 0.11  0.01 A radius of 2.89 centimeters is not acceptable.

148. a.

a is 2

smaller and therefore closer to 0.

108 volts is acceptable. b.

1  0.333333 ...  0.333 3 1 is larger by approximately 0.0003333 ... 3

150. 2  0.666666 ...  0.666 3 2 is larger by approximately 0.0006666 ... 3

144. We want the difference between x and 2 to be more than 5 units. Since we don’t care whether the value for x is larger or smaller than 2, we take the absolute value of the difference. We want the inequality to be strict since we are dealing with a ‘more than’ situation. Thus, we have x2 5 145. a.

x  98.6  100  98.6

b.

1 bh 2

3. C  2 r 4. similar

x  98.6  97  98.6

5. c

  1.6

6. b

 1.6  1.5 97˚F is unhealthy.

7. True.

1467

Copyright © 2020 Pearson Education, Inc.


Appendix A: Review

18.

8. True. 62  82  36  64  100  102

c2  a 2  b2

9. False; the surface area of a sphere of radius r is given by V  4 r 2 .

 142  482  196  2304

10. True. The lengths of the corresponding sides are equal.

 2500  c  50

19. 52  32  42 25  9  16 25  25 The given triangle is a right triangle. The hypotenuse is 5.

11. True. Two corresponding angles are equal. 12. False. The sides are not proportional. 13.

a  5, b  12, c 2  a 2  b2  52  122  25  144  169  c  13

14.

20. 102  62  82 100  36  64 100  100 The given triangle is a right triangle. The hypotenuse is 10.

a  6, b  8, c 2  a 2  b2 2

 6 8

21. 62  42  52 36  16  25 36  41 false The given triangle is not a right triangle.

2

 36  64  100  c  10

15.

a  10, b  24,

22. 32  22  22 9  44 9  8 false The given triangle is not a right triangle.

c 2  a 2  b2  102  242  100  576  676  c  26

16.

23. 252  7 2  242 625  49  576 625  625 The given triangle is a right triangle. The hypotenuse is 25.

a  4, b  3, c 2  a 2  b2  42  32  16  9

24. 262  102  242 676  100  576 676  676 The given triangle is a right triangle. The hypotenuse is 26.

 25  c  5

17.

a  14, b  48,

a  7, b  24, c 2  a 2  b2  7 2  242

25. 62  32  42 36  9  16 36  25 false The given triangle is not a right triangle.

 49  576  625  c  25

1468

Copyright © 2020 Pearson Education, Inc.


Section A.2: Geometry Essentials

26. 7 2  52  42 49  25  16 49  41 false The given triangle is not a right triangle. 27. A  l  w  6  7  42 in

37. V   r 2 h  (9) 2 (8)  648 in 3 S  2 r 2  2 rh  2  9   2  9  8  2

 162  144

2

 306 in 2

28. A  l  w  9  4  36 cm 2

38. V   r 2 h  (8) 2 (9)  576 in 3 S  2 r 2  2 rh

1 1 29. A  b  h  (14)(4)  28 in 2 2 2

30. A 

 2  8   2  8  9  2

 128  144

1 1 b  h  (4)(9)  18 cm 2 2 2

 272 in 2

31. A   r 2   (5) 2  25 m 2 C  2 r  2 (5)  10 m

39. The diameter of the circle is 2, so its radius is 1. A   r 2  (1) 2   square units

32. A   r 2   (2) 2  4 ft 2 C  2 r  2 (2)  4 ft

40. The diameter of the circle is 2, so its radius is 1. A  22  (1) 2  4   square units 41. The diameter of the circle is the length of the diagonal of the square. d 2  22  22  44 8

33. V  l w h  6  8  5  240 ft 3 S  2lw  2lh  2wh  2  6  8   2  6  5   2  8  5   96  60  80

d  82 2

 236 ft 2

d 2 2   2 2 2 The area of the circle is: r

34. V  l w h  9  4  8  288 in 3 S  2lw  2lh  2wh  2  9  4   2  9  8   2  4  8 

A   r2  

 72  144  64  280 in 2

 2   2 square units 2

42. The diameter of the circle is the length of the diagonal of the square. d 2  22  22  44 8

4 3 4 500  r   53   cm3 3 3 3 S  4 r 2  4  52  100 cm 2

35. V 

d  82 2

4 3 4  r   33  36 ft 3 3 3 S  4 r 2  4  32  36 ft 2

36. V 

d 2 2   2 2 2 The area is: r

A

 2   2  2  4 square units

1469

Copyright © 2020 Pearson Education, Inc.

2

2


Appendix A: Review 43. Since the triangles are similar, the lengths of corresponding sides are proportional. Therefore, we get 8 x  4 2 8 2 x 4 4x In addition, corresponding angles must have the same angle measure. Therefore, we have A  90 , B  60 , and C  30 .

47. The total distance traveled is 4 times the circumference of the wheel. Total Distance  4C  4( d )  4 16

 64  201.1 inches  16.8 feet

48. The distance traveled in one revolution is the circumference of the disk 4 . The number of revolutions = dist. traveled 20 5    1.6 revolutions circumference 4  49. Area of the border = area of EFGH – area of ABCD  102  62  100  36  64 ft 2

44. Since the triangles are similar, the lengths of corresponding sides are proportional. Therefore, we get 6 x  12 16 6 16 x 12 8 x In addition, corresponding angles must have the same angle measure. Therefore, we have A  30 , B  75 , and C  75 .

50. FG = 4 feet; BG = 4 feet and BC = 10 feet, so CG= 6 feet. The area of the triangle CGF is: 1 A   (4)(6)  12 ft 2 2 51. Area of the window = area of the rectangle + area of the semicircle. 1 A  (6)(4)    22  24  2  30.28 ft 2 2 Perimeter of the window = 2 heights + width + one-half the circumference. 1 P  2(6)  4    (4)  12  4  2 2  16  2  22.28 feet

45. Since the triangles are similar, the lengths of corresponding sides are proportional. Therefore, we get 30 x  20 45 30  45 x 20 135  x or x  67.5 2 In addition, corresponding angles must have the same angle measure. Therefore, we have A  60 , B  95 , and C  25 .

52. Area of the deck = area of the pool and deck – area of the pool. A  (13) 2  (10) 2  169  100  69 ft 2  216.77 ft 2

The amount of fence is the circumference of the circle with radius 13 feet. C  2(13)  26 ft  81.68 ft 53. We can form similar triangles using the Great Pyramid’s height/shadow and Thales’ height/shadow:

46. Since the triangles are similar, the lengths of corresponding sides are proportional. Therefore, we get 8 x  10 50 8  50 x 10 40  x In addition, corresponding angles must have the same angle measure. Therefore, we have A  50 , B  125 , and C  5 .

{

{

h

126 240

114

2 3

This allows us to write h 2  240 3 2  240 h  160 3 The height of the Great Pyramid is 160 paces. 1470

Copyright © 2020 Pearson Education, Inc.


Section A.2: Geometry Essentials 54. Let x = the approximate distance from San Juan to Hamilton and y = the approximate distance from Hamilton to Fort Lauderdale. Using similar triangles, we get 1046 x 1046 y   58 53.5 58 57 1046  57 1046  53.5 x y 58 58 1028.0  y 964.8  x The approximate distance between San Juan and Hamilton is 965 miles and the approximate distance between Hamilton and Fort Lauderdale is 1028 miles.

57. Convert 100 feet to miles, and solve the Pythagorean Theorem to find the distance: 1 mile 100 feet  100 feet   0.018939 miles 5280 feet

55. Convert 20 feet to miles, and solve the Pythagorean Theorem to find the distance: 1 mile 20 feet  20 feet   0.003788 miles 5280 feet d 2  (3960  0.003788) 2  39602  30 sq. miles d  5.477 miles

58. Given m  0, n  0 and m  n ,

d 2  (3960  0.018939) 2  39602  150 sq. miles d  12.2 miles Convert 150 feet to miles, and solve the Pythagorean Theorem to find the distance: 1 mile 150 feet  150 feet   0.028409 miles 5280 feet d 2  (3960  0.028409) 2  39602  225 sq. miles d  15.0 miles

if a  m 2  n 2 , b  2mn and c  m 2  n 2 , then

a 2  b2  m2  n2

   2mn 

2

 m 4  2m 2 n 2  n 4  4m 2 n 2  m 4  2m 2 n 2  n 4

d

2 2 2 and c  m  n

20 ft

3960

2

  m  2m n  n 2

4

2 2

4

 a 2  b 2  c 2  a, b and c represent the sides of a right triangle.

3960

59.

A   r2 A2   (2r ) 2   4r 2

56. Convert 6 feet to miles, and solve the Pythagorean Theorem to find the distance: 1 mile 6 feet  6 feet   0.001136 miles 5280 feet d 2  (3960  0.001136) 2  39602  9 sq. miles d  3 miles

 4 r 2  4 A If you double the radius, the area is four times the original area. 4 V   r3 3 4 V2   (2r )3 3 4    8r 3 3 4  8   r 3  8V 3 If you double the radius the volume is 8 times the original volume. 61. Let l = length of the rectangle and w = width of the rectangle. Notice that (l  w) 2  (l  w) 2  [(l  w)  (l  w)][(l  w)  (l  w)]  (2l )(2 w)  4lw  4 A

60.

d 6 ft

3960

3960

1471

Copyright © 2020 Pearson Education, Inc.


Appendix A: Review

Therefore, the light from the lighthouse can be seen at point P on the horizon, where point P is approximately 23.30 miles away from the lighthouse. Brochure information is slightly overstated.

1 4

So A  [(l  w) 2  (l  w) 2 ]

Since (l  w) 2  0 , the largest area will occur when l – w = 0 or l = w; that is, when the rectangle is a square. But 1000  2l  2 w  2(l  w) 500  l  w  2l 250  l  w The largest possible area is 2502  62500 sq ft. A circular pool with circumference = 1000 feet 500 yields the equation: 2 r  1000  r 

Verify the ship information: Let S refer to the ship’s location, and let x equal the height, in feet, of the ship. We need d1  d 2  40 . Since d1  23.30 miles we need d 2  40  23.30=16.70 miles.

The area enclosed by the circular pool is:

Apply the Pythagorean Theorem to CPS :

2

 3960 2  16.7 2   3960  x 2

2

500  500  2 A r       79577.47 ft    Thus, a circular pool will enclose the most area. 62. Consider the diagram showing the lighthouse at point L, relative to the center of Earth, using the radius of Earth as 3960 miles. Let P refer to the furthest point on the horizon from which the light is visible. Note also that 362 362 feet  miles. 5280 2

 3960 2  16.7 2  3960  x  3960 2  16.7 2  3960  x x  0.035 miles x  185.93 feet. The ship would have to be at least 186 feet tall to see the lighthouse from 40 miles away. Verify the airplane information:

Let A refer to the airplane’s location. The distance from the plane to point P is d 2 . We want to show that d1  d 2  120 . Assume the altitude of the airplane is 10000 miles. 10,000 feet = 5280

Apply the Pythagorean Theorem to CPL : 362  3960 2   d1 2   3960  5280   

2

362   3960 2  d1 2   3960  5280  2

d1 

Apply the Pythagorean Theorem to CPA :

 3960 2   d 2 2   3960  5280  10000

2 2 3960  362   3960   23.30 mi. 5280

1472

Copyright © 2020 Pearson Education, Inc.

2


Section A.3: Polynomials

 d2 

2

17.

2

10000  2    3960    3960   5280   2

18.  2x 3

form ax , the variable has a negative exponent. 19.  2 x3  5 x 2 Not a monomial; the expression contains more than one term. This expression is a binomial. 20. 6 x5  8 x 2 Not a monomial; the expression contains more than one term. This expression is a binomial. 21.

1. 4; 3 2. x 4  16 3

Not a monomial; when written in the k

Section A.3

x

Not a monomial; when written in

the form ax k , the variable has a negative exponent.

10000  2  d 2   3960    3960  61Therefo 5280    122.49 miles. re, d1  d 2  23.30  122.49  145.79  120. The brochure information is slightly understated. Note that a plane at an altitude of 6233 feet could see the lighthouse from 120 miles away.

3.

8  8x 1 x

8

2 x2 Not a monomial; the polynomial in x3  1 the denominator has a degree greater than 0. The expression cannot be written in the form ax k where k  0 is an integer.

4. False; monomials cannot have negative degrees.

5. False; x3  a 3   x  a  x 2  ax  a 2

22. 

6. True; x 2  4 is prime over the set of real numbers.

7. False; 3x3  2 x 2  6 x  4   3 x  2  x 2  2

8x Not a monomial; the polynomial in x 1 the denominator has a degree greater than 0. The expression cannot be written in the form ax k where k  0 is an integer. 2

23. x 2  2 x  5 Not a monomial; the expression contains more than one term. This expression is a trinomial.

2

8. add;  12 (5)   25 4

24. 3x 2  4 Not a monomial; the expression contains more than one term. This expression is a binomial.

9. quotient; divisor; remainder 10. a

25. 3x 2  5

Polynomial; Degree: 2

12. b

26. 1  4x

Polynomial; Degree: 1

13. d

27. 5

Polynomial; Degree: 0

28. –π

Polynomial; Degree: 0

11. c

14. c 15. 2x3 Monomial; Variable: x ; Coefficient: 2; Degree: 3

5 Not a polynomial; the variable in the x denominator results in an exponent that is not a nonnegative integer.

29. 3x 2 

16.  4x 2 Monomial; Variable: x ; Coefficient: –4; Degree: 2

1473

Copyright © 2020 Pearson Education, Inc.


Appendix A: Review

30.

3  2 Not a polynomial; the variable in the x denominator results in an exponent that is not a nonnegative integer.

31. 2 y 3  2

41.

32. 10z  z

 9 y  27 y  36  6  6 y

35.

42.

Polynomial; Degree: 2

 

8 1  y3  4 1  y  y 2  y3  4 y 3  4 y 2  4 y  12

43. x( x 2  x  4)  x3  x 2  4 x

3x3  2 x  1 Not a polynomial; the x2  x  1 polynomial in the denominator has a degree greater than 0.

44. 4 x 2 ( x3  x  2)  4 x5  4 x3  8 x 2

( x 2  4 x  5)  (3 x  3)

46. ( x  3)( x  5)  x 2  5 x  3 x  15

45. ( x  2)( x  4)  x 2  4 x  2 x  8  x2  6 x  8

 x 2  8 x  15

2

 x  7x  2 3

2

47. (2 x  5)( x  2)  2 x 2  4 x  5 x  10

2

( x  3 x  2)  ( x  4 x  4) 3

2

 2 x 2  9 x  10

2

 x  (3 x  x )  ( 4 x)  (2  4)

48. (3x  1)(2 x  1)  6 x 2  3 x  2 x  1

 x3  4 x 2  4 x  6

 6 x2  5x  1

37. ( x3  2 x 2  5 x  10)  (2 x 2  4 x  3)

49. ( x  7)( x  7)  x 2  7 2  x 2  49

 x3  2 x 2  5 x  10  2 x 2  4 x  3

 x3  ( 2 x 2  2 x 2 )  (5 x  4 x)  (10  3) 3

50. ( x  1)( x  1)  x 2  12  x 2  1

2

 x  4x  9x  7

51. (2 x  3)(2 x  3)  (2 x) 2  32  4 x 2  9

38. ( x 2  3 x  4)  ( x3  3x 2  x  5)

52. (3x  2)(3x  2)  (3x) 2  22  9 x 2  4

 x 2  3 x  4  x3  3x 2  x  5   x3  ( x 2  3 x 2 )  (3x  x)  ( 4  5) 3

53. ( x  4) 2  x 2  2  x  4  42  x 2  8 x  16

2

 x  4x  4x  9

39.

54. ( x  5) 2  x 2  2  x  5  52  x 2  10 x  25

6( x3  x 2  3)  4(2 x3  3 x 2 )

55. (2 x  3) 2  (2 x) 2  2(2 x)(3)  32

 6 x3  6 x 2  18  8 x3  12 x 2

 4 x 2  12 x  9

  2 x3  18 x 2  18

40.

 8  8 y3  4  4 y  4 y 2  4 y3

 x 2  (4 x  3 x)  (5  3)

36.

 2

 15 y 2  27 y  30

x2  5 33. Not a polynomial; the polynomial in x3  1 the denominator has a degree greater than 0.

34.

 

2

Polynomial; Degree: 3

2

9 y2  3y  4  6 1  y2

8(4 x3  3x 2  1)  6(4 x3  8 x  2)

56. (3x  4) 2  (3 x) 2  2(3 x)(4)  42

 32 x3  24 x 2  8  24 x3  48 x  12  8 x3  24 x 2  48 x  4

57. ( x  2)3  x3  3  x 2  2  3  x  22  23

 9 x 2  24 x  16

 x3  6 x 2  12 x  8

1474

Copyright © 2020 Pearson Education, Inc.


Section A.3: Polynomials

4x  3

58. ( x  1)3  x3  3  x 2 1  3  x 12  13 3

63. x

2

 x  3x  3x  1

2

4 x3  3x 2  x  1 4 x3

59. (2 x  1)3  (2 x)3  3(2 x) 2 (1)  3(2 x) 12  13

 3x 2  x  1

 8 x3  12 x 2  6 x  1

3x 2

60. (3x  2)3  (3x)3  3(3 x) 2 (2)  3(3 x)  22  23

x 1

 27 x3  54 x 2  36 x  8

4 x 2  11x  23 61. x  2 4 x3  3 x 2 

Check:

( x 2 )(4 x  3)  ( x  1)  4 x3  3x 2  x  1 The quotient is 4 x  3 ; the remainder is x  1 .

x 1

4 x3  8 x 2  11x 2 

x

3x  1

2

2

64. x 3 x3  x 2  x  2

11x  22 x 23 x  1 23 x  46  45

3x3  x2  x  2  x2

Check:

x 2

( x  2)(4 x 2  11x  23)  ( 45)  4 x3  11x 2  23 x  8 x 2  22 x  46  45

Check:

 4 x3  3x 2  x  1

( x 2 )(3 x  1)  ( x  2)  3 x3  x 2  x  2 The quotient is 3 x  1 ; the remainder is x  2 .

The quotient is 4 x 2  11x  23 ; the remainder is –45.

5 x 2  13 65. x  2 5 x 4  0 x3  3 x 2  x  1

2

3 x  7 x  15 62. x  2 3 x3  x 2  3

3x  6 x

2

x2

5x4

2 2

 7x 

 10 x 2  13x 2  x  1

x

13 x 2

2

 7 x  14 x 15 x  2 15 x  30  32

 26 x  27

Check:

 x  2 5x  13   x  27  2

2

 5 x 4  10 x 2  13 x 2  26  x  27

Check:

 5 x 4  3x 2  x  1 The quotient is 5 x 2  13 ; the remainder is x  27 .

2

( x  2)(3 x  7 x  15)  ( 32)  3x3  7 x 2  15 x  6 x 2  14 x  30  32  3x3  x 2  x  2

The quotient is 3x 2  7 x  15 ; the remainder is –32.

1475

Copyright © 2020 Pearson Education, Inc.


Appendix A: Review

x 2  2 x  12

5 x 2  11 66. x 2  2 5 x 4  0 x3  x 2  x  2 5x4

69. 2 x 2  x  1 2 x 4  3 x3  0 x 2  x  1

 10 x 2

2 x 4  x3  x 2

2

 11x  x  2 11x

2

 4 x3  x 2  x

 22 x  20

4 x3  2 x 2  2 x x 2  3x  1 1 1 x2  x  2 2 5 1 x 2 2

Check:

 x  2 5x  11   x  20 2

2

 5 x 4  10 x 2  11x 2  22  x  20  5x4  x2  x  2 The quotient is 5 x 2  11 ; the remainder is x  20 .

Check:

 2 x  x  1  x  2 x  12   52 x  12 2

 2 x 4  4 x3  x 2  x3  2 x 2  1 x 2 2 5 1 1  x  2x   x  2 2 2 4 3  2 x  3x  x  1 The quotient is x 2  2 x  12 ; the remainder is

2 x2 67. 2 x  1 4 x5  0 x 4  0 x3  3 x 2  x  1 3

4 x5

 2 x2

5 x 1 . 2 2

 x2  x  1 Check:

x2  2 x  1 3 9 2 4 3 70. 3x  x  1 3x  x  0 x 2  x  2

 2 x  1 2 x     x  x  1 3

2

2

 4 x5  2 x 2  x 2  x  1  4 x5  3 x 2  x  1 The quotient is 2x 2 ; the remainder is  x2  x  1 .

3 x 4  x3  x 2  2 x3  x 2  x 2 x 3  2 x 2  2 x 3 3 2 5 1  x  x2 3 3 2 1  x 1 x1 3 9 9 16 x  17 9 9

x2 68. 3 x  1 3 x5  0 x 4  0 x3  x 2  x  2 3

3x5

 x2 x2 Check:

Check:

 3x  x  1 x  23 x  19    169 x  179 

 3x  1 x    x  2  3x  x  x  2 3

2

5

2

2

2

2

 3x 4  x3  x 2  2 x3  23 x 2  23 x

The quotient is x 2 ; the remainder is x  2 .

 13 x 2  19 x  19  16 x  17 9 9  3x 4  x3  x  2 The quotient is x 2  2 x  1 ; the remainder is 3 9

16 17 x . 9 9 1476

Copyright © 2020 Pearson Education, Inc.


Section A.3: Polynomials

 4 x 2  3x  3

x2  x  1

71. x  1  4 x3  x 2  0 x  4

73. x 2  x  1 x 4  0 x3  x 2  0 x  1

 4 x3  4 x 2

x 4  x3  x 2

 3x 2

 x3  2 x 2

3 x 2  3 x

 x3  x 2  x

 3x  4

 x2  x  1

3 x  3

 x2  x  1

7

2x  2

Check:

Check:

( x  1)( 4 x 2  3x  3)  ( 7)

( x 2  x  1)( x 2  x  1)  2 x  2

  4 x3  3 x 2  3x  4 x 2  3 x  3  7 3

 x 4  x3  x 2  x3  x 2  x  x 2  x 1  2x  2

2

  4x  x  4

The quotient is  4 x 2  3 x  3 ; the remainder is –7. 3

 x4  x2  1 The quotient is x 2  x  1 ; the remainder is 2x  2 .

2

 3x  3x  3x  5

72. x  1  3 x 4  0 x3  0 x 2  2 x  1

x2  x  1

 3 x 4  3x3  3x

74. x 2  x  1 x 4  0 x3  x 2  0 x  1

3 3

3 x  3x

x 4  x3  x 2

2

x3  2 x 2

2

 3x  2 x

x3  x 2  x

2

3 x  3x

 x2  x  1

 5x  1

 x2  x  1

5 x  5

 2x  2

6 Check:

Check:

( x  1)( 3x 3  3 x 2  3x  5)  ( 6)

( x 2  x  1)( x 2  x  1)  ( 2 x  2)

 3 x 4  3x3  3x 2  5 x  3 x3  3 x 2

 x 4  x3  x 2  x3  x 2  x  x 2  x 1 2x  2

 3x  5  6

 x4  x2  1 The quotient is x 2  x  1 ; the remainder is  2x  2 .

 3 x 4  2 x  1

The quotient is  3 x3  3 x 2  3x  5 ; the remainder is –6.

1477

Copyright © 2020 Pearson Education, Inc.


Appendix A: Review 80. 3  27 x 2  3(1  9 x 2 )  3 1  3x 1  3x 

x 2  ax  a 2

75. x  a x3  0 x 2  0 x  a3

81. x 2  11x  10  ( x  1)( x  10)

x 3  ax 2 ax 2 2

82. x 2  5 x  4  ( x  4)( x  1)

2

ax  a x

83. x 2  10 x  21   x  7  x  3

a 2 x  a3 a 2 x  a3

84. x 2  6 x  8  ( x  2)( x  4)

0

85. 4 x 2  8 x  32  4 x 2  2 x  8

Check: 2

2

( x  a)( x  ax  a )  0

86. 3x 2  12 x  15  3 x 2  4 x  5

 x3  ax 2  a 2 x  ax 2  a 2 x  a3  x3  a3 The quotient is x 2  ax  a 2 ; the remainder is 0.

87. x 2  4 x  16 is prime over the reals because there are no factors of 16 whose sum is 4.

x 4  ax3  a 2 x 2  a3 x  a 4 5

4

3

2

76. x  a x  0 x  0 x  0 x  0 x  a

88. x 2  12 x  36  ( x  6) 2

5

89. 15  2 x  x 2   ( x 2  2 x  15)  ( x  5)( x  3)

x5  ax 4 ax 4 4

90. 14  6 x  x 2   ( x 2  6 x  14) is prime over the integers because there are no factors of –14 whose sum is –6.

2 3

ax  a x 2 3

a x

a 2 x3  a 3 x 2

91. 3x 2  12 x  36  3( x 2  4 x  12)  3( x  6)( x  2)

a3 x 2 a3 x 2  a 4 x

92. x3  8 x 2  20 x  x( x 2  8 x  20)  x( x  10)( x  2)

a 4 x  a5 a 4 x  a5

0

93. y 4  11y 3  30 y 2  y 2 ( y 2  11y  30)

Check:

 y 2 ( y  5)( y  6)

( x  a)( x 4  ax3  a 2 x 2  a3 x  a 4 )  0  x5  ax 4  a 2 x3  a3 x 2  a 4 x  ax 4

94. 3 y 3  18 y 2  48 y  3 y ( y 2  6 y  16)  3 y ( y  2)( y  8)

 a 2 x3  a 3 x 2  a 4 x  a 5  x5  a 5 The quotient is x 4  ax3  a 2 x 2  a3 x  a 4 ; the remainder is 0.

95. 4 x 2  12 x  9  (2 x  3) 2 96. 9 x 2  12 x  4  (3 x  2) 2

2

77. x  36  ( x  6)( x  6)

97. 6 x 2  8 x  2  2 3x 2  4 x  1 2

78. x  9  ( x  3)( x  3)

 2  3x  1 x  1

79. 2  8 x 2  2(1  4 x 2 )  2 1  2 x 1  2 x  1478

Copyright © 2020 Pearson Education, Inc.


Section A.3: Polynomials

98. 8 x 2  6 x  2  2 4 x 2  3x  1

112. 4  14 x 2  8 x 4   2(4 x 4  7 x 2  2)

 2  4 x  1 x  1

  2(4 x 2  1)( x 2  2)   2(2 x  1)(2 x  1)( x 2  2)

   9  ( x  9)( x  9) 2

99. x 4  81  x 2

2

2

2

113. x( x  3)  6( x  3)  ( x  3)( x  6)

 ( x  3)( x  3)( x 2  9)

114. 5(3 x  7)  x(3 x  7)  (3x  7)( x  5)

   1  ( x  1)( x  1)

4

100. x  1  x

2 2

2

2

2

115. ( x  2) 2  5( x  2)  ( x  2)  ( x  2)  5

 ( x  1)( x  1)( x 2  1)

 ( x  2)( x  3)

101. x 6  2 x3  1  ( x3  1) 2  ( x  1)( x 2  x  1)  2

2

 ( x  1) ( x  x  1)

116. ( x  1) 2  2( x  1)  ( x  1)  ( x  1)  2

2

 ( x  1)( x  3)

2

117.

102. x 6  2 x3  1  ( x3  1) 2  ( x  1)( x 2  x  1) 

2

2   3 x  2   3  3 x  2   3  3x  2   9   

   3x  5  9 x  3x  7 

  3 x  5  9 x 2  12 x  4  9 x  6  9

 ( x  1) 2 ( x 2  x  1) 2

118.

104. x8  x5  x5 ( x3  1)  x5 ( x  1)( x 2  x  1)

106. 9 x 2  24 x  16   3 x  4 

2

  5 x  25 x  15 x  3

2

2

119. 3 x 2  10 x  25  4  x  5   3  x  5  4  x  5 2

  x  5  3  x  5   4    x  5  3 x  15  4 

109. 4 y 2  16 y  15  (2 y  5)(2 y  3)

  x  5  3 x  11

2

110. 9 y  9 y  4  (3 y  4)(3 y  1) 4

 5 x 25 x 2  10 x  1  5 x  1  1

108. 5  11x  16 x 2  (16 x 2  11x  5)  (16 x  5)( x  1)

4

 5 x  13  1 3   5 x  1  13 2   5 x  1  1  5 x  1  1 5 x  1  1  

107. 5  16 x  16 x 2  (16 x 2  16 x  5)  (4 x  5)(4 x  1)

2

2

103. x 7  x5  x5 ( x 2  1)  x5 ( x  1)( x  1)

105. 16 x 2  24 x  9   4 x  3

 3x  2 3  27 3   3 x  2   33

120.

2

111. 1  8 x  9 x  (9 x  8 x  1)

7 x 2  6 x  9  5  x  3  7  x  3  5  x  3 2

 (9 x 2  1)( x 2  1)

  x  3 7  x  3  5

 (3x  1)(3x  1)( x 2  1)

  x  3 7 x  21  5    x  3 7 x  16 

1479

Copyright © 2020 Pearson Education, Inc.


Appendix A: Review 121. x3  2 x 2  x  2  x 2 ( x  2)  1 x  2 

130. Since B is 13 then we need half of 13 squared to

be the last term in our trinomial. Thus 1 1 1 ( )  16 ; ( 16 ) 2  36 2 3

 ( x  2)( x 2  1)  ( x  2)( x  1)( x  1)

1 x 2  13 x  36  ( x  16 ) 2

122. x3  3 x 2  x  3  x 2 ( x  3)  1 x  3

131. 2  3 x  4    2 x  3  2  3 x  4   3

 ( x  3)( x 2  1)  ( x  3)( x  1)( x  1)

2

 2  3x  4    3 x  4    2 x  3  3  2  3x  4  3 x  4  6 x  9 

123. x  x  x  1  x ( x  1)  1 x  1 4

3

3

 2  3x  4  9 x  13

 ( x  1)( x3  1)  ( x  1)( x  1)( x 2  x  1)

132. 5  2 x  1   5 x  6   2  2 x  1  2 2

  2 x  1  5  2 x  1   5 x  6   4 

124. x 4  x3  x  1  x3 ( x  1)  1 x  1

  2 x  110 x  5  20 x  24 

3

 ( x  1)( x  1)

  2 x  1 30 x  19 

2

 ( x  1)( x  1)( x  x  1)  ( x  1) 2 ( x 2  x  1)

133. 2 x  2 x  5   x 2  2  2 x   2 x  5   x 

125. Since B is 10 then we need half of 10 squared to be the last term in our trinomial. Thus 1 (10)  5; (5) 2  25 2

 2x  2x  5  x  2 x  3x  5

x 2  10 x  25  ( x  5) 2

134. 3x 2  8 x  3  x3  8  x 2  3  8 x  3  8 x   x 2  24 x  9  8 x 

126. Since B is 14 then we need half of 14 squared to be the last term in our trinomial. Thus 1 (14)  7; (7) 2  49 2

 x 2  32 x  9 

p 2  14 p  49  ( p  7) 2

135. 2  x  3 x  2    x  3  3  x  2  3

2

  x  3 x  2   2 x  4  3x  9  2

  x  3 x  2   5 x  5  2

y 2  6 y  9  ( y  3) 2

 5  x  3 x  2   x  1 2

128. Since B is -4 then we need half of -4 squared to be the last term in our trinomial. Thus 1 (4)  2; (2) 2  4 2

136. 4  x  5   x  1   x  5   2  x  1 3

2

4

 2  x  5   x  1  2  x  1   x  5   3

x 2  4 x  4  ( x  2) 2

129. Since B is 

2

  x  3 x  2   2  x  2    x  3  3

127. Since B is -6 then we need half of -6 squared to be the last term in our trinomial. Thus 1 (6)  3; (3) 2  9 2

1 2

2

 2  x  5   x  1 2 x  2  x  5  3

then we need half of 

1 2

squared

 2  x  5   x  1 3 x  3 3

to be the last term in our trinomial. Thus 1 ( 12 )   14 ; ( 14 ) 2  161 2

 2  3  x  5   x  1 x  1 3

 6  x  5   x  1 x  1 3

x 2  12 x  161  ( x  14 )2

1480

Copyright © 2020 Pearson Education, Inc.


Section A.4 Synthetic Division

137.

powered term of p1  x  multiplies by the highest

 4 x  32  x  2  4 x  3  4   4 x  3   4 x  3  8 x    4 x  3 4 x  3  8 x    4 x  312 x  3  3  4 x  3 4 x  1

powered term of p2  x  , the exponents on the variables in those terms will add according to the basic rules of exponents. Therefore, the highest powered term of the product polynomial will have degree equal to the sum of the degrees of p1  x  and p2  x  .

138. 3x 2  3x  4   x3  2  3x  4   3 2

144. When we add two polynomials p1  x  and

 3x 2  3x  4    3x  4   2 x 

p2  x  , where the degree of p1  x   the degree

 3x 2  3x  4  3 x  4  2 x 

of p2  x  , each term of p1  x  will be added to

 3x  3x  4  5 x  4  2

each term of p2  x  . Since only the terms with equal degrees will combine via addition, the degree of the sum polynomial will be the degree of the highest powered term overall, that is, the degree of the polynomial that had the higher degree.

139. 2  3 x  5   3  2 x  1   3x  5   3  2 x  1  2 3

2

2

 6  3 x  5  2 x  1   2 x  1   3 x  5   2

 6  3 x  5  2 x  1  2 x  1  3 x  5  2

 6  3 x  5  2 x  1  5 x  4  2

145. When we add two polynomials p1  x  and p2  x  , where the degree of p1  x  = the degree

140. 3  4 x  5   4  5 x  1   4 x  5   2  5 x  1  5 2

2

3

of p2  x  , the new polynomial will have degree

 2  4 x  5   5 x  1  6  5 x  1  5  4 x  5   2

 the degree of p1  x  and p2  x  .

 2  4 x  5   5 x  1 30 x  6  20 x  25  2

146. Answers will vary.

 2  4 x  5   5 x  1 50 x  31 2

147. Answers will vary.

141. Factors of 4: 1, 4 2, 2 –1, –4 –2, –2 Sum: 5 4 –5 –4 None of the sums of the factors is 0, so x 2  4 is prime.

148. Answers will vary.

Alternatively, the possibilities are  x  1 x  4   x2  5 x  4 or

Section A.4

 x  2  x  2   x 2  4 x  4 , none of which

1. quotient; divisor; remainder

equals x 2  4 . 142. Factors of 1: 1, 1 –1, –1 Sum: 2 –2 None of the sums of the factors is 1, so x 2  x  1 is prime.

2. 3 2 0  5 1 3. d

Alternatively, the possibilities are

4. a

 x  1  x  2 x  1 , neither of which equals

5. True

2

2

2

x  x 1.

6. True

143. When we multiply polynomials p1  x  and p2  x  , each term of p1  x  will be multiplied

by each term of p2  x  . So when the highest1481

Copyright © 2020 Pearson Education, Inc.


Appendix A: Review

14. 1 1

7. 2 1  7 5 10 2  10  10

1  1 6  6 6  16

1 5 5 0 2

Quotient: x 4  x3  6 x 2  6 x  6 Remainder: –16

Quotient: x  5 x  5 Remainder: 0 8. 1 1

0 5 0 0  10 1 1  6 6  6

2 3 1

15. 1.1 0.1

0 0.2  0.11 0.121

1 1 4

1 4 5

1

0.1  0.11 0.321  0.3531

2

Quotient: x  x  4 Remainder: 5 9. 3 3

2 1

3

9 33

96

3 11 32

Quotient: 0.1x 2  0.11x  0.321 Remainder: –0.3531 16.  2.1 0.1

99

Quotient: 3x  11x  32 Remainder: 99 2 1 1 8  20 42

17. 2 1 0 0 0 0  32 2 4 8 16 32

 4 10  21 43

1 2 4 8 16

Quotient:  4 x 2  10 x  21 Remainder: 43 11. 3 1

0 4 3

0

5  15 4

3

1

18. 1 1

0

4

19.

12. 2 1 0 1 0 2 2 4 10 20

Quotient: x3  2 x 2  5 x  10 Remainder: 22

4

4

2

2

4

3

1

1 5

0 2

2 4 3 8 4 8 10 4 4 5 2 8 Remainder = 8 ≠ 0. Therefore, x  2 is not a factor of 4 x3  3 x 2  8 x  4 .

1 2 5 10 22

1 0 5 1 2 2

3

Quotient: x  x  x  x  1 Remainder: 0

2

0 3 0 4 4 1

0 0 0 0 1 1 1 1 1 1

1 1 1 1 1

46  138

Quotient: x  3x  5 x  15 x  46 Remainder:  138

13. 1 4

0

Quotient: x 4  2 x3  4 x 2  8 x  16 Remainder: 0

9  15 45  138

1 3

0  0.2  0.21 0.441

0.1  0.21 0.241 Quotient: 0.1x  0.21 Remainder: 0.241

2

10.  2  4

0  0.3531

20. 3  4

5 0 8 12  51 153

 4 17  51 161 Remainder = 161 ≠ 0. Therefore, x  3 is not a factor of 4 x3  5 x 2  8 .

7 2

Quotient: 4 x  4 x  x  x  2 x  2 Remainder: 7

1482

Copyright © 2020 Pearson Education, Inc.


Section A.5: Rational Expressions

21. 3 2  6 6

0 7 21 0 0  21

28. 

2 0 0 7 0 Remainder = 0. Therefore, x  3 is a factor of 2 x 4  6 x3  7 x  21 .

22. 2 4

29.  2 1  2 2

30. Answers will vary.

Section A.5

9

1. lowest terms 2. Least Common Multiple

0  16  1 0 19  4 16 0 4  16

6 x 4  4 x3  2 x3  3x  2  LCM  2 x3  x  3 3x  2 

0  16 0 1 0  16  4 16 0 0  4 16

5. d 6. a

1 3 1 0 6  2 3 1 0 0 2 3

0 0 6

4. False; 2 x3  6 x 2  2 x 2  x  3

1 4 0 0 1 4 0 Remainder = 0. Therefore, x  4 is a factor x 6  16 x 4  x 2  16 .

27.

2

2 x3  4 x 2 x x  2 3. True;  x2 x2

1 4 0 1 4 3 Remainder = 1 ≠ 0. Therefore, x  4 is not a factor of x5  16 x3  x 2  19 .

26.  4 1

8  22

x  2 x 2  3x  5 17  x 2  4 x  11  x2 x2 a  b  c  d  1  4  11  17  9

2 6 0 0 1 3 0 Remainder = 0. Therefore, x  2 is a factor of 2 x 6  18 x 4  x 2  9 .

25.  4 1

5

1  4 11  17

0 9

18 0 0  3

3

3

0 0 43 0 0 24  10 20  40  6 12  24

6

3 2

factor of 3x 4  x3  3 x  1 .

0  15 0  4 8 16 2 4

0  18 0 1

0 0

Remainder = 2  0 ; therefore x  13 is not a

3  10 20 3  6 12 0 Remainder = 0. Therefore, x  3 is a factor of 5 x 6  43 x3  24 .

24. 3 2

1 0 3 1 1 0 0 1

3

4 8 1 2 0 Remainder = 0. Therefore, x  2 is a factor of 4 x 4  15 x 2  4 .

23. 2 5

1 3 3

7.

3( x  3) 3x  9 3   x 2  9 ( x  3)( x  3) x  3

8.

4 x 2  8 x 4 x( x  2) x   12 x  24 12( x  2) 3

9.

x 2  2 x x( x  2) x   3 x  6 3( x  2) 3

0

Remainder = 0; therefore x  13 is a factor of 3x 4  x3  6 x  2 .

1483

Copyright © 2020 Pearson Education, Inc.


Appendix A: Review

10.

15 x 2  24 x 3 x(5 x  8) 5 x  8   x 3x 2 3x 2

11.

24 x 2 24 x 2 4x   2 12 x  6 x 6 x(2 x  1) 2 x  1

12.

x 2  4 x  4 ( x  2)  x  2  x  2   ( x  2)( x  2) x  2 x2  4

13.

 y  5 y  5 y 2  25  2 y  8 y  10 2 y 2  4 y  5

14.

15.

16.

17.

2

19.

 y  5 y  5 2  y  5  y  1

y5 2  y  1

20.

21.

3( x  2) x x 3x  6  2   2 2 x x  2) ( 2)(  x 4 5x 5x 3  5 x( x  2) 3 x2 3 x 3x     2 x 6 x  10 2 2(3x  5) 4(3x  5)

2

 x  4  x  4 x  16 4x2   ( x  4)( x  4) 2x  

2

2 x  2 x  x  4  x 2  4 x  16

2 x  x  4  x  4 

2 x x 2  4 x  16

22.

3 x 9 x3  3  x  x  3 x  3

9 x3  3  x  x  3

 

2 x  x  1 2 x  1

6 x2  x  1 x  2 x  1

9 x3   x  3



23.

4x

2  6  x  1 x 2  x  1

 x  4 2

3 x 3 3  x  3  x  9x x2  9 3  x x2  9 9 x3

x4

( x  1)( x 2  x  1) x3  1 12 12    18. 2 2(2 x  1) x  x 4 x  2 x( x  1)

3 x2

4 x 2 4  x  4  x  x  16 4x 4 x 4x x 2  16 4  x  x  4  x  4    4 x 4x  4  x  x  4   4x 

3

4x x  64  2x x  16

x2 12 x x2 4x   4 x x2  4 x  4 x2  4 x  4 12 x 12 x x2   4 x  x  2  x  2  

3 y 2  y  2  3 y  2  y  1 y  1   3 y 2  5 y  2  3 y  2  y  1 y  1

2

4 5  x  1

8x x  1  8x  x  1 10 x x 2  1 10 x x 1 8x x 1    x  1 x  1 10 x 2

2

9 x3

 x  32

x2 4 x 2  4  x  2  x  2     2x  3 2x  3 2x  3 2x  3

1484

Copyright © 2020 Pearson Education, Inc.


Section A.5: Rational Expressions

2

24.

3x2 9 3x2  9 3 x  3    2x 1 2x 1 2x 1 2x 1

25.

x 1 x2  x2  4   x2  4 x x x2  4

29.

2

2x  4

x x2  4

2

2 x 2

x  x  2  x  2 

 

 

 x  1 x 2  1  x 4 x 1 x 26.  2  x3 x 1 x3 x 2  1  

27.

3

2

x  x  x 1  x

30.

4

x3 x 2  1

x3 x 2  1

31.

x2  4 x  x2  x 5x  ( x  6)( x  4)( x  1) ( x  6)( x  4)( x  1)

4 x 2  12 x  2 x  4 ( x  2)( x  2)( x  3)

4 x 2  10 x  4 ( x  2)( x  2)( x  3)

2(2 x 2  5 x  2) ( x  2)( x  2)( x  3)

x4 x4 3x 3x    x  1 x 2  2 x  1 ( x  1) ( x  1) 2 

3 x( x  1) x4  ( x  1)( x  1) ( x  1) 2

3x 2  3x  x  4 ( x  1) 2

3x 2  4 x  4 ( x  1) 2 3

32.

x2  8x  x  1 x2  7 x  1  ( x  3)( x  8) ( x  3)( x  8)

2

 x  1  x  1  x  1 x  12 3  x  1  2  x  1   x  12  x  12 2

x x 1  28. x  3 x 2  5 x  24 x x 1   ( x  3) ( x  3)( x  8) x( x  8) x 1   ( x  3)( x  8) ( x  3)( x  8) 

x 4  x3  x 2  x  1

x x  x 2  7 x  6 x 2  2 x  24 x x   ( x  6)( x  1) ( x  6)( x  4) x( x  4) x( x  1)   ( x  6)( x  1)( x  4) ( x  6)( x  4)( x  1) 

4x 2  x2  4 x2  x  6 4x 2   ( x  2)( x  2) ( x  3)( x  2) 4 x( x  3) 2( x  2)   ( x  2)( x  2)( x  3) ( x  3)( x  2)( x  2)

3x  3  2 x  2

 x  12  x  12 5x  1

 x  12  x  12 2

6

 x  2   x  1  x  2  x  12 2  x  1  6  x  2    x  2 2  x  12 2

 

2 x  2  6 x  12

 x  2 2  x  12 4 x  14

 x  2 2  x  12 2  2 x  7    x  2 2  x  12 1485

Copyright © 2020 Pearson Education, Inc.


Appendix A: Review 2x  5 x  x x  3 36. ( x  1) 2 x2  x 3 x3 x( x)   (2 x  5)( x  3)   x( x  3) x( x  3)     x 2 ( x  3) ( x  3)( x  1) 2   ( x  3)( x  3)  ( x  3)( x  3)   

1  x  1   x 1     x   x x    x   x 1  x  x 1 33. 1  x 1   x 1  x x 1 x 1 1  x  x x   x  1

 4x2 1   4 x2  1  1  4 2  2  2   x x   x2   x 34.   2 2 1 3  2  3 x  1   3 x  1  2 x x2   x2   x

 2 x 2  x  15  x 2    x( x  3)   3  2  x  3 x  ( x3  x 2  5 x  3)    ( x  3)( x  3)  

4 x2  1 x2  2 x2 3x  1 4 x2  1  2 3x  1 

 x 2  x  15   x( x  3)     2  4 x  5x  3   ( x  3)( x  3)   

x  2 x 1  x  2 x 1 35. x 2x  3  x 1 x ( x  2)( x  1) ( x  1)( x  2)    ( x  2)( x  1)  ( x  1)( x  2)    2   (2 x  3)( x  1) x  ( x  1)( x)  x( x  1)    x2  x  2  x2  x  2    ( x  2)( x  1)    x 2  (2 x 2  x  3)    x( x  1)  

37.

x 2  x  15 ( x  3)( x  3)  x( x  3) 4 x 2  5 x  3

( x 2  x  15)( x  3) x(4 x 2  5 x  3)

 2 x  3  3   3x  5  2 6 x  9  6 x  10   3 x  5 2  3 x  5 2 

 2x  4   ( x  2)( x  1)      x2  x  3   x( x  1)    2

38.

2( x  2) x( x  1)  ( x  2)( x  1) ( x 2  x  3)

2 x( x 2  2) 2 x( x 2  2)  ( x  2)( x 2  x  3) ( x  2)( x 2  x  3)

39.

 3 x  5 2

 4 x  1  5   5 x  2   4 20 x  5  20 x  8   5 x  2 2  5 x  2 2

2

19

13

 5 x  2 2

  2x  x 1  x  1  x  1

x  2 x  x 2  1 1 2

2

2

Copyright © 2020 Pearson Education, Inc.

2

2

1486

2

x2  1

 x  1 2

2

 x  1 x  1

 x  1 2

2


Section A.5: Rational Expressions

40.

  2x  x  4  x  4  x  4  x  4  x  4

x  2 x  x 2  4 1

2

2

2

2

2

2

41.

2

2

45. 2

 1 1 1   (n  1)    f R R  1 2   R  R1  1  (n  1)  2  f  R1  R2 

x2  4

 x  2 2  x  2 2

R1  R2  (n  1)  R2  R1  f f 1  R1  R2 (n  1)  R2  R1 

 3x  1  2 x  x 2  3 6 x 2  2 x  3x 2   3x  12  3x  12 

3x2  2 x

f 

 3x  12 x  3x  2    3x  12 42.

0.1(0.2) (1.5  1)(0.2  0.1) 0.02 0.02 2    meters 0.5(0.3) 0.15 15

f 

 2 x  5   3x 2  x3  2 6 x3  15 x 2  2 x3   2 x  5 2  2 x  5 2 

46.

4 x3  15 x 2

2

5  4 10 4 10  5 10  5  4 200 20   ohms 110 11

2

2

2

1 x 1   a  1, b  1, c  0 x x 1 1 x 1  1  1 1 x 1 1 x    1  x  x   x  1  x 2x  1   x 1 x 1  a  2, b  1, c  1

2

2

47. 1 

3x 2  8 x  3

 x  1   3 x  8 x  3   x  1 2

2

2

2

2



44.

 3x  1 x  3

 x  1 2

2

1

2

2

2

2

1

1 x 1  1 2 x 1  2x 1   x 1   

2 x  1  x  1 3x  2  2x 1 2x 1  a  3, b  2, c  1

 x  9 2  x  5 x  9    x  9 2

2

2

1 x 

2 x 2  10 x  18 2

 1

1

2

2

1

1

 x  9  2   2 x  5  2 x  2 x  18  4 x  10 x  x  9  x  9 2

R1 R2 R3 R2 R3  R1 R3  R1 R2

 x  1  3   3x  4  2 x  3x  3  6 x  8x  x  1  x  1 2

R R  R1 R3  R1 R2 1 1 1 1     2 3 R R1 R2 R3 R1 R2 R3 R

 2 x  5 2 x 2  4 x  15    2 x  5 2

43.

R1  R2 (n  1)  R2  R1 

2

1487

Copyright © 2020 Pearson Education, Inc.


Appendix A: Review

1

1 1

 1

1 1

1 1

1 x

1 2x  1  1 3x  2  3x  2   2x 1   

9. discriminant; negative 10. False; a quadratic equation can have two, one (repeated), or no real solutions. 11. False; if the discriminant is positive, there will be two real solutions, but they are not necessarily opposites.

3x  2  2 x  1 5 x  3   3x  2 3x  2  a  5, b  3, c  2 If we continue this process, the values of a, b and c produce the following sequences: a :1, 2,3,5,8,13, 21,....

12. b 13. b

b :1,1, 2,3,5,8,13, 21,..... c : 0,1,1, 2,3,5,8,13, 21,..... In each case we have a Fibonacci Sequence, where the next value in the list is obtained from the sum of the previous 2 values in the list.

14. d 15. 3x  21 3x 21  3 3 x7 The solution set is 7

48. Answers will vary. 49. Answers will vary.

16. 3x  24 3x 24  3 3 x  8 The solution set is 8

Section A.6 1. x 2  5 x  6   x  6  x  1

17.

5 x  15  0 5 x  15  15  0  15

2. 2 x  x  3   2 x  3 x  1

5 x  15

2

5 x 15  5 5 x  3 The solution set is 3

5  3. 3,   3 

4. True 18.

5. identity

3 x  18  0 3x  18  18  0  18

6. False; 3x  8  0 3x  8 8 x 3

3x  18 3x 18  3 3 x  6 The solution set is 6

8  The solution set is   . 3

7. True 8. add;

25 4

1488

Copyright © 2020 Pearson Education, Inc.


Section A.6: Solving Equations 19.

20.

2x  3  5

24.

2x  3  3  5  3

3  2x  3  2  x  3

2x  8

2 x   x  1

2x 8  2 2 x4 The solution set is 4

2 x  x   x  1  x  x  1 1  x   1 1 x 1 The solution set is 1 .

3 x  4  8 3 x  4  4  8  4

25. 2(3  2 x)  3( x  4) 6  4 x  3 x  12 6  4 x  6  3 x  12  6 4 x  3 x  18 4 x  3x  3 x  18  3 x x  18 The solution set is 18 .

3x  12 3x 12  3 3 x  4 The solution set is 4

21.

1 5 x 3 12 1 5 3 x  3 3 12 5 x 4

26. 3(2  x)  2 x  1 6  3x  2 x  1 6  3x  6  2 x  1  6 3x  2 x  7 3 x  2 x  2 x  7  2 x 5 x  7 5 x 7  5 5 7 x 5 7 . The solution set is 5

5 The solution set is   4

22.

2 9 x 3 2 3 2 3 9  x  2 3 2 2 27 x 4



27. 8 x   2 x  1  3 x  10

 27  The solution set is   4

23.

3  2x  2  x

8 x  2 x  1  3 x  10 6 x  1  3 x  10

6  x  2x  9

6 x  1  1  3 x  10  1

6  x  6  2x  9  6

6 x  3x  9

x  2x  3

6 x  3x  3x  9  3x

x  2x  2x  3  2x

3 x  9 3x 9  3 3 x  3 The solution set is 3 .

3 x  3 3 x 3  3 3 x  1 The solution set is 1 .

1489

Copyright © 2020 Pearson Education, Inc.


Appendix A: Review 28. 5   2 x  1  10

32. 0.9t  1  t 0.9t  t  1  t  t  0.1t  1  0.1t 1   0.1  0.1 t  10 The solution set is 10 .

5  2 x  1  10 2 x  6  10 2 x  6  6  10  6 2 x  4 2 x 4  2 2 x  2 The solution set is 2 .

29.

33.

1 3 x4  x 2 4 1  3  4 x  4  4 x  2  4 

6  y  

2 x  16  3 x 2 x  16  16  3x  16

1

 31

y 1  6 3 y 1 6  6 6 3 y2

2 x  3x  16 2 x  3 x  3x  16  3 x  x  16

The solution set is 2 .

1  x   116  x  16 The solution set is 16 .

30.

2 4  3 y y 6 3 y

34.

4 5 5  y 2y

1 1 x  5 2  1  2 1  x   2  5   2  2  x  10

4   5  2y   5  2 y   y    2y  8  10 y  5

2  x  2  10  2

10 y 3  10 10 3 y 10

8  10 y  8  5  8 10 y  3

x  8 1  x   1 8  x  8 The solution set is 8 .

The solution set is

31. 0.9t  0.4  0.1t 0.9t  0.1t  0.4  0.1t  0.1t 0.8 t  0.4 0.8 t 0.4  0.8 0.8 t  0.5 The solution set is 0.5 .

1490

Copyright © 2020 Pearson Education, Inc.



3 . 10


Section A.6: Solving Equations

35.

 x  7  ( x  1)  ( x  1)2

39.

x2  9 x  0

x2  x  7 x  7  x2  2 x  1

x  x  9  0

x2  6 x  7  x2  2 x  1

x  0 or x  9  0

x2  6 x  7  x2  x2  2 x  1  x2

x9 The solution set is 0,9 .

6x  7  2x 1 6x  7  2x  2x 1 2x 4x  7  1

40.

4x  7  7  1 7

x 2  x  1  0

4x 8  4 4 x2 The solution set is 2 .

x 2  0 or x  1  0 x0 x 1 The solution set is 0,1 .

 x  2  x  3   x  32

41.

x2  2 x  3x  6  x 2  6 x  9 2

x3  x 2 x3  x 2  0

4x  8

36.

x2  9 x

t 3  9t 2  0 t 2 t  9  0

2

x  x  6  x  6x  9

t 2  0 or t  9  0

x2  x  6  x2  x2  6 x  9  x2

t 0 t 9 The solution set is 0,9 .

 x  6  6 x  9  x  6  6 x  6 x  9  6 x

42.

5x  6  9 5x  6  6  9  6

4z 2  z  2  0

5 x  15

4 z 2  0 or z  2  0 z2 z0 The solution set is 0, 2 .

5 x 15  5 5 x3 The solution set is 3 .

37.

43.

z z 2  1  3  z3 3

z  z  3  z3 3

3

3

z  z  z  3 z  z

3 2  2x  3 x  5 3  x  5   2  2 x  3 3 x  15  4 x  6

3

3x  15  3 x  4 x  6  3 x

z 3 The solution set is 3 .

4 z3  8z 2  0

15  x  6 15  6  x  6  6 21  x The solution set is 21 .

38. w 4  w2  8  w3 3

4 w  w  8  w3 4w  8 w2 The solution set is 2 .

1491

Copyright © 2020 Pearson Education, Inc.


Appendix A: Review

44.

2 3  x  4 x 1 2  x  1  3  x  4 

48.

1 1 1   2 x  3 x  1  2 x  3 x  1

LCD =  2 x  3 x  1

2 x  2  3x  12

x 1

2 x  2  3 x  3x  12  3x

2x  3

x  2  12

x 1 2x  3  1

x  2  2  12  2

3x  2  1

x  10 The solution set is 10 .

45.

3 x  1 x

 x  2  3x    x  2  6 

 1 The solution set is   .  3

3x 2  6 x  6 x  12 3x 2  6 x  6 x  6 x  12  6 x

49.

3x 2  12

x3 x  3 The solution set is {–3, 3}.

x  2 The solution set is 2, 2 .

50.

 x  5  2 x    x  5  4 

x4 x  4 The solution set is 4, 4 .

2 x  10 x  4 x  20 2 x 2  14 x  20  0 x 2  7 x  10  0

51.

 x  5 x  2   0 x  5  0 or x  2  0

52.

 x  5 x  2   x  5 x  2  2  x  5   3  x  2   10

3x  1  2

3x  1  2 or 3x  1   2

LCD =  x  5  x  2  3 x  2

2x   8

x  1 or x  4 The solution set is {–4, 1}.

2 3 10   x  2 x  5  x  5  x  2 

2x  3  5 2 x  3  5 or 2 x  3   5

2 x  2 or

x5 x2 The solution set is 2,5 .

2  x  5

3 x  12

3x  12 or 3x  12

2

47.

2x  6 2 x  6 or 2 x  6

x2  4

46.

1

 2 x  3 x  1  2 x  3 x  1  2 x  3 x  1

10  x  5  x  2 

3x  3 or

3x  1

x  1 or

x

1 3

 

1 The solution set is  , 1 . 3

2 x  10  3x  6  10 2 x  10  3x  4

53.

10  x  4

1  4t  5 1  4t  5 or 1  4t  5

6 x The solution set is 6 .

4t  4 or

 4t  6

3 2 3 The solution set is 1, . 2 t  1 or

t

 

1492

Copyright © 2020 Pearson Education, Inc.

1 3


Section A.6: Solving Equations

54.

1 2z  3

62.

1  2 z  3 or 1  2 z  3 2 z  2 or  2 z  4 z  1 or

x2  9  0 x2  9

z2

x  3 The solution set is 3, 3 .

The solution set is 1, 2 . 55.

 2x  8

63.

 2x  8 or  2 x   8 x   4 or x4 The solution set is {–4, 4}.

56.

x2  2 x  3

x 2  2 x  3 or x 2  2 x  3 x 2  2 x  3  0 or x 2  2 x  3  0

 x  3 x  1  0 or x  2  24  12

 x 1 x  1

or  x  1 x  1 x 1 The solution set is {–1, 1}. 57.

x2  9  0

x  3 or x  1 The solution set is 1, 3 .

2 x  4 2x  4

64.

x2 The solution set is 2 .

x 2  x  12 x 2  x  12 or x 2  x  12 x 2  x  12  0 or x 2  x  12  0

58. 3 x  9

1  1  48 2 1  47  no real sol. 2

 x  3 x  4   0 or x 

3x  9 x3 The solution set is 3 .

x  3 or x  4 The solution set is 4, 3 .

1 59. x  2   2 Since absolute values are never negative, this equation has no solution.

60.

65.

x2  x  1  1 x2  x  1  1

2  x  1

or x 2  x  1  1

x2  x  2  0

Since absolute values are never negative, this equation has no solution. 61.

2  8 no real sol. 2

or x 2  x  0

 x  1 x  2   0 or x  x  1  0 x  1, x  2 or x  0, x  1

x2  4  0

The solution set is 2,  1, 0,1 .

2

x 4  0

66.

x2  4 x  2 The solution set is 2, 2 .

x 2  3x  2  2 x2  3x  2  2

or x 2  3 x  2  2

x2  3x  4  0

or x 2  3x  0

 x  4  x  1  0 or

x  x  3  0

x  4, x  1

x  0, x  3

or

The solution set is 4, 3, 0,1 .

1493

Copyright © 2020 Pearson Education, Inc.


Appendix A: Review

x2  4 x

67.

73.

x 2  7 x  12  0

x  x  4  0

 x  4  x  3  0

x  0 or x  4  0

x  4  0 or x  3  0

x4 The solution set is 0, 4 .

x4 x3 The solution set is 3, 4 .

x 2  8 x

68.

74.

2

x 2  x  12

x  x  8  0

x 2  x  12  0

 x  4  x  3  0

x  8 The solution set is 8, 0 .

x40

z 2  4 z  12  0

75.

z6  0

or z  2  0 z  6 z2 The solution set is 6, 2 .

4 x 2  12 x  9  0

 2 x  32  0

v 2  7v  12  0

 v  4  v  3  0

x

or v  3  0

3 2

3 The solution set is   . 2

v  4 v  3 The solution set is 4, 3 .

76.

2 x2  5x  3  0

25 x 2  16  40 x 25 x 2  40 x  16  0

 2 x  1 x  3  0

 5 x  4 2  0

or x  3  0 2 x  1 x3 1 x 2  1  The solution set is  ,3 .  2  2x  1  0

72.

4 x 2  9  12 x

2x  3  0 2x  3

v40

71.

or x  3  0

x  4 x3 The solution set is 4,3 .

 z  6  z  2   0

70.

x  x  1  12

x  8x  0 x  0 or x  8  0

69.

x  x  7   12  0

x  4x  0

2

5x  4  0 5x  4 4 5 4 The solution set is   . 5 x

3x2  5 x  2  0

 3x  2  x  1  0 or x  1  0 3 x  2 x  1 2 x 3 2  The solution set is 1,   3  3x  2  0

1494

Copyright © 2020 Pearson Education, Inc.


Section A.6: Solving Equations

6x  5 

77.

6 x

80.

6 x  6 x  5  x   x

5  x  2

2

6 x  5x  6  0

 3x  2  2 x  3  0

or 2 x  3  0 3 x  2 2x  3 2 3 x x 3 2  2 3 The solution set is  ,  .  3 2

5 x  10  4 x 2  11x  20 0  4 x 2  6 x  10 0  2 x 2  3x  5 0   2 x  5  x  1 or x  1  0 2x  5  0 x 1 2 x  5

12 7 x 12   x  x    x 7 x 

x

x 2  7 x  12  0

 x  3 x  4   0

81. x 2  25  x   25  x  5 The solution set is 5, 5 .

x  3  0 or x  4  0 x3 x4 The solution set is 3, 4 .

x 3

82. x 2  36  x   36  x  6 The solution set is 6, 6 .

3 3  x x  x  3

83.

LCD = x  x  3 4x  x  2 x  x  3

3  x  3

x  x  3

5 2

 5  The solution set is  ,1 .  2 

x 2  12  7 x

5 x  10  4 x 2  8 x  32  3x  12

x

4  x  2

4  x  2  x  4 

5 x  10  4 x 2  2 x  8  3 x  12

3x  2  0

79.

3 x  4

 x  2  x  4   x  2  x  4   x  2  x  4  5  x  2   4  x  2  x  4   3  x  4 

6x2  5x  6

78.

5 3  4 x4 x2 LCD =  x  2  x  4 

 x  12  4 x 1   4

x  1  2

3 x  x  3

x  1  2 or x  1  2  x  3 or x  1 The solution set is 1, 3 .

4 x  x  2   3  x  3  3 4 x 2  8 x  3 x  9  3 4 x 2  5 x  9  3

84.

2

4 x  5x  6  0

 x  2 2  1 x2  1

 4 x  3 x  2   0

x  2  1

or x  2  0 4 x  3 x2 3 x 4  3  The solution set is  , 2  .  4  4x  3  0

x  2  1 or x  2  1  x  1 or x  3 The solution set is 3,  1 .

1495

Copyright © 2020 Pearson Education, Inc.


Appendix A: Review

85.

 2 y  32  9

1 3 89. x 2  x   0 2 16 1 3 x2  x  2 16 1 1 3 1 x2  x    2 16 16 16

2y  3   9 2 y  3  3 2 y  3  3 or 2y  3  3  y  0 or y  3

2

The solution set is 3, 0 . 86.

1 1  x 4  4  

 3 x  2 2  4

1 1 1   4 4 2 1 1 3 1 or x   x  x 4 2 4 4 1 3 The solution set is  , . 4 4 x

3x  2   4 3x  2  2

 

3x  2  2 or 3x  2  2 4 or x  0 3 4 The solution set is 0, . 3 x

 

87.

2 1 x 0 3 3 2 1 x2  x  3 3 2 1 1 1 x2  x    3 9 3 9

90. x 2 

x 2  4 x  21 x 2  4 x  4  21  4

 x  2 2  25

2

1 4  x 3  9  

x  2   25  x  2  5 x  2  5  x  3 or x  7 The solution set is 7,3 .

88.

1 4 2   3 9 3 1 2 x  3 3 1 x  or x  1 3 1 The solution set is 1, . 3 x

x 2  6 x  13 x 2  6 x  9  13  9

 

 x  32  22  x  3   22 x  3  22 The solution set is

3  22,3  22.

1496

Copyright © 2020 Pearson Education, Inc.


Section A.6: Solving Equations

91.

1 0 2 1 1 x2  x   0 3 6 1 1 x2  x  3 6 1 1 1 1   x2  x  3 36 6 36

93. x 2  4 x  2  0 a  1, b   4, c  2

3x 2  x 

x

4  16  8 4  8  2 2 42 2   2 2 2 

2

1 7   x  6   36  

94. x 2  4 x  2  0 a  1, b  4, c  2

1 7  6 6

x

1  7 x 6  1  7 1  7  The solution set is  , . 6   6

92.

 4  16  8  4  8  2 2 4 2 2   2 2 2

95. x 2  5 x  1  0 a  1, b  5, c  1 x

2

x

3 17  4 4 3  17 x 4

The solution set is  2  2,  2  2 .

3 17   x  4   16   3 17  4 16

 4  42  4(1)(2) 2(1)

2 x 2  3x  1  0 3 1 x2  x   0 2 2 3 1 x2  x  2 2 3 9 1 9 2 x  x   2 16 2 16

x

The solution set is 2  2, 2  2 .

1 7 x   6 36 x

( 4)  ( 4) 2  4(1)(2) 2(1)

  5  

 52  4 1 1 2 1

5  25  4 5  29  2 2  5  29 5  29  , The solution set is  . 2   2 

96. x 2  5 x  3  0 a  1, b  5, c  3

 3  17 3  17  The solution set is  , . 4   4

x

5  52  4 1 3 2 1

5  25  12 5  13  2 2  5  13 5  13  , The solution set is  . 2 2   

1497

Copyright © 2020 Pearson Education, Inc.


Appendix A: Review

97. 2 x 2  5 x  3  0 a  2, b   5, c  3 x 

4 x2  1  2 x

101.

4x2  2 x  1  0 a  4, b  2, c  1

( 5)  ( 5) 2  4(2)(3) 2(2)

x

5  25  24 5  1  4 4

 

3 The solution set is 1, . 2

 2  22  4(4)(1) 2(4)  2  4  16  2  20  8 8

 2  2 5 1  5  8 4  1  5 1  5  The solution set is  , . 4   4

98. 2 x 2  5 x  3  0 a  2, b  5, c  3 x

5  52  4(2)(3) 2(2)

5  25  24 5  1  4 4 3 The solution set is  , 1 . 2

2x2  2 x  1  0 a  2, b  2, c  1

x 

(1)  ( 1) 2  4(4)(2) 2(4)

1  1  32 1  31  8 8 No real solution.

103. x 2  3 x  3  0 a  1, b  3, c  3

100. 4t 2  t  1  0 a  4, b  1, c  1 t

 2  22  4(2)(1) 2(2)

 2  4  8  2  12  4 4  2  2 3 1  3   4 2  1  3 1  3  The solution set is  , . 2   2

99. 4 y 2  y  2  0 a  4, b   1, c  2 y

2 x2  1  2 x

102.

x

1  12  4(4)(1) 2(4)

 3

 3   4 1 3 2

2 1

 3  3  12  3  15  2 2   3  15  3  15  The solution set is  , . 2 2   

1  1  16 1  15   8 8 No real solution.

104. x 2  2 x  2  0 a  1, b  2, c  2 x

 2

 2   4 1 2 2

2 1

 2  2  8  2  10  2 2   2  10  2  10  , The solution set is  . 2 2   

1498

Copyright © 2020 Pearson Education, Inc.


Section A.6: Solving Equations 112. 1  ax  b  ax  b  1 b 1 1 b x or x  a a

105. x 2  5 x  7  0 a  1, b  5, c  7 b 2  4ac  (5) 2  4(1)  7   25  28  3 Since the discriminant < 0, we have no real solutions.

113.

106. x 2  5 x  7  0 a  1, b  5, c  7 b 2  4ac  (5) 2  4(1)  7 

x x  c a b  x x ab     ab  c  a b bx  ax  abc x  b  a   abc

 25  28  3 Since the discriminant < 0, we have no real solutions.

x

107. 9 x 2  30 x  25  0 a  9, b  30, c  25

114.

b 2  4ac  (30) 2  4(9)  25   900  900  0 Since the discriminant = 0, we have one repeated real solution.

108. 25 x 2  20 x  4  0 a  25, b  20, c  4

115.

b 2  4ac  (20) 2  4(25)  4   400  400  0 Since the discriminant = 0, we have one repeated real solution.

abc abc or x  ba ab

a b  c x x ab c x xc  a  b ab x c 1 1 2   x  a x  a x 1  x  a  x  a 2   x  a x  a x  a x  a x       1 xa xa

2 x 1 2  x2  a2 x  1

x2  a2 2x

2

109. 3x  5 x  8  0 a  3, b  5, c  8 b 2  4ac  (5) 2  4(3)  8 

2 x  x  1  2 x 2  a 2

 25  96  121 Since the discriminant > 0, we have two unequal real solutions.

2

2

2 x  2 x  2 x  2a 2 x  2a 2

2

110. 2 x  3x  4  0 a  2, b  3, c  4

x  a2

b 2  4ac  (3) 2  4(2)  4 

116.

 9  32  41 Since the discriminant > 0, we have two unequal real solutions.

bc bc  xa xa  x  a  b  c    x  a  b  c  bx  ab  cx  ac  bx  ab  cx  ac ab  cx  ab  cx 2cx  2ab cx  ab ab x c

111. ax  b  c ax  b  c bc x a 1499

Copyright © 2020 Pearson Education, Inc.

2


Appendix A: Review 117. Solving for R: 1 1 1   R R1 R2

121. Solving for r: a S 1 r a

1  r   S  1  r   1  r

 1 1  1 RR1 R2    RR1 R2    R R R  1 2  R1 R2  RR2  RR1

1  r  S  a 1  r  S a

R1 R2  R( R2  R1 )

S a 1 r  S a 1  r 1  1 S a r   1 S a r  1 S

R1 R2 R( R2  R1 )  R2  R1 R2  R1 R1 R2 RR  R or R  1 2 R2  R1 R1  R2

118. Solving for r : A  P(1  r t ) A  P  P rt A  P  P rt A  P P rt  Pt Pt A P r Pt

or r 

S a S

122. Solving for t: v   gt  v0 v  v0   gt  v0  v0 v  v0   gt v  v0  gt  g g v0  v v v  t or t  0 g g

119. Solving for R: mv 2 F R  mv 2  RF  R    R  RF  mv

S

123. The roots of a quadratic equation are x1 

2

RF mv 2 mv 2  R F F F

b  b 2  4ac b  b 2  4ac and x2  2a 2a

x1  x2 

b  b 2  4ac b  b 2  4ac  2a 2a

b  b 2  4ac  b  b 2  4ac 2a 2b  2a b  a

120. Solving for T: PV  nRT PV nRT  nR nR PV T nR

1500

Copyright © 2020 Pearson Education, Inc.


Section A.6: Solving Equations 124. The roots of a quadratic equation are 2

127. For ax 2  bx  c  0 : 2

b  b  4ac b  b  4ac and x2  2a 2a  b  b 2  4ac   b  b 2  4ac    x1  x2      2a 2a    x1 

 b 2 

x1 

For ax 2  bx  c  0 :

 b  4ac   b  b  4ac 2

 2a  2

2

 b 2  4ac 2a

 b  b 2  4ac       2a     x2

4a 2

4ac 4a 2 c  a 

and x2* 

12  4  k  k   0

 b 2  4ac

128. For ax 2  bx  c  0 :

1  4k 2  0 4k 2  1 1 k2  4 k 

  b  

2a  b  b 2  4ac       2a     x1

125. In order to have one repeated solution, we need the discriminant to be 0. a  k , b  1, c  k b 2  4ac  0

k

  b  

x1* 

2

2

b  b 2  4ac b  b 2  4ac and x2  2a 2a

x1 

b  b 2  4ac b  b 2  4ac and x2  2a 2a

For cx 2  bx  a  0 : 1 4

1 2

or k  

x1* 

1 2

126. In order to have one repeated solution, we need the discriminant to be 0. a  1 , b  k , c  4 b 2  4ac  0

 k 2  4 1 4   0

b  b 2  4  c  a  2c

b  b  4ac b  b 2  4ac  2c b  b 2  4ac

b 2  b 2  4ac

2

k  4 or k  4

2c b  b  4ac 2a

b  b 2  4ac 1  x2

 k  4  k  4   0

b  b 2  4ac 2c

2

k 2  16  0

1501

Copyright © 2020 Pearson Education, Inc.

4ac

 2c  b  b  4ac  2


Appendix A: Review

and

Section A.7 b  b  4  c  a  2

x2*   

2c

2

b  b  4ac 2c

1. Integers: 3, 0

Rationals: 3, 0,

b  b 2  4ac b  b 2  4ac  2c b  b 2  4ac

b 2  b 2  4ac

2c b  b 2  4ac

 2c  b  b  4ac  2

3.

2a

b  b 2  4ac 1  x1

129. a.

3 3 2 3   2 3 2 3 2 3

 2   3 3 2  3   

x 2  9 and x  3 are not equivalent because they do not have the same solution set. In the first equation we can also have x  3 .

b.

x  9 and x  3 are equivalent because 9 3.

c.

 x  1 x  2    x  1 and x  2  x  1 are

2. True; the set of real numbers consists of all rational and irrational numbers.

4ac

6 5

3 2 3

2

2

43

 3 2 3

4. real; imaginary; imaginary unit 5. False; the conjugate of 2  5i is 2  5i .

2

6. True; the set of real numbers is a subset of the set of complex numbers.

not equivalent because they do not have the same solution set. The first equation has the solution set 1

7. False; if 2  3i is a solution of a quadratic equation with real coefficients, then its conjugate, 2  3i , is also a solution.

while the second equation has no solutions. 130. Answers will vary.

8. b

131. Answers will vary.

9. a

132. Answers will vary. Methods may include the quadratic formula, factoring, completing the square, graphing, etc.

10. c 11. (2  3i )  (6  8i )  (2  6)  (3  8)i  8  5i

133. Answers will vary. Knowing the discriminant allows us to know how many real solutions the equation will have.

12. (4  5i )  ( 8  2i )  (4  ( 8))  (5  2)i   4  7i

134. Answers will vary. One possibility: Two distinct: x 2  3x  18  0 One repeated: x 2  14 x  49  0 No real: x 2  x  4  0

13. (3  2i )  (4  4i )  (3  4)  (2  ( 4))i  7  6i 14. (3  4i )  (3  4i )  (3  (3))  ( 4  ( 4))i  6  0i  6

135. Answers will vary.

15. (2  5i )  (8  6i )  (2  8)  (5  6)i  6  11i

1502

Copyright © 2020 Pearson Education, Inc.


Section A.7: Complex Numbers; Quadratic Equations in the Complex Number System 16. ( 8  4i )  (2  2i )  ( 8  2)  (4  ( 2))i   10  6 i

27.

17. 3(2  6i )  6  18 i 18.  4(2  8i )   8  32 i

28.

19. 3i (7  6i )  21i  18i 2  21i  18(1)  18  21i

29. 21. (3  4i )(2  i )  6  3i  8i  4i 2  6  5i  4(1)  10  5i 22. (5  3i )(2  i )  10  5i  6i  3i 2  10  i  3(1)  13  i

30.

23. ( 5  i )( 5  i )  25  5i  5i  i 2  25  (1)  26

25.

26.

2  i 2  i i 2i  i 2    2i  2i i  2i 2 

20. 3i (3  4i )  9i  12i 2  9i  12(1)  12  9i

24. ( 3  i )(3  i )  9  3i  3i  i  9  (1)  10

2  i 2  i i  2i  i 2    i i i i 2  2i  (1) 1  2i    1  2i 1 (1)

2i  (1) 1  2i 1   i  2(1) 2 2

6  i 6  i 1  i 6  6i  i  i 2    1  i 1  i 1  i 1  i  i  i2 6  7i  (1) 5  7i 5 7     i 1  (1) 2 2 2 2  3i 2  3i 1  i 2  2i  3i  3i 2    1 i 1 i 1 i 1  i  i  i2 2  5i  3(1) 1  5i 1 5     i 1  (1) 2 2 2 2

1 3  1  1  3  3 2 i    2  i i 31.   4  2  2  4 2 2  

2

1 3 3 1 3  i  (1)    i 4 2 4 2 2

2

 3 1   3  1  1 2 3  i    2 32.   i   i 2 2 4    2  2  4

10 10 3  4i 30  40i    3  4i 3  4i 3  4i 9  12i  12i  16i 2 30  40i 30  40i   9  16(1) 25 30 40   i 25 25 6 8   i 5 5

3 3 1 1 3  i  (1)   i 4 2 4 2 2

33. (1  i ) 2  1  2i  i 2  1  2i  (1)  2i 34. (1  i ) 2  1  2i  i 2  1  2i  (1)  2i

   i  (1) i  i

35. i 23  i 22 1  i 22  i  i 2

13 13 5  12i   5  12i 5  12i 5  12i 65  156i  25  60i  60i  144i 2 65  156i 65  156i   25  144(1) 169 65 156   i 169 169 5 12   i 13 13

11

   (1)  1

36. i14  i 2

7

7

1 1 1 37. i 20  20  20  2 10 i i (i ) 1 1   1 (1)10 1

1503

Copyright © 2020 Pearson Education, Inc.

11


Appendix A: Review

1 1 1 1 38. i 23  23  22 1  22  2 11 i i i  i (i )  i 1 1 1 i i i      2  i 11     i i i ( 1) i (1) i

   5  (1)  5  1  5   6

6

39. i  5  i

2 3

3

53.

12  i 4  3  2 3i

54.

18  i 9  2  3 2i

55.

200  i 100  2  10 2i

56.

45  i 9  5  3 5i

57.

(3  4i )(4i  3)  12i  9  16i 2  12i

2

5

3

2

41. 6i  4i  i (6  4i )  i 2  i (6  4(1))  1  i (10)  10 i 3

 64  8i

3

40. 4  i  4  i  i  4  (1) i  4  i 3

52.

2

2

 9  16(1)

2

42. 4i  2i  1  4i  i  2i  1  4(1) i  2(1)  1   4i  2  1  3  4i

  25  5i

58.

(4  3i )(3i  4)  12i  16  9i 2  12i  16  9(1)

43. (1  i )3  (1  i )(1  i )(1  i )  (1  2i  i 2 )(1  i )  (1  2i  1)(1  i )  2i (1  i )

  25  5i

 2i  2i 2  2i  2(1)   2  2i

59. x 2  4  0 x 2  4

44. (3i ) 4  1  81i 4  1  81(1)  1  82

x   4

45. i 7 (1  i 2 )  i 7 (1  (1))  i 7 (0)  0

x  2i The solution set is 2i, 2i .

46. 2i 4 (1  i 2 )  2(1)(1  (1))  2(0)  0 8

6

4

2

   i   i   i

47. i  i  i  i  i

2 4

2 3

2 2

60. x 2  4  0 ( x  2)( x  2)  0 x   2 or x  2

2

 (1) 4  (1)3  (1) 2  1  1 1 1 1 0

The solution set is 2, 2 .

61. x 2  16  0  x  4  x  4   0

   i  i   i  i  i  i

48. i 7  i 5  i 3  i  i 2

3

2 2

2

x  4 or x  4

 (1)3  i  (1) 2  i  (1)  i  i  i  i  i  i 0

49.

 4  2i

50.

 9  3i

51.

 25  5i

The solution set is 4, 4 .

62. x 2  25  0 x 2   25 x    25  5i The solution set is 5i, 5i .

1504

Copyright © 2020 Pearson Education, Inc.


Section A.7: Complex Numbers; Quadratic Equations in the Complex Number System

63. x 2  6 x  13  0 a  1, b   6, c  13,

68. 10 x 2  6 x  1  0 a  10, b  6, c  1

b 2  4ac  ( 6) 2  4(1)(13)  36  52  16 x

b 2  4ac  62  4(10)(1)  36  40   4

 ( 6)  16 6  4i   3  2i 2(1) 2

x

The solution set is 3  2i,3  2i .

The solution set is

64. x 2  4 x  8  0 a  1, b  4, c  8

3 1 3 1  i,   i . 10 10 10 10

5x2  2 x  1  0 a  5, b  2, c  1

 4  16  4  4i    2  2i 2(1) 2

b 2  4ac   2   4(5)(1)  4  20  16 2

The solution set is  2  2i,  2  2i .

x

65. x 2  6 x  10  0 a  1, b   6, c  10 2

5x2  1  2 x

69.

b 2  4ac  42  4(1)(8)  16  32  16 x

 6  4  6  2i 3 1    i 2(10) 20 10 10

(2)  16 2  4i 1 2    i 2(5) 10 5 5

The solution set is

1 2 1 2  i,  i . 5 5 5 5

2

b  4ac  ( 6)  4(1)(10)  36  40   4 13x 2  6 x  1  0 a  13, b  6, c  1

The solution set is 3  i, 3  i .

b 2  4ac  (6) 2  4(13)(1)  36  52  16

66. x 2  2 x  5  0 a  1, b   2, c  5

x

b 2  4ac  ( 2) 2  4(1)(5)  4  20  16

3 2 3 2  i,  i . 13 13 13 13

71. x 2  x  1  0 a  1, b  1, c  1,

The solution set is 1  2 i, 1  2i .

b 2  4ac  12  4(1)(1)  1  4  3

67. 25 x 2  10 x  2  0 a  25, b  10, c  2

x

2

b  4ac  (10)  4(25)(2)  100  200  100

1  3 1  3 i 1 3    i 2(1) 2 2 2

 1 3 1 3  i,   i . The solution set is   2 2   2 2

 ( 10)  100 10  10i 1 1    i 50 50 5 5 1 1 1 1  i,  i . The solution set is 5 5 5 5 x

( 6)  16 6  4i 3 2    i 2(13) 26 13 13

The solution set is

 ( 2)   16 2  4i   1  2i x 2(1) 2

2

13x 2  1  6 x

70.

 ( 6)   4 6  2i   3i x 2(1) 2

72. x 2  x  1  0 a  1, b  1, c  1 b 2  4ac  (1) 2  4(1)(1)  1  4  3 x

 (1)  3 1  3 i 1 3    i 2(1) 2 2 2

1 3 1 3  i,  i . The solution set is   2 2  2 2

1505

Copyright © 2020 Pearson Education, Inc.


Appendix A: Review

73. x3  64  0

77.

x 4  13x 2  36  0

( x  4) x 2  4 x  16  0

 x  9  x  4   0

x4  0 x  4

x2  9  0

or x 2  4  0

or x 2  4 x  16  0 a  1, b  4, c  16

x 2  9

or

b 2  4ac  42  4(1)(16)  16  64  48

x  3i x  2i or The solution set is  3i, 3i, 2i, 2i .

x

2

 4  48  4  4 3 i   2  2 3i 2(1) 2

78.

x  1 or

2

or x  3x  9  0 a  1, b  3, c  9 (3)   27 3  3 3 i 3 3 3    i 2(1) 2 2 2

79. 3x 2  3 x  4  0 a  3, b   3, c  4

 3 3 3 3 3 3  i,  i . The solution set is 3,  2 2 2 2  

b 2  4ac  ( 3) 2  4(3)(4)  9  48  39 The equation has two complex solutions that are conjugates of each other.

x 4  16

80. 2 x 2  4 x  1  0 a  2, b   4, c  1

4

x  16  0

 x  4  x  4   0 ( x  2)( x  2)  x  4   0 2

b 2  4ac  (4) 2  4(2)(1)  16  8  8 The equation has two unequal real number solutions.

2

x  2  0 or x  2  0 or x 2  4  0 x  2 or

81.

x  2 or x 2  4

b 2  4ac  32  4(2)(4)  9  32  41 The equation has two unequal real solutions.

x4  1 x4  1  0

82.

 x  1 x  1  0 ( x  1)( x  1)  x  1  0 2

2

x2  6  2x x2  2 x  6  0 a  1, b  2, c  6

2

b 2  4ac  (2) 2  4(1)(6)  4  24  20 The equation has two complex solutions that are conjugates of each other.

x  1  0 or x  1  0 or x 2  1  0 x  1 or

2 x 2  3x  4 2 x2  3x  4  0 a  2, b  3, c   4

x  2 or x  2 or x   4  2i The solution set is 2, 2, 2i, 2i .

76.

x  1 or x 2  4

x  1 or x  1 or x   4  2i The solution set is  1, 1, 2i, 2i .

b 2  4ac  (3)2  4(1)(9)  9  36   27

2

2

x  1  0 or x  1  0 or x 2  4  0

x  3  0  x  3

75.

 x  1 x  4   0 ( x  1)( x  1)  x  4   0 2

( x  3) x  3 x  9  0

x

x   4

x 4  3x 2  4  0

2

2

x 2  4

x   9 or

The solution set is 4, 2  2 3i, 2  2 3i . 74. x3  27  0

2

x  1 or x 2  1

x  1 or x  1 or x   1  i The solution set is 1, 1, i, i .

1506

Copyright © 2020 Pearson Education, Inc.


Section A.7: Complex Numbers; Quadratic Equations in the Complex Number System 11  2i 11  2i 6  2i   6  2i 6  2i 6  2i 66  22i  12i  4i 2 66  10i  4   36  4 36  12i  12i  4i 2 70  10i 7 1    i 40 4 4 7 1 The total impedance is  i ohms. 4 4

83. 9 x 2  12 x  4  0 a  9, b  12, c  4

So, Z 

b 2  4ac  ( 12) 2  4(9)(4)  144  144  0 The equation has a repeated real solution.

84. 4 x 2  12 x  9  0 a  4, b  12, c  9 b 2  4ac  122  4(4)(9)  144  144  0 The equation has a repeated real solution.

93. z  z  (a  b i )  (a  b i )  a  bi  a  bi  2a

85. The other solution is 2  3i  2  3 i. 86. The other solution is 4  i  4  i.

z  z  a  b i  (a  b i)  a  b i  (a  b i)

87. z  z  3  4i  3  4i  3  4i  3  4i  6

88. w  w  8  3i  8  3i

 a  bi  a  bi

 2b i

 8  3i  (8  3i )

94. z  a  b i  a  b i  a  b i  z

 8  3i  8  3i  0  6i  6i

95. z  w  (a  b i )  (c  d i )  (a  c)  (b  d ) i  (a  c)  (b  d ) i  ( a  b i )  (c  d i )

89. z  z  (3  4i )(3  4i )  (3  4i )(3  4i )  9  12i  12i  16i 2

 a  bi  c  d i  z w

 9  16(1)  25

90. z  w  3  4i  (8  3i )

96. z  w  (a  b i )  (c  d i )

 3  4i  8  3i  5  7i

 ac  ad i  bc i  bd i 2

 5  7i

 (ac  bd )  (ad  bc)i  (ac  bd )  (ad  bc)i

V 18  i 18  i 3  4i    I 3  4i 3  4i 3  4i 54  72i  3i  4i 2 54  75i  4   9  16 9  12i  12i  16i 2 50  75i   2  3i 25 The impedance is 2  3i ohms.

91. Z 

92.

z  w  a  bi c  d i  (a  b i )(c  d i )  ac  ad i  bc i  bd i 2  (ac  bd )  (ad  bc)i

1 1 1 1 1 (4  3i )  (2  i )      (2  i )(4  3i ) Z Z1 Z 2 2  i 4  3i 

6  2i 8  6i  4i  3i 2

6  2i 6  2i  8  2i  3 11  2i

1507

Copyright © 2020 Pearson Education, Inc.


Appendix A: Review 16. Let K represent the kinetic energy, m the mass, and v the velocity. Kinetic energy is one-half the product of the mass and the square of the 1 velocity: K  mv 2 2

Section A.8 1. mathematical modeling 2. interest 3. uniform motion

17. C  total variable cost in dollars, x  number of dishwashers manufactured: C  150 x

4. False; the amount charged for the use of principal is the interest.

18. R  total revenue in dollars, x  number of dishwashers sold: R  250 x

5. True; this is the uniform motion formula.

19. Let x represent the amount of money invested in bonds. Then 50, 000  x represents the amount of money invested in CD's. Since the total interest is to be $6,000, we have: 0.15 x  0.07(50, 000  x)  6, 000

6. a 7. b 8. c

100  0.15 x  0.07(50, 000  x)    6, 000 100 

9. Let A represent the area of the circle and r the radius. The area of a circle is the product of π times the square of the radius: A   r 2

15 x  7(50, 000  x)  600, 000 15 x  350, 000  7 x  600, 000 8 x  350, 000  600, 000 8 x  250, 000

10. Let C represent the circumference of a circle and r the radius. The circumference of a circle is the product of π times twice the radius: C  2 r

x  31, 250 $31,250 should be invested in bonds at 15% and $18,750 should be invested in CD's at 7%.

20. Let x represent the amount of money invested in bonds. Then 50, 000  x represents the amount of money invested in CD's. Since the total interest is to be $7,000, we have: 0.15 x  0.07(50, 000  x)  7, 000

11. Let A represent the area of the square and s the length of a side. The area of the square is the square of the length of a side: A  s 2

100  0.15 x  0.07(50, 000  x)    7, 000 100  15 x  7(50, 000  x)  700, 000 15 x  350, 000  7 x  700, 000 8 x  350, 000  700, 000 8 x  350, 000 x  43, 750 $43,750 should be invested in bonds at 15% and $6,250 should be invested in CD's at 7%.

12. Let P represent the perimeter of a square and s the length of a side. The perimeter of a square is four times the length of a side: P  4s 13. Let F represent the force, m the mass, and a the acceleration. Force equals the product of the mass times the acceleration: F  ma 14. Let P represent the pressure, F the force, and A the area. Pressure is the force per unit area: F P A

21. Let x represent the amount of money loaned at 8%. Then 12, 000  x represents the amount of money loaned at 18%. Since the total interest is to be $1,000, we have:

15. Let W represent the work, F the force, and d the distance. Work equals force times distance: W  Fd

1508

Copyright © 2020 Pearson Education, Inc.


Section A.8: Problem Solving: Interest, Mixture, Uniform Motion, and Constant Rate Job Applications 0.08 x  0.18(12, 000  x)  1, 000

25. Let x represent the number of pounds of cashews. Then x  60 represents the number of pounds in the mixture. 9 x  4.50(60)  7.75( x  60) 9 x  270  7.75 x  465 1.25 x  195 x  156 156 pounds of cashews must be added to the 60 pounds of almonds.

100  0.08 x  0.18(12, 000  x)   1, 000 100  8 x  18(12, 000  x)  100, 000 8 x  216, 000  18 x  100, 000 10 x  216, 000  100, 000 10 x  116, 000 x  11, 600 $11,600 is loaned at 8% and $400 is at 18%.

22. Let x represent the amount of money loaned at 16%. Then 1, 000, 000  x represents the amount of money loaned at 19%. Since the total interest is to be $1,000,000(0.18), we have: 0.16 x  0.19(1, 000, 000  x)  1, 000, 000(0.18)

26. Let x represent the number of caramels in the box. Then 30  x represents the number of cremes in the box. Revenue  Cost  Profit 12.50   0.25 x  0.45(30  x)   3.00

0.16 x  190, 000  0.19 x  180, 000

12.50   0.25 x  13.5  0.45 x   3.00

0.03 x  190, 000  180, 000

12.50  13.5  0.20 x   3.00

0.03 x  10, 000

12.50  13.50  0.20 x  3.00 1.00  0.20 x  3.00 0.20 x  4.00 x  20 The box should contain 20 caramels and 10 cremes.

10, 000 x 0.03 x  $333,333.33 Wendy can lend $333,333.33 at 16%.

23. Let x represent the number of pounds of Earl Grey tea. Then 100  x represents the number of pounds of Orange Pekoe tea. 6 x  4(100  x)  5.50(100) 6 x  400  4 x  550 2 x  400  550 2 x  150 x  75 75 pounds of Earl Grey tea must be blended with 25 pounds of Orange Pekoe.

27. Let r represent the speed of the current. Rate Time Distance 20  1 16  r 60 3 1 Downstream 16  r 15  60 4

Upstream

16 r 3 16 r 4

Since the distance is the same in each direction: 16  r 16  r  3 4 4(16  r )  3(16  r ) 64  4r  48  3r 16  7 r 16 r  2.286 7 The speed of the current is approximately 2.286 miles per hour.

24. Let x represent the number of pounds of the first kind of coffee. Then 100  x represents the number of pounds of the second kind of coffee. 2.75 x  5(100  x)  4.10(100) 2.75 x  500  5 x  410  2.25 x  500  410  2.25 x  90 x  40 40 pounds of the first kind of coffee must be blended with 60 pounds of the second kind of coffee.

28. Let r represent the speed of the motorboat. Rate Time Distance Upstream r  3 5 5  r  3 Downstream r  3 2.5 2.5  r  3

The distance is the same in each direction:

1509

Copyright © 2020 Pearson Education, Inc.


Appendix A: Review 5(r  3)  2.5(r  3) 5r  15  2.5r  7.5 2.5r  22.5 r 9 The speed of the motorboat is 9 miles per hour.

50 50   48 r  2.5 r  2.5 50(r  2.5)  50(r  2.5)  48(r  2.5)( r  2.5) 50r  125  50r  125  48(r 2  6.25) 100r  48r 2  300 0  48r 2  100r  300

29. Let r represent the speed of the current. Rate Time Distance 10 Upstream 15  r 10 15  r 10 Downstream 15  r 10 15  r Since the total time is 1.5 hours, we have: 10 10   1.5 15  r 15  r 10(15  r )  10(15  r )  1.5(15  r )(15  r )

0  12r 2  25r  75

r

(25)  (25) 2  4(12)(75) 2(12)

25  4225 24 r  3.75 or r  1.67 Speed must be positive, so disregard r  1.67 . Karen’ normal walking speed is approximately 3.75 feet per second. 

150  10r  150  10r  1.5(225  r 2 )

32. Let r represent the speed of the airport walkway. Rate Time Distance 280 Walking with 1.5  r 280 1.5  r 280 Standing still 280 r r Walking with the walkway takes 60 seconds less time than standing still on the walkway:

300  1.5(225  r 2 ) 200  225  r 2

r 2  25  0 (r  5)(r  5)  0 r  5 or r  5 Speed must be positive, so disregard r  5 . The speed of the current is 5 miles per hour.

30. Let r represent the rate of the slower car. Then r  10 represents the rate of the faster car. Rate Time Distance r Slower car 3.5 3.5r Faster car r  10 3 3  r  10 

280 280   60 1.5  r r 280r  280(1.5  r )  60r (r  1.5) 280r  420  280r  60r 2  90r 60r 2  90r  420  0

3.5 r  3(r  10) 3.5 r  3r  30 0.5 r  30 r  60 The slower car travels at a rate of 60 miles per hour. The faster car travels at a rate of 70 miles per hour. The distance is (70)(3) = 210 miles.

2r 2  3r  14  0 (2r  7)(r  2)  0 2r  7  0 or r  2  0 7 r r2 or 2 7 . 2 The speed of the airport walkway is 2 meters per second.

Speed must be positive, so disregard r  

31. Let r represent Karen’s normal walking speed. Rate Time Distance 50 r  2.5 With walkway 50 r  2.5 50 Against walkway r  2.5 50 r  2.5 Since the total time is 48 seconds:

33. Let w represent the width of a regulation doubles tennis court. Then 2w  6 represents the length. The area is 2808 square feet:

1510

Copyright © 2020 Pearson Education, Inc.


Section A.8: Problem Solving: Interest, Mixture, Uniform Motion, and Constant Rate Job Applications w(2 w  6)  2808

1 1 1   30 20 t 2t  3t  60

2

2w  6w  2808 2

2w  6 w  2808  0

5t  60

w2  3w  1404  0 ( w  39)( w  36)  0 w  39  0 or w  36  0 w  39 or w  36 The width must be positive, so disregard w  39 . The width of a regulation doubles tennis court is 36 feet and the length is 2(36) + 6 = 78 feet.

34. Let t represent the time it takes the Brother HLL8350CDW to complete the print job alone. Then t  9 represents the time it takes the Xerox VersaLink C500 to complete the print job alone. Time to do job Part of job done in one minute 1 Brother t t 1 Xerox t 9 t 9 1 Together 20 20 1 1 1   t t  9 20 20(t  9)  20t  t (t  9)

t  12 Working together, the job can be done in 12 minutes.

36. Let t represent the time it takes April to do the job working alone. Time to do job Part of job done in one hour 1 Patrice 10 10 1 April t t 1 Together 6 6 1 1 1   10 t 6 3t  30  5 t 2t  30 t  15 April would take 15 hours to paint the rooms. 37. l  length of the garden w  width of the garden

20t  180  20t  t 2  9t

a.

0  t 2  31t  180 0  (t  36)(t  5) t  36  0 or t  5  0 t  36 or t  5 Time must be positive, so disregard t  5 . The Brother HL-L8350CDW takes 36 minutes to 1440  40 complete the job alone, printing 36 pages per minute. Xerox VersaLink C500 takes 36 + 9 = 45 minutes to complete the job alone, 1440 printing  32 pages per minute. 45

The length of the garden is to be twice its width. Thus, l  2w . The dimensions of the fence are l  4 and w4 . The perimeter is 46 feet, so: 2(l  4)  2( w  4)  46 2(2w  4)  2( w  4)  46 4w  8  2 w  8  46 6w  16  46 6w  30 w5 The dimensions of the garden are 5 feet by 10 feet.

b. Area  l  w  5 10  50 square feet

35. Let t represent the time it takes to do the job together. Time to do job Part of job done in one minute 1 Trent 30 30 1 Lois 20 20 1 Together t t

c.

If the dimensions of the garden are the same, then the length and width of the fence are also the same (l  4) . The perimeter is 46 feet, so:

1511

Copyright © 2020 Pearson Education, Inc.


Appendix A: Review 2(l  4)  2(l  4)  46

(d  6)  100 d  6  100 d  100  6 100 d  6  25.83  The diameter of the pond is 25.83 feet.

2l  8  2l  8  46 4l  16  46 4l  30 l  7.5 The dimensions of the garden are 7.5 feet by 7.5 feet.

d.

d. Area  l  w  7.5(7.5)  56.25 square feet.

Area rectangle  l  w  28.5(9.5)  270.75 ft 2 . 2

 25.83  2 Area circle  r 2 =    524 ft .  2  The circular pond has the largest area.

38. l  length of the pond w  width of the pond a.

The pond is to be a square. Thus, l  w . The dimensions of the fenced area are w  6 on each side. The perimeter is 100 feet, so: 4( w  6)  100 4 w  24  100 4 w  76 w  19 The dimensions of the pond are 19 feet by 19 feet.

39. Let t represent the time it takes for the defensive back to catch the tight end. Time to run Time 100 yards

d

Distance

Tight End

12 sec

t

100  25 12 3

25 t 3

Def. Back

10 sec

t

100  10 10

10t

40. Let x represent the number of highway miles traveled. Then 30, 000  x represents the number of city miles traveled. x 30, 000  x   900 40 25  x 30, 000  x  200     200  900  25  40  5 x  240, 000  8 x  180, 000 3 x  240, 000  180, 000 3 x  60, 000 x  20, 000 Therese is allowed to claim 20,000 miles as a business expense.

If the pond is circular, the diameter is d and the diameter of the circle with the pond and the deck is d  6 .

3

Rate

Since the defensive back has to run 5 yards farther, we have: 25 t  5  10t 3 25t  15  30t 15  5 t t 3  10t  30 The defensive back will catch the tight end at the 45 yard line (15 + 30 = 45).

b. The length of the pond is to be three times the width. Thus, l  3w . The dimensions of the fenced area are w  6 and l  6 . The perimeter is 100 feet, so: 2( w  6)  2(l  6)  100 2( w  6)  2(3w  6)  100 2w  12  6 w  12  100 8w  24  100 8w  76 w  9.5 l  3(9.5)  28.5 The dimensions of the pond are 9.5 feet by 28.5 feet. c.

Area square  l  w  19(19)  361 ft 2 .

3

The perimeter is 100 feet, so:

1512

Copyright © 2020 Pearson Education, Inc.


Section A.8: Problem Solving: Interest, Mixture, Uniform Motion, and Constant Rate Job Applications 41. Let x represent the number of gallons of pure water. Then x  1 represents the number of gallons in the 60% solution.  %  gallons    %  gallons    %  gallons 

1 2 x  (60  x)  (60) 2 3 x  30  0.5 x  40 0.5 x  10

0  x   1(1)  0.60( x  1)

x  20 20 grams of pure gold should be mixed with 40 grams of 12 karat gold.

1  0.6 x  0.6 0.4  0.6 x x

4 2  6 3

46. Let x represent the number of atoms of oxygen. 2x represents the number of atoms of hydrogen. x  1 represents the number of atoms of carbon. x  2 x  x  1  45 4 x  44 x  11 There are 11 atoms of oxygen and 22 atoms of hydrogen in the sugar molecule.

2 gallon of pure water should be added. 3

42. Let x represent the number of liters to be drained and replaced with pure antifreeze.  %  liters    %  liters    %  liters  1 x   0.40(15  x)  0.60(15)

47. Let t represent the time it takes for Mike to catch up with Dan. Since the distances are the same, we have: 1 1 t  (t  1) 6 9 3t  2t  2 t2 Mike will pass Dan after 2 minutes, which is a 1 distance of mile. 3

x  6  0.40 x  9 0.60 x  3 x5 5 liters should be drained and replaced with pure antifreeze.

43. Let x represent the number of ounces of water to be evaporated; the amount of salt remains the same. Therefore, we get 0.04(32)  0.06(32  x) 1.28  1.92  0.06 x 0.06 x  0.64 0.64 64 32 x    10 23 0.06 6 3 10 23  10.67 ounces of water need to be

48. Let t represent the time of flight with the wind. The distance is the same in each direction: 330 t  270(5  t ) 330 t  1350  270 t 600 t  1350 t  2.25 The distance the plane can fly and still return safely is 330(2.25) = 742.5 miles.

evaporated. 44. Let x represent the number of gallons of water to be evaporated; the amount of salt remains the same. 0.03(240)  0.05(240  x) 7.2  12  0.05 x 0.05 x  4.8 4.8 x  96 0.05 96 gallons of water need to be evaporated.

49. Let t represent the time the auxiliary pump needs to run. Since the two pumps are emptying one tanker, we have: 3 t  1 4 9 27  4t  36 4t  9 9 t   2.25 4 The auxiliary pump must run for 2.25 hours. It must be started at 9:45 a.m.

45. Let x represent the number of grams of pure gold. Then 60  x represents the number of grams of 12 karat gold to be used.

1513

Copyright © 2020 Pearson Education, Inc.


Appendix A: Review 50. Let x represent the number of pounds of pure cement. Then x  20 represents the number of pounds in the 40% mixture. x  0.25(20)  0.40( x  20) x  5  0.4 x  8 0.6 x  3 30 x 5 6 5 pounds of pure cement should be added.

54. Let r represent the speed of the eastbound cyclist. Then r  5 represents the speed of the westbound cyclist. Rate Time Distance Eastbound r 6 6r Westbound r  5 6 6(r  5)

The total distance is 246 miles: 6r  6(r  5)  246 6r  6r  30  246 12r  30  246 12r  216 r  18 The speed of the eastbound cyclist is 18 miles per hour, and the speed of the westbound cyclist is 18  5  23 miles per hour.

51. Let t represent the time for the tub to fill with the faucets on and the stopper removed. Since one tub is being filled, we have: t  t    1 15  20  4t  3t  60 t  60 60 minutes is required to fill the tub.

100 meters/sec. In 9.81 seconds, 12 100 Burke will run (9.81)  81.75 meters. Bolt 12 would win by 100-81.75=18.25 meters.

55. Burke's rate is

52. Let t be the time the 5 horsepower pump needs to run to finish emptying the pool. Since the two pumps are emptying one pool, we have: t2 2  1 5 8 4(2  t )  5  20 8  4t  5  20 4t  7 t  1.75 The 5 horsepower pump must run for an additional 1.75 hours or 1 hour and 45 minutes to empty the pool.

56. A  2 r 2  2 r h . Since A  58.9 square inches and h  6.4 inches, 2 r 2  2 r (6.4)  58.9 2 r 2  12.8 r  58.9  0 2 r 2  12.8r  58.9  0 r

12.8  (12.8) 2  4(2)(58.9) . 2(2)

12.8  635.04 4 r  3.1 or r  9.5 The radius of the coffee can is 3.1 inches. 

53. Let t represent the time spent running. Then 5  t represents the time spent biking. Rate Time Distance Run 6 t 6t Bike 25 5  t 25(5  t )

57. The volume of the box is l  w  h  ( x  2)( x  2) 1

The total distance is 87 miles: 6t  25(5  t )  87 6t  125  25t  87 19t  125  87

 ( x  2) 2 We now solve the this equation for 4. ( x  2) 2  4 x  2  2 Since the length can only be positive we choose 2. Therefore the length and width of the sheet metal is x  2  4 . The dimension of the sheet metal is 4 ft by 4 ft.

19t  38 t2 The time spent running is 2 hours, so the distance of the run is 6(2)  12 miles. The distance of the bicycle race is 25(5  2)  75 miles.

1514

Copyright © 2020 Pearson Education, Inc.


Section A.9: Interval Notation; Solving Inequalities 58. The volume of the box is l  w  h  ( x  2)(2 x  2) 1 We now solve the this equation for 4. ( x  2)(2 x  2)  4 ( x  2)( x  1)  2

62. The time traveled with the tail wind was: 919 t  1.67091 hours . 550 Since they were 20 minutes 1 hour early, the 3 time in still air would have been: 1.67091 hrs  20 min  1.67091  0.33333 hrs

x 2  3x  2  2 x 2  3x  0

 2.00424 hrs Thus, with no wind, the ground speed is 919  458.53 . Therefore, the tail wind is 2.00424 550  458.53  91.47 knots .

x( x  3)  0 x  0 or x  3 Since the length can only be positive we choose 3. Therefore, the width of the sheet metal is 3 and the length is 2  3  6 . The dimension of the sheet metal is 3 ft by 6 ft.

63. It is impossible to mix two solutions with a lower concentration and end up with a new solution with a higher concentration.

59. Answers will vary. 60. Let x be the original selling price of the shirt. Profit  Revenue  Cost 4  x  0.40 x  20  24  0.60 x  x  40 The original price should be $40 to ensure a profit of $4 after the sale.

Algebraic Solution: Let x = the number of liters of 25% solution.  %  liters    %  liters    %  liters  0.25 x  0.48  20   0.58  20  x  0.25 x  9.6  10.6  0.58 x 0.33x  1

If the sale is 50% off, the profit is: 40  0.50(40)  20  40  20  20  0 At 50% off there will be no profit.

x  3.03 liters (not possible)

61. Let t1 and t2 represent the times for the two segments of the trip. Since Atlanta is halfway between Chicago and Miami, the distances are equal. 45 t1  55 t2

Section A.9

55 t1  t2 45 11 t1  t2 9 Computing the average speed: Distance 45t1  55 t2 Avg Speed   Time t1  t2

1. x  2 

2. False. 3. closed interval

11 45  t2   55 t2 55 t2  55 t2 9     11  11t2  9t2  t t   9 2 2 9   

4. multiplication properties (for inequalities) 5. True. This follows from the addition property for inequalities.

110t2 990 t2   20t2  20 t2  9   

6. True. This follows from the addition property for inequalities. 7. True;. This follows from the multiplication property for inequalities.

99  49.5 miles per hour 2 The average speed for the trip from Chicago to Miami is 49.5 miles per hour. 

1515

Copyright © 2020 Pearson Education, Inc.


Chapter 1: Equations and Inequalities 8. False. Since both sides of the inequality are being divided by a negative number, the sense, or direction, of the inequality must be reversed. a b That is,  . c c

20. a.

2  3  1 3 54

b.

3  4

10. False; either or both endpoints could be any real number.

c.

63

d.

12. c

4  2

Inequality: 0  x  2 21. a.

14. Interval:  1, 2 

4  3 4  3  3  3

Inequality: 1  x  2

70

15. Interval:  2,  

b.

4  3 4  5  3  5

Inequality: x  2

1  8

16. Interval:  , 0

c.

Inequality: x  0

4  3 3  4   3  3

17. Interval:  0,3

12  9

Inequality: 0  x  3

d.

4  3 2  4   2  3

18. Interval:  1,1

8  6

Inequality: 1  x  1 22. a.

35

3  5 3  3  5  3

33  53

0  2

68

b.

35

3  5 3  5  5  5

35  55

8  10

2  0

c.

35

3  5 3  3  3  5 

3  3  3  5 

9  15

9  15

d.

2 1 2  2   2 1

13. Interval:  0, 2

c.

2 1 3  2   3 1

11. d

b.

2 1 2  5  1 5

9. True

19. a.

2 1

d.

35

3  5 2  3  2  5 

2  3  2  5 

6  10

6  10

23. a.

2x 1  2 2x  1  3  2  3 2x  4  5

1516

Copyright © 2020 Pearson Education, Inc.


Section A.9: Interval Notation; Solving Inequalities 2x 1  2

b.

31.

2x  1  5  2  5

 , 4  

2 x  4  3 2x  1  2

c.

32.

3  2 x  1  3  2 

1,   

6x  3  6 2x  1  2

d.

4 x  2  4

34. 1  x  2

1 2x  5 1  2x  3  5  3

4  2x  8

35. 4  x  3

1 2x  5

b.

33. 2  x  5

2  2 x  1  2  2 

24. a.

1  2x  5  5  5 4  2 x  0

36. 0  x  1

1  2x  5

c.

3 1  2 x   3  5 

3  6 x  15

37. x  4

1  2x  5

d.

38. x  2

2  4 x  10

25. [0, 4]

39. x  3

26. (–1, 5)







41. If x  5, then x  5  0.

28. (–2, 0)

42. If x   4, then x  4  0. 

43. If x   4, then x  4  0.

 3,  

44. If x  6, then x  6  0. 45. If x   4, then 3 x  12.

 , 5 

40. x   8

27. [4, 6)

30.

2 1  2 x   2  5 

29.

46. If x  3, then 2 x  6. 

47. If x  6, then  2x  12.

1517

Copyright © 2020 Pearson Education, Inc.


Chapter 1: Equations and Inequalities 62. 2  3x  5  3x  3 x  1 The solution set is  x x  1 or [1, ) .

48. If x   2, then  4 x  8. 49. If x  5, then  4 x   20. 50. If x   4, then  3 x  12.



51. If 8 x  40, then x  5.

63. 3x  7  2 3x  9 x3 The solution set is  x x  3 or (3, ) .

52. If 3 x  12, then x  4. 1 53. If  x  3, then x   6. 2 1 54. If  x  1, then x   4. 4

The solution set is  x x   2 or ( 2, ) .

1 1  0 4 x



1 1 57. 5  x  0, then  0 x 5

58. 0  x  10, then 0  59.

64. 2 x  5  1 2x   4 x  2

1 1 55. If 0  5  x, then 0   x 5

56. 0  4  x, then

1 1  10 x

x 1  5

 x x  4 or (, 4) 

x 6 1

67.  2( x  3)  8  2x  6  8  2 x  14 x  7

x  6  6  1 6 x7

The solution set is  x x  7 or (, 7) . 

66. 2 x  2  3  x x5 The solution set is  x x  5 or [5, ) .

x4

60.

65. 3x  1  3  x 2x  4 x2 The solution set is  x x  2 or [2, ) .

x 11  5 1

The solution set is  x x   7 or ( 7, ) .

61. 3  5 x  7 5 x  10 x2 The solution set is  x x  2 or [2, ) .



1518

Copyright © 2020 Pearson Education, Inc.


Section A.9: Interval Notation; Solving Inequalities 68.  3(1  x)  12  3  3 x  12 3 x  15 x5 The solution set is  x x  5 or ( , 5) . 

72.

8 x  14 x

7 4

 7 7 The solution set is  x x    or ( , ) . 4 4 

69. 4  3(1  x)  3 4  3  3x  3 3x  1  3 3x  2 2 x 3





 

73.

 2 2  The solution set is  x x   or  ,  . 3 3   

 

x x  1 2 4 2x  4  x x

4 3

 4 4  The solution set is  x x   or  ,   . 3 3   

74.

 

x x  2 3 6 2 x  12  x x  12 The solution set is  x x  12 or 12,   .

1 ( x  4)  x  8 2 1 x2  x 8 2 1  x  10 2 x   20



75. 0  3 x  7  5 7  3 x  12 7 x4 3

The solution set is  x x   20 or (,  20) . 

3x  4

70. 8  4(2  x)   2 x 8  8  4x   2x 4x   2x 6x  0 x0 The solution set is  x x  0 or  , 0 .

71.

1 3x  4  ( x  2) 3 1 2 3x  4  x  3 3 9 x  12  x  2

 7  7  The solution set is  x  x  4  or  , 4  . 3   3 

1519

Copyright © 2020 Pearson Education, Inc.


Chapter 1: Equations and Inequalities 76. 4  2 x  2  10 2  2x  8 1 x  4 The solution set is  x 1  x  4 or 1, 4 . 

 2  3x  6 

2 3

The solution set is  x  6  x  0 or   6, 0  . 

82.

2x 1 0 4 12  2 x  1  0 3 

11 1 x 2 2

11 2

83. ( x  2)( x  3)  ( x  1)( x  1)

 11 1 The solution set is  x   x   or 2 2   11 1   2 , 2  .   

1 0  1 x  1 3 1 1   x  0 3 3  x  0 or 0  x  3 The solution set is  x 0  x  3 or  0, 3 .

11  2 x  1 

1 81. 1  1  x  4 2 1 0 x3 2 0  x   6 or  6  x  0

78.  3  3  2 x  9  6   2x  6 3  x  3 The solution set is  x  3  x  3 or  3, 3 .

79.

2 3

 2  2  The solution set is  x  x  3 or  , 3 . 3 3   



2 x2 3

 2   2  The solution set is  x   x  2  or   , 2  . 3  3   

77.  5  4  3x  2  9   3x   2 2 3 x 3

3x  2 4 2 0  3x  2  8 0

80.

x2  x  6  x2  1  x  6  1 x  5 x  5 The solution set is  x x   5 or  ,  5  .

 1

2



84. ( x  1)( x  1)  ( x  3)( x  4) x 2  1  x 2  x  12 1  x  12  x  11 x  11 The solution set is  x x  11 or  , 11 . 

1520

Copyright © 2020 Pearson Education, Inc.




Section A.9: Interval Notation; Solving Inequalities

85. x(4 x  3)  (2 x  1) 2

89.

 4 x  2 1  0 1 0 4x  2 4x  2  0

4 x 2  3x  4 x 2  4 x  1 3x  4 x  1 x  1

x

x  1 The solution set is  x x  1 or  1,   . 

1 2

 1 1  The solution set is  x x    or  ,   . 2 2   

   

86. x(9 x  5)  (3 x  1) 2

9 x2  5x  9 x2  6 x  1

90.

5 x   6 x  1

1 0 2x 1 1 Since  0 , this means 2 x  1  0 . 2x 1 Therefore, 2x 1  0 1 x 2  1 1  The solution set is  x x   or  ,   . 2 2    

x 1 The solution set is  x x  1 or  , 1 . 

87.

1 x 1 3   2 3 4 6  4x  4  9 2  4x  5 1 5 x 2 4

 

 1 5 1 5  The solution set is  x  x   or  ,  . 2 4 2 4    

88.

 2 x  11  0

91.

1 x 1 2   3 2 3 2  3x  3  4 1  3 x  1 1 1  x 3 3

Interval Number Chosen Value of f Conclusion

 1 1  1 1 The solution set is  x   x   or   ,  . 3 3  3 3   

1 3

1  4 x 1  7 1 7  0 1  4x 1  7(1  4 x) 0 1 4x 6  28 x 0 1  4x The zeros and values where the expression is undefined are x  143 and x  14

5 4

1 2

1 3

(, 143 )

( 143 , 14 )

( 14 , )

0

22 100

1

4 6  22 3 3 Negative Positive Negative

We want to know where f ( x)  0 , so the solution set is

x x

3 or x  14 14

 or, using

interval notation, [ 143 , 14 ) . Note that 14 is not in the solution set because 14 is not in the domain of f. 1521

Copyright © 2020 Pearson Education, Inc.


Chapter 1: Equations and Inequalities

The solution set is  143 , 14  .

 10   10  The solution set is  x x   or  ,   . 3  3      



92.

2  3 x  5  3 2 3 0 (3x  5) 2  3(3x  5) 0 2(3x  5) 17  9 x 0 (3x  5) The zeros and values where the expression is undefined are x   179 and x   53 1

Interval

( ,  179 ) (  179 ,  53 ) (  53 , )

Number Chosen

2

1.7

0

Value of f

1 Positive

17 Negative

17 5

Conclusion

4 2  x 3 4 4 2 0 and  x x 3 4 Since  0 , this means that x  0 . Therefore, x 4 2  x 3 4 2 3x    3x    x 3 12  2 x 6 x The solution set is  x x  6 or  6,   .

94. 0 

We want to know where f ( x)  0 , so the solution set is

x

x   179

or x   53

Positive

95. 0   2 x  4 

 or,

1

1 2

1 1  2x  4 2 1 1 1  0 and 2x  4 2x  4 2 1 Since  0 , this means that 2 x  4  0 . 2x  4 Therefore, 1 1  2x  4 2 1 1  2( x  2) 2 1   1 2( x  2)    2( x  2)  2  2( x 2)      1 x2 3 x 0

using interval notation, [  179 ,  53 ) . Note that  53 is not in the solution set because 72 is not in

the domain of f.

The solution set is   179 ,  53 .

2 3  x 5 2 2 3 0 and  x x 5 2 Since  0 , this means that x  0 . Therefore, x 2 3  x 5 2 3 5x    5x   x   5 10  3 x 10 x 3

93. 0 

The solution set is  x x  3 or  3,   . 

1522

Copyright © 2020 Pearson Education, Inc.


Section A.9: Interval Notation; Solving Inequalities

96. 0   3 x  6 

1

1 3



1 1  0 3x  6 3 1 1 1  0 and 3x  6 3x  6 3 1 Since  0 , this means that 3x  6  0 . 3x  6 Therefore, 1 1  3x  6 3 1 1  3( x  2) 3

101.

2x 1  1 1  2 x  1  1 0  2x  2 0  x 1  x | 0  x  1 or 0,1 

102.

2x  5  7  7  2x  5  7 12  2 x  2

 1  1 3( x  2)    3( x  2)  3   3( x 2)     1 x  2 1  x The solution set is  x x  1 or  1,   .

6  x 1

 x  6  x  1 or  6, 1 



 

97.

103.

2x  8

1  2 x  3 or 1  2 x  3 2 x   4 or  2 x  2 x2

 x  4  x  4 or  4,4  

or

x  1



 x x  1 or x  2 or  , 1   2,  

3 x  12

104.

12  3x  12

2  3x  1 3x   3 or  3x  1

 x  4  x  4 or  4,4  

x 1 

3x  12 or 3 x  12 x   4 or x  4

 x x  4 or x  4 or  , 4    4,  

100.

x

or

1 3

 1  1   x x  or x  1 or  ,   1,   3 3   

3 x  12



2  3x  1 or 2  3 x  1

4  x  4

99.

1 2x  3

 8  2x  8 4  x  4

98.

105.

4 x  5  9 4 x  5  9

2x  6

4 x  4

2 x  6 or 2 x  6 x   3 or x  3

4  4 x  4 1  x  1

 x x  3 or x  3 or  , 3   3,   1523

Copyright © 2020 Pearson Education, Inc.

1 3


Chapter 1: Equations and Inequalities

 x | 1  x  1 or  1,1 

106.

112. If 4  x  0, then 1 1 1  4   2  x   2  0  2 1 2  x  0 2 So, a  2 and b  0.

x  4  2 x  4  2

113. If 0  x  4, then 2(0)  2( x)  2(4) 0  2x  8 0  3  2x  3  8  3 3  2 x  3  11 So, a  3 and b  11.

x  6 6   x  6 6  x  6  x | 6  x  6 or  6, 6 



107.

114. If 3  x  3, then 2(3)  2( x)  2(3) 6  2 x  6 6  1  2 x  1  6  1 7  1  2 x  5 5  1  2 x  7 So, a  5 and b  7.

 2 x  4

2x  4 2 x   4 or 2 x  4 x   2 or x  2

 x x   2 or x  2 or  , 2   2,   



108.

115. If 3  x  0, then 3  4  x  4  0  4 1 x  4  4 1 1  1 x4 4 1 1  1 4 x4 1 So, a  and b  1. 4

 x 2 1  x  2  1 or  x  2  1  x  1 or x3 x  1 or

x  3

 x x   3 or x  1 or  ,  3   1,   

 

116. If 2  x  4, then 26  x6  46 4  x  6  2 1 1 1    4 x6 2 1 1 1    2 x6 4 1 1 So, a   and b   . 2 4

109. If 1  x  1, then 1  4  x  4  1  4 3 x45 So, a  3 and b  5. 110. If 3  x  2, then 3  6  x  6  2  6 9  x  6  4 So, a  9 and b  4.

117. If 6  3 x  12, then 6 3 x 12   3 3 3 2 x4

111. If 2  x  3, then 4(2)  4( x)  4(3) 12  4 x  8 So, a  12 and b  8.

22  x 2  42 4  x 2  16 So, a  4 and b  16.

1524

Copyright © 2020 Pearson Education, Inc.


Section A.9: Interval Notation; Solving Inequalities 118. If 0  2 x  6, then 0 2x 6   2 2 2 0 x3 02  x 2  32

Calculating the commission: C  45, 000  0.25( P  900, 000)  45, 000  0.25 P  225, 000  0.25P  180, 000 Calculate the commission range, given the price range: 900, 000  P  1,100, 000 0.25(900, 000)  0.25 P  0.25(1,100, 000) 225, 000  0.25 P  275, 000

0  x2  9 So, a  0 and b  9.

119.

120.

3x  6 We need 3x  6  0 3x  6 x  2 To the domain is  x x  2 or  2,   .

225, 000  180, 000  0.25 P  180, 000  275, 000  180, 000

45, 000  C  95, 000

The agent's commission ranges from $45,000 to $95,000, inclusive. 45, 000 95, 000  0.05  5% to  0.086  8.6%, 900, 000 1,100, 000

8  2x We need 8  2 x  0 2 x  8 x  4

inclusive. As a percent of selling price, the commission ranges from 5% to 8.6%, inclusive.

To the domain is  x x  4 or  4,   .

126. Let C represent the commission. Calculate the commission range: 25  0.4(200)  C  25  0.4(3000) 105  C  1225 The commissions are at least $105 and at most $1225.

121. 21 < young adult's age < 30 122. 40 ≤ middle-aged < 60 123. a.

Let x = age at death. x  30  52.2 x  82.2 Therefore, the average life expectancy for a 30-year-old male in 2018 will be greater than or equal to 82.2 years.

127. Let W = weekly wages and T = tax withheld. Calculating the withholding tax range, given the range of weekly wages: 900  W  1100

b. Let x = age at death. x  30  55.8 x  85.8 Therefore, the average life expectancy for a 30-year-old female in 2018 will be greater than or equal to 85.8 years. c.

900  815  W  815  1100  815 85  W  815  285 0.22(85)  0.22 W  815   0.22(285) 18.70  0.22 W  815   62.7 18.70  85.62  0.22 W  815   85.62  62.7  85.62

By the given information, a female can expect to live 85.8  82.2  3.6 years longer.

104.32  T  148.32

124. V  20 T 80º  T  120º

The amount withheld varies from $104.32 to $148.32, inclusive.

V  120º 20 1600  V  2400 The volume ranges from 1600 to 2400 cubic centimeters, inclusive. 80º 

128. Let x represent the length of time Sue should exercise on the seventh day. 200  40  45  0  50  25  35  x  300 200  195  x  300 5  x  105 Sue will stay within the ACSM guidelines by exercising from 5 to 105 minutes.

125. Let P represent the selling price and C represent the commission. 1525

Copyright © 2020 Pearson Education, Inc.


Chapter 1: Equations and Inequalities 129. Let K represent the monthly usage in kilowatthours and let C represent the monthly customer bill. Calculating the bill: C  0.1006 K  25 Calculating the range of kilowatt-hours, given the range of bills: 140.69  C  231.23 140.69  25  0.1006W  231.23 115.69  0.1006 K  206.23 1150  K  2050 The usage varies from 1150.00 kilowatt-hours to 2050.00 kilowatt-hours, inclusive.

133. a.

130. Let W represent the amount of sewer/water used (in thousands of gallons). Let C represent the customer charge (in dollars). Calculating the charge: C  23.55  0.40W Calculating the range of water usage, given the range of charges: 30.35  C  36.75 30.35  23.55  0.40W  36.75 6.8  0.40 K  13.2 17  K  33 The range of water usage ranged from 17,000 to 33,000 gallons.

Let T represent the score on the last test and G represent the course grade. Calculating the course grade and solving for the last test: 68  82  87  89  T G 5 326  T G 5 5G  326  T T  5G  326 Calculating the range of scores on the last test, given the grade range: 80  G  90 400  5G  450 74  5G  326  124 74  T  124 To get a grade of B, you need at least a 74 on the fifth test.

b. Let T represent the score on the last test and G represent the course grade. Calculating the course grade and solving for the last test: 68  82  87  89  2T G 6 326  2T G 6 163  T G 3 T  3G  163 Calculating the range of scores on the last test, given the grade range: 80  G  90 240  3G  270 77  3G  163  107 77  T  107 To get a grade of B, you need at least a 77 on the fifth test.

131. You have already consumed 22 grams of fat. Let C represent the number of cookies. Then we have the following equation: 22  5C  47 5C  25 C 5 You may eat up to 5 cookies and keep the total fat content of your meal not more than 47g. 132. You have already consumed 145 grams of sodium. Let H represent the number of hamburgers. Then we have the following equation: 145  380 H  1285 380C  1140 C 3 You may eat up to 3 hamburgers and keep the total sodium content of your meal not more than 1285g.

134. Let T represent the test scores of the people in the top 2.5%. T  1.96(12)  100  123.52 People in the top 2.5% will have test scores greater than 123.52. That is, T  123.52 or (123.52, ).

1526

Copyright © 2020 Pearson Education, Inc.


Section A.10: nth Roots; Rational Exponents 135. Since a  b , a b  and 2 2 a a a b    and 2 2 2 2 ab a and 2 ab b. So, a  2

Section A.10

a b  2 2 a b b b    2 2 2 2 ab b 2

1. 9; 9 2. 4; 4  4 3. index 4. cube root 5. b

ab 136. From problem 123, a   b , so 2 a  b  2a b  a  ab ab and d  a,    2 a  2 2 2  

6. d 7. c

a  b 2b  a  b b  a  ab d  b,  .  b 2  2 2 2   ab is equidistant from a and b. Therefore, 2

8. c 9. true 10. False; 4  3  3  3 4

137. If 0  a  b, then ab  a 2  0

and

b 2  ab  0

and

b2 

and

b  ab

11.

3

27  3 33  3

12.

4

16  4 24  2

Therefore, a  ab  b .

13.

3

8  3  2   2

ab . 2

14.

3

1  3  1  1

 ab   a 2

2

ab  a

138. Show that

ab 

 

 ab 

2

ab 1  ab  a  2 ab  b 2 2 2 1  a  b  0, since a  b. 2 ab . Therefore, ab  2

139. Answers will vary. One possibility: No solution: 4 x  6  2  x  5   2 x

One solution: 3 x  5  2  x  3  1  3  x  2   1

3

3

15.

8  42  2 2

16.

75  25  3  5 3

17.

700  100  7  10 7

18.

45 x3  9  5  x 2  x  3 x 5 x

19.

3

32  3 8  4  2 3 4

20.

3

54  3 27  2  3 3 2

x2  1  1

21.

3

8 x 4  3 8 x3  x  2 x 3 x

Therefore, the expression x 2  1 can never be less than 5 .

22.

3

192 x5  3 64  3 x3  x 2  4 x 3 3 x 2

23.

4

243  4 81  3  3 4 3

140. Since x 2  0 , we have x2  1  0  1

141. Answers will vary.

1527

Copyright © 2020 Pearson Education, Inc.


Chapter 1: Equations and Inequalities

24. 25.

4

48 x5  4 16 x 4  3x  2 x 4 3x

4

  y   x y

x12 y 8  4 x

3 4

2 4

41.  48  5 12   16  3  5 4  3  4 3  5  2 3   4  10  3

3 2

6 3

26.

5

  y x y

x10 y 5  5 x

2 5

5

2

42. 2 12  3 27  2 4  3  3 9  3  4 3 9 3

x9 y 7 4 8 4 27. 4  x y  x2 y xy 3

28.

3

  4  9 3  5 3

3 3xy 2 1 1 1 3   4 2 3 3 3 3 x 81x y 27 x 27 x

43.

 3  3 3  1   3   3 3  3  3 2

 3 2 3 3

29.

64 x  8 x

30.

9 x5  3 x 4  x  3x 2 x

31.

4

2 3

44.

 5  2 5  3   5   2 5  3 5  6 2

  y  4

162 x9 y12  4 2  3 x x 2 4

3 4

 5 5 6  5 1

 3x 2 y3 4 2 x

32.

3

45. 5 3 2  2 3 54  5 3 2  2  3 3 2

  y y 

40 x14 y10  3 5( 2)3 x 2 x

4 3

3 3

 53 2 63 2  5  6 3 2

 2 x 4 y 3 3 5 x 2 y

3 2

33.

15 x

2

2

2

5 x  75 x  x  25  3  x  x  5 x 3 x

46. 9 3 24  3 81  9  2 3 3  3 3 3 34.

5 x 20 x 3  100 x 4  10 x 2

35.

 5 9   5  9 3

2

2

3

 18 3 3  3 3 3  18  3 3 3

2

 15 3 3

3

 5  92  5 3 81  5  3 3 3  15 3 3

36.

 3 10    3   10 

4

3

3

3

4

4

3

4

2

47.

 x  1   x   2 x  1 2

2

 x  2 x 1 3

 3 10  3 3 100  300 3

37.

3 6  2 2   6 12  6 4  3  12 3

38.

5 8  3 3   15 24  30 6

48.

 x  5    x   2  x  5    5  2

2

 x  2 5x  5

49.

3

16 x 4  3 2 x  3 8 x3  2 x  3 2 x  2x 3 2x  3 2x

39. 3 2  4 2   3  4  2  7 2

  2 x  1 3 2 x

40. 6 5  4 5   6  4  5  2 5 1528

Copyright © 2020 Pearson Education, Inc.

2


Section A.10: nth Roots; Rational Exponents

50.

4

32 x  4 2 x5  4 16  2 x  4 x 4  2 x

60.

 2 4 2x  x 4 2x   2  x  4 2 x or  x  2  4 2 x 3

61.

52. 3x 9 y  4 25 y  9 x y  20 y

62.

 2 x 3 2 xy  3 x 3 2 xy  5 y 3 2 xy

3 1 3 1 2 3  3   2 3 3 2 3 3 2 3 3

  2 x  3 x  5 y  3 2 xy

   x  5 y  3 2 xy or   x  5 y  3 2 xy

63.

54. 8 xy  25 x 2 y 2  3 8 x3 y 3  8 xy  5 xy  2 xy   8  5  2  xy

56.

57.

 3  3 5  15    5 5 5 5

58.

59.

64.

25  2

3 5 2 23

3  54

3 54  54 54

3 5  12 3 5  12  11 5  16 3 5  12  11

3 3 5 2   5 2 5 2 5 2 3 5 2

5 2 5  5 2 5 2 1

 3  3  3 2  6  6      4 8 2 2 2 2 2 22

62 3 3 3 3 95 3  12  9 3

5 2 1  2 1 2 1

5  2 1 

 5 xy

2 2 3 2 3    3 3 3 3

14  2 2 3

4  2 5  6 5  15 4  45 19  8 5 8 5  19   41 41

 3 8 x3  2 xy  3x 3 2 xy  5 3  y 3  2 xy

1 1 2 2    2 2 2 2

3

16 x 4 y  3x 3 2 xy  5 3 2 xy 4

55.

 7  2 or

2 5 2 5 23 5   23 5 23 5 23 5

  9 x  20  y 3

2

  2 x  15  2 x

 7  2 74

2

 2 x 2 x  15 2 x

53.

2

8 x  3 50 x  4 x  2 x  3 25  2 x

51.

2 2 7 2   7 2 7 2 7 2

65.

5 5 3 4 53 4    3 2 2 32 34

66.

2 2 3 3 2 3 3    3 3 9 39 33

 or 5 3  6 23

1529

Copyright © 2020 Pearson Education, Inc.


Chapter 1: Equations and Inequalities

67.

xh  x  xh  x

xh  x xh  x  xh  x xh  x

 x  h  2 x  x  h  x  x  h  x

x  h  2 x 2  xh  x xhx

2 x  h  2 x 2  xh h

72.

73.

74.

xh  xh xh  xh  xh  xh xh  xh

x c x c  xc x c xc    x  c x  c

75.

2

x 2 x 2 x 2   x4 x4 x 2 x4    x  4 x  2

xh2 x h  xh xhxh

x  7 1  x 8 

2 x  2 x 2  h2  2h

x  x 2  h2  h

69.

70.

 

5 11  1

71.

6  15 6  15 6  15   15 15 6  15 9 6  15   90  15 3 10  15 9 3   10 5 3 10  5

x 8

 x  8   x  7  1 1 x  7 1

4 x9 4 x9 4 x9   x  25 x  25 4  x  9 16  ( x  9)   x  25  4  x  9 

6 6    5  43 5  43 3 5  43

 x  8   x  7  1

5  43 5  43 5  43 25  43    3 3 5  43 3 5  43 18

76.

1 x 2

x  7 1 x  7 1  x 8 x  7 1 x  7 1

11  1 11  1 11  1   2 2 11  1 11  1 10   2 11  1 2 11  1

1 x c

 x  h   2  x  h  x  h    x  h    x  h   x  h 2

x c  xc

xh  xh xh  xh

68.

5 3 5 3 5 3   5 5 5 3 53 2   5  15 5  15

25  x

 x  25   4  x  9 

x  25



 x  25   4 



1 4 x9

1530

Copyright © 2020 Pearson Education, Inc.

x 9


Section A.10: nth Roots; Rational Exponents

77.

3

  2 4

2t  1  2

 2t  1  2 3

3

3

2t  1  8 2t  9 9 t 2

82. 43/ 2  83.

 3t  1    2 3

87. 43/ 2 

Check: 3 3  3  1  3 9  1  3 8  2

15  2x  x

 15  2 x   x

9 89.   8

2

3/ 2

x 2  2 x  15  0 ( x  5)( x  3)  0 x  5 or x  3

80.

 27  90.    8  8 91.   9

12  x  x

 12  x   x

2

12  x  x

2

2

3

1 4

3/2

 8  92.    27 

1

 4

3

1 1  23 8

1

 16 

3

3

1 1  43 64

3

 9  3  33      3  8 2 2 23 2 

27 27 27 2    8  2 2 16 2 16 2 2

27 2 32 2

 27   3 2 9 3     4  8  2 9   8

Check 3: 12  3  9  3  3 Disregard x  4 as extraneous. The solution set is {3}.

3

1  163/ 2

12  ( 4)  16  4   4

3

3

2/3

3/ 2

x 2  x  12  0 ( x  4)( x  3)  0 x   4 or x  3 Check –4:

 100   10  1000

15  2(5)  25  5  5

Check 3: 15  2(3)  9  3  3 Disregard x  5 as extraneous. The solution set is {3}.

3

 

15  2 x  x 2

Check –5:

3

 25   5  125

88. 163/ 2 

The solution set is { 3 }.

2

3

 64 1/3  3 64  4

86. 253/ 2 

3

3t  1  8 3t  9 t  3

79.

3

85. 1003/ 2 

3t  1  2 3

 4  2  8

84. 163/ 4  4 16



3

2

  2 8

9 Check: 3 2    1  3 9  1  3 8  2 2 The solution set is 9 . 2

78.

2

81. 82 / 3  3 8

2 / 3

1531

Copyright © 2020 Pearson Education, Inc.

3/ 2

3

 9  3       8 2 2

33

23

 2

3

3

27 27  8  2 2 16 2

27 2 27 2   32 16 2 2

 27     8 

2/3

2

 27   3 2 9 3     4  8  2


Chapter 1: Equations and Inequalities

93.

1   1000 1/3    1000 

 1 94. 251/ 2      25  2/3

 64  95.    125 

1/3

1/2



 125     64 

2/3

16 x y  103.  xy 

2 1/ 3 3/ 4

1 1  1000 10

3

2 1/ 4

1 1  25 5  125   3  64  

2

4x y  104.

1 1/ 3 3/ 2

3

 xy 3/ 2

3

8 x5 / 4 y 3/ 4

  y 

43/ 2 x 1 3

x

97. x

x

x

x

x

7 /12

x y 

100.

x y 

3 6 1/ 3

  y 

 x3

4 8 3/ 4

1/ 3

1/ 3

x

2 2/3

2/3 2/3

y

8 3/ 4

x y

105.

2 1/ 3

1/ 3

x

2/3

2 2/3

y

x 2 / 3 y1/ 3 x 2 / 3 y 4 / 3 x2 / 3 y2 / 3

102.

 x y 2

3/ 4

106.

  y  x  y 1/ 2

x1/ 4 y1/ 4 x 2

2 3/ 4

2 1/ 2

3/ 4

1 x 1  x  x1/ 2  2 x1/ 2  x1/ 2  1/ 2 2x 2 x1/ 2 1  x  2 x 3x  1   1/ 2 2 x1/ 2 2x

x1/ 4 y1/ 4 xy x3/ 2 y 3/ 4

 x1/ 4 13/ 2 y1/ 4 13/ 4  x 1/ 4 y1/ 2 

x  2 1  x 

(1  x)1/ 2 x  2  2x  (1  x)1/ 2 3x  2  (1  x)1/ 2

2/3 2/3

 x 2 / 3 y1  x 2 / 3 y 1/ 2

y

x  2 1  x  1  x  x 1/ 2  2 1  x   1/ 2 (1  x) (1  x)1/ 2

 x 2 / 3  2 / 3 2 / 3 y1/ 3  4 / 3 2 / 3

 xy 1/ 4  x 2 y 2 

y

3/ 2 3/ 2

1/ 2

3 6

 x   y  x  y   

3/ 2 1/ 2

 8 x 3 y 1 8  3 x y

 xy 2

  y 

 x

4 3/ 4

 x y   xy  101. 2

6 1/ 3

1/ 3 3/ 2

 23 x 3/ 2 3/ 2 y1/ 2 3/ 2

98. x 2 / 3 x1/ 2 x 1/ 4  x 2 / 3 1/ 2 1/ 4  x11/12 99.

3/ 2

x3/ 2 y 3/ 2

 4 x 

3 4 1/ 3 1/ 2

3/ 2 1/ 4

 8 x5 / 4 y 3/ 4

1  1       3 27 3/ 4 1/ 3 1/ 2

2 1/ 4

 23 x3/ 2 1/ 4 y 1/ 4 1/ 2

 1   4   81 

3

1/ 3 3/ 4

x1/ 4 y1/ 2

2

3/ 4

3/ 4

1/ 4

4

25  5      4 16  1 96. 813/4      81

  y   x y   16  x y  163/ 4 x 2

y1/ 2 x1/ 4

1532

Copyright © 2020 Pearson Education, Inc.

1/ 2


Section A.10: nth Roots; Rational Exponents

1/ 2

107. 2 x x 2  1

 x2 

2

 2x x 1

1/ 2

1/ 2 1 2 x 1  2x 2 x3

110.

 x  1 2 x  x  1   x  1  x   x  1 2 x  x  1 x 2 x  x  1  x    x  1  x  1 2

1/ 2

2

2

1/ 2

3

2x  2x  x

3

 x  1 x  3x  2    x  1

1/ 2

2

3

1/ 2

2

1/ 2

2

2

1/ 2

108.

 3

3x  2 x

 x  1

1/ 2

1/ 2

1/ 3

x 3  x  1

2/3

 x  11/ 3  x 2/3 3  x  1 2 / 31/ 3 1 3  x  1  x 3  x  1  x   2/3 2/3 3  x  1 3  x  1 

3  x  1

3  x  1

4x  3 

109.     

2/3

3x  3  x 2/3

, x  2, x  

24 3  x  2   3  8 x  1 2

8 3  8 x  1  3  x  2 

1 8

2

2

2

3

24 3  x  2   3  8 x  1

2

8  8 x +1  x  2 24 3  x  2   8 x  1 2

2

64 x  8  x  2 24 3  x  2   8 x  1 2

2

65 x  6 24 3  x  2   8 x  1 2

2

4x  3 3  x  1

2

 1   x   1 x  x    1 x   2 1 2 1 x  x  111.  1 x 1 x  2 1 x 1 x  x    2 1 x    1 x 2(1  x)  x 1   2(1  x)1/ 2 1  x

 x  11/ 3  x  13  x  12 / 3 , x  1   x  1

24 3  8 x  1

3

2

2

x2

8 3 8 x  1  3  8 x  1  3 x  2  3  x  2 

3

1

2

3

2

3

2

8x  1

3 3  x  2

1/ 2

2

1/ 2 1/ 2

2

3

2/3

2 x 2(1  x)3/ 2

 2 2x   x  1  x   2 x2  1   112. x2  1  2 x2   x  1   x2  1    x2  1  2 x2  1 x2   x 1     x2  1 x 2  1    x2  1

1 1  x5 ,x 5 2 x5 5 4x  3

4x  3 x 5  2 x  5 5 4x  3 4x  3  5  4x  3  x  5  2  x  5 10 x  5 4 x  3 5  4 x  3  2  x  5  10  x  5  4 x  3 20 x  15  2 x  10

 x2  1  x2    x2  1     x2  1

10  x  5  4 x  3 22 x  5 10  x  5  4 x  3

1

 x  1 2

1533

Copyright © 2020 Pearson Education, Inc.

3/ 2

1

1 x 1 x 1 2

2


Chapter 1: Equations and Inequalities

113.

 x  4 1/ 2  2 x  x  4 1/ 2

x2

 x  1 115.

x4

2

  1/ 2 2x   x  4   1/ 2   x  4     x4 1/ 2   1/ 2  x  4  2x   x  4    1/ 2 1/ 2   x  4  x  4     x4  x  4  2x      x  4 1/ 2    x4 1 x  4   1/ 2 x  4  x  4

2

9  x   9  x   9  x 

2 1/ 2

2 1/ 2

x

2

1

2

 x  1

1/ 2

2

1/ 2

 x2 x2  4

1/ 2

x2  4

    

2

1 9  x2

1/ 2

x2  4  x2

 x  4 2

9

9  x 

2 3/ 2

1534

Copyright © 2020 Pearson Education, Inc.

1/ 2

1/ 2

2

1/ 2

2

1   1/ 2 9  x2 9  x2 

2

 x  4   x  4   x  4

9  x2  x2

1 x2

1/ 2  2  x2   x 4  1/ 2   x2  4   x2  4  x 2  4 1/ 2  x 2  4 1/ 2  x 2    1/ 2   2   x 4    x2  4

    

2 1/ 2

x2  x2  1 1  2 1/ 2 x x2  1

2

  x2  9  x 2 1/ 2    2 1/ 2    9 x   2 9 x  9  x 2 1/ 2  9  x 2 1/ 2  x 2      2 1/ 2   9 x    9  x2

1/ 2

1/ 2

 x  4 116.

, 3  x  3

1/ 2

2

2

2

1/ 2

9  x2

1/ 2

2

x

   x  1   x  1 x   x  1 1    x  1 x

 x  4 3/ 2  x2 9  x2

   

2 1/ 2

, x  1 or x  1

x2  x2  1

4 x

9  x  114.

1/ 2

x2

 x  4 3/ 2

 x 2  x 2  1 1/ 2  x 2  1 1/ 2    1/ 2   2   x 1    2 x

x  4

 x2  1

1/ 2

 x2

1 x2  4

1 4  3/ 2 2 x 4 x 4 2


Section A.10: nth Roots; Rational Exponents

1  x2  2x x 2 x 117. ,x  0 2 1  x2

120.



 1  x2  2 x 2 x x      2 x   

1  x  1  x   2 x  2 x x   

2 2

2

2 x

118.

2

1  x 

2 2

  23 x 1  x  1  x  1/ 3

1/ 2

 2 x1/ 2  3(2 x  3)  4 x   2 x1/ 2 10 x  9 

  2 x3 2 1/ 3 x x   2 1   2 / 3   3 1  x2   

   x  4  x  4  2x   x  4  3  x  4   8 x      x  4  3 x  12  8 x    x  4  11x  12 

2 2/3

2 2/3

3

2 2/3

2 2/3

2 1/ 3 2 / 3

2

3

2 2 / 3 2 / 3

2 4/3

2

1/ 3

2

2

1/ 3

2

1/ 3

2

4/3

2

2

 x 2  4  3x  4 

1/ 3

 2 x  3x  4 

 3x  4   2 x 

 2 x  3x  4 

5x  4

1/ 3

3

125. 4  3 x  5 

 2 x  33/ 2  3  3x  5 4 / 3  2 x  31/ 2 1/ 3 1/ 2   3x  5   2 x  3  4  2 x  3  3  3 x  5   1/ 3

2 4/3

2

3

1/ 3

1/ 3

2 2/3

3

2

2

124. 2 x  3x  4 

3

2 2/3

4/3

123. 3 x 2  4

1  x   2x 1  x  3 1  x   2 x        3 1  x     1  x  6 x 1  x   2x 1   3 1  x  1  x  6 x 1  x   2 x 6x  6x  2x   3 1  x  3 1  x  2x 3  2x  6x  4x   3 1  x  3 1  x  2 1/ 3

2

122. 6 x1/ 2  2 x  3  x3/ 2  8

, x  1, x  1

2 2/3

 2 x1/ 2 (3 x  4)( x  1)

2 2 / 3

3

  2 x  3x  x  4 

1  x  4x 1 1  3x   2 2 2 2 x 1 x 2 x 1  x2

2 x 1  x2

 2 x1/ 2 3( x 2  x)  4 x  4 2

 

121. 6 x1/ 2 x 2  x  8 x3/ 2  8 x1/ 2

1

2

4 ( x 2  4) 4 / 3  x  ( x 2  4)1/ 3  2 x 3 8  2 1/ 3  2  ( x  4)  x  4  x 2  3    11   ( x 2  4)1/ 3  x 2  4  3   1/ 3 1 2  x 4 11x 2  12 3

  3x  5

 2 x  31/ 2 8 x  12  9 x  15 1/ 3 1/ 2   3x  5   2 x  3 17 x  27  1/ 3

2 4/3

3 119. ( x  1)3/ 2  x  ( x  1)1/ 2 2 3    ( x  1)1/ 2  x  1  x  2   5   ( x  1)1/ 2  x  1 2  1  ( x  1)1/ 2  5 x  2  2

where x  

1535

Copyright © 2020 Pearson Education, Inc.

3 . 2


Chapter 1: Equations and Inequalities 126. 6  6 x  1

 4 x  33/ 2  6  6 x  14 / 3  4 x  31/ 2 1/ 3 1/ 2  6  6 x  1  4 x  3  4 x  3   6 x  1  1/ 3

133.

2 3  4.89 3 5

134.

5 2  0.04 24

135.

3 35 2  2.15 3

136.

2 3 3 4  1.33 2

 6  6 x  1

 4 x  31/ 2 10 x  2  1/ 3 1/ 2  6  6 x  1  4 x  3  2  5 x  1 1/ 3 1/ 2  12  6 x  1  4 x  3  5 x  1 1/ 3

where x 

3 . 4

3 1/ 2 x ,x  0 2 3 3  1/ 2  x1/ 2 2 x

127. 3x 1/ 2 

3  2  3 x1/ 2  x1/ 2 6  3 x 3  x  2   1/ 2  2 x1/ 2 2x 2 x1/ 2

128. 8 x1/ 3  4 x 2 / 3 , x  0 4  8 x1/ 3  2 / 3 x 

8 x1/ 3  x 2 / 3  4 8 x  4 4  2 x  1  2/3  x2 / 3 x x2 / 3

129.

2  1.41

130.

7  2.65

131.

3

V  40 12 

b.

V  40 1

4  1.59

138. a.

132.

3

5  1.71

96  0.608 12  15, 660.4 gallons

137. a.

2

2

96  0.608  390.7 gallons 1

v  64  4  02  256  16 feet per second

b.

v  64 16  02  1024  32 feet per second

c.

v  64  2  42  144  12 feet per second

1536

Copyright © 2020 Pearson Education, Inc.


Chapter 14 A Preview of Calculus: The Limit, Derivative, and Integral of a Function Section 14.1 1.

3x  2 f  x   3

8. lim 2 x 2  1 x 3

if x  2 if x  2

lim 2 x 2  1  19 x 3

 x 1  9. lim  2  x 0  x  1 

2.

f 0  0

 x 1  lim  2  1 x 0  x  1 

3. lim f  x  x c

 2 x  10. lim  2  x 0  x  4 

4. does not exist 5. True 6. False; we are only concerned with the behavior of the function near c. The function does not need to be defined at c for the limit to exist; nor does the existence of f  c  guarantee that the

 2 x  1 lim  2  x 0  x  4  2

limit exists at c.

 

7. lim 4 x3 x 2

 x2  4 x  11. lim   x 4  x4 

 

lim 4 x3  32

x 2

 x2  4 x  lim    4 x 4  x4 

1406 Copyright © 2020 Pearson Education, Inc.


Section 14.1: Investigating Limits Using Tables and Graphs

 x2  9  12. lim  2  x 3 x  3 x   

 tan x  16. lim   x 0  x 

 tan x  lim   1 x 

 x2  9  lim  2 2 x 3 x  3 x   

x 0 

17. lim f ( x)  3

x2

13. lim e x  1 x 0

The value of the function gets close to 3 as x gets close to 2. 18. lim f ( x)  3 x 4

The value of the function gets close to 3 as x gets close to 4.

19. lim f ( x)  4

lim e x  1  2

x 0

x2

The value of the function gets close to 4 as x gets close to 2.

 e x  e x  14. lim   x 0 2  

20. lim f ( x)  2 x2

The value of the function gets close to 2 as x gets close to 2. 21. lim f ( x) does not exist because as x gets close x 3

to 3, but is less than 3, f ( x) gets close to 3. However, as x gets close to 3, but is greater than 3, f ( x) gets close to 6.

e x  e x 0 x 0 2 lim

22. lim f ( x) does not exist because as x gets close

 cos x  1  15. lim   x 0  x 

x 4

to 4, but is less than 4, f ( x) gets close to 4. However, as x gets close to 4, but is greater than 4, f ( x) gets close to 2. 23.

f ( x)  3 x  1

 cos x  1  lim  0 x 0  x 

lim (3x  1)  13

x 4

The value of the function gets close to 13 as x gets close to 4. 1407

Copyright © 2020 Pearson Education, Inc.


Chapter 14: A Preview of Calculus

24.

f ( x)  2 x  1

27.

lim  2 x  1  3

lim 2 x  6

x 1

x 3

The value of the function gets close to 3 as x gets close to 1 . 25.

The value of the function gets close to 6 as x gets close to 3 .

f ( x)  1  x 2

28.

lim 1  x 2  3

x 2

lim 3 x  6

The value of the function gets close to 6 as x gets close to 4.

f ( x)  x3  1

29.

f ( x)  sin x

lim  sin x   1

lim x3  1   2

x 1

f ( x)  3 x

x 4

The value of the function gets close to 3 as x gets close to 2. 26.

f ( x)  2 x

x

The value of the function gets close to 2 as x gets close to 1 .

 2

The value of the function gets close to 1 as x gets close to 2 .

1408

Copyright © 2020 Pearson Education, Inc.


Section 14.1: Investigating Limits Using Tables and Graphs

30.

f ( x)  cos x

33.

lim  cos x   1

x 

1 x

1 lim    1

The value of the function gets close to 1 as x gets close to  . 31.

f ( x) 

x 1  x 

The value of the function gets close to 1 as x gets close to 1 .

f ( x)  e x

34.

f ( x) 

1 x2

 

lim e x  1

x 0

The value of the function gets close to 1 as x gets close to 0. 32.

 1  1 lim  2   x 2  x  4 The value of the function gets close to 14 as x

f ( x)  ln x

gets close to 2. 35.

 x 2 f ( x)   2 x

x0 x0

lim  ln x   0 x 1

The value of the function gets close to 0 as x gets close to 1. lim f ( x )  0 x 0

The value of the function gets close to 0 as x gets close to 0.

1409

Copyright © 2020 Pearson Education, Inc.


Chapter 14: A Preview of Calculus

36.

x 1 f ( x)   3x  1

x0 x0

39.

x  f ( x)  1 3x 

x0 x0 x0

lim f ( x)  1

x 0

lim f ( x)  0

The value of the function gets close to 1 as x gets close to 0. 37.

x 0

The value of the function gets close to 0 as x gets close to 0.

x 1 3x f ( x)   1 x  x 1 

40.

 1 f ( x)   1

x0 x0

lim f ( x ) does not exist x 1

lim f ( x) does not exist

The value of the function does not approach a single value as x approaches 1. For x  1 , the function approaches the value 3, while for x  1 the function approaches the value 2. 38.

 x 2 f ( x)   2 x  1

x 0

The value of the function does not approach a single value as x approaches 0. For x  0 , the function value approaches 1, while for x  0 the function value approaches 1 .

x2 x2

41.

lim f ( x) does not exist

x 2

sin x f ( x)   2  x

x0 x0

lim f ( x )  0

The value of the function does not approach a single value as x approaches 2. For x  2 , the function approaches the value 4, while for x  2 the function approaches the value 3.

x 0

The value of the function gets close to 0 as x gets close to 0.

1410

Copyright © 2020 Pearson Education, Inc.


Section 14.1: Investigating Limits Using Tables and Graphs

42.

e x f ( x)   1  x

 x3  x 2  3x  3  46. lim   2 x 1  x  3x  4 

x0 x0

 x3  x 2  3x  3  lim    0.80 2 x 1  x  3x  4  lim f ( x)  1

x 0

47.

The value of the function gets close to 1 as x gets close to 0.

 x3  2 x 2  x  lim  4  x 1 x  x 3  2 x  2   

 x3  x 2  x  1  43. lim  4  x 1 x  x 3  2 x  2     x3  2 x 2  x  lim  4   0.00 x 1 x  x 3  2 x  2     x3  3x 2  4 x  12  48. lim  4  3 x 3  x  3x  x  3 

 x3  x 2  x  1  lim  4   0.67 x 1 x  x 3  2 x  2   

44.

 x3  x 2  3x  3  lim  4  x 1 x  x 3  2 x  2     x3  3x 2  4 x  12  lim  4   0.46 3 x 3  x  3x  x  3   x3  x 2  3x  3  lim  4   4.00 x 1 x  x 3  2 x  2   

 x3  2 x 2  4 x  8  45. lim   x 2 x2  x  6  

 x3  2 x 2  4 x  8  lim    1.60 x 2 x2  x  6  

1411

Copyright © 2020 Pearson Education, Inc.


Chapter 14: A Preview of Calculus

Section 14.2 2

1.

19. lim (5 x 4  3x 2  6 x  9)  5(1) 4  3(1) 2  6(1)  9 x 1

2

 5369  1

2

( x)  (2) x  4 ( x  2)( x  2)   x2 x2 x2

20.

x  5 x  5 x x 5  x 5 5   x5 ( x  5)( x  5) x 5 x 5  ( x  5)( x  5) 1  x 5

2.

lim (8 x5  7 x3  8 x 2  x  4)

x 1

 8(1)5  7(1)3  8(1) 2  (1)  4   8  7  8 1  4  2

21. lim ( x 2  1)3  lim ( x 2  1) x 1

3. product

x 1

x 2

x2

  3(2)  4 

5. c

 22  4

6. True

x 1

3

3

2

2

x 1

 5(1)  4

8. False; if the limit of the denominator equals 0, then the quotient rule for limits does not apply.

 9 3

24. lim 1  2 x  lim (1  2 x)  1  2(0)  1  1

9. lim  5   5

x 0

x 1

x 0

x 2  4) 02  4  4  x 2  4  xlim( 0 25. lim  2    1  x 0 x  4  4 x 2  4) 02  4   xlim( 0

10. lim  3  3 x 1

11. lim  x   4 x4

lim(3 x  4) 3(2)  4 10 5  3x  4  x 2   2   26. lim  2  x 2  x  x  6 3 lim( x 2  x) 2 2

lim  x   3

x 3

x 2

lim  5 x   5  2   10

27. lim (3 x  2)5 / 2  lim (3 x  2)

x 2

x 2

14. lim  3 x   3  4   12

x 2

  3(2)  2 

x 4

5/ 2

5/ 2

 45/ 2  32

15. lim (3 x  2)  3(2)  2  8 x 2

28.

16. lim (2  5 x)  2  5(3)  13 x 3

17.

2

23. lim 5 x  4  lim (5 x  4)

7. False; the function may not be defined at 5.

13.

3

22. lim (3 x  4) 2  lim (3x  4)

4. A

12.

  1  1  2  8

lim (2 x  1)5 / 3  lim (2 x  1)

x 1

x 1

  2(1)  1

lim (3x 2  5 x)  3(1) 2  5(1)  8

5/3

 (1)5 / 3  1

x 1

18. lim (8 x 2  4)  8(2) 2  4  28 x 2

1412

Copyright © 2020 Pearson Education, Inc.

5/3


Section 14.2: Algebraic Techniques for Finding Limits

 x2  4   ( x  2)( x  2)  29. lim  2   lim   x 2 x  2 x  x2  x( x  2)     x2  lim   x2  x  22 4   2 2 2

30.

31.

32.

35.

 x2  x   x ( x  1)  lim  2   lim   x 1 x  1   x 1  ( x  1)( x  1)   x   lim   x 1  x  1  1 1 1    1  1  2 2

 x3  8   ( x  2)( x 2  2 x  4)  36. lim  2   lim    x 2 x  4   x  2  ( x  2)( x  2)   x2  2x  4   lim   x2  x2  

 x 2  x  12   ( x  4)( x  3)  lim    lim   2 x 3 x 3  ( x  3)( x  3)   x 9    x4  lim   x 3  x  3  3  4  7 7    3  3  6 6

 x 2 ( x  2)  4( x  2)   lim   x2  ( x  3)( x  2)   ( x  2)( x 2  4)   x2  4   lim    lim   x2  ( x  3)( x  2)  x 2  x  3  

22  4 8  23 5

 x3  x 2  3 x  3  38. lim   2 x 1  x  3x  4   x 2 ( x  1)  3( x  1)   lim   x 1  ( x  4)( x  1)   ( x  1)( x 2  3)   x2  3   lim    lim   x 1 ( x  4)( x  1)   x 1  x  4 

 x3  1   ( x  1)( x 2  x  1)  33. lim    lim    x 1 x 1  x  1  x 1  

 lim x 2  x  1

2

 1 11  3

12  3 4  1 4 5

 x4  1   ( x 2  1)( x 2  1)  34. lim    lim   x 1 x 1  x  1  x 1   2  ( x  1)( x  1)( x  1)   lim   x 1 x 1  

 lim ( x  1)( x 2  1) x 1

22  2(2)  4 12  3 22 4

 x3  2 x 2  4 x  8  37. lim   x 2 x2  x  6  

 x2  x  6   ( x  2)( x  3)  lim  2   lim    3 3 x   x  2 x  3  x   ( x  1)( x  3)   x2  lim   x 3  x  1  3  2 5 5    3  1  4 4

x 1

 ( x  1) 2   ( x  1) 2  lim  2   lim   x 1  x  1  x 1  ( x  1)( x  1)   x 1  lim   x 1  x  1  1  1 0   0 1  1  2

 (1  1)(12  1)  2(2)  4

1413

Copyright © 2020 Pearson Education, Inc.


Chapter 14: A Preview of Calculus

39.

 f ( x)  f (2)   (5 x  3)  7  43. lim    xlim   x 2  x2 x2   2   5 x  10   lim   x2  x  2   5( x  2)   lim   x2  x  2   lim  5   5

 x3  2 x 2  x  lim  4  x 1 x  x 3  2 x  2     x( x 2  2 x  1)   lim  3  x 1 x ( x  1)  2( x  1)     x( x  1)    lim   x 1 ( x  1)( x 3  2)     x( x  1)  1(1  1)  lim  3  x 1  x  2  (1)3  2 1(0) 0   0 1  2 1

x2

44.

 3 x  6   lim   x 2  x  2   3( x  2)   lim   x 2  x2 

 x3  3 x 2  4 x  12  40. lim  4  3 x 3  x  3x  x  3   x 2 ( x  3)  4( x  3)   lim  3  x 3 x ( x  3)  1( x  3)    2  ( x  3)( x  4)   lim   x 3 ( x  3)( x 3  1)    2 2  x 4 3 4  lim  3  3 x 3 x  1    3 1 9  4 13   27  1 28

 lim  3  3 x 2

 x2  9   f ( x)  f (3)  45. lim   lim    x 3  x 3  x 3  x  3   ( x  3)( x  3)   lim   x 3  x3   lim  x  3 x 3

 33  6

 x 2  x 2 x 2  41. lim    lim   x 2 x  2 x  2   x2   x2   x2  lim   x  2 ( x  2)( x  2)    1 1      lim    x 2  x  2   2  2  

1 2 2

1 2 2

2 2

 x3  27   f ( x)  f (3)  46. lim   lim    x 3  x 3  x 3  x  3   ( x  3)( x 2  3x  9)   lim   x 3 x3  

1 2 5

1 2 5

5 5

 lim x 2  3x  9 x 3

2

 3  3(3)  9  27

2 4

47.

 x 5  x 5 x 5  42. lim    lim   x 5 x 5 5  x x  5     x 5   x2  lim   x 5 ( x  2)( x  2)    1 1      lim     x 5  x  5   5  5  

 f ( x)  f ( 2)   (4  3 x)  10  lim    lim   x  ( 2)  x 2  x2 

x 2 

 x 2  2 x  (1)   f ( x)  f (1)   lim  lim    x 1  x  (1)  x 1  x 1   x2  2 x  1   lim   x 1  x 1   ( x  1) 2   lim   x 1  x 1   lim  x  1 x 1

5 10

 1  1  0

1414

Copyright © 2020 Pearson Education, Inc.


Section 14.2: Algebraic Techniques for Finding Limits

48.

 2 x 2  3x  5   f ( x)  f (1)   lim  lim    x 1  x  (1)  x 1  x 1 

 sin x     tan x   sin x 1  53. lim   lim  cos x   lim     x 0  x  x 0 x 0  x cos x  x    

 (2 x  5)( x  1)   lim   x 1  x 1   lim  2 x  5 

  sin x     1    lim      xlim   x  0  0  x    cos x   

x 1

 2(1)  5  7

 lim 1    1 1  1  1   x 0  lim  cos x   1  x 0   sin  2 x    2sin x cos x  54. lim    lim   x 0 x x    x 0 

 3x3  2 x 2  4  4   f ( x)  f (0)  49. lim   lim    x 0  x0 x  x 0    3x3  2 x 2   lim   x 0 x  

  sin x    2 lim    cos x   x 0   x    2 1 1  2

 lim (3 x 2  2 x)  0 x 0

 4 x3  5 x  8  8   f ( x)  f (0)  50. lim   lim    x 0  x0 x  x 0  

 3sin x  cos x  1  55. lim   x 0  4x   3sin x cos x  1   lim    x 0  4 x 4x 

 4 x3  5 x   lim   x 0 x  

 3sin x   cos x  1   lim   lim    x 0  4 x  x 0  4x  3  sin x  1  cos x  1   lim    lim   4 x  0  x  4 x 0  x  3 1 3  1   0  4 4 4

 lim (4 x 2  5)  5 x 0

1   1 x   x 1   x   f ( x)  f (1)  51. lim     lim     lim x 1  x  1 x  1 x 1   x  1   x  1       1 x  1   1   lim    lim   x 1 x  1  x   x  x  1  1   1 1  1  x2   1  1   2   2  f ( x)  f (1)   lim  x 52. lim    lim  x   x 1  x 1  x 1  x  1  x 1  x  1           1 x  1 x  1   lim   x 1  x 2  x  1    1( x  1)   2  lim   2  x 1  x2  1

1415

Copyright © 2020 Pearson Education, Inc.


Chapter 14: A Preview of Calculus

 sin 2 x  sin x(cos x  1)  56. lim   x 0 x2    sin 2 x sin x(cos x  1)   lim  2   x 0 x2  x    sin x   sin x     sin x   cos x  1    lim       lim     x 0   x   x   x 0   x   x 

  sin x     sin x     lim    lim      x 0  x    x 0  x     sin x     cos x  1     lim    lim     x   x  0  x    x 0   11  1  0  1

13. Domain:  8, 6    6, 4    4, 6 or

 x | 8  x  6 or  6  x  4 or 4  x  6 14. Range:  ,   , or all real numbers. 15. x-intercepts: –8, –5, –3 16. y-intercept: 3 17.

f ( 8)  0; f ( 4)  2

18.

f (2)  3; f (6)  2

19. 20. 21.

Section 14.3 1.

f  0   02  0 , f  2   5  2  3

2.

f  x   ln x

22. 23.

Domain:  x x  0 Range:

24.

 y    y  

lim f ( x)  

x 6 

lim f ( x)  

x 6

lim f ( x)  2

x 4 

lim f ( x)   2

x 4

lim f ( x)  1

x2 

lim f ( x)   4

x  2

25. lim f ( x) does exist. x 4

3. True

lim f ( x)  0 since lim f ( x)  lim f ( x)  0

x 4

4. Secant, cosecant, tangent, cotangent

x4

x4

26. lim f ( x) does exist.

5. True

x 0

lim f ( x)  3 since lim f ( x)  lim f ( x)  3

6. False

x 0

x 0

x 0

27. f is not continuous at 6 because f  6  does

7. one-sided lim f ( x)  R

not exist, nor does the lim f  x  .

9. continuous, c

28. f is not continuous at 4 because lim  f ( x)  lim  f ( x)

8.

x 6

x c 

x 4

10. False; a function can have different one-sided x has limits at a point c. For example, f  x   x different one-sided limits ( 1 from the left and 1 from the right).

x 4

29. f is continuous at 0 because f (0)  lim f ( x)  lim f ( x )  3 x 0

x 0

30. f is not continuous at 2 because lim f ( x)  lim f ( x )

11. True

x 2

12. True 1416

Copyright © 2020 Pearson Education, Inc.

x2


Section 14.3: One-sided Limits; Continuity 31. f is not continuous at 4 because f  4  does not

42.

exist. 32. f is continuous at 5 because f (5)  lim f ( x)  lim f ( x)  1 x 5

x 5

33. lim (2 x  3)  2(1)  3  5 x 1

34.

lim (4  2 x)  4  2(2)  0

43.

x 2

35. lim 2 x3  5 x  2(1)3  5(1)  2  5  7 x 1

36.

37.

lim

x 2

39.

2

2

lim  sin x   sin x

38.

3x  8  3(2)  8  12  8  4

 2

 1 2

44.

lim (3cos x)  3cos   3(1)  3

x 

 x2  4   ( x  2)( x  2)  lim    lim   x 2 x 2  2 x x2      lim ( x  2)

45.

x 2

 x3  x 2   x 2 ( x  1)   lim  4 lim   2 2    2  x 0  x  x  x 0  x ( x  1)   x 1   lim  2  x 0  x  1  0  1 1  2   1 0 1 1  ( x  2)( x  1)   x2  x  2  lim   2   lim     x 2  x  2 x  x 2  x  x  2    x 1   lim    x 2  x   2 1  3 3    2 2 2  ( x  4)( x  3)   x 2  x  12  lim   2    lim   x 4  x  4 x  x 4  x  x  4    x 3  lim    x 4  x  43 7 7    4 4 4 f ( x)  x3  3 x 2  2 x  6; c  2

1.

 22  4

2.

 x3  x   x( x  1)( x  1)  40. lim    lim   x 1 x 1  1 x x 1      lim  x( x  1) 

3.

f (2)  23  3  22  2  2  6   6 lim f ( x)  23  3  22  2  2  6   6

x  2

lim f ( x)  23  3  22  2  2  6   6

x  2

Thus, f ( x ) is continuous at c  2 .

x 1

 1(1  1)  1(2)  2

46.

 x2  1   ( x  1)( x  1)  41. lim   3   lim    2  x 1  x  1  x 1  ( x  1)( x  x  1)   x 1   lim   2  x 1  x  x  1  2 1  1   2 3 (1)  (1)  1

f ( x)  3 x 2  6 x  5; c  3

1.

f (3)  3(3) 2  6(3)  5

2.

 27  18  5  50 lim  f ( x)  3(3) 2  6(3)  5

3.

x 3

 27  18  5  50 lim  f ( x)  3(3) 2  6(3)  5

x 3

 27  18  5  50 Thus, f ( x) is continuous at c  3 .

47.

f ( x) 

1.

x2  5 ; c3 x6

f (3) 

1417

Copyright © 2020 Pearson Education, Inc.

32  5 14 14   3  6 3 3


Chapter 14: A Preview of Calculus

2.

lim f ( x) 

x 3

32  5 14 14   3  6 3 3

2.

32  5 14 14   x 3 3  6 3 3 Thus, f ( x) is continuous at c  3 .

3.

48.

2.

 x( x 2  3)   lim   x 0  x( x  3) 

lim f ( x) 

f ( x) 

1.

 x2  3  3  lim   1   x 0  x  3  3 Since lim f ( x)  f (0) , the function is not

x3  8

; c2 x2  4 23  8 0 f (2)  2  0 2 4 8 23  8 0 lim f ( x)  2  0 x 2 2 4 8 23  8

x 0

continuous at c  0 .

54.

0 0 2 x 2 8 2 4 Thus, f ( x) is continuous at c  2 .

3.

49.

50.

51.

52.

53.

lim f ( x) 

 x2  6x  f ( x)   x 2  6 x  2 

1. 2.

x3 ; c3 x 3 Since f ( x) is not defined at c  3 , the function is not continuous at c  3 . f ( x) 

x6 ; c  6 x6 Since f ( x) is not defined at c   6 , the function is not continuous at c   6 . f ( x) 

x3  3 x

c0

if x  0

f (0)   2

 x2  6 x  lim f ( x)  lim  2  x 0 x 0  x  6x   x( x  6)   lim   x  0  x ( x  6) 

x 0

55. ; c0

 x3  3 x if x  0  f ( x)   x 2  3 x ; 1 if x  0 

c0

1.

f (0)  1

2.

 x3  3 x  lim f ( x)  lim  2  x 0 x 0  x  3x 

x2  6x

; c0 x2  6x Since f ( x) is not defined at c  0 , the function is not continuous at c  0 .  x3  3 x if x  0  f ( x)   x 2  3 x ; 1 if x  0 

;

continuous at c  0 .

x2  3x Since f ( x) is not defined at c  0 , the function is not continuous at c  0 . f ( x) 

if x  0

 x  6  6  lim   1  x 0  x  6  6 Since lim f ( x)  f (0) , the function is not

f ( x) 

1.

 x3  3 x  lim f ( x)  lim  2  x 0 x 0  x  3x 

 x( x 2  3)   lim   x 0  x( x  3) 

c0

3.

 x2  3  3  lim   1   x 0  x  3  3  x3  3x  lim f ( x )  lim  2  x 0 x 0  x  3x 

 x( x 2  3)   lim   x 0  x( x  3) 

f (0)  1

 x2  3  3  lim   1   x 0  x  3  3 The function is continuous at c  0 .

1418

Copyright © 2020 Pearson Education, Inc.


Section 14.3: One-sided Limits; Continuity

56.

 x2  6x if x  0  f ( x)   x 2  6 x ; 1 if x  0 

1. 2.

2.

c0

f (0)  1

 lim  x   2

 x2  6 x  lim f ( x)  lim  2  x 0 x 0  x  6x   x( x  6)   lim   x  0  x ( x  6) 

x2

 x4 lim f ( x)  lim   x 2  x  1  24 2    2 2 1 1 Since lim f ( x)  f (2) , the function is not

3.

 x  6  6  lim   1  x 0  x  6  6

3.

continuous at c  2 .  2e x  59. f ( x)  2  3 2  x  2x  x 2 1. f (0)  2

 x  6  6  lim   1  x 0  x  6  6 The function is continuous at c  0 .

2.

2.

if x  1 if x  1 ;

c 1

3.

if x  1

c0

if x  0

 

lim f ( x)  lim 2e x  2e0  2 1  2

x 0

x 0

 x3  2 x 2  lim f ( x)  lim   2 x 0 x 0  x 

x 0

 3cos x  60. f ( x)  3  3 2  x  3x  x 2 1. f (0)  3

 x2  x  1  3  lim    x 1  x 1  2 Since lim f ( x )  f (1) , the function is not x 1

continuous at c  1 .

1.

if x  0 ;

The function is continuous at c  0 .

 ( x  1)( x 2  x  1)   lim   x 1  ( x  1)( x  1) 

58.

if x  0

 x 2 ( x  2)   lim   x 0 x2    lim ( x  2)  0  2  2

 x3  1  lim f ( x)  lim  2  x 1 x 1  x 1 

 x2  2x if x  2   x  2 if x  2 ; f ( x)  2 x4  if x  2  x  1

x  2

x2

 x2  6 x  lim f ( x)  lim  2  x 0 x 0  x  6x   x( x  6)   lim   x  0  x ( x  6) 

 x3  1  2  x  1 57. f ( x)  2  3   x  1 1. f (1)  2

 x2  2 x  lim f ( x)  lim   x 2 x2  x2   x( x  2)   lim   x2  x  2 

2. 3.

c2

if x  0 if x  0 ;

c0

if x  0

lim f ( x)  lim  3cos  0    3 1  3

x 0

x 0

 x3  3 x 2  lim f ( x)  lim   2 x 0 x 0  x   x 2 ( x  3)   lim   x 0 x2    lim ( x  3)  0  3  3

f (2)  2

x 0

The function is continuous at c  0 . 1419

Copyright © 2020 Pearson Education, Inc.


Chapter 14: A Preview of Calculus 61. The domain of f ( x)  2 x  3 is all real numbers, and f ( x ) is a polynomial function. Therefore, f ( x ) is continuous everywhere.

69.

2x  5 . The domain of  x 2  4 ( x  2)( x  2) f ( x ) is all real numbers except x  2 and

f ( x) 

2x  5

x   2 , and f ( x) is a rational function.

62. The domain of f ( x)  4  3 x is all real numbers, and f ( x ) is a polynomial function. Therefore, f ( x ) is continuous everywhere.

Therefore, f ( x ) is continuous everywhere except at x  2 and x   2 . f ( x) is discontinuous at x  2 and x   2 .

63. The domain of f ( x)  3 x 2  x is all real 70.

numbers, and f ( x ) is a polynomial function. Therefore, f ( x ) is continuous everywhere.

f ( x) 

x2  4 2

( x  2)( x  2) . The domain of ( x  3)( x  3)

x 9 f ( x ) is all real numbers except x  3 and x   3 , and f ( x) is a rational function.

64. The domain of f ( x)  3 x3  7 is all real

Therefore, f ( x ) is continuous everywhere except at x  3 and x   3 . f ( x ) is discontinuous at x  3 and x   3 .

numbers, and f ( x ) is a polynomial function. Therefore, f ( x ) is continuous everywhere. 65. The domain of f ( x)  4sin x is all real numbers, and trigonometric functions are continuous at every point in their domains. Therefore, f ( x) is continuous everywhere.

71.

x 3 . The domain of ln x f ( x) is (0, 1) or (1, ) . Thus, f ( x) is

f ( x) 

continuous on the interval (0, ) except at x  1 . f ( x) is discontinuous at x  1 .

66. The domain of f ( x)   2 cos x is all real numbers, and trigonometric functions are continuous at every point in their domains. Therefore, f ( x ) is continuous everywhere.

72.

67. The domain of f ( x)  2 tan x is all real numbers

ln x . The domain of f ( x ) is x 3 (0, 3) or (3, ) . Thus, f ( x ) is continuous on f ( x) 

the interval (0, ) except at x  3 . f ( x ) is discontinuous at x  3 .

 , and 2 trigonometric functions are continuous at every point in their domains. Therefore, f ( x ) is continuous everywhere except where k x where k is an odd integer. f ( x ) is 2 k where k is an odd discontinuous at x  2 integer.

except odd integer multiples of

73. R ( x) 

x 1 2

x 1

x 1 . The domain of ( x  1)( x  1)

R is  x x  1, x  1  . Thus R is

discontinuous at both –1 and 1.   x 1 lim R ( x )  lim    x 1 x 1  ( x  1)( x  1)   1   lim      x 1  x  1 

68. The domain of f ( x)  4 csc x is all real numbers except integer multiples of  , and trigonometric functions are continuous at every point in their domains. Therefore, f ( x ) is continuous everywhere except where x  k  where k is an integer. f ( x) is discontinuous at x  k  where k is an integer.

since when 1 1  0, and as x approaches  1, x  1, x 1 x 1 becomes unbounded.  1  lim R ( x)  lim      since when x 1 x 1  x  1  1 1  0, and as x approaches  1, x  1, x 1 x 1 1420

Copyright © 2020 Pearson Education, Inc.


Section 14.3: One-sided Limits; Continuity

becomes unbounded.  1  1 lim R ( x)  lim    . Note there is a hole x 1 x 1  x  1  2  1 in the graph at 1,  .  2

74. R ( x ) 

3x  6 x2  4

75. R ( x ) 

x2  x 2

x 1

x( x  1) . The domain of ( x  1)( x  1)

R is  x x  1, x  1  . Thus R is discontinuous at both –1 and 1.  x( x  1)   x  lim R ( x )  lim    xlim     x 1 x 1  ( x  1)( x  1)  1  x  1  since when x x 0  x  1,  0, and as x approaches 1, x 1 x 1 x becomes unbounded. lim R  x   lim  x 1 x 1 x  1 since when x x  0, and as x approaches 1, x  1, x 1 x 1 becomes unbounded.  x  1 1 lim R ( x)  lim   . Note there  x 1 x 1  x  1  2 2

3( x  2) . The domain of ( x  2)( x  2)

1  is a hole in the graph at  1,  . 2 

R is  x x   2, x  2  . Thus R is

discontinuous at both –2 and 2.  3( x  2)   3  lim R ( x)  lim    xlim     x  2 x  2  ( x  2)( x  2)   2  x  2  since when 3 3 x  2,  0, and as x approaches 2, x2 x2 becomes unbounded.  3  lim R  x   lim     since when x 2 x2  x  2  3 3 x  2,  0, and as x approaches 2, x2 x2 becomes unbounded. 3  3    . Note there is a lim R( x)  lim   x 2 x 2  x  2  4 3  hole in the graph at   2,   . 4 

76. R ( x ) 

x2  4 x 2

x  16

x( x  4) . The domain of ( x  4)( x  4)

R is  x x   4, x  4  . Thus R is discontinuous at both –4 and 4.  x ( x  4)  lim R ( x)  lim   x  4 x  4  ( x  4)( x  4)   x   lim     x4  x  4  since when x x 0  x  4,  0, and as x approaches 4, x4 x4 becomes unbounded.  x  lim R  x   lim     since when x 4 x4  x  4  x x  0, and as x approaches 4, x  4, x4 x4

1421

Copyright © 2020 Pearson Education, Inc.


Chapter 14: A Preview of Calculus

becomes unbounded.  x  4 1 lim R( x)  lim   . Note there  x 4 x 4  x  4  8 2

80. R ( x) 

x3  x 2  3 x  3 x 2  3x  4

x 2 ( x  1)  3( x  1) ( x  4)( x  1)

( x  1)( x 2  3) x 2  3 , x 1  ( x  4)( x  1) x4 There is a vertical asymptote where x  4  0 . x   4 is a vertical asymptote. There is a hole 

1  is a hole in the graph at   4,  . 2 

 4 in the graph at x  1 (at the point 1,  .  5

81. R ( x)  

77. R ( x)  

x3  x 2  x  1 4

3

x  x  2x  2 2

( x  1)( x  1) 3

( x  1)( x  2)

x 2 ( x  1)  1( x  1) x ( x  1)  2( x  1)

x 1

x3  2

, x 1

There is a vertical asymptote where x3  2  0 . x   3 2 is a vertical asymptote. There is a hole

82. R ( x) 

 

in the graph at x  1 (at the point 1, 23 ). 78. R ( x)  

x3  x 2  3 x  3 x 4  x3  2 x  2 ( x  1)( x 2  3) ( x  1)( x3  2)

x3 ( x  1)  2( x  1)

x3  2

, x  1

There is a vertical asymptote where x3  2  0 . x   3 2 is a vertical asymptote. There is a hole in the graph at x  1 (at the point  1, 4  ). 79. R ( x) 

x3  2 x 2  4 x  8 2

x  x6

x( x  1) 2 3

( x  1)( x  2)

x( x 2  2 x  1) x3 ( x  1)  2( x  1)

x( x  1)

x3  2

, x  1

x3  3x 2  4 x  12 x 4  3x3  x  3 ( x  3)( x 2  4) ( x  3)( x3  1)

x 2 ( x  3)  4( x  3) x3 ( x  3)  1( x  3)

x2  4 x3  1

,x3

There is a vertical asymptote where x3  1  0 . x  1 is a vertical asymptote. There is a hole  13  in the graph at x  3 (at the point  3,  ).  28 

x 2 ( x  1)  3( x  1)

x2  3

x 4  x3  2 x  2

There is a vertical asymptote where x3  2  0 . x   3 2 is a vertical asymptote. There is a hole in the graph at x  1 (at the point  1, 0  ).

3

2

x3  2 x 2  x

83. R ( x) 

x3  x 2  x  1 x 4  x3  2 x  2 3.1

x 2 ( x  2)  4( x  2) ( x  3)( x  2)

–4.7

( x  2)( x 2  4) x 2  4  ,x2 ( x  3)( x  2) x3 There is a vertical asymptote where x  3  0 . x  3 is a vertical asymptote. There is a hole

4.7

–3.1

 

in the graph at x  2 (at the point 2, 85 ).

1422

Copyright © 2020 Pearson Education, Inc.


Section 14.4: The Tangent Problem; The Derivative

84. R ( x) 

x3  x 2  3x  3

87. R ( x) 

x 4  x3  2 x  2

x3  2 x 2  x x 4  x3  2 x  2

5.1

1

–4.7

–4.7

4.7

4.7 –1

–3.1

85. R ( x) 

x3  2 x 2  4 x  8

88. R ( x) 

2

x  x6

x3  3x 2  4 x  12

10 –9.4

x 4  3x3  x  3 8

9.4

–4.7

4.7

–25

86. R ( x) 

–3.1

x3  x 2  3x  3

89. Answers will vary. Three possible functions are: f  x   x 2 ; g  x   sin  x  ; h  x   e x .

2

x  3x  4 7

–9.4

90. Answers will vary. One possible function is: x f  x  . x5

9.4

–25

Section 14.4 1. Slope 5; containing point  2, 4  y  y1  m  x  x1  y   4   5  x  2  y  4  5 x  10 y  5 x  14

2. False; it is 1423

Copyright © 2020 Pearson Education, Inc.

f b   f  a  ba

.


Chapter 14: A Preview of Calculus Tangent Line: y  3   2( x  1) y  3   2x  2 y   2x 1

3. tangent line 4. derivative 5. velocity 6. True 7. True 8. True 9.

f ( x)  3x  5 at (1, 8)  f ( x)  f (1)   3x  5  8  mtan  lim    lim   x 1  x  1 x 1   x 1   3x  3   3( x  1)   lim    lim   x 1  x  1  x 1  x  1 

11.

f ( x)  x 2  2 at (1, 3)

 x2  2  3   f ( x)  f (1)   mtan  lim  lim   x 1  x 1  x 1   x 1 

 lim  3  3 x 1

Tangent Line: y  8  3( x  1) y  8  3x  3 y  3x  5

 x2  1   ( x  1)( x  1)   lim    lim   x 1 x 1   x 1 x 1     lim ( x  1)  1  1   2 x 1

Tangent Line: y  3   2( x  (1)) y  3   2x  2 y   2x 1

10.

f ( x)   2 x  1 at (1, 3)  f ( x)  f (1)  mtan  lim   x 1  x  (1)    2x 1  3   lim   x 1  x 1    2x  2   lim   x 1  x  1    2( x  1)   lim   x 1  x 1   lim   2    2

12.

f ( x)  3  x 2 at (1, 2)  3  x2  2   f ( x)  f (1)   mtan  lim  lim  x 1   x 1  x 1   x 1   1  x2   1( x  1)( x  1)   lim    lim   1 x 1 x  x 1    x 1   lim  (1)( x  1)   1(1  1)   2 x 1

x 1

1424

Copyright © 2020 Pearson Education, Inc.


Section 14.4: The Tangent Problem; The Derivative Tangent Line: y  2   2( x  1) y  2   2x  2 y   2x  4

14.

f ( x)   4 x 2 at ( 2,  16)  f ( x)  f ( 2)  mtan  lim   x 2  x  ( 2)    4 x 2  (16)   lim   x 2 x2   2   4( x  4)   lim   x 2  x2    4( x  2)( x  2)   lim   x 2  x2   lim   4( x  2)  x 2

13.

  4( 2  2)  16 Tangent Line: y  (16)  16( x  ( 2)) y  16  16 x  32 y  16 x  16

f ( x)  3x 2 at (2, 12)  3x 2  12   f ( x)  f (2)   mtan  lim  lim    x2  x2  x2   x2   lim

x2

3 x2  4 x2

  lim  3( x  2)( x  2)  

x2

x2 

 lim  3( x  2)   3(2  2)  12

 

x2

Tangent Line: y  12  12( x  2) y  12  12 x  24 y  12 x  12

15.

f ( x)  2 x 2  x at (1, 3)

 2x2  x  3   f ( x)  f (1)   lim  mtan  lim    x 1  x 1 x  1   x 1   (2 x  3)( x  1)   lim  (2 x  3)   lim x 1  x 1  x 1  2(1)  3  5 Tangent Line: y  3  5( x  1) y  3  5x  5 y  5x  2

1425

Copyright © 2020 Pearson Education, Inc.


Chapter 14: A Preview of Calculus

16.

f ( x)  3x 2  x at (0, 0)

18.

f ( x)   2 x 2  x  3 at (1,  4)  f ( x)  f (1)  mtan  lim   x 1  x 1 

 3x 2  x  0   f ( x)  f (0)   mtan  lim  lim    x 0  x0 x  x 0  

  2 x 2  x  3  ( 4)   lim   x 1 x 1  

 x(3 x  1)   lim  (3x  1)   xlim x 0  x  0  3(0)  1  1 Tangent Line: y  0  1( x  0) y  x

  2 x2  x  1   lim   x 1 x 1    ( x  1)( 2 x  1)   lim   x 1  x 1   lim ( 2 x  1)   2(1)  1  3 x 1

Tangent Line: y  ( 4)   3( x  1) y  4   3x  3 y  3x  1

17.

f ( x)  x 2  2 x  3 at (1, 6) f ( x)  f (1) x2  2 x  3  6  lim x 1 x 1 x 1 x 1 2 x  2x  3 ( x  1)( x  3)  lim  lim x 1 x 1 x 1 x 1  lim ( x  3)  1  3   4

mtan  lim

19.

f ( x)  x3  x at (2, 10)  x3  x  10   f ( x)  f (2)   mtan  lim  lim    x 2  x2  x2   x2 

x 1

Tangent Line: y  6   4( x  (1)) y  6   4x  4 y   4x  2

 x3  8  x  2   lim   x2 x2    ( x  2)( x 2  2 x  4)   x  2  1   lim    x2  x2    ( x  2)( x 2  2 x  4  1)   lim   x2 x2    lim ( x 2  2 x  5)  4  4  5  13 x2

1426

Copyright © 2020 Pearson Education, Inc.


Section 14.4: The Tangent Problem; The Derivative Tangent Line: y  10  13( x  2)

22.

y  10  13 x  26

f ( x)   4  3 x at 1

 f ( x)  f (1)  f (1)  lim   x 1  x 1    4  3x  (1)   lim   x 1  x 1 

y  13 x  16

 3x  3   lim   x 1  x  1   3( x  1)   lim   x 1  x  1   lim  3  3 x 1

23. 20.

 f ( x)  f (0)  f (0)  lim   x 0  x0  2  x  3  (3)   lim   x 0 x   2 x   lim   x 0  x   lim  x   0

f ( x)  x3  x 2 at (1, 0)  x3  x 2  0   f ( x)  f (1)   mtan  lim  lim   x 1  x 1  x 1 x  1     x3  x 2   x 2 ( x  1)   lim    lim   x 1  x  1  x 1  x  1 

 

 lim x 2  12  1 x 1

x 0

Tangent Line: y  0  1( x  1) y  x 1

21.

f ( x)  x 2  3 at 0

24.

f ( x)  2 x 2  1 at  1

 f ( x)  f (1)  f (1)  lim   x 1  x  (1)   2 x2  1  3   lim   x 1  x 1   2 x2  2   lim   x 1  x 1   2( x  1)( x  1)   lim   x 1  x 1   lim  2( x  1)   2( 2)   4

f ( x)   4 x  5 at 3

x 1

 f ( x)  f (3)  f (3)  lim   x 3  x 3   4 x  5  (  7)    lim   x 3  x3 

25.

f ( x)  2 x 2  3x at 1  f ( x)  f (1)  f (1)  lim   x 1  x 1   2 x 2  3x  5   lim   x 1 x 1    (2 x  5)( x  1)   lim   x 1  x 1   lim (2 x  5)  7

  4 x  12   lim   x 3  x 3    4( x  3)   lim   x 3  x3   lim ( 4)   4 x 3

x 1

1427

Copyright © 2020 Pearson Education, Inc.


Chapter 14: A Preview of Calculus

26.

f ( x)  3x 2  4 x at 2

29.

 f ( x)  f (2)  f (2)  lim   x2  x2   3x 2  4 x  4   lim   x2 x2    (3 x  2)( x  2)   lim   x2  x2   lim (3 x  2)  8

 f ( x)  f (1)  f (1)  lim   x 1  x 1   x3  x 2  2 x  0   lim   x 1 x 1    x( x 2  x  2)   lim   x 1 x 1    x( x  2)( x  1)   lim   x 1  x 1 

x2

27.

f ( x)  x3  4 x at  1

 lim  x( x  2)  x 1

 f ( x)  f (1)  f (1)  lim   x 1  x  (1)   x3  4 x  (5)   lim   x 1 x 1   3  x 1  4x  4   lim   x 1 x 1   2  ( x  1)( x  x  1)  4( x  1)   lim   x 1 x 1   2  ( x  1)( x  x  1  4)   lim   x 1 x 1  

 1(1  2)  3

30.

f ( x)  x3  2 x 2  x at  1  f ( x)  f (1)  f (1)  lim   x 1  x  (1)   x3  2 x 2  x  ( 4)   lim   x 1 x 1    ( x  1)( x 2  3x  4)   lim   x 1 x 1  

 lim x 2  3x  4 x 1

2

 lim ( x  x  5)

 (1) 2  3(1)  4  8

x 1

 (1) 2  (1)  5  7

28.

f ( x)  x3  x 2  2 x at 1

31.

f ( x)  sin x at 0  f ( x)  f (0)  f (0)  lim   x 0  x0  sin x  0    lim   x 0  x  0 

f ( x)  2 x3  x 2 at 2  f ( x)  f (2)  f (2)  lim   x2  x2   2 x3  x 2  12   lim   x2 x2  

 sin x   lim   1 x 0  x 

 2 x3  4 x 2  3 x 2  12   lim   x2 x2  

32.

f ( x)  cos x at 0  f ( x)  f (0)   cos x  1  f (0)  lim   lim   0 x 0  x0 x  x 0  

 2 x ( x  2)  3( x  2)( x  2)   lim   x2 x2   2

 ( x  2)(2 x 2  3 x  6)   lim   x2 x2  

33. Use nDeriv:

 lim (2 x 2  3 x  6) x2

 2(2)2  3(2)  6  20

1428

Copyright © 2020 Pearson Education, Inc.


Section 14.4: The Tangent Problem; The Derivative 34. Use nDeriv:

41. Use nDeriv:

35. Use nDeriv:

42. Use nDeriv:

36. Use nDeriv:

43. V (r )  3 r 2

at r  3

 V (r )  V (3)  V (3)  lim   r 3  r 3   3 r 2  27   lim   r 3 r 3    3(r 2  9)   lim   r 3  r 3   3(r  3)(r  3)   lim   r 3  r 3 

37. Use nDeriv:

 lim  3(r  3)  r 3

 3(3  3)  18 At the instant r  3 feet, the volume of the cylinder is increasing at a rate of 18 cubic feet per foot.

38. Use nDeriv:

44. S (r )  4 r 2

at r  2

 S (r )  S (2)  S (2)  lim   r 2  r 2 

39. Use nDeriv:

 4 r 2  16   lim   r 2 r  2    4(r 2  4)   lim   r 2  r2   4(r  2)(r  2)   lim   r 2  r2 

40. Use nDeriv:

 lim  4(r  2)  r 2

 4(2  2)  16 At the instant r  2 feet, the surface area of the sphere is increasing at a rate of 16 square feet per foot.

1429

Copyright © 2020 Pearson Education, Inc.


Chapter 14: A Preview of Calculus

4 3 r at r  2 3  V (r )  V (2)  V (2)  lim   r 2  r2   4 3 32   r  3    lim  3  r 2 r 2    

47. a.

45. V (r ) 

t  0 or t  6 The ball strikes the ground after 6 seconds.

b.

16(2) 2  96(2)  0 2 128   64 feet/sec 2

c.

4  2   3 (r  2)(r  2r  4)     lim   r 2  r2      4    lim  (r 2  2r  4)  r 2  3  4  (4  4  4)  16 3 At the instant r  2 feet, the volume of the sphere is increasing at a rate of 16 cubic feet per foot.

46. V ( x)  x

 16t 2  16t0 2  96t  96t0   lim   t t0  t  t0  

 16 t 2  t0 2  96  t  t0     lim   t t0  t  t0    16  t  t0  t  t0   96  t  t0    lim   t t0 t  t0  

at x =3

  t  t0   16  t  t0   96     lim   t t0  t t  0  

 x3  27   lim   x 3  x3 

 lim  16  t  t0   96  t t0

  16  t0  t0   96 

 ( x  3)( x 2  3 x  9)   lim   x 3 x 3   x 3

 s  t   s  t0   s   t0   lim   t  t0 t  t0  

 16t 2  96t  16t0 2  96t0    lim   t  t0  t  t0  

 V ( x)  V (3)  V (3)  lim   x 3  x3 

 lim

 s s (2)  s (0)  20 t 

4  3   3 (r  8)     lim   r 2  r2     

3

16t 2  96t  0 16t (t  6)  0

 32t0  96 ft/sec The instantaneous speed at time t is 32t  96 feet per second.

 x  3x  9  2

 32  3(3)  9  27 At the instant x  3 meters, the volume of the cube is increasing at a rate of 27 cubic meters per meter.

d.

s (2)  32(2)  96   64  96  32 feet/sec

e.

s (t )  0 32t  96  0 32t  96 t  3 seconds

f.

s (3)  16(3) 2  96(3)  144  288  144 feet

1430

Copyright © 2020 Pearson Education, Inc.


Section 14.4: The Tangent Problem; The Derivative

g.

s (6)  32(6)  96  192  96

49. a.

 96 feet/sec

48. a.

16t 2  48t  160  0

16 t 2  3t  10  0 16(t  2)(t  5)  0 t  2 or t  5 The ball strikes the ground after 2 seconds in the air.

b.

b.

 s s (1)  s (0)  t 1 0 16(1) 2  48(1)  160  160 1  64    64 feet/sec 1 

c.

c.

 s  t   s  t0   s   t0   lim   t  t0 t  t0   2 2  16t  16t0  48t  48t0   lim   t t0  t  t0    16 t 2  t0 2  48  t  t0     lim   t t0  t  t0    16  t  t0  t  t0   48  t  t0    lim   t t0 t  t0     t  t0   16  t  t0   48     lim   t t0  t t  0  

d.

 s s (2)  s (1)  t 2 1 969  987  1  18    18 feet/sec 1 s  t   2.631t 2  10.269t  999.933

 s  t   s 1  s  1  lim   t 1 t 1     2.631t 2  10.269 t  12.9   lim   t 1 t 1   2   2.631t  2.631t  12.9 t  12.9   lim   t 1 t 1     2.631t (t  1)  12.9 (t  1)   lim   t 1  t 1   ( 2.631t  12.9) (t  1)   lim   t 1  t 1   lim ( 2.631t  12.9)

t t0

  16  t0  t0   48   32t0  48 ft/sec The instantaneous speed at time t is 32t  48 feet per second.

e.

 s s (3)  s (1)  3 1 t 945  987  2  42  2   21 feet/sec

e.

 lim  16  t  t0   48 

d.

 s s (4)  s (1)  4 1 t 917  987  3 70  3 1   23 feet/sec 3

s (1)  32(1)  48   32  48   80 feet/sec

t 1

  2.631(1)  12.9  15.531 feet/sec At the instant when t  1 , the instantaneous speed of the ball is –15.531 feet / sec.

s (2)  32(2)  48   64  48  112 feet/sec

1431

Copyright © 2020 Pearson Education, Inc.


Chapter 14: A Preview of Calculus

50. a.

 R R(150)  R (25)  150  25 x 59,160  28, 000 125 31,160   $249.28 / bicycle 125 

b.

 R R (102)  R (25)  102  25 x 53, 400  28, 000 77 25, 400   $329.87 / bicycle 77 

c.

 R R(60)  R(25)  60  25 x 45, 000  28, 000 35 17, 000   $485.71/ bicycle 35 

d. e.

R  x   1.522 x 2  597.791x  7944.450  R  x   R  25   R   25   lim   x  25 x  25   2  1.522 x  597.791x  13,993.525   lim   x  25 x  25     x  25  1.522 x  559.741   lim   x  25 x  25    lim  1.522 x  559.741 x  25

 1.522  25   559.741  $521.69 /bicycle At the instant when x  25 , the instantaneous rate of change of revenue is about $521.69 per bicycle.

Section 14.5 1. A  lw 2.

 2 1  1   2  2   1   2  3  1   2  4   1  3  5  7  9  24 1432

Copyright © 2020 Pearson Education, Inc.


Section 14.5: The Area Problem; The Integral

3.

a f  x  dx

4.

a f  x  dx

b

b

5. A  f (1) 1  f (2) 1  1 1  2 1  1  2  3 6. A  f (2) 1  f (3) 1  2 1  4 1  2  4  6 7. A  f (0)  2  f (2)  2  f (4)  2  f (6)  2  10  2  6  2  7  2  5  2  20  12  14  10  56 8. A  f (2)  2  f (4)  2  f (6)  2  f (8)  2  6  2  7  2  5  2  1 2  12  14  10  2  38 9. a.

Graph f ( x)  3 x :

b.

A  f (0)(2)  f (2)(2)  f (4)(2)  0(2)  6(2)  12(2)  0  12  24  36

c.

A  f (2)(2)  f (4)(2)  f (6)(2)  6(2)  12(2)  18(2)  12  24  36  72

d.

A  f (0)(1)  f (1)(1)  f (2)(1)  f (3)(1)  f (4)(1)  f (5)(1)  0(1)  3(1)  6(1)  9(1)  12(1)  15(1)  0  3  6  9  12  15  45

e.

A  f (1)(1)  f (2)(1)  f (3)(1)  f (4)(1)  f (5)(1)  f (6)(1)  3(1)  6(1)  9(1)  12(1)  15(1)  18(1)  3  6  9  12  15  18  63

1433

Copyright © 2020 Pearson Education, Inc.


Chapter 14: A Preview of Calculus

f. 10. a.

The actual area is the area of a triangle: A 

1 (6)(18)  54 2

Graph f ( x)  4 x :

b.

A  f (0)(2)  f (2)(2)  f (4)(2)  0(2)  8(2)  16(2)  0  16  32  48

c.

A  f (2)(2)  f (4)(2)  f (6)(2)  8(2)  16(2)  24(2)  16  32  48  96

d.

A  f (0)(1)  f (1)(1)  f (2)(1)  f (3)(1)  f (4)(1)  f (5)(1)  0(1)  4(1)  8(1)  12(1)  16(1)  20(1)  0  4  8  12  16  20  60

e.

A  f (1)(1)  f (2)(1)  f (3)(1)  f (4)(1)  f (5)(1)  f (6)(1)  4(1)  8(1)  12(1)  16(1)  20(1)  24(1)  4  8  12  16  20  24  84

f.

The actual area is the area of a triangle: A 

11. a.

1 (6)(24)  72 2

Graph f ( x)  3 x  9 :

1434

Copyright © 2020 Pearson Education, Inc.


Section 14.5: The Area Problem; The Integral

b.

A  f (0)(1)  f (1)(1)  f (2)(1)  9(1)  6(1)  3(1)  9  6  3  18

c.

A  f (1)(1)  f (2)(1)  f (3)(1)  6(1)  3(1)  0(1)  63 0  9

d.

e.

f. 12. a.

1  1  1  1  3  1  1  5  1  A  f (0)    f      f (1)    f      f (2)    f     2  2  2  2  2  2  2  2  2  1 15 1 1 9 1 1 3 1              9       6       3     2 2 2 2 22 2 22 9 15 9 3 3 63   3     15.75 2 4 4 2 4 4  1  1  1  3  1  1  5  1  1 A  f      f (1)    f      f (2)    f      f  3   2 2 2 2 2 2 2 2              2 15  1   1  9  1   1  3  1   1      6       3      0   2 2 2 22 2 22 2 15 9 3 3 45  3    0   11.25 4 4 2 4 4

The actual area is the area of a triangle: A 

1 27 (3)(9)   13.5 2 2

Graph f ( x)   2 x  8 :

b.

A  f (0)(1)  f (1)(1)  f (2)(1)  8(1)  6(1)  4(1)  8  6  4  18

c.

A  f (1)(1)  f (2)(1)  f (3)(1)  6(1)  4(1)  2(1)  6  4  2  12

d.

1  1  1  1  3  1  1  5  1  A  f (0)    f      f (1)    f      f (2)    f     2  2  2  2  2  2  2  2  2  1 1 1 1 1 1  8   7    6    5   4    3  2 2 2 2 2 2 7 5 3 33  4 3  2   16.5 2 2 2 2

1435

Copyright © 2020 Pearson Education, Inc.


Chapter 14: A Preview of Calculus

e.

f. 13. a.

b. c.

 1  1  1  3  1  1  5  1  1 A  f      f (1)    f      f (2)    f      f  3    2  2  2  2  2  2  2  2  2 1 1 1 1 1 1  7    6    5   4    3   2   2 2 2 2 2 2 7 5 3 27   3   2  1   13.5 2 2 2 2

The actual area is the area of a (sideways) trapezoid: A 

1 30 (2  8)(3)   15 2 2

Graph f ( x)  x 2  2, [0, 4] :

A  f (0)(1)  f (1)(1)  f (2)(1)  f (3)(1)  2(1)  3(1)  6(1)  11(1)  2  3  6  11  22 1  1  1  1  3  1  1  5  1  1  7  1  A  f (0)    f      f (1)    f     f (2)    f     f (3)    f     2 2 2 2 2 2 2 2 2 2                   2  2   1  9  1   1  17  1   1  33  1   1  57  1   2       3       6       11     2 42 2 4 2 2 4 2 2 4 2 9 3 17 33 11 57 51  1    3      25.5 8 2 8 8 2 8 2 4

d.

A  0 ( x 2  2)dx

e.

Use fnInt function:

1436

Copyright © 2020 Pearson Education, Inc.


Section 14.5: The Area Problem; The Integral

14. a.

b. c.

Graph f ( x)  x 2  4, [2, 6] :

A  f (2)(1)  f (3)(1)  f (4)(1)  f (5)(1)  0(1)  5(1)  12(1)  21(1)  0  5  12  21  38 1  5  1  1  7  1  1  9  1  1  11   1  A  f (2)    f      f (3)    f      f (4)    f      f (5)    f     2  2  2  2  2  2  2  2  2  2  2  2   1  9  1   1  33  1   1  65  1   1  105  1   0       5       12       21     2 4 2 2 4 2 2 4 2             2 4 2 9 5 33 65 21 105 91  0   6     45.5 8 2 8 8 2 8 2 6

d.

A  2 ( x 2  4)dx

e.

Use fnInt function:

15. a.

b.

Graph f ( x)  x3 , [0, 4] :

A  f (0)(1)  f (1)(1)  f (2)(1)  f (3)(1)  0(1)  1(1)  8(1)  27(1)  0  1  8  27  36

1437

Copyright © 2020 Pearson Education, Inc.


Chapter 14: A Preview of Calculus

c.

1  1  1  1  3  1  1  5  1  1  7  1  A  f (0)    f      f (1)    f     f (2)    f     f (3)    f     2  2  2  2  2  2  2  2  2  2  2  2   1  1  1   1  27  1   1  125  1   1  343  1   0       1      8         27     2 8 2  2 8  2  2 8  2 2 8 2 1 1 27 125 27 343  0   4    49 16 2 16 16 2 16 4

d.

A  0 x3 dx

e.

Use fnInt function:

16. (a) Graph f ( x)  x3 , [1, 5] :

b. c.

A  f (1)(1)  f (2)(1)  f (3)(1)  f (4)(1)  1(1)  8(1)  27(1)  64(1)  1  8  27  64  100 1  3  1  1  5  1  1  7  1  1  9  1  A  f (1)    f      f (2)    f      f (3)    f      f (4)    f     2  2  2  2  2  2  2  2  2  2  2  2   1  27  1   1  125  1   1  343  1   1  729  1   1      8         27       64    2 8 2 2 8 2 2 8 2 2 8 2             1 27 125 27 343 729 253   4    32    126.5 2 16 16 2 16 16 2 5

d.

A  1 x3 dx

e.

Use fnInt function:

1438

Copyright © 2020 Pearson Education, Inc.


Section 14.5: The Area Problem; The Integral

17. a.

b.

c.

Graph f ( x) 

1 , [1, 5] : x

1 1 1 1 1 1 25 A  f (1)(1)  f (2)(1)  f (3)(1)  f (4)(1)  1(1)  (1)  (1)  (1)  1     2 3 4 2 3 4 12 1  3  1  1  5  1  1  7  1  1  9  1  A  f (1)    f      f (2)    f      f (3)    f      f (4)    f    2  2  2  2  2  2  2  2  2  2  2  2   1 21 11 2 1 1 1 21 11 2 1  1                        2 3 2 2 2  5  2  3 2  7  2  4 2  9  2 1 1 1 1 1 1 1 1 4609           1.829 2 3 4 5 6 7 8 9 2520 5

1 dx 1 x 

d.

A  

e.

Use fnInt function:

18. a.

b.

Graph f ( x)  x , [0, 4] :

A  f (0)(1)  f (1)(1)  f (2)(1)  f (3)(1)  0(1)  1(1)  2(1)  3(1)  1  2  3  4.15

1439

Copyright © 2020 Pearson Education, Inc.


Chapter 14: A Preview of Calculus

c.

1  1  1  1  3  1  1  5  1  1  7  1  A  f (0)    f      f (1)    f     f (2)    f     f (3)    f     2 2 2 2 2 2 2 2 2 2                   2  2  1 1 1 31 5 1 7 1 1 1 1  0        1     2    3  2 2 2 2 2 2 2 2 2 2 2 2  0 4

2 1 6 2 10 3 14        4.765 4 2 4 2 4 2 4

d.

A  0

e.

Use fnInt function:

19. a.

b. c.

x dx

Graph f ( x)  e x , [1, 3] :

A   f (1)  f (0)  f (1)  f (2)  (1)  (0.3679  1  2.7183  7.3891)(1)  11.475   1 1 3  5   1  A   f (1)  f     f (0)  f    f (1)  f    f (2)  f        2 2 2  2   2     0.3679  0.6065  1  1.6487  2.7183  4.4817  7.3891  12.1825  0.5   30.3947  0.5   15.197 3

d.

A  1 e x dx

e.

Use fnInt function:

1440

Copyright © 2020 Pearson Education, Inc.


Section 14.5: The Area Problem; The Integral

20. a.

b. c.

Graph f ( x)  ln x , [3, 7] :

A   f (3)  f (4)  f (5)  f (6)  (1)  (1.0986  1.3863  1.6094  1.7918)(1)  5.886

 7 9  11   13    1  A   f (3)  f    f (4)  f    f (5)  f    f (6)  f       2 2 2 2   2           1.0986  1.2528  1.3863  1.5041  1.6094  1.7047  1.7918  1.8718  (0.5)  12.2195(0.5)  6.110 7

d.

A  3 ln x dx

e.

Use fnInt function:

21. a.

b.

Graph f ( x)  sin x , [0, ] :

 2 2       3       1 A   f (0)  f    f    f        0    2 2   4  4 2  4  4       1  2    1.896 4

1441

Copyright © 2020 Pearson Education, Inc.


Chapter 14: A Preview of Calculus

c.

    3    5   3   7      A   f (0)  f    f    f    f    f    f    f      8 4 8 2 8 4              8  8       0  0.3827  0.7071  0.9239  1  0.9239  0.7071  0.3827    8    5.0274    1.974 8 

d.

A  0 sin xdx

e.

Use fnInt function:

22. a.

  Graph f ( x)  cos x ,  0,  :  2

b.

    3        A   f (0)  f    f    f       1  0.9239  0.7071  0.3827      3.0137     1.183 8 4 8 8 8          8 

c.

    3    5   3   7      A   f (0)  f    f    f    f    f    f    f      16 8 16 4 16 8              16    16      (1  0.9808  0.9239  0.8315  0.7071  0.5556  0.3827  0.1951)    16     5.5767    1.095  16  

d.

A  02 cos xdx

1442

Copyright © 2020 Pearson Education, Inc.


Section 14.5: The Area Problem; The Integral e.

23. a.

Use fnInt function:

c.

The integral represents the area under the graph of f ( x)  3x  1 from x  0 to x  4 .

25. a.

b.

b.

c.

c.

24. a.

The integral represents the area under the graph of f ( x)  x 2  1 from x  2 to x  5 .

The integral represents the area under the graph of f ( x)   2 x  7 from x  1 to x 3.

b.

1443

Copyright © 2020 Pearson Education, Inc.


Chapter 14: A Preview of Calculus: The Limit, Derivative, and Integral of a Function 26. a.

The integral represents the area under the graph of f ( x)  16  x 2 from x  0 to x  4.

28. a.

b.

The integral represents the area under the  graph of f ( x)  cos x from x   to 4  x . 4

b.

c.

c.

27. a.

The integral represents the area under the graph of f ( x)  sin x from x  0 to x 

 2

. 29. a.

b.

The integral represents the area under the graph of f ( x)  e x from x  0 to x  2 .

b.

c.

c.

1444 Copyright © 2020 Pearson Education, Inc.


Section 14.5: The Area Problem; The Integral 30. a.

The integral represents the area under the graph of f ( x)  ln x from x  e to x  2e .

b.

c.

31. Using left endpoints: 0  0.5  0.5 n  2: 0  0.125  0.25  0.375  0.75 n  4: n  10 : n  100 :

10  0  0.18  0.9 2 100 0  0.0002  0.0004  0.0006    0.0198   0  0.0198   0.99 2 0  0.02  0.04  0.06    0.18 

Using right endpoints: n  2 : 0.5  1  1.5 n  4 : 0.125  0.25  0.375  0.5  1.25 10 n  10 : 0.02  0.04  0.06    0.20   0.02  0.20   1.1 2 100 n  100 : 0.0002  0.0004  0.0006    0.02   0.0002  0.02   1.01 2

1445 Copyright © 2020 Pearson Education, Inc.


Chapter 14: A Preview of Calculus: The Limit, Derivative, and Integral of a Function

f ( x)  1  x 2

32. a.

A   f (1)  f   0.6   f   0.2   f  0.2   f  0.6    0.4 

b.

  0  0.8  0.9798  0.9798  0.8  0.4    3.5596  0.4   1.424 A   f (1)  f ( 0.8)  f   0.6   f   0.4   f   0.2   f (0)  f  0.2   f  0.4   f  0.6   f  0.8    0.2 

c.

 7.5926  0.2   1.519 1

d.

A  1 1  x 2 dx

e.

Use fnInt function:

f.

A

1   12  2 2

Chapter 14 Review Exercises

4. lim 1  x 2  x 1

1. lim 3 x 2  2 x  1  3(2) 2  2(2)  1 x 2

 1  12  0 0

 12  4  1  9

2.

   lim  x  1    ( 2)  1  5  25

lim x 2  1

x 2

2

x 3

2

5. lim (5 x  6)3/ 2  lim (5 x  6)

x 2

2

3. lim

2

2

lim (1  x 2 )

x 1

x 2

x2

  5(2)  6 

2

3/ 2

 163/ 2  64

x 2  7  lim ( x 2  7) x 3

 32  7  16  4

1446 Copyright © 2020 Pearson Education, Inc.

3/ 2


Chapter 14 Review Exercises

2

( x  x  2)  x 2  x  2  xlim 1 6. lim  2   x 1 lim ( x 2  9)  x 9  x 1 

11.

 x3 ( x  3)  1( x  3)   lim  2  x 3 x ( x  3)  2( x  3)   

(1) 2  (1)  2

(1) 2  9 2 1   8 4

 ( x  3)( x3  1)   lim   x 3 ( x  3)( x 2  2)     x3  1   lim  2  x 3 x  2   

  x 1  x 1  7. lim  3   lim   2 x 1  x  1  x 1 ( x  1)( x  x  1)   1    lim  2  x 1  x  x  1  1 1  2  1 11 3

12.

33  1 2

3 2

28 11

f ( x)  3x 4  x 2  2; c  5

1. 2.

 x2  9   ( x  3)( x  3)  8. lim  2   lim   x 3 x  x  12  x 3  ( x  4)( x  3)     x  3  3  3  lim   x 3  x  4  3  4 6 6   7 7

9.

 x 4  3 x3  x  3  lim  3  x 3 x  3 x 2  2 x  6   

3.

f (5)  3(5) 4  52  2  1852

lim f ( x)  3(5) 4  52  2  1852

x 5

lim f ( x)  3(5) 4  52  2  1852

x 5

Thus, f ( x) is continuous at c  5 . 13.

 x2  1   ( x  1)( x  1)  lim   3   lim    2 x 1  x  1  x 1  ( x  1)( x  x  1)   x 1   lim   2  x 1  x  x  1  1  1  (1) 2  (1)  1 0  0 1

14.

x2  4 ; c  2 x2 Since f ( x) is not defined at c   2 , the function is not continuous at c   2 . f ( x) 

 x2  4 if x   2  ; f ( x)   x  2 4 if x   2 

1. 2.

  x3  8 10. lim  3  x 2 x  2 x 2  4 x  8    2  ( x  2)( x  2 x  4)   lim  2  x2  x ( x  2)  4( x  2)   ( x  2)( x 2  2 x  4)   lim  2  x2  ( x  2)( x  4)   x 2  2 x  4   22  2(2)  4   lim      2 x2 22  4   x 4   12 3   8 2

c  2

f ( 2)  4  x2  4  lim  f ( x)  lim    x 2 x 2  x2   ( x  2)( x  2)   lim    x 2  x2   lim  ( x  2)   4 x 2

Since lim  f ( x)  f (2) , the function is not x 2

continuous at c   2 .

15.

 x2  4  f ( x)   x  2  4 

1.

f ( 2)   4

1447 Copyright © 2020 Pearson Education, Inc.

if x   2 if x   2

;

c  2


Chapter 14: A Preview of Calculus: The Limit, Derivative, and Integral of a Function

2.

  x4 lim R ( x)  lim   x  4  ( x  4)( x  4)   lim 1   x 4 x4 1 since when x  4,  0 , and as x x4 approaches 4, 1 becomes unbounded. x4 lim R  x   lim 1   since when x4 x  4 x4 1 x  4,  0, and as x approaches 4, 1 x 4 x4 becomes unbounded. Thus, there is a vertical asymptote at x  4 . 1 lim R ( x)  lim 1   . x 4 x 4 x  4 8

 x2  4  lim  f ( x)  lim    x 2 x 2  x2   ( x  2)( x  2)   lim    x 2  x2   lim  ( x  2)   4

x  4

 

x 2

3.

 x2  4  lim  f ( x)  lim    x 2 x 2  x2   ( x  2)( x  2)   lim    x 2  x2   lim  ( x  2)   4

 

x 2

The function is continuous at c   2 .

 

16. Domain:  x  6  x  2 or 2  x  5 or 5  x  6

Thus, there is a hole in the graph at  4,  1 . 8

17. Range:  ,   , or all real numbers 18. x-intercepts: 1, 6 19. y-intercept: 4 20. 21. 22. 23. 24.

f ( 6)  2; f ( 4)  1 lim f ( x)  4

x 4 

lim f ( x)   2

x 4

lim f ( x )  

29. R ( x ) 

x2 

x 2  11x  18 x 2 ( x  2)  4( x  2)  ( x  9)( x  2)

lim f ( x)  

x 2

25. lim f ( x) does not exist because x 0

lim f ( x )  4  lim f ( x)  1

x 0

26.

x 0

27.

x2  4 ,x2 x 9 Undefined at x  2 and x  9 . There is a vertical asymptote where x  9  0 . x  9 is a vertical asymptote. There is a hole in the graph 8  at x  2 , the point  2,   . 7 

x 0

f is continuous at 4 because f (4)  lim f ( x)  lim f ( x) x4

28. R ( x ) 

x4 2

x  16

x4

( x  2)( x 2  4) ( x  9)( x  2)

f is not continuous at 0 because lim f ( x )  4  lim f ( x)  1 x 0

x3  2 x 2  4 x  8

x4 . The domain of ( x  4)( x  4)

R is  x x   4, x  4  . Thus R is

discontinuous at both –4 and 4. 1448 Copyright © 2020 Pearson Education, Inc.


Chapter 14 Review Exercises

30.

f ( x)  2 x 2  8 x at (1, 10)

32.

 2 x 2  8 x  10   f  x   f 1  mtan  lim     lim  x 1 x 1 x 1   x 1   x x 2( 5)( 1)      lim   2( x  5)    lim x 1  x 1  x 1  2(1  5)  12 Tangent Line: y  10  12( x  1)

f ( x)  x3  x 2 at (2, 12)

 x3  x 2  12   f ( x)  f (2)  mtan  lim  lim    x 2  x 2  x2 x2     x3  2 x 2  3x 2  12   lim   x 2 x2   2  x ( x  2)  3( x  2)( x  2)   lim   x 2 x2   2  ( x  2)( x  3x  6)   lim   x 2 x2  

y  10  12 x  12 y  12 x  2

 lim ( x 2  3 x  6)  4  6  6  16 x 2

Tangent Line: y  12  16( x  2) y  12  16 x  32 y  16 x  20

31.

f ( x)  x 2  2 x  3 at (1,  4)

 f ( x)  f (1)  mtan  lim   x 1  x 1  2  x  2 x  3  ( 4)   lim   x 1 x 1   2  x  2x 1   lim   x 1  x 1   ( x  1) 2   lim   x 1  x 1   lim ( x  1)

33.

f ( x)   4 x 2  5 at 3  f ( x)  f (3)  f (3)  lim   x 3  x 3  2   4 x  5  (31)   lim   x 3 x 3     4 x 2  36   lim   x 3  x3    4( x 2  9)   lim   x 3  x3    4( x  3)( x  3)   lim   x 3  x3   lim  ( 4)( x  3) 

x 1

 1  1  0 Tangent Line: y  ( 4)  0( x  (1)) y40 y  4

x 3

  4(6)   24

1449

Copyright © 2020 Pearson Education, Inc.


Chapter 14: A Preview of Calculus: The Limit, Derivative, and Integral of a Function

34.

f ( x)  x 2  3x at 0

b.

16t 2  96t  0

 f ( x)  f (0)  f (0)  lim   x 0  x0   x2  3x  0   lim   x 0 x    x( x  3)   lim   x 0  x   lim ( x  3)  3

16t (t  6)  0 t  0 or t  6 The ball passes the rooftop after 6 seconds.

c.

 s s (2)  s (0)  t 20 16(2) 2  96(2)  112  112 2 128   64 feet/sec 2 

x 0

35.

16t 2  96t  112  112

f ( x)  2 x 2  3 x  2 at 1  f ( x)  f (1)  f (1)  lim   x 1  x 1   2 x 2  3x  2  7   lim   x 1 x 1  

d.

 2 x 2  3x  5   lim   x 1 x 1    (2 x  5)( x  1)   lim   x 1  x 1   lim (2 x  5)  7

 s  t   s  t0   s   t0   lim   t  t0 t  t0   2 2  16t  16t0  96t  96t0   lim   t t0  t  t0  

 16 t 2  t0 2  96  t  t0     lim   t t0  t  t0    16  t  t0  t  t0   96  t  t0    lim   t t0 t  t0  

x 1

36. Use nDeriv:

  t  t0   16  t  t0   96     lim   t t0   t t 0    lim  16  t  t0   96  t t0

  16  t0  t0   96   32t0  96 ft/sec The instantaneous speed at time t is 32t  96 feet per second.

37. Use nDeriv:

38. a.

e.

s (2)  32(2)  96   64  96  32 feet/sec

f.

s (t )  0 32t  96  0

16t 2  96t  112  0

32t  96

16(t 2  6t  7)  0

t  3 seconds

16(t  1)(t  7)  0 t  1 or t  7 The ball strikes the ground after 7 seconds in the air.

g.

s (6)  32(6)  96  192  96  96 feet/sec

1450

Copyright © 2020 Pearson Education, Inc.


Chapter 14 Review Exercises

h.

s (7)  32(7)  96  224  96

d.

 128 feet/sec

39. a.

 R 8775  2340 6435    $61.29/watch x 130  25 105

b.

 R 6975  2340 4635    $71.31/watch x 90  25 65

c.

 R 4375  2340 2035    $81.40/watch x 50  25 25

d.

R  x   0.25 x 2  100.01x  1.24

e.

5  7   1   f    f (3)  f       2    2   2  1  (3  4  5  6  7  8  9  10)   2 1  52    26 2

e.

1  (4  5  6  7  8  9  10  11)   2 1  60    30 2

 R ( x )  R (25)  R   25   lim   x  25  x  25   0.25 x 2  100.014 x  2344   lim   x  25 x  25     x  25  0.25 x  93.76    lim   x  25 x  25    lim  0.25 x  93.76 

f.

x  25

41. a.

The actual area is the area of a trapezoid: 1 56 A  (3  11)(4)   28 2 2 Graph f ( x)  4  x 2 , [1, 2] :

Graph f ( x)  2 x  3 :

b. b.

 1 3 5 A   f    f (1)  f    f (2)  f   2 2   2     1 7  f (3)  f    f (4)     2  2

 0.25  25   93.76  $87.51 /watch

40. a.

 1 3 A   f (0)  f    f (1)  f    f (2) 2   2 

A   f (0)  f (1)  f (2)  f (3)  (1)

A   f (1)  f (0)  f (1)  (1)  (3  4  3)(1)  10(1)  10

 (3  5  7  9)(1)  24(1)  24

c.

A   f (1)  f (2)  f (3)  f (4)  (1)  (5  7  9  11)(1)  32(1)  32

1451

Copyright © 2020 Pearson Education, Inc.


Chapter 14: A Preview of Calculus: The Limit, Derivative, and Integral of a Function

c.

  1 1 A   f (1)  f     f (0)  f   2   2 

4

 3   1   f (1)  f        2   2  15 7  1   15  3  4   3   4 4 4  2   

d.

  1  A    2  dx 1  x 

e.

Use fnInt function:

77  1  77  9.625   4 2 8 2

 4  x  dx

d.

A  

e.

Use fnInt function:

 1

43. a.

2

The integral represents the area under the graph of f ( x)  9  x 2 from x  1 to x 3.

b.

42. a.

Graph f ( x) 

1 x2

, [1, 4] :

c.

b.

A   f (1)  f (2)  f (3)  (1)

44. a.

 1 1   1    (1)  4 9 49 49 (1)    1.36 36 36

c.

Use fnInt function:

The integral represents the area under the graph of f ( x)  e x from x  1 to x  1 .

b.

 3 5 A   f (1)  f    f (2)  f   2   2   7   1   f (3)  f        2   2   4 1 4 1 4  1   1          9 4 25 9 49   2   1.02

1452

Copyright © 2020 Pearson Education, Inc.


Chapter 14 Test c.

Use fnInt function:

3.

lim

x 6

7  3 x  7  3  6 

 7  18  25  5

4. Note that direct substitution will yield the 0 indeterminate form . For rational functions, 0 this means that there is a common factor that can be cancelled before taking the limit.  x  5 x  1 x2  4 x  5 lim  lim 3 x 1 x  1 x 1  x  1 x 2  x  1

Chapter 14 Test 1. Here we are taking the limit of a polynomial. Therefore, we evaluate the polynomial expression for the given value.

lim  x 2  3x  5    3  3  3  5 x 3

2

 9  9  5

x 5

 lim

 5

x 1 x 2  x  1

lim  x  5 

x 1

2. For this problem, direct substitution does not work because it would yield the indeterminate 0 form . However, notice that this is a one-sided 0 limit from the right. As we approach 2 from the right, we will have x values such that x  2 . Therefore, we have x  2  x  2 and get the

following: x2 x2 lim  lim x2 3x  6 x 2 3x  6 x2  lim x 2 3  x  2 

lim x 2  x  1

x 1

1  5

 1   1  1 2

6  2 3

2 2 5. lim  3 x  x  2    lim  3x   lim  x  2   x 5 x 5  x 5

 lim 3  lim x   lim  x  2    x 5  x 5 x 5  3  5  5  2

1 x 2 3 1  3 Remember that we can cancel the common factor  x  2  because we are interested in what

 lim

 15  3  135

happens near 2, not actually at 2.

1453

Copyright © 2020 Pearson Education, Inc.

2

2

2


Chapter 14: A Preview of Calculus: The Limit, Derivative, and Integral of a Function 11. For a limit to exist, the limit from the left and the limit from the right must both exist and be equal. From the graph we see that the limit exists since lim f  x   lim f  x   2  lim f  x 

lim tan x

6. lim x

tan x

 1  cos 2 x

x

4

lim 1  cos 2 x

4

x

tan

x 1

4

 4

1  cos 

1

1 1 2 2  3

2

4

1  2 1    2 

x 1+

x 1

Note that the limit need not be equal to the function value at the point c. In fact, the function does not even need to be defined at c. We simply need the left and right limits to exist and be the same.

2

1 3 2

12. a. The graph has a hole at x  2 and the function is undefined. Thus, the function is not continuous at x  2 . b. The function is defined at x  1 and lim f  x  exists, but lim f  x   f 1 so x 1

x 1

the function is not continuous at x  1 . c. The function is defined at x  3 , but there is a gap in the graph. That is, lim f  x   lim f  x  so the two-sided

7. To be continuous at a point x  c , we need to show that lim f  x   lim f  x   f  c  . x c 

x 3 

x 2  9 42  9  1 x4 x 4 x  3 43 lim f  x   lim  kx  5   4k  5 lim f  x   lim

x4

x 3

limit as x  3 does not exist. Thus, the function is not continuous at x  3 .

x c 

d. From the graph we can see that lim f  x   lim f  x   f  4  . Therefore,

x 4

x4

42  9 1 43 Therefore, we need to solve 4k  5  1 4 k  4

x4

the function is continuous at x  4 .

f  4 

13.

k  1

8. To find the limit, we look at at the values of f when x is close to 3, but more than 3. From the graph, we conclude that lim f  x   3 . x 3+

9. To find the limit, we look at at the values of f when x is close to 3, but less than 3. From the graph, we conclude that lim f  x   5 .

x3  6 x 2  4 x  24 x 2  5 x  14 Begin by factoring the numerator and denominator, but do not cancel any common factors yet. x3  6 x 2  4 x  24 R  x  x 2  5 x  14 x2  x  6  4  x  6   x  7  x  2  R  x 

 x  6  x2  4   x  7  x  2   x  6  x  2  x  2    x  7  x  2 

x 3

10. To find the limit, we look at at the values of f when x is close to 2 on either side. From the graph, we see that the limits from the left and right are the same and conclude that lim f  x   2 .

From the denominator, we can see that the function is undefined at the values x  7 and x  2 because these values make the denominator equal 0. To determine whether an asymptote or hole occur at these restricted values, we need to write the function in lowest terms by canceling

x 2

1454

Copyright © 2020 Pearson Education, Inc.


Chapter 14 Test

common factors.  x  6  x  2  x  2   x  6  x  2  R  x    x  7  x  2   x  7 (where x  2 ) Since x  7 still makes the denominator equal to 0, there will be a vertical asymptote at x  7 . Since x  2 no longer makes the denominator equal to 0 when the expression is in lowest terms, there will be a hole in the graph at x  2 . 14. a.

c.

15. a.

f '  2 f  x   f  2 x 2 x2

0

 lim

2

y  16  0  4

 x, y   0, 4 

 2, 2 3  3 y  16  3  7  3, 7 

 4 x  11x  3   4  2   11 2   3

x 2

y  f  x

2 y  16  22  2 3

2

2

 lim

x

2

x2

4 x 2  11x  3   9   lim x 2 x2 2 4 x  11x  6  lim x 2 x2  x  2  4 x  3  lim x 2 x2  lim  4 x  3

4

y  16  42  0

 4, 0 

x 2

 4  2  3  5

b. The derivative evaluated at x  2 is the slope of the tangent line to the graph of f at x  2 . From part (a), we have mtan  5 . Using the

b. Each subinterval will have length ba 40 1   8 8 2 Since u  left endpoint , we have

slope and the given point,  2, 9  , we can

find the equation of the tangent line. y  y1  m  x  x1 

1 3 , u  1, u3  , 2 2 2 5 7 u4  2, u5  , u6  3, u7  2 2 a  u0  0, u1 

y   9   5  x  2  y  9  5 x  10 y  5 x  19 Therefore, the equation of the tangent line to the graph of f at x  2 is y  5 x  19 .

1455

Copyright © 2020 Pearson Education, Inc.


Chapter 14: A Preview of Calculus: The Limit, Derivative, and Integral of a Function y

Chapter 14 Projects

5

Project I 5

5

Total Midyear Population for the World: 1950-2050

x

t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

5

 

 

1 A  [ f  0   f 12  f 1  f 32  f  2  2

 

 

 f 52  f  3  f 72 ] 1  [4  3.969  3.873  3.708  3.464 2  3.123  2.646  1.937] 1   26.72  2  13.36 square units

c. The desired region is one quarter of a circle with radius r  4 . The area of this region is 1 2 A    4    4 1  16   4  12.566 square units 4 The estimate in part (b) is slightly larger than the actual area. Since the function is decreasing over the entire interval, the largest value of the function on a subinterval always occurs at the left endpoint. Therefore, we would expect our estimate to be larger than the actual value. 4

16. Area  1  x 2  5 x  3 dx 17. The average rate of change is given by s  6   s  3 137  31 a.r.c.   63 63 106 1   35  35.33 ft. per sec. 3 3

1456

Copyright © 2020 Pearson Education, Inc.

Year 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979

Population 2,555,360,972 2,593,139,857 2,635,192,901 2,680,522,529 2,728,486,476 2,779,929,940 2,832,880,780 2,888,699,042 2,945,196,478 2,997,522,100 3,039,585,530 3,080,367,474 3,136,451,432 3,205,956,565 3,277,024,728 3,346,002,675 3,416,184,968 3,485,881,292 3,557,690,668 3,632,294,522 3,707,475,887 3,784,957,162 3,861,537,222 3,937,599,035 4,013,016,398 4,086,150,193 4,157,827,615 4,229,922,943 4,301,953,661 4,376,897,872


Chapter 14 Projects 1.

t 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

Year 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

Population 4,452,584,592 4,528,511,458 4,608,410,617 4,689,840,421 4,769,886,824 4,851,592,622 4,934,892,988 5,020,809,215 5,107,404,183 5,194,105,912 5,281,653,820 5,365,480,276 5,449,369,636 5,531,014,635 5,611,269,983 5,691,759,210 5,770,701,020 5,849,885,301 5,927,556,529 6,004,170,056 6,079,603,571 6,153,801,961 6,226,933,918 6,299,763,405 6,372,797,742 6,446,131,400

y

1.13  1010 1  3.65e 0.029t

2.

y 7  109

60

t

3.

4.

y 1961  3, 039,585,530  64, 288,855  3,103,874,385 The actual population in 1961 was 3,080,367,474.

Source: U.S. Bureau of the Census, International Database. Note: Data updated 9-30-2004 http://www.census.gov/ipc/www/worldpop.html

5.

The instantaneous growth is slowing down. Thus, Malthus’ contention is not true.

1457

Copyright © 2020 Pearson Education, Inc.


Chapter 14: A Preview of Calculus: The Limit, Derivative, and Integral of a Function 6.

t  24 to t  48 : D 0.004  0.003   0.000042 m/hr t 48  24

The growth rate is largest in 1994. Then, the growth rate begins to decrease. The y value on the graph for this time is 5.65  109 . 3.

D (m) 0.006

7.

0.001

 1.13  1010  lim f  t   lim   t  t  1  3.65e 0.029t  

20

1.13  1010  1.13  1010 1 0 The carrying capacity of the Earth is 1.13  1010 people. 

8.

If the population exceeds the carrying capacity, the population will begin to die off very quickly due to hunger and disease in particular. There will not be enough agricultural growth to keep up with the increase in population. Urban sprawl will cause agricultural growth to diminish since land will be taken away.

Project II 1.

D (m) 0.006

20, 40%

0.001 20

40

20, 80%

t (Years)

2. t  1 to t  2 : D 0.0014  0.0011   0.003 m/hr t 2 1 t  2 to t  5 : D 0.0017  0.0014   0.001 m/hr t 52

1458

Copyright © 2020 Pearson Education, Inc.

40

t (Years)


Chapter 14 Projects 4. t = 1 to t = 2: D 0.002  0.0017   0.0003m / hr t 2 1

from t = 24 to t = 48. The lowest rate is for 20% for the time span t = 24 to t = 48. 6.

t = 2 to t = 5: D 0.0023  0.002   0.0001m / hr t 52 t = 24 to t = 48: D 0.006  0.004   0.000083m / hr t 48  24

D (t )  0.0000006t 2  0.0001t  0.0014

5. There are no differences until the time span from t = 24 to t = 48. The highest rate is for 80 % RH 0.0000006(t  h) 2  0.0001(t  h)  0.0014  ( 0.0000006t 2  0.0001t  0.0014) 7. D '(t )  lim h 0 h 0.0000006(t 2  2th  h 2 )  0.0001(t  h)  0.0014  0.0000006t 2  0.0001t  0.0014  lim h 0 h 0.0000012th  0.0000006h 2  0.0001h  lim h 0 h  lim (0.0000012t  0.000006h  0.0001) h 0

 0.0000012t  0.0001 D '(2)  0.0000976 m/hr  0.0001 m/hr D '(24)  0.0000712 m/hr

8.

D (t )  0.0000003t 2  0.0001t  0.0017

0.0000003(t  h) 2  0.0001(t  h)  0.0017  (0.0000003t 2  0.0001t  0.0017) h 0 h 2 2 0.0000003(t  2th  h )  0.0001(t  h)  0.0017  0.0000003t 2  0.0001t  0.0017  lim h 0 h 2 0.0000006th  0.0000003h  0.0001h  lim h 0 h  lim (0.0000006t  0.000003h  0.0001)

D '(t )  lim

h 0

 0.0000006t  0.0001 D '(2)  0.0000988m / hr  0.0001m / hr D '(24)  0.0000856m / hr  0.00009m / hr The instantaneous rate of change is the same at t = 2, but the rates are different for t = 24.

1459

Copyright © 2020 Pearson Education, Inc.


Chapter 14: A Preview of Calculus: The Limit, Derivative, and Integral of a Function Project III 1. X P (total profit) 0 -24000 25 250 60 8500 102 18150 150 20160 190 19610 223 14985 249 9625 The profit-maximizing level is 150 bicycles. 2.

y

($)

50,000

200

x (bicycles)

3.

C ( x)  0.002 x3  0.6 x 2  157 x  24068

4.

R ( x)  1.8 x 2  638 x  7205

5. P( x)  R( x)  C ( x)  (1.8 x 2  638 x  7205)  (0.002 x3  0.6 x 2  157 x  24068)  0.002 x3  2.4 x 2  795 x  31273

1460

Copyright © 2020 Pearson Education, Inc.


Chapter 14 Projects 6. y

y

($)

($)

y2  C  x 

50,000

50,000

y1  R x 

y3  P x  100

x

200

x

The answer in (a) was 150 and this one is 147. Those are very close. 7.

9.

$/Bicycle 500

$/Bicycle 500 y 5  R ' x 

P ' x 

y4  C '  x 

275

x

275

8.

x

10.

This is the same result as in part (f).

11. Marginal revenue is the rate of change of the revenue as another bicycle is produced. Marginal cost gives the change in cost that making the next bicycle will cause. When the rate of change of the revenue is the same as the rate of change of the cost, the two changes offset each other, thus maximizing the cost.

1461

Copyright © 2020 Pearson Education, Inc.


Chapter 13 Counting and Probability 13. n( A  B )  50, n( A  B )  10, n( B )  20 n( A  B )  n( A)  n( B )  n( A  B ) 50  n( A)  20  10 40  n( A)

Section 13.1 1. union 2. intersection 3. True; the union of two sets includes those elements that are in one or both of the sets. The intersection consists of the elements that are in both sets. Thus, the intersection is a subset of the union. 4. True; every element in the universal set is either in the set A or the complement of A.

14. n( A  B )  60, n( A  B )  40, n( A)  n( B) n( A  B )  n( A)  n( B )  n( A  B ) 60  n( A)  n( A)  40 100  2n( A) n( A)  50

5. subset; 

15. From the figure: n( A)  15  3  5  2  25

6. finite

16. From the figure: n( B )  10  3  5  2  20

7. True

17. From the figure: n( A or B )  n( A  B)  15  2  5  3  10  2  37

8. b 9. , a , b , c , d  , a, b , a, c , a, d  ,

18. From the figure: n( A and B )  n( A  B )  3  5  8

b, c , b, d  , c, d  , a, b, c , a, b, d  , a, c, d  , b, c, d  , a, b, c, d 

19. From the figure: n( A but not C )  n( A)  n( A  C )  25  7  18

10. , a , b , c , d  , e , a, b , a, c ,

a, d  , a, e , b, c , b, d  , b, e , c, d  , c, e , d , e , a, b, c , a, b, d  , a, b, e , a, c, d  , a, c, e , a, d , e , b, c, d  , b, c, e , b, d , e , c, d , e , a, b, c, d  , a, b, c, e , a, b, d , e , a, c, d , e , b, c, d , e , a, b, c, d , e

20. From the figure: n( A)  10  2  15  4  31 21. From the figure: n( A and B and C )  n( A  B  C )  5 22. From the figure: n( A or B or C )  n( A  B  C )  15  3  5  2  10  2  15  52

11. n( A)  15, n( B )  20, n( A  B)  10 n( A  B)  n( A)  n( B)  n( A  B)

23. There are 5 choices of shirts and 3 choices of ties; there are (5)(3) = 15 different arrangements.

 15  20  10  25

24. There are 5 choices of blouses and 8 choices of skirts; there are (5)(8) = 40 different outfits.

12. n( A)  30, n( B )  40, n( A  B)  45 n( A  B )  n( A)  n( B )  n( A  B) 45  30  40  n( A  B ) n( A  B )  30  40  45  25

25. There are 9 choices for the first digit, and 10 choices for each of the other three digits. Thus, there are (9)(10)(10)(10) = 9000 possible fourdigit numbers. 1382

Copyright © 2020 Pearson Education, Inc.


Section 13.1: Counting 26. There are 8 choices for the first digit, and 10 choices for each of the other four digits. Thus, there are (8)(10)(10)(10)(10) = 80,000 possible five-digit numbers. 27. Let A  those who will purchase a major appliance and B  those who will buy a car

n(U )  500, n( A)  200, n( B )  150, n( A  B )  25 n( A  B )  n( A)  n( B )  n( A  B )

There are 8 different kinds of blood: A-Rh+, B-Rh+, AB-Rh+, O-Rh+, A-Rh–, B-Rh–, AB-Rh–, O-Rh– 31. a. n( widowed or divorced )  n( widowed )  n(divorced )  3.3  10.9  14.2 There were 14.2 million males 18 years old and older who were widowed or divorced. b.

 200  150  25  325 n(purchase neither)  n U   n  A  B   500  325  175 n(purchase only a car)  n  B   n  A  B   150  25  125

28. Let A  those who will attend Summer Session I and B  those who will attend Summer Session II n( A)  200, n( B)  150, n( A  B )  75,

n A  B  275 n( A  B )  n( A)  n( B )  n( A  B )  200  150  75  275

n(U )  n( A  B)  n A  B  275  275  550

550 students participated in the survey. 29. Construct a Venn diagram: 15

AT&T

IBM 15

15

5 15

10 10

15

n(married, divorced or separated)  n(married )  n(divorced )  n(deparated)  65.3  10.9  2.2  78.4 There were 78.4 million males 18 years old and older who were married, divorced, or separated.

32. a. n(divorced or separated )  n(divorced )  n(deparated )  14.6  2.8  17.4 There were 17.4 million females 18 years old and older who were divorced or separated. b.

n(married, widowed or divorced)  n(married )  n( widowed )  n(divorced)  65.1  11.6  14.6  91.3 There were 91.3 million females 18 years old and older who were married, widowed, or divorced.

33. There are 8 choices for the DOW stocks, 15 choices for the NASDAQ stocks, and 4 choices for the global stocks. Thus, there are (8)(15)(4) = 480 different portfolios. 34 – 35. Answers will vary. 36. The graph is a circle with center at (2, 1) and radius 3.

GE

(a) 15

(b) 15

(c) 15

(d) 25

(e) 40 30. Construct a Venn diagram:

1383 Copyright © 2020 Pearson Education, Inc.


Chapter 13: Counting and Probability

The solutions are:  8,3 and  3, 2  .

37. a  2, b  2 c  3 a  b  c  2bc cos A 2

2

2

42.

b 2  c 2  a 2 22  32  22 3 cos A    2bc 2(2)(3) 4

(2 x  7)(3x 2  5 x  4)  6 x  10 x  8 x  21x  35 x  28 3

 3 A  cos 1    41.4º  4

cos B 

43. There is a common ratio between the terms:

a c b 2  3  32 3   2ac 2(2)(3) 4 2

2

2

2

2

C  180º  A  B  180º 41.4º 41.4º  97.2º f ( x)  ( x  2)( x 2  3x  10)

44.

1 2 2 1 ( x  2) 3  ( x  2) 3 3 3 1 2  1   ( x  2) 3  2( x  2) 3  1 3   1 1    2( x  2) 3  1 2    3 3( x  2)

f ( x) 

0  ( x  2)( x  5)( x  2) ( x  2)  0 ( x  5)  0 ( x  2)  0 x2 x5 The zeros are 2,5, 2 .

x  2

39. log 3 x  log 3 2  2

a.

log 3 (2 x)  2

1

1 2 1 x2   8 15 x 8 b. f ( x) is undefined when the denominator is zero. 1

( x  2) 3  



x3  72 x x3  72 x  0 x( x 2  72)  0 x 2  72

f ( x)  0 when the numerator is zero. 2( x  2) 3  1  0

32  2 x 1 1  2x  x  9 18 1 The solution set is . 18

40.

12

5  0.6 . Because r < 1, the series 4 converges. The first term is 4. So the sum is a 4 4    10 . S 1  r 1  0.6 0.4 r

 3 B  cos 1    41.4º  4

38.

2

 6 x3  31x 2  43 x  28

b 2  a 2  c 2  2ac cos B 2

2

2

( x  2) 3  0 ( x  2)  0 x2

or x  0

x  72  6 2

The solution set is 6 2 .

45. Find the partial fraction decomposition: 3x 2  15 x  5 A B C    x x  1 ( x  1) 2 x( x  1) 2

41. Solve the first equation for x and substitute into the second equation. x y 5 x  y5

Multiplying both sides by x( x  1) 2 , we obtain:

y  5  y 2  1

3x 2  15 x  5  A( x  1) 2  Bx( x  1)  Cx Let x  1 , then 3(1) 2  15(1)  5  A(1  1) 2  B(1)(1  1)  C (1) 7  1C C 7

y  y6  0 ( y  3)( y  2)  0 2

y  3 or y  2 For y  3 : x  3  5  8 For y  2 : x  2  5  3

1384

Copyright © 2020 Pearson Education, Inc.


Section 13.2: Permutations and Combinations

Let x  0 , then 3(0) 2  15(0)  5  A(0  1) 2  B (0)(0  1)  C (0) 5  A  0 B  0C 5 A Let x  1 , then 3(1) 2  15(1)  5  5(1  1) 2  B (1)(1  1)  7(1) 23  20  2 B  7 2 B  4 B  2 2 3x  15 x  5 5 2 7    2 x x  1 ( x  1) 2 ( x  2)( x  1)

Section 13.2

12. P (9, 0) 

9! 9!  1 (9  0)! 9!

13. P (8, 4) 

8! 8! 8  7  6  5  4!    1680 (8  4)! 4! 4!

14. P (8, 3) 

8! 8! 8  7  6  5!    336 (8  3)! 5! 5!

15. C (8, 2) 

8! 8! 8  7  6!    28 (8  2)! 2! 6! 2! 6!  2 1

16. C (8, 6) 

8! 8! 8  7  6!    28 (8  6)! 6! 2! 6! 6!  2 1

17. C (7, 4) 

7! 7! 7  6  5  4!    35 (7  4)! 4! 3! 4! 4!  3  2 1

18. C (6, 2) 

6! 6! 6  5  4!    15 (6  2)! 2! 4! 2! 4!  2 1

1. 1; 1 2. b

19. C (15, 15) 

15! 15! 15!   1 (15  15)!15! 0!15! 15! 1

3. permutation 20. C (18, 1) 

4. combination

18! 18! 18 17!    18 (18  1)!1! 17!1! 17! 1

5. P (n, r ) 

n! (n  r )!

21. C (26, 13) 

6. C (n, r ) 

n! (n  r )! r !

22. C (18, 9) 

7. P (6, 2) 

6! 6! 6  5  4!    30 (6  2)! 4! 4!

8. P (7, 2) 

7! 7! 7  6  5!    42 (7  2)! 5! 5!

9. P (4, 4) 

4! 4! 4  3  2 1    24 (4  4)! 0! 1

8! 8!  (8  8)! 0! 8  7  6  5  4  3  2 1   40,320 1

10. P (8, 8) 

11. P (7, 0) 

26! 26!   10, 400, 600 (26  13)!13! 13!13!

18! 18!   48, 620 (18  9)! 9! 9! 9!

23. {abc, abd , abe, acb, acd , ace, adb, adc, ade, aeb, aec, aed , bac, bad , bae, bca, bcd , bce, bda, bdc, bde, bea, bec, bed , cab, cad , cae, cba, cbd , cbe, cda, cdb, cde, cea, ceb, ced , dab, dac, dae, dba, dbc, dbe, dca, dcb, dce, dea, deb, dec, eab, eac, ead , eba, ebc, ebd , eca, ecb, ecd , eda, edb, edc} P (5,3) 

5! 5! 5  4  3  2!    60 (5  3)! 2! 2!

7! 7!  1 (7  0)! 7!

1385 Copyright © 2020 Pearson Education, Inc.


Chapter 13: Counting and Probability

24. {ab, ac, ad , ae, ba, bc, bd , be, ca, cb, cd , ce, da, db, dc, de, ea, eb, ec, ed } P (5, 2) 

30. {123, 124, 125, 126, 134, 135, 136, 145, 146, 156, 234, 235, 236, 245, 246, 256, 345,346, 356, 456}

5! 5! 5  4  3!    20 (5  2)! 3! 3!

C (6,3) 

6! 6  5  4  3!   20 (6  3)! 3! 3  2 1  3!

25. {123, 124, 132, 134, 142, 143, 213, 214, 231, 234, 241, 243, 312, 314, 321, 324, 341, 342, 412, 413, 421, 423, 431, 432}

31. There are 4 choices for the first letter in the code and 4 choices for the second letter in the code; there are (4)(4) = 16 possible two-letter codes.

4! 4! 4  3  2 1    24 (4  3)! 1! 1

32. There are 5 choices for the first letter in the code and 5 choices for the second letter in the code; there are (5)(5) = 25 possible two-letter codes.

P (4,3) 

26. {123, 124, 125, 126, 132, 134, 135, 136, 142, 143, 145, 146, 152, 153, 154, 156, 162, 163, 164, 165, 213, 214, 215, 216, 231, 234, 235, 236, 241, 243, 245, 246, 251, 253, 254, 256, 261, 263, 264, 265, 312, 314, 315, 316, 321, 324, 325, 326, 341, 342, 345, 346, 351, 352, 354, 356, 361, 362, 364, 365, 412, 413, 415, 416, 421, 423, 425, 426, 431, 432, 435, 436, 451, 452, 453, 456, 461, 462, 463, 465, 512, 513, 514, 516, 521, 523, 524, 526, 531, 532, 534, 536, 541, 542, 543, 546, 561, 562,563, 564, 612, 613, 614, 615, 621, 623, 624, 625, 631, 632, 634, 635, 641, 642, 643, 645, 651, 652, 653, 654} P (6,3) 

33. There are two choices for each of three positions; there are (2)(2)(2) = 8 possible threedigit numbers. 34. There are ten choices for each of three positions; there are (10)(10)(10) = 1000 possible three-digit numbers. (Note this is if we allow numbers with initial zeros such as 012.) 35. To line up the four people, there are 4 choices for the first position, 3 choices for the second position, 2 choices for the third position, and 1 choice for the fourth position. Thus there are (4)(3)(2)(1) = 24 possible ways four people can be lined up. 36. To stack the five boxes, there are 5 choices for the first position, 4 choices for the second position, 3 choices for the third position, 2 choices for the fourth position, and 1 choice for the fifth position. Thus, there are (5)(4)(3)(2)(1) = 120 possible ways five boxes can be stacked.

6! 6! 6  5  4  3!    120 (6  3)! 3! 3!

27. {abc, abd , abe, acd , ace, ade, bcd , bce, bde, cde} C (5,3) 

37. Since no letter can be repeated, there are 5 choices for the first letter, 4 choices for the second letter, and 3 choices for the third letter. Thus, there are (5)(4)(3) = 60 possible threeletter codes.

5! 5  4  3!   10 (5  3)! 3! 2 1  3!

28. {ab, ac, ad , ae, bc, bd , be, cd , ce, de} C (5, 2) 

38. Since no letter can be repeated, there are 6 choices for the first letter, 5 choices for the second letter, 4 choices for the third letter, and 3 choices for the fourth letter. Thus, there are (6)(5)(4)(3) = 360 possible three-letter codes.

5! 5  4  3!   10 (5  2)! 2! 3! 2 1

29. {123, 124, 134, 234} C (4,3) 

4! 4  3!  4 (4  3)! 3! 1! 3!

39. There are 26 possible one-letter names. There are (26)(26) = 676 possible two-letter names. There are (26)(26)(26) = 17,576 possible threeletter names. Thus, there are 26 + 676 + 17,576 = 18,278 possible companies that can be listed on the New York Stock Exchange. 1386

Copyright © 2020 Pearson Education, Inc.


Section 13.2: Permutations and Combinations 40. There are (26)(26)(26)(26) = 456,976 possible four-letter names. There are 26)(26)(26)(26)(26) = 11,881,376 possible five-letter names. Thus, there are 456,976 + 11,881,376 = 12,338,352 possible companies that can be listed on the NASDAQ. 41. A committee of 4 from a total of 7 students is given by: 7! 7! 7  6  5  4! C (7, 4)     35 (7  4)! 4! 3! 4! 3  2 1  4! 35 committees are possible. 42. A committee of 3 from a total of 8 professors is given by: 8! 8! 8  7  6  5! C (8,3)     56 (8  3)! 3! 5! 3! 3  2 1  5! 56 committees are possible.

47. The 1st person can have any of 365 days, the 2nd person can have any of the remaining 364 days. Thus, there are (365)(364) = 132,860 possible ways two people can have different birthdays. 48. The first person can have any of 365 days, the second person can have any of the remaining 364 days, the third person can have any of the remaining 363 days, the fourth person can have any of the remaining 362 days, and the fifth person can have any of the remaining 361 days. Thus, there are (365)(364)(363)(362)(361) = 6,302,555,018,760 possible ways five people can have different birthdays. 49. Choosing 2 boys from the 4 boys can be done C(4,2) ways. Choosing 3 girls from the 8 girls can be done in C(8,3) ways. Thus, there are a total of: 4! 8!  (4  2)! 2! (8  3)! 3! 4! 8!   2! 2! 5! 3! 4  3  2! 8  7  6  5!   2  1  2! 5! 3!

C (4,2)  C (8,3) 

43. There are 2 possible answers for each question. Therefore, there are 210  1024 different possible arrangements of the answers. 44. There are 4 possible answers for each question. Therefore, there are 45  1024 different possible arrangements of the answers. 45. There are 5 choices for the first position, 4 choices for the second position, 3 choices for the third position, 2 choices for the fourth position, and 1 choice for the fifth position. Thus, there are (5)(4)(3)(2)(1) = 120 possible arrangements of the books. 46. a.

There are 26 choices for each of the first two positions, and 10 choices for each of the next four positions. Thus, there are (26)(26)(10)(10)(10)(10) = 6,760,000 possible license plates.

b.

There are 26 choices for each of the first two positions, 10 choices for the first digit, 9 choices for the second digit, 8 choices for the third digit, and 7 choices for the fourth digit. Thus, there are (26)(26)(10)(9)(8)(7) = 3,407,040 possible license plates.

c.

There are 26 choices for the first letter, 25 choices for the second letter, 10 choices for the first digit, 9 choices for the second digit, 8 choices for the third digit, and 7 choices for the fourth digit. Thus, there are (26)(25)(10)(9)(8)(7) = 3,276,000 possible license plates.

 6  56  336

50. The committee is made up of 2 of 4 administrators, 3 of 8 faculty members, and 5 of 20 students. The number of possible committees is: C (4,2)  C (8,3)  C (20,5) 4! 8! 20!   (4  2)! 2! (8  3)! 3! (20  5)! 5! 4! 8! 20!    2! 2! 5! 3! 15! 5! 4! 8  7  6  5! 20  19  18  17  16  15!    2  1  2  1 5  4! 3! 15! 5!

 5,209,344 possible committees

51. This is a permutation with repetition. There are 9!  90, 720 different words. 2! 2! 52. This is a permutation with repetition. There are 11!  4,989, 600 different words. 2! 2! 2! 53. a.

C (7, 2)  C (3,1)  21  3  63

1387 Copyright © 2020 Pearson Education, Inc.


Chapter 13: Counting and Probability

b.

C (7,3)  C (3, 0)  35 1  35

c.

C (3,3)  C (7, 0)  1 1  1

54. a. b. c.

58. There are 8 choices for the first position, 7 choices for the second position, 6 for the third position, etc. and 1 choice for the last position. There are 8  7  6  5  4  3  2 1 1  8! 1  40,320 possible batting orders.

C (15,5)  C (10, 0)  3003 1  3003 C (15,3)  C (10, 2)  455  45  20, 475

59. The team must have 1 pitcher and 8 position players (non-pitchers). For pitcher, choose 1 player from a group of 4 players, i.e., C(4, 1). For position players, choose 8 players from a group of 11 players, i.e., C(11, 8). Thus, the number different teams possible is C (4,1)  C (11,8)  4 165  660.

C (15, 4)  C (10,1)  C (15,5)  C (10, 0)  1365 10  3003 1  13, 650  3003  16, 653

60. Consider the ways that the American League can win. Then multiply by 2 to get the total for both leagues. To win the World Series, the last game must be won. There is 1 way to win in four games. To win in 5 games, three of the first four must be won, so there are C(4, 3) = 4 ways to win in 5 games. To win in 6 games, three of the first five must be won, so there are C(5, 3) = 10 ways to win in 6 games. To win in 7 games, three of the first six must be won, so there are C(6, 3) = 20 ways to win in 7 games. Therefore, there are 1 + 4 + 10 + 20 = 35 ways the American League can win the World Series. There are also 35 ways the National League can win the World Series. There are a total of 70 different sequences possible.

55. There are C(100, 22) ways to form the first committee. There are 78 senators left, so there are C(78, 13) ways to form the second committee. There are C(65, 10) ways to form the third committee. There are C(55, 5) ways to form the fourth committee. There are C(50, 16) ways to form the fifth committee. There are C(34, 17) ways to form the sixth committee. There are C(17, 17) ways to form the seventh committee. The total number of committees  C (100, 22)  C (78,13)  C (65,10)  C (55,5)  C (50,16)  C (34,17)  C (17,17)  1.157  1076

61. Choose 2 players from a group of 6 players. Thus, there are C (6, 2)  15 different teams possible.

56. The team is made up of 5 of 10 linemen, 3 of 10 linebackers, and 3 of 5 safeties. The number of possible teams is: C (10,5)  C (10,3)  C (5,3)  252 120 10  302, 400 There are 302,400 possible defensive teams.

62. Choose 1 of 2 centers, 2 of 3 guards, and 2 of 7 forwards. There are C (2,1)  C (3, 2)  C (7, 2)  2  3  21  126 different teams possible. 63. a.

57. There are 9 choices for the first position, 8 choices for the second position, 7 for the third position, etc. There are 9  8  7  6  5  4  3  2 1  9!  362,880 possible batting orders.

If numbers can be repeated, there are (50)(50)(50) = 125,000 different lock combinations. If no number can be repeated, then there are 50  49  48  117, 600 different lock combinations.

b. Answers will vary. Typical combination locks require two full clockwise rotations to the first number, followed by a full counter-clockwise rotation past the first number to the second number, followed by a clockwise rotation to the third number (not past the second). This is not clear from the given directions. Perhaps a better name for a combination lock would be a permutation lock since the order in which the numbers are entered matters.

1388

Copyright © 2020 Pearson Education, Inc.


Section 13.2: Permutations and Combinations 64. For each possible number of characters for the password, 8 through 12, find the total number of arrangements of the 36 letters and digits, and then subtract both the number of arrangements consisting only of the 26 letters (because the password must have at least one digit) and the number os arrangements consisting only of the 10 digits (because the password must have at least one letter). Finally, add the results to obtain the total number of passwords: 368  268  108  369  269  109  3610  2610  1010  3611  2611  1011  3612  2612  1012 8-character passwords

9-character passwords

10-character passwords

11-character passwords

12-character passwords

18

=4.774516364  10

70. sin 75  sin(45  30)

65 – 66. Answers will vary. 67. A permutation is an ordered arrangement of objects while with a combination order does not matter. For example, the number of ways the 11 teams in the Big Ten can come in first, second, and third would be a permutation problem. The number of ways to pick 6 numbers in the Illinois State lottery is a combination problem because the order in which the numbers are selected is irrelevant.

 sin 45 cos30  cos 45 sin 30  2   3   2   1        2   2   2   2 6 2 6 2   4 4 4 cos15  cos(45  30)  cos 45 cos30  sin 45 sin 30 

 2   3   2   1        2   2   2   2

68. First solve for  s  r 5  4 5  4 1 A  r 2 2 1 2  5  (4)    4 2

6 2   4 4

Also, cos15 

 

 10 ft 2

6 2 4

1  cos30 2 1 2

3 2 

2 3 4

2 3 2

71. an  a1r n 1

69. ( g  f )( x)  g (2 x  1)

a5  5( 2)5 1

 (2 x  1) 2  (2 x  1)  2  4x2  4x  1  2 x  1  2

 5( 2)4  80

 4x2  2x  2

5 5 5 2 5 3 5 4 5 5 72. (2 x  3)5    ( x)5    ( x) 4   2 y     ( x)3   2 y     ( x) 2   2 y      x   2 y       2 y  0 1  2  3  4 5  x5  5  x 4  2 y  10  x3  4 y 2  10  x 2  8 y 3  5  x 16 y 4  32 y 5  x5  10 x 4 y  40 x3 y 2  80 x 2 y 3  80 xy 4  32 y 5

 3x  4 y  5 73.  5 x  2 y  17 Multiply each side of the second equation by 2, and add the equations to eliminate y:

3x  4 y  5  10 x  4 y  34   39 x3 Substitute and solve for y: 13x

1389 Copyright © 2020 Pearson Education, Inc.


Chapter 13: Counting and Probability 3  3  4 y  5

77.

9  4y  5 4 y  4 y  1 The solution of the system is x  3, y  1 or

6x

3

2

 10( x  3) 5 

( x  3) 5

 

using ordered pairs  3,  1 .

  3   1  4  2 2

2

2

( x  3) 5 16 x  30 2

3. False; probability may equal 0. In such cases, the corresponding event will never happen. 4. True; in a valid probability model, all probabilities are between 0 and 1, and the sum of the probabilities is 1.

5 6 The polar form of z   3  i is 5 5    i sin z  r  cos   i sin    2  cos 6 6  



5. Probabilities must be between 0 and 1, inclusive. Thus, 0, 0.01, 0.35, and 1 could be probabilities. 6. Probabilities must be between 0 and 1, inclusive.

5 i 6

Thus,

76. Find the partial fraction decomposition: 5 x 2  3x  14 Ax  B Cx  D  2  ( x 2  2) 2 x  2 ( x 2  2) 2 5 x 2  3x  14  ( Ax  B)( x 2  2)  Cx  D

8. All the probabilities are between 0 and 1. The sum of the probabilities is 0.4 + 0.3 + 0.1 + 0.2 = 1. This is a probability model.

5 x 2  3x  14  Ax3  Bx 2  2 Ax  2 B  Cx  D 5 x 2  3x  14  Ax3  Bx 2  (2 A  C ) x  2 B  D

B  5;

2A  C  3

2 B  D  14

2(0)  C  3

2(5)  D  14

C 3

D4 

5

x2  2

1 3 2 , , , and 0 could be probabilities. 2 4 3

7. All the probabilities are between 0 and 1. The sum of the probabilities is 0.2 + 0.3 + 0.1 + 0.4 = 1. This is a probability model.

Multiplying both sides by ( x 2  2) 2 , we obtain:

( x 2  2) 2

2

( x  3) 5 ( x  3) 5 6 x  10 x  30

2. complement

y 1 3   x  3 3

5 x 2  3x  14

10( x  3)

1. equally likely

75. r  x 2  y 2 

A0;

Section 13.3

 6 6    14 5 

 2e

2

( x  3) 5

0 2   4 2 0  1 74. BC     3  1 3 1  5 0     4(0)  2(3)  0(5) 4( 2)  2(1)  0(0)     1(0)  3(3)  1(5) 1(2)  3(1)  1(0) 

tan  

6x

9. All the probabilities are between 0 and 1. The sum of the probabilities is 0.3 + 0.2 + 0.1 + 0.3 = 0.9. This is not a probability model. 10. One probability is not between 0 and 1. This is not a probability model.

3x  4 ( x 2  2) 2

11. a. The sample space is: S   HH , HT , TH , TT  . b. Each outcome is equally likely to occur; so

1390

Copyright © 2020 Pearson Education, Inc.


Section 13.3: Probability

P( E ) 

1 . The probability of probability of each is 12

n( E ) . The probabilities are: n( S ) 1

1

1

1

4

4

4

4

P ( HH )  , P ( HT )  , P (TH )  , P (TT )  .

12. a. The sample space is: S   HH , HT , TH , TT  . b. Each outcome is equally likely to occur; so P( E ) 

n( E ) . The probabilities are: n( S ) 1

1

1

1

4

4

4

4

P ( HH )  , P ( HT )  , P (TH )  , P (TT ) 

13. a. The sample space of tossing two fair coins and a fair die is: S  {HH 1, HH 2, HH 3, HH 4, HH 5, HH 6, HT 1, HT 2, HT 3, HT 4, HT 5, HT 6, TH 1, TH 2, TH 3, TH 4, TH 5, TH 6, TT 1, TT 2, TT 3, TT 4, TT 5, TT 6} b. There are 24 equally likely outcomes and the

probability of each is

1 . 24

14. a. The sample space of tossing a fair coin, a fair die, and a fair coin is: S  {H 1H , H 2 H , H 3H , H 4 H , H 5 H , H 6 H , H 1T , H 2T , H 3T , H 4T , H 5T , H 6T , T 1H , T 2 H , T 3H , T 4 H , T 5H , T 6 H , T 1T , T 2T , T 3T , T 4T , T 5T , T 6T } b. There are 24 equally likely outcomes and the

probability of each is

1 . 24

1 . 8

16. a. The sample space for tossing one fair coin three times is: S  {HHH , HHT , HTH , HTT , THH , THT , TTH , TTT } . b. There are 8 equally likely outcomes and the

probability of each is

18. The sample space is: S = {Forward Yellow, Forward Red, Forward Green, Backward Yellow, Backward Red, Backward Green} There are 6 equally likely events and the

probability of each is

1 . The probability of 6

getting Forward followed by Yellow or Green is: P (Forward Yellow)  P ( Forward Green) 

1 1 1   6 6 3

19. The sample space is: S = {1 Yellow Forward, 1 Yellow Backward, 1 Red Forward, 1 Red Backward, 1 Green Forward, 1 Green Backward, 2 Yellow Forward, 2 Yellow Backward, 2 Red Forward, 2 Red Backward, 2 Green Forward, 2 Green Backward, 3 Yellow Forward, 3 Yellow Backward, 3 Red Forward, 3 Red Backward, 3 Green Forward, 3 Green Backward, 4 Yellow Forward, 4 Yellow Backward, 4 Red Forward, 4 Red Backward, 4 Green Forward, 4 Green Backward} There are 24 equally likely events and the probability of each is 1 . The probability of 24 getting a 1, followed by a Red or Green, followed by a Backward is: P(1 Red Backward)  P(1 Green Backward)

15. a. The sample space for tossing three fair coins is: S  {HHH , HHT , HTH , HTT , THH , THT , TTH , TTT } b. There are 8 equally likely outcomes and the

probability of each is

getting a 2 or 4 followed by a Red is 1 1 1 P(2 Red)  P(4 Red)    . 12 12 6

1 . 8

17. The sample space is: S = {1 Yellow, 1 Red, 1 Green, 2 Yellow, 2 Red, 2 Green, 3 Yellow, 3 Red, 3 Green, 4 Yellow, 4 Red, 4 Green} There are 12 equally likely events and the

1 1 1   24 24 12

20. The sample space is: S = {Yellow 1 Forward, Yellow 1 Backward, Red 1 Forward, Red 1 Backward, Green 1 Forward, Green 1 Backward, Yellow 2 Forward, Yellow 2 Backward, Red 2 Forward, Red 2 Backward, Green 2 Forward, Green 2 Backward, Yellow 3 Forward, Yellow 3 Backward, Red 3 Forward, Red 3 Backward, Green 3 Forward, Green 3 Backward, Yellow 4 Forward, Yellow 4 Backward, Red 4 Forward, Red 4 Backward, Green 4 Forward, Green 4 Backward} There are 24 equally likely events and the 1 probability of each is . 24

1391 Copyright © 2020 Pearson Education, Inc.


Chapter 13: Counting and Probability

The probability of getting a Yellow, followed by a 2 or 4, followed by a Forward is

25. B 26. F

P(Yellow 2 Forward)  P(Yellow 4 Forward)

1 1 1    24 24 12

21. The sample space is: S = {1 1 Yellow, 1 1 Red, 1 1 Green, 1 2 Yellow, 1 2 Red, 1 2 Green, 1 3 Yellow, 1 3 Red, 1 3 Green, 1 4 Yellow, 1 4 Red, 1 4 Green, 2 1 Yellow, 2 1 Red, 2 1 Green, 2 2 Yellow, 2 2 Red, 2 2 Green, 2 3 Yellow, 2 3 Red, 2 3 Green, 2 4 Yellow, 2 4 Red, 2 4 Green, 3 1 Yellow, 3 1 Red, 3 1 Green, 3 2 Yellow, 3 2 Red, 3 2 Green, 3 3 Yellow, 3 3 Red, 3 3 Green, 3 4 Yellow, 3 4 Red, 3 4 Green, 4 1 Yellow, 4 1 Red, 4 1 Green, 4 2 Yellow, 4 2 Red, 4 2 Green, 4 3 Yellow, 4 3 Red, 4 3 Green, 4 4 Yellow, 4 4 Red, 4 4 Green} There are 48 equally likely events and the 1 probability of each is . The probability of 48 getting a 2, followed by a 2 or 4, followed by a Red or Green is P( 2 2 Red)  P (2 4 Red)  P (2 2 Green)  P (2 4 Green) 1 1 1 1 1      48 48 48 48 12 22. The sample space is: S = {Forward 11, Forward 12, Forward 13, Forward 14, Forward 21, Forward 22, Forward 23, Forward 24, Forward 31, Forward 32, Forward 33, Forward 34, Forward 41, Forward 42, Forward 43, Forward 44, Backward 11, Backward 12, Backward 13, Backward 14, Backward 21, Backward 22, Backward 23, Backward 24, Backward 31, Backward 32, Backward 33, Backward 34, Backward 41, Backward 42, Backward 43, Backward 44} There are 32 equally likely events and the 1 probability of each is . The probability of 32 getting a Forward, followed by a 1 or 3, followed by a 2 or 4 is P (Fwd 12)  P ( Fwd 14)  P( Fwd 32)  P (Fwd 34) 1 1 1 1 1      32 32 32 32 8

27. Let P (tails)  x, then P (heads)  4 x x  4x  1 5x  1 1 x 5 1 4 P (tails)  , P(heads)  5 5 28. Let P (heads)  x, then P (tails)  2 x x  2x  1 3x  1 1 x 3 1 2 P (heads)  , P (tails)  3 3 29. P (2)  P (4)  P (6)  x P (1)  P (3)  P (5)  2 x P (1)  P (2)  P (3)  P(4)  P(5)  P (6)  1 2x  x  2x  x  2x  x  1 9x  1 1 x 9 1 P (2)  P (4)  P (6)  9 2 P (1)  P (3)  P(5)  9 30. P (1)  P (2)  P (3)  P (4)  P (5)  x; P (6)  0 P (1)  P (2)  P (3)  P(4)  P(5)  P (6)  1 x  x  x  x  x 0 1 5x  1 1 x 5 1 P(1)  P(2)  P(3)  P(4)  P(5)  ; P(6)  0 5

23. A, B, C, F 24. A (equally likely outcomes)

31. P ( E ) 

n( E ) n{1, 2,3} 3   n( S ) 10 10

32. P ( F ) 

n( F ) n{3, 5, 9, 10} 4 2    n( S ) 10 10 5

1392

Copyright © 2020 Pearson Education, Inc.


Section 13.3: Probability

33. P ( E ) 

n( E ) n{2, 4, 6,8,10} 5 1    n( S ) 10 10 2

34. P ( F ) 

n( F ) n{1, 3, 5, 7, 9} 5 1    n( S ) 10 10 2

n(white) 5 5 1    35. P (white)  n( S ) 5  10  8  7 30 6

36. P (black) 

n(black) 7 7   n( S ) 5  10  8  7 30

37. The sample space is: S = {BBB, BBG, BGB, GBB, BGG, GBG, GGB, GGG} n(3 boys) 1 P (3 boys)   8 n( S ) 38. The sample space is: S = {BBB, BBG, BGB, GBB, BGG, GBG, GGB, GGG} n(3 girls) 1 P (3 girls)   8 n( S ) 39. The sample space is: S = {BBBB, BBBG, BBGB, BGBB, GBBB, BBGG, BGBG, GBBG, BGGB, GBGB, GGBB, BGGG, GBGG, GGBG, GGGB, GGGG} n(1 girl, 3 boys) 4 1 P (1 girl, 3 boys)    16 4 n( S ) 40. The sample space is: S = {BBBB, BBBG, BBGB, BGBB, GBBB, BBGG, BGBG, GBBG, BGGB, GBGB, GGBB, BGGG, GBGG, GGBG, GGGB, GGGG} n(2 girls, 2 boys) 6 3 P (2 girls, 2 boys)    16 8 n( S ) n(sum of two dice is 7) n( S ) n{1,6 or 2,5 or 3,4 or 4,3 or 5,2 or 6,1} 6 1    n( S ) 36 6

41. P (sum of two dice is 7) 

n(sum of two dice is 11) n( S ) n{5,6 or 6,5} 2 1    n( S ) 36 18

42. P (sum of two dice is 11) 

n(sum of two dice is 3) n( S ) n{1,2 or 2,1} 2 1    n( S ) 36 18

43. P (sum of two dice is 3) 

n(sum of two dice is 12) n( S ) n{6, 6} 1   n( S ) 36

44. P (sum of two dice is 12) 

45. P ( A  B )  P ( A)  P( B)  P( A  B)  0.25  0.45  0.15  0.55 46. P ( A  B )  P ( A)  P( B)  P( A  B)  0.25  0.45  0.6  0.10 47. P ( A  B )  P ( A)  P ( B )  0.25  0.45  0.70 48. P ( A  B )  0 49. P ( A  B )  P ( A)  P( B)  P( A  B) 0.85  0.60  P( B )  0.05 P ( B )  0.85  0.60  0.05  0.30 50. P ( A  B )  P ( A)  P( B)  P( A  B) 0.65  P ( A)  0.30  0.15 P ( A)  0.65  0.30  0.15  0.50 51. P (theft not cleared)  1  P ( theft cleared)  1  0.133  0.867 52. P (does not own a pet)  1  P(owns a pet)  1  0.68  0.32 53. P (does not own cat)  1  P(owns cat)  1  0.38  0.62 54. P (not in engineering)  1  P(in engineering)  1  0.172  0.828 55. P (never visited a casino)  1  P(visited a casino)  1  0.26  0.74

1393 Copyright © 2020 Pearson Education, Inc.


Chapter 13: Counting and Probability 56.

64. There are 40 households out of 100 with an income between $25,000 and $74,999. P (not Samoas/Caramel deLites)  1  P (Samoas/Caramel deLites) n( E ) n(25000 to 74999) 40 2 P( E )     n( S ) n(total households) 100 5  1  0.19  0.81

65. There are 45 households out of 100 with an income of less than $50,000. n( E ) n(less than 50,000) 45 9 P( E )     n( S ) n(total households) 100 20

57. P (white or green)  P (white)  P(green) n(white)  n(green)  n( S ) 98 17   9  8  3 20

66. There are 55 households out of 100 with an income of $50,000 or more. n( E ) n($50,000 or more) 55 11 P( E )     n( S ) n(total households) 100 20

58. P (white or orange)  P (white)  P (orange) n(white)  n(orange)  n( S ) 93 12 3    9  8  3 20 5

67. a.

P (1 or 2)  P(1)  P(2)  0.24  0.33  0.57

b.

P (1 or more)  1  P  none   1  0.05  0.95

c.

P (3 or fewer)  1  P  4 or more   1  0.17  0.83

59. P (not white)  1  P (white) n(white)  1 n( S ) 9 11  1  20 20 60. P (not green)  1  P(green) n(green)  1 n( S ) 8 12 3  1   20 20 5

d.

P (3 or more)  P(3)  P (4 or more)  0.21  0.17  0.38

e.

P (fewer than 2)  P(0)  P(1)  0.05  0.24  0.29

f.

P (fewer than 1)  P (0)  0.05

g.

P(1, 2, or 3)  P(1)  P(2)  P(3)

 0.24  0.33  0.21  0.78 h.

P(2 or more)  P(2)  P(3)  P(4 or more)

 0.33  0.21  0.17  0.71

61. P (strike or one)  P(strike)  P (one) n(strike)  n(one)  n( S ) 3 1 4 1    8 8 2

68. a.

62. P (100 or 30)  P (100)  P (30) n(100)  n(30)  n( S ) 11 2 1    20 20 10

P (at most 2)  P(0)  P(1)  P(2)  0.10  0.15  0.20  0.45

b.

P (at least 2)  P (2)  P (3)  P(4 or more)  0.20  0.24  0.31  0.75

c.

P (at least 1)  1  P(0)  1  0.10  0.90

69. a.

P (freshman or female)  P (freshman)  P (female)  P (freshman and female)

63. There are 38 households out of 100 with an income of $75,000 or more. n( E ) n(75, 000 or more) 38 19 P( E )     n( S ) n(total households) 100 50

n(freshman)  n(female)  n(freshman and female)

n( S ) 18  15  8 25  33 33

1394

Copyright © 2020 Pearson Education, Inc.


Section 13.3: Probability

b.

P (sophomore or male)  P (sophomore)  P ( male)  P (sophomore and male)

n(sophomore)  n( male)  n(sophomore and male) n( S )

15  18  8 25   33 33

70. a.

P (female or under 40)  P (female)  P ( under 40)  P (female and under 40)  

b.

n( S )

452 13

7 13

P (male or over 40)  P (male)  P(over 40)  P (male and over 40) n(male)  n(over 40)  n(male and over 40)  n( S ) 

71.

n(female)  n( under 40)  n(female and under 40)

986 13

11 13

P(at least 2 with same birthday)  1  P (none with same birthday) n(different birthdays)  1 n( S ) 365  364  363  362  361  360  354  1 36512  1  0.833

to pick the 6 numbers is given by n  white balls   n  red ball   C  52,5   C 10,1 

52! 10!  5!  52  5  ! 1! 10  1!

52! 10!  5! 47! 1! 9!

 52  51  50  49  48  10  9!      5  4  3  2 1  9!  52  51  50  49  48 10  5 4 3 2  25,989, 600 Since each possible combination is equally likely, the probability of winning on a $1 play is 1 P  win on $1 play   25,989, 600  0.0000000385

74. The outcome “exactly two dice have the same reading” can happen 6 ways; exactly two 1’s, or exactly two 2’s, or exactly two 3’s or exactly two 4’s or exactly two 5’s or exactly two 6’s. So, we find the porabaility or each of these six outcomes and combine their results. Now, when three dice are towwec, “exactly two 1’s” can occur in 3 C2  3 ways. So 2

1 5 P (exactly two 1's) 3 C2       6 6 2

1 5 5  3      6   6  72

 0.167

72.

P(at least 2 with same birthday)  1  P (none with same birthday) n(different birthdays)  1 n( S ) 365  364  363  362  361  360  331  1 36535  1  0.186  0.814

73. The number of different selections of 6 numbers is the number of ways we can choose 5 white balls and 1 red ball, where the order of the white balls is not important. This requires the use of the Multiplication Principle and the combination formula. Thus, the total number of distinct ways

Similarly, P(exactly two 2's) 

5 , 72

5 , 72 5 P (exactly two 4's)  , 72 5 P(exactly two 5's)  , and 72 5 P (exactly two 6's)  . So, 72 P (exactly two 3's) 

P (exactly two dice have the same reading  6 

75. 2; left; 3; down 1395 Copyright © 2020 Pearson Education, Inc.

5 5  72 12


Chapter 13: Counting and Probability  2  76. x  6 cos    3  3  2  y  6sin    3 3  3

The ordered pair is 3,3 3

æ ö 1 é1 0 0 2ùú ê ççç R2 = r3 + r2 ÷÷÷ 8 çç ÷÷÷  êê 0 1 0 -3úú ç ÷ 19 çç R = - r + r ÷÷ ê ú 3 2÷ êë 0 0 1 -1úû çè 1 ø 8 The solution is x  2, y  3, z  1 or (2, 3, 1) .

77. log5 ( x  3)  2

79.

52  x  3

7 -6 3

25  x  3

-8

x  22

0 5 =7

6 -4 2

The solution set is  22 .

0 5 -4 2

+6

-8 5 6 2

+3

-8

0

6 -4

= 7(0 + 20) + 6(-16 - 30) + 3(32 - 0) = 7(20) + 6(-46) + 3(32) = 140 - 276 + 96 = -40

ïìï3 x + y + 2 z = 1 ï 78. ïí2 x - 2 y + 5 z = 5 ïï ïïî x + 3 y + 2 z = -9 Write the augmented matrix: é3 1 2 1ùú ê ê 2 -2 5 5úú ê ê ú 3 2 - 9ú êë 1 û é 1 3 2 -9 ù ê ú  ê 2 -2 5 5 ú ( R1 « R3 ) ê ú ê3 1 2 1 ú ë û é1 - 9ù 3 2 ê ú ê æ ö 1 23 ú çç R2 = - 1 r1 ÷÷ ê  0 - ú 1 ê ú èç ø÷ 8 8 8 ê ú ê 0 -8 -4 ú 28û ë é 19 3ù ê1 0 - ú ê 8 8ú ê ú æ R3 = 8r2 + r3 ö÷ ê 1 23 ú ÷  ê0 1 - ú çç çè R1 = -3r2 + r1 ÷÷ø ê 8 8ú ê ú 5ú ê 0 0 -5 ê ú êë úû é 19 3ù ê1 0 - ú ê 8 8ú ê ú æ ê 1 23 ú 1 ö  ê0 1 - ú ççç R3 = - r3 ÷÷÷ è ê 8 8ú 5 ø ê ú -1ú 1 ê0 0 ê ú êë úû

80.

108  147  363  36  3  49  3  121  3  6 3  7 3  11 3  10 3

81. Let t1 be the time to his friend’s house and t2 be the time back to this own house. Then, 60t1  40t2 2 t1  t2 3 The average speed is:

2  60  t2   40t2 r1t1  r2 t2 60t1  40t2 3     2 t1  t2 t1  t2 t2  t2 3 40t2  40t2 80t2   5 5 t2 t2 3 3 3  80    48 mph 5

82. This sequence is an arithmetic sequence where a = 5 and d = 7. Thus the 85 term would be a85  5  (85  1)(7)  5  84(7)  593

1396

Copyright © 2020 Pearson Education, Inc.


Chapter 13 Review Exercises

Chapter 13 Review Exercises

83.

1. , Dave , Joanne , Erica , Dave, Joanne ,

Dave, Erica , Joanne, Erica , Dave, Joanne,Erica 2. n( A)  8, n( B)  12, n( A  B )  3 n( A  B)  n( A)  n( B)  n( A  B)

The area of the semicircle would be: 1  (4) 2  8 2 The area of the triangle would be: 1 1 bh  (8)(3)  12 . The total area is: 2 2 8  12 sq units 84. Find the partial fraction decomposition: 7 x 2  5 x  30 2x  4  x3  8 ( x  2)( x 2  2 x  4) A Bx  C   2 x  2 x  2x  4

Multiplying both sides by ( x  2)( x 2  2 x  4) , we obtain: 7 x 2  5 x  30  A( x 2  2 x  4)  ( Bx  C )( x  2) Let x  2 , then

7(2)  5(2)  30  A  2  2(2)  4    B (2)  C  (2  2) 2

2

48  12 A

 8  12  3  17 3. n( A)  12, n( A  B )  30, n( A  B)  6 n( A  B )  n( A)  n( B )  n( A  B ) 30  12  n( B )  6 n( B )  30  12  6  24 4. From the figure: n( A)  20  2  6  1  29 5. From the figure: n( A or B )  20  2  6  1  5  0  34 6. From the figure: n( A and C )  n( A  C )  1  6  7 7. From the figure: n(not in B)  20  1  4  20  45 8. From the figure: n(neither in A nor in C )  n( A  C )  20  5  25 9. From the figure: n(in B but not in C )  2  5  7

A4

Let x  0 , then 0  0  30  4  0  0  4   ( B (0)  C )(0  2)

10. P (8,3) 

8! 8! 8  7  6  5!    336 (8  3)! 5! 5!

11. C (8,3) 

8! 8! 8  7  6  5!    56 (8  3)! 3! 5! 3! 5!  3  2 1

30  16  2C 14  C C  7

Let x  1 , then 7  5  30  4 1  2  4   ( B  7)(1) 32  28  B  7 3   B B3 7 x  5 x  30 4 3x  7   x  2 x2  2 x  4 x3  8 2

12. There are 2 choices of material, 3 choices of color, and 10 choices of size. The complete assortment would have: 2  3 10  60 suits. 13. There are two possible outcomes for each game or 2  2  2  2  2  2  2  27  128 outcomes for 7 games.

1397 Copyright © 2020 Pearson Education, Inc.


Chapter 13: Counting and Probability 14. Since order is significant, this is a permutation. 9! 9! 9  8  7  6  5! P (9, 4)     3024 (9  4)! 5! 5! ways to seat 4 people in 9 seats.

b.

P (not unemployed)  1  P(unemployed)  1  0.038  0.962

24. P ($1 bill)=

15. Choose 4 runners –order is significant: 8! 8! 8  7  6  5  4! P (8, 4)     1680 (8  4)! 4! 4! ways a squad can be chosen.

n($1 bill) 4  n( S ) 9

25. Let S be all possible selections, so n( S )  100 . Let D be a card that is divisible by 5, so n( D)  20. Let PN be a card that is 1 or a prime number, so n( PN )  26 .

16. Choose 2 teams from 14–order is not significant: 14! 14! 14 13 12! C (14, 2)     91 (14  2)! 2! 12! 2! 12!  2 1 ways to choose 2 teams.

n( D) 20 1    0.2 n( S ) 100 5 n( PN ) 26 13 P ( PN )     0.26 100 50 n( S ) P( D) 

17. There are 8 10 10 10 10 10  2  1, 600, 000 possible phone numbers.

26. Let S be all possible selections, let T be a car that needs a tune-up, and let B be a car that needs a brake job.

18. There are 24  9 10 10 10  216, 000 possible license plates.

a.

P  Tune-up or Brake job 

19. There are two choices for each digit, so there are 28  256 different numbers. (Note this allows numbers with initial zeros, such as 011.)

 P T  B 

20. Since there are repeated colors: 10! 10  9  8  7  6  5  4  3  2 1   12, 600 4!  3!  2! 1! 4  3  2 1  3  2 1  2 1 1 different vertical arrangements.

 0.68

21. a.

 P T   P  B   P T  B   0.6  0.1  0.02

b.

 P  Tune-up   P  Tune-up and Brake job   P T   P T  B 

C (9, 4)  C (9,3)  C (9, 2)  126  84  36  381, 024 committees can be formed.

 0.6  0.02  0.58

b.

C (9, 4)  C (5,3)  C (2, 2)  126 10 1  1260 committees can be formed.

22. a.

45

365  364  363 348  8.634628387  10

b.

P (no one has same birthday) 365  364  363  348   0.6531 365 18

c.

P (at least 2 have same birthday)  1  P (no one has same birthday)

P  Tune-up but not Brake job 

c.

P  Neither Tune-up nor Brake job 

 1  P (Tune-up or Brake job)  1   P (T )  P( B )  P(T  B)   1   0.6  0.1  0.02   0.32

 1  0.6531  0.3469

23. a.

P (unemployed)  0.038

1398

Copyright © 2020 Pearson Education, Inc.


Chapter 13 Test r  6 of them.

Chapter 13 Test

C  21, 6  

1. From the figure: n  physics   4  2  7  9  22

21  20 19 18 17 16 15! 6!15! 21  20 19 18 17 16  6  5  4  3  2 1  54, 264 There are 54,264 ways to choose 6 colors from the 21 available colors.

2. From the figure: n  biology or chemistry or physics   22  8  2  4  9  7  15  67 Therefore, n  none of the three   70  67  3

3. From the figure: n  only biology and chemistry   n  biol. and chem.  n  biol. and chem. and phys.

 8  2   2 8

4. From the figure: n  physics or chemistry   4  2  7  9  15  8  45

5. 7!  7  6  5  4  3  2 1  5040 6. P 10, 6  

21! 21!  6! 21  6  ! 6!15!

10! 10!  10  6 ! 4!

10  9  8  7  6  5  4! 4!  10  9  8  7  6  5

9. Because the letters are not distinct and order matters, we use the permutation formula for nondistinct objects. We have four different letters, two of which are repeated (E four times and D two times). 8! n!  n1 !n2 !n3 !n4 ! 4!2!1!1! 8  7  6  5  4! 4! 2 1 87 65  2  4765  840 There are 840 distinct arrangements of the letters in the word REDEEMED. 

10. Since the order of the horses matters and all the horses are distinct, we use the permutation formula for distinct objects. 8! 8! 8  7  6! P  8, 2      8  7  56 6! 8  2 ! 6!

 151, 200 11! 11!  5!11  5  ! 5!6!

There are 56 different exacta bets for an 8-horse race.

11 10  9  8  7  6! 5  4  3  2 1  6! 11 10  9  8  7  5  4  3  2 1  462

11. We are choosing 3 letters from 26 distinct letters and 4 digits from 10 distinct digits. The letters and numbers are placed in order following the format LLL DDDD with repetitions being allowed. Using the Multiplication Principle, we get 26  26  23 10 10 10 10  155, 480, 000 Note that there are only 23 possibilities for the third letter. There are 155,480,000 possible license plates using the new format.

7. C 11,5   

8. Since the order in which the colors are selected doesn’t matter, this is a combination problem. We have n  21 colors and we wish to select

1399 Copyright © 2020 Pearson Education, Inc.


Chapter 13: Counting and Probability 6  6  6  6  6  7, 776 Consider the rolls as a sequence of 5 slots. The number of ways to position 2 fours in 5 slots is C  5, 2  . The remaining three slots can be filled

12. Let A = Kiersten accepted at USC, and B = Kiersten accepted at FSU. Then, we get P  A   0.60 , P  B   0.70 , and P  A  B   0.35 .

with any of the five remaining numbers from the die. Repetitions are allowed so this can be done in 5  5  5  125 different ways. Therefore, the total number of ways to get exactly 2 fours is 5! 5  4 125 C  5, 2  125  125   1250 2! 3! 2 The probability of getting exactly 2 fours on 5 rolls of a die is given by 1250 625 P  exactly 2 fours     0.1608 . 7776 3888

a. Here we need to use the Addition Rule. P  A  B   P  A  P  B   P  A  B   0.60  0.70  0.35  0.95 Kiersten has a 95% chance of being admitted to at least one of the universities.

b. Here we need the Complement of an event.

 

P B  1  P  B   1  0.70  0.30

Kiersten has a 30% chance of not being admitted to FSU. 13. a.

b.

Since the bottle is chosen at random, all bottles are equally likely to be selected. Thus, 5 5 1 P  Coke      0.25 8  5  4  3 20 4 There is a 25% chance that the selected bottle contains Coke.

Chapter 13 Cumulative Review 1.

3 x 2  2 x  1 3x 2  2 x  1  0 x

83 11   0.55 8  5  4  3 20 There is a 55% chance that the selected bottle contains either Pepsi or IBC. P  Pepsi  IBC  

b  b 2  4ac 2a   2  

 2 2  4  31 2  3

2  4  12 2  8  6 6 2  2 2i 1  2i   6 3  1 2 1 2  i,  i . The solution set is    3 3 3 3 

14. Since the ages cover all possibilities and the age groups are mutually exclusive, the sum of all the probabilities must equal 1. 0.03  0.23  0.29  0.25  0.01  0.81 1  0.81  0.19 The given probabilities sum to 0.81. This means the missing probability (for 18-20) must be 0.19.

15. The sample space for picking 5 out of 10 numbers in a particular order contains 10! 10! P (10,5)    30, 240 possible (10  5)! 5! outcomes. One of these is the desired outcome. Thus, the probability of winning is: n( E ) n(winning) P( E )   n( S ) n(total possible outcomes) 1   0.000033069 30, 240

2.

f ( x)  x 2  4 x  5

a  1, b  4, c  5. Since a  1  0, the graph is concave up. The x-coordinate of the vertex is b 4 x   2 . 2a 2(1) The y-coordinate of the vertex is 2  b  f     f  2    2   4  2   5 .  2a   4  8  5  9 Thus, the vertex is  2,  9  . The axis of

16. The number of elements in the sample space can be obtained by using the Multiplication Principle:

symmetry is the line x  2 .The discriminant is: b 2  4ac  (4) 2  4(1)(5)  16  20  36  0 . 1400

Copyright © 2020 Pearson Education, Inc.


Chapter 13 Cumulative Review

So the graph has two x-intercepts. The x-intercepts are found by solving: x2  4x  5  0 ( x  5)( x  1)  0 x  5 or x  1 The x-intercepts are 5 and 1. The y-intercept is f (0)  (0) 2  4  (0)  5  5 .

f ( x)  5 x 4  1.8 x3  1.4 x 2  6.2 x  1.2

a3  1.8, a2  1.4, a1  6.2, a0  1.2

Max 1,  1.2   6.2 

 1.4   1.8 

 Max 1, 10.6  10.6 1  Max   1.2 ,

 6.2 ,  1.4 ,  1.8 

 1  6.2  7.2 The smaller of the two numbers is 7.2. Thus, every zero of f lies between –7.2 and 7.2. Graphing using the bounds: (Second graph has a better window.)

3. y  2  x  1  4 2

Using the graph of y  x 2 , horizontally shift to the left 1 unit, vertically stretch by a factor of 2, and vertically shift down 4 units.

Step 4: From the graph we see that there are x-intercepts at 0.2 and 3. Using synthetic division with 3: 3 5  9  7  31  6 15 18 33 6 4.

x  4  0.01

0.01  x  4  0.01 0.01  4  x  0.01  4 3.99  x  4.01 The solution set is  x 3.99  x  4.01 or

5.

5 6 11 2 0 Since the remainder is 0, x  3 is a factor. The

3.99, 4.01

other factor is the quotient: 5 x3  6 x 2  11x  2 . Using synthetic division with 2 on the quotient: 0.2 5 6 11 2 1 1  2 5

5

10

0

f  x   5 x  9 x  7 x  31x  6

Since the remainder is 0, x   0.2   x  0.2 is a

Step 1: Step 2:

factor. The other factor is the quotient:

4

Step 3:

3

2

f ( x) has at most 4 real zeros. Possible rational zeros: p  1, 2, 3, 6; q  1,  5; p 1 2 3 6  1,  , 2,  , 3,  , 6,  q 5 5 5 5 Using the Bounds on Zeros Theorem:

5 x 2  5 x  10  5 x 2  x  2 .

Factoring, f ( x)  5( x 2  x  2)  x  3 x  0.2  The real zeros are 3 and  0.2. The complex zeros come from solving x 2  x  2  0.

1401 Copyright © 2020 Pearson Education, Inc.


Chapter 13: Counting and Probability

add to the third equation to eliminate x:  x  2 y  z  15  3x  y  3 z   8  2 x  4 y  z  27 

2 b  b 2  4ac 1  1  4 1 2  x  2a 2 1

1  1  8 1  7  2 2 1  7i  2 Therefore, over the set of complex numbers, f  x   5 x 4  9 x3  7 x 2  31x  6 has zeros 

3x  6 y  3 z  45 3x  y  3z   8 7 y  6 z   53 2 x  2 y  z  15   2 x  4 y  2 z  30

 1 7 1 7 1  i,   i ,  , 3 .   2 2 5   2 2

2 x  4 y  z  27   2 x  4 y  z  27 z 3 Substituting and solving for the other variables: z  3  7 y  6  3   53

6. g ( x)  3x 1  5

Using the graph of y  3x , shift the graph horizontally 1 unit to the right, then shift the graph vertically 5 units upward. Domain: All real numbers or (, ) Range: { y | y  5} or (5, ) Horizontal Asymptote: y  5

7 y  35 y  5 z  3, y  5  x  2(5)  3  15 x  10  3  15  x  2 The solution is x  2, y  5, z  3 or (2, 5, 3) .

10. 3, 1, 5, 9, ... is an arithmetic sequence with a  3, d  4 . Using an  a  (n  1)d , a33  3  (33  1)  4  3  32  4  3  128  125

To compute the sum of the first 20 terms, we use 20 S 20   a  a20  . 2 a20  3  (20  1)  4

7. log3 (9)  log3 (32 )  2 8. log 2 (3x  2)  log 2 x  4 log 2  x(3 x  2)   4

 3  19  4  3  76  73

x(3x  2)  24

3x 2  2 x  16 3 x 2  2 x  16  0 (3x  8)( x  2)  0

Therefore, 20 S20   a  a20  2 20   3  73 2  10  70  700.

8 or x  2 3 Since x  2 makes the original logarithms x

8  3

undefined, the solution set is   . 9. Multiply each side of the first equation by –3 and add to the second equation to eliminate x; multiply each side of the first equation by 2 and 1402

Copyright © 2020 Pearson Education, Inc.


Chapter 13 Projects

    11. y  3sin  2 x     3sin  2  x    2    Amplitude: A  3  3 2  2    Phase Shift:   2 2  T

Period:

a 2  52  92  2  5  9 cos 40o o

 106  90 cos 40 a  6.09 b 2  a 2  c 2  2ac cos B a 2  c 2  b 2 6.092  92  52 93.0881   2ac 2  6.09  9  109.62

 93.0881  o B  cos 1    31.9  109.62 

1. Table 3 is a probability model since the total of the probabilities is 1. Probability 0.00000000330 0.00000007932 0.00000107411 0.00002577851 0.00006874270 0.00309316646 0.01123595506 0.02702702703 0.95854817351 1.00000000000

2. There are 70 numbers to choose for the first 5 ‘white’ numbers and 25 numbers to choose for the last ‘gold’ number. Thus there are 70 C5 possibilities for the ‘white’ numbers and 25 C1 possibilities for the ‘gold’ number. Multiply these together to find the total possibilities. 70 C5  25 C1  (12103014)(25)

 302,575,350

C  180o  A  B  180o  40o  31.9o  108.1o

Area of the triangle =

Project I

Cash Prize Jackpot $1,000,000 $10, 000 $500 $200 $10 $4 $2 $0 Total

12. Use the Law of Cosines: a 2  b 2  c 2  2bc cos A

cos B 

Chapter 13 Projects

 

1  5  9  sin 40o  14.46 2

So the probability of winning is: 1 P  win   302,575,350 0.00000000330  3. To calculate the expected value, multiply each numeric outcome by its corresponding probability and then add these products.

square units.

1403 Copyright © 2020 Pearson Education, Inc.


Chapter 13: Counting and Probability

Cash Prize

Probability

prize  prob

Cash Prize

Probability

prize  prob

$40,000,000

0.00000000330

0.13200000000

JP

0.00000000330

J (0.00000000330)

$1,000,000

0.00000007932

0.07932000000

$1,000,000

0.00000007932

0.07932000000

$10, 000

0.00000107411 0.01074110000

$10, 000

0.00000107411

0.01074110000

$500

0.00002577851 0.01288925500

$500

0.00002577851

0.01288925500

$200

0.00006874270

0.01374854000

$200

0.00006874270

0.01374854000

$10

0.00309316646

0.03093166460

$10

0.00309316646

0.03093166460

$4

0.01123595506

0.04494382020

$4

0.01123595506

0.04494382020

$2

0.02702702703

0.05405405410

$2

0.02702702703

0.05405405410

$0

0.95854817351 0.00000000000

$0

0.95854817351

0.00000000000

expect value

0.37862843390

expect value

So the expected cash prize is 0.38.

J (0.00000000330)  0.07932  0.0107411  0.012889255  0.01374854  0.0309316646  0.0449438202  0.05405405410  2 J (0.00000000330)  0.2466283898  2 J (0.00000000330)  1.75337161 J  $531,324, 730

4. The expected financial result from purchasing one ticket is $0.38  $2.00  $1.62 . Therefore, your expected profit from one ticket is $1.62 . 5. Use the same procedure replacing the Jackpot with $100,000,000. Cash Prize

Probability

prize  prob

$250,000,000

0.00000000330

0.82500000000

$1,000,000

0.00000007932

0.07932000000

$10, 000

0.00000107411 0.01074110000

$500

0.00002577851 0.01288925500

$200

0.00006874270

0.01374854000

$10

0.00309316646

0.03093166460

$4

0.01123595506

0.04494382020

$2

0.02702702703

0.05405405410

$0

0.95854817351 0.00000000000

expect value

2.00000000000

7. Answers will vary. Project II 1. 0 bit errors: 1011

1 bit errors: 0011 1111 1001 1010 2 bit errors: 0111 0001 0010 1101 1110 1000

1.07162843400

The expected financial result from purchasing one ticket is $1.07  $2.00  $0.93 . Therefore, your expected profit from one ticket is $0.93 . 6. We need to solve the expected value equation for the Jackpot amount that would make the expected value equal to $1.00. Thus:

3 bit errors: 0110 0101 0000 1100 4 bit errors: 0100 4

 2  16 2. P  symbol received correctly      81 3

3. # of received symbols with 2 bit errors: C (8, 2)  28 1404

Copyright © 2020 Pearson Education, Inc.


Chapter 13 Projects

8

256 2 P  received correctly      6561 3 P  received incorrectly   1  P  received correctly  6305 6561

8 k

 8 1   2  P (8, k )         k  3   3  Since this parity code only detects odd numbers of errors, P (error detected)

 P (8,1)  P (8,3)  P (8,5)  P (8, 7) 1

7

3

8 1   2  8 1   2              1 3   3   3 3   3 

One simulation might be: Woman Woman told you has about Boy-Boy

4. Let k = # of errors, n = 8 = length of symbol. Probability of k errors : n k nk P (n, k )     p  1  p  k  k

Project V

Boy-Girl Younger boy Girl-Boy

 0.499923 To find the probability that an error occurred but is not detected, we need to assume that an even number of errors occurred:

We leave out the combinations where she would have to tell you about a girl. Thus, the probability that she has 2 boys is

Man has

2

6

4

1 1 1   . 4 4 2

Man told Probability you about

Girl-Boy Older boy

1 2 1 2

Thus the probability he has two boys is probabilities are the same.

P (error occured, but not detected)  P (8, 2)  P (8, 4)  P(8, 6)  P (8,8) 8 1   2  8 1   2               2 3   3   4 3   3 

Older boy

Boy-Boy Older boy

 0.156464  0.272992  0.068044  0.002423

1 4 1 4 1 4 1 4

Older boy

Boy-Boy Younger boy

5

5 3 7 1 8 1   2  8 1   2              5 3   3  7 3   3 

Probability

4

6 2 8 0 8 1   2  8 1   2               6 3   3  8 3   3 

 0.273402  0.170364  0.016985  0.000151  0.460951

Project III

Answers will vary. Project IV e. Answers will vary, depending on the L2 generated by the calculator. f. The data accumulates around y = 0.5.

1405 Copyright © 2020 Pearson Education, Inc.

1 . The 2


Chapter 12 Sequences; Induction; the Binomial Theorem Section 12.1 1.

f  2 

3 1 2 2 1 1   ; f  3  3 3 2 2

2. True 3. sequence

2 1  1 3 2  2 1 5  , b2   , 2 1 2 22 4 2 3 1 7 2  4 1 9 b3   , b4   , 23 6 24 8 2  5  1 11 b5   25 10

18. b1 

4. True 5. True 6. b 7. summation

19. c1  (1)11 (12 )  1, c2  (1) 2 1 (22 )   4,

8. b 9. 10!  10  9  8  7  6  5  4  3  2 1  3, 628,800 10. 9!  9  8  7  6  5  4  3  2 1  362,880

13.

14.

c3  (1)31 (32 )  9, c4  (1) 41 (42 )  16, c5  (1)51 (52 )  25

 1  20. d1  (1)11    1,  2 1  1  2  2  d 2  (1) 2 1   , 3  2  2 1 

9! 9  8  7  6!   9  8  7  504 11. 6! 6!

12.

1 1 2 2 1  , a2    , 1 2 3 22 4 2 3 3 4 4 2 a3   , a4    , 3 2 5 42 6 3 5 5 a5   52 7

17. a1 

12! 12 11 10!   12 11  132 10! 10! 4!11! 4  3  2 1 11 10  9  8  7!  7! 7!  4  3  2 1 11 10  9  8  190, 080 5! 8! 5  4  3! 8!  3! 3!  5  4  8  7  6  5  4  3  2 1  806, 400

 3  3 d3  (1)31   ,  2  3 1  5 4  4  d 4  (1) 4 1   , 7  2  4 1   5  5 d5  (1)51    2  5 1  9

21. s1 

15. s1  1, s2  2, s3  3, s4  4, s5  5 16. s1  12  1  2, s2  22  1  5, s3  32  1  10,

s3  s5 

31

3 32 9  , s2  2  , 5 2 3 2 3 7 1

33 23  3 35 5

2 3

s4  42  1  17, s5  52  1  26

1322 Copyright © 2020 Pearson Education, Inc.

27 24 81 , s4  4  , 11 2  3 19

243 35


Section 12.1: Sequences

1

29. Each term is a fraction with the numerator equal to 1 and the denominator equal to a power of 2. The power is equal to one less than the term number. 1 an  n 1 2

2

16 4 4 4 22. s1     , s2     , 9 3 3 3 3

4

64 256 4 4 s3     , s4     , 27 81 3 3 5

 4  1024 s5     243 3

23. t1 

(1)1 1 1   , (1  1)(1  2) 2  3 6

t2 

(1) 2 1 1   , (2  1)(2  2) 3  4 12

30. Each term is equal to a fraction with the numerator equal to a power of 2 and the denominator equal to a power of 3. Both powers are equal to the term number. Since the powers are the same, we can use rules for exponents to write each term as a power of 2 . 3 2 an    3

(1)3 1 1 t3    , (3  1)(3  2) 4  5 20 t4 

(1) 4 1 1   , (4  1)(4  2) 5  6 30

t5 

(1)5 1 1   (5  1)(5  2) 6  7 42

24. a1  a4 

31. The terms form an alternating sequence. Ignoring the sign, each term always contains a 1. The sign alternates by raising 1 to a power. Since the first term is positive, we use n  1 as the power. an   1

31 3 32 9 33 27   3, a2   , a3    9, 1 1 2 2 3 3 34 81 35 243  , a5   4 4 5 5

26. c1  c4 

1

1

2

1

21 42 2

2

obtained by using  1 2

1 2 3 9  , c2  2  1, c3  3  , 2 8 2 2

 4

n 1

32. The terms appear to alternate between whole numbers and fractions. If we write the whole numbers as fractions (e.g. 1  1 , 3  3 , etc.), we 1 1 see that each term consists of a 1 and the term number. When n is odd, the numerator is n and the denominator is 1. When n is even, the numerator is 1 and the denominator is n. This alternating behavior occurs if we have a power that alternates sign. The alternating sign is

1 2 3  , b2  2 , b3  3 , e e e e 4 5 b4  4 , b5  5 e e

25. b1 

n

1 an  n 

16 52 25  1, c5  5  16 32 2

n1

. Thus, we get

n1

33. The terms (ignoring the sign) are equal to the term number. The alternating sign is obtained by

using  1

27. Each term is a fraction with the numerator equal to the term number and the denominator equal to one more than the term number. n an  n 1

an   1

n1

n 1

.

n

34. Here again we have alternating signs which will

be taken care of by using  1

n 1

. The rest of the

term is twice the term number.

28. Each term is a fraction with the numerator equal to 1 and the denominator equal to the product of the term number and one more than the term number. 1 an  n  n  1

an   1

n 1

 2n

35. a1  2, a2  3  2  5, a3  3  5  8, a4  3  8  11, a5  3  11  14 1323

Copyright © 2020 Pearson Education, Inc.


Chapter 12: Sequences; Induction; the Binomial Theorem 36. a1  3, a2  4  3  1, a3  4  1  3, a4  4  3  1, a5  4  1  3

48. a1  2, a2 

37. a1   2, a2  2  ( 2)  0, a3  3  0  3, a4  4  3  7, a5  5  7  12

2 2 2 , a  5 2

38. a1  1, a2  2  1  1, a3  3  1  2, a4  4  2  2, a5  5  2  3

a4 

39. a1  4, a2  3  4  12, a3  3 12  36, a4  3  36  108, a5  3 108  324

40. a1  2, a2   2, a3  ( 2)  2, a4   2, a5  ( 2)  2

49.

2 2 2 2 2

n

 (k  2)  3  4  5  6  7     n  2 

k 1

50.

n

 (2k  1)  3  5  7  9     2n  1

k 1

3 3 1 41. a1  3, a2  , a3  2  , 2 3 2 1 1 1 1 a4  2  , a5  8  4 8 5 40

51.

k2 1 9 25 49 n2   2   8   18   32      2 2 2 2 2 k 1 2

52.

  k  1  4  9  16  25  36     n  1

n

 n

2

2

k 1

42. a1   2, a2  2  3( 2)   4, a3  3  3( 4)  9, a4  4  3(9)   23, a5  5  3( 23)   64

43. a1  1, a2  2, a3  2 1  2, a4  2  2  4,

53.

54.

a5  4  2  8

44. a1  1, a2  1, a3  1  3 1  2, a4  1  4  2  9, a5  2  5  9  47

55.

56.

n

1

1 1 3 9

 k  1  

k 0 3

k

n

3 9 3 3   1       2 4 2 k 0  2 



n 1

1

k 0 3

1 1  n 27 3

n 1

 (2k  1)  1  3  5  7     2(n  1)  1

n

 (1)k ln k  ln 2  ln 3  ln 4    (1)n ln n

k 2

46. a1  A, a2  rA, a3  r (rA)  r 2 A,

 

n

 1  3  5  7    (2n  1)

57.

a4  r r 2 A  r 3 A, a5  r r 3 A  r 4 A

1 1 3 9

 k 1   

a4  ( A  2d )  d  A  3d , a5  ( A  3d )  d  A  4d

1 1  n 27 3

k 0

45. a1  A, a2  A  d , a3  ( A  d )  d  A  2d ,

 

2 2 , 2

2 , a3  2

58.

n

 (1)k 1 2k

k 3

47. a1  2, a2  2  2 , a3  2  2  2 , a4  2  2  2  2 , a5  2  2  2  2  2

 (1) 4 23  (1)5 24  (1)6 25    (1) n 1 2n  23  24  25  26    (1) n 1 2n  8  16  32  64  ...  (1) n 1 2n 20

59. 1  2  3    20   k k 1

1324 Copyright © 2020 Pearson Education, Inc.


Section 12.1: Sequences

8

60. 13  23  33    83   k 3

74.

k 1

61.

26

26

26

26

26

k 1

k 1

k 1

k 1

k 1

  3k  7     3k    7  3  k   7  26  26  1   3   7  26  2    1053  182  871

13 k 1 2 3 13     2 3 4 13  1 k 1 k  1 12

62. 1  3  5  7     2(12)  1   (2k  1)

75.

k 1

  k 2  4   k 2   4 16

16

16

k 1

k 1

k 1

1 1 1  1  6  1  63. 1       (1)6  6    (1) k  k  3 9 27  3  k 0 3 

64.

2 3

65. 3 

4 9

8 27

11 111  2 

11 k 1  2      (1)   3 3 k 1

   ( 1)

6  1496  64  1560

k

76.

14

14

k 0

k 1

14

k 1

77.

60

n

or   (a   k  1 d ) k 1

n

68. a  a r  a r 2    a r n 1   a r k 1 k 1

72.

73.

78.

40

 5   5   5  40  5   200  5  5

40

40

40  40  1

k 1

2

24

24

24  24  1

k 1

k 1

2

20

20

20

20

20

k 1

k 1

k 1

k 1

k 1

 20  41  820

 ( k )    k  

 40

40

7

  3k   3  k  3   k   k 

k 8

k 1   k 1  40  40  1 7  7  1   3    2 2    3 820  28  2376

20

20

4

k 5

k 1

k 1

k 8

50

k 

k 1   k 1  60  60  1 9  9  1   2   2 2    2 1830  45  3570

 8   8   8  50(8)  400  8  8

79.

9

k 10

40 times

50 times

 60

60

 2k  2  2k  2   k   k 

k 10

k 0

71.

14 14  1 2 14  1

6  4  1015  64  955

67. a  ( a  d )  ( a  2d )    ( a  nd )   (a  kd )

k 1

k 1

 4 

n

70.

14

  k2   4

n 3k 32 33 3n    n k 1 k 2 3

k 1

 4 16 

  k 2  4    02  4     k 2  4 

n k 1 2 3 n 66.  2  3  n   k e e e e k 1 e

69.

16 16  1 2 16  1

 k3   k3   k3 2

 20  20  1   4  4  1      2    2 

 300

2

 2102  102  44, 000

80.

 (5k  3)   (5k )   3  5  k   3

24

24

3

k 4

k 1

k 1

 k3   k3   k3 2

 24  24  1   3  3  1      2    2 

 20  20  1   5   3  20  2    1050  60  1110

 3002  62  89,964

1325

Copyright © 2020 Pearson Education, Inc.

2

 4 14 


Chapter 12: Sequences; Induction; the Binomial Theorem 81. B1  1.01B0  100  1.01(3000)  100  $2930 John’s balance is $2930 after making the first payment.

84. p1  0.9 p0  15  0.9(250)  15  240 p2  0.9 p1  15  0.9(240)  15  231 There are 231 tons of pollutants after two years.

82. p1  1.03 p0  20  1.03(2000)  20  2080 p2  1.03 p1  20  1.03(2080)  20  2162.4 There are approximately 2162 trout in the pond after 2 months.

85. a1  1, a2  1, a3  2, a4  3, a5  5, a6  8, a7  13, a8  21, an  an 1  an  2 a8  a7  a6  13  8  21 After 7 months there are 21 mature pairs of rabbits.

83. B1  1.005B0  534.47  1.005(18,500)  534.47  $18, 058.03 Phil’s balance is $18,058.03 after making the first payment.

1  5   1  5   1  5  1  5  2 5  1 86. a. u  1

1

1

21 5

2 5

u2 

2 5

1  5   1  5   1  2 5  5  1  2 5  5  4 5  1 2

2

22 5

4 5

4 5

b. Set A  1  5, B  1  5 . un  2 

An  2  B n  2

2n  2 5 

A 2  An  B 2  B n 2n  2 5

1  5   A  1  5   B  2

2

n

n

2n  2 5

3  5   A  3  5   B  n

n

2n 1 5

1  5  A  1  5  B  2 A  2B  n

n

n

n

2n 1 5

An 1  B n 1

2n 1 5  un 1  un

c.

An  B n 2n 5

Since u1  1, u2  1, un  2  un 1  un , un  is the Fibonacci sequence.

1326 Copyright © 2020 Pearson Education, Inc.


Section 12.1: Sequences 87. 1, 1, 2, 3, 5, 8, 13 This is the Fibonacci sequence. 88. a. b.

u1  1, u2  1, u3  2, u4  3, u5  5, u6  8, u7  13, u8  21, u9  34, u10  55 , u11  89 u3 2 u u u2 1 u4 3 5 8   1,   2,   1.5, 5   1.67, 6   1.6, u1 1 u2 1 u3 2 u4 3 u5 5 u7 13 u8 21 u9 34   1.625,   1.615,   1.619, u6 8 u7 13 u8 21 u10 55 u 89   1.618, 11   1.618 u9 34 u10 55

c. d.

1.618 (the exact value is

u3 2 u1 1 u2 1 u4 3   1,   0.5,   0.667,   0.6, u2 1 u3 2 u4 3 u5 5 u5 5 u6 8 u 13   0.625,   0.615, 7   0.619, u6 8 u7 13 u8 21 u8 21   0.618, u9 34

u9 34 u 55   0.618, 10   0.618 u10 55 u11 89

e.

0.618 (the exact value is

89. a.

f 1.3  e1.3   1.3  k!

4

k

k 0

b.

7

f 1.3  e1.3   1.3  k! k 0

c.

1 5 ) 2

k

2 ) 1 5

1.30 0!

1.31 1!

 ... 

1.34 4!

 3.630170833

1.30 1.31 1.37   ...   3.669060828 0! 1! 7!

f 1.3  e1.3  3.669296668

d. It will take n  12 to approximate f 1.3  e1.3 correct to 8 decimal places.

1327

Copyright © 2020 Pearson Education, Inc.


Chapter 12: Sequences; Induction; the Binomial Theorem

3

 2.4   2.4   2.4   2.4   2.4  0.824 k

0

90. a.

f  2.4   e2.4  

b.

f  2.4   e2.4  

c.

f  2.4   e2.4  0.0907179533

k 0 6

k 0

0!

k!

 2.4 k!

1

k

 2.4  0!

1!

0

 2.4

1

1!

2

3

2!

 ... 

3!

 2.4  6!

6

 0.1602688

d. It will take n  17 to approximate f  2.4   e2.4 correct to 8 decimal places.

91. a.

a1  0.4 , a2  0.4  0.3  22  2  0.4  0.3  0.7 , a3  0.4  0.3  23 2  0.4  0.3  2   1.0 , a4  0.4  0.3  24 2  0.4  0.3  4   1.6 , a5  0.4  0.3  25 2  0.4  0.3  8   2.8 ,

a6  0.4  0.3  26 2  0.4  0.3 16   5.2 , a7  0.4  0.3  27  2  0.4  0.3  32   10.0 , a8  0.4  0.3  28 2  0.4  0.3  64   19.6 The first eight terms of the sequence are 0.4, 0.7, 1.0, 1.6, 2.8, 5.2, 10.0, and 19.6. b. Except for term 5, which has no match, Bode’s formula provides excellent approximations for the mean distances of the planets from the sun. c.

The mean distance of Ceres from the Sun is approximated by a5  2.8 , and that of Uranus is a8  19.6 .

d.

a9  0.4  0.3  29  2  0.4  0.3 128   38.8

a10  0.4  0.3  210  2  0.4  0.3  256   77.2 e.

Pluto’s distance is approximated by a9 , but no term approximates Neptune’s mean distance from the sun.

f.

a11  0.4  0.3  211 2  0.4  0.3  512   154

According to Bode’s Law, the mean orbital distance of Eris will be 154 AU from the sun.

1328 Copyright © 2020 Pearson Education, Inc.


Section 12.1: Sequences

1 4 1 4 4 1 4  4 1 4  4 92. a1  4 , a2  (4)  , a3     , a4     , a5   ,  5 5 5  5  25 5  25  125 5  125  625 1 4  4 a5    0.00128  5  625  3125 93. a.

Let I 0 represent the intensity. Then the nth term would be an  0.95n  I 0 . 0.02  0.95n

b.

log 0.02  log 0.95n log 0.02  n log 0.95 n

94. To show that S  1

Let

log 0.02  77 log 0.95

1  2  3  ...   n  1  n  2

n  n  1

2  3  ...   n  1  n, we can reverse the order to get

 S  n   n  1   n  2  +...+

2

+ 1,

now add these two lines to get

2S  1  n    2   n  1   3   n  2    ......   n  1  2    n  1

So we have 2S  1  n   1  n   1  n   ....   n  1   n  1  n   n  1  2S  n  n  1 S

95.

n   n  1 2

5 We begin with an initial guess of a0  2 . 1 5  2    2.25 2 2 1 5  a2   2.25    2.236111111 2 2.25  1 5  a3   2.236111111   2 2.236111111   2.236067978 1 5  a4   2.236067978   2 2.236067978   2.236067977 1 5  a5   2.236067977   2 2.236067977   2.236067977 a1 

For both a5 and the calculator approximation, we obtain

1329

Copyright © 2020 Pearson Education, Inc.

5  2.236067977 .


Chapter 12: Sequences; Induction; the Binomial Theorem

96.

8 We begin with an initial guess of a0  3 . a1 

1 8  1 8  a0     3    2.833333333 2 3 a0  2 

a2 

1 8  a1   2 a1 

97.

1 21   4    4.625 2 4 1 21  a2   4.625    4.58277027 2 4.625  1 21  a3   4.58277027   2 4.58277027   4.582575699 1 21  a4   4.582575699   2 4.582575699   4.582575695 1 21  a5   4.582575695   2 4.582575695   4.582575695 a1 

1 8   2.833333333   2 2.2.833333333   2.828431373 

a3 

1 8   a2   2 a2 

1 8   2.828431373   2 2.828431373   2.828427125 

a4 

21 We begin with an initial guess of a0  4 .

1 8  a3   2 a3 

8 1   2.828427125   2.828427125  2  2.828427125 

a5 

For both a5 and the calculator approximation,

1 8   a4   2 a4 

we obtain

1 8   2.828427125   2 2.828427125   2.828427125 

98.

89 We begin with an initial guess of a0  9 .

1 89   5    9.444444444 2 5  1 89  a2   9.444444444   2 9.444444444   9.433986928 1 89  a3   9.433986928   2 9.433986928   9.433981132 1 89  a4   9.433981132   2 9.433981132   9.433981132 1 89  a5   9.433981132   2 9.433981132   9.433981132 a1 

For both a5 and the calculator approximation, we obtain

8  2.828427125 .

21  4.582575695 .

1330 Copyright © 2020 Pearson Education, Inc.


Section 12.1: Sequences

For both a5 and the calculator approximation, 89  9.433981132 .

we obtain

a1n

 r  a2 n

a2

a2 n

= n

r n a2 n a2 n

 rn

 r  r  r   r

99. u1  1 and un 1  un  (n  1) : So u1  1

n factors

u2  u1  (1  1)  1  2  3

a a a a a  1  2  3   n  1 a2 a3 a4 an 1 an 1

u3  u2  (2  1)  3  3  6 u4  u3  (3  1)  6  4  10

103 - 104. Answers will vary.

u5  u4  (4  1)  10  5  15 u6  u5  (5  1)  15  6  21

105.

u7  u6  (6  1)  21  7  28

 r A  P 1    n

nt

 0.03   2500 1    12 

100. Note that: un 1  un  (n  1)  1  2  3  

12(2)

 $2654.39

;  ( n  2)  (n  1)  n  (n  1) Reverse the order and add: So adding these together we have un 1  1  2  3    (n  1)  n

106. r  x 2  y 2  (1) 2  (1) 2  2 y 1  (n  1) tan    1 x 1 un 1  (n  1)  n  (n  1)    3  2  1   225º 2(un 1 )  (n  2)  (n  2)  (n  2)    (n  2)  (n  2)  (n  2) The polar form of z  1  i is 2(un 1 )  (n  1)(n  2) z  r  cos   i sin    2  cos 225º  i sin 225º  . (n  1)(n  2) un 1  107. v  w  (2)(1)  ( 1)(2) 2  2  ( 2) (n  1)(n  2) (n)(n  1) 0 and un  101. un 1  2 2 so 108. The vertex is (–3, 4) and the focus is (1, 4). Both (n  1)(n  2) (n)(n  1) lie on the horizontal line y  4 . a  3  1  4 un 1  un  + 2 2 and since (1, 4) is to the right of (–3, 4), the (n  1)(n  2)  (n)(n  1) parabola opens to the right. The equation of the  parabola is: 2

 y  k  2  4a  x  h   y  4 2  4  4 x  (3)  y  4 2  16  x  3

n 2  3n  2  n 2  n 2 2n 2  4n  2  2 2 2(n  2n  1)   n 2  2n  1  (n  1) 2 2 102. Let r be the common ratio so a a1 a2 a =    n 1  r . Then 1  r and a2 a3 a a2 

109. Since the degree of the denominator is higher than the degree of the numerator the horizontal asymptote is y  0 .

a1  r  a2 .

1331

Copyright © 2020 Pearson Education, Inc.


Chapter 12: Sequences; Induction; the Binomial Theorem 110. A  B  C  180 B  A4 C  3B  11 Setting up a system of equations gives: A  B  C  180 2 A  B  4 3B  C  11 The coefficient matrix would be:  1 1 1 180   2 1 0 4  . Solving this system gives    0 3 1 11 1 0 0 23   0 1 0 42     0 0 1 115 So the three angles are A  23, B  42, and C  115 .

10 r r  10, x  1, y  9  3 111. sec    so 1 x tan   3 r  10, x  3, y  1  1 10 r  so sec   1 x 3 tan   3 1 8 3 f (b)  f (a) 3   3 ba 10 2 10 10  3 3 

8 8 10 2 10   20 5 2 10

112. f (a  1)  5(a  1) 2  2(a  1)  9  16

( x  2)( x  6)  0 x  2, 6 So the critical numbers are 2, 6 .

Section 12.2 1. arithmetic 2. False; the sum of the first and last terms equals twice the sum of all the terms divided by the number of terms. 3. 12  a1  (5  1)5  a1  8 So a6  8  (6  1)5  17

4. True 5. d 6. c 7. d  sn  sn 1  (n  4)  (n  1  4)  (n  4)  (n  3)  n 4n3 1 The difference between consecutive terms is constant, therefore the sequence is arithmetic. s1  1  4  5, s2  2  4  6, s3  3  4  7, s4  4  4  8

8. d  sn  sn 1

5(a 2  2a  1)  2a  2  9  16

 (n  5)  (n  1  5)   n  5    n  6 

5a 2  10a  5  2a  7  16 5a 2  8a  4  0 (5a  2)(a  2)  0 a

x 2  4 x  12  0

2 or a  2 5

113. The function is undefined when the denominator is equal to zero: x2  0 x2 However the function is not defined at x = 2 so it is not a critical number. The function is equal to zero when the numerator is equal to zero:

 n5n6 1 The difference between consecutive terms is constant, therefore the sequence is arithmetic. s1  1  5   4, s2  2  5  3, s3  3  5   2, s4  4  5  1

9. d  an  an 1

  2n  5   (2(n  1)  5)   2n  5    2n  2  5 

 2n  5  2n  7  2 The difference between consecutive terms is

1332 Copyright © 2020 Pearson Education, Inc.


Section 12.2: Arithmetic Sequences 14. d  tn  tn 1

constant, therefore the sequence is arithmetic. a1  2 1  5  3, a2  2  2  5  1,

2 1  2 1     n     (n  1)  3 4  3 4  1 2 1  2 1    n   n   4 3 4  3 4 2 1 2 1 1 1   n  n  3 4 3 4 4 4 The difference between consecutive terms is constant, therefore the sequence is arithmetic. 2 1 11 2 1 7 t1   1  , t2    2  , 3 4 12 3 4 6 2 1 17 2 1 5 t3    3  , t4    4  3 4 12 3 4 3

a3  2  3  5  1, a4  2  4  5  3

10. d  bn  bn 1

  3n  1  (3(n  1)  1)   3n  1   3n  3  1

 3n  1  3n  2  3 The difference between consecutive terms is constant, therefore the sequence is arithmetic. b1  3 1  1  4, b2  3  2  1  7, b3  3  3  1  10, b4  3  4  1  13

11. d  cn  cn 1

15. d  sn  sn 1

  6  2n   (6  2(n  1))

   

 ln 3n  ln 3n 1

  6  2n    6  2n  2 

 n ln  3   n  1 ln  3

 6  2n  6  2n  2   2 The difference between consecutive terms is constant, therefore the sequence is arithmetic. c1  6  2 1  4, c2  6  2  2  2,

  ln 3 (n   n  1)   ln 3 n  n  1  ln 3 The difference between consecutive terms is constant, therefore the sequence is arithmetic.

c3  6  2  3  0, c4  6  2  4   2

    s  ln  3   3ln  3 , s  ln  3   4 ln  3 s1  ln 31  ln  3 , s2  ln 32  2 ln  3 ,

12. d  an  an 1

  4  2n   (4  2(n  1))

3

  4  2n    4  2n  2 

3

4

4

16. d  sn  sn 1  eln n  eln( n 1)  n   n  1  1

 4  2n  4  2n  2   2 The difference between consecutive terms is constant, therefore the sequence is arithmetic. a1  4  2 1  2, a2  4  2  2  0,

The difference between consecutive terms is constant, therefore the sequence is arithmetic. s1  eln1  1, s2  eln 2  2, s3  eln 3  3,

a3  4  2  3   2, a4  4  2  4   4

s4  eln 4  4

13. d  tn  tn 1

17. an  a1  (n  1)d

1 1  1 1     n     (n  1)  2 3  2 3  1 1 1  1 1    n   n   3 2 3  2 3 1 1 1 1 1 1   n  n   2 3 2 3 3 3 The difference between consecutive terms is constant, therefore the sequence is arithmetic. 1 1 1 1 1 1 t1   1  , t2    2   , 2 3 6 2 3 6 1 1 1 1 1 5 t3    3   , t4    4   2 3 2 2 3 6

 2  (n  1)3  2  3n  3  3n  1 a51  3  51  1  152

18. an  a1  (n  1)d   2  (n  1)4   2  4n  4  4n  6 a51  4  51  6  198

1333

Copyright © 2020 Pearson Education, Inc.


Chapter 12: Sequences; Induction; the Binomial Theorem 19. an  a1  (n  1)d

27. a1  3, d  3  3  6, an  a1  (n  1)d a90  3  (90  1)(6)  3  89(6)

 8  (n  1)(7)  8  7n  7  15  7n a51  15  7  51  342

 3  534   531

28. a1  5, d  0  5  5, an  a1  (n  1)d a80  5  (80  1)(5)  5  79(5)

20. an  a1  (n  1)d

 5  395  390

 6  (n  1)( 2)  6  2n  2  8  2n a51  8  2  51  94

5 1  2  , an  a1  (n  1)d 2 2 1 83 a80  2  (80  1)  2 2

29. a1  2, d 

21. an  a1  (n  1)d  0  (n  1)

30. a1  2 5, d  4 5  2 5  2 5,

1 2

an  a1  (n  1)d a70  2 5  (70  1)2 5

1 1 n 2 2 1   n  1 2 1 a51   51  1  25 2 

 2 5  69 2 5

 2 5  138 5  140 5

31. a8  a1  7 d  8 a20  a1  19d  44 Solve the system of equations by subtracting the first equation from the second: 12d  36  d  3 a1  8  7(3)  8  21  13 an  an 1  3 Recursive formula: a1  13

22. an  a1  (n  1)d  1  1  (n  1)     3 1 1  1 n  3 3 4 1   n 3 3 4 1 4 51 47 a51    51     3 3 3 3 3

nth term: an  a1   n  1 d

 13   n  1 3  13  3n  3  3n  16

23. an  a1  (n  1)d  2  (n  1) 2  2  2n  2  2n a51  51 2

24. an  a1  (n  1)d  0  (n  1)   n  1  a51  51    50

32. a4  a1  3d  3 a20  a1  19d  35 Solve the system of equations by subtracting the first equation from the second: 16d  32  d  2 a1  3  3(2)  3  6  3 an  an 1  2 Recursive formula: a1  3

nth term: an  a1   n  1 d

 3   n  1 2 

25. a1  2, d  2, an  a1  (n  1)d a100  2  (100  1)2  2  99(2)  2  198  200

 3  2n  2

26. a1  1, d  2, an  a1  (n  1)d a80  1  (80  1)2  1  79(2)  1  158  157

33. a9  a1  8d  5 a15  a1  14d  31 Solve the system of equations by subtracting the first equation from the second:

 2n  5

1334 Copyright © 2020 Pearson Education, Inc.


Section 12.2: Arithmetic Sequences 6d  36  d  6 a1  5  8(6)  5  48  53 Recursive formula: a1  53

4d   8  d   2 a1  1  13( 2)  1  26  25 an  an 1  2 Recursive formula: a1  25

an  an 1  6

nth term: an  a1   n  1 d

nth term: an  a1   n  1 d

 53   n  1 6 

 25   n  1 2 

 53  6n  6

 25  2n  2

 6n  59

 27  2n

34. a8  a1  7 d  4 a18  a1  17 d  96 Solve the system of equations by subtracting the first equation from the second: 10d  100  d  10 a1  4  7(10)  4  70  74 an  an 1  10 Recursive formula: a1  74

38. a12  a1  11d  4 a18  a1  17 d  28 Solve the system of equations by subtracting the first equation from the second: 6d  24  d  4 a1  4  11(4)  4  44   40 an  an 1  4 Recursive formula: a1   40

nth term: an  a1   n  1 d

 74   n  1 10   74  10n  10

nth term: an  a1   n  1 d

 84  10n

 40   n  1 4 

35. a15  a1  14d  0 a40  a1  39d  50 Solve the system of equations by subtracting the first equation from the second: 25d  50  d   2 a1  14( 2)  28 an  an 1  2 Recursive formula: a1  28

 40  4n  4  4n  44

nth term: an  a1   n  1 d

 28   n  1 2   28  2n  2  30  2n

36. a5  a1  4d   2 a13  a1  12d  30 Solve the system of equations by subtracting the first equation from the second: 8d  32  d  4 a1   2  4(4)  18 an  an 1  4 Recursive formula: a1  18

39. Sn 

n n n  a1  an   1   2n  1    2n   n2 2 2 2

40. Sn 

n n  a1  an    2  2n   n  n2  n  n  1 2 2

41. Sn 

n n n  a1  an    7   2  5n     9  5n  2 2 2

n n  a1  an    1   4n  5   2 2 n   4n  6   2n 2  3n 2  n  2n  3 

42. Sn 

nth term: an  a1   n  1 d

 18   n  1 4   18  4n  4  4n  22

37. a14  a1  13d  1 a18  a1  17 d  9 Solve the system of equations by subtracting the first equation from the second:

1335

Copyright © 2020 Pearson Education, Inc.


Chapter 12: Sequences; Induction; the Binomial Theorem 43. a1  2, d  4  2  2, an  a1  (n  1)d 70  2  (n  1)2 70  2  2n  2 70  2n n  35 n 35 Sn   a1  an    2  70  2 2 35   72   35  36  2  1260 44. a1  1, d  3  1  2, an  a1  (n  1)d 59  1  (n  1)2 59  1  2n  2 60  2n n  30 n 30 Sn   a1  an   1  59   15  60   900 2 2 45. a1  9, d  5  (9)  4, an  a1  (n  1)d 39  9   n  1 4

39  9  4n  4 39  4n  13 n  13 n 13 13 Sn   a1  an    9  39    30   195 2 2 2

46. a1  2, d  5  2  3, an  a1  (n  1)d 41  2   n  1 3

41  2  3n  3 42  3n n  14 n 14 Sn   a1  an    2  41  7  43  301 2 2

47. a1  93 , d  89  93  4 , an  a1   n  1 d 287  93   n  1 4 

48. a1  7 , d  1  7  6 , an  a1   n  1 d 299  7   n  1 6  306  6  n  1 51  n  1 52  n n 52 Sn   a1  an   7   299  2 2  26  292   7592

49. a1  4 , d  4.5  4  0.5 , an  a1   n  1 d 100  4   n  1 0.5  96  0.5  n  1 192  n  1 193  n n 193 Sn   a1  an    4  100  2 2 193  104   10, 036 2 1 1 50. a1  8 , d  8  8  , an  a1   n  1 d 4 4 1 50  8   n  1   4 1  n  1 4 168  n  1 42 

169  n n 169 Sn   a1  an   8  50  2 2 169   58  4901 2

51. a1  4 1  9  5 , a80  4  80   9  311 S80 

80  5  311  40  306   12, 240 2

52. a1  3  2 1  1 , a90  3  2  90   177

380  4  n  1 380  4n  4 384  4n

S90 

90 1   177   45  176   7920 2

96  n n 96 Sn   a1  an    93  (287)  2 2  48  194   9312

1336 Copyright © 2020 Pearson Education, Inc.


Section 12.2: Arithmetic Sequences

1 11 1 1  2 , a100  6  2 100   44 2 100  11  S100     44   2 2 

n  2(11)  (n  1)(3) 2 n 1092   22  3n  3 2 2194  n 19  3n 

53. a1  6 

1092 

 77   50     1925  2 

2194  19n  3n 2 3n 2  19n  2184  0

1 1 5 1 1 163 54. a1  1   , a80   80    3 2 6 3 2 6 80  5 163  S80      40  28   1120 2 6 6 

(3n  91)(n  24)  0 So n  24 .

60. d  4, a1  78, and S  702 n  2(78)  (n  1)(4) 2 n 702  156  4n  4 2 1404  n 160  4n  702 

55. a1  14 , d  16  14  2 , an  a1   n  1 d

a120  14  120  1 2   14  119  2   252 S120 

120 14  252   60  266   15,960 2

1404  160n  4n 2

56. a1  2 , d  1  2  3 , an  a1   n  1 d

4n 2  160n  1404  0

a46  2   46  1 3  2   45  3  133 S46 

n 2  40n  351  0 (n  13)(n  27)  0 So n  13 or n  27 .

46 2   133  23  131  3013 2

61. The total number of seats is: S  25  26  27     25  29 1 

57. Find the common difference of the terms and solve the system of equations: (2 x  1)  ( x  3)  d  x  2  d (5 x  2)  (2 x  1)  d  3 x  1  d 3x  1  x  2 2 x  3 3 x 2

This is the sum of an arithmetic sequence with d  1, a1  25, and n  30 . Find the sum of the sequence: 30 S30   2(25)  (30  1)(1)  2  15(50  29)  15(79)  1185 There are 1185 seats in the theater.

58. Find the common difference of the terms and solve the system of equations: (3 x  2)  (2 x)  d  x  2  d (5 x  3)  (3x  2)  d  2 x  1  d 2x 1  x  2 x 1

62. a1  35 , d  37  35  2 , an  a1   n  1 d

a27  35   27  1 2   35  26  2   87 27 27  35  87   2 122   1647 2 The amphitheater has 1647 seats. S27 

59. d  3, a1  11, and S  1092

1337

Copyright © 2020 Pearson Education, Inc.


Chapter 12: Sequences; Induction; the Binomial Theorem 63. The total number of seats is:

S  15  17  19    15   39  2  

This is the sum of an arithmetic sequence with d  2, a1  15, and n  40 . Find the sum of the sequence: 40 S40   2(15)  (40  1)(2) 2  20(30  78)  20(108)  2160 The corner section has 2160 seats. 64. The number of bricks required decreases by 2 on each successive step. This is an arithmetic sequence with a1  100, d   2, and n  30 . a.

The number of bricks for the top step is: a30  a1  (n  1)d  100  (30  1)( 2)

n

 49  492  4(1)( 400) 2(1)

49  4001  49  63.25  2 2 n  7.13 or n   56.13 It takes about 8 years to have an aggregate salary of at least $280,000. The aggregate salary after 8 years will be $319,200. 

66. Find n in an arithmetic sequence with a1  10, d  4, Sn  2040 . n Sn   2a1  (n  1)d  2 n 2040   2(10)  (n  1)4 2 4080  n  20  4n  4

 100  29( 2)  100  58

4080  n(4n  16)

 42 42 bricks are required for the top step. b. The total number of bricks required is the sum of the sequence: 30 S  100  42  15(142)  2130 2 2130 bricks are required to build the staircase.

4080  4n 2  16n

65. The yearly salaries form an arithmetic sequence with a1  35, 000, d  1400, Sn  280, 000 . Find the number of years for the aggregate salary to equal $280,000. n Sn   2a1  (n  1)d  2 n 280, 000   2(35, 000)  (n  1)1400 2 280, 000  n 35, 000  700n  700 280, 000  n(700n  34,300) 280, 000  700 n 2  34,300 n 400  n 2  49 n n 2  49 n  400  0

1020  n 2  4n n 2  4n  1020  0 (n  34)(n  30)  0  n  34 or n  30 There are 30 rows in the corner section of the stadium.

67. The lighter colored tiles have 20 tiles in the bottom row and 1 tile in the top row. The number decreases by 1 as we move up the triangle. This is an arithmetic sequence with a1  20, d  1, and n  20 . Find the sum: 20  2(20)  (20  1)(1) 2  10(40  19)  10(21)  210 There are 210 lighter tiles. S

The darker colored tiles have 19 tiles in the bottom row and 1 tile in the top row. The number decreases by 1 as we move up the triangle. This is an arithmetic sequence with a1  19, d  1, and n  19 . Find the sum: 19  2(19)  (19  1)(1) 2 19 19  (38  18)  (20)  190 2 2 are 190 darker tiles. S

1338 Copyright © 2020 Pearson Education, Inc.


Section 12.2: Arithmetic Sequences 68. a. We are given that a1  57, d  95 . The formula for the sequence would be

To find the total material required for the rungs, we need the sum of their lengths. Since there are 11 rungs, we have 11 11 S11   49  24    73  401.5 2 2 It would require 401.5 feet of material to construct the rungs for the ladder.

an  a1  (n  1)d an  57  (n  1)95

 57  95n  95  95n  38

71. Let an  2  (n  1)  7  7 n  5 and bn  5  (n  1)  6  6n  1.

The predictive formula would be an  95n  38 . b.

a10  95(10)  38  912 min.

Solving 7 n  5  6n  1 gives n  4 , so the fourth term in each sequence is the same. Subsequent pairs occur every 6 terms for an  ,

912 minutes after 12:57am would be 3:12pm. c.

the sequence with d  7 , and every 7 terms for bn  , the sequence with d  6 . Thus, the

We need the number of hours to be less than 24. This is 1440 minutes. We must add multiples of 1h 35m (1.583h) until we get to the end of the day. Using 0.95 for the time of 12:57am and solving for n gives: 24  15.16 . It would erupt 15 times. So 1.583

number of pairs in limited by bn  and the restriction of 100 terms. After the fourth term,  96  there are int    13 terms that appear in both  7  sequences of 14 terms in common.

0.95  (15  1)(1.583)  0.95  22.162  23.112

n (a1  an ) and 2 a2 n  a1  (2n  1)d  an  nd , so

72. Sn 

23.112 would be approximately 11:07pm. 69. The air cools at the rate of 5.5 F per 1000 feet. Since n represents thousands of feet, we have d  5.5 . The ground temperature is 67F so we have T1  67  5.5  61.5 . Therefore,

2n 2n (a1  a2 n )  (a1  an  nd ) 2 2 n  2  (a1  an )  n 2 d  2Sn  n 2 d 2 S2 n 2Sn  n 2 d n2 d   2  C (a constant). Sn Sn Sn Rearranging gives n2 d   C  2  Sn . n   C  2   2a1  (n  1)d  2 From which 2nd   C  2  nd  2a1  d  . S2 n 

Tn   61.5   n  1 5.5  5.5n  67 or 67  5.5n

After the parcel of air has risen 5000 feet, we have T5  61.5   5  1 5.5   39.5 . The parcel of air will be 39.5F after it has risen 5000 feet. 70. If we treat the length of each rung as the term of an arithmetic sequence, we have a1  49 , d  2.5 , and an  24 . an  a1   n  1 d

Because this equation is an identity in n, 2  (C  2)  C  4 and

24  49   n  1 2.5 

2a1  d  0  a1 

25  2.5  n  1

d . 2

So an  a1  (n  1)d 

10  n  1 11  n Therefore, the ladder contains 11 rungs.

1339

Copyright © 2020 Pearson Education, Inc.

d  2n  1   (n  1)d   d . 2  2 


Chapter 12: Sequences; Induction; the Binomial Theorem 73. Answers will vary. Both increase (or decrease) at a constant rate, but the domain of an arithmetic sequence is the set of natural numbers while the domain of a linear function is the set of all real numbers. 74. Answers will vary.  0.153  75. re  1    12   16.42%

12

 1  0.1642

76. v  ( x2  x1 )i  ( y2  y1 ) j  (3  ( 1))i  ( 4  2) j  4i  6 j

77. 25 x 2  4 y 2  100 x2 y 2  1 4 25 The center of the ellipse is at the origin. a  2, b  5 . The vertices are (0, 5) and (0, –5). Find the value of c: c 2  b 2  a 2  25  4  21  c  21

The foci are 0, 21 and 0,  21 .

é2 0 1 0ù ê ú ê 3 -1 0 1ú ë û é 1 0 1 0ù 2 ú R =1r ê ê3 -1 0 1ú ( 1 2 1 ) ë û 1 é1 0 0ùú 2  êê 3 ú ( R2 = - 3r1 + r2 ) ëê 0 -1 - 2 1ûú é1 0 1 0ùú 2  êê 3 ú ( R2 = -1r2 ) êë 0 1 2 -1úû é1 0ùú Thus, A-1 = êê 23 ú. ëê 2 -1ûú

79. Find the partial fraction decomposition: 3x 3x A Bx  C    2 3 2 x  1 ( x  1)( x  x  1) x  1 x  x  1

Multiplying both sides by ( x  1)( x 2  x  1) , we obtain: 3x  A( x 2  x  1)  ( Bx  C )( x  1)

Let x  1 , then 3(1)  A 12  1  1   B(1)  C  (1  1) 3  3A A 1

Let x  0 , then

3(0)  A 02  0  1  ( B (0)  C )(0  1) 0 1C C 1

Let x  1 , then

3(1)  A (1) 2  (1)  1  ( B (1)  C )(1  1)

 2 0 78. A     3 1 Augment the matrix with the identity and use row operations to find the inverse:

3  A  2 B  2C 3  1  2 B  2(1) 2  2 B B  1  x 1 1  2 x 1 x 1 x  x 1 1 x 1   x  1 x2  x  1 3x

3

1340 Copyright © 2020 Pearson Education, Inc.


Section 12.3: Geometric Sequences; Geometric Series

u 2  2u  1  0

 2 2   2  5 1  cos 5 4 5   sin( 4 )    80. sin 8 2 2 2 

u 2  2u  1 Complete the square u 2  2u  1  1  1

2 2 2

 u  12  2

 2 2   2  5 1  cos 5 4 5   cos( 4 )    cos 8 2 2 2 

u 1   2 u  1 2 x2  1  2

2 2 2

x   1 2 The radicand cannot be negative so the zeros are:

0,  1  2 , 1  2 . 2

sin 2

5 5  2  2    2  2      cos 2     8 8  2 2    

83. 12 x 2  6 y 2  24 x  24 y  0

2

A  12, C  6  AC  72 Since AC<0 the equation represents a hyperbola.

2 2 2 2  4 4 1 2 1  2 2      2 4 2 4 2 

x 2  6 x  9  x 2  2 x  15  7 6 x  9  2 x  8 8 x  17

81. (x – 1) moves the function right by 1 unit so the domain of 2 g ( x  1) would be  3,11 . 82.

x

2

4

17    8

3

2

4

17 8

The solution set is 

 x  1  2 x   x  1  4 x  0 2 x  x  1   x  1  2 x   0   2 x  x  1   2 x  2 x    0   4

( x  3) 2  ( x  3)( x  5)  7

84.

2

4

2

Section 12.3

2 x   x 4  2 x 2  1  0

 0.04  1. A  1000 1   2  

2 x  x 4  2 x 2  1  0

22

 0.05  2. P  10, 000  1   12  

2 x  0 or  x 4  2 x 2  1  0

Let u  x 2 . Then

3. geometric 4.

a 1 r

5. b 6. True

1341

Copyright © 2020 Pearson Education, Inc.

 $1082.43 121

 $9513.28


Chapter 12: Sequences; Induction; the Binomial Theorem 7. False; the common ratio can be positive or negative (or 0, but this results in a sequence of only 0s). 8. True 4n 1

 4n 1 n  4 4n The ratio of consecutive terms is constant, therefore the sequence is geometric. s1  41  4, s2  42  16,

9. r 

s3  43  64, s4  44  256 (5) n 1

 (5) n 1 n  5 (5) n The ratio of consecutive terms is constant, therefore the sequence is geometric. s1  (5)1  5, s2  (5) 2  25,

10. r 

s3  (5)3  125, s4  (5) 4  625 n 1

1 3   n 1 n 1 2 1 11. r    n     2 2   1 3   2 The ratio of consecutive terms is constant, therefore the sequence is geometric. 1

2

3

4

3 3 1 1 a1  3     , a2  3     , 2 4 2 2 3 3 1 1 a3  3     , a4  3     2 8 2 16     n 1

5 n 1 n   5 2 5 12. r    n     2 2   5   2 The ratio of consecutive terms is constant, therefore the sequence is geometric. 1

2

25 5 5 5 b1     , b2     , 4 2 2 2 3

4

625  5  125 5 b3     , b4     8 16 2 2

 2n 11    4  2n  13. r   n 1  2n  ( n 1)  2  2n 1  2    4  The ratio of consecutive terms is constant, therefore the sequence is geometric. 211 20 1 c1   2  22  , 4 4 2 c2 

221 21 1  2  21  , 4 2 2

c3 

231 22  2  1, 4 2

c4 

241 23  2 2 4 2

 3n 1    9  3n 1 14. r    n  3n 1 n  3 n 3  3   9   The ratio of consecutive terms is constant, therefore the sequence is geometric. 31 1 32 9 d1   , d 2    1, 9 3 9 9 d3 

15. r 

33 27 34 81   3, d 4   9 9 9 9 9

 n 1    7 4  n   7 4 

 n 1 n     4  71/4

 7 4

The ratio of consecutive terms is constant, therefore the sequence is geometric. e1  71/4 , e2  71/2 , e3  73/4  2, e4  7 32( n 1)

 32 n  2  2 n  32  9 32 n The ratio of consecutive terms is constant, therefore the sequence is geometric. f1  321  9, f 2  322  34  81,

16. r 

f3  323  36  729, f 4  324  38  6561

1342 Copyright © 2020 Pearson Education, Inc.


Section 12.3: Geometric Sequences; Geometric Series

 3n 11   n 1  n n 2  3  2 17. r    3n 1  3n 1 2n 1  n   2 

 1 24. a5  1      3

3 2 The ratio of consecutive terms is constant, therefore the sequence is geometric. 311 30 1 32 1 31 3  , t2  2  2  , t1  1  2 2 4 2 2 2 t3 

3

2

3

4 1

2

3

4

5 1

1 26. a5  0    

3

9 3 3 27  , t4  4  4  8 16 2 2 2

1 an  0    

1 a7  1    2

4

1  0   0 

n 1

0

7 1

6

1 1    64 2

a8  1  381  37  2187

29. a1  1, r  1, n  9 15 1

a15  1   1

  1

10 1

a10  1    2 

n 1

an  2  3

20. a5   2  451   2  44   2  256  512

1

 1    2   1(512)  512 9

31. a1  0.4, r  0.1, n  8 8 1

a8  0.4   0.1

n 1

21. a5  5(1)51  5(1) 4  5 1  5

 0.4  0.1  0.00000004 7

32. a1  0.1, r  10, n  7

n 1

a7  0.1 107 1  0.110   100, 000 6

22. a5  6( 2)51  6( 2) 4  6 16  96

1 an  0    7

14

30. a1  1, r   2, n  10

19. a5  2  351  2  34  2  81  162

33. a1  6 , r 

n 1

5 1

n

28. a1  1, r  3, n  8

8 24 16 16 u3  31  2  , u4  41  3  9 27 3 3 3 3

an  6  ( 2)

4

1 27. a1  1, r  , n  7 2

8

an  5  (1)

 3  3 9  9 3   3

n 1

5 1

n 1

 3

n

2  3n 1 n  2n 1 n  31  2  3 The ratio of consecutive terms is constant, therefore the sequence is geometric. 21 2 2 22 4 u1  11  0   2, u2  2 1  , 1 3 3 3 3

1 23. a5  0    7

 1     3

 3 a  3  3

 2n 1   3n 11  3n 1 2n 1  18. r     2n  3n 2n  3n 1   

an   2  4

n 1

25. a5  3 

3

23

1  1  1     81  3

 1 an  1      3

 3n ( n 1)  2n ( n 1)  3  21 

31

5 1

18  3 , an  a1  r n 1 6

an  6  3n 1

4

1  0   0 7

34. a1  5 , r 

n 1

an  5  2n 1

0

1343

Copyright © 2020 Pearson Education, Inc.

10  2 , an  a1  r n 1 5


Chapter 12: Sequences; Induction; the Binomial Theorem

1 1   , an  a1  r n 1 3 3

35. a1  3 , r 

 1 an  3     3

36. a1  4 , r  1 an  4   4

n 1

 1     3

40.

n2

1

r 3  81  1 3

1 , an  a1  r n 1 4

n 1

1   4

r3

243  a1  3

5

1 Therefore, an  3   3

Therefore, an  (3)n 1

41.

38. an  a1  r n 1

1    3

n2

.

1 , r2 4  1  r n  1  1  2n  1 n Sn  a1        1  2 1 4 1 2 4  r      1 n  2 1 4 a1 

42.

n 1

.

a4 a1  r 4 1 r 3    r2 a2 a1  r 2 1 r

3 1  , r 3 9 3  1  r n  1  1  3n  1  1  3n  Sn  a1          1 r  3  1 3  3   2  1 1   1  3n  3n  1 6 6 a1 

1575  225 7 r  225  15

r2 

43. a1 

 

2 2 , r 3 3

  2 n  1    1  r n  2   3   Sn  a1       1 r  3  1 2  3   

an  a1  r n 1 7  a1 152 1 7  15a1 7 15

Therefore, an 

n 1

2 1

1 Therefore, an  21   3

a1 

31

1 1  a1 3 9 3  a1

6 1

1  a1

39.

1 1  27 3

1 1  a1    3 3

243  243a1

1 7  a1    3 1 7  a1 3 21  a1

1 1 3  81 27

an  a1  r n 1

n2

37. an  a1  r n 1 243  a1   3

a6 a1  r 6 1 r 5    r3 a3 a1  r 31 r 2

7 15n 1  7 15n  2 . 15

  2 n  1     2 n  2   3     2 1      1 3   3     3  

1344 Copyright © 2020 Pearson Education, Inc.


Section 12.3: Geometric Sequences; Geometric Series

44.

a1  4, r  3

51. Using the sum of the sequence feature:

1 rn   1  3n   1  3n  Sn  a1    4    4    1 r   1 3   2 

 

 2 1  3n  2 3n  1

45. a1  1, r  2

52. Using the sum of the sequence feature:

 1 rn   1  2n  n Sn  a1    1   1  2 1 1 2  r     

46. a1  2, r 

3 5

  3 n    3 n  1    1        1 rn  5  5    2    Sn  a1    2    2  3  r 1    1 5          5  

1 3 Since r  1, the series converges.

53. a1  1, r 

S 

  3 n   5 1       5  

47. Using the sum of the sequence feature:

a1 1 1 3    1 r  1   2  2 1      3  3

2 3 Since r  1, the series converges.

54. a1  2, r 

S 

48. Using the sum of the sequence feature:

a1 2 2   6 2 1 1 r      1      3 3

1 2 Since r  1, the series converges.

55. a1  8, r 

S 

49. Using the sum of the sequence feature:

a1 8 8    16 1 r  1   1   1      2 2

1 3 Since r  1, the series converges.

56. a1  6, r 

S 

50. Using the sum of the sequence feature:

a1 6 6   9 1 r  1   2   1      3  3

1345

Copyright © 2020 Pearson Education, Inc.


Chapter 12: Sequences; Induction; the Binomial Theorem

1 4 Since r  1, the series converges.

57. a1  2, r  

S 

2 3 Since r  1, the series converges.

65. a1  6, r  

a1 2 2 8    1 r   1    5  5 1    4    4      

58. a1  1, r  

3 4

S 

1 2 Since r  1, the series converges.

66. a1  4, r  

Since r  1, the series converges. S 

a1 1 1 4    1 r   3    7  7 1    4    4      

3 2 Since r  1 , the series diverges.

59. a1  8 , r 

60. a1  9 , r 

a1 6 6 18    1 r   2   5  5 1    3    3      

S 

67.

4 3

Since r  1 , the series diverges.

a1 4 4 8    1 r   1    3  3 1    2    2       k 1

k

  2 2 2 2 3 3       3   3  3   2 3    k 1   k 1 k 1   2 a1  2 , r  3 Since r  1, the series converges.

S 

a1 2 2   6 2 1 1 r 1 3

1 61. a1  5, r  4 Since r  1, the series converges. S 

a1 5 5 20    1 r  1   3  3 1      4 4

S 

k 1

3 3 a1 3  2  2  4  6 1 r 1 3 1 2 4 4

 n  2 d  (n  1  2)  (n  2)  n  3  n  2  1 The difference between consecutive terms is constant. Therefore the sequence is arithmetic.

1 , r 3 2 Since r  1 , the series diverges. 3 2 Since r  1 , the series diverges.

50

50

50

k 1

k 1

k 1

S50   (k  2)   k   2

63. a1 

64. a1  3 , r 

k 1

  3 3 33 3 68.  2     2         4 4 4   k 1   k 1 k 1 2  4  3 3 a1  , r  2 4 Since r  1, the series converges.

69.

a1 8 8    12 1 r  1   2  1      3  3

3

k

1 62. a1  8, r  3 Since r  1, the series converges. S 

k 1

50(50  1)   2(50)  1275  100  1375 2

70.

 2n  5  d  2(n  1)  5  (2n  5)  2n  2  5  2n  5  2 The difference between consecutive terms is constant. Therefore the sequence is arithmetic.

1346 Copyright © 2020 Pearson Education, Inc.


Section 12.3: Geometric Sequences; Geometric Series

50

50

50

k 1

k 1

k 1

75. 1, 3, 6, 10, ... There is no common difference and there is no common ratio. Therefore the sequence is neither arithmetic nor geometric.

S50   (2k  5)  2 k  5  50(50  1)   2   5(50)  2550  250  2300 2  

71.

76. 2, 4, 6, 8, ... The common difference is 2. The difference between consecutive terms is constant. Therefore the sequence is arithmetic. 50 50  50(50  1)  S50    2k   2 k  2    2550 2   k 1 k 1

 4n  Examine the terms of the sequence: 4, 2

16, 36, 64, 100, ... There is no common difference and there is no common ratio. Therefore the sequence is neither arithmetic nor geometric. 72.

 5n  1  Examine the terms of the sequence:

  2 n  77.       3  

2

6, 21, 46, 81, 126, ... There is no common difference and there is no common ratio. Therefore the sequence is neither arithmetic nor geometric.

n 1

2 n 1 n   2 3 2  r    n   3 3 2   3 The ratio of consecutive terms is constant. Therefore the sequence is geometric.

2   73.  3  n  3   2 2     d   3  (n  1)    3  n  3 3     2 2 2 2  3 n  3 n   3 3 3 3 The difference between consecutive terms is constant. Therefore the sequence is arithmetic. 50 2  50 2 50  S50    3  k    3   k 3  k 1 3 k 1 k 1 

2 1   k 50 2 3  2 S50         3 1 2 k 1  3  3

50

 1.999999997

  5 n  78.       4  

2  50(50  1)   3(50)     150  850  700 3 2 

n 1

5 n 1 n   5 4 5  r    n   4 4   5   4 The ratio of consecutive terms is constant. Therefore the sequence is geometric.

3   74.  8  n  4   3 3     d   8  (n  1)    8  n  4 4     3 3 3 3  8 n  8 n   4 4 4 4 The difference between consecutive terms is constant. Therefore the sequence is arithmetic. 50 3  50 3 50  S50    8  k    8   k 4  k 1 4 k 1 k 1 

5 1   50 5 4  5 S50         5 4 4  k 1  1 4

50

k

 350,319.6161

79. –1, 2, –4, 8, ... 2 4 8 r    2 1 2 4 The ratio of consecutive terms is constant. Therefore the sequence is geometric. 50 1  (2)50 S50   1  (2) k 1  1  1  (2) k 1

3  50(50  1)   8(50)    4 2   400  956.25  556.25

 3.752999689  1014

1347

Copyright © 2020 Pearson Education, Inc.


Chapter 12: Sequences; Induction; the Binomial Theorem 80. 1, 1, 2, 3, 5, 8, ... There is no common difference and there is no common ratio. Therefore the sequence is neither arithmetic nor geometric. 81.

3  n/2

r

87. a.

a10  2(0.9)10 1  2(0.9)9  0.775 feet

b. Find n when an  1 :

 n 1    3 2 

2(0.9)n 1  1

 n 1 n      3 2 2   31/ 2

n   3 2 

 0.9 n 1  0.5 (n  1) log  0.9   log  0.5  log  0.5  n 1  log  0.9  log  0.5  n  1  7.58 log  0.9 

The ratio of consecutive terms is constant. Therefore the sequence is geometric. 50

S50   3

k/2

3

1/ 2

k 1

1   31/ 2 

50

1  31/ 2

 2.004706374  1012

82.

On the 8th swing the arc is less than 1 foot.

 (1) 

c.

n

(1) n 1

 (1) n 1 n  1 (1) n The ratio of consecutive terms is constant. Therefore the sequence is geometric. 50 1  (1)50 0 S50   (1) k  (1)  1  (1) k 1 r

Find the 10th term of the geometric sequence: a1  2, r  0.9, n  10

83. Find the common ratio of the terms and solve the system of equations: x2 x3  r; r x x2 x2 x3   x 2  4 x  4  x 2  3x  x   4 x x2 84. Find the common ratio of the terms and solve the system of equations: x x2  r; r x 1 x x2 x   x2  x  2  x2  x  2 x x 1 85. This is a geometric series with a1  $42, 000, r  1.03, n  5 . Find the 5th term: a5  42000 1.03

5 1

 42000 1.03  $47, 271.37 4

86. This is a geometric series with a1  $15, 000, r  0.85, n  6 . Find the 6th term: a6  15000  0.85 

6 1

 15000  0.85   $6655.58 5

Find the sum of the first 15 swings:  1   0.9 15   1  (0.9)15   S15  2    2    0.1  1  0.9   

 20 1   0.9 

15

  15.88 feet

d. Find the infinite sum of the geometric series: 2 2 S    20 feet 1  0.9 0.1 88. a.

Find the 3rd term of the geometric sequence: a1  24, r  0.8, n  3 a3  24(0.8)31  24(0.8) 2  15.36 feet

b. The height after the n th bounce is: an  24(0.8) n 1  24  0.8 

1

 0.8n

 30  0.8  ft n

c.

Find n when an  0.5 : 24(0.8) n 1  0.5

 0.8 n 1  0.020833 (n  1) log  0.8   log  0.020833 log  0.020833 n 1  log  0.8  log  0.020833 n  1  18.35 log  0.8  On the 19th bounce the height is less than 0.5 feet.

1348 Copyright © 2020 Pearson Education, Inc.


Section 12.3: Geometric Sequences; Geometric Series d. Find the infinite sum of the geometric series: 24 24 S    120 feet on the upward 1  0.8 0.2 bounce. For the downward motion of the ball: 30 30 S    150 feet 1  0.8 0.2 The total distance the ball travels is 120 + 150 = 270 feet.

0.035 . Thus, 12  1  0.035 120  1  12   50, 000  P   0.035   12     0.035 12   $348.60 P  50, 000   1  0.035 120  1  12   

interest rate per period is

94. This is an ordinary annuity with A  $185, 000 and n  12 18   216 payment periods. The

89. This is an ordinary annuity with P  $100 and n  12  30   360 payment periods. The

0.0475 . Thus, 12   0.0475  216   1  1  12   185, 000  P     0.0475   12     0.0475   12   $543.48 P  185, 000    0.0475  216   1   1 12    

interest rate per period is

0.08  0.0067 . Thus, interest rate per period is 12  1  .08  360  1    $149, 035.94 A  100   12.08   12  

90. This is an ordinary annuity with P  $400 and n  12  3  36 payment periods. The interest 0.06 . Thus, 12   0.06  36   1  1  12    $15, 734.44 A  400     0.06   12  

rate per period is

95. This is a geometric sequence with a1  1, r  2, n  64 . Find the sum of the geometric series:  1  264  1  264 S64  1  264  1     1 2 1  

91. This is an ordinary annuity with P  $500 and n   4  20   80 payment periods. The interest

 1.845  1019 grains

0.05  0.0125 . Thus, 4  1  0.012580  1    $68, 059.40 A  500  0.0125  

96. This is an infinite geometric series with a1  1 , r  1 . 4 4 Find the sum of the infinite geometric series: 1 1 1 S  4  4  1 3 3 1 4 4 1  of the square is eventually shaded. 3

rate per period is

       

92. This is an ordinary annuity with P  $1000 and n   2 15   30 payment periods. The interest 0.07  0.035 . Thus, 2  1  0.03530  1    $51, 622.68 A  1000  0.035  

rate per period is

97. The common ratio, r  0.90  1 . The sum is: 1 1 S   10 . 1  0.9 0.10 The multiplier is 10.

93. This is an ordinary annuity with A  $50, 000 and n  12 10   120 payment periods. The 1349

Copyright © 2020 Pearson Education, Inc.


Chapter 12: Sequences; Induction; the Binomial Theorem 98. The common ratio, r  0.95  1 . The sum is: 1 1 S   20 . 1  0.95 0.05 The multiplier is 20. 99. This is an infinite geometric series with 1.03 a  4, and r  . 1.09 4  $72.67 . Find the sum: Price  1.03   1     1.09  100. This is an infinite geometric series with 1.04 a1  2.5, and r  . 1.11 2.5 Find the sum: Price   $39.64 .  1.04   1    1.11  101. Given: a1  1000, r  0.9 Find n when an  0.01 :

On the 111th day or December 20, 2014, the amount will be less than $0.01. Find the sum of the geometric series:  1   0.9 111   1 rn    S111  a1   1000   1  0.9   1 r     1   0.9 111    $9999.92  1000    0.1   102. First, determine the number of seats in the section: n Sn   2a1  (n  1)d  2 14   2  2  13  2  210 seats 2 Now, find the sum of a geometric sequence with a1  0.01 and r  1.05 and n  210.  1  1.05 210  S210  0.01    $5633.36  1  1.05 

1000(0.9) n 1  0.01

 0.9 n 1  0.00001 (n  1) log  0.9   log  0.00001 log  0.00001 n 1  log  0.9  log  0.00001 n  1  110.27 log  0.9  (cont on next column) ________________________________________________________________________________________________ y  x  r, z  x  r 2 103. x  y  z  x  x  r  x  r 2  103 x(1  r  r 2 )  103 x 2  y 2  z 2  x 2  x 2  r 2  x 2  r 4  6901 x 2 (1  r 2  r 4 )  6901

 x(1  r  r )   103 2

2

2

x(1  2r  3r 2  2r 3  r 4 )  10, 609 x 2 (1  r 2  r 4 )  x 2 (2r  2r 2  2r 3 )  10, 609 x 2 (1  r 2  r 4 )  2 xr  x(1  r  r 2 )  10, 609 6901  2 xr 103  10, 609 206 xr  3708 xr  18  y

1350 Copyright © 2020 Pearson Education, Inc.


Section 12.3: Geometric Sequences; Geometric Series

104. a.

The total area is the sum of the areas from each iteration: A  A1  A2  A3   1  1 A1  2[1 triangle]; A2    2   3   [3 triangles]; Now each additional iteration adds four times as many 9  9 1 the area of a triangle in the previous iteration. triangles as the previous iteration, each of which has an area 9 2

3

1 1 So, A3  2 12   [12 triangles],A4  2  48   [48 triangles], and so on. The total area of the Koch 9 9 2

3

1 1 1 snowflake, in m2, is given by A  2  2  3    2 12    2  48    . 9 9 9

b. Splitting up the first term and regrouping factors, the series can be rewritten as 2

A

term a1  A

3

1 3 34 34 34 1            . The terms after form an infinite geometric series with the first 2 2 29 29 29 2 3 4 27 3 and common ratio r  , which sums to S  1 4  . Therefore, the total area is 9 1  9 10 2

1 27 32    3.2 m 2 . 2 10 10

105. Both options are geometric sequences: Option A: a1  $40, 000; r  1.06; n  5

107. Option 1: Total Salary  $2, 000, 000(7)  $100, 000(7)  $14, 700, 000

a5  40, 000(1.06)5 1  40, 000(1.06) 4  $50, 499  1  1.06 5  S5  40000    $225, 484  1  1.06 

Option 2: Geometric series with: a1  $2, 000, 000, r  1.045, n  7 Find the sum of the geometric series:  1  1.045 7    $16, 038,304 S  2, 000, 000   1  1.045   

Option B: a1  $44, 000; r  1.03; n  5 a5  44, 000(1.03)5 1  44, 000(1.03) 4  $49,522  1  1.035  S5  44000    $233, 602  1  1.03  Option A provides more money in the 5th year, while Option B provides the greatest total amount of money over the 5 year period. 106. Find the sum of each sequence: A: Arithmetic series with: a1  $1000, d  1, n  1000 Find the sum of the arithmetic series: 1000 S1000  1000  1  500(1001)  $500,500 2 B: This is a geometric sequence with a 1  1, r  2, n  19 . Find the sum of the geometric series:  1  219  1  219  219  1  $524, 287 S19  1   1 2 1    

Option 3: Arithmetic series with: a1  $2, 000, 000, d  $95, 000, n  7 Find the sum of the arithmetic series: 7 S7   2(2, 000, 000)  (7  1)(95, 000)  2  $15,995, 000 Option 2 provides the most money; Option 1 provides the least money. 108. The amount paid each day forms a geometric sequence with a1  0.01 and r  2 . 1  r 22 1  222  0.01   41,943.03 1 r 1 2 The total payment would be $41,943.03 if you worked all 22 days.

S22  a1 

1351

Copyright © 2020 Pearson Education, Inc.


Chapter 12: Sequences; Induction; the Binomial Theorem a22  a1  r 22 1  0.01 2   20,971.52 21

116.

The payment on the 22nd day is $20,971.52. Answers will vary. With this payment plan, the bulk of the payment is at the end so missing even one day can dramatically reduce the overall payment. Notice that with one sick day you would lose the amount paid on the 22nd day which is about half the total payment for the 22 days. 109. Yes, a sequence can be both arithmetic and geometric. For example, the constant sequence 3,3,3,3,..... can be viewed as an arithmetic sequence with a1  3 and d  0. Alternatively, the same sequence can be viewed as a geometric sequence with a1  3 and r  1.

3 1 0 0 6 0 2 2 6 0 2 6 3 1 0 1 2 4 2 4 1 4 1 2  3(4  6)  1(0  24)  0  3(10)  (  24)  30  24  54

117.

110. Answers will vary. 111. Answers will vary.

Angle A would be 180 – 7 = 173⁰. And thus angle B = 2⁰. Now use the Law of Sines to solve sin 2 sin 5  6 x for X: 6sin 5 x  14.98 sin 2 We also have angle C = 90 – 7 = 83⁰. So, using the sine function we have: Y sin 7  14.98 Y  14.98sin 7  1.825 Adding Liv’s height of 5.5 gives 1.825  5.5  7.3 ft

112. Answers will vary. Both increase (or decrease) exponentially, but the domain of a geometric sequence is the set of natural numbers while the domain of an exponential function is the set of all real numbers. 113. log 7 62  114. u  

log 62  2.121 log 7

8i  15 j 8i  15 j v   8i  15 j v 82  ( 15) 2 8i  15 j 8 15  i j 17 17 17

115. Hyperbola: Vertices: (–2, 0), (2, 0); Focus: (4, 0); Center: (0, 0); Transverse axis is the x-axis; a  2; c  4 . Find b: b 2  c 2  a 2  16  4  12

118.

4  a(0  4) 2 (0  2)(0  1) 4  a(4) 2 (2)(1) 4  32 1 a 8 1 f ( x)   ( x  4) 2 ( x  2)( x  1) 8

b  12  2 3

Write the equation:

f ( x)  a( x  4) 2 ( x  2)( x  1)

x2 y 2  1 4 12

119.

16t 2  3t  (16  3)  t 1 16t 2  3t  13 (16t  13)(t  1)  t 1 t 1  16t  13

1352 Copyright © 2020 Pearson Education, Inc.


Section 12.4: Mathematical Induction

3. I:

120. Solve for t in the first equation and substitute into the second. x  t 5 t  x 5

n  1: 1  2  3 and

1  k (k  5) , then 2 3  4  5    (k  2)  [(k  1)  2]

II: If 3  4  5    (k  2) 

y t

 3  4  5    (k  2)   (k  3)

y  x5

1  k (k  5)  (k  3) 2 1 5  k2  k  k  3 2 2 1 2 7  k  k 3 2 2 1 2   k  7k  6 2 1   (k  1)(k  6) 2 1   (k  1)   k  1  5  2 Conditions I and II are satisfied; the statement is true. 

121. The new equation would be: g ( x)  7 x  5 . 122. x 4  29 x 2  100  ( x 2  4)( x 2  25)  ( x  2)( x  2)( x  5)( x  5)

Section 12.4 1. I:

n  1: 2 1  2 and 1(1  1)  2

II: If 2  4  6    2k  k (k  1) , then 2  4  6    2k  2(k  1)   2  4  6    2k   2(k  1)

4. I:

 k (k  1)  2(k  1)  (k  1)(k  2)

n  1: 2 1  1  3 and 1(1  2)  3

II: If 3  5  7    (2k  1)  k (k  2) , then 3  5  7    (2k  1)  [2(k  1)  1]

  k  1   k  1  1

 3  5  7    (2k  1)   (2k  3)

Conditions I and II are satisfied; the statement is true.

 k (k  2)  (2k  3)

n  1: 4 1  3  1 and 1(2 1  1)  1

 k 2  2k  2k  3

II: If 1  5  9    (4k  3)  k (2k  1) , then 1  5  9    (4k  3)  (4(k  1)  3)

 k 2  4k  3  (k  1)(k  3)

2. I:

1 1(1  5)  3 2

 (k  1)   k  1  2 

 1  5  9    (4k  3)   4k  4  3

Conditions I and II are satisfied; the statement is true.

 k (2k  1)  4k  1 2

 2k  k  4k  1

1 1(3 1  1)  2 2 1 II: If 2  5  8    (3k  1)   k (3k  1) , 2 then

 2k 2  3k  1  (k  1)(2k  1)

5. I:

  k  1  2  k  1  1

Conditions I and II are satisfied; the statement is true.

n  1: 3 1  1  2 and

1353

Copyright © 2020 Pearson Education, Inc.


Chapter 12: Sequences; Induction; the Binomial Theorem 2  5  8    (3k  1)  [3(k  1)  1]   2  5  8    (3k  1)   (3k  2) 1 3 1  k (3k  1)  (3k  2)  k 2  k  3k  2 2 2 2 3 2 7 1  k  k  2   3k 2  7 k  4 2 2 2 1   (k  1)(3k  4) 2 1   (k  1)  3  k  1  1 2 

8. I:

1 1(3 1  1)  1 2 1 II: If 1  4  7    (3k  2)   k (3k  1) , 2 then 1  4  7    (3k  2)  [3(k  1)  2]  1  4  7    (3k  2)   (3k  1) 1 3 1  k (3k  1)  (3k  1)  k 2  k  3k  1 2 2 2 3 2 5 1 2  k  k  1   3k  5k  2 2 2 2 1   (k  1)(3k  2) 2 1   (k  1)  3  k  1  1 2 Conditions I and II are satisfied; the statement is true.

 1  3  32    3k 1   3k 1 k 1 1  (3  1)  3k   3k   3k 2 2 2 3 k 1 1   3    3  3k  1 2 2 2 1 k 1  3 1 2 

7. I:

n  1: 211  1 and 21  1  1 2

II: If 1  2  2    2 2

1 2  2    2

k 1

k 1

 1  2  2    2 2

9. I:

2

k

 2k  1  2k  2  2k  1  2k 1  1 Conditions I and II are satisfied; the statement is true.

1 II: If 1  4  42    4k 1   4k  1 , then 3 1  4  42    4k 1  4k 11  1  4  42    4k 1   4k

1 1 1   4k  1  4k   4k   4k 3 3 3 4 k 1 1   4   4  4k  1 3 3 3 1 k 1   4 1 3 Conditions I and II are satisfied; the statement is true.

10. I:

n  1: 511  1 and

 2  1 , then

k 1 

1 n  1: 411  1 and  41  1  1 3

k

 2k 11

Conditions I and II are satisfied; the statement is true.

1 k  (3  1) , then 2

1  3  32    3k 1  3k 11

n  1: 3 1  2  1 and

1 1 (3  1)  1 2

II: If 1  3  32    3k 1 

Conditions I and II are satisfied; the statement is true. 6. I:

n  1: 311  1 and

1 1  5 1  1 4

II: If 1  5  52    5k 1 

1 k  5  1 , then 4

1  5  52    5k 1  5k 11  1  5  52    5k 1   5k

1 k 1 1  5  1  5k   5k   5k 4 4 4 5 1 1   5k   5  5 k  1 4 4 4 1 k 1   5 1 4 

Conditions I and II are satisfied; the statement is true. 1354 Copyright © 2020 Pearson Education, Inc.


Section 12.4: Mathematical Induction

11. I:

n  1:

II: If

1 1 1 1  and  1(1  1) 2 11 2

1 1 1 1 k     , then 1 2 2  3 3  4 k (k  1) k  1

 1 1 1 1 1 1 1 1 1  1          1 2 2  3 3  4 k (k  1) (k  1)(k  1  1) 1  2 2  3 3  4 k (k  1)  (k  1)(k  2) 

k k k 2 1 1     k  1 (k  1)(k  2) k  1 k  2 (k  1)(k  2)

k 2  2k  1 k 1 (k  1)(k  1) k  1    (k  1)(k  2) (k  1)(k  2) k  2  k  1  1

Conditions I and II are satisfied; the statement is true. 12. I:

n  1:

II: If

1 1 1 1  and  (2 1  1)(2 1  1) 3 2 1  1 3

1 1 1 1 k     , then 1 3 3  5 5  7 (2k  1)(2k  1) 2k  1

1 1 1 1 1     1 3 3  5 5  7 (2k  1)(2k  1) (2(k  1)  1)(2(k  1)  1)  1  1 1 1 1      (2k  1)(2k  1)  (2k  1)(2k  3) 1  3 3  5 5  7 k k 1 2k  3 1      2k  1 (2k  1)(2k  3) 2k  1 2k  3 (2k  1)(2k  3) 

2k 2  3k  1 (k  1)(2k  1) k 1 k 1    (2k  1)(2k  3) (2k  1)(2k  3) 2k  3 2  k  1  1

Conditions I and II are satisfied; the statement is true. 13. I:

n  1: 12  1 and

1 1(1  1)(2 1  1)  1 6

II: If 12  22  32    k 2 

1  k (k  1)(2k  1) , then 6

1 k (k  1)(2k  1)  (k  1) 2 6 1 7 1  1  1  1  (k  1)  k (2k  1)  k  1  (k  1)  k 2  k  k  1  (k  1)  k 2  k  1  (k  1)  2k 2  7k  6  6 6 6  3  3  6 1   (k  1)(k  2)(2k  3) 6 1   (k  1)   k  1  1  2  k  1  1 6

12  22  32    k 2  (k  1) 2  12  22  32    k 2   (k  1) 2 

Conditions I and II are satisfied; the statement is true.

1355

Copyright © 2020 Pearson Education, Inc.


Chapter 12: Sequences; Induction; the Binomial Theorem

14. I:

n  1: 13  1 and

1 2 1 (1  1) 2  1 4

II: If 13  23  33    k 3 

1 2 k (k  1) 2 , then 4

13  23  33    k 3  (k  1)3  13  23  33    k 3   (k  1)3 

1 2 k (k  1) 2  (k  1)3 4

1  1  (k  1) 2  k 2  k  1  (k  1) 2  k 2  4k  4  4   4 1   (k  1) 2 (k  2) 2 4 1   (k  1) 2 ((k  1)  1) 2 4

Conditions I and II are satisfied; the statement is true. 15. I:

n  1: 5  1  4 and

1 1(9  1)  4 2

II: If 4  3  2    (5  k ) 

1  k (9  k ) , then 2

4  3  2    (5  k )   5  (k  1)    4  3  2    (5  k )  (4  k )  9 1 1 7 1 k  k 2  4  k   k 2  k  4     k 2  7k  8 2 2 2 2 2 1 1 1    (k  1)(k  8)   (k  1)(8  k )   (k  1) 9  (k  1)  2 2 2 Conditions I and II are satisfied; the statement is true. 

16. I:

1 n  1:  (1  1)   2 and  1(1  3)   2 2

1 II: If 2  3  4    (k  1)    k (k  3) , then 2 2  3  4    (k  1)   (k  1)  1    2  3  4    (k  1)   (k  2) 1 1 3 1 5    k (k  3)  (k  2)   k 2  k  k  2   k 2  k  2 2 2 2 2 2 1  2 1     k  5k  4     (k  1)(k  4) 2 2 1    (k  1)((k  1)  3) 2

Conditions I and II are satisfied; the statement is true. 17. I:

1 n  1: 1(1  1)  2 and 1(1  1)(1  2)  2 3

1356 Copyright © 2020 Pearson Education, Inc.

1 k (9  k )  (4  k ) 2


Section 12.4: Mathematical Induction

1 II: If 1  2  2  3  3  4    k (k  1)   k (k  1)(k  2) , then 3 1  2  2  3  3  4    k (k  1)  (k  1)(k  1  1)  1  2  2  3  3  4    k (k  1)   (k  1)(k  2) 1 1    k (k  1)(k  2)  (k  1)(k  2)  (k  1)(k  2)  k  1 3 3  1   (k  1)(k  2)(k  3) 3 1   (k  1)((k  1)  1)((k  1)  2) 3

Conditions I and II are satisfied; the statement is true. 18. I:

1 n  1: (2 1  1)(2 1)  2 and 1(1  1)(4 1  1)  2 3

1 II: If 1  2  3  4  5  6    (2k  1)(2k )   k (k  1)(4k  1) , then 3 1  2  3  4  5  6    (2k  1)(2k )  (2(k  1)  1)(2(k  1))  1  2  3  4  5  6    (2k  1)(2k )   (2k  1)(k  1)  2 1 1   k (k  1)(4k  1)  2(k  1)(2k  1)  (k  1)   k (4k  1)  2(2k  1)  3 3 

1 4  1  (k  1)  k 2  k  4k  2    (k  1) 4k 2  k  12k  6 3 3  3 1 1  (k  1) 4k 2  11k  6   (k  1)(k  2)(4k  3) 3 3 1   (k  1)((k  1)  1)(4(k  1)  1) 3

Conditions I and II are satisfied; the statement is true.

19. I:

n  1: 12  1  2 is divisible by 2

20. I:

II: If k 2  k is divisible by 2 , then

n  1: 13  2 1  3 is divisible by 3

II: If k 3  2k is divisible by 3 , then

(k  1) 2  (k  1)  k 2  2k  1  k  1

(k  1)3  2(k  1)

 (k 2  k )  (2k  2)

 k 3  3k 2  3k  1  2k  2

Since k 2  k is divisible by 2 and 2k  2 is divisible by 2, then (k  1) 2  (k  1) is divisible by 2. Conditions I and II are satisfied; the statement is true.

 (k 3  2k )  (3k 2  3k  3)

Since k 3  2k is divisible by 3 and 3k 2  3k  3 is divisible by 3, then (k  1)3  2(k  1) is divisible by 3. Conditions I and II are satisfied; the statement is true.

1357

Copyright © 2020 Pearson Education, Inc.


Chapter 12: Sequences; Induction; the Binomial Theorem

21. I:

n  1: 12  1  2  2 is divisible by 2

II: If k 2  k  2 is divisible by 2 , then

25. I:

II:

a k 1  b k 1  a  a k  b  b k

 (k 2  k  2)  (2k )

22. I:

n  1: 1(1  1)(1  2)  6 is divisible by 6

II: If k (k  1)(k  2) is divisible by 6 , then (k  1)(k  1  1)(k  1  2)  (k  1)(k  2)(k  3)  k (k  1)(k  2)  3(k  1)(k  2). Now, k (k  1)(k  2) is divisible by 6; and since either k  1 or k  2 is even,

 a  ak  a  bk  a  bk  b  bk

Since a  b is a factor of a k  b k and a  b is a factor of a  b , then a  b is a factor of a k 1  b k 1 . Conditions I and II are satisfied; the statement is true. 26. I:

II:

2 k 1 1

a

Conditions I and II are satisfied; the statement is true. n  1: If 0  x  1 then 0  x1  1.

II: Assume, for some natural number k, that if 0  x  1 , then 0  x k  1 . Then, for 0  x  1, 0 x

Thus, 0  x

b

.

2( k 1) 1

 a 2k 3  b2k 3

 a 2 a 2 k 1  b 2 k 1  b 2 k 1 (a 2  b 2 )

Since a  b is a factor of a 2 k 1  b 2 k 1 and a  b is a factor of a 2  b 2  a  b  a  b  , then a  b is a factor of a 2 k  3  b 2 k  3 . Conditions I and II are satisfied; the statement is true. 27. I:

n  1 : 1  a   1  a  1  1  a 1

1  a   1  ka then k 1 1  a   1   k  1 a . k

1  a 

 1  a  1  a  k

 1  ka 2  a  ka  1   k  1 a  ka 2

k

 1.

Conditions I and II are satisfied; the statement is true.

k 1

 1  ka 1  a 

 x  x  1 x  x  1

k 1

2 k 1 1

II: Assume that there is an integer k for which the inequality holds. We need to show that if

( x  1)

k 1

2( k 1) 1

b 

 a 2  a 2 k 1  a 2  b 2 k 1  a 2  b 2 k 1  b 2  b 2 k 1

n  1: If x  1 then x1  x  1.

k

24. I:

If a  b is a factor of a 2 k 1  b 2 k 1 , show that a  b is a factor of a 

is divisible by 6. Conditions I and II are satisfied; the statement is true.

 a3  b3   a  b  a 2  ab  b 2   

 k  k  1 k  2   3  k  1 k  2 

x k 1  x k  x  1  x  x  1

n  1: a  b is a factor of a 211  b 211  a 3  b3 .

Thus,  k  1 k  2  k  3

II: Assume, for some natural number k, that if x  1 , then x k  1 . Then x k 1  1, for x  1,

 a a k  b k  b k ( a  b)

3  k  1 k  2  is divisible by 6.

23. I:

If a  b is a factor of a k  b k , show that a  b is a factor of a k 1  b k 1 .

(k  1) 2  (k  1)  2  k 2  2k  1  k  1  2 Since k 2  k  2 is divisible by 2 and 2k is divisible by 2, then (k  1) 2  (k  1)  2 is divisible by 2. Conditions I and II are satisfied; the statement is true.

n  1: a  b is a factor of a1  b1  a  b.

 1   k  1 a

Conditions I and II are satisfied, the statement is true.

1358 Copyright © 2020 Pearson Education, Inc.


Section 12.4: Mathematical Induction a  ( a  d )  ( a  2d )     a  ( k  1) d    a  kd 

28. n  1:

1  1  41  41 is a prime number.

  a  ( a  d )  ( a  2d )     a  ( k  1) d   ( a  kd )

n  41:

k (k  1)  (a  kd ) 2  k (k  1)   (k  1)a  d   k  2 

2

2

 ka  d

2

41  41  41  41 is not a prime number. 29. II: If 2  4  6    2k  k 2  k  2 , then 2  4  6    2k  2(k  1)

 k 2  k  2k   (k  1)a  d   2  

  2  4  6    2k   2k  2  k 2  k  2  2k  2

k2  k   (k  1)a  d    2   (k  1)k   (k  1)a  d    2 

 (k 2  2k  1)  (k  1)  2  (k  1)2  (k  1)  2

I: 30. I:

n  1: 2 1  2 and 12  1  2  4  2 n  1: a r

11

  k  1   k  1  1    k  1 a  d   2   Conditions I and II are satisfied; the statement is true.

 1  r1   a and a    a  1 r 

1 rk  II: If a  a r  a r 2    a r k 1  a   ,  1 r  then a  a r  a r 2    a r k 1  a r k 11

n  4 : The number of diagonals of a 1 quadrilateral is  4(4  3)  2 . 2 II: Assume that for any integer k, the number of diagonals of a convex polygon with k sides 1 (k vertices) is  k (k  3) . A convex 2 polygon with k  1 sides ( k  1 vertices) consists of a convex polygon with k sides (k vertices) plus a triangle, for a total of ( k  1 ) vertices. The diagonals of this k  1 -sided convex polygon consist of the diagonals of the k-sided polygon plus k  1 additional diagonals. For example, consider the following diagrams.

32. I:

  a  a r  a r 2    a r k 1   a r k  1 rk  k  a    a r  1 r   a (1  r k )  a r k (1  r ) 1 r k a  a r  a r k  a r k 1  1 r  1  r k 1   a    1 r  Conditions I and II are satisfied; the statement is true. 

31. I:

n  1: a  (1  1)d  a and 1  a  d

1(1  1) a 2

II: If a  (a  d )  (a  2d )     a  (k  1)d   ka  d

k (k  1) 2

k = 5 sides

then

1359

Copyright © 2020 Pearson Education, Inc.


Chapter 12: Sequences; Induction; the Binomial Theorem

Conditions I and II are satisfied; the statement is true. 33. I: n  3 : (3  2) 180  180 which is the sum of the angles of a triangle.

k + 1 = 6 sides k  1 = 4 new diagonals

Thus, we have the equation: 1 1 3  k (k  3)  (k  1)  k 2  k  k  1 2 2 2 1 2 1  k  k 1 2 2 1   k2  k  2 2 1   (k  1)(k  2) 2 1   (k  1)((k  1)  3) 2

II: Assume that for any integer k, the sum of the angles of a convex polygon with k sides is (k  2) 180 . A convex polygon with k  1 sides consists of a convex polygon with k sides plus a triangle. Thus, the sum of the angles is (k  2) 180  180  ((k  1)  2) 180. Conditions I and II are satisfied; the statement is true.

 5 8  4 1  1 8 1   5 8 34. I: n  1:     (Condition I holds)  2 3  2 1 1  4 1  2 3  5 8  4k  1 8k  II: If n  1:  ,  1  4k   2 3  2k  5 8 then    2 3

k 1

k

 5 8  5 8  4k  1 8k   5 8     1  4k   2 3  2 3  2 3  2k 5  4k  1  2(8k ) 8(4k  1)  3  8k    4k  5 8k  8     5  2k   2(1  4k ) 8(2k )  3 1  4k    2k  2 4k  3  4k  4  1 8k  8   4(k  1)  1 8(k  1)      2k  2 1  4k  4   2(k  1) 1  4(k  1) 

(Condition II holds) 35.

a.

c3  2(3)  1  7

c.

I:

c1  21  1  1 .

c4  2(7)  1  15

b.

c1  1  21  1

II: If ck  2k  1 , then

3

c3  7  2  1 c4  15  2  1

So cn  2n  1 .

ck 1  2ck  1  2 2k  1  1

c2  3  22  1 4

n  1: one fold results in 1 crease and

d.

 2k 1  2  1  2k 1  1 Each fold doubles the thickness so the stack thickness will be

1360 Copyright © 2020 Pearson Education, Inc.


Section 12.4: Mathematical Induction

225  0.02 mm  671, 088.64 mm (or about 671 meters). 36. Answers will vary.

F1  F2  F3

37. log 2 x  5  4

  22 F1  23 F2

4

2 

x5

16 

x5

  22 F1 i  22 F1 j

 23 F2 i  12 F2 j  500 j

256  x  5 x  251

2 2

the result into the second equation to solve the system: 2

F2  2

F1 

2 3

2 2

F1  12

  500  0

2 2

2 2 3

3 2

2 3

F1

F1

   F  500

4 x  3( 3)  7 4 x  9  7

1

F1  448.3 lb F2 

4x  2

2 (448.3)  366.0 lb 3

The tension in the left cable is about 448.3 kg and the tension in the right cable is about 366.0 kg.

1 x 2

The solution is x 

1 1  , y   3 or  , 3 . 2  2

é 3 -1ù ú é 1 2 -1ù ê ú ⋅ ê 1 0ú 40. AB = ê ê ú ê0 1 4úû ê ë ú 2 2 ë û é 1(3) + 2(1) -1(-2) 1(-1) + 2(0) -1(2)ù ú =ê ê0(3) + 1(1) + 4(-2) 0(-1) + 1(0) + 4(2)ú ë û é 7 -3ù ú =ê ê- 7 8úû ë

39. Let F1 = the tension on the left cable, F2 = the tension on the right cable, and F3 = the force of the weight of the box. F1  F1 cos 135º  i  sin 135º  j

  i  j 2 2

2 2

F2  F2 cos  30º  i  sin  30º  j  F2

F1  12 F2  500 j  0

Set the i and j components equal to zero and solve:   2 F  3 F  0 2 1 2 2  2 1  2 F1  2 F2  500  0 Solve the first equation for F2 and substitute

 4 x  3 y  7 38.  2 x  5 y  16 Multiply each side of the second equation by –2 and add to eliminate x:  4 x  3 y   7    4 x  10 y  32 13 y   39 y  3 Substitute and solve for x:

 F1

i

3 2

3x

A B + x + 2 x -1 3 x = A( x -1) + B( x + 2)

i  12 j

41. ( x + 2)( x -1)

F3   500 j For equilibrium, the sum of the force vectors must be zero.

=

Letting x = 1: 3 = A(1-1) + B (1 + 2) 3 = 3B B =1

1361

Copyright © 2020 Pearson Education, Inc.


Chapter 12: Sequences; Induction; the Binomial Theorem

Letting x = -2: -6 = A(-2 -1) + B (-2 + 2) -6 = -3 A A= 2

n n! 3. False;     j  j ! n  j  !

3x 2 1 = + ( x + 2)( x -1) x + 2 x -1

4. Binomial Theorem

42. Using the L.O.C.: 2

2

2

b = a + c - 2ac cos B 92 = 42 + 10.22 - 2(4)(10.2)cos B 81 = 120.04 - 81.6cos B -39.14 = -81.6cos B æ -39.14 ö÷ = 61.4 B = cos-1 çç çè -81.6 ÷÷ø

43.

n n! n(n  1)!  n   1 n 1! ( 1)! 1   (n  1)!  

7 7! 7  6  5  4  3  2 1 7  6  5    35 6.     3  3! 4! 3  2 1  4  3  2 1 3  2 1

7 7! 7  6  5  4  3  2 1 7  6 7.       21 5 5! 2! 5  4  3  2 1  2 1 2 1  

e3 x-7 = 4 ln e3 x-7 = ln 4

(3x - 7)ln e = ln 4

9 9! 9  8  7  6  5  4  3  2 1 9  8 8.       36 7 7! 2! 7  6  5  4  3  2  1  2 1 2 1  

3 x - 7 = ln 4 3 x = ln 4 + 7 ln 4 + 7 x= » 2.795 3

 50  50! 50  49! 50    50 9.    1  49  49!1! 49! 1

1- 5  1 - cos 8 44. tan = = 2 1 + cos 1+ 5 8

100  100! 100  99  98! 100  99 10.     4950  98!  2 1 2 1  98  98! 2!

3

=

8 = 3 = 3 13 13 13 13 13 8

=

39 13

1000  1000! 1 11.   1  1000 1000! 0! 1   1000  1000! 1  1 12.   0 0!1000! 1  

45. 0  ( x  1) 2 (3 x 2 )  ( x  1)( x 2  x  1)(2 x  2)  ( x  1) 2 [(3 x 2 )  2( x 2  x  1)]  ( x  1) 2 [5 x 2  2 x  2]

The only real solution is x = 1.

Section 12.5 1. Pascal Triangle

5 5! 5  4  3  2 1 5  4 5.       10  3  3! 2! 3  2 1  2 1 2 1

 55  55! 13.     1.8664  1015  23  23! 32!  60  60! 14.     4.1918  1015  20  20! 40!  47  47!  1.4834  1013 15.    25 25! 22!  

 37  37! 16.     1.7673  1010 19 19!18!  

n n! n!  1 2.     0  0! (n  0)! 1  n ! 1362 Copyright © 2020 Pearson Education, Inc.


Section 12.5: The Binomial Theorem

5 5 5 5 5 5 17. ( x  1)5    x5    x 4    x3    x 2    x1    x 0  x5  5 x 4  10 x3  10 x 2  5 x  1 0 1 2 3 4           5 5 5 5 5 5 5 18. ( x  1)5    x5    (1) x 4    (1) 2 x3    (1)3 x 2    (1) 4 x1    (1)5 x 0 0 1  2  3  4 5  x5  5 x 4  10 x3  10 x 2  5 x  1 6 6 6 6 6 6 6 19. ( x  2)6    x 6    x5 ( 2)    x 4 ( 2) 2    x3 ( 2)3    x 2 ( 2) 4    x( 2)5    x0 (  2)6 0 1  2 3  4 5 6  x 6  6 x5 ( 2)  15 x 4  4  20 x3 ( 8)  15 x 2 16  6 x  (32)  64  x 6  12 x5  60 x 4  160 x3  240 x 2  192 x  64 5 5 5 5 5 5 20. ( x  3)5    x5    x 4 (3)    x3 (3) 2    x 2 (3)3    x1 (3) 4    x0 (3)5 0 1 2 3 4           5  x5  5 x 4 (3)  10 x3  9  10 x 2 (27)  5 x  81  243  x5  15 x 4  90 x3  270 x 2  405 x  243  4  4  4  4  4 21. (3x  1) 4    (3 x) 4    (3 x)3    (3 x) 2    (3 x)    0 1  2  3  4  81x 4  4  27 x3  6  9 x 2  4  3 x  1  81x 4  108 x3  54 x 2  12 x  1 5 5 5 5 5 5 22. (2 x  3)5    (2 x)5    (2 x) 4  3    (2 x)3  32    (2 x) 2  33     2 x  34     35 0 1  2 3  4 5  32 x5  5 16 x 4  3  10  8 x3  9  10  4 x 2  27  5  2 x  81  243  32 x5  240 x 4  720 x3  1080 x 2  810 x  243

23.

 x  y    0   x    1   x  y   2   x   y    3   x   y    4  x  y    5   y  2

5

2 5

5

2 5

2 4

5

2

2 3

5

2 2

2 2

5

2 3

5

2 4

2

2 5

 x10  5 x8 y 2  10 x 6 y 4  10 x 4 y 6  5 x 2 y8  y10

24.

 x  y    0   x    1   x    y    2   x    y    3   x    y    4   x    y  2

6

2 6

6

2 6

2 5

6

2

2 4

6

2 2

2 3

6

2 3

5 6 6 6    x2  y 2     y 2 5 6

 x12  6 x10 y 2  15 x8 y 4  20 x 6 y 6  15 x 4 y8  6 x 2 y10  y12

25.

 x  2    0   x    1   x   2    2   x   2    3   x   2  6

6

6    4

6

6

5

1

6

4

 x   2    5   x  2    6   2  2

4

6

5

6

6

2

3

6

 x3  6 2 x5/ 2  15  2 x 2  20  2 2 x3/ 2  15  4 x  6  4 2 x1/ 2  8  x3  6 2 x5/ 2  30 x 2  40 2 x3/ 2  60 x  24 2 x1/ 2  8

1363 Copyright © 2020 Pearson Education, Inc.

3

2 2

2 4


Chapter 12: Sequences; Induction; the Binomial Theorem

26.

 x  3    0   x    1   x    3    2   x    3    3   x   3    4    3  4

4

4

4

3

1

4

2

2

4

3

4

4

 x 2  4 3x3/ 2  6  3 x  4  3 3 x1/ 2  9  x 2  4 3x3/ 2  18 x  12 3x1/ 2  9

27.

5 0

5 1

5  2

5  3

5  4

5 5

 ax  by 5     ax 5     ax 4  by     ax 3  by 2     ax 2  by 3    ax  by 4     by 5  a 5 x5  5a 4 x 4by  10a3 x3b 2 y 2  10a 2 x 2b3 y 3  5axb 4 y 4  b5 y 5

28.

 4 0

 4 1

 4  2

 4  3

 4  4

 ax  by 4     ax 4     ax 3 (by )     ax 2  by 2     ax  by 3     by 4  a 4 x 4  4a 3 x3by  6a 2 x 2 b 2 y 2  4axb3 y 3  b 4 y 4

29. n  10, j  4, x  x, a  3

33. n  9, j  2, x  2 x, a  3 9 9! 7 2 128 x7 (9)   (2 x)  3  2 2! 7!   9 8  128 x7  9 2 1  41, 472 x 7

10  6 4 10! 10  9  8  7  81x 6   81x 6   x 3  4 4! 6! 4 3 2 1       17, 010 x 6

The coefficient of x 6 is 17, 010. 30. n  10, j  7, x  x, a  3

The coefficient of x 7 is 41,472.

10  3 10! 7    2187  x3   x  (3)  7 7! 3!   10  9  8     2187  x3 3  2 1   262, 440 x3

34. n  9, j  7, x  2 x, a  3 9 9! 2 7  4 x 2 ( 2187)   (2 x)  (3)  7! 2! 7 9 8   4 x 2   2187 2 1  314,928 x 2

The coefficient of x3 is  262,440.

31. n  12, j  5, x  2 x, a  1

The coefficient of x 2 is  314,928.

12  12! 7 5 128 x 7 (1)   (2 x)  (1)  5 5! 7!   12 11 10  9  8   (128) x 7 5  4  3  2 1

35. n  7, j  4, x  x, a  3 7 3 4 7! 7 65  81x3   81x3  2835 x3   x 3  4! 3! 3  2 1  4

 101,376 x 7

36. n  7, j  2, x  x, a  3

The coefficient of x 7 is  101,376.

7 5 7! 76 2  9 x5   9 x5  189 x5   x  (3)  2! 5! 2 1  2

32. n  12, j  9, x  2 x, a  1 12  12! 3 9  8 x3 (1)   (2 x)  (1)  9 9! 3!   12 11 10   8 x3 3  2 1  1760 x3 The coefficient of x3 is 1760.

37. n  9, j  2, x  3 x, a   2 9 9! 7 2  2187 x 7  4   (3x)  ( 2)  2 2! 7!   9 8   8748 x 7  314,928 x7 2 1

1364 Copyright © 2020 Pearson Education, Inc.


Section 12.5: The Binomial Theorem 38. n  8, j  5, x  3 x, a  2

41. The x 4 term in

8 8! 3 5  27 x3  32   (3x)  ( 2)  5 5! 3!   87 6   864 x3  48,384 x3 3  2 1

j 12 12 12  2 12  j  1    24 3 j x  j      j x x     j 0  j 0  occurs when: 24  3 j  0

 

24  3 j j 8 The coefficient is 12  12! 12 11 10  9  8   8! 4!  4  3  2 1  495  

42. The x 2 term in 8

9

9

 occurs when: 4 j  2

j

j 0 

 occurs when: 93j  0

 j  2 j2 The coefficient is 8 2 8! 87 9   9  252    3  6! 2! 2 1  2

9 3j j 3 The coefficient is 9 9! 9 8 7 3    84    1   3! 6! 3  2 1  3

43. (1.001)5  1  103

j

8 8   j 4 j 3         3 x  x j 0  j 

8 j 

j 0 

9 9   1  j 93 j       1 x  2  x  j 0  j 

9 j 

8

  j  x 

40. The x 0 term in

  j   x

   0 1   1 1 10   2 1  10    3 1  10    5

5

5

5

4

3

3

10 10 10  10 j   2    j 10  2 j  x    j      2  x    x  j 0  j 0  j  occurs when: 3 10  j  4 2 3  j  6 2 j4 The coefficient is 10  10! 10  9  8  7 4 16  16  3360    2   6! 4! 4  3  2 1 4

39. The x 0 term in 12

j

10

5

3

3 2

5

2

3 3

 1  5(0.001)  10(0.000001)  10(0.000000001)    1  0.005  0.000010  0.000000010    1.00501 (correct to 5 decimal places) 6 6 6 6 2 6 3 44. (0.998)6  1  0.002    16   15  ( 0.002)   14    0.002     13    0.002    0 1 2 3          1  6  0.002   15  0.000004   20  0.000000008   ...  1  0.012  0.00006  0.00000016  0.98805 (correct to 5 decimal places)

1365

Copyright © 2020 Pearson Education, Inc.


Chapter 12: Sequences; Induction; the Binomial Theorem n  n  1 !  n  n! n!   n 45.    n 1     n n n n 1 !( 1 )! 1 !(1)!  n  1!         n n! n! n! n!    1   n n !( n  n )! n ! 0! n !  1 n!  

46. 12!  479, 001, 600  4.790016  108 20!  2.432902008  1018 25!  1.551121004  1025 12

1  12    12!  2 12   1    479, 013,972.4  e   12 12  1  20

1  20    18 20!  2  20   1    2.43292403  10  e   12  20  1  25

1  25    25 25!  2  25    1    1.551129917  10  e   12  25  1 

47. 2n  (1  1) n n n n n    1n    1n 1 1    1n  2 12      1n  n 1n 0 1 2       n n n n            0 1     n

n n n n 48. Show that            (1) n    0 0 1 2 n n 0  (1  1) n n n n    1n    1n 1  (1)    1n  2  (1) 2      1n  n  (1) n 0 1 2 n n n n n            (1) n   0 1  2 n 5 4 3 2 2 3 4 5 5  5  1  5  1   3   5  1   3  5  1   3   5  1   3  5  3   1 3  49.                                           (1)5  1  0  4   1  4   4   2   4   4   3  4   4   4   4   4   5  4   4 4 

50. a. The number of hexagons that can be formed using 8 points is the third entry (or 7th , by symmetry) in the row for n = 8 of the Pascal Triangle, 28. b. The number of triangles that can be formed using 10 points is the fourth entry (or 8th by symmetry) in the row for n = 10 of the Pascal Triangle, 120. c. The number of dodecagons that can be formed using 20 points is the 9th entry (or 13th by symmetry) in the row for n = 20 of the Pascal Triangle, 125,970.

1366

Copyright © 2020 Pearson Education, Inc.


Section 12.5: The Binomial Theorem

51.

f ( x)  (1  x 2 )  (1  x 2 ) 2    (1  x 2 )10 . This is a geometric series with a1  1  x 2 , r  1  x 2 , and n  10.

Therefore f ( x) 

(1  x 2 ) 1  (1  x 2 )10  1  (1  x 2 )

(1  x 2 )  (1  x 2 )11 x2

. Since the denominator is x 2 , the coefficient of

x 4 in f ( x) will be the coefficient of x6 in the numerator which is the coefficient of x6 in the expansion of k 11  11  11 k (1  x 2 )11   1  ( x 2 )  . In general, the terms of this expansion are given by     x 2 . To  1 11  k  3  11  113 11   x 2    x6 . The coefficient is obtain the term with x6 we need k  3 which gives    1 11  3  8

 

 

11 11!  165 .    8  8!3! 8

52. Using the binomial theorem the general coefficients of the expansion of  a  (b  c) 2  are given by 8 j 5 4 2 2 8 j   a (b  c)  . To obtain the term containing a b c , we need j  5 which gives j   8 5 8 5  6  k 6 k 6 2 3 6   a (b  c)     a (b  c) . The terms in the expansion of (b  c) are given by   b c . To obtain 5  5 k  6 the term containing a5b 4 c 2 , we need k  4 which gives   b 4 c 2 . Combining these results, the term containing  4 8 8  6 8 6 a5b 4 c 2 in the expansion of  a  (b  c) 2  is   a 5   b 4 c 2      a 5b 4 c 2 . The coefficient is 5  4 5 4

 8  6  8! 6!   840 .      5  4  5!3! 4!2!

6 x  5 x 1

53.

x

ln 6  ln 5

 x y z  0  55. 2 x  y  3 z   1  4 x  2 y  z  12 

x 1

x ln 6  ( x  1) ln 5 x ln 6  x ln 5  ln 5

Add the first equation and the second equation to eliminate y:  x  y  z  0   2 x  y  3z  1 3x  2 z   1 Multiply each side of the first equation by 2 and add to the third equation to eliminate y: 2x  2 y  2z  0 4x  2 y  z  12

x ln 6  x ln 5  ln 5 x(ln 6  ln 5)  ln 5 ln 5 x  8.827 ln 6  ln 5 The solution set is 8.827

54. a. v  w  (2)(3)  (3)( 2)  0

b. c.

cos 1 (0)  90 The vectors are orthogonal.

6 x  3z

 12

2x  z  4 Multiple the second derived equation by 2 and add the two results to eliminate z:

1367

Copyright © 2020 Pearson Education, Inc.


Chapter 12: Sequences; Induction; the Binomial Theorem 3 x  2 z  1

(4, 2).

4x  2z  8 7x  7 x 1

Substituting and solving for the other variables: 1  y  ( 2)  0 2(1)  z  4 1 y  2  0 z  2  y  3 z  2 y3 The solution is x  1, y  3, z  2 or (1,3, 2) .

57. g ( f ( x))  x 2  6  2  x 2  4  ( x  2)( x  2)

The domain is  , 2   2,  

x0   y0  56.  x y  6 2 x  y  10 Graph x  0; y  0 . Shaded region is the first quadrant. Graph the line x  y  6 . Use a solid line since the inequality uses ≤. Choose a test point not on the line, such as (0, 0). Since 0  0  6 is true, shade the side of the line containing (0, 0). Graph the line 2 x  y  10 . Use a solid line since the inequality uses ≤. Choose a test point not on the line, such as (0, 0). Since 2(0)  0  10 is true, shade the side of the line containing (0, 0). The overlapping region is the solution. The graph is bounded. Find the vertices:

58.

5 3 x  2x  C 3 5 5  (3)3  2(3)  C 3 5  45  6  C C  46 y

59. sin 2   sin 2  tan 2   sin 2  (1  tan 2  )  sin 2  sec 2   sin 2  

1 cos 2 

 tan 2 

60.

The x-axis and y-axis intersect at (0, 0). The intersection of x  y  6 and the y-axis is (0, 6). The intersection of 2 x  y  10 and the x-axis is (5, 0). To find the intersection of 2 x  y  10 and x  y  6 , solve the system:

1 1 2 1 23  3 x ( x3  1)  x 3  x 3 (3 x 2 ) ( x  1)  x(9 x 2 )   3 3 ( x3  1) 2 ( x3  1) 2

 ( x3  1)  9 x3   

 x y  6  2 x  y  10 Solve the first equation for x: x  6  y .

2

3x 3 ( x3  1) 2

Substitute and solve: 2(6  y )  y  10 12  2 y  y  10 12  y  10  y  2 y2 x  6  (2)  4 The point of intersection is (4, 2). The four corner points are (0, 0), (0, 6), (5, 0), and

61.

1  8 x3 2

3 x 3 ( x3  1) 2

f ( x) is in lowest terms and is undefined at x  3 and x  1 . Therefore the vertical asymptotes are x  3 and x  1 .

1368

Copyright © 2020 Pearson Education, Inc.


Chapter 12 Review Exercises

62.

(2) 2  1 4 1  2(2)  5 4  5 5  5 1

f ( x) 

The point on the graph is (2,5) .

Chapter 12 Review Exercises 1. a1  (1)1

1 3 4 23 5 33 6 43 7 53 8   , a2  (1) 2  , a3  (1)3   , a4  (1) 4  , a5  (1)5  1 2 3 22 4 3 2 5 42 6 52 7

21 2 22 4 23 8 24 16 25 32 2. c1  2   2, c2  2   1, c3  2  , c4  2   1, c5  2  1 4 9 16 25 1 2 3 4 5

3. a1  3, a2 

2 2 4 2 4 8 2 8 16  3  2, a3   2  , a4    , a5    3 3 3 3 3 9 3 9 27

4. a1  2, a2  2  2  0, a3  2  0  2, a4  2  2  0, a5  2  0  2 5.

4

 (4k  2)   4 1  2    4  2  2    4  3  2    4  4  2    6   10   14   18  48 k 1

10. 0, 4, 8, 12, ... Arithmetic d  4  0  4 n n Sn   2(0)  (n  1)4    4(n  1)   2n(n  1) 2 2

1 1 1 1 13 k 1  1  6. 1          1   2 3 4 13 k 1 k

7.

an    n  5  Arithmetic

3 3 3 3 11. 3, , , , , ... Geometric 2 4 8 16 3   3 1 1 2 r    3 2 3 2   1 n    1 n   1    1      1 n  2 2 Sn  3      3      6 1       1   2  1     1       2  2      

d  (n  1  5)  (n  5)  n  6  n  5  1 n n Sn   6  n  5  (n  11) 2 2

8.

cn    2n3  Examine the terms of the sequence: 2, 16, 54, 128, 250, ... There is no common difference; there is no common ratio; neither.

9.

sn    23n  Geometric r

23( n 1)

23n  3

12. Neither. There is no common difference or common ratio.

 23n  33n  23  8

23 n 23 n  1  8n   1  8n  8 n Sn  8    8    8  1  1 8   7  7

13.

30

30

30

k 1

k 1

k 1

 (k 2  2)   k 2   2 30  30  1 2  30  1   2(30)  9515 6

1369

Copyright © 2020 Pearson Education, Inc.


Chapter 12: Sequences; Induction; the Binomial Theorem

14.

40

40

k 1

k 1

Subtract the second equation from the first equation and solve for d. 13d  65 d 5 a1  31  6(5)  31  30  1

40

 ( 2k  8)    2k   8 40

k 1 40

k 1

k 1

  2 k   8  40(1  40)    2   40(8) 2    1640  320  1320

an  a1   n  1 d

 1   n  1 5   1  5n  5  5n  4 General formula:

  1 7    1 7   1   1      7 1 1 3 3 1 15.                 1 2 3 3 3    k 1    1       3     3  1 1   1   2  2187  1 2186 1093     0.49977 2 2187 2187 k

10

16.

   2 k 1

k

21. a10  a1  9d  0 a18  a1  17 d  8 ; Solve the system of equations: a1  9d  0

a1  17d  8 Subtract the second equation from the first equation and solve for d. 8d  8

 1    2 10     2  1  ( 2)    2  1  1024    2     1023 3  3   682

d 1 a1  9(1)  9

an  a1   n  1 d  9   n  11

 9  n  1  n  10 General formula:

17. Arithmetic a1  3, d  4, an  a1  (n  1)d a9  3  (9  1)4  3  8(4)  3  32  35

1 3 Since r  1, the series converges.

1 , n  11; an  a1r n 1 10 111

1 a11  1     10  

an   n  10

22. a1  3, r 

18. Geometric a1  1, r 

an   5n  4

Sn 

10

1    10 

1 10, 000, 000, 000

a1 3 3 9    1 r  1   2  2 1      3  3

1 2 Since r  1 , the series converges.

23. a1  2, r  

19. Arithmetic a1  2, d  2, n  9, an  a1  (n  1)d

Sn 

a9  2  (9  1) 2  2  8 2  9 2  12.7279

a1 2 2 4    1 r   1   3  3 1    2    2      

1 3 , r 2 2 Since r  1 , the series diverges.

24. a1 

20. a7  a1  6d  31 a20  a1  19d  96 ; Solve the system of equations: a1  6d  31 a1  19d  96

1370

Copyright © 2020 Pearson Education, Inc.


Chapter 12 Review Exercises

then

1 2 Since r  1 , the series converges.

25. a1  4, r 

Sn 

26. I:

12  42  7 2    (3k  2) 2   3(k  1)  2   12  42  7 2    (3k  2) 2   (3k  1) 2

a1 4 4   8 1 r  1   1   1      2 2 n  1: 3 1  3 and

3 1 (1  1)  3 2

3k (k  1) , then 2 3  6  9    3k  3(k  1)

1  (k  1) 6k 2  9k  2  2 1    6k 3  6k 2  9k 2  9k  2k  2  2 1  2    6k  k  1  9k  k  1  2  k  1  2 1   (k  1)  6k 2  12k  6  3k  3  1 2

3k (k  1)  3(k  1) 2  3k  3(k  1) ((k  1)  1)  (k  1)   3   2  2  

1  (k  1)  6(k 2  2k  1)  3(k  1)  1 2 1   (k  1)  6(k  1) 2  3(k  1)  1 2 Conditions I and II are satisfied; the statement is true. 

Conditions I and II are satisfied; the statement is true. n  1: 2  311  2 and 31  1  2

II: If 2  6  18    2  3k 1  3k  1 , then 2  6  18    2  3k 1  2  3k 11   2  6  18    2  3k 1   2  3k  3k  1  2  3k  3  3k  1  3k 1  1 Conditions I and II are satisfied; the statement is true. n  1:

(3 1  2) 2  1 and

1 1(6 12  3 1  1)  1 2

II: If 12  42    (3k  2) 2 

 3  6  9    3k   3(k  1)

28. I:

1  k 6k 2  3k  1  (3k  1) 2 2 1    6k 3  3k 2  k  18k 2  12k  2  2 1  3    6k  15k 2  11k  2  2 

II: If 3  6  9    3k 

27. I:

2

1  k 6k 2  3k  1 , 2

1371

Copyright © 2020 Pearson Education, Inc.


Chapter 12: Sequences; Induction; the Binomial Theorem

5 5! 5  4  3  2 1 5  4    10 29.    2 2! 3! 2 1  3  2 1 2 1   5 5 5 5 5 5 30. ( x  2)5    x5    x 4  2    x3  22    x 2  23    x1  24     25 0 1  2 3  4 5  x5  5  2 x 4  10  4 x3  10  8 x 2  5 16 x  1  32  x5  10 x 4  40 x3  80 x 2  80 x  32  4  4  4  4 4 31. (3x  4) 4    (3x) 4    (3x)3 ( 4)    (3 x) 2 ( 4) 2    (3 x)( 4)3    ( 4) 4 0 1  2  3  4  81x 4  4  27 x3 ( 4)  6  9 x 2 16  4  3 x( 64)  1  256  81x 4  432 x3  864 x 2  768 x  256

32. n  9, j  2, x  x, a  2

a.

After striking the ground the third time, the 3

 3  135  8.44 feet . height is 20    16 4

9 7 2 9! 9 8  4 x7   4 x 7  144 x 7   x 2  2 2! 7! 2 1   The coefficient of x 7 is 144.

b. After striking the ground the n th time, the n

3 height is 20   feet . 4

33. n  7, j  5, x  2 x, a  1 7 7! 76 2 5  4 x 2 (1)   4 x 2  84 x 2   (2 x) 1  5 5! 2! 2 1   

c.

The coefficient of x 2 is 84.

If the height is less than 6 inches or 0.5 feet, then: 3 0.5  20   4

34. This is an arithmetic sequence with a1  80, d  3, n  25 a. b.

3 0.025    4

a25  80  (25  1)(3)  80  72  8 bricks

n

n

3 log  0.025   n log   4 log  0.025   12.82 n 3 log   4 The height is less than 6 inches after the 13th strike. d. Since this is a geometric sequence with r  1 , the distance is the sum of the two

25 (80  8)  25(44)  1100 bricks 2 1100 bricks are needed to build the steps. S25 

35. This is an arithmetic sequence with a1  30, d  1, an  15 15  30  (n  1)(1) 15   n  1 16   n n  16 16 S16  (30  15)  8(45)  360 tiles 2 360 tiles are required to make the trapezoid.

infinite geometric series - the distances going down plus the distances going up. Distance going down: 20 20 Sdown    80 feet.  3 1 1      4 4 Distance going up:

36. This is a geometric sequence with 3 a1  20, r  . 4 1372

Copyright © 2020 Pearson Education, Inc.


Chapter 12 Test 2. a1  4; an  3an 1  2

15 15   60 feet.  3 1 1      4 4 The total distance traveled is 140 feet.

Sup 

a2  3a1  2  3  4   2  14 a3  3a2  2  3 14   2  44 a4  3a3  2  3  44   2  134

a5  3a4  2  3 134   2  404 The first five terms of the sequence are 4, 14, 44, 134, and 404.

37. This is an ordinary annuity with P  $350 and n  12  20   240 payment periods. The 0.065 . Thus, 12   0.065  240   1  1  12    $171, 647.33 A  350     0.065   12  

interest rate per period is

3.

3

  1 k 1

k 1  k  1   2 

 k

11  1  1 

2 1  2  1  31  3  1   2    1  2    1  2   1   2   3  22 33 44   1     1     1   1 4 9 3 4 61  2   4 9 36

  1

38. This is a geometric sequence with a1  50, 000, r  1.04, n  5 . Find the fifth term of the sequence: a5  50, 000(1.04)51  50, 000(1.04) 4  58, 492.93 Her salary in the fifth year will be $58,492.93.

4

4.

 2 k

  3   k   k 1 



             2



3

1

  2 2

 1  

3

  2 3

 2  

3

  2 4

 3  

3

4

2 4 8 16 1  2  3  4 3 9 27 81 130 680   10   81 81 

Chapter 12 Test 1. an 

n2  1 n8

2 3 4 11 5.     ...  5 6 7 14 Notice that the signs of each term alternate, with the first term being negative. This implies that the general term will include a power of 1 . Also note that the numerator is always 1 more than the term number and the denominator is 4 more than the term number. Thus, each term is in k  k 1  the form  1   . The last numerator is 11 k 4 which indicates that there are 10 terms. 2 3 4 11 10 k  k 1      ...     1   5 6 7 14 k 1 k 4

12  1 0  0 1 8 9 22  1 3 a2   2  8 10 32  1 8 a3   3  8 11 42  1 15 5 a4    4  8 12 4 52  1 24 a5   5  8 13 a1 

The first five terms of the sequence are 0,

3 , 10

6. 6,12,36,144,... 12  6  6 and 36  12  24 The difference between consecutive terms is not constant. Therefore, the sequence is not arithmetic.

8 5 24 , , and . 13 11 4

12  2 and 36  3 6 12

1373

Copyright © 2020 Pearson Education, Inc.


Chapter 12: Sequences; Induction; the Binomial Theorem

The ratio of consecutive terms is not constant. Therefore, the sequence is not geometric.

n 9. an    7 2

  n    n  1 an  an 1     7      7 2  2   

1 7. an    4n 2  1  4n  1  4n 1  4 an  2 n 1  2 4 an 1  1  4  1  4n 1 2

n n 1   7 7 2 2 1  2 The difference between consecutive terms is constant. Therefore, the sequence is arithmetic 1 with common difference d   and first term 2 1 13 a1    7  . 2 2 The sum of the first n terms of the sequence is given by n Sn   a1  an  2 n  13  n        7 2 2  2 

2

Since the ratio of consecutive terms is constant, the sequence is geometric with common ratio 1 r  4 and first term a1    41  2 . 2 The sum of the first n terms of the sequence is given by 1 rn Sn  a1  1 r 1  4n  2  1 4 2  1  4n 3

8. 2, 10, 18, 26,... 10   2   8 , 18   10   8 , 26   18   8

The difference between consecutive terms is constant. Therefore, the sequence is arithmetic with common difference d  8 and first term a1  2 .

n  27 n   2  2 2 

n  27  n  4

8 10. 25,10, 4, ,... 5

an  a1   n  1 d

8

10 2 4 2 5 8 1 2  ,  ,    25 5 10 5 4 5 4 5 The ratio of consecutive terms is constant. Therefore, the sequence is geometric with common ratio r  52 and first term a1  25 . The sum of the first n terms of the sequence is given by n   2 n  2  1      1 5 5  1 rn   Sn  a1   25   25   2 3 1 r 1 5 5 n n 5   2   125   2    25  1      1     3   5   3   5  

 2   n  1 8   2  8n  8  6  8n The sum of the first n terms of the sequence is given by n Sn   a  an  2 n   2  6  8n  2 n   4  8n  2  n  2  4n 

1374

Copyright © 2020 Pearson Education, Inc.


Chapter 12 Test

11. an 

2n  3 2n  1

an  an 1  

2n  3 an 2n  3 2n  1  2n  3 2n  1  2n  1    an 1 2  n  1  3 2n  1 2n  5  2n  1 2n  5  2  n  1  1

2n  3 2  n  1  3 2n  3 2n  5    2n  1 2  n  1  1 2n  1 2n  1

The ratio of consecutive terms is not constant. Therefore, the sequence is not geometric.

 2n  3 2n  1   2n  5  2n  1  2n  1 2n  1

 4 n  8n  3    4 n  8n  5   2

2

12. For this geometric series we have r 

4n 2  1

and a1  256 . Since r  

8

4n 2  1 The difference of consecutive terms is not constant. Therefore, the sequence is not arithmetic.

13.

64 1  256 4

1 1   1 , the series 4 4

converges and we get a 256 256 1024  5  S  1  1 1 r 1  5

 4

4

 3m  2 5   0   3m 5   1   3m 4  2    2   3m 3  2 2   3   3m 2  2 3   4   3m  2 4   5   2 5 5

5

 

5

 

5

4

  3

5

5

5

 

 

 

2

 243m  5  81m  2  10  27 m  4  10  9m  8  5  3m 16  32  243m5  810m 4  1080m3  720m 2  240m  32

14. First we show that the statement holds for n  1 .  1 1  1   1  1  2    1 1  1   1  The equality is true for n  1 so Condition I holds. Next we assume that 1   1    1   ... 1    n  1 is  1 2  3   n  true for some k, and we determine whether the formula then holds for k  1 . We assume that  1 1  1   1  1  1  1  2   1  3  ... 1  k   k  1 .       1   1   1   1   1  Now we need to show that 1   1    1   ... 1  1     k  1  1  k  2 .  1   2   3   k  k  1  We do this as follows: 1   1   1   1   1    1   1 1  1   1  1  1  1  2   1  3  ... 1  k  1  k  1   1  1  1  2  1  3  ... 1  k   1  k  1                 1     k  1 1  (using the induction assumption)  1  k  1   k  1 1   k  1   k 11 k 1  k2 Condition II also holds. Thus, formula holds true for all natural numbers.

1375

Copyright © 2020 Pearson Education, Inc.


Chapter 12: Sequences; Induction; the Binomial Theorem 15. The yearly values of the car form a geometric sequence with first term a1  31, 000 and common ratio r  0.85 (which represents a 15% loss in value). an  31, 000   0.85 

2. a.

n 1

The nth term of the sequence represents the value of the car at the beginning of the nth year. Since we want to know the value after 10 years, we are looking for the 11th term of the sequence. That is, the value of the car at the beginning of the 11th year.

b. solving 3  x 2  y 2  100   3 x 2  3 y 2  300  2    3x 2  y  0  y  3x

a11  a1  r111  31, 000   0.85   6,103.11 10

After 10 years, the car will be worth $6,103.11.

3 y 2  y  300

16. The weights for each set form an arithmetic sequence with first term a1  100 and common difference d  30 . If we imagine the weightlifter only performed one repetition per set, the total weight lifted in 5 sets would be the sum of the first five terms of the sequence. an  a1   n  1 d

3 y 2  y  300  3 y 2  y  300  0

y

S5  5 100  220   5  320   800 2

Since he performs 10 repetitions in each set, we multiply the sum by 10 to obtain the total weight lifted. 10  800   8000

1  3601 6

1  3601 1  3601  x2  x   18 18

The weightlifter will have lifted a total of 8000 pounds after 5 sets.

1  3601 0 18 Therefore, the system has solutions undefined since

Chapter 12 Cumulative Review 1.

2  3

1  3601 1  3601  x2  x   18 18 or 1  3601 1  3601 y   3x 2 6 6

n  a  an  2 2

1  12  4  3 300 

Substitute and solve for x: 1  3601 1  3601 y   3x 2 6 6

a5  100   5  1 30   100  4  30   220 Sn 

graphing x 2  y 2  100 and y  3x 2 .

x2  9

x

1  3601 1  3601 and ,y 18 6

x

1  3601 1  3601 . ,y 18 6

  1  3601 1  3601  , ,   18 6    1  3601 1  3601     ,   18 6  

x 2  9 or x 2  9 x  3 or x  3i

The solution set is 3, 3, 3i,3i

1376

Copyright © 2020 Pearson Education, Inc.


Chapter 12 Cumulative Review

The graphs intersect at the points  1  3601 1  3601     1.81,9.84  ,   18 6  

c.

a.

g  2  2  2  1  5 3  5

15 5 52 3  f  g  2   f  g  2    f  5  5 f 5 

 1  3601 1  3601      1.81,9.84  ,   18 6  

b.

3. 2e x  5 5 ex  2

3 4

12 6 42 2 g  6   2  6   1  13 f  4 

 

c.

 f  g  x   f  g  x   3  2 x  1   2 x  1  2

  5  The solution set is ln    .   2 

6x  3 2x 1

d. To determine the domain of the composition  f  g  x  , we start with the domain of g

4. slope  m  5 ; Since the x-intercept is 2, we

know the point  2, 0  is on the graph of the line

and exclude any values in the domain of g that make the composition undefined. g  x  is defined for all real numbers and

and is a solution to the equation y  5 x  b . y  5x  b 0  5  2  b

 f  g  x  is defined for all real numbers

0  10  b

1 . Therefore, the domain of the 2 1  composite  f  g  x  is  x | x   . 2 

except x 

10  b Therefore, the equation of the line with slope 5 and x-intercept 2 is y  5 x  10 .

5. Given a circle with center (–1, 2) and containing the point (3, 5), we first use the distance formula to determine the radius.

e.

 g  f  x   2 

3x   1 x  2 6x  1 x2 6x  x  2  x2 7x  2  x2

 3   1    5  2 2 2

 42  32  16  9  25 5 Therefore, the equation of the circle is given by

 x   1    y  2 2  52 2

f.

 x  12   y  2 2  52

To determine the domain of the composition  g  f  x  , we start with the domain of f and exclude any values in the domain of f that make the composition undefined. f  x  is defined for all real numbers except

x 2  2 x  1  y 2  4 y  4  25 x 2  y 2  2 x  4 y  20  0

6.

 g  f  4   g  f  4    g  6   13

5 ln e x  ln   2 5   x  ln    0.916 2

r

x  2 and  g  f  x  is defined for all real

3x f  x  , g  x  2x  1 x2

numbers except x  2 . Therefore, the domain of the composite  g  f  x  is

 x | x  2 . 1377

Copyright © 2020 Pearson Education, Inc.


Chapter 12: Sequences; Induction; the Binomial Theorem

g.

g  x   2x  1

9. Center point (0, 4); passing through the pole (0,4) implies that the radius = 4 using rectangular coordinates:

y  2x  1 x  2 y 1 x 1  2 y

 x  h 2   y  k 2  r 2  x  0 2   y  4 2  42

x 1 y 2

h.

x 2  y 2  8 y  16  16

g 1  x  

x 1 2 The domain of g 1  x  is the set of all real

x2  y 2  8 y  0 converting to polar coordinates: r 2  8r sin   0

numbers.

r 2  8r sin  r  8sin 

3x x2 3x y x2 3y x y2

f  x 

10. 2sin 2 x  sin x  3  0, 0  x  2  2sin x  3 sin x  1  0 3 , which is impossible 2 3 sin x  1  0  sin x  1  x  2  3  Solution set   .  2  2sin x  3  0  sin x 

x  y  2  3 y xy  2 x  3 y xy  3 y  2 x y  x  3  2 x 2x x3 2 x f 1  x   x 3

11. cos 1  0.5 

y

We are finding the angle  ,       , whose cosine equals 0.5 . cos   0.5       2 2   cos 1  0.5   3 3

The domain of f 1  x  is  x | x  3 . 7. Center: (0, 0); Focus: (0, 3); Vertex: (0, 4); Major axis is the y-axis; a  4; c  3 .

12. sin  

Find b: b 2  a 2  c 2  16  9  7  b  7 Write the equation using rectangular coordinates: x2 y 2  1 7 16

a.

1 ,  is in Quadrant II 4

 is in Quadrant II  cos   0 1 cos    1  sin 2    1    4

8. The focus is  1,3 and the vertex is  1, 2  .

Both lie on the vertical line x  1 . We have a = 1 since the distance from the vertex to the focus is 1 unit, and since  1, 3 is above

  1

 1, 2  , the parabola opens up. The equation of the parabola is:

b.

 x  h 2  4a  y  k 

 x   1   4 1  y  2  2

2

1 15 15   16 16 4

1   sin  4  1  4  tan           cos   15   4   15      4  

 x  12  4  y  2  1378

Copyright © 2020 Pearson Education, Inc.

1 15

15 15



15 15


Chapter 12 Projects 4. p1  (1.0043) p0  1127467 c.

p1  (1.0043)(324459463)  1127467

sin(2 )  2sin  cos 

p1  326,982,106 The population is predicted to be 326,982,106 in 2018.

 1   15   2       4   4  15 8



d.

5. Actual population in 2018: 326,766,748. The formula’s prediction was higher but fairly close. 6. Birth rate: 42.4 per 1000 population (0.0424) Death rate: 9.9 per 1000 population (0.0099) Population for 2017: 42,862,958 I = net immigration = 150000 r  0.0424  0.0099  0.0325 pn  (1  0.0325) pn 1  150000

cos(2 )  cos 2   sin 2  2

 15   1 2         4  4 15 1 14 7     16 16 16 8

e.

pn  (1.0325) pn 1  150000 p0  42,862,958

         2 4 2 2

p1  (1.0325) p0  150000

   is in Quadrant I  sin    0 2 2

p1  (1.0325)(42,862,958)  150000 p1  44,106, 004 The population is predicted to be 44,106,004 in 2018. Actual population in 2018: 44,270,563. The formula’s prediction was lower but fairly close.

 15  1     1  cos     4  sin     2 2 2  4  15    4     2 

4  15 8

7. Answers will vary. This appears to support the article. The growth rate for the U.S. is much smaller than the growth rate for Uganda.

4  15

8. It could be but one must consider trends in each of the pieces of data to find if the growth rate is increasing or decreasing over time. The same thing must be examined with respect to the net immigration.

2 2

Chapter 12 Projects Project II

Project I – Internet-based Project

1. 2, 4, 8, 16, 32, 64

Answers will vary based on the year that is used. Data used in these solutions will be from 2017.

2. length n  2n levels This is a geometric sequence: an  2n Recursive expression: an  2an 1 , a0  1

1. I = net immigration = 1,127,467 Population for 2017 = 325,700,000 2. r = 0.0125 – 0.0082 = 0.0043

3. 256  2n

3. pn  (1  0.0043) pn 1  1127467

28  2n n8

pn  (1.0043) pn 1  1127467 p0  324459463

1379

Copyright © 2020 Pearson Education, Inc.


Chapter 12: Sequences; Induction; the Binomial Theorem Project IV

Project III 1. Qst  3  2 Pt 1 , Qdt  18  3Pt

1. 1, 2, 4, 7, 11, 16, 22, 29

P0  2, b  2, d  3, c  18

2. It is not arithmetic because there is no common difference. It is not geometric because there is no common ration.

a  3  a  3 3  18  2 Pt 1 21  2 Pt 1  3 3 2 Pt  7  Pt 1 , P0  2 3

3. Scatter diagram

Pt 



2.

2

6 2

4. y  2.5 x  2.5 The graph does not pass through any of the points. y6  12.5

Pt

y7  15 y8  17.5





Pt 1

y1  0 y2  2.5



y3  5

17 3. P1  3 Qs1  3  2(2) Qs1  1 P2 

y4  7.5 y5  10

 17  Qd 1  18  3    3 Qd 1  1

5

 ( yr  yi ) i

i 1

 (0  1)  (2.5  2)  (5  4)  (7.5  7)  (10  11)  1 This is the sum of the errors.

29 9

 17   29  Qs 2  3  2   Qd 2  18  3    3  9  25 25 Qs 2  Qd 2  3 3 The market (supply and demand) are getting closer to being the same.

5. y  0.5 x 2  0.5 x  1 The graph passes through all of the points. y6  16 y7  22 y8  29

4. The equilibrium price is 4.20.

y1  1

5. It takes 17 time periods.

y2  2 y3  4

6. Qd 17  18  3(4.20)  5.40

y4  7

Qs17  3  2(4.20)  5.40 The equilibrium quantity is 5.4.

y5  11 5

 ( yr  yi )  0 i 1

i

The sum of the errors is zero. 1380

Copyright © 2020 Pearson Education, Inc.


Chapter 12 Projects 6. When trying to obtain the cubic and quartic polynomials of best fit, the cubic and quartic terms have coefficient zero and the polynomial of best fit is given as the quadratic in part e. For the exponential function of best fit, y  (0.59)(1.83) x . y6  22.2 y7  40.6 y8  74.2 The sum of these errors becomes quite large. This error shows that the function does not fit the data very well as x gets larger.

7. The quadratic function is best. 8. The data does not appear to be either logarithmic or sinusoidal in shape, so it does not make sense to try to fit one of those functions to the data.

1381

Copyright © 2020 Pearson Education, Inc.


Chapter 11 Systems of Equations and Inequalities Section 11.1

2(2)  (1)  4  1  5  5(2)  2(1)  10  2  8 Each equation is satisfied, so x  2, y  1 , or (2, 1) , is a solution of the system of equations.

1. 3x  4  8  x 4x  4 x 1 The solution set is 1 . 2. a.

3 x  2 y  2 10.   x  7 y  30 Substituting the values of the variables: 3( 2)  2(4)   6  8  2   ( 2)  7(4)   2  28  30 Each equation is satisfied, so x   2, y  4 , or ( 2, 4) , is a solution of the system of equations.

3x  4 y  12

x-intercept: 3x  4  0   12 3x  12 x4 y-intercept: 3  0   4 y  12 4 y  12 y3

b.

 3x  4 y  4  11.  1 1  2 x  3 y   2 Substituting the values of the variables:  1  3(2)  4  2   6  2  4     1  (2)  3  1   1  3   1    2 2 2 2

Each equation is satisfied, so x  2, y  1 , or 2 1 , is a solution of the system of equations. 2, 2

3x  4 y  12 4 y  3x  12

 

3 y   x3 4 3 A parallel line would have slope  . 4

3. false; It is inconsistent. 4. consistent; independent 5. (3, 2) 6. consistent; dependent 7. b

 2x  1 y  0  2 12.   3 x  4 y   19 2 Substituting the values of the variables, we obtain:   1 1  2   2   2  2   1  1  0     3   1   4  2    3  8   19   2  2 2 Each equation is satisfied, so x   1 , y  2 , or 2  1 , 2 , is a solution of the system of equations. 2

8. a

2 x  y  5 9.  5 x  2 y  8 Substituting the values of the variables:

1135 Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities 3  2   3  2   2  2   6  6  4  4  2  3  2   2  2  6  2  10  5  2   2  2   3  2   10  4  6  8 Each equation is satisfied, so x  2 , y  2 ,

 x y  3  13.  1  2 x  y  3 Substituting the values of the variables, we obtain: 4  1  3  1  2 (4)  1  2  1  3 Each equation is satisfied, so x  4, y  1 , or (4, 1) , is a solution of the system of equations.

z  2 , or (2, 2, 2) is a solution of the system of equations.  5z  6  4x  5 y  z  17 18.   x  6 y  5 z  24 

 x y  3 14.  3x  y  1 Substituting the values of the variables:  2    5   2  5  3  3  2    5   6  5  1 Each equation is satisfied, so x   2, y  5 , or ( 2, 5) , is a solution of the system of equations.

Substituting the values of the variables: 4  4   5  2   16  10  6  5  3   2   15  2  17    4   6  3  5  2   4  18  10  24 Each equation is satisfied, so x  4 , y  3 , z  2 , or (4, 3, 2) , is a solution of the system of equations.

 3x  3 y  2 z  4  15.  x  y  z  0  2 y  3z  8  Substituting the values of the variables:  3(1)  3(1)  2(2)  3  3  4  4  1  (1)  2  1  1  2  0  2( 1)  3(2)  2  6  8  Each equation is satisfied, so x  1, y  1, z  2 ,

x  y  8 19.  x  y  4 Solve the first equation for y, substitute into the second equation and solve: y  8 x  x  y  4

x  (8  x)  4 x 8 x  4

or (1, 1, 2) , is a solution of the system of equations.

2 x  12 x6 Since x  6, y  8  6  2 . The solution of the system is x  6, y  2 or using ordered pairs (6, 2) .

z 7  4x  16.  8 x  5 y  z  0  x  y  5 z  6  Substituting the values of the variables:  4  2 1  8 1  7  8  2   5  3  1  16  15  1  0  2   3  5 1  2  3  5  6 Each equation is satisfied, so x  2 , y  3 , z  1 , or (2, 3, 1) , is a solution of the system of equations.

3x  3 y  2 z  4  17.  x  3 y  z  10 5 x  2 y  3 z  8 

Substituting the values of the variables: 1136

Copyright © 2020 Pearson Education, Inc.


Section 11.1: Systems of Linear Equations: Substitution and Elimination  x  2 y  7 20.   x  y  3 Solve the first equation for x, substitute into the second equation and solve:  x  7  2 y   x  y  3 (7  2 y )  y  3 7  y  3 4  y Since y  4, x  7  2(4)  1 . The solution of the system is x  1, y  4 or using an ordered pair, (1,  4) .

 x  3y  5 22.  2 x  3 y   8 Add the equations:  x  3 y  5 2 x  3 y   8   3 x  1 Substitute and solve for y: 1  3 y  5 3x

3y  6 y2 The solution of the system is x  1, y  2 or using ordered pairs (1, 2) .

5 x  y  21 21.  2 x  3 y  12 Multiply each side of the first equation by 3 and add the equations to eliminate y: 15 x  3 y  63  2 x  3 y  12   51 x3 Substitute and solve for y: 5(3)  y  21 15  y  21 y  6 y  6 The solution of the system is x  3, y  6 or 17 x

using ordered an pair  3, 6  .

1137

Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities  24 3x 23.  x  2 y  0  Solve the first equation for x and substitute into the second equation: x8   x  2 y  0 8  2y  0 2y  8 y  4 The solution of the system is x  8, y   4 or

using ordered pairs (8, 4) 3x  6 y  2 25.  5 x  4 y  1 Multiply each side of the first equation by 2 and each side of the second equation by 3, then add to eliminate y:  6 x  12 y  4  15 x  12 y  3 7 1 x 3 Substitute and solve for y: 3 1/ 3  6 y  2 21x

4 x  5 y   3 24.    2y  8 Solve the second equation for y and substitute into the first equation: 4 x  5 y   3  y4 

1 6y  2 6y  1 y

1 1 The solution of the system is x  , y   or 3 6 1 1 using ordered pairs  ,   . 3 6

4 x  5(4)  3 4 x  20  3 4 x  23 x

23 4

The solution of the system is x  

1 6

23 , y  4 or 4

 23  using ordered pairs   , 4  .  4 

1138

Copyright © 2020 Pearson Education, Inc.


Section 11.1: Systems of Linear Equations: Substitution and Elimination

2  2 x  4 y  26.  3 3x  5 y  10 Multiply each side of the first equation by 5 and each side of the second equation by 4, then add to eliminate y: 10  10 x  20 y  3  12 x  20 y  40 

110 3 5 x 3 Substitute and solve for y: 3  5 / 3  5 y  10 22 x

 x y 5 28.  3x  3 y  2 Solve the first equation for x, substitute into the second equation and solve: x  y  5  3x  3 y  2

5  5 y  10  5 y  5 y 1

5 The solution of the system is x   , y  1 or 3 5   using ordered pairs   , 1 .  3 

3( y  5)  3 y  2 3 y  15  3 y  2 0  17 This equation is false, so the system is inconsistent.

 2x  y  1 27.  4 x  2 y  3 Solve the first equation for y, substitute into the second equation and solve:  y  1 2x  4 x  2 y  3 4 x  2(1  2 x)  3 4x  2  4x  3 0 1 This equation is false, so the system is inconsistent.

1139

Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities

2 x  y  0 29.  4 x  2 y  12 Solve the first equation for y, substitute into the second equation and solve:  y  2x  4 x  2 y  12

The solution of the system is x  1, y   4  using ordered pairs 1,   . 3 

4 x  2(2 x)  12 4 x  4 x  12 8 x  12 3 x 2 3 3 Since x  , y  2    3 2 2

The solution of the system is x 

4 or 3

 x  2y  4 31.  2 x  4 y  8 Solve the first equation for x, substitute into the second equation and solve: x  4  2 y  2 x  4 y  8

3 , y  3 or 2

3  using ordered pairs  ,3  . 2 

2(4  2 y )  4 y  8 8  4y  4y  8 00 These equations are dependent. The solution of the system is either x  4  2 y , where y is any real 4 x , where x is any real number. 2 Using ordered pairs, we write the solution as ( x, y) x  4  2 y, y is any real number or as

number or y 

 4 x  , x is any real number  .  ( x, y ) y  2  

3 x  3 y  1  30.  8  4 x  y  3 Solve the second equation for y, substitute into the first equation and solve: 3x  3 y  1  8   y  3  4 x 8  3x  3   4 x   1 3  3x  8  12 x  1 9 x  9 x 1 8 8 4 Since x  1, y   4(1)   4   . 3 3 3

 3x  y  7 32.  9 x  3 y  21 Solve the first equation for y, substitute into the second equation and solve:  y  3x  7  9 x  3 y  21 9 x  3(3x  7)  21 9 x  9 x  21  21 00 These equations are dependent. The solution of the system is either y  3 x  7 , where x is any real

y7 , where y is any real number. 3 Using ordered pairs, we write the solution as

number is x 

1140

Copyright © 2020 Pearson Education, Inc.


Section 11.1: Systems of Linear Equations: Substitution and Elimination

( x, y) y  3x  7, x is any real number or as

2 x  3 y  6   1  x  y  2 1  2 y    3y  6 2  2y 1 3y  6 5y  5 y 1

 y7  , y is any real number  .  ( x, y ) x  3    2 x  3 y  1 33.  10 x  y  11 Multiply each side of the first equation by –5, and add the equations to eliminate x: 10 x  15 y  5  10 x  y  11 

Since y  1, x  1 

1 3  . The solution of the 2 2

3 system is x  , y  1 or using ordered pairs 2 3    , 1 . 2 

16 y  16 y 1 Substitute and solve for x: 2 x  3(1)  1

2 x  3  1 2x  2 x 1 The solution of the system is x  1, y  1 or using ordered pairs (1, 1).

1  x  y  2 36.  2  x  2 y  8 Solve the second equation for x, substitute into the first equation and solve: 1  x  y  2 2  x  2 y  8 1 (2 y  8)  y   2 2 y  4 y  2 2y  6 y  3 Since y  3, x  2(3)  8   6  8  2 . The solution of the system is x  2, y  3 or using ordered pairs (2, 3) .

 3x  2 y  0 34.  5 x  10 y  4 Multiply each side of the first equation by 5, and add the equations to eliminate y: 15 x  10 y  0  5 x  10 y  4  4 1 x 5 Substitute and solve for y: 5 1/ 5   10 y  4 20 x

1  10 y  4 10 y  3 3 y 10

1 1  2 x  3 y  3 37.   1 x  2 y  1  4 3 Multiply each side of the first equation by –6 and each side of the second equation by 12, then add to eliminate x: 3 x  2 y  18  3x  8 y  12 

1 3 or The solution of the system is x  , y  5 10 1 3  using ordered pairs  ,  .  5 10  2 x  3 y  6  35.  1  x  y  2 Solve the second equation for x, substitute into the first equation and solve:

 10 y  30 y 3

1141

Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities 3  2 / 3  6 y  7

Substitute and solve for x: 1 1 x  (3)  3 2 3 1 x 1  3 2 1 x2 2 x4

2  6y  7 6 y  5 y

5 6

The solution of the system is x 

The solution of the system is x  4, y  3 or using ordered pairs (4, 3).

2 5 , y   or 3 6

2 5 using ordered pairs  ,   . 3 6

3 1  3 x  2 y  5 38.   3 x  1 y  11  4 3

2 x  y   1  40.  1 3  x  2 y  2 Multiply each side of the second equation by 2, and add the equations to eliminate y: 2 x  y  1 2 x  y  3 

Multiply each side of the first equation by –54 and each side of the second equation by 24, then add to eliminate x: 18 x  81 y  270  18 x  8 y  264 

4x

89 y  534 y 6

 2 1 x 2

1 Substitute and solve for y: 2    y  1 2 1  y  1 y  2 y2

Substitute and solve for x: 3 1 x  (6)  11 4 3 3 x  2  11 4 3 x9 4 x  12

1 The solution of the system is x  , y  2 or 2 1  using ordered pairs  , 2  . 2 

The solution of the system is x  12, y  6 or using ordered pairs (12, 6).

1 1 x  y  8  41.  3  5  0  x y

3x  6 y  7 39.  5 x  2 y  5 Multiply each side of the second equation by -3 then add the equations to eliminate y:  3 x  6 y  7  15 x  6 y  15

Rewrite letting u 

1 1 , v : x y

 u v8  3u  5v  0 Solve the first equation for u, substitute into the second equation and solve: u  8  v  3u  5v  0

12 x

 8 2 x 3 Substitute and solve for x:

1142

Copyright © 2020 Pearson Education, Inc.


Section 11.1: Systems of Linear Equations: Substitution and Elimination 3(8  v)  5v  0

 x y  9  43.  2 x  z  13 3 y  2 z  7 

24  3v  5v  0 8v  24 v3

Multiply each side of the first equation by –2 and add to the second equation to eliminate x: 2 x  2 y  18

1 1 Since v  3, u  8  3  5 . Thus, x   , u 5 1 1 y   . The solution of the system is v 3 1 1 1 1 x  , y  or using ordered pairs  ,  . 5 3 5 3

 2y  z   5 Multiply each side of the result by 2 and add to the original third equation to eliminate z: 3y  2z  7 4 y  2 z   10

4 3 x  y  0  42.  6  3  2  x 2 y

Rewrite letting u 

 y  3 y3 Substituting and solving for the other variables: 3(3)  2 z  7 2 x  (1)  13 2 x  12 2 z  2 z  1 x6 The solution is x  6, y  3, z  1 or using ordered triples (6,3, 1) .

1 1 , v : x y

4u  3v  0   3 6u  2 v  2 Multiply each side of the second equation by 2, and add the equations to eliminate v:  4u  3v  0  12u  3v  4 16u 4 4 1 u  16 4 Substitute and solve for v: 1 4    3v  0 4 1  3v  0

 2x  y   4  44.  2 y  4 z  0  3 x  2 z  11 

Multiply each side of the first equation by 2 and add to the second equation to eliminate y: 4x  2 y  8  2 y  4z  0 4x

 4z   8

1 and add to 2 the original third equation to eliminate z: 2x  2z   4 3x  2 z  11 5x  15 x  3 Substituting and solving for the other variables: 2(3)  y   4 3(3)  2 z  11 6  y  4 9  2 z  11 y2  2z   2 z 1 The solution is x  3, y  2, z  1 or using ordered triples (3, 2, 1) .

Multiply each side of the result by

3v  1 v

 z  13

2x

1 3

1 1  4, y   3 . The solution of the u v system is x  4, y  3 or using ordered pairs (4, 3). Thus, x 

1143

Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities 66 x  77 z  77 66 x  90 z  42

 x  2 y  3z  7  45.  2 x  y  z  4 3x  2 y  2 z  10 Multiply each side of the first equation by –2 and add to the second equation to eliminate x; and multiply each side of the first equation by 3 and add to the third equation to eliminate x: 2 x  4 y  6 z  14 2x  y  z 

13z  35 35 13 Substituting and solving for the other variables:  35   6 x  7    7  13  245  6x   7 13 336  6x   13 56 x 13 z

4

5 y  5 z   10 3x  6 y  9 z  21 3x  2 y  2 z  10  4 y  7 z  11

Multiply each side of the first result by

4 and 5

 56   35  2    y  3   0  13   13  112 105  y 0 13 13

add to the second result to eliminate y: 4 y  4 z  8 4 y  7 z  11 3z  3 z 1 Substituting and solving for the other variables:

y

56 7 35 , y , z or 13 13 13  56 7 35  using ordered triples  ,  ,  .  13 13 13 

The solution is x 

x  2(1)  3(1)  7 x23 7 x2 The solution is x  2, y  1, z  1 or using ordered triples (2, 1, 1) . y 1   2 y  1

 x  y  z 1  47. 2 x  3 y  z  2  3x  2 y 0 

 2 x  y  3z  0  46.  2 x  2 y  z  7  3x  4 y  3z  7  Multiply each side of the first equation by –2 and add to the second equation to eliminate y; and multiply each side of the first equation by 4 and add to the third equation to eliminate y: 4 x  2 y  6 z  0

Add the first and second equations to eliminate z: x  y  z 1 2x  3y  z  2 3x  2 y 3 Multiply each side of the result by –1 and add to the original third equation to eliminate y: 3x  2 y  3

 2 x  2 y  z  7  6x

3x  2 y  0

 7z   7

0  3 This equation is false, so the system is inconsistent.

8 x  4 y  12 z  0 3x  4 y  3z  7 11x

7 13

 15 z  7

Multiply each side of the first result by 11 and multiply each side of the second result by 6 to eliminate x: 1144

Copyright © 2020 Pearson Education, Inc.


Section 11.1: Systems of Linear Equations: Substitution and Elimination x  (4 z  3)  z  1

 2x  3y  z  0  48.  x  2 y  z  5  3x  4 y  z  1 

x  4z  3  z  1 x  5z  3  1 x  5z  2 The solution is {( x, y , z ) x  5 z  2, y  4 z  3 ,

Add the first and second equations to eliminate z; then add the second and third equations to eliminate z: 2x  3y  z  0 x  2 y  z  5 x y

z is any real number}.  2x  3y  z  0  50. 3x  2 y  2 z  2  x  5 y  3z  2 

5

x  2 y  z  5

Multiply the first equation by 2 and add to the second equation to eliminate z; multiply the first equation by 3 and add to the third equation to eliminate z: 4x  6 y  2z  0

3x  4 y  z  1 2x  2 y

6

Multiply each side of the first result by –2 and add to the second result to eliminate y: 2 x  2 y  10

3x  2 y  2 z  2 7x  4y

2x  2 y  6 0  2 This equation is false, so the system is inconsistent.

6 x  9 y  3z  0 x  5 y  3z  2 7x  4y

 x y z  1  49.  x  2 y  3 z   4  3x  2 y  7 z  0 

2

2

Multiply each side of the first result by –1 and add to the second result to eliminate y: 7 x  4 y   2 7x  4y  2

Add the first and second equations to eliminate x; multiply the first equation by –3 and add to the third equation to eliminate x: x y z  1

0 0 The system is dependent. If y is any real

 x  2 y  3z   4

4 2 y . 7 7 Solving for z in terms of x in the first equation: z  2x  3y

number, then x 

y  4z   3 3x  3 y  3 z  3

 4y  2   2   3y  7  8 y  4  21 y  7 13 y  4  7  4 2 The solution is ( x, y, z ) x  y  , 7 7  13 4  z   y  , y is any real number  . 7 7 

3x  2 y  7 z  0 y  4 z  3

Multiply each side of the first result by –1 and add to the second result to eliminate y:  y  4z  3 y  4 z  3 0 0 The system is dependent. If z is any real number, then y  4 z  3 . Solving for x in terms of z in the first equation:

1145

Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities

the third equation to eliminate z: x y z  6

 2 x  2 y  3z  6  51.  4 x  3 y  2 z  0  2 x  3 y  7 z  1  Multiply the first equation by –2 and add to the second equation to eliminate x; add the first and third equations to eliminate x: 4 x  4 y  6 z  12 4x  3 y  2z 

3x  2 y  z  5 4x  y

6 x  4 y  2 z  10 x  3 y  2 z  14 7x  y

0

2 x  2 y  3z  6  2x  3y  7z  1

x 1 Substituting and solving for the other variables: 4(1)  y  1 3(1)  2(3)  z  5  y  3 3  6  z  5 y3 z  2 The solution is x  1, y  3, z   2 or using ordered triplets (1, 3, 2) .

y4z  7 0  19 This result is false, so the system is inconsistent. 3x  2 y  2 z  6  52. 7 x  3 y  2 z  1 2 x  3 y  4 z  0 

 x  y  z  4  54.  2 x  3 y  4 z  15 5 x  y  2 z  12

Multiply the first equation by –1 and add to the second equation to eliminate z; multiply the first equation by –2 and add to the third equation to eliminate z: 3x  2 y  2 z   6 7 x  3 y  2z  1

Multiply the first equation by –3 and add to the second equation to eliminate y; add the first and third equations to eliminate y: 3x  3 y  3z  12 2 x  3 y  4 z  15 x

 z  3 z  x 3 x  y  z  4 5 x  y  2 z  12

 7

6 x  4 y  4 z  12 4 x  y

4

3x  3

y  4z  7 Multiply each side of the first result by –1 and add to the second result to eliminate y:  y  4 z  12

2x  3y  4z 

Multiply each side of the first result by –1 and add to the second result to eliminate y: 4 x  y  1 7x  y  4

y  4 z  12

4x  y

 1

0

 12

6x

Add the first result to the second result to eliminate y: 4x  y   7  4 x  y  12

 z 8

Substitute and solve: 6 x  ( x  3)  8 6x  x  3  8 5x  5 x 1 z  x  3  1 3   2

0  19 This result is false, so the system is inconsistent.

y  12  5 x  2 z  12  5(1)  2( 2)  3 The solution is x  1, y  3, z   2 or using ordered triplets (1, 3, 2) .

 x y z  6  53. 3 x  2 y  z  5  x  3 y  2 z  14 

Add the first and second equations to eliminate z; multiply the second equation by 2 and add to 1146

Copyright © 2020 Pearson Education, Inc.


Section 11.1: Systems of Linear Equations: Substitution and Elimination 2 x  8 y  6 z   16 x  y  6z  1

 x  2 y  z  3  55.  2 x  4 y  z  7  2 x  2 y  3z  4 Add the first and second equations to eliminate z; multiply the second equation by 3 and add to the third equation to eliminate z: x  2y  z   3 2x  4 y  z   7 3x  2 y  10

3x  9 y

Multiply each side of the second result by 1/ 3 and add to the first result to eliminate y: 4x  3y  4 x  3y  5 9 x3 Substituting and solving for the other variables: 3  3 y  5 3y  8 8 y 3 3x

6 x  12 y  3z   21  2 x  2 y  3z  4 4 x  10 y   17

Multiply each side of the first result by –5 and add to the second result to eliminate y: 15 x  10 y  50 4 x  10 y  17

 8 3      6z  1  3 2 6z  3 1 z 9

11x

 33 x 3 Substituting and solving for the other variables: 3(3)  2 y  10  9  2 y  10  2 y  1 1 y 2

8 3

The solution is x  3, y   , z   

1 or using 9

8 1

ordered triplets  3,  ,  . 3 9

1 3  2    z  3 2 3  1  z  3  z  1

57. Let l be the length of the rectangle and w be the width of the rectangle. Then: l  2w and 2l  2w  90

Solve by substitution: 2(2 w)  2w  90 4 w  2w  90 6w  90 w  15 feet l  2(15)  30 feet The floor is 15 feet by 30 feet.

z 1 1 The solution is x  3, y  , z  1 or using 2 1   ordered triplets  3, , 1 . 2    x  4 y  3z   8  56. 3x  y  3 z  12  x  y  6z  1 

58. Let l be the length of the rectangle and w be the width of the rectangle. Then: l  w  50 and 2l  2 w  3000

Add the first and second equations to eliminate z; multiply the first equation by 2 and add to the third equation to eliminate z: x  4 y  3z   8

Solve by substitution: 2( w  50)  2w  3000 2 w  100  2w  3000 4w  2900 w  725 meters l  725  50  775 meters

3x  y  3z  12 4x  3 y

 15

 4

1147

Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities

Solve the first equation for y: y  14  x Solve by substitution: 0.30 x  0.65(14  x)  5.6 0.3x  9.1  0.65 x  5.6 0.35 x  3.5 x  10 y  14  10  4 The chemist needs 10 liters of the 30% solution and 4 liters of the 65% solution.

The dimensions of the field are 775 meters by 725 meters. 59. Let x = the number of commercial launches and y = the number of noncommercial launches.

Then: x  y  469 and y 

1 x  31 2

Solve by substitution: 1 1 x  ( x  31)  469 y  (292)  31 2 2 3 y  146  31 x  438 2 y  177 x  292 In 2017 there were 292 commercial launches and 177 noncommercial launches.

63. Let s = the price of a smartphone and t = the price of a tablet. Then: s  t  1665   340 s  250t  486000 Solve the first equation for t: t  1665  s Solve by substitution: 340 s  250(1665  s )  486000 340 s  416250  250 s  486000 90 s  69750 s  775 t  1665  775  890 The price of the smartphone is $775.00 and the price of the tablet is $890.00.

60. Let x = the number of adult tickets sold and y = the number of senior tickets sold. Then:  x  y  325  9 x  7 y  2495 Solve the first equation for y: y  325  x Solve by substitution: 9 x  7(325  x)  2495 9 x  2275  7 x  2495 2 x  220 x  110 y  325  110  215 There were 110 adult tickets sold and 215 senior citizen tickets sold.

64. Let x = the amount invested in AA bonds. Let y = the amount invested in the Bank Certificate. a. Then x  y  300, 000 represents the total investment. 0.05 x  0.025 y  12, 000 represents the earnings on the investment.

61. Let x = the number of pounds of cashews. Let y = is the number of pounds in the mixture. The value of the cashews is 5x . The value of the peanuts is 1.50(30) = 45. The value of the mixture is 3y . Then x  30  y represents the amount of mixture. 5 x  45  3 y represents the value of the mixture.

Solve by substitution: 0.05(300, 000  y )  0.025 y  12, 000 15, 000  0.05 y  0.025 y  12, 000  0.025 y  3000 y  120, 000 x  300, 000  120, 000  180, 000 Thus, $180,000 should be invested in AA Bonds and $120,000 in a Bank Certificate.

Solve by substitution: 5 x  45  3( x  30) 2 x  45 x  22.5 So, 22.5 pounds of cashews should be used in the mixture.

b. Then x  y  300, 000 represents the total investment. 0.05 x  0.025 y  14, 000 represents the earnings on the investment.

62. Let x = the number of liters of 30% solution and y = the number liters of 65% solution. Then: x  y  14   0.30 x  0.65 y  0.40(14) 

1148

Copyright © 2020 Pearson Education, Inc.


Section 11.1: Systems of Linear Equations: Substitution and Elimination

Solve by substitution: 0.05(300, 000  y )  0.025 y  14, 000 15, 000  0.05 y  0.025 y  14, 000  0.025 y  1000 y  40, 000 x  300, 000  40, 000  260, 000 Thus, $260,000 should be invested in AA Bonds and $40,000 in a Bank Certificate.

67. Let x = the number of $25-design. Let y = the number of $45-design. Then x  y = the total number of sets of dishes. 25 x  45 y = the cost of the dishes.

Setting up the equations and solving by substitution:  x  y  200  25 x  45 y  7400 Solve the first equation for y, the solve by substitution: y  200  x 25 x  45(200  x )  7400 25 x  9000  45 x  7400  20 x  1600 x  80 y  200  80  120 Thus, 80 sets of the $25 dishes and 120 sets of the $45 dishes should be ordered.

65. Let x = the plane’s average airspeed and y = the average wind speed. Rate With Wind Against

Time Distance

x y x y

3 4

600 600

 ( x  y )(3)  600  ( x  y )(4)  600 Multiply each side of the first equation by

1 , 3

68. Let x = the cost of a hot dog. Let y = the cost of a soft drink. Setting up the equations and solving by substitution: 10 x  5 y  35.00   7 x  4 y  25.25

1 multiply each side of the second equation by , 4 and add the result to eliminate y x  y  200

x  y  150 2 x  350 x  175

10 x  5 y  35.00 2x  y  7

175  y  200 y  25 The average airspeed of the plane is 175 mph, and the average wind speed is 25 mph.

y  7  2x 7 x  4(7  2 x )  25.25 7 x  28  8 x  25.25  x  2.75

66. Let x = the average wind speed and y = the distance. Rate

x  2.75 y  7  2(2.75)  1.50 A single hot dog costs $2.75 and a single soft drink costs $1.50.

Time Distance

With Wind 150  x Against 150  x

2 3

y y

69. Let x = the cost per package of bacon. Let y = the cost of a carton of eggs. Set up a system of equations for the problem: 3x  2 y  13.45  2 x  3 y  11.45 Multiply each side of the first equation by 3 and each side of the second equation by –2 and solve by elimination:

(150  x)(2)  y  (150  x)(3)  y Solve by substitution: (150  x)(2)  (150  x)(3) 300  2 x  450  3x 5 x  150 x  30 Thus, the average wind speed is 30 mph.

1149

Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities 9 x  6 y  40.35

Multiplying each equation by 10 yields 2 x  4 y  400  6 x  4 y  600

 4 x  6 y  22.90 

5x

17.45

x  3.49

Subtracting the bottom equation from the top equation yields

Substitute and solve for y: 3(3.49)  2 y  13.45 10.47  2 y  13.45 2 y  2.98 y  1.49 A package of bacon costs $3.49 and a carton of eggs cost $1.49. The refund for 2 packages of bacon and 2 cartons of eggs will be 2($3.49) + 2($1.49) = $9.96.

2 x  4 y   6 x  4 y   400  600 2 x  6 x  200 4 x  200 x  50 2  50   4 y  400 100  4 y  400 4 y  300 300  75 4 So 50 mg of compound 1 should be mixed with 75 mg of compound 2. y

70. Let x = Pamela’s average speed in still water. Let y = the speed of the current. Rate

Time Distance

Downstream

x y

3

15

Upstream

x y

5

15

72. Let x = the # of units of powder 1. Let y = the # of units of powder 2. Setting up the equations and solving by substitution:

Set up a system of equations for the problem: 3( x  y )  15  5( x  y )  15 Multiply each side of the first equation by

0.2 x  0.4 y  12 vitamin B12   0.3 x  0.2 y  12 vitamin E

1 , 3

Multiplying each equation by 10 yields

1 multiply each side of the second equation by , 5 and add the result to eliminate y: x y 5 x y 3

2 x  4 y  120  6 x  4 y  240

Subtracting the bottom equation from the top equation yields 2 x  4 y   6 x  4 y   120  240

2x  8

4 x  120

x4 4 y  5

2  30   4 y  120

y 1

x  30

60  4 y  120

Pamela's average speed is 4 miles per hour and the speed of the current is 1 mile per hour.

4 y  60 60  15 4 So 30 units of powder 1 should be mixed with 15 units of powder 2. y

71. Let x = the # of mg of compound 1. Let y = the # of mg of compound 2. Setting up the equations and solving by substitution: 0.2 x  0.4 y  40 vitamin C   0.3 x  0.2 y  30 vitamin D

1150

Copyright © 2020 Pearson Education, Inc.


Section 11.1: Systems of Linear Equations: Substitution and Elimination

The system of equations is:  a  bc  2   a bc  –4 4a  2b  c  4 

73. y  ax 2  bx  c At (–1, 4) the equation becomes: 4  a (–1) 2  b(1)  c 4  a bc

Multiply the first equation by –1 and add to the second equation; multiply the first equation by – 1 and add to the third equation to eliminate c:

At (2, 3) the equation becomes: 3  a(2) 2  b(2)  c 3  4a  2b  c

a  b  c  2  ab c  –4 

At (0, 1) the equation becomes: 1  a(0) 2  b(0)  c 1 c

4a  2b  c  4 3a  3b

 2 b  1

2b

The system of equations is:  a bc  4  4a  2b  c  3  c1 

a  b  c  2

Substitute and solve: a  (1)  2 a3

6

ab  2 c  a  b  4  3  (1)  4  6

Substitute c  1 into the first and second equations and simplify: 4a  2b  1  3 a  b 1  4 a b 3 4a  2b  2 a  b3

The solution is a  3, b  1, c   6 . The equation is y  3 x 2  x  6 0.06Y  5000r  240 75.  0.06Y  6000r  900 Multiply the first equation by 1 , the add the result to the second equation to eliminate Y. 0.06Y  5000r  240

Solve the first result for a, substitute into the second result and solve: 4(b  3)  2b  2 4b  12  2b  2 6b  10 5 b 3 5 4 a   3 3 3 4 5 The solution is a  , b   , c  1 . The 3 3 4 5 equation is y  x 2  x  1 . 3 3

0.06Y  6000r  900 11000r  660 r  0.06 Substitute this result into the first equation to find Y. 0.06Y  5000(0.06)  240 0.06Y  300  240 0.06Y  540 Y  9000 The equilibrium level of income and interest rates is $9000 million and 6%.

74. y  ax 2  bx  c At (–1, –2) the equation becomes: 2  a (1) 2  b(1)  c a  b  c  2

0.05Y  1000r  10 76.  0.05Y  800r  100 Multiply the first equation by 1 , the add the result to the second equation to eliminate Y. 0.05Y  1000r  10

At (1, –4) the equation becomes:  4  a(1) 2  b(1)  c a b c  4

0.05Y  800r  100 1800r  90

At (2, 4) the equation becomes: 4  a (2) 2  b(2)  c 4a  2b  c  4

r  0.05 Substitute this result into the first equation to find Y.

1151

Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities 0.05Y  1000(0.05)  10 0.05Y  50  10 0.05Y  60

8I1  4  6 I 2

8  4 I1  10 I 2

8I1  6 I 2  4

4 I1  10 I 2  8

Y  1200 The equilibrium level of income and interest rates is $1200 million and 5%.

Multiply both sides of the first result by –2 and add to the second result to eliminate I1 : 8 I1  20 I 2  16

I 2  I1  I 3   77.  5  3I1  5I 2  0 10  5I  7 I  0 2 3 

8 I1  6 I 2 

4

26 I 2  12 12 6  26 13 Substituting and solving for the other variables: 6 4 I1  10    8  13  60 4 I1  8 13 44 4 I1  13 11 I1  13 11 6 17 I 3  I1  I 2    13 13 13 11 6 17 The solution is I1  , I 2  , I 3  . 13 13 13

Substitute the expression for I 2 into the second and third equations and simplify: 5  3I1  5( I1  I 3 )  0

I2 

8 I1  5I 3  5 10  5( I1  I 3 )  7 I 3  0 5I1  12 I 3  10

Multiply both sides of the first result by 5 and multiply both sides of the second result by –8 to eliminate I1 : 40 I1  25I 3  25 40 I1  96 I 3  80 71I 3  55 I3 

equation and simplify: 8  4( I1  I 2 )  6 I 2

55 71

Substituting and solving for the other variables:  55   8I1  5    5  71  275  8I1   5 71 80 8 I1   71 10 I1  71

79. Let x = the number of orchestra seats. Let y = the number of main seats. Let z = the number of balcony seats. Since the total number of seats is 500, x  y  z  500 . Since the total revenue is $64,250 if all seats are sold, 150 x  135 y  110 z  64, 250 . If only half of the orchestra seats are sold, the revenue is $56,750. 1  So, 150  x  135 y  110 z  56, 750 . 2  Thus, we have the following system: x  y  z  500   150 x  135 y  110 z  64, 250  75 x  135 y  110 z  56, 750 

 10  55 65 I2       71  71 71 10 65 55 . The solution is I1  , I 2  , I 3  71 71 71  I 3  I1  I 2  78.  8  4 I 3  6 I 2 8I  4  6 I 2  1 Substitute the expression for I 3 into the second

Multiply each side of the first equation by –110 and add to the second equation to eliminate z; multiply each side of the third equation by –1 and add to the second equation to eliminate z:

1152

Copyright © 2020 Pearson Education, Inc.


Section 11.1: Systems of Linear Equations: Substitution and Elimination 110 x  110 y  110 z  55, 000

y  2x

3x  z  405

150 x  135 y  110 z  64, 250

 2(110)

3(110)  z  405

40x  25 y

 220

330  z  405

9250

z  75 There were 110 adults, 220 children, and 75 senior citizens that bought tickets.

150 x  135 y  110 z  64, 250

75 x  135 y  110 z  56, 750 75 x

 7500

81. Let x = the number of servings of chicken. Let y = the number of servings of corn. Let z = the number of servings of 2% milk.

x  100

Substituting and solving for the other variables: 40(100)  25 y  9250 100  210  z  500 4000  25 y  9250 310  z  500 25 y  5250 z  190 y  210

Protein equation: 30 x  3 y  9 z  66 Carbohydrate equation: 35 x  16 y  13 z  94.5 Calcium equation: 200 x  10 y  300 z  910 Multiply each side of the first equation by –16 and multiply each side of the second equation by 3 and add them to eliminate y; multiply each side of the second equation by –5 and multiply each side of the third equation by 8 and add to eliminate y: 480 x  48 y  144 z  1056 105 x  48 y  39 z  283.5

There are 100 orchestra seats, 210 main seats, and 190 balcony seats. 80. Let x = the number of adult tickets. Let y = the number of child tickets. Let z = the number of senior citizen tickets. Since the total number of tickets is 405, x  y  z  405 . Since the total revenue is $3315, 11x  6 y  9 z  3315 . Twice as many children's tickets as adult tickets are sold. So, y  2 x . Thus, we have the following system: y  z  405  x  11x  6.50 y  9 z  3315  y  2x 

 375 x

175 x  80 y 

65 z   472.5

1600 x  80 y  2400 z  7280 1425 x

 2335 z  6807.5

Multiply each side of the first result by 19 and multiply each side of the second result by 5 to eliminate x: 7125 x  1995 z  14, 677.5 7125 x  11, 675 z  34, 037.5

Substitute for y in the first two equations and simplify: x  (2 x)  z  405 3 x  z  405

9680 z  19,360 z2

Substituting and solving for the other variables: 375 x  105(2)  772.5 375 x  210  772.5 375 x  562.5 x  1.5

11x  6.50(2 x)  9 z  3315 24 x  9 z  3315 Multiply the first result by –9 and add to the second result to eliminate z:  27 x  9 z   3645  24 x  9 z  3315  3 x

 105 z   772.5

30(1.5)  3 y  9(2)  66 45  3 y  18  66

  330

3y  3

x  110

y 1

The dietitian should serve 1.5 servings of chicken, 1 serving of corn, and 2 servings of 2% milk. 1153

Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities 4 x  3 y  3 z  13.05

82. Let x = the amount in Treasury bills. Let y = the amount in Treasury bonds. Let z = the amount in corporate bonds.

5 x  3 y  4 z  15.80  z  2.75

x

Since the total investment is $20,000, x  y  z  20, 000

x  2.75  z

Substitute and solve for y in terms of z: 5  2.75  z   3 y  4 z  15.80

Since the total income is to be $1390, 0.05 x  0.07 y  0.10 z  1390

13.75  3 y  z  15.80

The investment in Treasury bills is to be $3000 more than the investment in corporate bonds. So, x  3000  z

3 y  z  2.05 1 41 z 3 60 Solutions of the system are: x  2.75  z , 1 41 y  z . 3 60 Since we are given that 0.60  z  0.90 , we choose values of z that give two-decimal-place values of x and y with 1.75  x  2.25 and 0.75  y  1.00 . The possible values of x, y, and z are shown in the table. y

Substitute for x in the first two equations and simplify: (3000  z )  y  z  20, 000 y  2 z  17, 000 5(3000  z )  7 y  10 z  139, 000 7 y  15 z  124, 000

Multiply each side of the first result by –7 and add to the second result to eliminate y: 7 y  14 z  119, 000 7 y  15 z  124, 000

x

y

z

z  5, 000 x  3000  z  3000  5000  8000 y  2 z  17, 000 y  2(5000)  17, 000

2.13

0.89

0.62

2.10

0.90

0.65

2.07

0.91

0.68

2.04

0.92

0.71

2.01

0.93

0.74

1.98

0.94

0.77

1.95

0.95

0.80

1.92

0.96

0.83

1.89

0.97

0.86

1.86

0.98

0.89

y  10, 000  17, 000 y  7000 Kelly should invest $8000 in Treasury bills, $7000 in Treasury bonds, and $5000 in corporate bonds.

83. Let x = the price of 1 hamburger. Let y = the price of 1 order of fries. Let z = the price of 1 drink.

We can construct the system  8 x  6 y  6 z  26.10  10 x  6 y  8 z  31.60

84. Let x = the price of 1 hamburger. Let y = the price of 1 order of fries. Let z = the price of 1 drink We can construct the system  8 x  6 y  6 z  26.10  10 x  6 y  8 z  31.60  3 x  2 y  4 z  10.95

A system involving only 2 equations that contain 3 or more unknowns cannot be solved uniquely. 1 Multiply the first equation by  and the 2 1 second equation by , then add to eliminate y: 2

Subtract the second equation from the first equation to eliminate y: 8 x  6 y  6 z  26.10 10 x  6 y  8 z  31.60  2 x  2 z  5.5 1154

Copyright © 2020 Pearson Education, Inc.


Section 11.1: Systems of Linear Equations: Substitution and Elimination

Multiply the third equation by –3 and add it to the second equation to eliminate y: 10 x  6 y  8 z  31.60 9 x  6 y  12 z  32.85 x  4 z  1.25 Multiply the second result by 2 and add it to the first result to eliminate x: 2x  2 z  5.5 2x  8 z  2.5

In 15 hours they complete 1 entire job, so 1 1 15     1 .  y z

10 z  8 z  0.8 Substitute for z to find the other variables: x  4(0.8)  1.25 x  3.2  1.25 x  1.95 3(1.95)  2 y  4(0.8)  10.95 5.85  2 y  3.2  1.095 2 y  1.9 y  0.95

in 1 hour

1 1 1   y z 15 Beth Dan Edie

Beth Dan Edie

in 1 hour

z

1 x

1 y

1 z

Dan Edie

in 1 hour

z

1 y

1 z

1 x

1 y

1 z

1 30 x  30 

Substitute x = 30 into the third equation: 12 12 4   1 30 y z . 12 4 3   y z 5 Now consider the system consisting of the last result and the second original equation. Multiply the second original equation by –12 and add it to the last result to eliminate y:

1 1 1 1    x y z 10 y

Part of job done

1 x

In 10 hours they complete 1 entire job, so 1 1 1 10      1 x y z

Hours to do job Part of job done

z

We have the system  1 1 1 1  x  y  z  10   1 1 1    y z 15  12 12 4    1 y z x Subtract the second equation from the first equation: 1 1 1 1    x y z 10 1 1 1   y z 15

We can use the following tables to organize our work: y

y

12 12 4   1 x y z

85. Let x = Beth’s time working alone. Let y = Dan’s time working alone. Let z = Edie’s time working alone.

x

x

With all 3 working for 4 hours and Beth and Dan working for an additional 8 hours, they complete 1 1 1 1 1 1 entire job, so 4      8     1 x y z x y

Therefore, one hamburger costs $1.95, one order of fries costs $0.95, and one drink costs $0.80.

Hours to do job Part of job done

Hours to do job

1155

Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities 12 12 12   y z 15 12 4 3   y z 5 

ax  by  cz  a  b  c (1)   2 2 2 87. a x  b y  c z  ac  ab  bc (2)  abx  byc  bc  ac (3) 

Multiply the first equation by -c and add to the second equation.

8 3  z 15 z  40

acx  bcy  c 2 z   ac  bc  c 2  2 2 2  a x  b y  c z  ac  ab  bc

Plugging z = 40 to find y: 12 4 3   y z 5 12 4 3   y 40 5 12 1  y 2 y  24 Working alone, it would take Beth 30 hours, Dan 24 hours, and Edie 40 hours to complete the job.

a(a  c) x  b(b  c) y  ab  c 2 (2)

Multiply (2) by b and (3) by –(a-c) then add.

2 2 2 ab(a  c) x  b (b  c) y  ab  bc  2 2 2  ab(a  c) x  bc(a  c)  abc  a c  b c  a c

b(b 2  bc  ac  c 2 ) y  a (b 2  bc  ac  c 2 ) y

 ax  by  a  b 86.  2 2 abx  b y  b  ab

Substitute y 

a  bc  ac b abx  ac  bc  ac abx  bc c x a

abx  b 2 y  ab  b 2  2 2  abx  b y  b  ab 2abx  2b 2 b x a

Substitute x  b into equation (1): a

c a , y  into equation (1): a b

c a a   b   cz  a  b  c a b c  a  cz  a  b  c cz  b b z c

b  by  a  b a b  by  a  b by  a a

y

a into equation (3): b

abx  bc 

Multiply the first equation by b and add.

Substitute x 

a b

a b

c a b The solution set is  , ,  a b c

b a So the solution is  ,  . a b

88. – 90.

Answers will vary.

1156

Copyright © 2020 Pearson Education, Inc.


Section 11.1: Systems of Linear Equations: Substitution and Elimination

quadrant I so sine will still be positive. Thus, we   10   is in the have sin    sin   . Since  9   9 9

91.

   interval   ,  , we can apply the equation  2 2 above and get   10         sin 1  sin     . sin 1  sin       9    9 9

 3 1  4  2 2

94. r  x 2  y 2 

y 1 3   x  3 3

tan  

92. a.

2

5 6 The polar form of z   3  i is



2

4  2 x  3  2  x3  5  2 x3  5  3x 2   2 x  3 3

4

i 5

z  r  cos   i sin    2  cos 56  i sin 56   2e 6

     2  2 x  3  x  5  4 x  20  6 x  9 x   2  2 x  3  x  510 x  9 x  20

 2  2 x  3 x  5  4 x  5  3 x  2 x  3    3

3

3

3

3

3

3

3

3

2

3

.

2

95. A  B  6,12,18, 24,30

2

96. Since the length of the major axis is 20 then the vertices are (10,0) and (-10,0) and a = 10. The length of the minor axis is 12 so the minor vertices are (0,6) and (0,-6) and b = 6. So the x2 y2 formula for the ellipse is  1. 100 36

b.

 3x  5   3   x  3   12  x  3   3x  5    12  3 x  5  x  3 3  x  3   3x  5  1 2

1

1

2

1

2

3

3

2

2

1

2

2

 x  3   3x  9  3x  5    12  3 x  5  x  3 14    7  3 x  5  x  3  12  3 x  5

 12

3

1

3

1

2

2

3

2

i

equation f

5

i 

7

i 

31

 2  

 12e  12

5  6 

i

31

 12e 12 i

7

 12e 12

i 7 7 7   12  12  cos  i sin   12e 12 12  

 f  x   sin sin  x   x , but 1

we cannot use the formula directly since 

i

 62e  4

2

  10   93. sin 1  sin     follows the form of the   9  1

7

97. z w  6e 4  2e 6

2

10 9

i

7

 7 5 

 7 5 

  i z 6e 4 6 i  4  6    e  3e  4 6  5 i w 2 2e 6

   is not in the interval   ,  . We need to find  2 2    an angle  in the interval   ,  for which  2 2

i

11

 3e 12

i 11 11 11    3  cos  i sin  3e 12  12 12  

10  10  is in  sin  . The angle  sin    9  9 quadrant II so sine is positive. The reference 10  is and we want  to be in angle of  9 9

98. A  $5000, r  0.04, n  12, t  1.5  r P  A 1    n

1157

Copyright © 2020 Pearson Education, Inc.

 nt

 0.04   5000  1   12  

( 12)(1.5)

 $4709.29


Chapter 11: Systems of Equations and Inequalities

1 1 f (b)  f (a) cos ( 12 )  cos ( 12 )  1  ( 12 ) ba 2

99.

2   3 3  1 3 

100. Find the length of the sides of the triangle.

S1:

(3  0) 2  (9  5) 2  9  16  5

S2:

(12  0) 2  (0  5) 2  144  25  13

S3: (12  3) 2  (0  9) 2  81  81  9 2 Now use the area formula: 1 S = (5  13  9 2)  15.364 2 K= 15.364(15.364  5)(15.364  13)(15.364  9 2)  31.5 square units

 2x  3y  6  0 9.  4 x  6 y  2  0 Write the system in standard form and then write the augmented matrix for the system of equations: 2x  3y  6  3 6  2   x y    4 6 2  4  6  2  9x  y  0 10.  3x  y  4  0 Write the system in standard form and then write the augmented matrix for the system of equations: 9 x  y  0 9 0   1   3x  y  4  3 1 4 

11. Writing the augmented matrix for the system of equations:  0.01x  0.03 y  0.06  0.01  0.03 0.06     0.10 0.20  0.13x  0.10 y  0.20 0.13 12. Writing the augmented matrix for the system of equations: 3 3 3 3  4  4  3 x  2 y  4  3  2 4     1 2  1  1 x  1 y  2  4 3 3 3 3   4

Section 11.2 1. matrix 2. augmented

13. Writing the augmented matrix for the system of equations:  x  y  z  10  1 1 1 10    5  3 3 0 5 3x  3 y  x  y  2z  2   1 1 2 2 

3. third; fifth 4. b 5. True 6. c 7. Writing the augmented matrix for the system of equations:  x  5y  5  5 5  1   x y   4 3 6 3 6  4 8. Writing the augmented matrix for the system of equations: 3x  4 y  7 3 4 7     x y   4 2 5   4  2 5

14. Writing the augmented matrix for the system of equations: 5 x  y  z  0  5 1 1 0    5   1 1 0 5  x y  2x  3z  2   2 0 3 2  15. Writing the augmented matrix for the system of equations: 1 1 2   x yz  2 1    2   3  2 0 2   3x  2 y 5 x  3 y  z  1 3 1 1  5

1158 Copyright © 2020 Pearson Education, Inc.


Section 11.2: Systems of Linear Equations: Matrices

 1 3 4 3   x  3 y  4 z  3  21.  3 5 6 6    3 x  5 y  6 z  6  5 3 4 6  5 x  3 y  4 z  6

2 x  3 y  4 z  0  16.  x  5 z  2  0  x  2 y  3z   2  Write the system in standard form and then write the augmented matrix for the system of equations: 0 2 x  3 y  4 z  0 2 3  4    5 z   2   1 0 5  2  x  x  2 y  3z   2   1 2 3  2 

R2   3r1  r2  1 3 4  3 5 6   5 3 4  1   3(1)  3   5

17. Writing the augmented matrix for the system of equations:  1 1 1 10   x  y  z  10   2 x  y  2 z  1 2 1 2 1      3 4 0 5   3 x  4 y  5    4 x  5 y  z  0  4 5 1 0 

3 6  6  3 4 3  3(3)  5 3(4)  6 3(3)  6   3 4 6 

 1 3 4 3    0 4 6 3    5 3 4 6 

R3  5r1  r3  1 3 4 3   0 4  6 3     5 3 4 6  3 4 3   1  0 6 3  4   5(1)  5 5(3)  3 5(4)  4 5(3)  6   1 3 4 3   0 4 6 3   0 12 24 21

18. Writing the augmented matrix for the system of equations: 1 1 2 1 5   x  y  2z  w  5    x 3 y 4 z 2 w 2       1 3 4 2 2    3 x  y  5 z  w  1 3 1 5 1 1 1 3 2   x  3 y  2 19.    2 5 5   2 x  5 y  5

 1 3 3 5  x  3 y  3 z  5  22.  4 5 3 5   4 x  5 y  3 z  5   3 2 4 6  3x  2 y  4 z  6

R2   2r1  r2 1 3 2   1 3 2     2 5 5 2(1) 2 2( 3) 5 2( 2) 5             1 3 2    0 1 9 

R2  4r1  r2  1 3 3 5  4 5 3 5    3 2 4 6  3 5  3  1   4(1)  4 4( 3)  5 4(3)  3 4(5)  5   2 4 6  3 

1 3 3  x  3 y  3 20.    2 5 4  2 x  5 y  4 R2   2r1  r2

 1  3 3 5    0 17 9 25    3 2 4 6 

1 3 3  1 3 3      2 5 4   2(1)  2 2(3)  5 2(3)  4  1 3 3   0 1 2 

1159

Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities R3  3r1  r3  1 3 3 5  4 5 3 5    3 2 4 6  3 3 5   1  0 9  17 25    3(1)  3 3(3)  2 3(3)  4 3(5)  6  1 3 3 5   0 17 9 25   0 11 13 9 

 1 3 2 6   x  3 y  2 z  6  23.  2 5 3 4    2 x  5 y  3z  4  3 6 4 6  3x  6 y  4 z  6 R2   2r1  r2  1 3 2 6   2 5 3 4     3 6 4 6  1 2 3 6     2(1)  2 2(3)  5 2(2)  3 2(6)  4    4 6 6  3   1 3 2 6    0 1 1 8     3 6 4 6 

R3  3r1  r3  1 3 2 6   0 1 1 8     3 6 4 6  2 3 6   1  1 8  0 1   3(1)  3 3(3)  6 3(2)  4 3(6)  6   1 3 2 6   0 1 1 8    0 15 10 12 

 1 3 4 6   x  3 y  4 z  6  24.  6 5 6 6   6 x  5 y  6 z  6  1 1 4 6    x  y  4 z  6 R2   6r1  r2  1 3 4 6   6 5 6 6     1 1 4 6  1 3 4 6     6(1)  6 6(3)  5 6(4)  6 6( 6)  6    1 4 6  1   1 3 4 6    0 13 30 30     1 1 4 6 

R3  r1  r3 3 4 6   1 3 4 6   1  6 5 6 6    6 6 5 6       1 1 4 6  1  1 3  1 4  4 6  6  1 3 4 6   6 5 6 6    0 2 0 0 

 5 3 1 2   5 x  3 y  z  2  25.  2 5 6 2    2 x  5 y  6 z  2  4 1 4 6  4 x  y  4 z  6 R1   2r2  r1  5 3 1 2   2 5 6 2     4 1 4 6   2(2)  5 2( 5)  3 2(6)  1 2(2)  2   2 6  5 2   1 4 6  4   1 7 11 2    2 5 6 2    4 6   4 1

R3  2r2  r3

 1 7 11 2   2 5 6 2    4 6   4 1 1 7 2 11   2 6  5 2     2(2)  (4) 2( 5)  1 2(6)  4 2(2)  6  1 7 11 2    2 5 6 2    2   0 9 16

1160 Copyright © 2020 Pearson Education, Inc.


Section 11.2: Systems of Linear Equations: Matrices 3 1 2   4 x  3 y  z  2  5 2 6    3x  5 y  2 z  6     3 6 4 6  3x  6 y  4 z  6

 x  2 z  1  31.  y  4 z   2  00  Consistent;  x  1  2 z   y  2  4 z  z is any real number 

4

26.  3

R1   r2  r1

 4 3 1 2   3 5 2 6     3 6 4 6   (3)  4 ( 5)  3 (2)  1 (6)  2  2 6   3 5   3 6 4 6      1 2 3 4    3 5 2 6     3 6 4 6 

or {( x, y, z ) | x  1  2 z , y   2  4 z , z is any real number} x  4z  4  32.  y  3 z  2  00 

R3  r2  r3

Consistent;  x  4  4z   y  2  3z  z is any real number 

 1 2 3 4   3 5 2 6     3 6 4 6  2 3 4   1 2 6   3 5   3  (3) 5  (6) 2  4 6  6  1 2 3 4    3 5 2 6    0 11 6 12 

or {( x, y, z ) | x  4  4 z , y  2  3 z , z is any real number} x1  1   33.  x2  x4  2 x  2x  3 4  3 Consistent;  x1  1   x2  2  x4   x3  3  2 x4  x4 is any real number or {( x1 , x2 , x3 , x4 ) | x1  1, x2  2  x4 , x3  3  2 x4 , x4 is any real number}

x  5 27.   y  1 Consistent; x  5, y  1, or using ordered pairs (5, 1) .

x   4 28.  y  0 Consistent; x   4, y  0, or using ordered pairs (  4, 0) .

x1  1   34.  x2  2 x4  2  x  3x  0 4  3

x  1  29.  y  2 0  3 

Consistent;  x1  1   x2  2  2 x4   x3  3x4  x4 is any real number or {( x1 , x2 , x3 , x4 ) | x1  1, x2  2  2 x4 , x3  3 x4 , x4 is any real number}

Inconsistent x  0  30.  y  0 0  2 

Inconsistent

1161

Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities x1  4 x4  2   35.  x2  x3  3x4  3  00  Consistent;  x1  2  4 x4   x2  3  x3  3 x4  x , x are any real numbers  3 4

 x1  1   x2  2   x3  3  x4  0 or (1, 2,3, 0)

or {( x1 , x2 , x3 , x4 ) | x1  2  4 x4 , x2  3  x3  3x4 , x3 and x4 are any real numbers} x1  1   36.  x2  2 x  2x  3 4  3 Consistent;  x1  1   x2  2   x3  3  2 x4  x4 is any real number

or {( x1 , x2 , x3 , x4 ) | x1  1, x2  2, x3  3  2 x4 , x4 is any real number}  x1  x4  2   x  2 x4  2 37.  2  x3  x4  0  00 Consistent;  x1  2  x4   x2  2  2 x4   x3  x4  x4 is any real number

or {( x1 , x2 , x3 , x4 ) | x1  2  x4 , x2  2  2 x4 , x3  x4 , x4 is any real number}  x1  1   x2  2 38.   x3  3  x4  0

x  y  8 39.  x  y  4 Write the augmented matrix: 1 1 8  1 8 1     R2  r1  r2  1 1 4  0  2  4   8  1 1   R2   12 r2  0 1 2  0 6  1  R1  r2  r1   0 1 2  The solution is x  6, y  2 or using ordered pairs (6, 2). x  2 y  5 40.  x  y  3 Write the augmented matrix: 1 2 5 1 2 5     R2  r1  r2  1 1 3  0 1  2   1 2 5   R2  r2   0 1 2   0 1  1  R1   2r2  r1   0 1 2  The solution is x  1, y  2 or using ordered pairs (1, 2).  3 x  6 y  4 41.  5 x  4 y  5 Write the augmented matrix:  3 6 4   1  2  43     5 4 5 5 5 4

Consistent;

1  43     2 35  3   0 14

 R2  5r1  r2 

1  43   2   5  0  6 1

 R2  141 r2 

 0  1  0 1

1162 Copyright © 2020 Pearson Education, Inc.

 R1  13 r1 

1 3  3  4

 R1  2r2  r1 


Section 11.2: Systems of Linear Equations: Matrices 3x  y  7 3x  7  y The solution is y  3x  7, x is any real number or {( x, y ) | y  3x  7, x is any real number}

1 5 The solution is x  , y  or using ordered pairs 3 6 1 5  , . 3 6  3x  3 y  3  42.  8 4 x  2 y  3 Write the augmented matrix:  3 3 3  1 1 1 R1  1 r1    8 3 8  4 2 3   4 2 3 

2 x  3 y  6  45.  1  x  y  2 Write the augmented matrix:  2 3 6  1 3 3 2   R1  12 r1    1 1  1 1 2  1 1 2  3  3 2   R2   r1  r2   1 0  5  5  2 2  1 3 3 2 R2   52 r2   0 1 1

1 1 1    R2   4r1  r2  0  2  43   1 1 1    R2   12 r2   2 0 1 3   0  1 0 1

1 3 2 3

3  R1   32 r2  r1  1 0 2 0 1 1 3 3  The solution is x  , y  1 or  , 1 . 2 2 

 R1  r2  r1 

1 2 The solution is x  , y  or using ordered 3 3 1 2 pairs  ,  . 3 3

 -1 7  1 3 3 0 0 0  This is a dependent system.

 46.  2 x  y   2 1

 x  2 y  8

 x  2y  4 43.  2 x  4 y  8 Write the augmented matrix:  1 2 4  1 2 4  R2   2r1  r2      2 4 8  0 0 0  This is a dependent system. x  2y  4 x  4  2y The solution is x  4  2 y, y is any real number or {( x, y ) | x  4  2 y, y is any real number}

 3x  y  7 44.  9 x  3 y  21 Write the augmented matrix: 1 7   3 1 7  1  3 3   9 3 21 9 3 21  

Write the augmented matrix: 1 2  4 1  2   1 2   8 8 1  2  1  2

 R1  2r1 

 2  4  R  r  r  1 1 2   2 0  4 12      1 2  4   R2   14 r2  0 1 3  0 2  1   R1   2r2  r1   0 1 3  The solution is x  2, y  3 or (2, 3) .

 3x  5 y  3 47.  15 x  5 y  21 Write the augmented matrix:

 R1  13 r1   R2   9 r1  r2 

1163

Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities

 3 5 3  1  5 1 3 R1  13 r1    15 5 21 15 5 21 5   3 1  1   R2  15r1  r2   0 30 6    53 1 1  R2  30 r2  1 1  0 1 5  0 4 3 R1  53 r2  r1  1  0 1 1  5

The solution is x 

4 1 4 1 , y  or  ,  . 3 5 3 5

2 x  y   1  48.  1 3  x  2 y  2  2 1 1 1  1 2   3 1   1 12 1 2 2   1 0   1 0

 12   R1  12 r1 3 2  12  12  R  1r  r   2 1 2 1 2  0 12  R1  12 r2  r1  1 2 

1 1  The solution is x  , y  2 or  , 2  . 2 2   6  x y   3 z  16 49. 2 x  2y  z  4  Write the augmented matrix:  1 1 0 6     2 0 3 16  0 2 1 4    1 1 0 6      0 2 3 4   R2   2r1  r2  0 2  1 4    1 1 0 6    0 1  32 2   R2  12 r2    1 4 0 2 

 1 0  3 8 2   3     0 1 2 2  4 0 0 0  1 0  3 8 2     0 1  32 2    1 0 0 0

 R1  r2  r1     R3   2r2  r3 

 R3  14 r3 

 1 0 0 8  R1  32 r3  r1       0 1 0 2  R2  3 r3  r2  0 0 1 0 2     The solution is x  8, y  2, z  0 or (8, 2, 0).  4 2 x  y  50.   2 y  4 z  0  3x  2 z  11  Write the augmented matrix: 2 0  4 1   0 4 0  2 3 0  2 11  1 1 0  2 2    0  2 0 4   0  2 11  3 

 R1  12 r1 

1   0   0 1   0  0 1   0 0 

0  2  0   R3   3r1  r3  4 2   32  2 5  1 0  2 2  0 R2   12 r2 1 2   32  2 5  0 1  2 1   R1   2 r2  r1   0  1 2  R3  3 r2  r3   2  0 5 5  1 0 1  2   0 R3   15 r3  0 1  2 0 0 1 1   1 0 0 3     R1   r3  r1   0 1 0 2     0 0 1 1  R2  2r3  r2    The solution is x  3, y  2, z  1 or (3, 2, 1) . 1 2

1164 Copyright © 2020 Pearson Education, Inc.


Section 11.2: Systems of Linear Equations: Matrices 51. Write the augmented matrix:  1 4 2 9    1 1 4  3  3 3 7   2  1 4 2 9     0 13 5 31 0 5 1 11  1   0  0 1   0  0 1   0  0 1   0  0  1   0 0 

2 9  5 31  1  13 13  1 11  5 1 5 

4

1 3 0   2  2 2 1 7    3  4 3 7 

 R2   3r1  r2     R3  2r1  r3  1  R2  13 r2     R3   1 r3  5  

2

 R1  12 r1 

1 1  32 0 2    0 3  2 7  3  0  11 7  2 2 

 R2  2r1  r2     R3  3r1  r3 

1   0  0 1   0   0

9  5 31  13  1  13  R3  r2  r3  12 12   0 65 65   2 9  4 5 31  65 R3  12 r3 1  13 13   0 1 1  6 7 0 13 13  5 31   13 13 1  R1  4r2  r1   0 1 1  0 0 1 5  R3  13 r3  r2     0 1 2  R1   6 r3  r1   13   0 1 1 4

1  1  23 0 2     2 2 1 7   3  4 3 7   

1 2

 32

 11 2

3 2

1  23

0

 76

1

 23

0  13 6

0   73   7 7 6   73    35  6 

7  1 0  76 6     0 1  23  73   35  1 13   0 0

 R2  13 r2   R1   12 r2  r1     R3  11 r2  r3    2

 R3   136 r3 

56  1 0 0 13  R1  76 r3  r1    7     0 1 0  13   R2  2 r3  r2    35 3    0 0 1 13   56 7 35 The solution is x  , y   , z  or 13 13 13  56 7 35   , ,  .  13 13 13 

The solution is x  1, y  2, z  1 or (1, 2,  1) .

 2 x  y  3z  0  52.  2 x  2 y  z  7  3x  4 y  3z  7 

Write the augmented matrix:

1165

Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities

 2x  2 y  2z  2  53. 2 x  3 y  z  2  3x  2 y 0  Write the augmented matrix: 2  2  2 2   3 1 2 2 3 0 0 2    1 1 1 1     2 3 1 2  R1  12 r1   3 2 0 0    1 1 1 1    R2   2r1  r2   0 5 3 0    R3  3r1  r3   0 5 3 3    1 1 1 1    0 5 3 0  R3  r2  r3   0 0 0 3  

There is no solution. The system is inconsistent.  2x  3 y  z  0  54.  x  2 y  z  5  3x  4 y  z  1 

Write the augmented matrix:  2 3 1 0    2 1 5  1  3  4 1 1    1  2 1 5  Interchange      2 3 1 0   r and  r  1 2   3  4 1 1    1  2 1 5  R2   2r1  r2     0 1 1 10   R  3r  r  1 3   3 0  16 2 2    1  2 1 5    0 1 1 10   R3   2r2  r3  0  0 0  4  There is no solution. The system is inconsistent.  x  y  z   1  55.   x  2 y  3 z   4  3x  2 y  7 z  0  Write the augmented matrix:

 1 1 1 1   2 3  4   1  3  2 7 0    1 1 1 1     1 2 3  4   R1  r1   3  2 7 0    1 1 1 1   R  r r   0 1  4 3  2 1 2  R  3r1  r3  0 1  4 3  3    1 0 5  2    R  r r   0 1  4 3  1 2 1  R   r2  r3  0 0 0 0   3  The matrix in the last step represents the system  x  5z   2  x  5z  2    y  4 z  3 or, equivalently,  y  4 z  3  0  0 00   The solution is x  5 z  2 , y  4 z  3 , z is any

real number or {( x, y, z ) | x  5 z  2, y  4 z  3, z is any real number}.  2x  3y  z  0  56. 3x  2 y  2 z  2  x  5 y  3z  2  Write the augmented matrix:  2 3 1 0     3 2 2 2  1 5 3 2  

 1 5 3 2     3 2 2 2  2 3 1 0    1 5 3 2     0 13 7  4   0 13 7  4   

 Interchange     r1 and r3   R2  3r1  r2     R3   2r1  r3 

 1 5 3 2    R3   r2  r3  7 4    0 1 13   13 1 R2   13 r2     0 0 0 0 1 0 4 6  13 13   7 4   0 1 13  R1  5 r2  r1  13   0 0 0 0  The matrix in the last step represents the system

1166 Copyright © 2020 Pearson Education, Inc.


Section 11.2: Systems of Linear Equations: Matrices

 3  2 2 6    7 3 2 1  2 3 4 0     1  2 2 2 3 3     7 3 2 1    2 3 4 0 

4 6   x  13 z  13  y  7 z  4  13 13  0  0  or, equivalently, 4 6   x   13 z  13  y   7 z  4  13 13  0 0  

1  2 3  5   0 3  0  5 3 

4 6 7 4 z , y  z , 13 13 13 13  4 6 z is any real number or ( x, y, z ) x   z  , 13 13 

The solution is x  

y

Write the augmented matrix:  2 2 3 6    4 3 2 0   2 3 7 1  

3  1 1 3 2     0 1  4 12    7  0 1  4 

 R2   4r1  r2     R3  2r1  r3 

 R2   7 r1  r2     R3   2r1  r3 

 x y z  6  59. 3 x  2 y  z  5  x  3 y  2 z  14  Write the augmented matrix: 1 1 1 6    1 5 3  2 3  2 14   1

 2 x  2 y  3z  6  57.  4 x  3 y  2 z  0  2 x  3 y  7 z  1 

 R1  12 r1 

2  15   4 

2 1  2 2  3 3  5  83 15  0  R3  r2  r3  3   0 0 19  0 There is no solution. The system is inconsistent.

7 4  z  , z is any real number  . 13 13 

 1 1 3 3 2     4 3 2 0      2 3 7 1

2 3  83 8 3

 R1  13 r1 

 1 1 1 6     0 5 4  23 8  0 2 1

1 0  5 9  2    R1  r2  r1    0 1  4 12    R3  r2  r3     0 19   0 0  There is no solution. The system is inconsistent.

 1 1 1  4  0 1  5   0 2 1

6  23 5   8

1 0  1 5  4   0 1 5  3  0 0 5

7 5 23  5   65 

7 1 0  1 5 5  23  4    0 1 5 5   0 0 1  2

 R2   3r1  r2     R3   r1  r3 

 R2   15 r2   R1   r2  r1     R3   2r2  r3 

 R3  53 r3 

1 0 0 1  R1  15 r3  r1       0 1 0 3  R2  4 r3  r2   0 0 1  2  5   The solution is x  1, y  3, z   2 , or (1, 3, 2) .

3x  2 y  2 z  6  58. 7 x  3 y  2 z  1 2 x  3 y  4 z  0  Write the augmented matrix:

1167

Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities

 x  y  z  4  60.  2 x  3 y  4 z  15 5 x  y  2 z  12 

Write the augmented matrix:  1 1 1  4   4 15  2 3 5 1  2 12  

 1 0  1  13  4 4  3 1    0 1 8 8   11  0 0  11  4 4  1 0  1  13  4 4  3 1  0 1  8 8   0 0 1 1

 1 1 1  4      0 1 2 7   0 6 7 32   

 1 0 0 3   1  0 1 0 2   0 0 1 1

 1 1 1  4   7  0 1  2    0 6 7 32   1 0 1 3   7  0 1  2 0 0 5 10    1 0 1 3   7  0 1  2 0 0 1  2  

 R2   2r1  r2     R3  5r1  r3 

 R2  r2 

 R1   2r2  r1     R3   6r2  r3 

 R3   114 r3   R1  14 r3  r1     R2  3 r3  r2  8    

1 2

1 2

 

The solution is x  3, y  , z  1 or  3, , 1 .  x  4 y  3z   8 

 R1  r2  r1     R3   6r2  r3 

 R3  15 r3 

1 0 0 1    R1  r3  r1  3  0 1 0    R2  2r3  r2  0 0 1  2    The solution is x  1, y  3, z   2 or (1, 3, 2) .  x  2 y  z  3  61.  2 x  4 y  z  7  2 x  2 y  3z  4 

Write the augmented matrix:  1 2 1 3   1 7   2 4  2 2 3 4    1 2 1 3    0  8 3 1 0 6 5  2  

 R2   2r1  r2     R3  2r1  r3 

 1 2 1 3   3 1  0 1  8 8   0 6 5  2 

 R2   18 r2 

62. 3x  y  3z  12  x  y  6z  1 

Write the augmented matrix:  1 4 3  8    3 1 3 12  1 1 6 1  1 4 3  8     R2   3r1  r2   0 13 12 36     R3   r1  r3  0 3 9  9    1 4 3  8    36  1  13  0 R2   13 r2 1  12 13   9 9 0 3    9 40  13 13  1 0  R1   4r2  r1   36   13  0 1  12   13   R3  3r2  r3  0 0 81 9 13 13   

 1   0 0  1   0  0 

40   13  36   13 R3  13 r 1 81 3  1 0 1 9   0 0 3   R1   9 r3  r1  13   1 0  83   R3  12 r3  r2   13   1  0 1 9 8 1 8 1  The solution is x  3, y   , z  or  3,  ,  . 3 9 3 9 

0

1168 Copyright © 2020 Pearson Education, Inc.

9 13  12 13


Section 11.2: Systems of Linear Equations: Matrices

2   3x  y  z  3  63. 2 x  y  z  1  8  4x  2 y  3  Write the augmented matrix:  3 1 1 2  3   2 1 1 1  8  4 2 0 3 

1 1 0 1     2 1 1 1  1 2 1 8  3 

1 1  1 2 3 3 9  1 1   2 1  8 0 3  4 2 

 R1  13 r1 

1 1 3  5   0 3  2 0 3 

 R2   2r1  r2     R3   4r1  r3 

 13 5 3 4 3

2 9 5 9  16  9



2 1 1  1 3 3 9  1   0 1 1  3    16  4  0 23 3 9   1 1 0 0 3  1    0 1 1 3   2 0 0 2 1 1 0 0 3  1    0 1 1 3   0 0 1 1

1 0 0 1 3  2   0 1 0 3    0 0 1 1

 R2   53 r2   R1   13 r2  r1     R3   2 r2  r3  3  

1 1 0 1      0 3 1 1 0 1 1 5  3  

 R2  2r1  r2     R3  r1  r3 

1 1 0 1     0 1 1 5  3    0 3 1 1

 Interchange     r2 and r3 

1   0  0 1   0  0

1 0 1  1 1 5 3  0 4 4 1 0 1  1 1 5 3  0 1 1

1   0  0 1   0  0

1 0 1  1 0 2 3  0 1 1 0 0 1 3  1 0 2 3  0 1 1

 R3  3r2  r3 

 R3  14 r3   R2  r2  r3 

 R1  r1  r2 

1 2 1 2  The solution is x  , y  , z  1 or  , , 1 . 3 3 3 3 

 R3  12 r3 

 x y z w 4  2x  y  z  0  65.  3x  2 y  z  w  6  x  2 y  2 z  2 w  1 Write the augmented matrix: 1 1 1 1 4   1 0 0  2 1 3 2 1 1 6     1  2  2 2 1

 R2  r3  r2 

1 2 1 2  The solution is x  , y  , z  1 or  , , 1 . 3 3 3 3   x  y 1  64. 2 x  y  z  1  8  x  2y  z  3 Write the augmented matrix:

1 1 1 1 4   0 3 1  2  8   0 1  2  4  6     0 3 3 1 5

1169

Copyright © 2020 Pearson Education, Inc.

 R2   2r1  r2     R3   3r1  r3  R  r  r   4 1 4 


Chapter 11: Systems of Equations and Inequalities

1 1 1 1 4   0 1  2  4  6    0 3 1  2  8    0 3 3 1 5

 Interchange     r2 and r3 

1  0  0  0

1 3

4  2 1 4 1 1 3  2   3 0 4 7

 R2  r1  r2     R3   2r1  r3     R4  2 r1  r4 

1 1 1 1 4   0 6 1 2 4   0 3 1  2  8    0 3 3 1 5

 R2  r2 

1  0  0  0

1 4  1 1 3  2  3 2 1 4  3 0 4 7

 Interchange     r2 and r3 

1  0  0  0

0 1 3  2   6 1 2 4 0 5 10 10   0 3 13 13

 R1   r2  r1     R3  3 r2  r3   R  3r  r   4 2 4

1  0  0  0

6 4  1 1 3  2  0 5 10 10   0 3 13 13

 R1   r2  r1     R3  3 r2  r3   R  3 r  r   4 2 4

1  0  0  0

0 1 3  2   6 1 2 4 0 1 2 2  0 3 13 13

 R3  15 r3 

1  0  0  0

6  1 1  2 0 5 10 10   0 0 35 35

 R4  3 r3  5r4 

1  0  0  0

0 0 1 0   1 0 0 2 0 1 2 2  0 0 7 7 0 0 1 0   1 0 0 2 0 1 2 2  0 0 1 1

1  0  0  0

 R1  r3  r1     R2   2 r3  r2   R  3 r  r  3 4   4

 R4  17 r4 

 1 0 0 0 1    0 1 0 0 2   R1  r4  r1   0 0 1 0 0   R3   2 r4  r3     0 0 0 1 1 The solution is x  1, y  2, z  0, w  1 or (1, 2, 0, 1).  x y z w 4  x  2 y  z  0  66.   2x  3 y  z  w  6  2 x  y  2 z  2w  1 Write the augmented matrix:  1 1 1 1 4   1 0 0  1 2  2 3 1 1 6      2 1  2 2 1

1

0

0

1

1

1

2

2

4 3

1 0 2 4 6    R4  15 r3  0 1 1 3  2      R4   1 r4  0 0 1 2 2 35     0 0 0 1 1 Write the matrix as the corresponding system:  x  2 z  4w  6  y  z  3w  2   z  2w  2   w 1 Substitute and solve: z  2(1)  2

z2 2 z0 y  0  3(1)  2 y  3  2 y 1 x  2(0)  4(1)  6 x04  6 x2 The solution is x  2 , y  1 , z  0 , w  1 or (2, 1, 0, 1).

1170 Copyright © 2020 Pearson Education, Inc.


Section 11.2: Systems of Linear Equations: Matrices x y z 5  69.   x 3 2 y  2z  0  Write the augmented matrix: 1 1 1 5  3 2 2 0   

 x  2y  z 1  67. 2 x  y  2 z  2  3x  y  3z  3  Write the augmented matrix:  1 2 1 1    2 1 2 2   3 1 3 3    1 2 1 1    R2   2r1  r2    0 5 0 0     R3  3r1  r3   0 5 0 0     1 2 1 1     0 5 0 0   R3  r2  r3  0 0 0 0   

1 1 1 5    R2   3r1  r2    0 5 5 15 1 1 1 5  R2  15 r2    0 1 1 3 1 0 0 2    R1  r2  r1    0 1 1 3

The matrix in the last step represents the system x2  x  2 or, equivalently,      y z 3  y  z 3 Thus, the solution is x  2 , y  z  3 , z is any real number or {( x, y, z ) | x  2, y  z  3, z is any real number}.

The matrix in the last step represents the system x  2y  z  1    5y  0  00 

 2x  y  z  4 70.   x  y  3z  1 Write the augmented matrix:  2 1 1 4     1 1 3 1 

Substitute and solve: 5 y  0 x  2(0)  z  1 y0 z  1 x The solution is y  0, z  1  x, x is any real number or {( x, y, z ) | y  0, z  1  x, x is any real number}.

 1 1 3 1    2 1 1 4  1 1 3 1   0 3 5 6  1 1 3 1   5  3 2 0 1

 x  2y  z  3  68. 2 x  y  2 z  6  x  3 y  3z  4  Write the augmented matrix:  1 2 1 3    2 1 2 6   1 3 3 4     1 2 1 3  R2   2r1  r2      0 5 4 0   R  r  r  1 3   3  0 5 4 1    1 2 1 3     0 5 4 0   R3  r2  r3   0 0 0 1   There is no solution. The system is inconsistent.

 interchange   r and  r  1 2 

 R2  2r1  r2 

 R2  13 r2 

1 0  4 1  3     R1  r2  r1  5 0 1 3 2  The matrix in the last step represents the system 4 4    x  3 z  1  x  1  3 z or, equivalently,   y  5 z  2 y  2  5 z   3 3 4 5 Thus, the solution is: x  1  z , y  2  z , z 3 3

1171

Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities

 4 is any real number or ( x, y, z ) x  1  z , 3  5  y  2  z , z is any real number  . 3  2 x  3 y  z  3  x yz 0  71.   x  y  z  0  x  y  3 z  5 Write the augmented matrix:  2 3 1 3     1 1 1 0   1 1 1 0     1 1 3 5  1 1 1 0   2 3 1 3 interchange       1 1 1 0   r1 and r2   1 1 3 5  

1 1 1 0   0 5 1 3   R2  2r1  r2    R3  r1  r3      0 0 0 0     0 2 4 5   R4  r1  r4    1 1 1 0    0 5 1 3  interchange    0 2 4 5   r3 and r4     0 0 0 0  1 1 1 0    0 1 7 7     R2  2r3  r2  0 2 4 5    0 0 0 0  1 0 8 7    0 1 7 7   R1  r2  r1    0 0 18 19   R3  2r2  r3    0 0 0 0 

0 8 7   1 7 7  R3 = 181 r3  0 1 19 18  0 0 0 The matrix in the last step represents the system 1  0  0  0

 x  8 z  7  y  7 z  7   z  19  18 Substitute and solve:  19  y  7   7  18  7 y 18

 19  x  8    7  18  13 x 9 13 7 19 Thus, the solution is x  , y , z or 9 18 18  13 7 19   , , .  9 18 18 

 x  3y  z  1 2 x  y  4 z  0  72.   x  3 y  2z  1  x  2y  5 Write the augmented matrix:  1 3 1 1     2 1 4 0   1 3 2 1     1 2 0 5  1 3 1 1     R2  2r1  r2  0 5 6 2      R  r1  r2  0 0 1 0   3    R4  r1  r2  0 1 1 4  1 3 1 1    0 1 1 4    0 0 1 0    0 5 6 2  1 0 2 13    0 1 1 4    0 0 1 0    0 0 1 22  1  0   0  0

0 1 0 0

0 13   0 4  1 0   0 22 

 interchange     r2 and r4 

 R1  3r2  r1     R4  5r2  r4 

 R1  2r3  r1     R2  r3  r2  R  r r   4 3 4 

There is no solution. The system is inconsistent.

1172 Copyright © 2020 Pearson Education, Inc.


Section 11.2: Systems of Linear Equations: Matrices

4 x  y  5   74. 2 x  y  z  w  5  zw4  Write the augmented matrix: 4 1 0 0 5   2 1 1 1 5     0 0 1 1 4 

 4x  y  z  w  4 73.   x  y  2 z  3w  3 Write the augmented matrix:  4 1 1 1 4    1 1 2 3 3  1 1 2 3 3      4 1 1 1 4 

 interchange     r1 and r2 

1 1 2 3 3   R2  4r1  r2   0 5 7 13 8 The matrix in the last step represents the system  x  y  2 z  3w  3   5 y  7 z  13w  8 The second equation yields 5 y  7 z  13w  8 5 y  7 z  13w  8 7 13 8 y  z  w 5 5 5 The first equation yields x  y  2 z  3w  3 x  3  y  2 z  3w Substituting for y: 13   8 7 x  3     z  w   2 z  3w 5 5 5   3 2 7 x   z  w 5 5 5 3 2 7 Thus, the solution is x   z  w  , 5 5 5 7 13 8 y  z  w  , z and w are any real numbers or 5 5 5  3 2 7 7 13 8 ( x, y, z, w) x   z  w  , y  z  w  , 5 5 5 5 5 5 

1  1 0 0  5  4 4     2 1 1 1 5   0 0 1 1 4  1  1 0 0  5  4 4    0  12 1 1 152  0 0 1 1 4    1   0 0 1   0 0 1   0  0

 R1   14 r1   R2  2r1  r2 

0  54   1 2 2 15  R2  2r2  0 1 1 4  0  12 12 5   1 2 2 15  R1  14 r2  r1  0 1 1 4  0 0 1 3   R1  12 r3  r1  1 0 4 7      R2  2r3  r2  0 1 1 4  The matrix in the last step represents the system  x  3  w  x  w  3   or, equivalently, 4 7 y w     y  7  4 w   z  4  w  z  w  4 The solution is x  3  w , y  7  4 w , z  4  w ,  14

0

w is any real number or ( x, y, z , w) | x  3  w, y  7  4 w, z  4  w, w is any real number}

 z and w are any real numbers  . 

1173

Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities 75. Each of the points must satisfy the equation y  ax 2  bx  c . (1, 2) : 2  abc (2, 7) :  7  4a  2b  c  3  4a  2b  c (2, 3) : Set up a matrix and solve: 1 1 1 2    4  2 1 7   4 2 1 3 1 1 1 2    R2   4r1  r2   0  6 3 15  R   4r  r  1 3   3 0  2 3 11 1 1 1 2   5 1 R2   16 r2  0 1 2 2   0  2 3 11 1 1 0  12  2    R1   r2  r1  5 1   0 1   2 2    R3  2 r2  r3  0 0  2  6

1   0  0 1   0 0

0 1

1 2 1 2

0 1 0 0 1 0 0 1

 12   5  R3   12 r3   2  3 2   R1   12 r3  r1    1   R2   1 r3  r2    2 3 

The solution is a   2, b  1, c  3 ; so the equation is y  2 x 2  x  3 . 76. Each of the points must satisfy the equation y  ax 2  bx  c . 1  a  b  c (1,  1) :  1  9a  3b  c (3,  1) : (– 2,14) : 14  4a  2b  c Set up a matrix and solve: 1 1 1 1   3 1 1 9  4  2 1 14    1 1 1 1    0  6  8 8   0  6 3 18

 R2   9r1  r2   R   4r  r  1 3  3

1   0  0 1   0  0 

1  1 43  43   0 5 10   1 1

0  13 1 0

4 3

1

1 3 4 3 

2 

1  R2   6 r2     R3   r2  r3 

 R1   r2  r1    1  R3  5 r3 

1 0 0 1  R1  13 r3  r1   0 1 0  4       R1   4 r3  r2  0 0 1  3   2  The solution is a  1, b  – 4, c  2 ; so the

equation is y  x 2  4 x  2 . 77. Each of the points must satisfy the equation f ( x)  ax3  bx 2  cx  d . f (3)  112 : 27 a  9b  3c  d  112 f (1)  2 : a  b  c  d  2 f (1)  4 : abcd  4 8a  4b  2c  d  13 f (2)  13 : Set up a matrix and solve:   27 9 3 1 112     2  1 1 1 1  1 1 1 1 4   13  8 4 2 1  1 1 1 1 4    2   Interchange    1 1 1 1    27 9 3 1 112   r3 and r1    13  8 4 2 1 1 1 1 1 4     R2  r1  r2 0 0 2 2 2   R  27 r  r   1 3  0 36 24 28  4   3    R4   8 r1  r4  0  4  6 7 19  1 1 1 1 4   0 0 1 1 1  0 36 24 28  4    0  4  6 7 19 

 R2  12 r2 

1  0  0  0

 R1   r2  r1     R3  36 r2  r3   R  4r  r  2 4  4 

3  1 1 1 0 24  8  40   0  6 3 15 0

1174 Copyright © 2020 Pearson Education, Inc.

1 0

0


Section 11.2: Systems of Linear Equations: Matrices

1  0   0 0

3  1 1 1 5 5 0 1  3  3 0  6 3 15

0

1  0  0  0

0 0 1 0

1  0  0  0

0

1 0

1 3

 R3  241 r3 

1  0   0 0

14  3

1  R1   r3  r1    5 1 R  6 r3  r4  0 1  3  3  4  0 0 5  25 1 14  1 0 0 3 3  0 1 0 1 1 R4   15 r4   5 1   0 0 1 3 3   0 0 0 5 1   1 0 0 0  1 3      R1   3 r4  r1  4  0 0 0 1   R  r  r   2 4 2 0 0 1 0 0    1    R3  3 r4  r3  5 0 0 0 1 The solution is a  3, b   4, c  0, d  5 ; so the 1

 1 0  0  0

 1 0  0  0 1  0  0  0

equation is f ( x)  3 x 3  4 x 2  5 .

1 1 1 1 4 2 9 3

5 1  3 1 1 10   1 15

 R2  r1  r2    R 8 r r   1 3  3   R   27 r  r  1 4  4

1 5 1 1 1   0 0 1 1 4   0 12 6 9 30    0 18  24  26 120 

 R2  12 r2 

0 1 0 0 0 0 1 0 0 1 0 0

 4 1 4   R1   r3  r1     R  24 r3  r4   12 3  4   20 120   1 4 2 1 4 1 r R4   20  4  12 3  1 6 1 2

1  1 0 0  2 0 1 0 0  0 0 1 6 0 0 0

 R1   1 r4  r1  2    R2   r4  r2     R3  1 r4  r3  2  

79. Let x = the number of servings of salmon steak. Let y = the number of servings of baked eggs. Let z = the number of servings of acorn squash. Protein equation: 30 x  15 y  3 z  78 Carbohydrate equation: 20 x  2 y  25 z  59 Vitamin A equation: 2 x  20 y  32 z  75 Set up a matrix and solve:  30 15 3 78    20 2 25 59   2 20 32 75

 Interchange     r3 and r1 

1 5 1 1 1   0 0 8 2 2  0 12 6 9 30    0 18  24  26 120 

1 0

 R3  16 r3 

equation is f ( x)  x3  2 x 2  6 .

4  2 1 10   3 1 1 1 5 1 1 1  9 3 1 15

 1  1    8   27

0 0

 R1   r2  r1     R3  12 r2  r3   R  18 r  r   4 2 4 

The solution is a  1, b   2, c  0, d  6 ; so the

78. Each of the points must satisfy the equation f ( x)  ax3  bx 2  cx  d . f ( 2)  10 :  8a  4b  2c  d  10 f (1)  3 : abcd  3 f (1)  5 : abcd  5 27a  9b  3c  d  15 f (3)  15 : Set up a matrix and solve:  8   1  1   27

1 0 1  0 1 1 4 0 6 3 18  0  24  8  48 0 0 1 1  0 1 1 4  1 0 3 1 2 0  24  8  48 0

 2 20 32 75     20 2 25 59   30 15 3 78

 Interchange     r3 and r1 

 1 10 16 37.5   59   R1  12 r1    20 2 25  30 15 3 78 1 10 16 37.5    R2  20r1  r2   0 198 295 691   0 285 477 1047   R3  30r1  r3 

1175

Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities

1 10 16 37.5    0 198 295 691 3457 3457   0  66  66  0 1 10 16 37.5    0 198 295 691 0 0 1 1  Substitute z  1 and solve: 198 y  295(1)   691 198 y  396 y2

 R3   9566 r2  r3  66 r3   R3   3457

x  10(2)  16(1)  37.5 x  36  37.5 x  1.5

The dietitian should serve 1.5 servings of salmon steak, 2 servings of baked eggs, and 1 serving of acorn squash. 80. Let x = the number of servings of pork chops. Let y = the number of servings of corn on the cob. Let z = the number of servings of 2% milk. Protein equation: 23x  3 y  9 z  47 Carbohydrate equation: 16 y  13 z  58 Calcium equation: 10 x  10 y  300 z  630 Set up a matrix and solve:  23 3 9 47    0 16 13 58  10 10 300 630   1 1 30 63     0 16 13 58  23 3 9 47  1 30 63 1   13 29   0 1 16 8   0  20  681 1402  467 475  1 0 16 8   13 29   0 1 8  16  0 0  2659 1402    4 1   0  0 1  0 0

0 1

467 16 13 16

0

1

1 1 0 2  0 1 2  0 0

475  8  29  8 

 Interchange     1 r3 and r1   10   R3   23r1  r3     R2  1 r2  16    R1   r2  r1     R3  20r2  r3 

4 r  R3   2659 3

2   R1   467 r3  r1  16    R   13 r  r  2 3 2 16  

The dietitian should provide 1 serving of pork chops, 2 servings of corn on the cob, and 2 servings of 2% milk. 81. Let x = the amount invested in Treasury bills. Let y = the amount invested in Treasury bonds. Let z = the amount invested in corporate bonds. Total investment equation: x  y  z  10, 000 Annual income equation: 0.06 x  0.07 y  0.08 z  680 Condition on investment equation: z  0.5 x x  2z  0 Set up a matrix and solve:  1 1 1 10,000    680  0.06 0.07 0.08  1 0 2 0  

1 1 1 10,000     0 0.01 0.02 80   3 10,000  1 0

 R2   0.06 r1  r2     R3   r1  r3 

 1 1 1 10,000     0 1 2 8000   10,000  0 1 3 

 R2  100 r2 

 1 0 1 2000    8000   0 1 2 0 0 1  2000   

 R1   r2  r1     R3  r2  r3 

 1 0 1 2000     0 1 2 8000  0 0 1 2000     1 0 0 4000     0 1 0 4000  0 0 1 2000   

 R3   r3   R1  r3  r1     R2   2r3  r2 

Carletta should invest $4000 in Treasury bills, $4000 in Treasury bonds, and $2000 in corporate bonds. 82. Let x = the fixed delivery charge; let y = the cost of each tree, and let z = the hourly labor charge. 1st subdivision: x  250 y  166 z  7520 2nd subdivision: x  200 y  124 z  5945 3rd subdivision: x  300 y  200 z  8985 Set up a matrix and solve: 1 250 166 7520    1 200 124 5945 1 300 200 8985  

1176 Copyright © 2020 Pearson Education, Inc.


Section 11.2: Systems of Linear Equations: Matrices

1 0 4 48   0 1 2 15 0 0 1 10 

 1 250 166 7520     R2  r1  r2   0 50 42 1575   0 50 34 1465  R3  r3  r1     1 250 166 7520  1    R2  50 r2   0 1 0.84 31.5  R  1 r  0 1 0.68 29.3  3 50 3    1 0 44 355    0 1 0.84 31.5 0 0 0.18 2.2    1 0 44 355    0 1 0.84 31.5 0 0 1 13.75  1 0 0 250     0 1 0 19.95 0 0 1 13.75  

1 0 0 8   R1  4r3  r1    0 1 0 5     R2  2r3  r2  0 0 1 10  The company should produce 8 Deltas, 5 Betas, and 10 Sigmas.

 R1  r1  250 r2     R3  r2  r3 

84. Let x = the number of cases of orange juice produced; let y = the number of cases of grapefruit juice produced; and let z = the number of cases of tomato juice produced. Sterilizing equation: 9 x  10 y  12 z  398 Filling equation: 6 x  4 y  4 z  164 Labeling equation: x  2 y  z  58 Set up a matrix and solve: 9 10 12 398   6 4 4 164   1 2 1 58    1 2 1 58    Interchange   6 4 4 164     9 10 12 398  r1 and r3   1 2 58 1    R2   6 r1  r2   0  8  2 184    0  8   R3   9r1  r3  3 124    1 2 1 58   23 R2   18 r2  0 1 14   0  8 3 124 

 R3  0.161 r3   R1  r1  44r3     R2  r2  0.84 r3 

The delivery charge is $250 per job, the cost for each tree is $19.95, and the hourly labor charge is $13.75. 83. Let x = the number of Deltas produced. Let y = the number of Betas produced. Let z = the number of Sigmas produced. Painting equation: 10 x  16 y  8 z  240 Drying equation: 3 x  5 y  2 z  69 Polishing equation: 2 x  3 y  z  41 Set up a matrix and solve: 10 16 8 240   3 5 2 69     2 3 1 41  1   3  2 1  0 0

1 2 33 5 2 69  3 1 41 1 2 33  2 4 30  1 3 25

 R1  3r2  r1 

 1 0 1 12  2    0 1 14 23   0 0 5 60   1 0 1 12  2    0 1 14 23   0 0 1 12   1 0 0 6    0 1 0 20  0 0 1 12   

 R2  3r1  r2     R3  2r1  r3 

1 1 2 33   0 1 2 15 0 1 3 25

 R2  12 r2 

1 0 4 48   0 1 2 15  0 0 1 10 

 R1  r1  r2     R3  r3  r2 

 R3  r3 

 R1   2r2  r1     R3  8 r2  r3 

 R3  15 r3   R1   12 r3  r1    1    R2   4 r3  r2 

The company should prepare 6 cases of orange juice, 20 cases of grapefruit juice, and 12 cases of tomato juice. 1177

Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities 85. Rewrite the system to set up the matrix and solve: I I I  I  I  I  I  I  0  200 I  40  80 I  0  200 I  80 I  40     360  20 I  80 I  40  0   80 I  20 I  400  80  70 I  200 I  0  200 I  70 I  80 1

2

1

4

3

1

2

2

3

1

2

4

3

1

4

2

2

3

1

4

 0 1 1 1 1   0 0 40   200 80  0 80 20 0 400    0 0 70 80   200 1 0 1 1 1   0 280 200 200 40   0 80 20 0 400    80  0 200 200 270 1 0 1 1 1   5 5 1 0 7 7 1  7  0 80 20 0 400    80  0 200 200 270 2  27  17  1 0 7  5 1   57 7 7  0 1 0 0  540 7 400 7  2720 7    400 890 360 7 7 0 0  7  27  57

1   0 0  0

7 1 20 0 1  27 400 890 0  7 7

1   0 0  0

0 0 27 5 27 1 0 20  0 1 27 2290 0 0 27

0

2

7

5

2

 17  1  7 136  27  360 7

35

27 

101

27 

136 9160

  27  27

 R2  200r1  r2     R4  200 r1  r4 

1   r2   R2 = 280  

 R1  r1  r2    R  r  r 80 2   3 3  R  r  200r   4 4 2

1   0 0  0

2

0 0 27 5 27 1 0 20  0 1 27 0 0 1

35

27 

101

27 

27 R4  2290 r4   4  1 0 0 0 1  R  r  2 r  1 1 27 4    0 1 0 0 3     R2  r2  5 27 r4   0 0 1 0 8      R3  r3  20 27 r4  0 0 0 1 4  The solution is I1  1 , I 2  3 , I 3  8 , I 4  4 . 136

27

86. Rewrite the system to set up the matrix and solve: I1  I 3  I 2   I1  I 2  I 3  0      6 I1  3I 3   24 24  6 I1  3I 3  0  12  24  6 I  6 I  0   6 I  6 I  36 1 2 1 2   0  1 1 1  6  0  3  24     6  6 0 36  0  1 1 1    0  6 9  24   0 12  6 36  0  1 1 1  3  0 1 4  2  0 12  6 36 

 R3   5407 r3 

 1 0 12 4      0 1 32 4   0 0 12 12   

 R1  2 7 r3  r1    5  R2  7 r3  r2   R  400 r  r  4 7 3  4

 1 0 12 4      0 1 32 4  0 0 1 1   1 0 0 3.5    0 1 0 2.5 0 0 1 1

 R2  6r1  r2     R3  6 r1  r3 

 R2   16 r2 

 R1  r2  r1     R3  12 r2  r3 

 R3  121 r3   R1   12 r3  r1     R2   3 r3  r2    2

The solution is I1  3.5, I 2  2.5, I 3  1 .

1178 Copyright © 2020 Pearson Education, Inc.


Section 11.2: Systems of Linear Equations: Matrices 87. Let x = the amount invested in Treasury bills. Let y = the amount invested in corporate bonds. Let z = the amount invested in junk bonds. a.

1 1 25, 000   1    0.07 0.09 0.11 2000   1 1 1 25, 000     R2  100r2   7 9 11 200, 000  1 1 1 25, 000     R2  r2  7 r1   0 2 4 25, 000  1 1 1 25, 000  1    R2  2 r2   0 1 2 12,500  1 0 1 12,500     R1  r1  r2   0 1 2 12,500  The matrix in the last step represents the  x  z  12,500 system   y  2 z  12,500 Thus, the solution is x  z  12,500 , y  2 z  12,500 , z is any real number.

Total investment equation: x  y  z  20, 000 Annual income equation: 0.07 x  0.09 y  0.11z  2000 Set up a matrix and solve: 1 1 20, 000   1    0.07 0.09 0.11 2000  1  7 1  0

1 20, 000   9 11 200, 000  1

1 1 20, 000   2 4 60, 000  1 1 1 20, 000     0 1 2 30, 000 

 R2  100r2   R2  r2  7r1 

 R2  12 r2 

1 0 1 10, 000     R1  r1  r2  0 1 2 30, 000  The matrix in the last step represents the  x  z  10, 000 system   y  2 z  30, 000 Therefore the solution is x  10, 000  z , y  30, 000  2 z , z is any real number.

Possible investment strategies:

Possible investment strategies:

Amount Invested At

Amount Invested At

7%

9%

11%

0

10,000

10,000

1000

8000

11,000

2000

6000

12,000

3000

4000

13,000

4000

2000

14,000

5000

0

15,000

c.

7%

9%

11%

12,500

12,500

0

14,500

8500

2000

16,500

4500

4000

18,750

0

6250

Total investment equation: x  y  z  30, 000 Annual income equation: 0.07 x  0.09 y  0.11z  2000 Set up a matrix and solve: 1 1 30, 000   1   0.07 0.09 0.11 2000  1  7 1  0 1  0

b. Total investment equation: x  y  z  25, 000 Annual income equation: 0.07 x  0.09 y  0.11z  2000 Set up a matrix and solve:

1 9 1 2 1 1

1 30, 000    R2  100r2  11 200, 000  1 30, 000    R1  r2  7r1  4 10, 000  1 30, 000  1   R2  2 r2  2 5000 

1 0 1 35, 000     R1  r1  r2  0 1 2 5000  The matrix in the last step represents the

1179

Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities y  50 I  87,500  2 z

 x  z  35, 000 system   y  2 z  5000 Thus, the solution is x  z  35, 000 , y  2 z  5000 , z is any real number. However, y and z cannot be negative. From y  2 z  5000 , we must have y  z  0.

 50 1500   87,500  2 z  12,500  2 z z is any real number. Since y and z cannot be negative, we must have y  z  0. Investing all of the money at 7% yields $1750, which is more than the $1500 needed.

One possible investment strategy Amount Invested At

b.

7%

9%

11%

30,000

0

0

 112,500  50  2000   z  12,500  z y  50 I  87,500  2 z

This will yield ($30,000)(0.07) = $2100, which is more than the required income.

 50  2000   87,500  2 z  12,500  2 z z is any real number.

d. Answers will vary. 88. Let x = the amount invested in Treasury bills. Let y = the amount invested in corporate bonds. Let z = the amount invested in junk bonds. Let I  income Total investment equation: x  y  z  25, 000 Annual income equation: 0.07 x  0.09 y  0.11z  I Set up a matrix and solve: 1 1 25, 000   1   0.07 0.09 0.11 I   1  7 1  0 1  0

1 9 1 2 1 1

1 25, 000    R2  100r2  11 100 I  1 25, 000    R1  r2  7 r1  4 100 I  175, 000  1 25, 000  1   R2  2 r2  2 50 I  87,500 

1 0 1 112,500  50 I     R1  r1  r2   0 1 2 50 I  87,500  The matrix in the last step represents the system  x  z  112,500  50 I   y  2 z  50 I  87,500 Thus, the solution is x  112,500  50 I  z , y  50 I  87,500  2 z , z is any real number.

a.

I  1500 x  112,500  50 I  z

I  2000 x  112,500  50T  z

Possible investment strategies: Amount Invested At

c.

7%

9%

11%

12,500 15,500 18,750

12,500 6500 0

0 3000 6250

I  2500 x  112,500  50T  z  112,500  50  2500   z  12,500  z y  50 I  87,500  2 z  50  2500   87,500  2 z  37,500  2 z z is any real number.

Possible investment strategies: Amount invested at

7%

9%

11%

0 1000 6250

12,500 10,500 0

12,500 13,500 18,750

d. Answers will vary.

 112,500  50 1500   z  37,500  z

1180 Copyright © 2020 Pearson Education, Inc.


Section 11.2: Systems of Linear Equations: Matrices 89. Let x = the amount of supplement 1. Let y = the amount of supplement 2. Let z = the amount of supplement 3. 0.20 x  0.40 y  0.30 z  40 Vitamin C  0.30 x  0.20 y  0.50 z  30 Vitamin D Multiplying each equation by 10 yields 2 x  4 y  3z  400  3x  2 y  5 z  300

90. Let x = the amount of powder 1. Let y = the amount of powder 2. Let z = the amount of powder 3. 0.20 x  0.40 y  0.30 z  12 Vitamin B12  0.30 x  0.20 y  0.40 z  12 Vitamin E Multiplying each equation by 10 yields 2 x  4 y  3 z  120  3x  2 y  4 z  120

Set up a matrix and solve:  2 4 3 120     3 2 4 120 

Set up a matrix and solve:  2 4 3 400   3 2 5 300    1 2 32 200    3 2 5 300 

3 120  2 4    0 4 0.5 60   2 0 2.5 60     0 4 0.5 60 

 R1  12 r1 

1 2 32 200    R2  r2  3r1   0 4 12 300  1 2 3 200  2    R2   14 r2  1 0 1  8 75  1 0 7 50  4   1 0 1  75 8 

Possible combinations:

The matrix in the last step represents the system  x  74 z  50  1  y  8 z  75 7 z, 4

1 y  75  z , z is any real number. 8

Possible combinations:

Powder 1

Powder 2

Powder 3

30 units

15 units

0 units

20 units

14 units

8 units

10 units

13 units

16 units

0 units

12 units

24 units

91 – 93. Answers will vary.

Supplement 1

Supplement 2

Supplement 3

50mg

75mg

0mg

36mg

76mg

8mg

22mg

77mg

16mg

8mg

78mg

24mg

 R1  r1  r2 

The matrix in the last step represents the system  2 x  2.5 z  60  4 y  0.5 z  60 Thus, the solution is x  30  1.25 z , y  15  0.125 z , z is any real number.

 R1  r1  2r2 

Therefore the solution is x  50 

 R2  r2  32 r1 

1181

Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities

x 2  3x  6  2 x

94.

x  5x  6  0 We inspect the graph of the function f ( x)  x 2  5 x  6 . y-intercept: f (0)  6 2

x-intercepts:

95.

R( x) 

x  6, x  1 The graph is below the x-axis when 1  x  6 . Since the inequality is strict, the solution set is  x | 1  x  6 or, using interval notation,

 1, 6 .

x2  5x  6  0 ( x  6)( x  1)  0

2 x2  x  1 x2  2x  1

(2 x  1)( x  1) ( x  1)( x  1)

Domain:  x x  1 . R ( x) 

p ( x)  2 x 2  x  1; q ( x)  x 2  2 x  1;

2 x2  x  1

is in lowest terms. x2  2 x  1 2  02  0  1 1   1 . Plot the point  0, 1 . The y-intercept is f (0)  2 0  20 1 1 1 The x-intercepts are the zeros of p ( x) : 1 and  . 2 2 2x  x 1 is in lowest terms. The vertical asymptotes are the zeros of q( x) : R( x)  2 x  2x  1 x  1 . Graph this asymptote with dashed lines. 2 Since n  m , the line y   2 is the horizontal asymptote. Solve to find intersection points: 1 Plot the line y  2 using dashes. Graph:

1182 Copyright © 2020 Pearson Education, Inc.


Section 11.3: Systems of Linear Equations: Determinants

96. Since any real number can be evaluated in the equation then the domain is  x | x is any real number or  ,   .

103.

f  x  

f ( x  h)  f ( x )  h

1

97. cos ( 0.75)  2.42 radians 3

4

 36e

x2  x  h 

2

2

h

2

 x  x 2  2 xh  h 2 x  x  h 2

2

h 2  1  2 xh  h    h  x 2  x  h 2

( y  5) 2 ( x  4) 2  1. 16 9

  i 5     5 5   100.  6  cos  i sin     6  e 12   12 12         36e

 x  h

2

h

b 9 3

i

 1   2   x 

1

2

99. Focus: (4, 0),(4,10); Vertices: (4,1), (4,9); Center: (4, 5); Transverse axis is parallel to the y-axis; a  4; c  5 . Find the value of b: b 2  c 2  a 2  25  16  9

Write the equation:

x   x  h

3

 18 x 4 y 5   2 x  8 x3   98.     3 9   4 27 y12  27 x y   3 y 

5 i  4   12 

1 x2

 1  h  2x  h    h  x 2  x  h 2

4

5 12

2x  h x  x  h 2

2

2x  h x  x  h 2

5 5    36  cos  i sin 3 3   1 3   36   i 2 2   i

Section 11.3

5

 18  18 3 i  36e 3 nt

101.

 r  .036  A  P  1    2700 1   12   n   $3007.44

1. ad  bc

(12)(3)

2.

5

3

3 4

3. False; If ad=bc, the the det = 0. 1

102.

1

f (b)  f (a) sin (1)  sin (1)  1  (1) ba

4. False; The solution cannot be determined. 5. False; See Thm (14)

 ( ) 2   2 2 2

6. a 7.

8.

6 4  6(3)  (1)(4)  18  4  22 1 3

8 3 4

2

 8(2)  4(3)  16  12  28

1183 Copyright © 2020 Pearson Education, Inc.

2


Chapter 11: Systems of Equations and Inequalities

9.

3 1  3(2)  4(1)   6  4  2 4 2

10.

 4 2   4(3)  (5)(2)  12  10  2 5 3

x  y  8 15.  x  y  4 D  1 1  1  1   2 1 1 Dx 

3

11.

4 2 5 5 5  3 1 1 1 4 1  2 1 1 2 2 1 2 1 2 1 2 2  3  1 ( 2)  2(5)   4 1( 2)  1(5) 

 2 1(2)  1( 1) 

 3(  8)  4( 7)  2(3)   24  28  6  10

12.

1 3 2 5 6 5 6 1 3  ( 2) 6 1 5  1 1 8 3 8 2 2 3 8 2 3  11(3)  2( 5)   3 6(3)  8(5)  2  6(2)  8(1)   1(13)  3(58)  2(4)  13  174  8  169

13.

4 1 2 0 6 0 6 1  (1) 2 6 1 0  4 1 3 4 1 4 1 3 1 3 4  4  1(4)  0(3)   1 6(4)  1(0)  2 6( 3)  1(1)   4( 4)  1(24)  2(17)  16  24  34   26

14.

3 9 4 0 0 1 4 0 3 4  (9) 1 4 1 4 3 1 8 1 8 3 8 3 1  3  4(1)  (3)(0)   9 1(1)  8(0)  4 1( 3)  8(4)   3(4)  9(1)  4(35)  12  9  140  119

8

1   8  4  12

4 1

8 Dy  1  48  4 1 4 Find the solutions by Cramer's Rule: Dy  4 D 12 x x  6 y  2 D 2 D 2 The solution is (6, 2).

x  2 y  5 16.  x y 3 D  1 2  1  2  3 1 1 Dx 

5

2

3 1

  5  6  11

5 Dy  1  35  2 1 3 Find the solutions by Cramer's Rule: Dy  2 2 D 11 11 x x  y    D D 3 3 3 3  11 2  , .  3 3

The solution is   5 x  y  13 17.  2 x  3 y  12 D

5 1  15  2  17 2 3

Dx 

13 1  39  12  51 12 3

Dy 

5 13

 60  26  34 2 12 Find the solutions by Cramer's Rule: D y 34 D 51 x x  3 y  2 D 17 D 17 The solution is (3, 2).

1184 Copyright © 2020 Pearson Education, Inc.


Section 11.3: Systems of Linear Equations: Determinants  4 x  6 y  42 21.  7 x  4 y   1

 x  3y  5 18.  2 x  3 y   8 3 D 1  3  6  9 2 3 Dx 

5

3

8 3

D 4 7

6

Dx  42 1

 15  (24)  9

4

 16  (42)  58

6 4

 168  6  174

Dy  4 42  4  (294)  290 7 1 Find the solutions by Cramer's Rule: Dy 290 D 174  3  5 x x  y 58 58 D D The solution is (3,5) .

5 Dy  1  8  10  18 2 8 Find the solutions by Cramer's Rule: Dy 18 D 9  1  2 x x  y 9 D 9 D The solution is (1, 2) .

 24 3 x 19.  x 2 y   0 

2 x  4 y  16 22.   3x  5 y   9

D

3 0

 60  6

D

2 4  10  12   22 3 5

Dx 

24 0  48  0  48 0 2

Dx 

16

1 2

16 Dy  2  18  48   66 3 9 Find the solutions by Cramer's Rule: Dy  66 D  44 x x  y 2  3 D  22 D  22 The solution is (2, 3).

3 24  0  24   24 1 0 Find the solutions by Cramer's Rule: Dy  24 D 48 8   4 x x  y 6 6 D D The solution is (8, 4) . Dy 

3x  2 y  4 23.  6 x  4 y  0

4 x  5 y   3 20.   2y  4

3 2  12  (12)  0 6 4 Since D  0 , Cramer's Rule does not apply.

5 D 4  8  0  8 0 2 Dx 

3

5

4 2

4   80  36   44 9 5

D

 6  (20)  26

 x  2 y  5 24.   4x  8 y  6

3 Dy  4  16  0  16 0 4 Find the solutions by Cramer's Rule: Dy 16 D 26 13   2 x x  y 8 4 D 8 D

D  1 2  8  8  0 4 8 Since D  0 , Cramer's Rule does not apply.

 13  The solution is   , 2  .  4 

1185

Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities  3x  2 y  0 28.  5 x  10 y  4

2x  4 y   2 25.  3 x  2 y  3 4

D 2 3 Dx 

2

 4  12  16

2 4 3

2

 4  12  8

2  6  6  12 Dy  2 3 3 Find the solutions by Cramer's Rule: Dy 12 3 D 8 1 x x   y   D 16 2 D 16 4 1 3 The solution is  ,  . 2 4  3x  3 y  3  26.  8 4 x  2 y  3

D Dx  Dy 

3 3 4 2 3 3 8 3

4

8 3

0 2  0  (8)  8 4 10

3 0  12  0  12 5 4 Find the solutions by Cramer's Rule: Dy 12 3 D 8 1 x x   y   D 40 5 D 40 10 1 3  The solution is  ,  .  5 10  Dy 

D  2 3   2  3  5 1 1

 68  2

Dx 

 8  12   4

Dy 

1 2 The solution is  ,  . 3 3

6

3

1 2

1

 6 

3 15  2 2

2 6

 1  6  5 1 1 2 Find the solutions by Cramer's Rule: 15 Dy 5 Dx  2 3 x   y  1 2 D 5 D 5 3 

 

The solution is  , 1 . 2

 2 x  3 y  1 27.  10 x  10 y  5 2 3  20  (30)  50 10 10

3 Dx  1   10  (15)  5 5 10 2 1 10  (10)  20 10 5 Find the solutions by Cramer's Rule: Dy 20 2 D 5 1 x x   y   D 50 10 D 50 5  1 2 The solution is  ,  .  10 5  Dy 

Dx 

 6  12   6

Find the solutions by Cramer's Rule: Dy  4 2 D 2 1 x x   y   D 6 3 D 6 3

D

3 2  30  (10)  40 5 10

2 x  3 y  6  29.  1  x  y  2

2

3 3

D

1  x  y  2 30.  2  x  2 y  8 1

1  1  1  2 D 2 1 2 1  4  8  4 Dx  2 8 2 1

Dy  2 2  4  (2)  6 1 8 Find the solutions by Cramer's Rule:

1186 Copyright © 2020 Pearson Education, Inc.


Section 11.3: Systems of Linear Equations: Determinants

x

Dx  4  2 D 2

y

Dy D

 x y z  6  33. 3 x  2 y  z  5  x  3 y  2 z  14 

6  3 2

The solution is (2, 3) .

1 1 1 D  3 2 1 3 2 1

 3x  5 y  3 31.  15 x  5 y  21 D

3 5  15  (75)  90 15 5

Dx 

3 5  15  (105)  120 21 5

1 1 3 1  (1) 3  2 1 2 3 2 3 1 2 1  1(4  3)  1( 6  1)  1(9  2)  1  7  11  3

3 3  63  45  18 15 21 Find the solutions by Cramer's Rule: Dy 18 1 D 120 4 x x   y   90 3 D D 90 5 Dy 

6 1 1 Dx  5  2 1 3 2 14 1  1 5 1  (1) 5  2  6 2 3 2 3 14  2 14  6(4  3)  1(10  14)  1(15  28)  6  4  13  3

4 1 The solution is  ,  .  3 5

2 x  y  1  32.  1 3  x  2 y  2 D

2 1 1

Dx  Dy 

1 2

1 1 3 2

1 2

2 1 1

3 2

1 6 Dy  3 5

1

1 1 14  2

 11  2

5

1 6 3 1  (1) 3 5 14  2 1 2 1 14  1(10  14)  6( 6  1)  1(42  5)

1 3    1 2 2

1

 3 1  4

 4  42  47  9

Find the solutions by Cramer's Rule: Dy 4 D 1 x x  y  2 D 2 D 2 1 

1 1 6 Dz  3  2 5 1

 

The solution is  , 2  . 2

1

3 14

 2 5

1

3 5

6

3 2

3 14 3 1 14 1  1( 28  15)  1(42  5)  6(9  2)  13  47  66 6 Find the solutions by Cramer's Rule: Dy 9 D 3 x x  1 y  3 D 3 D 3 D 6 z z   2 D 3 The solution is (1, 3, 2) .

1187

Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities

 x  3 y  z  2  35.  2 x  6 y  z  5  3x  3 y  2 z  5 

 x  y  z  4  34.  2 x  3 y  4 z  15 5 x  y  2 z  12  1 1 1  3 D 2 4 5 1 2

D

4  (1) 2 4  1 2 3  1 3 5 2 5 1 2 1  1(6  4)  1( 4  20)  1(2  15)  2  24  17  5 1  4 1 Dx  15 3 4 12 1 2

1 

6

1 3 2 1  (1) 2 6 3 2 3 2 3 3  1(12  3)  2( 4  3)  1(6  18)  9  3  12  24 3 1 2 Dx  5 6 1 5 3 2

4  (1) 15 4  1 15 3   4 3 1 2 12  2 12 1   4(6  4)  1(30  48)  1(15  36)   8  18  21  5 1 4 1 4 Dy  2 15 5 12  2

1  3 5 1  (1) 5 6  2 6 3 2 5 2 5 3  2(12  3)  3(10  5)  1(15  30)  18  15  15   48 1 2 2 5

Dy 

4  ( 4) 2 4  1 2 15 5 2 5 12 12  2  1(30  48)  4( 4  20)  1(24  75) 1

1 3 1 2 6 1 3 3 2

15

5 2

5

1  (2)

2 1  (1) 2 5 3 2 3 5 5 2  1(10  5)  2(4  3)  1(10  15) 1

 525

 15

8 Dz 

 1 3 15  (1) 2 15  ( 4) 2 3 5 12 5 1 12 1  1(36  15)  1(24  75)  4(2  15)   21  99  68  10 Find the solutions by Cramer's Rule: Dy 15 D 5 1  3 x x  y 5 D 5 D D 10  2 z z  D 5 The solution is (1, 3,  2) .

1

3

 18  96  99

1 1  4 Dz  2 3 15 5 1 12

1

1 3 2 2 6 5 3 3 5

 1 6 5  3 2 5  (2) 2 6 3 5 3 5 3 3  1(30  15)  3(10  15)  2(6  18)  15  15  24  24 Find the solutions by Cramer's Rule: Dy D 48 8 1 x x  y  2   D D 24 3 24 D 24 z z  1 D 24 1   The solution is  2, , 1 . 3  

1188 Copyright © 2020 Pearson Education, Inc.


Section 11.3: Systems of Linear Equations: Determinants  x  4 y  3z   8  36. 3x  y  3 z  12  x  y  6 z  1

 x  2 y  3z  1  37.  3x  y  2 z  0  2x  4 y  6z  2 

1 4 3 D  3 1 3 1 1 6

3 1 2 D 3 1 2 4  6 2

 1 1 3  4 3 3  (3) 3 1 1 6 1 6 1 1  1( 6  3)  4(18  3)  3(3  1)  9  60  12   81

1  2  ( 2) 3  2  3 3 1 6 6 2 2 4 4  1(6  8)  2(18  4)  3(12  2)   2  44  42 0 Since D  0 , Cramer's Rule does not apply. 1

 8 4 3 Dx  12 1 3 1 1 6

x  y  2z  5   38.  3 x  2 y  4   2 x  2 y  4 z  10 

  8 1 3  4 12 3  (3) 12 1 1 6 1 6 1 1   8( 6  3)  4(72  3)  3(12  1)  72  276  39   243

1 1 2 0 D 3 2 2 2 4

1  8 3 Dy  3 12 3 1 1 6

0 3 0 3 2 1 2  (1) 2 2 4 2 4 2 2  1( 8  0)  1(12  0)  2(6  4)   8  12  20 0 Since D  0 , Cramer's Rule does not apply.

 1 12 3  ( 8) 3 3  (3) 3 12 1 6 1 6 1 1  1(72  3)  8(18  3)  3(3  12)  69  120  27  216

 x  2y  z  0  39.  2 x  4 y  z  0  2 x  2 y  3z  0 

1 4 8 Dz  3 1 12 1 1 1 3 12 3 1  1 1 12  4  ( 8) 1 1 1 1 1 1  1(1  12)  4(3  12)  8(3  1)  13  36  32  9 Find the solutions by Cramer's Rule: Dy 216  243 8 D 3   x x  y  81 3 D D  81 9 1 D  z z  D  81 9  

D

1 2 1 2 4 1 2  3 2

1 2 2 1  (1) 2  4 1 4  2 3 2 2 3 2  1(12  2)  2( 6  2)  1(4  8)  10  8  4  22 0 2 1 Dx  0  4 1  0 [By Theorem (12)] 0 2 3

8 1

The solution is  3,  ,  . 3 9 

1189

Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities

1 0 1 Dy  2 0 1 0  2 0 3 1 2 0 Dz  2  4 0  0 2 2 0

[By Theorem (12)]

 x  2 y  3z  0  41.  3x  y  2 z  0  2x  4 y  6z  0 

[By Theorem (12)]

3 1 2 D 3 1 2  4 6 2 1  2  ( 2) 3  2  3 3 1 4 6 6 2 2 4  1(6  8)  2(18  4)  3(12  2)

Find the solutions by Cramer's Rule: Dy D 0 0 x x  y 0  0 D 22 D 22 D 0 z z  0 D 22 The solution is (0, 0, 0).  x  4 y  3z  0  40. 3x  y  3z  0  x  y  6z  0 

1

  2  44  42 0 Since D  0 , Cramer's Rule does not apply. x  y  2z  0   42.  3 x  2 y 0   2x  2 y  4z  0 

1 4 3 D  3 1 3 1 1 6

D

2

3 3 3 3 1  1 1 4  (3) 1 6 1 6 1 1  1( 6  3)  4(18  3)  3(3  1)

0 Since D  0 , Cramer's Rule does not apply.

0

1

1 0

[By Theorem (12)]

6

1 0 3 Dy  3 0 3  0

43.

x

y

u

v w 4

1 2

[By Theorem (12)]

[By Theorem (12)]

Find the solutions by Cramer's Rule: Dy D 0 0 0  0 x x  y D  81 D  81 D 0 0 z z  D  81 The solution is (0, 0, 0).

z 3

By Theorem (11), the value of a determinant changes sign if any two rows are interchanged. 1 2 3 Thus, u v w   4 . x y z

6

1 4 0 Dz  3 1 0  0 1 1 0

2 4

  8  12  20

  81

0

2 0

0 3 0 3 2 1 2  (1) 2 2 4 2 4 2 2  1( 8  0)  1(12  0)  2(6  4)

 9  60  12 4 3 Dx  0 1 3  0

1 1 3 2

x

44.

y

z

u v w 4 1 2 3

By Theorem (14), if any row of a determinant is multiplied by a nonzero number k, the value of

1190 Copyright © 2020 Pearson Education, Inc.


Section 11.3: Systems of Linear Equations: Determinants

the determinant is also changed by a factor of k. x y z x y z Thus, u v w  2 u v w  2(4)  8 . 2 4 6 1 2 3

x y z 47. Let u v w  4 1 2 3

x y z 45. Let u v w  4 . 1 2 3

y

2

y 6 z 9

3

2u

2v

2w

1

2

 2 x 3

x y z x y z 3  6 9   3 1 2 3 u v w u v w

x

1 x3

y 6 z 9

u

[Theorem (14)]

v 1

2

3

u

v

w

 3(4)  12

 2(1)(1)

x

y

y 6 z 9

u

v

w

1

2

3

x  ( 1)( 1) u

z

 2(1)(1) u

v

w

1

2

3

x

[Theorem (15)] ( R1  3r3  r1 )

y

z

48. Let u v w  4 1 2 3

[Theorem (11)]

3

y z v w 4

1 2

y

[Theorem (11)]

 2(1)(1)(4)  8

y z v w [Theorem (11)]

1 2 x  u

x

z

 ( 1) 1 2 3 u v w

[Theorem (11)]

x3

z

[Theorem (15)]  R2  r2  r3 

w y 6 z 9

 2(1)

1 2 3 1 2 3 xu y v z w  x y z u v w u v w

[Theorem (14)]

x3

x y z  3( 1) u v w [Theorem (11)] 1 2 3

46. Let u v w  4 1 2 3

3

zx

x

y

x

y

z

u 1

v wu  u v w 2 2 1 2 3

[Theorem (15)] (C3  c1  c3 )

4

3

x

y

z

49. Let u v w  4 1 2 3 1

2

3

2x

2y

2z

u 1 v  2 w  3 2

1

2

3

x

y

z

[Theorem (14)]

u 1 v  2 w  3  2(1)

x

y

z

1

2

3

u 1 v  2 w  3

1191

Copyright © 2020 Pearson Education, Inc.

[Theorem (11)]


Chapter 11: Systems of Equations and Inequalities

x

y

53. Solve for x:

z

 2(1)(1) u  1 v  2 w  3 [Theorem (11)] 1

2

x

y

z

 2(1)(1) u

v

w

1

2

3

x

1 1 4 3 2 2 1 2 5

3 [Theorem (15)] ( R2  r3  r2 )

x

 2(1)(1)(4) 8 x

y

3 2 3 1 4 2 1 4 2 2 5 1 5 1 2 x 15  4    20  2    8  3  2 11x  22  11  2 11x  13 13 x 11

z

50. Let u v w  4 1 2 3 x3

y6

z 9

54. Solve for x:

3u  1 3v  2 3w  3 1

2 x

y

z

 3u  1 3v  2 3w  3 1 x

2 y

3

z

2

x

y

3 u

[Theorem (15)] (R1 =3r3  r1 ) [Theorem (15)]

 3u 3v 3w 1

3 2 4 5 0 1 x 0 1 2

3

( R2  r3  r2 )

3

3

5 5 1 1 x 2 4 0 0 2 0 1 1 2 3   2 x  5   2  2   4 1  0

x

 6 x  15  4  4  0  6x  7  0  6x  7

z

v w

1 2

[Theorem (14)]

3

x

 3(4)  12

7 6

55. Solve for x: 3 x 2 0 7 1 x 6 1 2

51. Solve for x: x

x 5 3 4 3x  4 x  5

0 2 1 0 3 1 x  7 x x 6 2 6 1 1 2 x   2 x   2   2   3 1  6 x   7

x  5 x  5

 2 x 2  4  3  18 x  7

52. Solve for x:

 2 x 2  18 x  0

x

1  2 3 x

 2x  x  9  0 x  0 or x  9

2

x 3  2 x2  1  0 ( x  1)( x  1)  0 x  1  0 or x  1  0 x 1

or

x  1

1192 Copyright © 2020 Pearson Education, Inc.


Section 11.3: Systems of Linear Equations: Determinants 56. Solve for x:

58. Any point ( x, y ) on the line containing ( x2 , y2 ) and ( x3 , y3 ) satisfies:

x

1 2 1 x 3  4 x 0 1 2 x

x x2 x3

x 3

3 x 1 1 2 1  4 x 0 2 0 1 1 2 x  2 x  3  1 2   2 1  4 x

If the point ( x1 , y1 ) is on the line containing ( x2 , y2 ) and ( x3 , y3 ) [the points are collinear], x1 then x2 x3

2 x 2  3 x  2  2  4 x 2 x2  x  0 x  2 x  1  0

x

y1 1 y2 1  0 , then ( x1 , y1 ) is y3 1

on the line containing ( x2 , y2 ) and ( x3 , y3 ) , and the points are collinear.

y 1 y1 1  0 y2 1

y1 1 x 1 x y 1 1 1 y2 1 x2 1 x2

y1 1 y2 1  0 . y3 1

x1 Conversely, if x2 x3

1 x  0 or x   2

57. Expanding the determinant: x x1 x2

y 1 y2 1  0 y3 1

59. If the vertices of a triangle are (2, 3), (5, 2), and (6, 5), then: 2 5 6 1 D 3 2 5 2 1 1 1

y1 0 y2

x( y1  y2 )  y  x1  x2   ( x1 y2  x2 y1 )  0

x( y1  y2 )  y  x2  x1   x2 y1  x1 y2

3 5 3 2  1 2 5  2 5 6  1 1 1 1 1 1  2 1   2(2  5)  5(3  5)  6(3  2)  2 1   2(3)  5(2)  6(1)  2 1   6  10  6 2 5 The area of the triangle is 5  5 square units.

y  x2  x1   x2 y1  x1 y2  x( y2  y1 ) y  x2  x1   y1 ( x2  x1 )  x2 y1  x1 y2  x( y2  y1 )  y1 ( x2  x1 )

 x2  x1  ( y  y1 )

 x( y2  y1 )  x2 y1  x1 y2  y1 x2  y1 x1

 x2  x1  ( y  y1 )  ( y2  y1 ) x  ( y2  y1 ) x1  x2  x1  ( y  y1 )  ( y2  y1 )( x  x1 ) ( y2  y1 ) ( x  x1 )  x2  x1  This is the 2-point form of the equation for a line. ( y  y1 ) 

6 8 6 1 60. D1  8 4 2  10 2 1 1 1 10  10 1 6 6 1 D2  6 8 2  25 2 1 1 1 25  25

1193

Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities

1 1 6 1 D3  3 6 2  15.5 2 1 1 1

Now set this expression equal to 0. Then complete the square to obtain the standard form.

15.5  15.5

20 x 2  120 x  20 y 2  80 y  240

Total area =10  25  15.5  50.5 square units

x 2  6 x  y 2  4 y  12

61. A 

1 2

6 8 1 6

1

6

1 3

1

3

6

2

240  120 x  80 y  20 x 2  20 y 2  0

6 2 8

4

8 4 6 8

1   368 3 6  2 18  2416  64  24  2 1   28  9  16  40  40  50.5 square units 2 

62.

0 0 2 8 10 4 4 10

8 0 4 6

1 2 8 1 2 8 0 1  8 10 4 1  1 10 4 4 1 4 10 1 4 10 6 1

10  4 1  8 2 8 4  10 1 10  4 4 1  2 8 10 6 4 

1 1

1

10 4

4  10 

4  6 

 8  2(4  10)  8(10  4)  1(100  16) 1 2(24  40)  8(60  16) 

1  576  96 cubic units 6

63.

2 3 3

74 18 40

7  5

6 1 2  x 5

3 3

74 18 40

x2

x 1

y

2

y 1

z

2

z 1

 x2

y 1 z 1

2

x

y2 1 2

1

2

2

z

1 2

74 18 40

1 1 1 1 1 1 2 2 y 7 3 6  x y 7 3 6 74 18 40 5 3 2

  240  x 120  y  80  x 2  y 2  20 2

 240  120 x  80 y  20 x  20 y

y2

y

2

z

z

2

 x 2 ( y  z )  x( y  z )( y  z )  yz ( y  z )  ( y  z )  x 2  xy  xz  yz 

 ( y  z )  x( x  y )  z ( x  y )   ( y  z )( x  y )( x  z )

t  dy t  d  b  tb  sd   . Using Cramer’s c c bc 0 b  bc , Rule, we get D  c d s b Dx   sd  tb , t d 0 s Dy   0  sc   sc , so c t D ds  tb td  sd x x   and D bc bc Dy  sc s y   , which is the solution. Note D bc b that these solutions agree if d  0. x

1 3

1

 x ( y  z )  x( y  z )  1( y z  z 2 y )

s

2 6 2

x2  y2

64. Expanding the determinant:

by  s  ad  bc  0 , and the system is  . cx  dy  t s The solution of the system is y  , b

 8(24)  384  576

2 7 5

 x  3 2   y  2 2  25

65. If a  0, then b  0 and c  0 since

 8  (12)  48  84)   1 32  352

1 x y

x 2  6 x  9  y 2  4 y  4  12  9  4

2

1194 Copyright © 2020 Pearson Education, Inc.


Section 11.3: Systems of Linear Equations: Determinants

If b  0, then a  0 and d  0 since s ax . ad  bc  0 , and the system is  cx  dy  t The solution of the system is x 

s , a

t  cx at  cs y  . Using Cramer’s Rule, we d ad a 0 s 0 get D   ad , Dx   sd , and c d t d a s D sd s Dy   at  cs , so x  x   c t D ad a Dy at  cs  , which is the solution. and y  D ad Note that these solutions agree if c  0.

66.

a13 a23 a33

a12 a22 a32

a11 a21 a31

 a13

a22 a32

a21 a  a12 23 a31 a33

 a13a22a31  a13a21a32  a12a23a31  a12a21a33  a11a23a32  a11a22 a33   a11a22a33  a11a23a32  a12a21a33  a12a23a31  a13a21a32  a13a22a31   a11 (a22a33  a23a32 )  a12 ( a21a33  a23a31 )  a13 (a21a32  a22a31 )

t , d

  a11

s  by sd  tb  . Using Cramer’s Rule, we a ad a b s b  ad , Dx   sd  tb , get D  t d 0 d a s D sd  tb  at , so x  x  and and Dy  0 t D ad Dy at t y   , which is the solution. Note D ad d that these solutions agree if b  0.

a22 a32

t The solution of the system is x  , c s  ax cs  at y  . Using Cramer’s Rule, we b bc a b  0  bc  bc , get D  c 0 s b  0  tb  tb , and t 0 a s c

t

 at  cs , so x 

a23 a a a a  a12 21 23  a13 21 22 a33 a31 a33 a31 a32

a a23 a a a a      a11 22  a12 21 23  a13 21 22  a a a a a 32 33 31 33 31 a32   a11 a12 a13   a21 a22 a23 a31 a32 a33

If d  0, then b  0 and c  0 since ax  by  s ad  bc  0 , and the system is  . t cx

Dy 

a22 a32

 a11 ( a23a32  a22a33 )

x

Dx 

a21 a  a11 23 a31 a33

 a13 ( a22a31  a21a32 )  a12 (a23a31  a21a33 )

If c  0, then a  0 and d  0 since ax  by  s . ad  bc  0 , and the system is  dy  t  The solution of the system is y 

Dy

at  cs cs  at   , which is the D bc bc solution. Note that these solutions agree if a  0. y

Dx tb t   and D bc c

1195

Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities

67.

a11 a12 ka21 ka22 a31 a32

a13 ka23 a33

a11  ka21 a12  ka22 a21 a22 a31 a32

69.

 ka21 (a12 a33  a32a13 )  ka22 (a11a33  a31a13 )

 (a11  ka21 )

 ka23 (a11a32  a31a12 )  k [ a21 (a12 a33  a32 a13 )  a22 (a11a33  a31a13 ) a11 a12  a23 (a11a32  a31a12 )]  k a21 a22 a31 a32

a22 a32

 (a13  ka23 )

a13 a23 a33

a13  ka23 a23 a33

a23 a a  ( a12  ka22 ) 21 23 a33 a31 a33 a21 a22 a31 a32

 (a11  ka21 )(a22a33  a23a32 )  (a12  ka22 )( a21a33  a23a31 )  (a13  ka23 )(a21a32  a22a31 )

68. Set up a 3 by 3 determinant in which the first column and third column are the same and evaluate:

 a11 ( a22a33  a23a32 )  ka21 (a22a33  a23a32 )  a12 (a21a33  a23a31 )  ka22 ( a21a33  a23a31 )  a13 (a21a32  a22a31 )  ka23 ( a21a32  a22a31 )

a11 a12 a21 a22 a31 a32

a11 a21 a31

a  a11 22 a32

a21 a a a a  a12 21 21  a11 21 22 a31 a31 a31 a31 a32

 a11 ( a22a33  a23a32 )  ka21a22a33  ka21a23a32  a12 ( a21a33  a23a31 )  ka22a21a33  ka22a23a31  a13 (a21a32  a22a31 )  ka23a21a32  ka23a22a31

 a11 (a22 a31  a32 a21 )  a12 (a21a31  a31a21 )

 a11 ( a22a33  a23a32 )  a12 (a21a33  a23a31 )

 a11 (a21a32  a31a22 )

 a13 (a21a32  a22a31 )

 a11a22 a31  a11a32 a21  a12 (0)  a11a21a32  a11 a31a22

 a11

0

a22 a32

a23 a a a a  a12 21 23  a13 21 22 a33 a31 a33 a31 a32

a11 a12  a21 a22 a31 a32

a13 a23 a33

70. v  ( x2  x1 )i  ( y2  y1 ) j  (5  ( 4))i  ( 1  3) j  9i  4 j v  92  ( 4)2  81  16  97

71.

f ( x)  2 x3  5 x 2  x  10 p must be a factor of 10: p  1,  2, 5, 10 q must be a factor of 2: q  1, 2 The possible rational zeros are: p 1 5   ,  , 1, 2, 5, 10 2 2 q

1196 Copyright © 2020 Pearson Education, Inc.


Section 11.4: Matrix Algebra

The vertex of g(x) is (5, 2) 72.

f ( x)  ( x  1) 2  4 . Using the graph of y  x 2 , horizontally shift the graph to the left 1 unit and vertically shift the graph down 4 units.

d  (5  3) 2  (2  2) 2  (8) 2  (4)2  64  16  80  4 5

77.

 2 x  5   (2 x  5)(2 x  5)(2 x  5) 3

 (4 x 2  20 x  25)(2 x  5)  8 x3  60 x 2  150 x  125 x  7  10 x  7  10  x x  7  10

78. 

73.

tan 42  cot 48  cot(90  42)  cot 48 

cot(48)  cot 48  0 2

2

y 5   1 x 5 3  4 The polar form of z   5  5i is

z  r  cos   i sin  

x  93

x

 x  7  10

5 ( x  10) 2 5 y  3  x  25 2 5 y  x  22 2 y 3 

3 3    5 2  cos  i sin 4 4   3

 5 2e 4

y  3  log 5 ( x  1)

75.

y  3  log 5 ( x  1) 5 y 3  x  1 5 y 3  1  x y  f 1  5 x  3  1

Section 11.4 1. square

(12) 76. x   3 2(2)

2. True

y  2(3) 2  12(3)  20  2

3. false

The vertex of f(x) is (3, 2)

4. inverse

(30)  5 2(3)

5. True

x

 x  7  10

2 so the perpendicular slope 5 5 would be m  . The y value of the point on 2 2 the line is y   (10)  7  3 so a point on the 5 line is (10,3) . Using the point-slope formula we have:

2

tan  

i

x

79. The slope is 

74. r  x  y  ( 5)  5  5 2 2

x  7  10 x  7  10 x  7  100

6. A1 B

y  3(5) 2  30(5)  77  2

1197

Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities 7. a

 4 1  0 3 5       6 2 1 2 6     2 3   0(4)  3(6)  (5)( 2) 0(1)  3(2)  ( 5)(3)   1(1)  2(2)  6(3)   1(4)  2(6)  6( 2)

15. AC  

8. d 0 0 3 5  4 1 9. A  B       1 2 6   2 3  2 5  0   0  4 3 1   1  ( 2) 2  3 6  ( 2)   4 4 5     1 5 4 

 28  9     4 23   4 1

0 0 3 5  4 1 10. A  B       1 2 6  2 3  2 5  0   0  4 3 1   1  ( 2) 2  3 6  ( 2)    4 2 5    3 1 8

0

 4

1

  16. BC      6 2   2 3 2     2 3   4(1)  1(2)  0(3)   4(4)  1(6)  0( 2)         3(2)  ( 2)(3)  2(4) 3(6) ( 2)( 2) 2(1)   22 6    14  2 

 4 1  0 3 5 17. CA   6 2    1 2 6    2 3  4(3)  1(2) 4(5)  1(6)   4(0)  1(1)   6(0)  2(1) 6(3)  2(2) 6( 5)  2(6)    2(0)  3(1)  2(3)  3(2)  2(5)  3(6) 

 0 3 5  11. 4 A  4    1 2 6  4  0 4  3 4(5)   4  6   4 1 4  2  0 12  20   24  4 8

1 14 14    2 22 18   3 0 28 

0  4 1 12. 3B  3    2 3  2 3  0   3  4 3 1          2  3 2 3 3 3   12 3 0     6 9 6  0  0 3 5  4 1 13. 3 A  2 B  3  2    1 2 6   2 3  2 0  0 9 15  8 2      3 6 18   4 6  4 

 4 1 0  4 1 18. CB   6 2     2 3  2    2 3  4(1)  1(3) 4(0)  1( 2)   4(4)  1( 2)  6(1)  2(3) 6(0)  2(  2)    6(4)  2( 2)   2(4)  3( 2)  2(1)  3(3)  2(0)  3( 2)   14 7  2    20 12  4   14 7  6 

  8 7 15    7 0 22 

19. Since the number of columns in A does not match the number of rows in B then AB is not defined.

0  0 3 5  4 1 14. 2 A  4 B  2   4    1 2 6  2 3  2 0  0 6 10   16 4      2 4 12    8 12  8

20. Since the number of columns in B does not match the number of rows in A then BA is not defined.

 16 10 10   4    6 16

1198 Copyright © 2020 Pearson Education, Inc.


Section 11.4: Matrix Algebra

 4 21. C ( A  B)   6   2  4   6   2

25. CA  CB

1  0 3 5  4 1 0  2        1 2 6  2 3  2  3 

 4 1  4 1 0 0 3 5   4 1 6 2      6 2       1 2 6  2 3  2    2 3    2 3   1 14 14   14 7  2    2 22 18   20 12  4   3 0 28  14 7  6 

1  4 4 5 2    1 5 4  3 

 15 21 16    22 34  22   11 7 22 

 13 7 12    18 10 14   17 7 34 

 4 1 0    0 3 5  4 1     2 3  2   6 2 1 2 6         2 3   4 1    4 4 5     6 2    1 5 4    2 3  

26. AC  BC

22. ( A  B)C   

 4 1  4 1 0  0 3 5   4 1       6 2   2 3  2   6 2  1 2 6      2 3  2 3  28 9   22 6      4 23  14  2  50 3   18 21

50 3   18 21

 4 1  0 3 5    1 0  23. AC  3I 2      6 2   3 0 1  1 2 6     2 3      28  9   3 0      4 23  0 3 

27. a11  2(2)  ( 2)(3)  2 a12  2(1)  ( 2)(1)  4 a13  2(4)  ( 2)(3)  2 a14  2(6)  ( 2)(2)  8 a21  1(2)  0(3)  2

 25  9     4 20 

a22  1(1)  0(1)  1 a23  1(4)  0(3)  4

 4 1 1 0 0  0 3 5 0 1 0  24. CA  5I 3   6 2    5     1 2 6     2 3 0 0 1  1 14 14  5 0 0    2 22 18   0 5 0   3 0 28  0 0 5 

a24  1(6)  0(2)  6

 2  2   2 1 4 6    2 4 2 8  1 0   3 1 3 2   2 1 4 6   28. a11  4( 6)  1(2)  22 a12  4(6)  1(5)  29 a13  4(1)  1(4)  8

 6 14 14    2 27 18  3 0 33 

a14  4(0)  1(1)  1 a21  2( 6)  1(2)  10 a22  2(6)  1(5)  17 a23  2(1)  1(4)  6 a24  2(0)  1(1)  1  4 1   6 6 1 0    22 29 8 1  2 1  2 5 4 1   10 17 6 1     

1199

Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities

1

2

3

1

2

  29.    1 0  0 1 4     2 4   1(2)  2(0)  3(4)   1(1)  2(1)  3(2)  0(1) ( 1)( 1) 4(2) 0(2)      (1)(0)  4(4)   5 14    9 16   1 1  2 8 1 30.  3 2   3 6 0   0 5    1(2)  (1)(3) 1(8)  ( 1)(6) 1( 1)  (1)(0)   (3)(2)  2(3) (3)(8)  2(6) (3)(1)  2(0)   0(2)  5(3) 0(8)  5(6) 0(1)  5(0)  2 1  1   0 12 3 15 30 0 

31. Since the number of columns in the first matrix does not match the number of rows in the second then the operation is undefined. 32. Since the number of columns in the first matrix does not match the number of rows in the second then the operation is undefined.  1 0 1  1 3 33.  2 4 1 6 2   3 6 1  8 1  1(1)  0(6)  1(8) 1(3)  0(2)  1(1)    2(1)  4(6)  1(8) 2(3)  4(2)  1( 1)   3(1)  6(6)  1(8) 3(3)  6(2)  1(1)   9 2   34 13  47 20   4  2 3  2 6  1 2   1 1 34.  0  1 0 1  0 2   4(2)  (  2)(1)  3(0) 4(6)  (  2)( 1)  3(2)    0(2)  1(1)  2(0) 0(6)  1(1)  2(2)   1(2)  0(1)  1(0) 1(6)  0(1)  1(2) 

 2 1 35. A     1 1 Augment the matrix with the identity and use row operations to find the inverse: 2 1 1 0  1 1 0 1   1  2 1  0 1  0 1  0

1  Interchange    1 1 0   r1 and r2  1 0 1  R2   2r1  r2  1 1  2  1 0 1  R2  r2  1 1 2  1 0

1 1  R1  r2  r1  1 1 2   1 1 Thus, A1   .  1 2  0

 3 1 36. A      2 1 Augment the matrix with the identity and use row operations to find the inverse:  3 1 1 0    2 1 0 1    1 0 1 1    R1  r2  r1    2 1 0 1  1 0 1 1    R2  2r1  r2   0 1 2 3  1 1 Thus, A1   .  2 3  6 5 37. A    2 2 Augment the matrix with the identity and use row operations to find the inverse:

 6 32    1 3   2  4 

1200 Copyright © 2020 Pearson Education, Inc.


Section 11.4: Matrix Algebra

6 5 1 0  2 2 0 1    2 2 0 1   6 5 1 0

 2 1 39. A    where a  0. a a  Augment the matrix with the identity and use row operations to find the inverse:

 Interchange     r1 and r2 

1 2 2 0     0 1 1 3  

 R2   3r1  r2 

 1 1 0 12     0 1 1 3

 R1  12 r1     R2  r2 

 2 1 1 0  a a 0 1   1 1  1 2 2 0    a a 0 1

1 1 1 0 2 2    R2   a r1  r2  1 1 0 2 a  2 a 1 1  1 12 0 2  R2  a2 r2 2 0 1 1 a   1 0 1  1a     R1   12 r2  r1  2 0 1 1 a 

 1 0 1  52     R1   r2  r1  3  0 1 1  1  52  Thus, A1   . 3  1

1  4 38. A     6  2 Augment the matrix with the identity and use row operations to find the inverse: 1 1 0  4  6  2 0 1    1  14  14 0    0 1 6  2  1  14  14 0    3 1 1 0  2 2

 R1  12 r1 

 1  1a  Thus, A1   . 2  1 a   b 3 40. A    where b  0. b 2  Augment the matrix with the identity and use row operations to find the inverse:

 R1   14 r1   R2   6r1  r2 

b 3 1 0  b 2 0 1   b 3 1 0     R2   r1  r2  0 1 1 1 1  1 b3 0 b  R1  b1 r1  0 1 1 1  1 b3 b1 0    R2   r2  0 1 1 1 3  1 0  b2 b  R1   b3 r2  r1  1 1 0 1

 1  14  14 0    R2   2r2  1 3  2  0  1 0 1  12  1    R1  4 r2  r    0 1 3 2    1  12  Thus, A1   .  3  2 

3  2 b . Thus, A1   b   1 1

1201

Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities

 1 1 1 41. A   0  2 1   2 3 0  Augment the matrix with the identity and use row operations to find the inverse:  1 1 1 1 0 0   0  2 1 0 1 0     2 3 0 0 0 1  1 1 1 1 0 0    0  2 1 0 1 0   R3  2 r1  r3   0 5 2 2 0 1 1 1 0 0  1 1  1 1  2 0  12 0  R2   12 r2  0  0 5 2 2 0 1

1 1 0 2    0 1  12 0 0  1 2 

1  12

0  12 2  52

0  0 1

 R1  r2  r1     R3  5 r2  r3 

1 1 0 1  12 0 2   1 1 0 2 0   R3   2 r3   0 1  2 0 0 1 4 5  2   3 3 1 1 0 0  R1   12 r3  r1      0 1 0  2 2 1   R2  1 r3  r2    2  0 0 1  4 5  2 

Thus, A

1

1  3 3     2 2 1 .   4 5  2 

 1 0 2 42. A   1 2 3  1 1 0  Augment the matrix with the identity and use row operations to find the inverse:  1 0 2 1 0 0  1 2 3 0 1 0     1 1 0 0 0 1 2 1 0 0 1 0   0 2 5 1 1 0   0 1  2 1 0 1 2 1 0 0 1 0  5 1 1  0 1 0  2 2 2  0 1  2 1 0 1

 R2  r1  r2     R3  r1  r3 

1 0 2 1 0 0   5 1 1  0 1 2 0 2 2 0 0 1  1 1 1   2 2 2  1 0 2 1 0 0 1 1  0 1 52 0  2 2 0 0 1 1 1 2 

 R3  r2  r3   R3  2 r3 

 1 0 0 3  2  4  0 1 0 3  2 5 0 0 1 1 1 2   3  2  4 1 Thus, A   3  2 5 . 1 2   1

 R1   2r3  r1    5  R2   2 r3  r2 

 1 1 1 43. A  3 2 1 3 1 2  Augment the matrix with the identity and use row operations to find the inverse:  1 1 1 1 0 0  3 2 1 0 1 0    3 1 2 0 0 1 1 1 1 0 0 1  0 1  4 3 1 0  0  2 1 3 0 1 1 1 1 0 0 1  1 4 3 1 0   0 0  2 1 3 0 1

 R2  3 r1  r2     R3  3 r1  r3 

 R2   r2 

 1 0 3  2 1 0    0 1 4 R3  17 r3 3 1 0  3 0 0  72 17  1 7  3 1  1 0 0  75 7 7    R1  3r3  r1  9 1  0 1 0  74    7 7 R   4r3  r2   3 2 1  2 0 0 1   7 7 7 

  75  Thus, A1   97  3  7

 R2  12 r2  1202 Copyright © 2020 Pearson Education, Inc.

1 7 1 7  72

3 7   74  . 1 7 


Section 11.4: Matrix Algebra  2 x  y  1 45.   x y 3 Rewrite the system of equations in matrix form:  2 1  x  1 A , X   , B      1 1  y  3

 3 3 1 44. A   1 2 1  2 1 1 Augment the matrix with the identity and use row operations to find the inverse:  3 3 1 1 0 0  1 2 1 0 1 0    2 1 1 0 0 1 1 2   3 3  2 1 1 2  0 3 0 5

Find the inverse of A and solve X  A1 B :  1 1 From Problem 35, A1    , so  1 2 

1 0 1 0  Interchange  1 1 0 0    r and r2  1 0 0 1  1 1 0 1 0  R2  3 r1  r2   2 1  3 0    R   2 r1  r3  1 0  2 1  3

 1 1  1  4  X  A1 B        .  1 2   3  7  The solution is x  4, y  7 or (4, 7) .  3x  y  8 46.   2 x  y  4 Rewrite the system of equations in matrix form:  3 1  x  8 A , X   , B       2 1  y  4

0 1 0 1 2 1   2 1  0 1 3 3 1 0  R2   13 r2   0  2 1 0 5 1 2 1 0  1 0  1 3 3   R   2r2  r1  2 1    1  0 1  1 0  3 3    R3  5 r2  r3  7 5 0 0  3 1 3 3  2 1 0  1 0  1 3 3   2 1  0 1 1 0  R3  73 r3 3 3   5 9 3 0 0  1 7 7 7 

3 1 0 0 7  1  0 1 0 7  0 0 1  5 7 

 74

 3  7 Thus, A1   17    75 

 74

1 7 9 7

1 7 9 7

1 7  72   3 7

Find the inverse of A and solve X  A1 B :  1 1 From Problem 36, A1    , so  2 3  1 1  8 12  X  A1 B        .  2 3  4   28 The solution is x  12, y  28 or (12, 28) .

2 x  y  0 47.   x y 5 Rewrite the system of equations in matrix form:  2 1  x 0  A , X   , B      1 1  y  5

 R1  1 r3  r1  3   R  2r  r  2 3 3  2

1 7  72  .  3 7

Find the inverse of A and solve X  A1 B :  1 1 From Problem 35, A1    , so  1 2   1 1 0   5 X  A1 B        .  1 2   5  10  The solution is x  5, y  10 or (5, 10) .

1203

Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities  3x  y  4 48.   2 x  y  5 Rewrite the system of equations in matrix form:  3 1  x  4 A , X   , B       2 1  y  5

 6 x  5 y  13 51.  2 x  2 y  5 Rewrite the system of equations in matrix form:  6 5  x 13 A , X   , B     2 2  y  5

Find the inverse of A and solve X  A1 B :  1 1 From Problem 36, A1    , so  2 3

Find the inverse of A and solve X  A1 B :  1  52  From Problem 37, A1    , so 3  1  1  52  13  12  X  A1 B        . 3  5   2   1

 1 1  4   9  X  A1 B       .  2 3  5  23 The solution is x  9, y  23 or (9, 23) .  6x  5 y  7 49.  2 x  2 y  2 Rewrite the system of equations in matrix form:  6 5  x 7  A , X   , B     2 2  y 2

Find the inverse of A and solve X  A1 B :  1  52  From Problem 37, A1    , so 3  1  1  52  7   2  X  A1 B        . 3  2   1  1 The solution is x  2, y  1 or (2, 1) .  4 x  y  0 50.   6 x  2 y  14 Rewrite the system of equations in matrix form: 1  4  x  0 A , X   , B      6  2  y 14  Find the inverse of A and solve X  A1 B :  1  12  From Problem 38, A1    , so  3  2   1  12   0   7  X  A1 B       .  3  2  14    28 The solution is x  7, y   28 or (7, 28) .

1 1  The solution is x  , y  2 or  , 2  . 2 2   4 x  y  5 52.   6 x  2 y  9 Rewrite the system of equations in matrix form: 1  4  x  5 A  , X   y  , B   9  6  2      

Find the inverse of A and solve X  A1 B :  1  12  From Problem 38, A1    , so  3  2   1  12   5   12  X  A1 B       .  3  2   9   3 1  1  The solution is x   , y  3 or   , 3  . 2  2  2 x  y  3 a0 53.   ax  ay   a Rewrite the system of equations in matrix form:  2 1  x  3 A , X   , B     a a   y  a 

Find the inverse of A and solve X  A1 B :  1  1a  From Problem 39, A1    , so 2  a  1  1  1a   3   2  X  A1 B     .  2  a  a  1     1 The solution is x  2, y  1 or (2, 1) .

1204 Copyright © 2020 Pearson Education, Inc.


Section 11.4: Matrix Algebra  bx  3 y  2b  3 b0 54.  bx  2 y  2b  2 Rewrite the system of equations in matrix form:  b 3  x  2b  3 A , X   , B     b 2   y  2b  2 

 x yz  4  57.  2y  z 1  2 x  3 y  4  Rewrite the system of equations in matrix form:  1 1 1  x  4     A   0  2 1 , X   y  , B   1   2 3 0   z   4 

Find the inverse of A and solve X  A1 B : 3  2 b From Problem 40, A1   b  , so  1 1

Find the inverse of A and solve X  A1 B : 1  3 3  1 From Problem 41, A    2 2 1 , so   4 5  2 

3  2 2b  3  2  b  X  A1 B   b   .  1 1  2b  2   1 The solution is x  2, y  1 or (2, 1).

1  4   5  3 3 X  A1 B    2 2 1  1   2  .   4 5  2   4   3 The solution is x  5, y  2, z  3 or (5, 2,3) .

7  2 x  y  55.  a a0  ax  ay  5 Rewrite the system of equations in matrix form: 7  2 1  x A , X   , B  a  a a   y  5

 2z  6  x  58.  x  2 y  3z  5  x y  6  Rewrite the system of equations in matrix form:  1 0 2  x  6     A   1 2 3 , X   y  , B   5  1 1 0   z   6 

Find the inverse of A and solve X  A1 B :  1  1a  From Problem 39, A1    , so 2 a  1   1  1a   7   a2  X  A1 B    a  3 . 2   1  a    5  a  2 3 2 3 The solution is x  , y  or  ,  . a a a a

Find the inverse of A and solve X  A1 B :  3  2  4 From Problem 42, A1   3  2 5 , so  1 1 2 

 bx  3 y  14 56.  b0 bx  2 y  10 Rewrite the system of equations in matrix form:  b 3  x 14  , X   , B    A  b 2   y 10 

 3  2  4  6  4 X  A1 B   3  2 5  5    2  .  1 1 2   6   1 The solution is x  4, y  2, z  1 or (4, 2, 1) .

Find the inverse of A and solve X  A1 B : 3  2 b From Problem 40, A1   b  , so  1 1 3  2 2 14 b   X  A1 B   b     b  .  1 1 10   4  2 2  The solution is x  , y  4 or  , 4  . b b 

1205

Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities

 x yz  2 2y  z  2 59.    2 x  3 y  1  2 Rewrite the system of equations in matrix form:  2  1 1 1  x       A   0  2 1 , X   y  , B   2  1   2 3 0   z  2

Find the inverse of A and solve X  A1 B : 1  3 3  1 From Problem 41, A    2 2 1 , so   4 5  2  1  2   12   3 3     X  A1 B    2 2 1  2     12    4 5  2   12   1 1 1 The solution is x  , y   , z  1 or 2 2 1 1   ,  , 1 . 2 2   2z  2  x  3  60.  x  2 y  3 z   2   2  x  y Rewrite the system of equations in matrix form:  1 0 2  x  2 A   1 2 3 , X   y  , B    32   1 1 0   z   2  1

Find the inverse of A and solve X  A B :  3  2  4 1 From Problem 42, A   3  2 5 , so  1 1 2   3  2  4   2   1   1 X  A B   3  2 5   32    1 .  1 1 2   2   12  1 1  The solution is x  1, y  1, z  or 1, 1,  . 2 2 

 x y z 9  61. 3 x  2 y  z  8 3x  y  2 z  1 

Rewrite the system of equations in matrix form:  1 1 1  x 9      A  3 2 1 , X   y  , B  8 3 1 2   z   1 Find the inverse of A and solve X  A1 B : 3 1   75 7 7   1 From Problem 43, A1   97  74  , so 7  3 2 1  7  7 7  3 34  1   75   7 7 9  7  9   85  1 1 4   X A B 7  7  8   7  . 7  3  12  2 1   1  7  7 7     7  The solution is x  

34 85 12 ,y ,z or 7 7 7

 34 85 12   , ,  .  7 7 7 3x  3 y  z  8  62.  x  2 y  z  5 2x  y  z  4  Rewrite the system of equations in matrix form:  3 3 1  x  8       1 2 1 , , A  X   y  B   5  2 1 1  z   4 

Find the inverse of A and solve X  A1 B : 1  73  74 7   1 2  , so From Problem 44, A1   17 7 7  5 9 3  7 7   7  73  X  A1 B   17  5   7

 74 1 7 9 7

1  87  7  8     72   5   75  .  17  3   4     7  7

8 5 17 or The solution is x  , y  , z  7 7 7  8 5 17   , , . 7 7 7 

1206 Copyright © 2020 Pearson Education, Inc.


Section 11.4: Matrix Algebra  x y z  2  7 63. 3 x  2 y  z   3  10 3x  y  2 z  3  Rewrite the system of equations in matrix form:  2  1 1 1  x       A  3 2 1 , X   y  , B   73   10  3 1 2   z   3 

4 2 65. A     2 1 Augment the matrix with the identity and use row operations to find the inverse: 4 2 1 0  2 1 0 1   1 0 4 2 1    R2   2 r1  r2  1  0 0 1   2 1 1 1 2 0 1 4    R1  4 r1  1  0 0 1  2 There is no way to obtain the identity matrix on the left. Thus, this matrix has no inverse.

Find the inverse of A and solve X  A1 B : 3 1   75 7 7   1 1 From Problem 43, A   97  74  , so 7  3 2 1  7  7 7  5 3 1 1  7   2  3  7 7  9     1 1 4 X A B 7  7   73    1 . 7  3 2 2 1   10    3   3  7  7  7 1 2 2 1 The solution is x  , y  1, z  or  , 1,  . 3 3 3 3

 3 12  66. A     6 1 Augment the matrix with the identity and use row operations to find the inverse:  3 12 1 0     6 1 0 1  3 12 1 0    R2  2r1  r2    0 0 2 1  1  16  13 0   R1   13 r1  0 2 1 0 There is no way to obtain the identity matrix on the left. Thus, this matrix has no inverse.

3x  3 y  z  1  64.  x  2 y  z  0 2x  y  z  4 

Rewrite the system of equations in matrix form:  3 3 1  x  1     A   1 2 1 , X   y  , B   0   2 1 1  z   4 

15 3 67. A    10 2  Augment the matrix with the identity and use row operations to find the inverse: 15 3 1 0  10 2 0 1  

Find the inverse of A and solve X  A1 B : 1  73  74 7   1 2 , so From Problem 44, A1   17  7 7  5 9 3  7 7   7

1 0 15 3   2  0 0  3 1

1  73  74  1 7  1   1 1 1 2    7   0    1 . X A B 7 7  5 9 3  4     1 7 7   7 The solution is x  1, y  1, z  1 or (1, 1, 1) .

 R2   23 r1  r2 

 1 15 151 0   R1  151 r1  2  0 0  3 1 There is no way to obtain the identity matrix on the left; thus, there is no inverse.

1207

Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities  3 0  68. A     4 0 Augment the matrix with the identity and use row operations to find the inverse:  3 0 1 0   4 0 0 1    3 0   0 0

1 0 1

4 3

 R2  34 r1  r2 

 1 0  13 0   R1   13 r1  4 1  0 0  3  There is no way to obtain the identity matrix on the left; thus, there is no inverse.

1 1  3 69. A   1  4 7   1 2 5 Augment the matrix with the identity and use row operations to find the inverse: 1 1 1 0 0   3  1  4 7 0 1 0    2 5 0 0 1  1 2 5 0 0 1  1    1  4 7 0 1 0   3 1 1 1 0 0  2 5 0 0 1 1    0  6 12 0 1 1  0 7 14 1 0 3 1 2 5 0 0 1     0 1 2 0  16 16   0 7 14 1 0 3 

 Interchange     r1 and r3 

1 3 1 7 1

 1

70. A   2  4  5

Augment the matrix with the identity and use row operations to find the inverse: 1 3 1 0 0   1  2 4 1 0 1 0   7 1 0 0 1  5 1 3 1 0 0 1  R2   2 r1  r2  7  2 1 0    0  6  R  5 r1  r3  0 12 14 5 0 1  3 0 0  1 1 3 1   7 1  0 1  6 3  16 0  R2   16 r2 0 12 14 5 0 1 

 1 0  11 6   0 1  76  0 0 0

2 3 1 3

0  0  2 1 

1 6 1 6

1

 R1   r2  r1     R3  12 r2  r3 

There is no way to obtain the identity matrix on the left; thus, there is no inverse. 61 12   25  71. A   18 12 7   3 4 1

 R2   r1  r2     R3  3 r1  r3 

 R2   16 r2 

1 2 1 0 1 0 3 3    R1   2r2  r1  1 1  0 1 2 0  6 6     R3  7 r2  r3   7 11   0 0 0 1 6 6  There is no way to obtain the identity matrix on the left; thus, there is no inverse.

Thus, A

1

0.05  0.01  0.01  0.01   0.01  0.02   0.02 0.01 0.03

4 18 3  72. A   6 20 14  10 25 15

1208 Copyright © 2020 Pearson Education, Inc.


Section 11.4: Matrix Algebra

 0.26  0.29  0.20  1.63 1.20  2.53 1.80   1.84

Thus, A1   1.21

21 18  44  2 10 15 73. A    21 12 12  4  8 16

 25

61

 3

4

76. A  18 12

12  15  7  ; B   3 1  12 

Enter the matrices into a graphing utility and use A1B to solve the system. The result is shown below:

6 5 4  9

Thus, the solution to the system is x  4.56 , y   6.06 , z   22.55 or (4.56, 6.06, 22.55) . 0.01  0.02  0.04  0.01   0.02 0.05 0.03  0.03 Thus, A1   .  0.02 0.01  0.04 0.00    0.06 0.07 0.06    0.02

 25 61 12   21   77. A  18 12 7  ; B   7   3  2  1  4

22 3 5 16  21 17 4 8 74. A    2 8 27 20    15 3 10   5

Thus, the solution to the system is x  1.19 , y  2.46 , z  8.27 or (1.19, 2.46, 8.27) .  25

61

 3

4

78. A  18 12 0.04  0.01  0.02  0.02 Thus, A1     0.04 0.02  0.05 0.02  

0.00 0.03 0.01 0.01 . 0.04 0.06   0.00  0.09 

12   25  7  ; B  10  1   4 

Thus, the solution to the system is x   2.05 , y  3.88 , z  13.36 or (2.05, 3.88, 13.36) .

 25 61 12  10    75. A  18 12 7  ; B   9   3 12  1  4

79.

Enter the matrices into a graphing utility and use A1B to solve the system. The result is shown below:

 2 x  3 y  11  5 x  7 y  24 Multiply each side of the first equation by 5, and each side of the second equation by 2 . Then add the equations to eliminate x:  10 x  15 y  55  10 x  14 y  48 y7 Substitute and solve for x:

Thus, the solution to the system is x  4.57 , y   6.44 , z   24.07 or (4.57, 6.44, 24.07) .

1209

Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities 2 x  3  7   11

 1 0 0 4  R1  2r2  r1 0 1 0 2   5 0 0 1 2 

2 x  21  11 2 x  10 x  5 The solution of the system is x  5, y  7 or

using ordered pairs  5, 7  . 2 x  8 y  8 80.   x  7 y  13 Multiply each side of the second equation by 2 . Then add the equations to eliminate x:  2x  8 y   8  2 x  14 y  26 6 y  18

y  3 Substitute and solve for x: x  7  3  13 x  21  13 x8 The solution of the system is x  8, y  3 or

using ordered pairs  8, 3 .  x  2 y  4z  2  81. 3x  5 y  2 z  17  4x  3y  22 

Write the augmented matrix:  1 2 4 2    3 5 17  2    4 3 0 22   

 1 2 4 2  0 1 10 23 R2  3r1  r2 5 16 30  R3  4r1  r3  0  1 2 4 2 0 1 10 23 R2  r2  0 5 16 30   1 2 4 2 0 1 10 23  0 0 34 85 R  5r  r 3 2 3  1 2 4 2 0 1 10 23  5 0 0 1 2  R3  r3 / 34  1 2 0 8 R1  4r3  r1 0 1 0 2  R2  10r3  r2  5 0 0 1 2 

The solution is x  4, y  2, z 

5 5  or  4,2,  . 2 2 

 2 x  3 y  z  2   3z  6 82.  4 x  6 y  2z  2 

Write the augmented matrix: 2  4 0   1 4  0 

3 1 2   0 3 6 6 2 2   3 1  2 1 R  r / 2 2  1 1 0 3 6  6 2 2  

3   12 1 1 2   0 6 5 10  R2  4r1  r2   0 6 2 2 

 1 0  0  1 0  0  1 0  0  1 0  0

3 2

1 6 3 2

1 0 3 2

1 0 3 2

1 0

 1  56  53  R2  r2 /  6   2 2   12 1   56  53   3 12  R3  6r2  r3  12 1   56  53   1 4  R3  r3 / 3  0 1 R1  12 r3  r1 5 0 3  R2  56 r3  r2 1 4   12

  32  R   3 r  r 1 1 0 0  1 2 2 5 0 3 1 0   0 0 1 4  3 2

5 3

The solution is x   , y  , z  4 or  3 5    , , 4 .  2 3 

1210 Copyright © 2020 Pearson Education, Inc.


Section 11.4: Matrix Algebra

 5x  y  4 z  2 

 2x  3y  z  4 

85. 3x  2 y  z  3

83.   x  5 y  4 z  3

 

7 x  13 y  4 z  17 

 5y  z  6

Write the augmented matrix:

Write the augmented matrix:

 5 1 4 2      1 5 4 3   7 13 4 17   

 2 3 1 4     3 2 1 3  0 5 1 6    3 1    2 2 2  R1  r1 / 2  1  3 2 1 3    0 5 1 6 

 1 5 4 3 R1  r2    5 1 4 2  R2  r1 7 13 4 17   1 5 4 3    0 24 16 17  R2  5r1  r2 0 48 32 38 R  7 r  r 3 1 3

 3 1  2 2 2 1  0  52 12 3 R2  3r1  r2   0 5 1 6  1  3  2 2 2 1 6 1 2  1  5  5  R2   5 r2 0 6  0 5 1

 1 5 4 3  2 17  0 1  3 24  R2  r2 / 24   0 48 32 38  1 5 4 3  2 17  0 1  3 24    0 4  R3  48r2  r3 0 0

 1 0  0  1 0  0

The last row of our matrix is a contradiction. Therefore, the system is inconsistent. The solution set is   , or  . 84.  3x  2 y  z  2

  2 x  y  6 z  7  2 x  2 y  14 z  17 

 2  65  1  0 0 0  R3  5r2  r3 1 1 3 0 5 5 R1  r2  r1  2 6 1 1  5  5 0 0 0   32

1 2  15

Since the last row yields an identity, and no contradictions exist in the other rows, there are an infinite number of solutions. The solution is 1 1 1 6 x   z  , y  z  , and z is any real 5 5 5 5 number. That is, 1 1 1 6   x, y, z  | x   z  , y  z  , 5 5 5 5 

Write the augmented matrix: 3 2 1 2    6 7  2 1  2 2 14 17   1 1 7 9  R1  r1  r2   6 7  2 1  2 2 14 17 

z is any real number

 1 1 7 9   0 1 20 25 R2  2r1  r2 0 0 0 1 R  2r  r 3 1 3

86.  4 x  3 y  2 z  6

  3 x  y  z  2  x  9y  z  6 

The last row of our matrix is a contradiction. Therefore, the system is inconsistent. The solution set is   , or  .

Write the augmented matrix:  4 3 2 6     3 1 1 2   1 9 1 6 

1211

Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities

$62.00 in interest, and Stephanie’s loans accrued $50.30 in interest.

 1 9 1 6  R1  r3    3 1 1 2   4 3 2 6  R  r 3 1 1 9 6 1   0 26 4 20  R2  3r1  r2 0 39 6 30  R  4r  r 3 1 3 1 9  0 1  0 39 1  0  0  1  0 0

9 1 0

1 2 13

6

10  13  R2  r2 /

 6 30 

1 2 13

 26 

6

10  13 

 0  R3  39r2  r3 5 12  0  13  13  R1  9r2  r1 10  2 13 13 1  0 0 0  0

89. a.

z is any real number

b.

88. a. b.

 4000 3000   1  0.011  A(C  B )         2500 3800   1  0.006    4000 3000  1.011     2500 3800  1.006   4000(1.011)  3000(1.006)     2500(1.011)  3800(1.006)   7062.00     6350.30  Jamal’s loan balance after one month was $7062.00, and Stephanie’s loan balance was $6350.30.

Since the last row yields an identity, and no contradictions exist in the other rows, there are an infinite number of solutions. The solution is 5 12 2 10 x  z  , y   z  , and z is any real 13 13 13 13 number. That is, 5 12 2 10   x, y, z  | x  z  , y   z  , 13 13 13 13 

87. a.

c.

6 9  148.00  A  ; B   404.40  3 12     6 9  148.00  AB      3 12   404.40   6(148.00)  9(404.40)   4527.60     3(148.00)  12(404.40)  5296.80  Nikki’s total tuition is $4527.60, and Joe’s total tuition is $5296.80.

 4000 3000   0.011 A  ; B  0.006  2500 3800      4000 3000   0.011 AB      2500 3800  0.006   4000(0.011)  3000(0.006)  62.00      2500(0.011)  3800(0.006)  50.30  After one month, Jamal’s loans accrued

The rows of the 2 by 3 matrix represent stainless steel and aluminum. The columns represent 10-gallon, 5-gallon, and 1-gallon. 500 350 400  The 2 by 3 matrix is:  . 700 500 850   500 700  The 3 by 2 matrix is:  350 500  .  400 850 

b. The 3 by 1 matrix representing the amount of 15 material is:  8 .  3 c.

The days usage of materials is: 15  500 350 400     11,500   700 500 850    8  17, 050     3     Thus, 11,500 pounds of stainless steel and 17,050 pounds of aluminum were used that day.

d. The 1 by 2 matrix representing cost is: 0.10 0.05 . e.

The total cost of the day’s production was:  11,500  0.10 0.05      2002.50 . 17, 050  The total cost of the day’s production was $2002.50.

1212 Copyright © 2020 Pearson Education, Inc.


Section 11.4: Matrix Algebra 90. a.

The rows of the 2 by 3 matrix represent the location. The columns represent the type of car sold. The 2 by 3 matrix for January is:  400 250 50   450 200 140  . The 2 by 3 matrix for  

1  0 0 1  0 0

350 100 30  February is:  . 350 300 100 

750 350 80    800 500 240   100  The 3 by 1 matrix representing profit:  150  .  200 

M  EK

b.

d. Multiplying to find the profit at each location: 100   750 350 80    143,500   800 500 240   150    203, 000  .    200     

91. a.

 R2  r2 

 R2  r2  r3 

 1 0 0 1 0 1  0 1 0 1 1 1  R1  r1  r2  0 0 1 0 1 1  1 0 1 1 Thus, K   1 1 1 .  0 1 1

b. Adding the matrices:  400 250 50  350 100 30   450 200 140   350 300 100     

c.

1 0 0 1 0 1 1 1 2 0  0 1 0 1 1 1 0 0 1 0 1 0 1 1 1 0 1 0 1 1

1

 47 34 33  1 0 1   44 36 27   1 1 1  47 41 20   0 1 1 13 1 20    8 9 19   6 21 14 

The city location has a two-month profit of $143,500. The suburban location has a twomonth profit of $203,000.

because a11  47(1)  34(1)  33(0)  13

 2 1 1 K   1 1 0    1 1 1 Augment the matrix with the identity and use row operations to find the inverse: 2 1 1 1 0 0  1 1 0 0 1 0    1 1 1 0 0 1

a13  47(1)  34(1)  33(1)  20

1  2   1 1  0  0

1 0 0 1 0 1 1 1 0 0  1 1 0 0 1 1 0 0 1 0 1 1 1 2 0   0 1 0 1 1

a12  47(0)  34(1)  33(1)  1 a21  44(1)  36(1)  27(0)  8 a22  44(0)  36(1)  27(1)  9 a23  44(1)  36(1)  27(1)  19 a31  47(1)  41(1)  20(0)  6 a32  47(0)  41(1)  20(1)  21 a33  47(1)  41(1)  20(1)  14 13  M ; 1  A; 20  T ; 8  H ; 9  I ; 19  S ; 6  F ; 21  U ; 14  N The message: Math is fun.

c.

 Interchange   r and r  1  2  R2  2 r1  r2  R  r  r  1 3   3

 0.4 0.2 0.1 0.4 0.2 0.1 92. P   0.5 0.6 0.5  0.5 0.6 0.5  0.1 0.2 0.4   0.1 0.2 0.4   0.27 0.22 0.18   0.55 0.56 0.55  0.18 0.22 0.27  because 2

1213

Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities a11  0.4(0.4)  0.2(0.5)  0.1(0.1)  0.27 a12  0.4(0.2)  0.2(0.6)  0.1(0.2)  0.22 a13  0.4(0.1)  0.2(0.5)  0.1(0.4)  0.18 a21  0.5(0.4)  0.6(0.5)  0.5(0.1)  0.55 a22  0.5(0.2)  0.6(0.6)  0.5(0.2)  0.56 a23  0.5(0.1)  0.6(0.5)  0.5(0.4)  0.55 a31  0.1(0.4)  0.2(0.5)  0.4(0.1)  0.18 a32  0.1(0.2)  0.2(0.6)  0.4(0.2)  0.22 a33  0.1(0.1)  0.2(0.5)  0.4(0.4)  0.27

Each entry represents the probability that a grandchild has a certain income level given his or her grandparents’ income level. 93. Let 2 5    3 2   1  24 13 1  17 17 A ;A   ;B     3  1  1 5   26 7 40   17 17  . Then let AX  B . We can solve the equation AX  B by multiplying both sides by the inverse of A . A1 AX  A1 B

IX  A1 B 2 5  17  17   24 13 1  X   3   26 7 40  1  17 17   4 3 5     6 2 7 

é0 ê ê1 ê 94. a. A = ê 0 ê ê0 ê ê0 ë

1 0 0 0 1

1 0 0 0 0

0 1 1 0 0

é 1 0 0 2 1ù ê ú ê 0 2 1 0 1ú ê ú c. A2 = ê 0 0 0 0 1ú ; each i, j entry ê ú ê 0 1 0 0 0ú ê ú ê 1 0 0 1 1ú ë û indicates the number of ways to get from page i to page j in exactly two clicks. é0 ê ê1 ê 95. A = ê1 ê ê0 ê ê0 ë

1 0 0 0 1

1 0 0 1 0

0ù ú 1ú ú 0ú ú 1úú 0úû

0 1 1 0 0

a. é2 ê ê0 ê 2 A = ê0 ê ê1 ê ê1 ë

0 2 1 1 0

0 2 2 0 0

2 0 0 1 1

é2 ê ê5 ê 2 3 A + A + A = ê4 ê ê2 ê ê1 ë

é0 1ù ú ê ú ê4 1 ú 3 ê 1ú A = ê 3 ú ê ê1 0úú ê ê0 1úû ë 4 3 2 2 3

5 2 2 3 2

2 5 4 2 1

3 1 1 1 2

4 0 0 2 2

0 4 3 1 0

2ù ú 2ú ú 1ú ú 2úú 1úû

3ù ú 4ú ú 2ú ú 3úú 2úû

Yes, all pages can reach every other page within 3 clicks. b. The largest number in row 1 (page 1) is 5 which corresponds to page 3. é 1 0 -3ù ê ú 5ú 96. a. S = ê 0 1 ê ú ê0 0 ú 1 ë û

0ù ú 1ú ú 0ú ú 1úú 0úû

é1 0 3ù ê ú b. S = ê0 1 -5ú . This is the translation ê ú ê0 0 1úû ë matrix needed to get the translated coordinates back to the original coordinates. -1

b. The diagonal entries are all zero indicating that no page has a link to itself.

1214 Copyright © 2020 Pearson Education, Inc.


Section 11.4: Matrix Algebra

Substitute b  0 into equation (1);

é 1 ù 3 ê ú ê 2 - 2 0ú ê ú é 6ù êé 3 - 2 3 úù ê 3 ú ê ú ê 1 ú 0úú ê 4ú = ê3 3 + 2ú 97. a. XR = êê ê ú ê ú 2 2 ê ú ê 1ú ê 1 ú ê 0 1úú ë û ëê ûú ê 0 ê ú êë úû

a 2  a  0  a (a  1)  a  0 or a  1

So, 1 1 1 1 a   , b   ; a   , b  ; a  0, b  0; a  1, b  0 2 2 2 2

100. Answers will vary. 101. Since the product is found by multiplying the components from the columns of the first matrix by the components in the rows of the second matrix and then adding those products, then the number of columns in the first must equal the number of rows in the second.

The coordinates would be

3  2 3,3 3  2

b.

  1 3 0  2 2     3 1 0 ; This is the rotation R 1    2  2   0 0 1     matrix needed to get the translated coordinates back to the original coordinates.

102. For real numbers this you multiply both sides by the multiplicative inverse of c, 1c , c not equal 0.

Since c times 1c results in 1, the multiplicative identity, then a = b. For matrices, this would hold true as long as C has an inverse. Then you would multiply both sides by C

AC  BC

AB  BA

98.

103. If the inverse of A exists:

AX  0

A1 AX  A1 0 IX  0 X 0

So, a  d and b  c. A2  A  0

a  b   2ab 2

2

If the inverse of A does not exist, then A is singular and you would not be able to multiply A by its inverse to give the identity inverse and X would have no solution.

2ab   a b  0 0     a  b 2   b a  0 0  2

a2  a  b2   2ab  b

2ab  b  0 0    2 a  a  b 2   0 0 

a 2  a  b2  0

So, 

 2ab  b  0

104.

(1) (2)

f ( x)  ax3  x  3  x  (  2)  For a  1 : f ( x)  x3 ( x  3) 2 ( x  2) 2

 x3 x 2  6 x  9  x  2

Solve equation (2); 2ab  b  0  (2a  1)b  0 a

to get:

ACC 1  BCC 1 AI  BI A B

b d  a  b a  b  a  c  c  d c  d    a  c b  d      So we have  a  b  a  c (1)  b  c  0 (1)  a  b  b  d (2) a  d  0 (2)         c d a c (3)  a  d  0 (3) c  d  b  d (4)  b  c  0 (4)

99.

1

6

 x  4 x  3 x  18 x3

1 or b  0 2

5

4

105. v  w  ( 2)(2)  ( 1)(1)  4  1  5 vw 5 5 cos      1 v w 5 5 5

1 into equation (1); 2 1 1 1 1   b2  0  b2   b   4 2 4 2

Substitute a  

  cos 1 ( 1)  180 1215

Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities 111. 106.

x 5x  x2 x2 5 x( x  2)  x( x  2)

3x 4  12 x3  108 x 2  432 x  3x( x3  4 x 2  36 x  144)  3x  x  4  ( x 2  36)  3x  x  4  ( x  6)( x  6)

5 x 2  10 x  x 2  2 x 4 x 2  12 x  0 4 x( x  3)  0 4 x  0 or x  3  0 x  0 or x3 The solution set is  0,3 .

107. Let   csc 1 u so that csc   u , 

 2

 

 2

u  1 . Then,

cos csc1 u  cos   cos  

,

112. Graph the functions. The area enclosed by the 1 1 semi-circle is:  r 2   (2) 2  2 . The area 2 2 1 1 enclosed by the triangle is: bh  (4)(2)  4 . 2 2 The total area is 2  4  10.28 square units . 113.

sin   cot  sin  sin 

 f  g  ( x) 

cot  cot 2  csc 2   1    csc  csc  csc  u2 1 u

 1 i 3     108. 8e 3  8  cos  i sin   8   i 3 3 2 2    

25( 52 sec x) 2  4 2 sec x 5

4 25( 25 sec 2 x )  4 2 sec x 5

4(sec2 x  1) x

4sec2 x  4  2 sec x 5

4 tan 2 x 2 tan x 2sin x 5cos x  2   2 sec x sec x cos x 2 5 5

 5sin x

 44 3 i

109.

 x  1 x  3  4  x  3 4 x 1   x  3 x  3  x  3 x  3  x  3 x  3  x  1 x  3  4  x  3   x  3 x  3  

2

x  4 x  3  4 x  12  x  3 x  3 x2  8x  9 x2  9

 x  9  x  1  x  3 x  3

110. The radical cannot be negative and the denominator cannot be zero so: 10  2 x  0 x3  0 2 x  10 and x  3 x5 So the domain is:  x | x  5, x  3 .

Section 11.5 1. True 2. True 3.

3x  12 2

x  16

3( x  4) 3  4  x 4 4   x x   

4. True x is proper, since x2  1 the degree of the numerator is less than the degree of the denominator.

5. The rational expression

1216 Copyright © 2020 Pearson Education, Inc.


Section 11.5: Partial Fraction Decomposition

6. The rational expression

5x  2 3

3x 2  5 x  9

is proper, since

x 1 the degree of the numerator is less than the degree of the denominator.

7. The rational expression

x2  5 x2  4

6 x3  15 x 2 10 x 2  7 x 10 x 2  25 x 18 x  3 18 x  45 42 The proper rational expression is:

is improper, so

perform the division: 1 x2  4 x2  5

6 x3  5 x 2  7 x  3 42  3x 2  5 x  9  2x  5 2x  5

x2  4 9 The proper rational expression is: 9 x2  5  1 2 2 x 4 x 4

8. The rational expression

3x 2  2 x2  1

11. The rational expression

is improper, so 12. The rational expression

3x 2  3 1 The proper rational expression is: 3x 2  2 1  3 2 2 x 1 x 1 x3  x 2  12 x  9 x 2  2 x  15

13. The rational expression

x 2  4 5 x3

is

2

x 4

 x  3x  9

 5x 

22 x  1 x2  4 3x 4  x 2  2 x3  8

so perform the division: 3x

 x 2  2 x  15 5x  6 The proper rational expression is:

10. The rational expression

 2x 1

14. The rational expression

2

 x 1 

is improper,

3

5 x3  2 x  1

x3  2 x 2  15 x

x 2  2 x  15

x2  4

 20 x 22 x  1 The proper rational expression is: 5x

x 2  2 x  15 x3 + x 2  12 x  9

x  x  12 x  9

5 x3  2 x  1

so perform the division: 5x

improper, so perform the division: x 1

2

x3  12 x 2  9 x

is 9x2  x4 proper, since the degree of the numerator is less than the degree of the denominator.

x 2  1 3x 2  2

3

5x2  7 x  6

is proper, x  x3 since the degree of the numerator is less than the degree of the denominator.

perform the division: 3

9. The rational expression

6 x3  5 x 2  7 x  3

2x  5

x3  8 3x 4  x 2 3x

5x  6 x 2  2 x  15

4

2  24 x

2

x  24 x  2 The proper rational expression is:

6 x3  5 x 2  7 x  3 is 2x  5

3x 4  x 2  2 3

x 8

improper, so perform the division:

1217

Copyright © 2020 Pearson Education, Inc.

 3x 

x 2  24 x  2 x3  8

is improper,


Chapter 11: Systems of Equations and Inequalities

Let x  1 , then 3(1)  A(0)  B (3) 3B  3 B 1 Let x  2 , then 3(– 2)  A(3)  B (0) 3 A   6 A2 3x 2 1   ( x  2)( x  1) x  2 x  1

15. The rational expression x( x  1) x2  x is improper, so  2 ( x  4)( x  3) x  x  12 perform the division: 1 x 2  x  12 x 2  x  0 x 2  x  12  2 x  12 The proper rational expression is:

19. Find the partial fraction decomposition:

x( x  1)  2 x  12  2( x  6) 1 2 1 ( x  4)( x  3) ( x  4)( x  3) x  x  12

16. The rational expression

2 x ( x 2  4) 2

x 1

2 x3  8 x 2

x 1

1 2

x( x  1)

is

2x

 1  A Bx  C  2 2   x( x  1)  x  x 2  1  x ( x  1)  

1  A( x 2  1)  ( Bx  C ) x Let x  0 , then 1  A(02  1)  ( B (0)  C )(0)

3

x  1 2 x  8x

A 1

2 x3  2 x 6x

x2  1

1  A(12  1)  ( B (1)  C )(1)

Let x  1 , then

1  2A  B  C 1  2(1)  B  C B  C  1

The proper rational expression is: 2 x( x 2  4)

A Bx  C  x x2  1

x( x 2  1) 

improper, so perform the division: 2

 2x 

6x

Let x  1 , then

x2  1

17. Find the partial fraction decomposition: 4 A B   x( x  1) x x  1 

4  B  A   x( x  1)     1  x ( x 1) x x   

x( x  1) 

4  A( x  1)  Bx

Let x  1 , then 4  A(0)  B B4 Let x  0 , then 4  A(1)  B (0) A  4 4 4 4   x( x  1) x x 1

1  A((1) 2  1)  ( B(1)  C )(1) 1  A(1  1)  ( B  C )(1) 1  2A  B  C 1  2(1)  B  C B  C  1

Solve the system of equations: B  C  1 B  C  1 2B  2 B  1 1  C  1 C0

1 2

x( x  1) 18. Find the partial fraction decomposition 3x A B   ( x  2)( x  1) x  2 x  1

Multiplying both sides by ( x  2)( x  1) , we obtain: 3x  A( x  1)  B ( x  2)

1 x  x x2  1

20. Find the partial fraction decomposition: 1 ( x  1)( x 2  4)

A Bx  C  x  1 x2  4

Multiplying both sides by ( x  1)( x 2  4) , we obtain: 1  A( x 2  4)  ( Bx  C )( x  1)

1218 Copyright © 2020 Pearson Education, Inc.


Section 11.5: Partial Fraction Decomposition

Let x  2 , then 3( 2)  A( 2  4)  B( 2  2)  6   6A A 1 Let x  4 , then 3(4)  A(4  4)  B(4  2) 12  6 B B2 3x 1 2   ( x  2)( x  4) x  2 x  4

1  A(5)  ( B (1)  C )(0) 5A  1 1 A 5 Let x  1 , then 1  A(12  4)  ( B (1)  C )(1  1) 1  5 A  ( B  C )(2)

Let x  1 , then

1  5 1/ 5   2 B  2C 1  1  2 B  2C 0  2 B  2C 0  BC Let x  0 , then 1  A(02  4)  ( B (0)  C )(0  1) 1  4A  C

23. Find the partial fraction decomposition: x2 A B C    2 2 x 1 ( x  1) ( x  1) x  1 ( x  1)

Multiplying both sides by ( x  1) 2 ( x  1) , we

1  4 1/ 5   C

obtain: x 2  A( x  1)( x  1)  B ( x  1)  C ( x  1) 2

4 C 5 1 C 5 1

Let x  1 , then 12  A(1  1)(1  1)  B (1  1)  C (1  1) 2

Since B  C  0 , we have that B 

1 0 5 B

1 ( x  1)( x 2  4)

1 5

x 1

1  A(0)(2)  B (2)  C (0) 2 1  2B 1 B 2

1 5

Let x  1 , then (1) 2  A(1  1)(1  1)  B (1  1)  C (1  1) 2

 15 x  15 x2  4

1  A(2)(0)  B (0)  C (2) 2 1  4C 1 C 4

21. Find the partial fraction decomposition: x A B   ( x  1)( x  2) x  1 x  2

Multiplying both sides by ( x  1)( x  2) , we obtain: x  A( x  2)  B( x  1)

Let x  0 , then 02  A(0  1)(0  1)  B (0  1)  C (0  1) 2 0  A  B  C A  BC 1 1 3 A   2 4 4

Let x  1 , then 1  A(1  2)  B (1  1) 1  A A  1 Let x  2 , then 2  A(2  2)  B(2  1) 2B x 1 2   ( x  1)( x  2) x  1 x  2

x2 ( x  1) 2 ( x  1)

3 4

1 2

x  1 ( x  1)

 2

1 4

x 1

24. Find the partial fraction decomposition:

22. Find the partial fraction decomposition: 3x A B   ( x  2)( x  4) x  2 x  4

x 1 2

x ( x  2)

A B C  2 x x x2

Multiplying both sides by x 2 ( x  2) , we obtain:

Multiplying both sides by ( x  2)( x  4) , we obtain: 3x  A( x  4)  B( x  2)

x  1  Ax( x  2)  B ( x  2)  Cx 2

1219

Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities

Let x  0 , then 0  1  A(0)(0  2)  B (0  2)  C (0) 2 1   2B 1 B 2 Let x  2 , then 2  1  A(2)(2  2)  B (2  2)  C (2) 2 3  4C 3 C 4 Let x  1 , then 2   A  B  C A  B  C  2 3  1 3 A      2   4  2 4 3 3 1   x 1  4  22  4 2 x x2 x ( x  2) x

25. Find the partial fraction decomposition: 1 x3  8

1

( x  2)( x 2  2 x  4) 1 A Bx  C   2 2 x  2 ( x  2)( x  2 x  4) x  2x  4

Multiplying both sides by ( x  2)( x 2  2 x  4) , we obtain: 1  A( x 2  2 x  4)  ( Bx  C )( x  2) Let x  2 , then

Let x  1 , then

1 7A  B  C 1  7 1/12   B  B 1

x3  8

C  1 3

1 12

x2

1 x1  12 3

x2  2x  4 1 x4  12  

x2  2x  4

obtain: 2 x  4  A( x 2  x  1)  ( Bx  C )( x  1) Let x  1 , then

2(1)  4  A 12  1  1   B (1)  C  (1  1) 6  3A A2 Let x  0 , then

2(0)  4  A 02  0  1  ( B (0)  C )(0  1) 4  A C 4  2C C  2

Let x  1 , then

2(1)  4  A (1)2  (1)  1  ( B (1)  C )(1  1) 2  A  2 B  2C 2  2  2 B  2( 2) 2B   4 B  2

1  4 A  2C 2C  23

x2

Multiplying both sides by ( x  1)( x 2  x  1) , we

1  A 02  2(0)  4  ( B (0)  C )(0  2) 1  4 1/12   2C

1 12

26. Find the partial fraction decomposition: 2x  4 2x  4 A Bx  C    2 3 2  x 1 x  1 ( x  1)( x  x  1) x  x 1

1 3

1 12

1  A 22  2(2)  4  ( B (2)  C )(2  2) 1  12 A 1 A 12 Let x  0 , then

1  A 12  2(1)  4  ( B (1)  C )(1  2)

2x  4 3

x 1

 2x  2 2  2 x 1 x  x 1

27. Find the partial fraction decomposition: x2 2

( x  1) ( x  1)2

A B C D    x  1 ( x  1)2 x  1 ( x  1) 2

Multiplying both sides by ( x  1)2 ( x  1)2 , we obtain: x 2  A( x  1)( x  1)2  B( x  1)2  C ( x  1) 2 ( x  1)  D ( x  1) 2

1220 Copyright © 2020 Pearson Education, Inc.


Section 11.5: Partial Fraction Decomposition

Let x  1 , then 2

28. Find the partial fraction decomposition: 2

1  A(1  1)(1  1)  B(1  1)

x 1

2 2

x ( x  2)

 C (1  1) 2 (1  1)  D(1  1) 2

A B C D  2  x x x  2 ( x  2) 2

Multiplying both sides by x 2 ( x  2)2 , we obtain:

1  4B 1 B 4 Let x  1 , then

x  1  Ax( x  2) 2  B ( x  2)2  Cx 2 ( x  2)  Dx 2

Let x  0 , then 0+1  A(0)(0  2) 2  B(0  2) 2

(1) 2  A(1  1)(1  1) 2  B (1  1) 2 2

 C (1  1) (1  1)  D(1  1)

 C (0) 2 (0  2)  D(0) 2

2

1  4B

1  4D 1 D 4 Let x  0 , then 2

2

1 4 Let x  2 , then B

2

0  A(0  1)(0  1)  B (0  1)

2  1  A(2)(2  2) 2  B (2  2) 2

2

2

 C (0  1) (0  1)  D(0  1) 0  A  B  C  D AC  B  D 1 1 1 AC    4 4 2

 C (2) 2 (2  2)  D(2) 2

2

3  4D 3 D 4

Let x  1 , then 1  1  A(1)(1  2) 2  B (1  2) 2

Let x  2 , then

 C (1) 2 (1  2)  D(1) 2 2  A B C  D AC  2 B  D 1 3 AC  2  1 4 4 Let x  3 , then 3  1  A(3)(3  2) 2  B (3  2)2

22  A(2  1)(2  1) 2  B (2  1) 2  C (2  1) 2 (2  1)  D(2  1) 2 4  9 A  9 B  3C  D 9 A  3C  4  9 B  D 1 1 3 9 A  3C  4  9     4 4 2 1 3A  C  2 Solve the system of equations: AC  1 2 1 3A  C  2 4A 1 A 1 4 3 C  1 4 2 C 1 4 1 1 1 2 1 x 4 4  4   4  2 2 2 x  1 ( x  1) x  1 ( x  1) 2 ( x  1) ( x  1)

 C (3) 2 (3  2)  D(3) 2 4  3 A  B  9C  9 D 3 A  9C  4  B  9 D 1 3 3 A  9C  4   9    3 4 4 A  3C  1 Solve the system of equations:  AC 1   A  3C  1 A C  1 A  C 1 A  3C  1

 C  1  3C  1 4C   2 C

1221

Copyright © 2020 Pearson Education, Inc.

1 2


Chapter 11: Systems of Equations and Inequalities

1 1 A  C 1   1  2 2 3 1 1  12 x 1 2 4 4     x 2 ( x  2) 2 x x 2 x  2 ( x  2) 2

29. Find the partial fraction decomposition: x 3 ( x  2)( x  1) 2

A B C   x  2 x  1 ( x  1)2

Multiplying both sides by ( x  2)( x  1) 2 , we

Let x  1 , then 12  1  A(1  1) 2  B (1  2)(1  1)  C (1  2) 2  3C 2 C 3 Let x  0 , then 02  0  A(0  1) 2  B (0  2)(0  1)  C (0  2) 0  A  2 B  2C 2 B  A  2C

obtain: x  3  A( x  1) 2  B( x  2)( x  1)  C ( x  2)

2  2  14  2   9 3 9 7 B 9

2B 

Let x   2 , then  2  3  A( 2  1) 2  B(  2  2)(  2  1)  C (  2  2) 5  A A  5

Let x  1 , then 1  3  A(1  1) 2  B(1  2)(1  1)  C (1  2) 4  C C  4 Let x  0 , then 0  3  A(0  1) 2  B (0  2)(0  1)  C (0  2) 3  A  2 B  2C 3  5  2 B  2( 4) 2 B  10 B5 5 4 x 3 5    2   x x 2 1 ( x  2)( x  1) ( x  1) 2 30. Find the partial fraction decomposition: x2  x A B C    2 x  2 x  1 ( x  1)2 ( x  2)( x  1)

Multiplying both sides by ( x  2)( x  1) 2 , we obtain: x 2  x  A( x  1) 2  B( x  2)( x  1)  C ( x  2) Let x   2 , then ( 2) 2  ( 2)  A( 2  1) 2  B ( 2  2)( 2  1)  C (  2  2) 2  9A A

2 9

x2  x ( x  2)( x  1)

 2

2 9

x2

7 9

2 3

x  1 ( x  1)2

31. Find the partial fraction decomposition: x4 2

2

x ( x  4)

A B Cx  D   x x2 x2  4

Multiplying both sides by x 2 ( x 2  4) , we obtain: x  4  Ax( x 2  4)  B( x 2  4)  (Cx  D) x 2

Let x  0 , then 0  4  A(0)(02  4)  B (02  4)   C (0)  D  (0) 2 4  4B B 1

Let x  1 , then 1  4  A(1)(12  4)  B (12  4)  (C (1)  D)(1) 2 5  5 A  5B  C  D 5  5A  5  C  D 5A  C  D  0 Let x  1 , then 1  4  A(1)((1) 2  4)  B ((1) 2  4)  (C ( 1)  D)(1) 2 3  5 A  5 B  C  D 3  5 A  5  C  D 5 A  C  D   2

Let x  2 , then 2  4  A(2)(22  4)  B(22  4)  (C (2)  D)(2)2 6  16 A  8B  8C  4 D 6  16 A  8  8C  4 D 16 A  8C  4 D   2

1222 Copyright © 2020 Pearson Education, Inc.


Section 11.5: Partial Fraction Decomposition

Let x  1 , then

Solve the system of equations: 5A  C  D  0 5 A  C  D   2

10(1) 2  2(1)  A(1  1)((1) 2  2)  B(( 1) 2  2)

2D   2 D  1

 (C (1)  D)(1  1) 2 8   6 A  3B  4C  4 D 8   6 A  12  4C  4 D 6 A  4C  4 D   4 Let x  2 , then

5A  C 1  0 C  1 5A

16 A  8(1  5 A)  4(1)   2 16 A  8  40 A  4   2  24 A   6 1 A 4

10(2) 2  2(2)  A(2  1)(22  2)  B(22  2)  (C (2)  D)(2  1) 2 44  6 A  6 B  2C  D 44  6 A  24  2C  D 6 A  2C  D  20 Solve the system of equations (Substitute for D): D  2A  8  6 A  4C  4 D   4  6 A  4C  4(2 A  8)   4 2 A  4C  28 A  2C  14

5 1 1 C  1 5   1   4 4 4   1 1 x4 1  x 1  4  2  42 2 2 x ( x  4) x x x 4 1 1  1  x  4  4  2  42 x x x 4

32. Find the partial fraction decomposition: 10 x 2  2 x A B Cx  D    ( x  1) 2 ( x 2  2) x  1 ( x  1) 2 x 2  2

6 A  2C  D  20 6 A  2C   2 A  8   20 8 A  2C  28

Multiply both sides by ( x  1) 2 ( x 2  2) :

Add the equations and solve: A  2C  14 8 A  2C  28  42 9A 14 A 3 14 28 2C  A  14   14   3 3 14 C 3 4  14  D  2A  8  2   8  3  3

10 x 2  2 x  A( x  1)( x 2  2)  B( x 2  2)  (Cx  D)( x  1) 2

Let x  1 , then 10(1) 2  2(1)  A(1  1)(12  2)  B(12  2)   C (1)  D  (1  1) 2 12  3B B4 Let x  0 , then 10(0) 2  2(0)  A(0  1)(02  2)  B (02  2)   C (0)  D  (0  1) 2 0  2 A  2 B  D 0  2 A  8  D 2A  D  8 D  2A  8

10 x 2  2 x ( x  1) 2 ( x 2  2)

1223

Copyright © 2020 Pearson Education, Inc.

14 3

4

x  1 ( x  1)

 2

 143 x  43 x2  2


Chapter 11: Systems of Equations and Inequalities 33. Find the partial fraction decomposition: x2  2 x  3 A Bx  C   2 2 ( x  1)( x  2 x  4) x  1 x  2 x  4

Multiplying both sides by ( x  1)( x 2  2 x  4) , we obtain: x 2  2 x  3  A( x 2  2 x  4)  ( Bx  C )( x  1) Let x  1 , then (1) 2  2(1)  3  A((1) 2  2(1)  4)  ( B (1)  C )(1  1) 2  3A 2 A 3 Let x  0 , then 02  2(0)  3  A(02  2(0)  4)  ( B(0)  C )(0  1) 3  4A  C 3  4  2 / 3  C C

1 3

Let x  1 , then 12  2(1)  3  A(12  2(1)  4)  ( B(1)  C )(1  1) 6  7 A  2 B  2C 6  7  2 / 3  2 B  2 1/ 3 2 B  6  143  32  32 B  13 x2  2 x  3 ( x  1)( x 2  2 x  4)

 

2 3

x 1 2 3

x 1

 

1 x1 3 3

x2  2 x  4 1 ( x  1) 3 2

x  2x  4

34. Find the partial fraction decomposition: x 2  11x  18 A Bx  C   x( x 2  3x  3) x x 2  3 x  3

Multiplying both sides by x( x 2  3 x  3) ( x  1)( x 2  2 x  4) , we obtain: x 2  11x  18  A( x 2  3 x  3)  ( Bx  C ) x

Let x  0 , then

02  11(0)  18  A 02  3(0)  3   B(0)  C  (0) 18  3 A A  6 Let x  1 , then

12  11(1)  18  A 12  3(1)  3   B (1)  C  (1) 28  7 A  B  C 28  7(6)  B  C B  C  14 Let x  1 , then

(1)2  11(1)  18  A (1) 2  3(1)  3

  B (1)  C  (1) 6  A  B  C 6  6  B  C B C  0 Add the last two equations and solve: B  C  14 B C  0  14 B7 B  C  14 7  C  14 C7 2B

x 2  11x  18 2

x( x  3x  3)

7x  7 6  2 x x  3x  3

35. Find the partial fraction decomposition: x A B   (3x  2)(2 x  1) 3x  2 2 x  1

Multiplying both sides by (3 x  2)(2 x  1) , we obtain: x  A(2 x  1)  B (3 x  2) Let x   1 , then 2 1   A  2  1/ 2   1  B  3  1/ 2   2  2 1 7   B 2 2 1 B 7 2 Let x  , then 3 2  A  2  2 / 3  1  B  3  2 / 3  2  3 2 7  A 3 3 2 A 7 2 1 x  7  7 (3x  2)(2 x  1) 3x  2 2 x  1

1224 Copyright © 2020 Pearson Education, Inc.


Section 11.5: Partial Fraction Decomposition

Multiplying both sides by ( x  1)( x  2)( x  3) , we obtain:

36. Find the partial fraction decomposition: 1 A B   (2 x  3)(4 x  1) 2 x  3 4 x  1

x 2  x  8  A( x  2)( x  3)  B ( x  1)( x  3)

Multiplying both sides by (2 x  3)(4 x  1) , we obtain: 1  A(4 x  1)  B (2 x  3)

 C ( x  1)( x  2)

Let x  1 , then (1) 2  ( 1)  8  A(1  2)(1  3)

3 , then 2   3    3  1  A  4     1  B  2     3  2       2  1  7 A 1 A 7 1 Let x  , then 4  1   1  1  A  4    1  B  2    3  4      4 

Let x  

 B (1  1)(1  3)  C ( 1  1)(1  2) 6  2 A A  3

Let x  2 , then

( 2) 2  ( 2)  8  A(  2  2)( 2  3)  B ( 2  1)(  2  3)  C ( 2  1)( 2  2) 2   B B2 Let x  3 , then

7 B 2 2 B 7

(3) 2  ( 3)  8  A(3  2)( 3  3)  B(3  1)(3  3)  C ( 3  1)( 3  2) 4  2C C2

1

2  17 1   7 (2 x  3)(4 x  1) 2 x  3 4 x  1

x2  x  8 2

( x  1)( x  5 x  6)

37. Find the partial fraction decomposition: x x A B    2 x  2 x  3 ( x  3)( x  1) x  3 x  1

Multiplying both sides by ( x 2  4) 2 , we obtain:

Let x  1 , then 1  A(1  1)  B(1  3) 1  4B 1 B 4

x 2  2 x  3  ( Ax  B)( x 2  4)  Cx  D x 2  2 x  3  Ax3  Bx 2  4 Ax  4 B  Cx  D x 2  2 x  3  Ax3  Bx 2  (4 A  C ) x  4 B  D A0;

Let x  3 , then 3  A(3  1)  B (3  3) 3   4 A 3 A 4 x x2  2 x  3

x3

1 4

B 1;

4A  C  2

4B  D  3

4(0)  C  2

4(1)  D  3

C2

D  1

2

x  2x  3

x 1

2

( x  4)

2

38. Find the partial fraction decomposition: x2  x  8

3 2 2   x 1 x  2 x  3

39. Find the partial fraction decomposition: x 2  2 x  3 Ax  B Cx  D  2  ( x 2  4) 2 x  4 ( x 2  4) 2

Multiplying both sides by ( x  3)( x  1) , we obtain: x  A( x  1)  B( x  3)

3 4

x2  x  8 ( x  1)( x 2  5 x  6) ( x  1)( x  2)( x  3) A B C    x 1 x  2 x  3 

1225

Copyright © 2020 Pearson Education, Inc.

1 2

x 4

2x 1 ( x 2  4) 2


Chapter 11: Systems of Equations and Inequalities 40. Find the partial fraction decomposition: x3  1 Ax  B Cx  D  2  2 2 2 ( x  16) x  16 ( x  16) 2

Multiplying both sides by ( x 2  16) 2 , we obtain: x3  1  ( Ax  B)( x 2  16)  Cx  D x3  1  Ax3  Bx 2  16 Ax  16 B  Cx  D x3  1  Ax3  Bx 2  (16 A  C ) x  16 B  D A 1; B  0 ;

42. Find the partial fraction decomposition: x3  1 x3  1  x5  x 4 x 4 ( x  1) A B C D E   2 3 4 x x x 1 x x

Multiplying both sides by x 4 ( x  1) , we obtain: x3  1  Ax3 ( x  1)  Bx 2 ( x  1)  Cx( x  1)  D( x  1)  Ex 4

Let x  0 , then

16 A  C  0

04  1  A  03 (0  1)  B  02 (0  1)  C  0(0  1)

16(1)  C  0

 D(0  1)  E  04

C  16

1  D

16 B  D  1 16(0)  D  1

D  1

Let x  1 , then

D 1 x3  1 ( x 2  16) 2

x x 2  16

14  1  A 13 (1  1)  B 12 (1  1)  C 1(1  1)

16 x  1

 D(1  1)  E 14

( x 2  16) 2

41. Find the partial fraction decomposition: 7x  3 7x  3  3 2 x  2 x  3 x x( x  3)( x  1) A B C    x x  3 x 1 Multiplying both sides by x( x  3)( x  1) , we obtain: 7 x  3  A( x  3)( x  1)  Bx( x  1)  Cx( x  3)

Let x  0 , then 7(0)  3  A(0  3)(0  1)  B(0)(0  1)  C (0)(0  3)

2E

Let x  1 , then (1) 4  1  A(1)3 (1  1)  B( 1) 2 (1  1)  C (1)( 1  1)  D (1  1)  E (1) 4 0  2 A  2 B  2C  2 D  E

0  2 A  2 B  2C  2(1)  2 2 A  2 B  2C  4 A  B  C  2

Let x  2 , then 24  1  A  23 (2  1)  B  22 (2  1)  C  2(2  1)  D(2  1)  E  24 9  8 A  4 B  2C  D  16 E

3  3 A A  1

9  8 A  4 B  2C  (1)  16(2)

Let x  3 , then 7(3)  3  A(3  3)(3  1)  B (3)(3  1)  C (3)(3  3) 24  12 B B2

7x  3 2

x  2 x  3x

4 A  2 B  C  11

Let x  2 , then

Let x  1 , then 7(1)  3  A(1  3)(1  1)  B(1)(1  1)  C (1)(1  3) 4  4C C  1 3

8 A  4 B  2C   22

1 1 2   x x  3 x 1

(22)4  1  A( 2)3 (2  1)  B (2)2 (2  1)  C ( 2)(2  1)  D (2  1)  E (2) 4

7  24 A  12 B  6C  3D  16 E 7  24 A  12 B  6C  3(1)  81(2) 42  24 A  12 B  6C 14  8 A  4 B  2C

Solve the system of equations by using a matrix equation:

1226 Copyright © 2020 Pearson Education, Inc.


Section 11.5: Partial Fraction Decomposition

02  A(0  1) 2  B (0  2)(0  1)  C (0  2) 0  A  2 B  2C 0  4  2 B  2(1) 2 B  6 B  3

A  B  C  2   4 A  2B  C  11  8 A  4 B  2C  14 

x2

 1 1 1   A   2   4 2 1   B    11       8 4 2  C   14 

3

2

x  4 x  5x  2

 A   1 1 1   B   4 2 1     C   8 4 2 

1

4 3 1   x  2 x  1 ( x  1) 2

44. Perform synthetic division to find a factor:  2   2   11   1      14   1

5

11 1

3

2 3

1

1 2 3 3

0

2

x  x  5 x  3  ( x  1)( x 2  2 x  3)

So, A  2 , B  1 , and C  1 . Thus, 3

x 1 5

x x

4

 ( x  3)( x  1) 2

3

x 1

Find the partial fraction decomposition:

4

x ( x  1) 2 1 1 1 2   2 3 4 x x x 1 x x

x2  1 x3  x 2  5 x  3

43. Perform synthetic division to find a factor: 2 1 4

x2  1

( x  3)( x  1) 2 A B C    x  3 x  1 ( x  1) 2

5 2

2 4 1 2

1

Multiplying both sides by ( x  3)( x  1) 2 , we obtain: x 2  1  A( x  1) 2  B( x  3)( x  1)  C ( x  3)

2 0

x3  4 x 2  5 x  2  ( x  2)( x 2  2 x  1)

Let x  3 , then

 ( x  2)( x  1) 2

(3) 2  1  A(3  1) 2  B (3  3)(3  1)  C (3  3) 10  16 A 5 A 8

Find the partial fraction decomposition: x2 x3  4 x 2  5 x  2

x2

( x  2)( x  1) 2 A B C    x  2 x  1 ( x  1) 2

Let x  1 , then 12  1  A(1  1) 2  B(1  3)(1  1)  C (1  3) 2  4C 1 C 2

Multiplying both sides by ( x  2)( x  1) 2 , we obtain: x 2  A( x  1) 2  B ( x  2)( x  1)  C ( x  2) Let x  2 , then 22  A(2  1) 2  B (2  2)(2  1)  C (2  2) 4 A Let x  1 , then 12  A(1  1) 2  B (1  2)(1  1)  C (1  2) 1  C C  1 Let x  0 , then 1227

Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities

Let x  0 , then 2

46. Find the partial fraction decomposition: x2 Ax  B Cx  D Ex  F  2  2  2 2 3 2 ( x  4) ( x  4)3 x  4 ( x  4)

2

0  1  A(0  1)  B (0  3)(0  1)  C (0  3) 1  A  3B  3C

Multiplying both sides by ( x 2  4)3 , we obtain:

5 1  3B  3   8 2 9 3B  8 3 B 8 1

x2  1 x3  x 2  5 x  3

x 2  ( Ax  B )( x 2  4) 2  (Cx  D)( x 2  4)

 Ex  F 2

4

x  ( Ax  B )( x  8 x  16)  Cx  Dx 2

5 8

x3

3 8

x  Ax  Bx  8 Ax  8 Bx 2  16 Ax  16 B

1 2

 x  1 ( x  1) 2

5

4

3

 Cx3  Dx 2  4Cx  4 D  Ex  F x 2  Ax5  Bx 4  (8 A  C ) x3  (8 B  D) x 2

 (16 A  4C  E ) x  (16 B  4 D  F ) A  0; B  0 ;

8A  C  0 8(0)  C  0 C0

8B  D  1 8(0)  D  1 D 1

16 A  4C  E  0 16(0)  4(0)  E  0 E0

Multiplying both sides by ( x 2  16)3 , we obtain: x3  ( Ax  B )( x 2  16) 2  (Cx  D)( x 2  16)  Ex  F x3  ( Ax  B )( x 4  32 x 2  256)  Cx3  Dx 2  16Cx  16 D  Ex  F x3  Ax5  Bx 4  32 Ax3  32 Bx 2  256 Ax

 256 B  Cx3  Dx 2  16Cx  16 D  Ex  F 5

4

3

x  Ax  Bx  (32 A  C ) x  (32 B  D) x  (256 A  16C  E ) x

2

 (256 B  16 D  F ) A  0; B  0 ;

32 A  C  1 32(0)  C  1 C 1

32 B  D  0 32(0)  D  0 D0

256 A  16C  E  0 256(0)  16(1)  E  0 E  16

256 B  16 D  F  0 256(0)  16(0)  F  0 F 0 x3 2

( x  16)

3

x 2

( x  16)

2

3

 4Cx  4 D  Ex  F 2

45. Find the partial fraction decomposition: x3 Ax  B Cx  D Ex  F  2  2  2 2 3 2 ( x  16) ( x  16)3 x  16 ( x  16)

3

2

16 x 2

( x  16)3

16 B  4 D  F  0 16(0)  4(1)  F  0 F  4 x2 2

( x  4)

3

1 2

( x  4)

2

4 2

( x  4)3

47. Find the partial fraction decomposition: 4 4 A B    2 2 x  5 x  3 ( x  3)(2 x  1) x  3 2 x  1

Multiplying both sides by ( x  3)(2 x  1) , we obtain: 4  A(2 x  1)  B( x  3) 1 , then 2   1   1  4  A  2     1  B    3  2 2       47B 2 8 B 7

Let x  

1228 Copyright © 2020 Pearson Education, Inc.


Section 11.5: Partial Fraction Decomposition

Let x  3 , then 2  3  3  A  3(3  3)(3  3)  B (3  3)(3  3)

Let x  3 , then 4  A(2(3)  1)  B (3  3) 4  7A 4 A 7 4  87 4 7   2 x2  5x  3 x  3 2 x  1

 C  32 (3  3)  D  32 (3  3) 9  54C 1 C 6

Let x  3 , then 2(3)  3  A(3)(3  3)(3  3)  B(3  3)(3  3)

48. Find the partial fraction decomposition: 4x 4x A B    2    1 x x x x ( 2)(2 1) 2 2 2 x  3x  2

 C (3) 2 (3  3)

Multiplying both sides by ( x  2)(2 x  1) , we obtain: 4 x  A(2 x  1)  B ( x  2)

 D(3)2 (3  3) 3  54 D 1 D 18

1 , then 2  1  1 1  4    A  2    1  B   2  2 2 2        

Let x 

Let x  1 , then 2 1  3  A 1(1  3)(1  3)  B (1  3)(1  3)

5 B 3 4 B 5 Let x  2 , then 4( 2)  A(2( 2)  1)  B ( 2  2) 8  5 A 8 A 5

 C 12 (1  3)  D 12 (1  3) 5   8 A  8B  4C  2 D

2

4x 2 x 2  3x  2

8 5

x2

5   8 A  8  1/ 3  4 1/ 6   2 1/18  8 2 1 5  8A    3 3 9 16 8A  9 2 A 9 1 1  92  13 2x  3 6 18     x x4  9 x2 x2 x  3 x  3

4 5

2x 1

49. Find the partial fraction decomposition: 2x  3 2x  3  2 4 2 x  9x x ( x  3)( x  3) A B C D   2  x x x 3 x 3

50. Find the partial fraction decomposition: x2  9 x2  9  x 4  2 x 2  8 ( x 2  2)( x  2)( x  2) A B Cx  D    x  2 x  2 x2  2

Multiplying both sides by x 2 ( x  3)( x  3) , we obtain: 2 x  3  Ax( x  3)( x  3)  B ( x  3)( x  3)

Multiplying both sides by (x 2  2)( x  2)( x  2) , we obtain: x 2  9  A( x 2  2)( x  2)  B( x  2)( x 2  2)  (Cx  D)( x  2)( x  2)

 Cx 2 ( x  3)  Dx 2 ( x  3)

Let x  0 , then 2  0  3  A  0(0  3)(0  3)  B (0  3)(0  3)  C  02 (0  3)  D  02 (0  3) 3  9 B 1 B 3

1229

Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities

Let x  2 , then 2

2

2

2  9  A(2  2)(2  2)  B (2  2)(2  2)  (C (2)  D)(2  2)(2  2) 13  24 A 13 A 24 Let x  2 , then ( 2) 2  9  A(( 2) 2  2)( 2  2)

51.

 2x  4x  3  2 x 2  6 x  8

x2

x2

 x2

10 x  11

, x  4,1 x  3x  4 x 2  3x  4 Find the partial fraction decomposition: 10 x  11 10 x  11 A B    2    1 x x x x ( 4)( 1) 4 x  3x  4 2

Multiplying both sides by ( x  4)( x  1) , we obtain: 10 x  11  A( x  1)  B( x  4) Let x  1 , then 10 1  11  A 1  1  B 1  4  1  5 B 1 B 5 Let x  4 , then 10(4)  11  A(( 4)  1)  B ( 4  4) 51  5 A 51 A 5 51  15 10 x  11 5   x 2  3x  4 x  4 x  1

Thus,

 76 x2  2

2

x  x 3

 13   13  9  4    4     4D  24   24  14 4D   3 7 D 6 Let x  1 , then 12  9  A(12  2)(1  2)  B (1  2)(12  2)  (C (1)  D)(1  2)(1  2) 10  9 A  3B  3C  3D 39 13 7 10    3C  8 8 2 3C  0 C0 

10 x  11 3

02  9  A(02  2)(0  2)  B (0  2)(02  2)  (C (0)  D)(0  2)(0  2) 9  4 A  4B  4D

x4  2 x2  8

2

13 24 Let x  0 , then

 13 24

x2 x3  x 2  0 x  3

 x3  3x 2  4 x

B

13 24

x 2  3x  4 Dividing: x 2  3x  4

 B(  2  2)(( 2) 2  2)  (C (  2)  D)( 2  2)( 2  2) 13   24 B

x2  9

x3  x 2  3

52.

x3  x 2  3 x 2  3x  4

 x2

51 5

x4

x3  3x 2  1 x2  5x  6 Dividing:

x 8 x3  3x 2  0 x  1

x2  5x  6

 x3  5 x 2  6 x

 8x2  6 x  1  8 x 2  40 x  48

34x  49

1230 Copyright © 2020 Pearson Education, Inc.

 15 x 1


Section 11.5: Partial Fraction Decomposition

x3  3x 2  1

 x 8

34 x  49

Since x 2  4 is irreducible then we cannot go any further.

, x  2, 3

x2  5x  6 x2  5x  6 Find the partial fraction decomposition: 34 x  49 34 x  49 A B    2 x  5 x  6 ( x  2)( x  3) x  2 x  3

55.

Multiplying both sides by ( x  2)( x  3) , we obtain: 34 x  49  A( x  3)  B ( x  2) Let x  3 , then 34  3  49  A  3  3  B  3  2 

53.

2

x  5x  6

 x 8

 x 4  4 x3  4 x 2

 4x  9x  x  4 x3  16 x 2  16 x 3

2

7x 2  17 x  4  7 x 2  28 x  28

 11x  32 4 3 x  5x  x  4 11x  32  x2  4 x  7  2 , 2 x  4x  4 x  4x  4 x  2 Find the partial fraction decomposition: 11x  32 11x  32 A B    2 x  4 x  4 ( x  2)( x  2) x  2 ( x  2) 2

19 53  x3 x2

x3

Multiplying both sides by ( x  2) 2 , we obtain:

x2  1 Dividing:

11x  32  A( x  2)  B 11x  32  Ax  2 A  B 11x  32  Ax  (2 A  B) Since the coefficient of x is A then A  11 . Let A  11 , then 32  2 A  B 32  2(11)  B 10  B 11x  32 11 10   x 2  4 x  4 x  2 ( x  2) 2

x x  0 x  1 x  0 x2  0 x 2

3

 x3  0 x 2  x

x x3 x2  1

 x

x x2  1

Since x 2  1 is irreducible then we cannot go any further. 54.

x2  4 x  7 x 4  0 x3  5 x 2  x  4

x  4x  4

19  A 19 34 x  49 53   2 x x  2 3 x  5x  6 x3  3 x 2  1

x2  4 x  4 Dividing: 2

53   B 53  B Let x  2 , then 34  2   49  A  2  3  B  2  2 

Thus,

x 4  5 x3  x  4

Thus, x 4  5 x3  x  4

x3  x

x2  4x  4

x2  4 Dividing: x x  0 x  4 x  0 x2  x 2

3

 x3  0 x 2  4 x

 3x x3  x 2

x 4

 x

3 x x2  4

1231

Copyright © 2020 Pearson Education, Inc.

 x2  4 x  7 

11 10  x  2 ( x  2) 2


Chapter 11: Systems of Equations and Inequalities

56.

x 4  x3  x  2

57.

x2  2 x  1 Dividing: x  2x 1

 x 4  2 x3  x 2

 x5  0 x 4  2 x3  0 x 2  x

3x3  x 2  x  3 x3  6 x 2  3 x

4

3

x x x2

6x  3 6x  3

Multiplying both sides by ( x  1) 2 , we obtain: 6 x  3  A( x  1)  B 6 x  3  Ax  A  B 6 x  3  Ax  ( A  B) Since the coefficient of x is A then A  6 . Let A  6 , then 3   A  B 3  1(6)  B 3 B 6x  3 6 3   2 x  2 x  1 x  1 ( x  1) 2

x2  2 x  1

3

2

2x  x

2

 x 2  3x  5  2 , x 1 x2  2 x  1 x  2x 1 Find the partial fraction decomposition: 6x  3 6x  3 A B    2 x  2 x  1 ( x  1)( x  1) x  1 ( x  1) 2

Thus, x 4  x3  x  2

x  2x  x  x  2  x 4  0 x3  2 x 2  0 x  1 4

5x 2  4 x  2  5 x 2  10 x  5

x4  2 x2  1 Dividing:

x 1 x 4  0 x3  2 x 2  0 x  1 x5  x 4  0 x3  x 2  0 x  2

x 2  3x  5 x 4  3 x3  0 x 2  x  2

2

x5  x 4  x 2  2

6 3  x 2  3x  5   x  1 ( x  1) 2

3

x5  x 4  x 2  2

 x 1

 x 1

2 x3  x 2  x  1

, x4  2 x2  1 x4  2 x2  1 x  1, 1 Find the partial fraction decomposition: 2 x3  x 2  x  1 A B C D     2 2 2   x 1 x 1 ( x  1) ( x  1) ( x  1) ( x  1) 2 Multiplying both sides by ( x  1) 2 ( x  1) 2 , we obtain: 2 x3  x 2  x  1  A( x  1)( x  1) 2  B( x  1) 2  C ( x  1) 2 ( x  1)  D ( x  1) 2 Let x  1 , then 2(1)3  (1) 2  (1)  1  A(1  1)(1  1) 2  B (1  1) 2  C (1  1) 2 (1  1)  D(1  1) 2 1  4B 1 B 4

Let x  1 , then 2(1)3  (1) 2  (1)  1  A(1  1)(1  1) 2  B (1  1) 2  C (1  1) 2 (1  1)  D(1  1) 2 3  4D 3 D 4

Let x  0 , then 2(0)3  (0) 2  (0)  1  A(0  1)(0  1) 2 1 3  (0  1) 2  C (0  1) 2 (0  1)  (0  1) 2 4 4 1 3 1 A C  4 4 0  AC

1232 Copyright © 2020 Pearson Education, Inc.


Section 11.5: Partial Fraction Decomposition

Let x  2 , then 2(2)3  (2) 2  (2)  1  A(2  1)(2  1) 2 1 3  (2  1)2  C (2  1) 2 (2  1)  (2  1) 2 4 4 1 27 19  3 A   9C  4 4 12  3 A  9C

9  3 A  C 1  3B  D So 9  3(7)  C  C  12 and 1  3(1)  D  D  2

0  AC 12  3 A  9C AC 12  3 A  9 A 12  12 A 1  A and 1  C

( x 2  3)( x 2  3)

7 x3  x 2  9 x  1

Thus,

e

1 3 1 1   4   4 x  1 ( x  1) 2 x  1 ( x  1) 2 x4  2 x2  1 x5  x 4  x 2  2 2

x  2x 1

 x 1

1 x 1

4

2

x  6x  9

2x

x

e 2 A

u2

B u 1

So

3u 2

u u 2

u  e x to get

x4  6x2  9 Dividing: x x 4  0 x 3  6 x 2  0 x  9 x5  0x 4  x3  x 2  0 x  1

 x5  0 x 4  6 x3  0 x 2  9 x

 7 x  x  9x  1 3

 x

2

7 x 3  x 2  9 x  1

, x  6x  9 x4  6 x2  9 x  1, 1 Find the partial fraction decomposition: 7 x3  x 2  9 x  1 Ax  B Cx  D  2  Multiply ( x 2  3)( x 2  3) x  3 ( x 2  3) 2 4

2

12 x  2 ( x 2  3) 2

7 x  1 2

x 3

12 x  2 ( x 2  3) 2

3u 2

u u2

3u (u  2)(u  1)

 3u  A(u  1)  B (u  2)

x5  x3  x 2  1

x5  x3  x 2  1

 x

If u  1, then B  1;if u  2 then A  2 .

1 3 1  4 2  4 x  1 ( x  1) 2 ( x  1)

58.

x2  3

59. Let u  e x . Then

2 x3  x 2  x  1

4

7 x  1

x5  x3  x 2  1

3e x

Thus,

2 1  . Back substitute u  2 u 1

e

2x

3e x  ex  2

2 ex  2

1 ex 1

.

60. Let u  3 x . Then 2 2 2 A B C      x  3 x u 3  u u (u  1)(u  1) u u  1 u  1 2  A(u  1)(u  1)  Bu (u  1)  Cu (u  1) If u = 0, then A = -2; if u = 1, the C = 1; if u = -1 then B = 1. 2 2 1 1 So we have 3    . Back u  u u u 1 u 1

substitute u  3 x to get 2 2 1 1 3 3 3 . 3 x x x x 1 x 1  r 61. A  P  1    n

ing both sides by ( x 2  3) 2 , we obtain: 7 x3  x 2  9 x  1  ( Ax  B )( x 2  3)  (Cx  D)  Ax3  Bx 2  3 Ax  3B  Cx  D  Ax3  Bx 2  x(3 A  C ) x  (3B  D) Then A  7 and B  1 .

1233

Copyright © 2020 Pearson Education, Inc.

nt


Chapter 11: Systems of Equations and Inequalities

 0.18  8400  4200  1    365  2  1.000493

365t

x  4  8 y 3 y  3  log8 ( x  4)

365t

ln 2  ln 1.000493

y  log8 ( x  4)  3

365t

f

ln 2  365t ln 1.000493 t

ln 2 365ln 1.000493

1

( x)  log8 ( x  4)  3

67. Focus: (0, 13); Vertices: (0, 5), (0, 13); Center: (0, 0); Transverse axis is parallel to the y-axis; a  5; c  13 . Find the value of b: b 2  c 2  a 2  169  25  144 b  12  12 y 2 x2 Write the equation:  1. 25 144

 3.85 years

62.

x  8 y 3  4

66.

f ( x)  x  4; g ( x)  x 2  3 x f ( 3)  3  4  1 g (1)  12  3(1)  2 1 cos 308 cos 52 1  cos 308 cos(360  52) 1  cos 308  1 cos 308

63. sec 52 cos 308 

68.

5 4 x 1  x  2 5 3 9 x 2 5 6 x 5 6  6  The solutions set is  x | x   or  ,   . 5  5 

5   64.  1, 4  

69. 2 x  4 xD  4 y  2 yD  D 2 x  4 y  D  4 xD  2 yD 2 x  4 y  D(1  4 x  2 y ) 2x  4 y D 1  4x  2 y x    1 cos

5 2 5 2  ; y    1 sin  4 2 4 2

Rectangular coordinates of  1, 

5  are 4 

 2 2 ,  .  2 2 

65.

f ( x)  

3( x) 2

( x)  10 function is odd.

3x 2

x  10

  f ( x) . The

1234 Copyright © 2020 Pearson Education, Inc.


Section 11.6: Systems of Nonlinear Equations 70. From the calculator we see that the intersection occurs at the point (3, 4) . The slope of the perpendicular line would be

x

1 . 2

b 0   0. 2a 2 1

The y-coordinate of the vertex is

1 ( x  3) 2 1 3 y4 x 2 2 1 11 y  x 2 2 y4

y  0 2  4  4 .

Section 11.6 1. y  3x  2 The graph is a line. x-intercept: 0  3x  2 3x  2 2 x 3

y 2  x2  1

3.

x2  y 2  1 x2 y 2  1 12 12 The graph is a hyperbola with center (0, 0), transverse axis along the x-axis, and vertices at (1, 0) and (1, 0) . The asymptotes are y   x and y  x .

y-intercept: y  3  0   2  2 y

y

(0, 2)

 2    3 ,0   

2



x



2

 

x



2. y  x 2  4 The graph is a parabola. x-intercepts: 0  x2  4

4.

x2  4 y 2  4 x2  4 y 2 4  4 4 2 x  y2  1 4 x2 y 2  1 22 12 The graph is an ellipse with center (0, 0) , major

x2  4 x  2, x  2

y-intercept: y  02  4  4 The vertex has x-coordinate:

axis along the x-axis, vertices at (2, 0) and (2, 0) . The graph also has y-intercepts at (0, 1)

1235 Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities

y

Solve by substitution: x2  1  4 x  1

x2  4 x  0

and (0,1) .

  

x( x  4)  0 x  0 or x  4

 

x

y 1 y  17 Solutions: (0, 1) and (4, 17)



 y  36  x 2 7.   y  8  x

 y  x 2  1 5.   y  x  1

(2.59, 5.41) and (5.41, 2.59) are the intersection points. (0, 1) and (1, 2) are the intersection points.

Solve by substitution: 36  x 2  8  x

Solve by substitution: x2  1  x  1

36  x 2  64  16 x  x 2

x2  x  0

2 x 2  16 x  28  0

x( x  1)  0

x 2  8 x  14  0

x  0 or x  1

8  64  56 2 8 2 2  2  4 2

x

y 1 y2 Solutions: (0, 1) and (1, 2)  y  x 2  1 6.   y  4 x  1

  If x  4  2, y  8   4  2   4  2 Solutions:  4  2, 4  2  and  4  2, 4  2  If x  4  2, y  8  4  2  4  2

(0, 1) and (4, 17) are the intersection points. 1236 Copyright © 2020 Pearson Education, Inc.


Section 11.6: Systems of Nonlinear Equations Solve by substitution: x  2 x

 y  4  x 2 8.   y  2 x  4

x  4  4 x  x2 x2  5x  4  0 ( x  4)( x  1)  0 x4

or x  1

y   2 or y =1 Eliminate (4, –2); we must have y  0 . Solution: (1, 1)  y  x 10.   y  6  x

(–2, 0) and (–1.2, 1.6) are the intersection points. Solve by substitution: 4  x2  2x  4 4  x 2  4 x 2  16 x  16 5 x 2  16 x  12  0 ( x  2)(5 x  6)  0 x   2 or x   y0

or y 

6 5

(4, 2) is the intersection point.

8 5

Solve by substitution: x  6 x

 6 8 Solutions:   2, 0  and   ,   5 5  y  x 9.   y  2  x

x  36  12 x  x 2 x 2  13x  36  0 ( x  4)( x  9)  0 x4

or x  9

y  2 or y  3 Eliminate (9, –3); we must have y  0 . Solution: (4, 2)

(1, 1) is the intersection point.

1237 Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities  x  2 y 11.  2  x  y  2 y

 x2  y 2  4 13.  2 2  x  2 x  y  0

(0, 0) and (8, 4) are the intersection points.

Substitute 4 for x 2  y 2 in the second equation. 2x  4  0 2x   4 x  2

Solve by substitution: 2 y  y2  2 y y2  4 y  0 y ( y  4)  0

y  4  ( 2) 2  0

y  0 or y =4 x  0 or x =8 Solutions: (0, 0) and (8, 4)

Solution: (–2, 0)  x2  y2  8 14.  2 2  x  y  4 y  0

 y  x  1 12.  2  y  x  6 x  9

(2, 1) and (5, 4) are the intersection points. Solve by substitution: x2  6 x  9  x  1 x 2  7 x  10  0 ( x  2)( x  5)  0 x  2 or x =5 y  1 or y =4 Solutions: (2, 1) and (5, 4)

(–2, 0) is the intersection point.

(–2, –2) and (2, –2) are the intersection points. Substitute 8 for x 2  y 2 in the second equation. 8  4y  0 4y  8 y  2 x   8  ( 2) 2  2

Solution: (–2, –2) and (2, –2)

1238 Copyright © 2020 Pearson Education, Inc.


Section 11.6: Systems of Nonlinear Equations y  3x  5  15.  2 2  x  y  5

 x 2  y 2  4 17.  2  y  x  4

(1, –2) and (2, 1) are the intersection points.

(–1, 1.73), (–1, –1.73), (0, 2), and (0, –2) are the intersection points.

Solve by substitution: x 2  (3 x  5) 2  5

Substitute x  4 for y 2 in the first equation:

2

x2  x  4  4

2

x  9 x  30 x  25  5

x2  x  0

10 x 2  30 x  20  0

x ( x  1)  0 x0

x 2  3x  2  0 ( x  1)( x  2)  0 x 1 or x  2 y  2 y 1 Solutions: (1, –2) and (2, 1)

or x  1

2

y 4

y2  3

y  2

y 3



Solutions: (0, – 2), (0, 2), 1, 3 , 1,  3  x 2  y 2  16 18.  2  x  2 y  8

 x 2  y 2  10 16.  y  x2 

(–3.46, 2), (0, –4), and (3.46, 2) are the intersection points. Substitute 2 y  8 for x 2 in the first equation.

(1, 3) and (–3, –1) are the intersection points.

2 y  8  y 2  16

Solve by substitution: x 2  ( x  2) 2  10

y2  2 y  8  0 ( y  4)( y  2)  0 y   4 or y  2

x 2  x 2  4 x  4  10 2

2x  4x  6  0

x 2  0 or x 2  12

2( x  3)( x  1)  0 x  3 or x  1

x0

y  1 y3 Solutions: (–3, –1) and (1, 3)

x  2 3



Solutions: (0, – 4), 2 3, 2 ,  2 3, 2

1239 Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities xy  4  19.  2 2  x  y  8

 x 2  y 2  4 21.  y  x2  9 

(–2, –2) and (2, 2) are the intersection points. Solve by substitution: 2

4 x2     8 x 16 x2  2  8 x 4 x  16  8 x 2 4 x  8 x 2  16  0 ( x 2  4) 2  0 2

x 4  0 x2  4 x  2 or x  2 y  2 or y  2 Solutions: (–2, –2) and (2, 2) 2  x  y 20.   xy  1

(1, 1) is the intersection point.

No solution; Inconsistent. Solve by substitution: x 2  ( x 2  9) 2  4 x 2  x 4  18 x 2  81  4 x 4  17 x 2  77  0 17  289  4(77) 2 17  19  2 There are no real solutions to this expression. Inconsistent. x2 

 xy  1 22.   y  2x  1

(–1, –1) and (0.5, 2) are the intersection points.

Solve by substitution: 1 x2  x 3 x 1 x 1 y  (1) 2  1 Solution: (1, 1)

1240 Copyright © 2020 Pearson Education, Inc.


Section 11.6: Systems of Nonlinear Equations Solve by substitution: x(2 x  1)  1

Solve by substitution: 2 x 2  3x  10 x 2  92  10 x 4 x  9  10 x 2

 

2 x2  x  1  0 ( x  1)(2 x  1)  0 1 2 y2

x  1 or x  y  1

x 4  10 x 2  9  0 ( x 2  9)( x 2  1)  0 ( x  3)( x  3)( x  1)( x  1)  0 x  3 or x  –3 or x  1 or x  1 y  1 y  1 y  3 y  –3 Solutions: (3, 1), (–3, –1), (1, 3), (–1, –3)

1  Solutions: (–1, –1) and  , 2  2  2  y  x  4 23.   y  6 x  13

25. Solve the second equation for y, substitute into the first equation and solve: 2 x 2  y 2  18   4 xy  4  y   x  2

4 2 x 2     18  x 16 2 x 2  2  18 x 4 2 x  16  18 x 2

(3, 5) is the intersection point. Solve by substitution: x 2  4  6 x  13

2 x 4  18 x 2  16  0

x2  6 x  9  0

x4  9 x2  8  0

 x  8 x  1  0

( x  3) 2  0

2

x3  0 x3 y  (3) 2  4  5 Solution: (3,5)

24.  x 2  y 2  10  xy  3 

2

x2  8

or

x2  1

x   8=  2 2

or

x  1

If x  2 2 :

y

If x   2 2 :

y

If x  1: If x  1:

4 2 2 4

 2

 2 2 2 4 y 4 1 4  4 y 1

Solutions:

 2 2, 2  ,   2 2,  2  , (1, 4), (1,  4)

26. Solve the second equation for y, substitute into the first equation and solve: 2 2  x  y  21   x  y  7  y  7  x

(1, 3), (3, 1), (–3, –1), and (–1, –3) are the intersection points. 1241

Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities y  (0)  1  1 If x  0 : 5 5 7 y   1   If x  : 2 2 2 5 7 Solutions: (0, 1),  2 ,  2 

x 2   7  x   21 2

x 2  49  14 x  x 2  21 14 x  70 x5 y  75  2

Solution: (5, 2) 27. Substitute the first equation into the second equation and solve: y  3x  2   2 2 3x  y  4

30. Solve the second equation for y, substitute into the first equation and solve: 2 x 2  xy  y 2  8  4  xy  4  y   x 2

4 4 2 x2  x       8  x  x 16 2x2  4  2  8 x 2 x 4  16  12 x 2

3x 2   3x  2   4 2

3x 2  9 x 2  12 x  4  4 12 x 2  12 x  0

x4  6 x2  8  0

12 x  x  1  0

 x  4 x  2  0 ( x  2)( x  2)  x  2  x  2   0 2

12 x  0 or x  1  0 x  0 or x  1 If x  0 : y  3(0)  2  2 y  3  1  2  1

If x  1:

Solutions: (0, 2),  1,  1 28. Solve the second equation for x and substitute into the first equation and solve:  x 2  4 y 2  16   2y  x  2  x  2y  2 (2 y  2) 2  4 y 2  16 4 y 2  8 y  4  4 y 2  16  8 y  12 3 y 2 x  2   32   2  5

Solutions:  5,  32

x  2 or x   2 or x  2 or x   2 y2 y  2 Solutions:

x 2  ( x  1)2  6( x  1)  x  5 x 2  x 2  2 x  1  6 x  6  x  5 2 x2  5x  0 x(2 x  5)  0 x  0 or x  5 2

y2 2

y  2 2

  2, 2 2  , (2, 2)

(2, 2),  2, 2 2 ,

31. Solve the second equation for y, substitute into the first equation and solve: 9 x 2  8 xy  4 y 2  70   3 3 x  2 y  10  y   x  5   2 2

 3   3  9 x 2  8 x   x  5   4   x  5   70 2 2     9 x 2  12 x 2  20 x  9 x 2  40 x  100  70 30 x 2  60 x  100  70 3x 2  6 x  3  0 (3x  1)( x  3)  0

29. Solve the first equation for y, substitute into the second equation and solve: x  y 1  0  y  x 1   2 2  x  y  6 y  x  5

2

1 or x  3 3 1 31 9 If x  : y    5  3 23 2 3 1 If x  3 : y   (3)  5  2 2 1 9  1 Solutions:  ,  ,  3,  3 2  2

1242 Copyright © 2020 Pearson Education, Inc.

x


Section 11.6: Systems of Nonlinear Equations

2 2 y  3xy  6 y  2 x  4  0 32.  2x  3y  4  0  Solve the second equation for x, substitute into the first equation and solve: 2x  3y  4  0 2x  3y  4 3y  4 x 2  3y  4   3y  4  2 y2  3  y  6y  2   4  2   2  9 2 y2  y2  6 y  6 y  3y  4   4 2 5  y 2  15 y  0 2 5 y 2  30 y  0 5 y ( y  6)  0 y  0 or y  6

If y  0 :

x

If y  6 :

x

3 0  4 2 36  4

2 Solutions: (–2, 0), (7, 6)

3x 2  2 y 2  5 4 x 2  2 y 2  4  x 2  1 x2  1 x  1 If x  1: 2(1) 2  y 2   2  y 2  4  y  2 If x  1: 2(1)2  y 2   2  y 2  4  y  2 Solutions: (1, 2), (1, –2), (–1, 2), (–1, –2)

35. 7 x 2  3 y 2  5  0  2 2  3x  5 y  12 2 2 7 x  3 y  5  2 2 3x  5 y  12 Multiply each side of the first equation by 5 and each side of the second equation by 3 and add the equations to eliminate y: 35 x 2  15 y 2  25

2

7

9 x 2  15 y 2  36 44 x 2  11

33. Multiply each side of the second equation by 4 and add the equations to eliminate y: 2 2  x2  4 y 2   7  x  4 y  7   2 4 2  12 x 2  4 y 2  124 3x  y  31  13x 2  117

x2 

1 4

x

1 2

If x  1 : 2

x2  9 x  3 2 2 2 If x  3 : 3(3)  y  31  y  4  y  2

2

9 3 1 3    5 y 2  12  y 2   y   4 2 2 If x   1 : 2

If x  3 : 3(3) 2  y 2  31  y 2  4  y  2 Solutions: (3, 2), (3, –2), (–3, 2), (–3, –2)

2

9 3  1 3     5 y 2  12  y 2   y   2 4 2   Solutions: 1 3 1 3  1 3  1 3  , ,  ,  ,   , ,   ,   2 2 2 2  2 2  2 2

34. 3x 2  2 y 2  5  0  2 2  2 x  y  2  0 3x 2  2 y 2  5  2 2  2 x  y  2 Multiply each side of the second equation by –2 and add the equations to eliminate y:

1243

Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities

36.  x 2  3 y 2  1  0  2 2 2 x  7 y  5  0

38. 5 xy  13 y 2  36  0  xy  7 y 2  6 

 x 2  3 y 2  1  2 2 2 x  7 y  5

5 xy  13 y 2  36  2  xy  7 y  6

Multiply each side of the first equation by –2 and add the equations to eliminate x: 2 x 2  6 y 2  2

Multiply each side of the second equation by –5 and add the equations to eliminate xy: 5 xy  13 y 2  36

2 x 2  7 y 2  5

5 xy  35 y 2  30

 y 2  3

 22 y 2  66

y2  3

y2  3

y 3

y 3 If y  3 :

If y  3 : x2  3

 3   1  x  8  x  2 2 2

2

If y   3 : 2

x 3  3

  1  x  8  x  2 2 2

Solutions:

    2 2,  3 



7 x2

 14 2

x 2 x 2 If x  2 :

 2  2  y  2 2

4 2

 y2 2

If x   2 :

   2  y  2 2

2  y  4  y 

Solutions:

3  x   15  x 

15 3

 x  5 3

If y   3 :

 

x  3 7  3

 6 2

Solutions:

15 3

 x5 3

 5 3, 3  , 5 3,  3 

39.  2 x 2  y 2  2  2 2  x  2 y  8  0 2 2 2 x  y  2  2 2  x  2 y  8 Multiply each side of the first equation by 2 and add the equations to eliminate y: 4x2  2 y 2  4 x 2  2 y 2  8

  2  y  4  y 

2

  3  x   15  x 

37. Multiply each side of the second equation by 2 and add the equations to eliminate xy: 2  x 2  2 xy  10  x  2 xy  10   2 2  6 x 2  2 xy  4 3x  xy  2 

3  2

 3  7 3  6

2

2 2, 3 , 2 2,  3 ,  2 2, 3 ,

3

x

4 2

 y  2 2

 2, 2 2  ,   2,  2 2 

5 x 2  4 4 x2   5 No real solution. The system is inconsistent.

40.  y 2  x 2  4  0  2 2  2 x  3 y  6  x 2  y 2  4  2 2 2 x  3 y  6 Multiply each side of the first equation by 2

1244 Copyright © 2020 Pearson Education, Inc.


Section 11.6: Systems of Nonlinear Equations

and add the equations to eliminate x: 2 x 2  2 y 2  8

42.  4 x 2  3 y 2  4  2 2 2 x  6 y  3

2 x2  3 y 2  6

Multiply each side of the first equation by 2 and add the equations to eliminate y: 8x2  6 y2  8

5 y 2  2 2 y2   5 No real solution. The system is inconsistent.

2 x 2  6 y 2  3 10 x 2  5 1 x2  2

41.  x  2 y  16  2 2  4 x  y  24 Multiply each side of the second equation by 2 and add the equations to eliminate y: x 2  2 y 2  16 2

2

x

2 2

2 : 2

8 x 2  2 y 2  48

If x 

9 x 2  64 64 x2  9 8 x 3 8 If x  : 3 2 80 8 2 2    2 y  16  2 y  9 3

 2 2 2 4    3 y  4  3 y  2 2  

 y2 

2

2 6  y 3 3 2 If x   : 2

 y2 

2

 2 2 2 4     3 y  4  3 y  2  2 

40 2 10  y 9 3

2 6  y 3 3 Solutions:  2 6  2 6  2 6 , , ,   ,   ,   , 3   2 3   2 3   2  y2 

8 If x   : 3 2 80  8 2 2     2 y  16  2 y  9  3

 2 6 ,    3   2

40 2 10  y 9 3 Solutions:  8 2 10   8 2 10   8 2 10   , ,  ,  ,   , , 3   3 3   3 3  3  y2 

2 5 43.  2  2  3  0 y x  3 1   7  x 2 y 2

 8 2 10    ,   3   3

2 5  x 2  y 2  3    3  1 7  x 2 y 2 Multiply each side of the second equation by 2 and add the equations to eliminate y:

1245

Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities

5 x2 6 x2

 

2 y2 2 y2

 14

 x 2  4  x  2

 11 x2 x2  1 x  1 If x  1: 3 1 1 1  2  7  2  4  y2  2 4 y y (1) 1  y 2 If x  1: 3 1 1 1  2  7  2  4  y2  2 4 y y (1) 1  y 2 1  1  1  1  Solutions: 1,  , 1,   ,  1,  ,  1,   2  2  2  2  3  2 44.  2  2  1  0 y x 6 7   20 2 y2  x

Multiply each side of the first equation by –3 and add the equations to eliminate x: 6 9  3 y2 y2 6 7  2  2 2 x y 1

x2

2

If y   2 :

x

2

 2 

2

 1 

3

 2 

2

2 x2

 1 

1 2

2 x

2

1 2

 x 2  4  x  2 Solutions:

 2, 2  ,  2,  2  ,   2, 2  ,   2,  2 

6 1 45.  4  4  6 y x  2   2  19  x 4 y 4

Multiply each side of the first equation by –2 and add the equations to eliminate x: 2 12   12 x4 y4 2 2  4  19 4 x y 14  4 7 y y 4  2 There are no real solutions. The system is inconsistent.

3 2  x 2  y 2  1    6  7  2  x 2 y 2

y2

3

If y  2 :

11

2

2

 3

46. Add the equations to eliminate y: 1 1  4 1 4 x y 1 1  4 4 4 x y 2 x4

5

x4 

2 5

x4

y2  2 y 2

1246 Copyright © 2020 Pearson Education, Inc.

2 5


Section 11.6: Systems of Nonlinear Equations

If x  4

2 : 5

 y4  If x   4

1  2  4   5

1 y

4

4 

1 y

4

3 2

1  2   4   5

x 3

If y   3 :

x 3

4

1 y4

4 

1 y4

 3, 3  ,   3,  3 

 x 2  xy  2 y 2  0 48.   xy  x  6  0 Factor the first equation, solve for x, substitute into the second equation and solve: x 2  xy  2 y 2  0 ( x  2 y )( x  y )  0 x  2 y or x   y Substitute x  2 y and solve: xy  x  6  0 (2 y ) y  2 y   6

3 2

2 2  y 4 3 3

Solutions:  2 2  2 2  2 2  4 , 4  ,  4 ,  4  ,   4 , 4  , 3  5 3  5 3  5  2 2   4 ,  4  3  5

2 y2  2 y  6  0 2( y 2  y  3)  0

47.  x 2  3 xy  2 y 2  0  x 2  xy  6  Subtract the second equation from the first to eliminate the x 2 term. 4 xy  2 y 2  6

y

1  12  4(1)(3) (No real solution) 2(1)

Substitute x   y and solve: xy  x  6  0  y  y  ( y )   6

2 xy  y 2  3 Since y  0 , we can solve for x in this equation to get y2  3 x , y0 2y Now substitute for x in the second equation and solve for y. x 2  xy  6

 y2  y  6  0 ( y  3)( y  2)  0 y  3 or y =2 If y  3 :

x3

If y  2 :

x  2

Solutions: (3, –3), (– 2, 2) 49.  y 2  y  x 2  x  2  0  x2  y 1 0  y 

2

 y2  3   y2  3     y6  2y   2y  y4  6 y2  9 y2  3  6 2 4 y2

Multiply each side of the second equation by –y and add the equations to eliminate y: y 2  y  x2  x  2  0

y 4  6 y 2  9  2 y 4  6 y 2  24 y 2

 y2  y

3 y 4  12 y 2  9  0

x20

y4  4 y2  3  0

x2  2 x  0

2

x  x  2  0

 y  3 y  1  0 2

If y  3 :

Solutions: (2, 1), (–2, 1),

2 2  y 4 3 3

2 : 5

 y4 

4

x  0 or x  2

Thus, y   3 or y  1 . If y  1: x  2 1  2 If y  1: x  2(1)   2 1247

Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities If x  0 : y 2  y  02  0  2  0  y 2  y  2  0  ( y  2)( y  1)  0  y   2 or y  1 If x  2 : y 2  y  22  2  2  0  y 2  y  0  y ( y  1)  0  y  0 or y  1 Note: y  0 because of division by zero. Solutions: (0, –2), (0, 1), (2, –1)

50.  x3  2 x 2  y 2  3 y  4  0   y2  y x2 0  x2  Multiply each side of the second equation by  x 2 and add the equations to eliminate x: x3  2 x 2  y 2  3 y  4  0  x3  2 x 2  y 2  y

0

52. Rewrite each equation in exponential form: log x (2 y )  3  2 y  x3  2 log x (4 y )  2  4 y  x

Multiply the first equation by 2 then substitute the first equation into the second and solve: 2 x3  x 2 2 x3  x 2  0 x 2 (2 x  1)  0 1 1  x  or x  0 2 2 The base of a logarithm must be positive, thus x  0. x 2  0 or x 

2

1 1 1 4y      y 2 4 16   1 1  Solution:  ,   2 16  If x 

1 : 2

53. Rewrite each equation in exponential form:

4y  4  0 4y  4 y 1

4

ln x  4 ln y  x  e 4ln y  eln y  y 4 log3 x  2  2 log 3 y x  32  2log3 y  32  32log3 y  32  3log3 y  9 y 2 2

If y  1: x3  2 x 2  12  3 1  4  0  x3  2 x 2  0  x 2 ( x  2)  0  x  0 or x  2 Note: x  0 because of division by zero. Solution: (2, 1)

51. Rewrite each equation in exponential form:  log x y  3  y  x3  5 log x (4 y )  5  4 y  x Substitute the first equation into the second and solve: 4 x3  x5

4  x  y So we have the system  2  x  9 y Therefore we have : 9 y 2  y 4  9 y 2  y 4  0  y 2 (9  y 2 )  0

y 2 (3  y )(3  y )  0 y  0 or y  3 or y  3

Since ln y is undefined when y  0 , the only solution is y  3 . If y  3 :

x  y 4  x  34  81

Solution:  81, 3 54. Rewrite each equation in exponential form:

x5  4 x3  0

5

x  e5ln y  eln y  y 5

x3 ( x 2  4)  0

ln x  5ln y 

x3  0 or x 2  4  x  0 or x  2 The base of a logarithm must be positive, thus x  0 and x   2 .

x  23 2log 2 y  23  22log 2 y  23  2log 2 y  8 y 2

3

If x  2 : y 2 8 Solution: (2, 8)

log 2 x  3  2 log 2 y 2

 x  y 5 So we have the system  2  x  8 y Therefore we have

1248 Copyright © 2020 Pearson Education, Inc.


Section 11.6: Systems of Nonlinear Equations 57. Graph: y1  x  (2 / 3); y2  e  ( x) Use INTERSECT to solve: 3.1

8 y 2  y5 2

5

8y  y  0

y 2 8  y3  0 y  0 or 8  y 3  0  y  2 Since ln y is undefined when y  0 , the only solution is y  2 . If y  2 :

–4.7

x  y 5  x  25  32

4.7

-3.1 Solution: x  0.48, y  0.62 or (0.48, 0.62)

Solution:  32, 2 

58. Graph: y1  x  (3 / 2); y2  e  ( x) Use INTERSECT to solve: 3.1

 x2  x  y 2  3 y  2  0  55.  y2  y x 1 0  x   x  1 2  y  3 2  1  2 2 2   2 2  x  12    y  12   12 

–4.7

4.7

–3.1 Solution: x  0.65, y  0.52 or (0.65, 0.52)

59. Graph: y1  3 2  x 2 ; y2  4 / x3 Use INTERSECT to solve: 3.1

–4.7

56.  y 2  y  x 2  x  2  0  x2  0 y 1  y 

4.7

–3.1 Solution: x  1.65, y  0.89 or (–1.65, –0.89)

 x  1 2   y  1 2  5 2 2 2   2 9 1 x    y  2   4 

60. Graph: y1  2  x3 ; y2   2  x3 ; y3  4 / x 2 Use INTERSECT to solve: 3.1

–4.7

4.7

–3.1 Solution: x  1.37, y  2.14 or (–1.37, 2.14)

1249

Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities

61. Graph: y1  4 12  x 4 ; y2   4 12  x 4 ; y3  2 / x ; y4   2 / x Use INTERSECT to solve:

63. Graph: y1  2 / x; y2  ln x Use INTERSECT to solve: 3.1

–4.7

4.7

–3.1 Solution: x  2.35, y  0.85 or (2.35, 0.85) 64. Graph: y1  4  x 2 ; y2   4  x 2 ; y3  ln x Use INTERSECT to solve:

Solutions: x  0.58, y  1.86; x  1.81, y  1.05; x  1.81, y  1.05; ; x  0.58, y  1.86 or (0.58, 1.86), (1.81, 1.05), (1.81, –1.05), (0.58, –1.86) 62. Graph: y1  4 6  x 4 ; y2   4 6  x 4 ; y3  1/ x Use INTERSECT to solve:

Solution: x  1.90, y  0.64; x  0.14, y  2.00 or (1.90, 0.64), (0.14, –2.00)

65. Solve the first equation for x, substitute into the second equation and solve: x  2y  0  x   2y   2 2 ( x  1)  ( y  1)  5 ( 2 y  1) 2  ( y  1) 2  5

Solutions: x  0.64, y  1.55; x  1.55, y  0.64; x  0.64, y  1.55; ; x  1.55, y  0.64 or (0.64, 1.55), (1.55, 0.64), (–0.64, –1.55), (–1.55, –0.64)

4 y2  4 y  1  y2  2 y  1  5  5 y2  2 y  3  0 (5 y  3)( y  1)  0 3 y  =0.6 or y  1 5 6 x   =  1.2 or x  2 5

1250 Copyright © 2020 Pearson Education, Inc.


Section 11.6: Systems of Nonlinear Equations 67. Complete the square on the second equation. y2  4 y  4  x 1 4

 6 3 The points of intersection are   ,  , (2, –1) .  5 5

( y  2)2  x  3 Substitute this result into the first equation. ( x  1) 2  x  3  4 x2  2 x  1  x  3  4 x2  x  0 x( x  1)  0 x  0 or x  1 If x  0 :

( y  2) 2  0  3

y  2   3  y  2 3

66. Solve the first equation for x, substitute into the second equation and solve: x  2y  6  0  x  2y  6   2 2 ( x  1)  ( y  1)  5

If x  1: ( y  2) 2  1  3 y  2  2  y   2  2 The points of intersection are:

 0,  2  3  ,  0,  2  3  , 1, – 4 , 1, 0 .

( 2 y  6  1)2  ( y  1) 2  5 4 y 2  20 y  25  y 2  2 y  1  5 5 y 2  22 y  21  0 (5 y  7)( y  3)  0

7 or y  3 5 16 x or x  0 5 The points of intersection are  16 7    ,   , (0,  3) . 5  5 y

68. Complete the square on the second equation, substitute into the first equation and solve: ( x  2) 2  ( y  1) 2  4  2  y  2 y  x  5  0 y2  2 y 1  x  5 1

( y  1) 2  x  6 ( x  2) 2  x  6  4 x2  4 x  4  x  6  4 x2  5x  6  0 ( x  2)( x  3)  0 x   2 or x  3

If x   2 : ( y  1)2   2  6  y  1  2  y  1 or y  3 If x  3 : ( y  1) 2  3  6  y  1   3  y  1 3 The points of intersection are:

1251

Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities

 3, 1  3  ,  3, 1  3  , ( 2,  1), ( 2, 3) .

69. Solve the first equation for x, substitute into the second equation and solve: 4  y  3 x   x2  6x  y2  1  0  4 y x3 4 x 3  y 4 x  3 y

The points of intersection are: (1, –2), (5, 2).

70. Substitute the first equation into the second equation and solve: 4  y  x2   x2  4 x  y 2  4  0  2

 4  x2  4x    4  0  x2  4  x2  4 x  4      x2

2

   x  4 x  4  x  4 x  4  16

( x  2) 2 x 2  4 x  4  16

2

2

4  4  2   3  6   3  y 1  0 y y     16 24 24   9   18  y 2  1  0 2 y y y 16 y2

2

x 4  8 x3  16 x 2  16  16 x 4  8 x3  16 x 2  0

2

y 4  8 y 2  16  0

2

x ( x  4)  0

 y2  8  0

16  y 4  8 y 2  0

x 2 x 2  8 x  16  0 x  0 or x   4 y2 y  2 The points of intersection are: (0, 2), (–4, –2).

( y 2  4) 2  0 y2  4  0 y2  4 y  2 4 x  3  5 If y  2 : 2 4 If y   2 : x  3 1 2

1252 Copyright © 2020 Pearson Education, Inc.


Section 11.6: Systems of Nonlinear Equations

71. Let x and y be the two numbers. The system of equations is:  x  y2  x  y  2  2 2  x  y  10 Solve the first equation for x, substitute into the second equation and solve:

4 4  2; If y   2 : x   2 2 2 The two numbers are 2 and 2 or –2 and –2. If y  2 : x 

74. Let x and y be the two numbers. The system of equations is: 10  xy  10  x   y   x 2  y 2  21  Solve the first equation for x, substitute into the second equation and solve:

 y  2 2  y 2  10 y 2  4 y  4  y 2  10 y2  2 y  3  0

 y  3 y  1  0  y  3 or y  1

2

If y  3 : x  3  2  1 If y  1: x  1 2  3 The two numbers are 1 and 3 or –1 and –3.

 10  2    y  21 y   100  y 2  21 y2

72. Let x and y be the two numbers. The system of equations is:  x  y  7  x  7  y  2 2  x  y  21 Solve the first equation for x, substitute into the second equation and solve:

100  y 4  21 y 2 y 4  21y 2  100  0

 y  4 y  25  0

 7  y   y 2  21 2 2

2

2

y2  4

or

y  2 x  10  5 2 10 If y   2 : x  5 2 The two numbers are 2 and 5 or –2 and –5. If y  2 :

2

49  14 y  y  y  21 14 y  28 y  2  x  72 5 The two numbers are 2 and 5.

75. Let x and y be the two numbers. The system of equations is:  x  y  xy  1 1 x  y  5  Solve the first equation for x, substitute into the second equation and solve: x  xy  y y x 1  y   y  x  1 y

73. Let x and y be the two numbers. The system of equations is: 4  xy  4  x   y   x2  y 2  8  Solve the first equation for x, substitute into the second equation and solve: 2

4 2    y 8  y 16  y2  8 2 y 16  y 4  8 y 2 y 4  8 y 2  16  0

 y  4  0 2

y 2  25 (no real solution)

2

y2  4 y  2

1253

Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities

1

1

y  y 5 1 y

1 y 1  5 y y 2 y 5 y 2  y  5y 6y  2 y

1 3

1

1

1  x 3  3  1 2 1 3 3 2

The two numbers are 1 and 1 . 2 3 76. Let x and y be the two numbers. The system of equations is:  x  y  xy  1 1 x  y  3  Solve the first equation for x, substitute into the second equation and solve: xy  x  y y x  y  1  y  x  y 1 1

1 y  y 3

 a 4   78.  b 3 a  b  14  a  14  b Solve the second equation for a , substitute into the first equation and solve: 14  b 4  b 3 3 14  b   4b 42  3b  4b 42  7b b6  a8 a  b  2; a  b  14

y 1

y 1 1  3 y y y2 3 y y  2  3y

The ratio of a  b to a  b is 2  1 . 14 7 79. Let x = the width of the rectangle. Let y = the length of the rectangle.

2 y  2 1 1  1  1 2 The two numbers are 1 and 1 . 2 y  1  x 

 a 2   77.  b 3 a  b  10  a  10  b Solve the second equation for a , substitute into the first equation and solve: 10  b 2  b 3 3(10  b)  2b 30  3b  2b 30  5b b6a4 a  b  10; b  a  2 The ratio of a  b to b  a is 10  5 . 2

2 x  2 y  16  xy  15  Solve the first equation for y, substitute into the second equation and solve. 2 x  2 y  16 2 y  16  2 x y  8 x x  8  x   15 8 x  x 2  15 x 2  8 x  15  0

 x  5  x  3  0 x  5 or x  3 The dimensions of the rectangle are 3 inches by 5 inches.

1254 Copyright © 2020 Pearson Education, Inc.


Section 11.6: Systems of Nonlinear Equations

Solve the first equation for y, substitute into the second equation and solve.

80. Let 2x = the side of the first square. Let 3x = the side of the second square.

18  2 x 2

 2 x 2   3x 2  52 2

 9  x2 4 324  72 x  4 x 2  9  x2 4 81  18 x  x 2  9  x 2

2

4 x  9 x  52 13 x 2  52 x2  4 x  2 Note that we must have x  0 . The sides of the first square are (2)(2) = 4 feet and the sides of the second square are (3)(2) = 6 feet.

18 x  90 x  5  y  18  2  5   8

The base of the triangle is 8 centimeters. 83. The tortoise takes 9 + 3 = 12 minutes or 0.2 hour longer to complete the race than the hare. Let r = the rate of the hare. Let t = the time for the hare to complete the race. Then t + 0.2 = the time for the tortoise and r  0.5 = the rate for the tortoise. Since the length of the race is 21 meters, the distance equations are: 21  r t  21  r   t   r  0.5  t  0.2   21 

81. Let x = the radius of the first circle. Let y = the radius of the second circle. 2 x  2 y  12  2 2   x   y  20 Solve the first equation for y, substitute into the second equation and solve: 2 x  2 y  12 x y 6 y  6 x 2

Solve the first equation for r, substitute into the second equation and solve:  21    0.5   t  0.2   21  t  4.2 21   0.5t  0.1  21 t 4.2   10t  21   0.5t  0.1  10t   21 t  

2

 x   y  20 x 2  y 2  20 x 2  (6  x) 2  20 x 2  36  12 x  x 2  20  2 x 2  12 x  16  0 x 2  6 x  8  0  ( x  4)( x  2)  0 x  4 or x  2 y2 y4 The radii of the circles are 2 centimeters and 4 centimeters.

210t  42  5t 2  t  210t 5t 2  t  42  0

 5t  14  t  3  0

82. Let x = the length of each of the two equal sides in the isosceles triangle. Let y = the length of the base. The perimeter of the triangle: x  x  y  18 Since the altitude to the base y is 3, the Pythagorean Theorem produces another 2

5t  14  0 5t  14

or t  3  0 t  3

14  2.8 5 t  3 makes no sense, since time cannot be negative. Solve for r: 21 r  7.5 2.8 The average speed of the hare is 7.5 meters per hour, and the average speed for the tortoise is 7 meters per hour. t

2

y  y equation.    32  x 2   9  x2 2 4   Solve the system of equations:  2 x  y  18  y  18  2 x  2 y 2  9  x 4

1255

Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities 84. Let v1 , v2 , v3  the speeds of runners 1, 2, 3. Let t1 , t2 , t3  the times of runners 1, 2, 3. Then by the conditions of the problem, we have the following system: 5280  v1 t1  5270  v2 t1  5260  v3 t1 5280  v2 t2 Distance between the second runner and the third runner after t2 seconds is: v t  5280  v3 t2  5280  v3 t1  2 2   v2 t1   5280   5280  5260    5270   10.02 The second place runner beats the third place runner by about 10.02 feet.

85. Let x = the width of the cardboard. Let y = the length of the cardboard. The width of the box will be x  4 , the length of the box will be y  4 , and the height is 2. The volume is V  ( x  4)( y  4)(2) . Solve the system of equations: 216  y  xy  216 x  2( x  4)( y  4)  224 Solve the first equation for y, substitute into the second equation and solve. 216  2 x  8    4   224  x  1728  32  224 432  8 x  x 432 x  8 x 2  1728  32 x  224 x

86. Let x = the width of the cardboard. Let y = the length of the cardboard. The area of the cardboard is: xy  216

The volume of the tube is: V  r 2 h  224 x where h  y and 2r  x or r  . 2 Solve the system of equations: 216   xy  216  y  x   2 2   x  y  224  x y  224     2  4 Solve the first equation for y, substitute into the second equation and solve. x 2 216 x  224 4 216 x  896 896  13.03 x 216

 

216 216  216  y    16.57 896 896 x 2

216

The cardboard should be about 13.03 centimeters by 16.57 centimeters. 87. Find equations relating area and perimeter: 2 2  x  y  4500  3x  3 y  ( x  y )  300 Solve the second equation for y, substitute into the first equation and solve: 4 x  2 y  300 2 y  300  4 x y  150  2 x x 2  (150  2 x) 2  4500 x 2  22,500  600 x  4 x 2  4500

8 x 2  240 x  1728  0

5 x 2  600 x  18, 000  0

x 2  30 x  216  0

x 2  120 x  3600  0

 x  12  x  18  0

( x  60) 2  0

x  12  0

or x  18  0 x  12 x  18 The cardboard should be 12 centimeters by 18 centimeters.

x  60  0 x  60 y  150  2(60)  30 The sides of the squares are 30 feet and 60 feet.

1256 Copyright © 2020 Pearson Education, Inc.


Section 11.6: Systems of Nonlinear Equations 88. Let x = the length of a side of the square. Let r = the radius of the circle. The area of the square is x 2 and the area of the circle is  r 2 . The perimeter of the square is 4x and the circumference of the circle is 2 r . Find equations relating area and perimeter:  x 2   r 2  100  4 x  2 r  60 Solve the second equation for x, substitute into the first equation and solve: 4 x  2 r  60 4 x  60  2 r 1 x  15   r 2

x 2   mx  b   10 2

x 2  m 2 x 2  2bmx  b 2  10  0

1  m  x  2bmx  b  10  0 2

2

2

Note that the tangent line passes through (1, 3). Find the relation between m and b: 3  m(1)  b  b  3  m There is one solution to the quadratic if the discriminant is zero.

 2bm 2  4  m2  1 b 2  10   0

4b 2 m 2  4b 2 m 2  40m 2  4b 2  40  0 40m 2  4b 2  40  0 Substitute for b and solve: 40m 2  4  3  m   40  0 2

40m 2  4m 2  24m  36  40  0

2

1   2  15   r    r  100 2   1 225  15 r  2 r 2   r 2  100 4 1 2  2      r  15 r  125  0 4  1  b 2  4ac  (15) 2  4  2    (125) 4  

36m 2  24m  4  0 9m 2  6m  1  0

 3m  12  0 3m  1 m

1 3

 1  10 b  3 m  3    3 3 The equation of the tangent line is 1 10 y   x . 3 3

1   225  500  2    4  2

 1002  500  0 Since the discriminant is less than zero, it is impossible to cut the wire into two pieces whose total area equals 100 square feet.

91. Solve the system: 2  y  x  2   y  mx  b Solve the system by substitution: x 2  2  mx  b  x 2  mx  2  b  0 Note that the tangent line passes through (1, 3). Find the relation between m and b: 3  m(1)  b  b  3  m Substitute into the quadratic to eliminate b: x 2  mx  2  (3  m)  0  x 2  mx  (m  1)  0 Find when the discriminant equals 0:

89. Solve the equation: m 2  4(2m  4)  0 m 2  8m  16  0

 m  4 2  0 m4 Use the point-slope equation with slope 4 and the point (2, 4) to obtain the equation of the tangent line: y  4  4( x  2)  y  4  4 x  8  y  4 x  4

90. Solve the system: 2 2  x  y  10   y  mx  b Solve the system by substitution:

 m 2  4 1 m  1  0 m 2  4m  4  0

 m  2 2  0 m2  0 m2

1257

Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities b  3 m  3 2 1 The equation of the tangent line is y  2 x  1 .

92. Solve the system:  x 2  y  5   y  mx  b Solve the system by substitution: x 2  mx  b  5  x 2  mx  b  5  0 Note that the tangent line passes through (–2, 1). Find the relation between m and b: 1  m  2   b  b  2 m  1

Substitute into the quadratic to eliminate b: x 2  mx  2m  1  5  0 x 2  mx   2m  4   0

Find when the discriminant equals 0:

 m 2  4 1 2m  4   0 m 2  8m  16  0

(12m  6m 2 ) 2  4(3m 2  2)(3m 2  12m  2)  0 144m 2  96m  16  0 9m 2  6 m  1  0 (3m  1) 2  0 3m  1  0 m  1 7 b  2m  2    3 3

1 7 The equation of the tangent line is y   x  . 3 3 94. Solve the system: 3 x 2  y 2  7  y  mx  b  Solve the system by substitution: 3x 2   mx  b   7 2

 m  4  0 2

3 x 2  m 2 x 2  2mbx  b 2  7

m4  0

 m  3 x  2mbx  b  7  0 2

m4 b  2m  1  2  4   1  9

The equation of the tangent line is y  4 x  9 . 93. Solve the system: 2 x 2  3 y 2  14  y  mx  b  Solve the system by substitution: 2 x 2  3  mx  b   14

2

2 x 2  3m 2 x 2  6mbx  3b 2  14

3m  2 x  6mbx  3b  14  0 2

2

Note that the tangent line passes through (1, 2). Find the relation between m and b: 2  m(1)  b  b  2  m Substitute into the quadratic to eliminate b: (3m 2  2) x 2  6m(2  m) x  3(2  m) 2  14  0

2

Note that the tangent line passes through (–1, 2). Find the relation between m and b: 2  m(1)  b  b  m  2 There is one solution to the quadratic if the discriminant equals 0.

 2bm 2  4  m2  3 b2  7   0

4b 2 m 2  4b 2 m 2  28m 2  12b 2  84  0

2

2

1 3

28m 2  12b 2  84  0 7 m 2  3b 2  21  0 Substitute for b and solve: 7m 2  3  m  2   21  0 2

7 m 2  3m 2  12m  12  21  0 4m 2  12m  9  0

 2m  3  2  0 2m  3 3 m 2

(3m 2  2) x 2  (12m  6m 2 ) x  (3m 2  12m  2)  0 Find when the discriminant equals 0: b  m2 

3 7 2 2 2

The equation of the tangent line is y 

1258 Copyright © 2020 Pearson Education, Inc.

3 7 x . 2 2


Section 11.6: Systems of Nonlinear Equations 95. Solve the system: 2 2  x  y  3  y  mx  b  Solve the system by substitution:

14m 2   3  2m   7  0 2

14m 2  4m 2  12m  9  7  0 18m 2  12m  2  0 2  3m  1  0 2

x 2   mx  b   3 2

3m  1 1 m 3 1 7 b  3  2m  3  2    3 3

x 2  m 2 x 2  2mbx  b 2  3

1  m  x  2mbx  b  3  0 2

2

2

Note that the tangent line passes through (2, 1). Find the relation between m and b: 1  m(2)  b  b  1  2m Substitute into the quadratic to eliminate b: (1  m 2 ) x 2  2m(1  2m) x  (1  2m) 2  3  0

The equation of the tangent line is y 

(1  m 2 ) x 2  ( 2m  4m 2 ) x  1  4m  4m 2  3  0

97. Solve for r1 and r2 :

4m 2  16m3  16m 4  16m 4  16m3  16m  16  0

b  r1  r2   a   rr c  1 2 a Substitute and solve:

4m 2  16m  16  0

r1   r2 

2

2

2

2

(1  m ) x  ( 2m  4m ) x  (  4m  4m  4)  0 Find when the discriminant equals 0:

 2m  4m   4 1  m  4m  4m  4  0 2 2

2

2

m 2  4m  4  0 m2 The equation of the tangent line is y  2 x  3 .

96. Solve the system: 2 2 2 y  x  14  y  mx  b  Solve the system by substitution:

b  b 2  4ac 2a b r1   r2   a  b  b 2  4ac  b      a 2a  

r2 

2  mx  b   x 2  14 2

2m 2 x 2  4mbx  2b 2  x 2  14

 2m  1 x  4mbx  2b  14  0 2

2

Note that the tangent line passes through (2, 3). Find the relation between m and b: 3  m(2)  b  b  3  2m There is one solution to the quadratic if the discriminant equals 0.

2

2

2

2

b  b 2  4ac 2b  2a 2a

b  b 2  4ac 2a The solutions are: 

 4bm 2  4  2m2  1 2b 2  14   0

2

b a

b c   r2   r2  a a  b c r2 2  r2   0 a a 2 ar2  br2  c  0

 m  2 2  0

2

1 7 x . 3 3

r1 

2

16b m  16b m  112m  8b  56  0

b  b 2  4ac b  b 2  4ac and r2  2a 2a

112m 2  8b 2  56  0 14m 2  b 2  7  0 Substitute for b and solve:

1259

Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities 98.  x 2 y 2 a 2  b2 2 2 2 2 2 2  2  2  2 2  b x  a y  a  b (1) a b a b   x  y  a  b  bx  ay  a  b (2)  a b ab

Square equation (2) and subtract equation (1). b 2 x 2  2abxy  a 2 y 2  a 2  2ab  b 2 b2 x2

 a2 y2  a2 

2abxy

So, xy  1  y  Substitute

 b2 2ab

1 x

a 1 If x  1 , then y   1 . If x  , then b 1 1 b a b y  . So we have, (1,1),  ,  . . a a b a b Because we squared equation (2) at the start, we need to check. 12 12 1 1 Check (1,1) : 2  2  2  2 a b a b 2 2 b a a 2  b2  2 2 2 2  2 2 a b a b a b 1 1 b a ab     a b ab ab ab So (1,1) checks.

  2 2 a b   Check  ,  : b 2  a 2  b 2  a2 b a b b a a a 2

1 into equation (2). x

1  ab x bx 2  a  (a  b) x bx  a 

Using the quadratic formula we have:

  

(a  b)  (a  b) 2  4ba 2b

a  b  a 2  2ab  b 2  4ba 2b 2 a  b  a 2  2ab  b 2 a  b  (a  b)  2b 2b a b a b

2b If a > b, then a  b  a  b and x

a  b  ( a  b) a  b  a  b abab  or 2b 2b 2b 2a a 2b =  or 1 2b b 2b

If a < b, then a  b  a  b and a  b  (b  a) 2b a  1 or b x

b

2

1 a

2

a2

b2

a 2  b2 a 2b2

a b

bx 2  (a  b) x  a  0

x

1

b 2

b 1 1 ab a    a b b a ab a b So  ,  checks. b a 2l  2 w  P 99.  lw A 

Solve the first equation for l , substitute into the second equation and solve. 2l  P  2 w P l  w 2 P    w w  A 2  P w  w2  A 2 P w2  w  A  0 2 P  P2  16 A P  P2  4 A 2 4 4 4 w 2  2 2 

P 2

1260 Copyright © 2020 Pearson Education, Inc.

P 2  16 A

2 2

P  P 2  16 A 4


Section 11.6: Systems of Nonlinear Equations

If w  l

equation. Notice that  x  h  yields a 2nd degree 2

P  P 2  16 A then 4 2

polynomial, and ax3  bx 2  cx  d  k

2

P P  P  16 A P  P  16 A   2 4 4

If w 

 yields a 2

6th degree polynomial. Therefore, we need to find the roots of a 6th degree equation, and the Fundamental Theorem of Algebra states that there will be at most six real roots. Thus, the circle and the 3rd degree polynomial will intersect at most six times. Now consider the circle with equation

P  P 2  16 A then 4

 x  h 2   y  k 2  r 2 and the polynomial of

P P  P 2  16 A P  P 2  16 A   2 4 4 Assuming l  w , the solution is: l

degree n with equation y  a0  a1 x  a2 x 2  a3 x3  ...  an x n . Substituting the first equation into the first equation yields

P  P 2  16 A P  P 2  16 A and l  4 4 Note: To show that the solutions are real, we can verify P 2  16 A  0 as follows: P 2  16 A  (2l  2w) 2  16lw w

 x  h 2   a0  a1 x  a2 x 2  a3 x3  ...  an x n  k   r 2 2

In order to find the roots for this equation we can expand the terms on the left hand side of the equation.

 4l 2  8lw  4 w2  16lw  4l 2  8lw  4 w2

Notice that  x  h  yields a 2nd degree polynomial,

 4(l  w) 2  0

and a0  a1 x  a2 x 2  a3 x3  ...  an x n  k

2

2

yields a polynomial of degree 2n. Therefore, we need to find the roots of an equation of degree 2n, and the Fundamental Theorem of Algebra states that there will be at most 2n real roots. Thus, the circle and the nth degree polynomial will intersect at most 2n times.

100. Solve the system for l and b : P  b  2l  b  P  2l    2 b2  l2 h   4 Solve the first equation for b , substitute into the second equation and solve. 4h 2  b 2  4l 2

102. Since the area of the square piece of sheet metal is 100 square feet, the sheet’s dimensions are 10 feet by 10 feet. Let x  the length of the cut.

4h 2   P  2l   4l 2 2

x

4h 2  P 2  4 Pl  4l 2  4l 2

x

4h 2  P 2  4 Pl

x

4h 2  P 2 l 4P b  P

10 – 2x

4h 2  P 2 P 2  4h 2  2P 2P

10 – 2x

10

10

The dimensions of the box are: length  10  2 x; width  10  2 x; height  x . Note that each of these expressions must be positive. So we must have x  0 and 10  2 x  0  x  5, that is, 0  x  5 . So the volume of the box is given by V   length    width    height 

101. Consider the circle with equation

 x  h 2   y  k 2  r 2 and the third degree polynomial with equation y  ax3  bx 2  cx  d . Substituting the second equation into the first equation yields

 10  2 x 10  2 x  x 

 x  h 2   ax3  bx 2  cx  d  k   r 2 . 2

 10  2 x   x  2

In order to find the roots for this equation we can expand the terms on the left hand side of the 1261

Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities

In order to get a volume equal to 9 cubic feet,

a.

we solve 10  2 x   x   9.

104.

2

y  y1  m( x  x1 ) 2 y  ( 7)   ( x  10) 5 2 2 y7   x4 y   x3 5 5

10  2 x   x   9 2

100  40 x  4 x  x  9 2

100 x  40 x 2  4 x3  9 So we need to solve the equation 4 x3  40 x 2  100 x  9  0 .

24 and cos   0 , so  lies in quadrant 7 III. Using the Pythagorean Identities: csc 2   1  cot 2 

105. cot  

Graphing y1  4 x3  40 x 2  100 x  9 on a calculator yields the graph

2

80

625  24  csc 2   1      7 49

40

625 25  49 7 Note that csc  must be negative because  lies in 25 quadrant III. Thus, csc    . 7 1 1 7   sin   csc   257 25 csc   

2



80

2



cot  

40

cos    cot   sin   

80

2

cos  , so sin 

tan  

1 1 7  24  cot  24 7

sec  

1 1 25   cos   24 24 25

 40

The graph indicates that there are three real zeros on the interval [0, 6]. Using the ZERO feature of a graphing calculator, we find that the three roots shown occur at x  0.093 , x  4.274 and x  5.632 . But we’ve already noted that we must have 0<x <5 , so the only practical values for the sides of the square base are x  0.093 feet and x  4.274 feet.

24  7  24     7  25  25

106. The hotel is 1200 feet above the lake. The hypotenuse of the triangle is 4420. So opp 1200  sin   hypo 4420  1200   15.8  4420 

  sin 1 

The inclination of the trail is 15.8 .

b. Answers will vary. 107.

2

103. 7 x  6 x  8  0

( x  (3)) 2  ( y  4) 2  102

2

x

b  b  4ac 6  6  4(7)( 8)  2a 2(7)

6  260 6  2 65 3  65   14 14 7

2

 3  65 3  65  , The solution set is   7 7  

( x  h) 2  ( y  k ) 2  r 2 ( x  3) 2  ( y  4) 2  100

108.

x 2  4 x  21 x 2  4 x  21  0 We graph the function f ( x)  x 2  4 x  21 . The intercepts are

1262 Copyright © 2020 Pearson Education, Inc.


Section 11.7: Systems of Inequalities y-intercept: f (0)  21

112.

x-intercepts: x 2  4 x  21  0 ( x  3)( x  7)  0 x  3, x  7 The vertex is at x 

f ( x) 

b (4)   2 . Since 2a 2(1)

f  2   25 , the vertex is  2, 25  .

(2 x  5)9  3  3x  9(2 x  5)8  2 (2 x  5)9   

3(2 x  5)8  (2 x  5)  18 x 

(2 x  5)18 3(5  16 x) 15  48 x 48 x  15    (2 x  5)10 (2 x  5)10 (2 x  5)10

The graph is below the x-axis when 3  x  7 . Since the inequality is strict, the solution set is  x  3  x  7  or, using interval notation,

 3, 7  .

Section 11.7

109. Reflecting about the x-axis would be f ( x)   25  x 2 . Shifting 4 units to the right

would give f ( x)   25  ( x  4) 2 . 110.

f ( x  3)  2( x  3) 2  8( x  3)  7  2 x 2  12 x  18  8 x  31  2 x 2  20 x  49

111.

f ( x) 

1. 3x  4  8  x 4x  4 x 1 x x   1 or  ,1 2. 3x  2 y  6 The graph is a line. x-intercept: 3x  2  0   6

 2( x 2  6 x  9)  8 x  24  7

3x  6 x2 y-intercept: 3  0   2 y  6

3x x 8

3( x  h) 3x  f ( x  h)  f ( x ) x  h  8 x  8  h h 3( x  h)( x  8)  3 x  x  8  h   x  h  8  x  8   h 3 x  24 x  3hx  24 h  3 x  24 x  3 xh 2

2

2

 x  h  8  x  8  h

  1  24h        x  h  8  x  8    h  24   x  h  8  x  8 

1263 Copyright © 2020 Pearson Education, Inc.

2 y  6 y  3


Chapter 11: Systems of Equations and Inequalities

3. x 2  y 2  9 The graph is a circle. Center: (0, 0) ; Radius: 3

9. False, see example 7b. 10. b 11. x  0 Graph the line x  0 . Use a solid line since the inequality uses ≥. Choose a test point not on the line, such as (2, 0). Since 2 ≥ 0 is true, shade the side of the line containing (2, 0).

4. y  x 2  4 The graph is a parabola. x-intercepts: 0  x 2  4

x 2  4, no x  intercepts y-intercept: y  02  4  4 The vertex has x-coordinate: b 0 x   0. 2a 2 1 The y-coordinate of the vertex is y  02  4  4 .

13. x  4 Graph the line x  4 . Use a solid line since the inequality uses ≥. Choose a test point not on the line, such as (5, 0). Since 5 ≥ 0 is true, shade the side of the line containing (5, 0).

5. True 6.

12. y  0 Graph the line y  0 . Use a solid line since the inequality uses ≥. Choose a test point not on the line, such as (0, 2). Since 2 ≥ 0 is true, shade the side of the line containing (0, 2).

x2  4  5 x2  9  0 ( x  3)( x  3)  0

The x-intercepts are 3 and -3. The graph is below the x-axis when 3  x  3 . Since the inequality includes the equal sign, the solution set is  x  3  x  3  or, using interval notation,  3, 3 . 7. dashes; solid 8. half-planes

14. y  2 Graph the line y  2 . Use a solid line since the inequality uses ≤. Choose a test point not on the 1264 Copyright © 2020 Pearson Education, Inc.


Section 11.7: Systems of Inequalities

line, such as (5, 0). Since 0 ≤ 2 is true, shade the side of the line containing (5, 0).

15. 2 x  y  6 Graph the line 2 x  y  6 . Use a solid line since the inequality uses ≥. Choose a test point not on the line, such as (0, 0). Since 2(0)  0  6 is false, shade the opposite side of the line from (0, 0).

16. 3x  2 y  6 Graph the line 3x  2 y  6 . Use a solid line since the inequality uses ≤. Choose a test point not on the line, such as (0, 0). Since 3(0)  2(0)  6 is true, shade the side of the line containing (0, 0).

17. x 2  y 2  1

Graph the circle x 2  y 2  1 . Use a dashed line since the inequality uses >. Choose a test point not on the circle, such as (0, 0). Since 02  02  1 is false, shade the opposite side of the circle from (0, 0).

18. x 2  y 2  9

Graph the circle x 2  y 2  9 . Use a solid line since the inequality uses  . Choose a test point not on the circle, such as (0, 0). Since 02  02  9 is true, shade the same side of the circle as (0, 0).

1265 Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities

19. y  x 2  1

Graph the parabola y  x 2  1 . Use a solid line since the inequality uses  . Choose a test point not on the parabola, such as (0, 0). Since 0  02  1 is false, shade the opposite side of the parabola from (0, 0).

20. y  x 2  2

Graph the parabola y  x 2  2 . Use a dashed line since the inequality uses >. Choose a test point not on the parabola, such as (0, 0). Since 0  02  2 is false, shade the opposite side of the parabola from (0, 0).

21. xy  4 Graph the hyperbola xy  4 . Use a solid line since the inequality uses  . Choose a test point not on the hyperbola, such as (0, 0). Since 0  0  4 is false, shade the opposite side of the hyperbola from (0, 0).

22. xy  1 Graph the hyperbola xy  1 . Use a solid line since the inequality uses  . Choose a test point not on the hyperbola, such as (0, 0). Since 0  0  1 is true, shade the same side of the hyperbola as (0, 0).

 x y  2 23.  2 x  y  4 Graph the line x  y  2 . Use a solid line since the inequality uses ≤. Choose a test point not on the line, such as (0, 0). Since 0  0  2 is true, shade the side of the line containing (0, 0). Graph the line 2 x  y  4 . Use a solid line since the inequality uses ≥. Choose a test point not on the line, such as (0, 0). Since 2(0)  0  4 is false, shade the opposite side of the line from (0, 0). The overlapping region is the solution.

3x  y  6 24.   x  2y  2 Graph the line 3 x  y  6 . Use a solid line since the inequality uses ≥. Choose a test point not on the line, such as (0, 0). Since 3(0)  0  6 is false, shade the opposite side of the line from (0, 0). Graph the line x  2 y  2 . Use a solid line since the inequality uses ≤. Choose a test point not on the line, such as (0, 0). Since 0  2(0)  2 is true, shade the side of the line containing (0, 0). The overlapping region is the solution.

1266 Copyright © 2020 Pearson Education, Inc.


Section 11.7: Systems of Inequalities

 2x  y  4 25.  3 x  2 y   6 Graph the line 2 x  y  4 . Use a solid line since the inequality uses ≤. Choose a test point not on the line, such as (0, 0). Since 2(0)  0  4 is true, shade the side of the line containing (0, 0). Graph the line 3 x  2 y   6 . Use a solid line since the inequality uses ≥. Choose a test point not on the line, such as (0, 0). Since 3(0)  2(0)   6 is true, shade the side of the line containing (0, 0). The overlapping region is the solution.

 4x  5 y  0 26.  2 x  y  2 Graph the line 4 x  5 y  0 . Use a solid line since the inequality uses ≤. Choose a test point not on the line, such as (2, 0). Since 4(2)  5(0)  0 is false, shade the opposite side of the line from (2, 0). Graph the line 2 x  y  2 . Use a solid line since the inequality uses ≥. Choose a test point not on the line, such as (0, 0). Since 2(0)  0  2 is false, shade the opposite side of the line from (0, 0). The overlapping region is the solution.

2 x  3 y  0 27.  3x  2 y  6 Graph the line 2 x  3 y  0 . Use a solid line since the inequality uses ≤. Choose a test point not on the line, such as (0, 3). Since 2(0)  3(3)  0 is true, shade the side of the line containing (0, 3). Graph the line 3x  2 y  6 . Use a solid line since the inequality uses ≤. Choose a test point not on the line, such as (0, 0). Since 3(0)  2(0)  6 is true, shade the side of the line containing (0, 0). The overlapping region is the solution.

4 x  y  2 28.   x  2y  2 Graph the line 4 x  y  2 . Use a solid line since the inequality uses ≥. Choose a test point not on the line, such as (0, 0). Since 4(0)  0  2 is false, shade the opposite side of the line from (0, 0). Graph the line x  2 y  2 . Use a solid line since the inequality uses ≥. Choose a test point not on the line, such as (0, 0). Since 0  2(0)  2 is false, shade the opposite side of the line from (0, 0). The overlapping region is the solution.

1267 Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities  x  2y  6 29.  2 x  4 y  0 Graph the line x  2 y  6 . Use a solid line since the inequality uses ≤. Choose a test point not on the line, such as (0, 0). Since 0  2(0)  6 is true, shade the side of the line containing (0, 0). Graph the line 2 x  4 y  0 . Use a solid line since the inequality uses ≥. Choose a test point not on the line, such as (0, 2). Since 2(0)  4(2)  0 is false, shade the opposite side of the line from (0, 2). The overlapping region is the solution.

x  4 y  8 30.  x  4 y  4 Graph the line x  4 y  8 . Use a solid line since the inequality uses ≤. Choose a test point not on the line, such as (0, 0). Since 0  4(0)  8 is true, shade the side of the line containing (0, 0). Graph the line x  4 y  4 . Use a solid line since the inequality uses ≥. Choose a test point not on the line, such as (0, 0). Since 0  4(0)  4 is false, shade the opposite side of the line from (0, 0). The overlapping region is the solution.

2 x  y   2 31.  2 x  y  2 Graph the line 2 x  y   2 . Use a solid line since the inequality uses ≥. Choose a test point not on the line, such as (0, 0). Since 2(0)  0   2 is true, shade the side of the line containing (0, 0). Graph the line 2 x  y  2 . Use a solid line since the inequality uses ≥. Choose a test point not on the line, such as (0, 0). Since 2(0)  0  2 is false, shade the opposite side of the line from (0, 0). The overlapping region is the solution.

x  4 y  4 32.  x  4 y  0 Graph the line x  4 y  4 . Use a solid line since the inequality uses ≤. Choose a test point not on the line, such as (0, 0). Since 0  4(0)  4 is true, shade the side of the line containing (0, 0). Graph the line x  4 y  0 . Use a solid line since the inequality uses ≥. Choose a test point not on the line, such as (1, 0). Since 1  4(0)  0 is true, shade the side of the line containing (1, 0). The overlapping region is the solution.

1268 Copyright © 2020 Pearson Education, Inc.


Section 11.7: Systems of Inequalities 2 x  3 y  6 33.  2 x  3 y  0 Graph the line 2 x  3 y  6 . Use a solid line since the inequality uses ≥. Choose a test point not on the line, such as (0, 0). Since 2(0)  3(0)  6 is false, shade the opposite side of the line from (0, 0). Graph the line 2 x  3 y  0 . Use a solid line since the inequality uses ≤. Choose a test point not on the line, such as (0, 2). Since 2(0)  3(2)  0 is false, shade the opposite side of the line from (0, 2). Since the regions do not overlap, the solution is an empty set.

2 2  x  y  9 35.   x  y  3 Graph the circle x 2  y 2  9 . Use a solid line since the inequality uses  . Choose a test point not on the circle, such as (0, 0). Since 02  02  9 is true, shade the same side of the circle as (0, 0). Graph the line x  y  3 . Use a solid line since the inequality uses ≥ . Choose a test point not on the line, such as (0, 0). Since 0  0  3 is false, shade the opposite side of the line from (0, 0). The overlapping region is the solution.

2 x  y  0 34.  2 x  y  2 Graph the line 2 x  y  0 . Use a solid line since the inequality uses ≥. Choose a test point not on the line, such as (1, 0). Since 2(1)  0  0 is true, shade the side of the line containing (1, 0). Graph the line 2 x  y  2 . Use a solid line since the inequality uses ≥. Choose a test point not on the line, such as (0, 0). Since 2(0)  0  2 is false, shade the opposite side of the line from (0, 0). The overlapping region is the solution.

2 2  x  y  9 36.   x  y  3 Graph the circle x 2  y 2  9 . Use a solid line since the inequality uses ≥. Choose a test point not on the circle, such as (0, 0). Since 02  02  9 is false, shade the opposite side of the circle as (0, 0). Graph the line x  y  3 . Use a solid line since the inequality uses  . Choose a test point not on the line, such as (0, 0). Since 0  0  3 is true, shade the same side of the line as (0, 0). The overlapping region is the solution.

1269 Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities

2  y  x  4 37.   y  x  2 Graph the parabola y  x 2  4 . Use a solid line since the inequality uses ≥ . Choose a test point not on the parabola, such as (0, 0). Since 0  02  4 is true, shade the same side of the parabola as (0, 0). Graph the line y  x  2 . Use a solid line since the inequality uses  . Choose a test point not on the line, such as (0, 0). Since 0  0  2 is false, shade the opposite side of the line from (0, 0). The overlapping region is the solution.

 y 2  x 38.   y  x Graph the parabola y 2  x . Use a solid line since the inequality uses  . Choose a test point not on the parabola, such as (1, 2). Since 22  1 is false, shade the opposite side of the parabola from (1, 2). Graph the line y  x . Use a solid line since the inequality uses  . Choose a test point not on the line, such as (1, 2). Since 2  1 is true, shade the same side of the line as (1, 2). The overlapping region is the solution.

39.  x 2  y 2  16  2  y  x  4

Graph the circle x 2  y 2  16 . Use a sold line since the inequality is not strict. Choose a test point not on the circle, such as (0, 0) . Since 02  02  16 is true, shade the side of the circle containing (0, 0) . Graph the parabola y  x 2  4 . Use a solid line since the inequality is not strict. Choose a test point not on the parabola, such as (0, 0) . Since 0  02  4 is true, shade the side of the parabola that contains (0, 0) . The overlapping region is the solution.

40.  x 2  y 2  25  2  y  x  5

Graph the circle x 2  y 2  25 . Use a sold line since the inequality is not strict. Choose a test point not on the circle, such as (0, 0) . Since 02  02  25 is true, shade the side of the circle containing (0, 0) . Graph the parabola y  x 2  5 . Use a solid line since the inequality is not strict. Choose a test point not on the parabola, such as (0, 0) . Since 0  02  5 is false, shade the side of the parabola opposite that which contains the point (0, 0) . The overlapping region is the solution.

1270 Copyright © 2020 Pearson Education, Inc.


Section 11.7: Systems of Inequalities  xy  4 41.  2  y  x  1 Graph the hyperbola xy  4 . Use a solid line since the inequality uses  . Choose a test point not on the parabola, such as (0, 0). Since 0  0  4 is false, shade the opposite side of the hyperbola from (0, 0). Graph the parabola y  x 2  1 . Use a solid line since the inequality uses  . Choose a test point not on the parabola, such as (0, 0). Since 0  02  1 is false, shade the opposite side of the parabola from (0, 0).The overlapping region is the solution.

 y  x 2  1 42.  2  y  x  1 Graph the parabola y  x 2  1 . Use a solid line since the inequality uses  . Choose a test point not on the parabola, such as (0, 0). Since

0  02  1 is true, shade the same side of the

parabola as (0, 0). Graph the parabola y  x 2  1 . Use a solid line since the inequality uses  . Choose a test point not on the parabola, such as (0, 0). Since 0  02  1 is true, shade the same side of the parabola as (0, 0). The overlapping region is the solution.

x0   0 y  43.  2 x  y  6  x  2 y  6 Graph x  0; y  0 . Shaded region is the first quadrant. Graph the line 2 x  y  6 . Use a solid line since the inequality uses ≤. Choose a test point not on the line, such as (0, 0). Since 2(0)  0  6 is true, shade the side of the line containing (0, 0). Graph the line x  2 y  6 . Use a solid line since the inequality uses ≤. Choose a test point not on the line, such as (0, 0). Since 0  2(0)  6 is true, shade the side of the line containing (0, 0). The overlapping region is the solution. The graph is bounded. Find the vertices:

The x-axis and y-axis intersect at (0, 0). The intersection of x  2 y  6 and the y-axis is (0, 3). The intersection of 2 x  y  6 and the x-axis is (3, 0). To find the intersection of x  2 y  6 and 2 x  y  6 , solve the system:  x  2y  6  2 x  y  6 Solve the first equation for x: x  6  2 y . Substitute and solve: 2(6  2 y )  y  6 12  4 y  y  6 12  3 y  6 3 y  6 y2 x  6  2(2)  2 The point of intersection is (2, 2). The four corner points are (0, 0), (0, 3), (3, 0), and (2, 2).

1271 Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities x0   0 y  44.   x y  4 2 x  3 y  6 Graph x  0; y  0 . Shaded region is the first quadrant. Graph the line x  y  4 . Use a solid line since the inequality uses ≥. Choose a test point not on the line, such as (0, 0). Since 0  0  4 is false, shade the opposite side of the line from (0, 0). Graph the line 2 x  3 y  6 . Use a solid line since the inequality uses ≥. Choose a test point not on the line, such as (0, 0). Since 2(0)  3(0)  6 is false, shade the opposite side of the line from (0, 0). The overlapping region is the solution. The graph is unbounded. Find the vertices: The intersection of x  y  4 and the y-axis is (0, 4). The intersection of x  y  4 and the xaxis is (4, 0). The two corner points are (0, 4), and (4, 0).

= x0   y0  45.   x y  2 2 x  y  4 Graph x  0; y  0 . Shaded region is the first quadrant. Graph the line x  y  2 . Use a solid line since the inequality uses ≥. Choose a test point not on the line, such as (0, 0). Since 0 + 0 ≥ 2 is false, shade the opposite side of the line from (0, 0). Graph the line 2 x  y  4 . Use a solid line since the inequality uses ≥. Choose a test point not on the line, such as (0, 0). Since 2(0)  0  4 is false, shade the opposite side of the line from (0, 0). The overlapping region is the solution. The graph is unbounded.

Find the vertices: The intersection of x  y  2 and the x-axis is (2, 0). The intersection of 2 x  y  4 and the yaxis is (0, 4). The two corner points are (2, 0), and (0, 4).

x0   y0  46.  x y6 3   2 x  y  2 Graph x  0; y  0 . Shaded region is the first quadrant. Graph the line 3 x  y  6 . Use a solid line since the inequality uses ≤. Choose a test point not on the line, such as (0, 0). Since 3(0)  0  6 is true, shade the side of the line containing (0, 0). Graph the line 2 x  y  2 . Use a solid line since the inequality uses ≤. Choose a test point not on the line, such as (0, 0). Since 2(0)  0  2 is true, shade the side of the line containing (0, 0). The overlapping region is the solution. The graph is bounded.

Find the vertices: The intersection of x  0 and y  0 is (0, 0). The intersection of 2 x  y  2 and the x-axis is (1, 0). The intersection of 2 x  y  2 and the yaxis is (0, 2). The three corner points are (0, 0), (1, 0), and (0, 2).

1272 Copyright © 2020 Pearson Education, Inc.


Section 11.7: Systems of Inequalities

x0   y 0  47.  x  y  2 2 x  3 y  12   3x  y  12

Graph x  0; y  0 . Shaded region is the first quadrant. Graph the line x  y  2 . Use a solid line since the inequality uses ≥. Choose a test point not on the line, such as (0, 0). Since 0  0  2 is false, shade the opposite side of the line from (0, 0). Graph the line 2 x  3 y  12 . Use a solid line since the inequality uses ≤. Choose a test point not on the line, such as (0, 0). Since 2(0)  3(0)  12 is true, shade the side of the line containing (0, 0). Graph the line 3x  y  12 . Use a solid line since the inequality uses ≤. Choose a test point not on the line, such as (0, 0). Since 3(0)  0  12 is true, shade the side of the line containing (0, 0). The overlapping region is the solution. The graph is bounded. Find the vertices: The intersection of x  y  2 and the y-axis is (0, 2). The intersection of x  y  2 and the xaxis is (2, 0). The intersection of 2 x  3 y  12 and the y-axis is (0, 4). The intersection of 3x  y  12 and the x-axis is (4, 0). To find the intersection of 2 x  3 y  12 and 3 x  y  12 , solve the system: 2 x  3 y  12   3 x  y  12 Solve the second equation for y: y  12  3 x . Substitute and solve: 2 x  3(12  3x)  12 2 x  36  9 x  12 7 x  24 24 x 7 72 12  24  y  12  3    12   7 7  7   24 12  The point of intersection is  ,  .  7 7 The five corner points are (0, 2), (0, 4), (2, 0),  24 12  (4, 0), and  ,  .  7 7

x0   y0  48.  x  y  1  x y 7  2 x  y  10 Graph x  0; y  0 . Shaded region is the first quadrant. Graph the line x  y  1 . Use a solid line since the inequality uses ≥. Choose a test point not on the line, such as (0, 0). Since 0  0  1 is false, shade the opposite side of the line from (0, 0). Graph the line x  y  7 . Use a solid line since the inequality uses ≤. Choose a test point not on the line, such as (0, 0). Since 0  0  7 is true, shade the side of the line containing (0, 0). Graph the line 2 x  y  10 . Use a solid line since the inequality uses ≤. Choose a test point not on the line, such as (0, 0). Since 2(0)  0  10 is true, shade the side of the line containing (0, 0). The overlapping region is the solution. The graph is bounded.

Find the vertices: The intersection of x  y  1 and the y-axis is (0, 1). The intersection of 2 x  y  10 and the yaxis is (0, 10). To find the intersection of 2 x  y  10 and x  y  7 , solve the system: 2 x  y  10   x y  7 Solve the second equation for y: y  7  x . Substitute and solve: 2 x  7  x  10 x3 y  73  4 The point of intersection is (3, 4). The five corner points are (0, 1), (1, 0), (0, 7), (5, 0) and (3, 4).

1273 Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities

x 0   y 0  49.  x  y  2  x y  8  2 x  y  10 Graph x  0; y  0 . Shaded region is the first quadrant. Graph the line x  y  2 . Use a solid line since the inequality uses ≥. Choose a test point not on the line, such as (0, 0). Since 0  0  2 is false, shade the opposite side of the line from (0, 0). Graph the line x  y  8 . Use a solid line since the inequality uses ≤. Choose a test point not on the line, such as (0, 0). Since 0  0  8 is true, shade the side of the line containing (0, 0). Graph the line 2 x  y  10 . Use a solid line since the inequality uses ≤. Choose a test point not on the line, such as (0, 0). Since 2(0)  0  10 is true, shade the side of the line containing (0, 0). The overlapping region is the solution. The graph is bounded.

Find the vertices: The intersection of x  y  2 and the y-axis is (0, 2). The intersection of x  y  2 and the x-axis is (2, 0). The intersection of x  y  8 and the yaxis is (0, 8). The intersection of 2 x  y  10 and the x-axis is (5, 0). To find the intersection of x  y  8 and 2 x  y  10 , solve the system:  x y 8  2 x  y  10 Solve the first equation for y: y  8  x . Substitute and solve: 2 x  8  x  10

x0   y0  50.  x  y  2 x y 8   x  2 y  1 Graph x  0; y  0 . Shaded region is the first quadrant. Graph the line x  y  2 . Use a solid line since the inequality uses ≥. Choose a test point not on the line, such as (0, 0). Since 0  0  2 is false, shade the opposite side of the line from (0, 0). Graph the line x  y  8 . Use a solid line since the inequality uses ≤. Choose a test point not on the line, such as (0, 0). Since 0  0  8 is true, shade the side of the line containing (0, 0). Graph the line x  2 y  1 . Use a solid line since the inequality uses ≥. Choose a test point not on the line, such as (0, 0). Since 0  2(0)  1 is false, shade the opposite side of the line from (0, 0). The overlapping region is the solution. The graph is bounded.

Find the vertices: The intersection of x  y  2 and the y-axis is (0, 2). The intersection of x  y  2 and the xaxis is (2, 0). The intersection of x  y  8 and the y-axis is (0, 8). The intersection of x  y  8 and the x-axis is (8, 0). The four corner points are (0, 2), (0, 8), (2, 0), and (8, 0).

x2 y  82  6 The point of intersection is (2, 6). The five corner points are (0, 2), (0, 8), (2, 0), (5, 0), and (2, 6).

1274 Copyright © 2020 Pearson Education, Inc.


Section 11.7: Systems of Inequalities x 0   y  0  51.  x  2 y  1  x  2 y  10 Graph x  0; y  0 . Shaded region is the first quadrant. Graph the line x  2 y  1 . Use a solid line since the inequality uses ≥. Choose a test point not on the line, such as (0, 0). Since 0  2(0)  1 is false, shade the opposite side of the line from (0, 0). Graph the line x  2 y  10 . Use a solid line since the inequality uses ≤. Choose a test point not on the line, such as (0, 0). Since 0  2(0)  10 is true, shade the side of the line containing (0, 0). The overlapping region is the solution. The graph is bounded.

Find the vertices: The intersection of x  2 y  1 and the y-axis is (0, 0.5). The intersection of x  2 y  1 and the x-axis is (1, 0). The intersection of x  2 y  10 and the y-axis is (0, 5). The intersection of x  2 y  10 and the x-axis is (10, 0). The four corner points are (0, 0.5), (0, 5), (1, 0), and (10, 0).

x 0   y  0   x  2 y  1 52.   x  2 y  10  x y  2   x  y  8 Graph x  0; y  0 . Shaded region is the first quadrant. Graph the line x  2 y  1 . Use a solid line since the inequality uses ≥. Choose a test point not on the line, such as (0, 0). Since 0  2(0)  1 is false, shade the opposite side of the line from (0, 0). Graph the line x  2 y  10 . Use a solid line since the inequality uses ≤. Choose a

test point not on the line, such as (0, 0). Since 0  2(0)  10 is true, shade the side of the line containing (0, 0). Graph the line x  y  2 . Use a solid line since the inequality uses ≥. Choose a test point not on the line, such as (0, 0). Since 0  0  2 is false, shade the opposite side of the line from (0, 0). Graph the line x  y  8 . Use a solid line since the inequality uses ≤. Choose a test point not on the line, such as (0, 0). Since 0  0  8 is true, shade the side of the line containing (0, 0). The overlapping region is the solution. The graph is bounded. Find the vertices: The intersection of x  y  2 and the y-axis is (0, 2). The intersection of x  y  2 and the xaxis is (2, 0). The intersection of x  2 y  10 and the y-axis is (0, 5). The intersection of x  y  8 and the x-axis is (8, 0). To find the intersection of x  y  8 and x  2 y  10 , solve the system: x  y  8   x  2 y  10 Solve the first equation for x: x  8  y . Substitute and solve: (8  y )  2 y  10 y2 x  82  6 The point of intersection is (6, 2). The five corner points are (0, 2), (0, 5), (2, 0), (8, 0), and (6, 2).

53. The system of linear inequalities is: x4  x  y  6   x 0   y 0

1275 Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities 54. The system of linear inequalities is: y5  x  y  2  x6   x 0  y 0  55. The system of linear inequalities is: x  20   y  15   x  y  50 x  y  0  x 0  56. The system of linear inequalities is: y 6   x 5  3 4 x y   12   2x  y  8  x 0  57. a.

Let x = the amount invested in Treasury bills, and let y = the amount invested in corporate bonds. The constraints are: x  y  50, 000 because the total investment cannot exceed $50,000. x  35, 000 because the amount invested in Treasury bills must be at least $35,000. y  10, 000 because the amount invested in corporate bonds must not exceed $10,000. y  0 because a non-negative amount must be invested. The system is  x  y  50, 000  x  35, 000   y  10, 000   y0

b. Graph the system.

The corner points are (35,000, 0), (35,000, 10,000), (40,000, 10,000), (50,000, 0). 58. a.

Let x = the # of standard model trucks, and let y = the # of deluxe model trucks. The constraints are: x  0, y  0 because a non-negative number of trucks must be manufactured. 2 x  3 y  80 because the total painting hours worked cannot exceed 80. 3x  4 y  120 because the total detailing hours worked cannot exceed 120. The system is x  0 y  0   2 x  3 y  80 3x  4 y  120

b. Graph the system.

 80  The corner points are  0, 0  ,  0.  ,  40, 0  .  3 

1276 Copyright © 2020 Pearson Education, Inc.


Section 11.7: Systems of Inequalities 59. a.

Let x = the # of packages of the economy blend, and let y = the # of packages of the superior blend. The constraints are: x  0, y  0 because a non-negative # of packages must be produced. 4 x  8 y  75 16 because the total amount of “A grade” coffee cannot exceed 75 pounds. (Note: 75 pounds = (75)(16) ounces.) 12 x  8 y  120 16 because the total amount of “B grade” coffee cannot exceed 120 pounds. (Note: 120 pounds = (120)(16) ounces.) Simplifying the inequalities, we obtain: 4 x  8 y  75 16

12 x  8 y  120 16

x  2 y  75  4

3x  2 y  120  4

x  2 y  300

3x  2 y  480

The system is: x  0 y  0    x  2 y  300 3x  2 y  480

4 x  6 y  90 16 2 x  3 y  90  8 2 x  3 y  720

The system is 4 x  3 y  960  2 x  3 y  720  x  0; y  0 b. Graph the system.

The corner points are (0, 0), (0, 240), (120, 160), (240, 0). 61. a.

b. Graph the system.

The corner points are (0, 0), (0, 150), (90, 105), (160, 0). 60. a.

8 x  6 y  120 16 4 x  3 y  120  8 4 x  3 y  960

Let x = the # of lower-priced packages, and let y = the # of quality packages. The constraints are: x  0, y  0 because a non-negative # of packages must be produced. 8 x  6 y  120 16 because the total amount of peanuts cannot exceed 120 pounds. (Note: 120 pounds = (120)(16) ounces.) 4 x  6 y  90 16 because the total amount of cashews cannot exceed 90 pounds. (Note: 90 pounds = (90)(16) ounces.) Simplifying the inequalities, we obtain:

Let x = the # of microwaves, and let y = the # of printers. The constraints are: x  0, y  0 because a non-negative # of items must be shipped. 30 x  20 y  1600 because a total cargo weight cannot exceed 1600 pounds. 2 x  3 y  150 because the total cargo volume cannot exceed 150 cubic feet. Note that the inequality 30 x  20 y  1600 can be simplified: 3x  2 y  160 . The system is: 3x  2 y  160  2 x  3 y  150  x  0; y  0

b. Graph the system.

The corner points are (0, 0), (0, 50), (36, 26),  160  ,0  .   3 

1277 Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities

62.

x  y 4 y  x 4 y  x  4 and y   x  4

Graph y  x  4 and shade above; graph y   x  4 and shade below.

y  x 2  3  y   x 2  3 and y  x 2  3

Graph y   x3  3 and shade above; graph y  x 2  3 and shade below. The intersection is

the solution to the system as shown in the figure. 65.

f ( x)  6 x3  5 x  6;

 1, 2

f ( 1)  5  0 and f (2)  28  0 The value of the function is positive at one endpoint and negative at the other. Since the function is continuous, the Intermediate Value Theorem guarantees at least one zero in the given interval.

66.

2

63. 2( x  1)  8  0

(2 cos   1)(cos   1)  0

2( x  1) 2  8

2 cos   1  0

( x  1)  4 ( x  1)   4 ( x  1)  2i x  1  2i

The solution set is  1  2i, 1  2i . 3r  sin  3r 2  r sin  3( x 2  y 2 )  y 2 3x  3 y 2  y  0 1 x2  y 2  y  0 3 1 1 1 2 2 x  y  y  3 36 36 2 2 1 1  x2   y      6 6 

cos   1

0

 2 4  , .  3 3

On 0    2 , the solution set is 0, 67. x  2  4 x  3  x  18 5  5 x  15 1  x  3 3  x  1

Or  x | 3  x  1  r 68. A  P  1    n

1 The graph is a circle with center  0,  and 

radius

or cos   1  0

1 cos    2 2 4 ,  3 3

2

64.

2 cos 2   cos   1  0

nt

 .0325   7500  1   365  

6

1 . 6

1278 Copyright © 2020 Pearson Education, Inc.

365(5)

 $8823.30


Section 11.8: Linear Programming

69.

4. z  2 x  3 y

h  ks 3 k  0.0868

Vertex Value of z  2 x  3 y z  2(0)  3(3)  9 (0, 3)

h  0.0868(6)3  18.75 horsepower

(0, 6)

z  2(0)  3(6)  18

(5, 6)

z  2(5)  3(6)  28

(5, 2)

z  2(5)  3(2)  16

150  k (12)3

70. log5 x  y  5 y  x

z  2(4)  3(0)  8 (4, 0) The maximum value is 28 at (5, 6), and the minimum value is 8 at (4, 0).

2

71. ( f  g )( x) 

x  2 5

x20 x2

5. z  x  10 y

and

Vertex Value of z  x  10 y z  0  10(3)  30 (0, 3)

x  2 5  0 x  2  25

(0, 6)

z  0  10(6)  60

x  23

(5, 6)

z  5  10(6)  65

(5, 2)

z  5  10(2)  25

So the domain is  x | x  2, x  23 . 72.

f ( x)  3 x 2  14 x  5  (3 x  1)( x  5) The x1 and 5 . From the graph of 3 f ( x) we see that the graph is below the x-axis

intercepts are 

and thus f ( x) is decreasing over the interval  1    ,5  . The graph is above the x-axis and thus  3  1 f ( x ) is increasing over the intervals ,  3 and  5,   .

z  4  10(0)  4 (4, 0) The maximum value is 65 at (5, 6), and the minimum value is 4 at (4, 0).

6. z  10 x  y Vertex Value of z  10 x  y z  10(0)  3  3 (0, 3) (0, 6)

z  10(0)  6  6

(5, 6)

z  10(5)  6  56

(5, 2)

z  10(5)  2  52

z  10(4)  0  40 (4, 0) The maximum value is 56 at (5, 6), and the minimum value is 3 at (0, 3).

7. z  5 x  7 y

Section 11.8

Vertex Value of z  5 x  7 y (0, 3) z  5(0)  7(3)  21

1. objective function 2. True 3. z  x  y

(0, 6)

z  06  6 z  5  6  11

(5, 2)

z  52  7

z  5(0)  7(6)  42 z  5(5)  7(6)  67

(5, 2)

z  5(5)  7(2)  39

(4, 0) z  5(4)  7(0)  20 The maximum value is 67 at (5, 6), and the minimum value is 20 at (4, 0).

Vertex Value of z  x  y z  03  3 (0, 3) (5, 6)

(0, 6) (5, 6)

z  40  4 (4, 0) The maximum value is 11 at (5, 6), and the minimum value is 3 at (0, 3).

1279 Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities 8. z  7 x  5 y Vertex Value of z  7 x  5 y (0, 3) z  7(0)  5(3)  15 (0, 6)

z  7(0)  5(6)  30

(5, 6)

z  7(5)  5(6)  65

(5, 2)

z  7(5)  5(2)  45

(4, 0) z  7(4)  5(0)  28 The maximum value is 65 at (5, 6), and the minimum value is 15 at (0, 3).

9. Maximize z  2 x  y subject to x  0, y  0, x  y  6, x  y  1 . Graph the constraints.

The corner points are (0, 3), (3, 0), (0, 7), (5, 0), (5, 7). Evaluate the objective function: Vertex Value of z  x  3 y z  0  3(3)  9 (0, 3) z  3  3(0)  3 (3, 0) z  0  3(7)  21 (0, 7) z  5  3(0)  5 (5, 0) z  5  3(7)  26 (5, 7) The maximum value is 26 at (5, 7). 11. Minimize z  2 x  5 y subject to x  0, y  0, x  y  2, x  5, y  3 . Graph the constraints. y

y

(0,6)

x=5

x+y=6

(0,3)

(5,3)

y=3

(5,0)

x

(0,2) (0,1) (6,0)

x

(2,0)

(1,0) x+y=1

x+y=2

The corner points are (0, 1), (1, 0), (0, 6), (6, 0). Evaluate the objective function: Vertex Value of z  2 x  y z  2(0)  1  1 (0, 1) z  2(0)  6  6 (0, 6) z  2(1)  0  2 (1, 0) z  2(6)  0  12 (6, 0) The maximum value is 12 at (6, 0). 10. Maximize z  x  3 y subject to x  0, y  0 , x  y  3 x  5, y  7 . Graph the constraints. y (0,7) y = 7

The corner points are (0, 2), (2, 0), (0, 3), (5, 0), (5, 3). Evaluate the objective function: Vertex Value of z  2 x  5 y (0, 2) z  2(0)  5(2)  10 (0, 3) z  2(0)  5(3)  15 z  2(2)  5(0)  4 (2, 0) (5, 0) z  2(5)  5(0)  10 (5, 3) z  2(5)  5(3)  25 The minimum value is 4 at (2, 0). 12. Minimize z  3 x  4 y subject to x  0 , y  0, 2 x  3 y  6, x  y  8 . Graph the constraints.

(5,7)

x=5 (0,3)

(3,0)

(5,0)

x

x+y=3

1280 Copyright © 2020 Pearson Education, Inc.


Section 11.8: Linear Programming

3   2 x  3  6  x   12 2   9 2 x  18  x  12 2 5  x  6 2 12 x 5 3  12  18 12 y  6    6  2 5  5 5

y (0,8)

x+y=8

(0,2) (8,0) x

(3,0) 2x + 3y = 6

The corner points are (0, 2), (3, 0), (0, 8), (8, 0). Evaluate the objective function: Vertex Value of z  3 x  4 y z  3(0)  4(2)  8 (0, 2) z  3(3)  4(0)  9 (3, 0) (0, 8) z  3(0)  4(8)  32 (8, 0) z  3(8)  4(0)  24 The minimum value is 8 at (0, 2). 13. Maximize z  3 x  5 y subject to x  0, y  0, x  y  2, 2 x  3 y  12, 3x  2 y  12 . Graph the constraints. y

The point of intersection is  2.4, 2.4  . The corner points are (0, 2), (2, 0), (0, 4), (4, 0), (2.4, 2.4). Evaluate the objective function: Vertex Value of z  3x  5 y z  3(0)  5(2)  10 (0, 2) z  3(0)  5(4)  20 (0, 4) z  3(2)  5(0)  6 (2, 0) z  3(4)  5(0)  12 (4, 0) (2.4, 2.4) z  3(2.4)  5(2.4)  19.2 The maximum value is 20 at (0, 4). 14. Maximize z  5 x  3 y subject to x  0, y  0, x  y  2, x  y  8, 2 x  y  10 . Graph the constraints. y

3x + 2y = 12

2x + y = 10

(0,4)

(0,8) (2,6)

(2.4,2.4) (0,2) (2,0)

2x + 3y = 12 (4,0) x

x+y=8 (0,2)

x+y=2

To find the intersection of 2 x  3 y  12 and 3x  2 y  12 , solve the system:

(2,0)

(5,0)

x

x+y=2

To find the intersection of x  y  8 and 2x  y  10 , solve the system:

2 x  3 y  12  3x  2 y  12 3 Solve the second equation for y: y  6  x 2 Substitute and solve:

 x y  8  2 x  y  10 Solve the first equation for y: y  8  x . Substitute and solve: 2 x  8  x  10 x2 y  82  6 The point of intersection is (2, 6). The corner points are (0, 2), (2, 0), (0, 8), (5, 0), (2, 6). Evaluate the objective function:

1281 Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities

Vertex Value of z  5 x  3 y z  5(0)  3(2)  6 (0, 2) (0, 8) z  5(0)  3(8)  24 (2, 0) z  5(2)  3(0)  10 (5, 0) z  5(5)  3(0)  25 (2, 6) z  5(2)  3(6)  28 The maximum value is 28 at (2, 6).

15. Minimize z  5 x  4 y subject to x  0, y  0, x  y  2, 2 x  3 y  12, 3 x  y  12 . Graph the constraints.

16. Minimize z  2 x  3 y subject to x  0, y  0, x  y  3, x  y  9, x  3 y  6 . Graph the constraints. y

(0,9)

x+y=9

(0,3)

32 , 32 

y

(6,0)

x+y=3

(0,4)

  7 , 12 7 24

2x + 3y = 12 x

(4,0)

(2,0)

x + 3y = 6

To find the intersection of x  y  3 and x  3 y  6 , solve the system:

3x + y = 12

(0,2)

x (9,0)

x+y=2

To find the intersection of 2 x  3 y  12 and 3x  y  12 , solve the system: 2 x  3 y  12   3 x  y  12 Solve the second equation for y: y  12  3 x Substitute and solve: 2 x  3(12  3 x)  12 2 x  36  9 x  12 7 x  24 x  24 7

 

x y  3  x  3y  6 Solve the first equation for y: y  3  x . Substitute and solve: x  3(3  x )  6 x  9  3x  6  2 x  3 x y  3

3 2

3 3  2 2

3 3 The point of intersection is  ,  . 2 2 The corner points are (0, 3), (6, 0), (0, 9), (9, 0), 3 3  ,  . Evaluate the objective function: 2 2

Vertex

Value of z  2 x  3 y

The point of intersection is  24 , 12  .

(0, 3) (0, 9)

z  2(0)  3(3)  9 z  2(0)  3(9)  27

The corner points are (0, 2), (2, 0), (0, 4), (4, 0),

(6, 0)

z  2(6)  3(0)  12

(9, 0)

z  2(9)  3(0)  18

y  12  3 24  12  72  12 7 7 7  7

7

 24 12   ,  . Evaluate the objective function:  7 7

Vertex

Value of z  5 x  4 y

(0, 2)

z  5(0)  4(2)  8

(0, 4)

z  5(0)  4(4)  16

(2, 0)

z  5(2)  4(0)  10

(4, 0)

z  5(4)  4(0)  20

3 3 3  3  15  ,  z  2   4   2 2 2 2 2 15 3 3 The minimum value is at  ,  . 2 2 2

 247 , 127  z  5  247   4  127   24 The minimum value is 8 at (0, 2). 1282 Copyright © 2020 Pearson Education, Inc.


Section 11.8: Linear Programming 17. Maximize z  5 x  2 y subject to x  0, y  0, x  y  10, 2 x  y  10, x  2 y  10 . Graph the constraints.

y (0,9)

y

x+y=9

(0,10) (0,4)

x + y = 10 (2,0)

103 , 103 

(9,0) x 2x + y = 4

(10,0) x x + 2y = 10 2x + y = 10

To find the intersection of 2 x  y  10 and x  2 y  10 , solve the system: 2 x  y  10   x  2 y  10 Solve the first equation for y: y  10  2 x . Substitute and solve: x  2(10  2 x)  10 x  20  4 x  10 3 x  10 10 x 3 20 10  10  y  10  2    10   3 3  3 The point of intersection is (10/3 10/3). The corner points are (0, 10), (10, 0), (10/3, 10/3). Evaluate the objective function: Vertex

Value of z  5 x  2 y

(0, 10) (10, 0)

z  5(0)  2(10)  20 z  5(10)  2(0)  50

The corner points are (0, 9), (9, 0), (0, 4), (2, 0). Evaluate the objective function: Vertex Value of z  2 x  4 y (0, 9) z  2(0)  4(9)  36 (9, 0) z  2(9)  4(0)  18 (0, 4) z  2(0)  4(4)  16 z  2(2)  4(0)  4 (2, 0) The maximum value is 36 at (0, 9). 19. Let x = the number of downhill skis produced, and let y = the number of cross-country skis produced. The total profit is: P  70 x  50 y . Profit is to be maximized, so this is the objective function. The constraints are: x  0, y  0 A positive number of skis must be produced. 2 x  y  40 Manufacturing time available. x  y  32 Finishing time available. Graph the constraints. y

2x + y = 40 (0,32) (8,24)

 10 10   10   10  70  23 13  ,  z  5   2    3 3  3  3 3

x + y = 32

The maximum value is 50 at (10, 0). 18. Maximize z  2 x  4 y subject to x  0, y  0, 2 x  y  4, x  y  9 . Graph the constraints.

(20,0)

x

(0,0)

To find the intersection of x  y  32 and 2 x  y  40 , solve the system:  x  y  32  2 x  y  40 Solve the first equation for y: y  32  x . Substitute and solve: 2 x  (32  x)  40

x8 1283 Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities y  32  8  24 The point of intersection is (8, 24). The corner points are (0, 0), (0, 32), (20, 0), (8, 24). Evaluate the objective function: Vertex Value of P  70 x  50 y

(0, 0)

P  70(0)  50(0)  0

(0, 32)

P  70(0)  50(32)  1600

(20, 0) P  70(20)  50(0)  1400 (8, 24) P  70(8)  50(24)  1760 The maximum profit is $1760, when 8 downhill skis and 24 cross-country skis are produced.

With the increase of the manufacturing time to 48 hours, we do the following: The constraints are:

The maximum profit is $1920, when 16 downhill skis and 16 cross-country skis are produced. 20. Let x = the number of acres of soybeans planted , and let y = the number of acres of wheat planted. The total profit is: P  180 x  100 y . Profit is to be maximized, so this is the objective function. The constraints are: x  0, y  0 A non-negative number of acres must be planted. x  y  70 Acres available to plant. 60 x  30 y  1800 Money available for preparation. 3 x  4 y  120 Workdays available. Graph the constraints.

x  0, y  0

A positive number of skis must be produced. 2 x  y  48 Manufacturing time available. x  y  32 Finishing time available. Graph the constraints.

y x + y = 70

60x + 30y = 1800 (0,30)

y

(24,12) 3x + 4y = 120

2x + y = 48

(0,0)

(0,32)

(30,0)

x

To find the intersection of 60 x  30 y  1800 and 3 x  4 y  120 , solve the system:

(16,16) x + y = 32 (24,0)

x

(0,0)

To find the intersection of x  y  32 and 2 x  y  48 , solve the system:  x  y  32  2 x  y  48 Solve the first equation for y: y  32  x . Substitute and solve: 2 x  (32  x)  48

x  16 y  32  16  16 The point of intersection is (16, 16). The corner points are (0, 0), (0, 32), (24, 0), (16, 16). Evaluate the objective function: Vertex Value of P  70 x  50 y (0, 0)

P  70(0)  50(0)  0

(0, 32)

P  70(0)  50(32)  1600

(24, 0) P  70(24)  50(0)  1680 (16, 16) P  70(16)  50(16)  1920

60 x  30 y  1800   3x  4 y  120 Solve the first equation for y: 60 x  30 y  1800 2 x  y  60 y  60  2 x Substitute and solve: 3x  4(60  2 x)  120 3x  240  8 x  120 5 x  120 x  24 y  60  2(24)  12 The point of intersection is (24, 12). The corner points are (0, 0), (0, 30), (30, 0), (24, 12). Evaluate the objective function: Vertex Value of P  180 x  100 y (0, 0) P  180(0)  100(0)  0 (0, 30) P  180(0)  100(30)  3000 (30, 0) P  180(30)  100(0)  5400 (24, 12) P  180(24)  100(12)  5520

1284 Copyright © 2020 Pearson Education, Inc.


Section 11.8: Linear Programming

The maximum profit is $5520, when 24 acres of soybeans and 12 acres of wheat are planted. With the increase of the preparation costs to $2400, we do the following: The constraints are: x  0, y  0 A non-negative number of acres must be planted. x  y  70 Acres available to plant. 60 x  30 y  2400 Money available for preparation. 3 x  4 y  120 Workdays available. Graph the constraints. y x + y = 70

(0,30) 3x + 4y = 120 60x + 30y = 2400 (0,0)

(40,0)

x

The corner points are (0, 0), (0, 30), (40, 0). Evaluate the objective function: Vertex

Value of P  180 x  100 y

(0, 0)

P  180(0)  100(0)  0

(0, 30)

P  180(0)  100(30)  3000

(40, 0) P  180(40)  100(0)  7200 The maximum profit is $7200, when 40 acres of soybeans and 0 acres of wheat are planted.

21. Let x = the number of rectangular tables rented, and let y = the number of round tables rented. The cost for the tables is: C  28 x  52 y . Cost is to be minimized, so this is the objective function. The constraints are: x  0, y  0 A non-negative number of tables must be used. x  y  35 Maximum number of tables. 6 x  10 y  250 Number of guests. x  15 Rectangular tables available. Graph the constraints.

y

x

xy  xy 

 

 

x

The corner points are (0, 25), (0, 35), (15, 20), (15, 16). Evaluate the objective function: Vertex Value of C  28 x  52 y (0, 25) C  28(0)  52(25)  1300 (0, 35) C  28(0)  52(35)  1820 (15, 20) C  28(15)  52(20)  1460 (15, 16) C  28(15)  52(16)  1252 Kathleen should rent 15 rectangular tables and 16 round tables in order to minimize the cost. The minimum cost is $1252.00. 22. Let x = the number of buses rented, and let y = the number of vans rented. The cost for the vehicles is: C  975 x  350 y . Cost is to be minimized, so this is the objective function. The constraints are: x  0, y  0 A non-negative number of buses and vans must be used. 40 x  8 y  320 Number of regular seats. x  3 y  36 Number of special seats. Graph the constraints. y xy



 

 

 x xy

To find the intersection of 40 x  8 y  320 and x  3 y  36 , solve the system: 40 x  8 y  320   x  3 y  36 Solve the second equation for x: x  3 y  36 x  3 y  36

1285 Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities

Substitute and solve: 40(3 y  36)  8 y  320 120 y  1440  8 y  320 112 y  1120 y  10 x  3(10)  36  30  36  6 The point of intersection is (6, 10). The corner points are (0, 40), (6, 10), and (36, 0). Evaluate the objective function: Vertex

Value of I  0.09 x  0.07 y I  0.09(0)  0.07(20000)  1400 (0, 8000) I  0.09(0)  0.07(8000)  560 (8000, 8000) I  0.09(8000)  0.07(8000)  1280 (10000, 10000) I  0.09(10000)  0.07(10000)  1600 Vertex (0, 20000)

Value of C  975 x  350 y

The maximum income is $1600, when $10,000 is invested in junk bonds and $10,000 is invested in Treasury bills.

(0, 40) C  975(0)  350(40)  14, 000 (6, 10)

C  975(6)  350(10)  9350

(36, 0) C  975(36)  350(0)  35,100 The college should rent 6 buses and 10 vans for a minimum cost of $9350.00.

23. Let x = the amount invested in junk bonds, and let y = the amount invested in Treasury bills. The total income is: I  0.09 x  0.07 y . Income is to be maximized, so this is the objective function. The constraints are: x  0, y  0 A non-negative amount must be invested. x  y  20, 000 Total investment cannot exceed $20,000. x  12, 000 Amount invested in junk bonds must not exceed $12,000. y  8000 Amount invested in Treasury bills must be at least $8000. a. y  x Amount invested in Treasury bills must be equal to or greater than the amount invested in junk bonds. Graph the constraints.

yx

Amount invested in Treasury bills must not exceed the amount invested in junk bonds. Graph the constraints. x + y = 20000

y=x

(8000,8000)

(10000,10000) y = 8000 (12000,8000)

x = 12000

The corner points are (12,000, 8000), (8000, 8000), (10,000, 10,000). Evaluate the objective function: Vertex (12000, 8000)

Value of I  0.09 x  0.07 y I  0.09(12000)  0.07(8000)

 1640 I  0.09(8000)  0.07(8000)  1280 (10000, 10000) I  0.09(10000)  0.07(10000)  1600 (8000, 8000)

(0,20000) x + y = 20000

y=x (10000,10000) (0,8000)

b.

(8000,8000)

y = 8000

x = 12000

The corner points are (0, 20,000), (0, 8000), (8000, 8000), (10,000, 10,000). Evaluate the objective function:

The maximum income is $1640, when $12,000 is invested in junk bonds and $8000 is invested in Treasury bills. 24. Let x = the number of hours that machine 1 is operated, and let y = the number of hours that machine 2 is operated. The total cost is: C  50 x  30 y . Cost is to be minimized, so this is the objective function. The constraints are: x  0, y  0 A positive number of hours must be used.

1286 Copyright © 2020 Pearson Education, Inc.


Section 11.8: Linear Programming x  10 Time used on machine 1. y  10 Time used on machine 2. 60 x  40 y  240 8-inch pliers to be produced. 70 x  20 y  140 6-inch pliers to be produced. Graph the constraints. (0,10) (10,10) (0,7)

Value of C  50 x  30 y C  50(0)  30(7)  210 C  50(0)  30(10)  300 C  50(4)  30(0)  200 C  50(10)  30(0)  500 C  50(10)  30(10)  800

1 1 1  1  , 5  P  50    30  5   182.50 2 4 2  4

The minimum cost is $182.50, when machine 1 1 1 is used for hour and machine 2 is used for 5 4 2 hours.

12 , 214 

(10,0)

(4,0)

70x + 20y = 140

60x + 40y = 240

To find the intersection of 60 x  40 y  240 and 70x  20 y  140 , solve the system: 60 x  40 y  240  70 x  20 y  140 Divide the first equation by 2 and add the result to the second equation: 30 x  20 y  120 70 x  20 y  140 40 x

Vertex (0, 7) (0, 10) (4, 0) (10, 0) (10, 10)

 20

20 1  40 2 Substitute and solve: 1 60    40 y  240 2 30  40 y  240

x

25. Let x = the number of pounds of ground beef, and let y = the number of pounds of ground pork. The total cost is: C  2.25 x  1.35 y . Cost is to be minimized, so this is the objective function. The constraints are: x  0, y  0 A positive number of pounds must be used. x  200 Only 200 pounds of ground beef are available. y  50 At least 50 pounds of ground pork must be used. 0.75 x  0.60 y  0.70( x  y ) (1) Leanness condition x  y  180 (2) (Note that the equation (1) will simplify to 1 y  x and equation (2) will simplify to 2 y   x  180 ) Graph the constraints. y

40 y  210

(200,100)

210 21 1  5 40 4 4 1 1 The point of intersection is  , 5  . 2 4

(120.60)

y

The corner points are (0, 7), (0, 10), (4, 0), 1 1 (10, 0), (10, 10),  , 5  . Evaluate the 2 4 objective function:

(100,50) (130.50)

(200,50)

x

The corner points are (120, 60), (200, 50), (200, 100), (130. 50). Evaluate the objective function:

1287 Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities

Vertex Value of C  2.25 x  1.35 y (120, 60) C  2.25(120)  1.35(60)  351.00 (200, 50) C  2.25(200)  1.35(50)  517.50 (200, 100) C  2.25(200)  1.35(100)  585.00 C  2.25(130)  1.35(50)  360.00

(130, 50)

The minimum cost is $351.00, when 120 pounds of ground beef and 60 pounds of ground pork are used. 26. Let x = the number of gallons of regular, and let y = the number of gallons of premium. The total profit is: P  0.75 x  0.90 y . Profit is to be maximized, so this is the objective function. The constraints are: x  0, y  0 A positive number of gallons must be used. 1 y x At least one gallon of premium 4 for every 4 gallons of regular. 5 x  6 y  3000 Daily shipping weight limit. 24 x  20 y  16(725) Available flavoring. 12 x  20 y  16(425) Available milk-fat (Note: the last two inequalities simplify to 6 x  5 y  2900 and 3x  5 y  1700 .) Graph the constraints. xy

y

 y



1 x 4

x



x  0, y  0

A positive number of skates must be manufactured. 6 x  4 y  120 Only 120 hours are available for fabrication. x  2 y  40 Only 40 hours are available for finishing. Graph the constraints. y

(0,20)

(10,15)

(20,0)

x

(0,0)

To find the intersection of 6 x  4 y  120 and x +2y  40 , solve the system: 6 x  4 y  120   x  2 y  40 Solve the second equation for x: x  40  2 y Substitute and solve: 6(40  2 y )  4 y  120

xy xy 

27. Let x = the number of racing skates manufactured, and let y = the number of figure skates manufactured. The total profit is: P  10 x  12 y . Profit is to be maximized, so this is the objective function. The constraints are:

The corner points are (0, 0), (400, 100), (0, 340). Evaluate the objective function: Vertex Value of P  0.75 x  0.90 y (0, 0) P  0.75(0)  0.90(0)  0 (400, 100) P  0.75(400)  0.90(100)  390 (0, 340) P  0.75(0)  0.90(340)  306

Mom and Pop should produce 400 gallons of regular and 100 gallons of premium ice cream. The maximum profit is $390.00.

240  12 y  4 y  120  8 y  120 y  15 x  40  2(15)  10 The point of intersection is (10, 15). The corner points are (0, 0), (0, 20), (20, 0), (10, 15). Evaluate the objective function: Vertex Value of P  10 x  12 y P  10(0)  12(0)  0 (0, 0) (0, 20)

P  10(0)  12(20)  240

(20, 0)

P  10(20)  12(0)  200

(10, 15) P  10(10)  12(15)  280 The maximum profit is $280, when 10 racing skates and 15 figure skates are produced.

1288 Copyright © 2020 Pearson Education, Inc.


Section 11.8: Linear Programming 28. Let x = the amount placed in the AAA bond. Let y = the amount placed in a CD. The total return is: R  0.08 x  0.04 y . Return is to be maximized, so this is the objective function. The constraints are: x  0, y  0 A positive amount must be invested in each. x  y  50, 000 Total investment cannot exceed $50,000. x  20, 000 Investment in the AAA bond cannot exceed $20,000. y  15, 000 Investment in the CD must be at least $15,000. y  x Investment in the CD must exceed or equal the investment in the bond. Graph the constraints. y

(0,50000) x + y = 50000 y=x (20000,30000)

(20000,20000)

(0,15000)

y = 15000

(15000,15000) x = 20000 x

The corner points are (0, 50,000), (0, 15,000), (15,000, 15,000), (20,000, 20,000), (20,000, 30,000). Evaluate the objective function: Vertex (0, 50000) (0, 15000)

Value of R  0.08 x  0.04 y R  0.08(0)  0.04(50000)  2000 R  0.08(0)  0.04(15000)

 600 R  0.08(15000)  0.04(15000)  1800 (20000, 20000) R  0.08(20000)  0.04(20000) (15000, 15000)

(20000, 30000)

 2400 R  0.08(20000)  0.04(30000)  2800

The maximum return is $2800, when $20,000 is invested in a AAA bond and $30,000 is invested in a CD.

x  2, y  2

At least 2 of each fastener must be made. x y 6 At least 6 fasteners are needed. 4 x  2 y  24 Only 24 hours are available. Graph the constraints. y (2,8)

(2,4) (5,2) (4,2) x

The corner points are (2, 4), (2, 8), (4, 2), (5, 2). Evaluate the objective function: Vertex Value of C  9 x  4 y (2, 4) C  9(2)  4(4)  34 (2, 8) C  9(2)  4(8)  50 (4, 2) C  9(4)  4(2)  44 (5, 2) C  9(5)  4(2)  53 The minimum cost is $34, when 2 metal fasteners and 4 plastic fasteners are ordered. 30. Let x = the amount of “Gourmet Dog,” and let y = the amount of “Chow Hound.” The total cost is: C  1.40 x  1.12 y . Cost is to be minimized, so this is the objective function. The constraints are: x  0, y  0 A non-negative number of cans must be purchased. 20 x  35 y  1175 At least 1175 units of vitamins per month. 75 x  50 y  2375 At least 2375 calories per month. x  y  60 Storage space for 60 cans. Graph the constraints. y (0,60)

(0,47.5)

x + y = 60

20x+35y=1175 (15,25)

29. Let x = the number of metal fasteners, and let y = the number of plastic fasteners. The total cost is: C  9 x  4 y . Cost is to be minimized, so this is the objective function. The constraints are: 1289 Copyright © 2020 Pearson Education, Inc.

75x+50y=2375

(60,0) x (58.75,0)


Chapter 11: Systems of Equations and Inequalities 10 F  120C  8 F  120C. Thus, the maximum revenue occurs when the aircraft is configured with 10 first class seats and 120 coach seats.

The corner points are (0, 47.5), (0, 60), (60, 0), (58.75, 0), (15, 25). Evaluate the objective function: Vertex (0, 47.5) (0, 60)

Value of C  1.40 x  1.12 y C  1.40(0)  1.12(47.5)  53.20 C  1.40(0)  1.12(60)  67.20

b.

C  1.40(60)  1.12(0)  84.00 (60, 0) (58.75, 0) C  1.40(58.75)  1.12(0)  82.25 C  1.40(15)  1.12(25)  49.00 (15, 25)

The minimum cost is $49, when 15 cans of "Gourmet Dog" and 25 cans of “Chow Hound” are purchased.

x 1  y 8 The constraints are: 8  x  16 80  y  120 8x  y Graph the constraints.

31. Let x = the number of first class seats, and let y = the number of coach seats. Using the hint, the revenue from x first class seats and y coach seats is Fx  Cy, where F  C  0. Thus, R  Fx  Cy is the objective function to be maximized. The constraints are: 8  x  16 Restriction on first class seats. 80  y  120 Restriction on coach seats. a.

x 1  Ratio of seats. y 12 The constraints are: 8  x  16 80  y  120 12x  y Graph the constraints.

The corner points are (8, 80), (8, 120), (15, 120), and (10, 80). Evaluate the objective function: Vertex Value of R  Fx  Cy (8, 80) R  8 F  80C (8, 120) R  8F  120C (15, 120) R  15 F  120C (10, 80) R  10 F  80C

Since F  0 and C  0, 120C  96C , the maximum value of R occurs at (15, 120). The maximum revenue occurs when the aircraft is configured with 15 first class seats and 120 coach seats. c.

The corner points are (8, 96), (8, 120), and (10, 120). Evaluate the objective function:

Answers will vary.

32. The figure shows the graph of the constraints with the corner points labeled. The table shows the value of the objective function at each corner point.

Vertex Value of R  Fx  Cy (8, 96) R  8F  96C (8, 120) R  8 F  120C (10, 120) R  10 F  120C

Since C  0, 120C  96C , so 8F  120C  8 F  96C. Since F  0, 10 F  8F , so 1290 Copyright © 2020 Pearson Education, Inc.


Section 11.8: Linear Programming   35. y   tan  x   2 

The graph of y  tan x is shifted

2 right and reflected across the x-axis.

Corner Points z  10 x  4 y (0, 0) z  10  0  4  0  0 (0, 9) z  10  0  4  9  36 (1, 13) z  10  1  4  13  62 (3,14) z  10  3  4  14  86 (7,12) z  10  7  4  12  118 (8,11) z  10  8  4  11  124 (9,7) z  10  9  4  7  118 (8,2) z  10  8  4  2  88 (4,0) z  10  4  4  0  40

Domain:  x | x  k , k is an integer Range:  ,   36.

ln 0.5  63t r  0.011 Find t when A  75 and A0  200 : 75  200e 0.011t 0.375  e 0.011t ln 0.375  0.011t

33. Answers will vary.

t

2m 2/5  m1/5  1 2m 2/5  m1/5  1  0 (2m1/5  1)  0 or (m1/5  1)  0 2m

1/5

 1

m1/5  

1 2

 1  m     2  1 m 32

or m

y  y1  m( x  x1 ) y  1  3( x  ( 2))

1

y  1  3( x  2)

or m1/5  1 5

ln 0.375  89.1 years 0.011

37. The slope would be the same so the slope is m  3.

(2m1/5  1)(m1/5  1)  0 1/5

A(t )  A0 e rt 1  2e63t

The maximum is 124 occurs when x = 8 and y = 11.

34.

units to the

y  1  3x  6 y  3x  7

or m  15

38.

x  y  16 y  3x  4

or m  1

 1  The solution set is   ,1 .  32 

x  (3 x  4)  16 4 x  20 x5 y  15  4  11 The two numbers are 5 and 11.

1291 Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities

 r 39. P  A  1    n

 nt

 0.04   15000 1   365  

365(3)

 $13,303.89

40. Focus: (0, 3) ; Vertices (0, 5) Center: (0, 0); Major axis is the y-axis; a  5; c  3 . Find b: b 2  a 2  c 2  25  9  16  b  4 2

Write the equation:

41.

2

x y  1 16 25

3 x  4 y  4  2.  1  x  3 y  2 1 2 Substitute into the first equation and solve: 1  3 3 y    4 y  4 2  3 9y   4y  4 2 5 5y  2 1 y 2 1 1 x  3    2 2 2 1  1 The solution is x  2, y  or  2,  . 2  2

Solve the second equation for x: x  3 y 

2x  7 y 5x  1 y (5 x  1)  2 x  7 5 xy  y  2 x  7 5 xy  2 x  7  y x(5 y  2)  7  y y7 5y  2 x7 f 1  y   5x  2 x

3

Substitute and solve: 5 x  2(2 x  5)  8 5 x  4 x  10  8 9 x  18 x2 y  2(2)  5  4  5  1 The solution is x  2, y  1 or (2, 1) .

1

42. 30 x 2 ( x  7) 2  15 x3 ( x  7) 2  1

 15 x 2 ( x  7) 2 (2( x  7)  x) 1

 15 x 2 ( x  7) 2 (3 x  14)

43. 2 x  6  0 2x  6 x3 The function is concave down on the interval  ,3 2x  6  0 2x  6 x3 The function is concave up on the interval  3,   .

 x  2y  4  0 3.  3 x  2 y  4  0 Solve the first equation for x: x  2 y  4 Substitute into the second equation and solve: 3(2 y  4)  2 y  4  0 6 y  12  2 y  4  0 8 y  8 y  1 x  2(1)  4  2 The solution is x  2, y  1 or (2, 1) .  y  2x  5 4.   x  3y  4 Substitute the first equation into the second equation and solve:

Chapter 11 Review Exercises  2x  y  5 1.  5 x  2 y  8 Solve the first equation for y: y  2 x  5 .

1292 Copyright © 2020 Pearson Education, Inc.


Chapter 11 Review Exercises x  3(2 x  5)  4 x  6 x  15  4 5 x  11 11 5 11 3   y  2   5   5 5 11 3  11 3  The solution is x  , y   or  ,   . 5 5  5 5 x

 x  3y  4  0  5.  1 3 4  2 x  2 y  3  0 Multiply each side of the first equation by 3 and each side of the second equation by 6 and add:

 3 x  9 y  12  0  3x  9 y  8  0 40 There is no solution to the system. The system is inconsistent.

2 x  3 y  13  0 6.  0  3x  2 y Multiply each side of the first equation by 2 and each side of the second equation by 3, and add to eliminate y: 4 x  6 y  26  0  0  9 x  6 y 13 x  26  0 13 x  26 x2 Substitute and solve for y: 3(2)  2 y  0  2y  6 y3 The solution is x  2, y  3 or (2, 3).  2 x  5 y  10 7.  4 x  10 y  20 Multiply each side of the first equation by –2 and add to eliminate x: 4 x  10 y   20   4 x  10 y  20 0 0

The system is dependent. 2 x  5 y  10 5 y  2 x  10 2 y   x2 5 2 The solution is y   x  2 , x is any real number 5  2  or ( x, y ) y   x  2, x is any real number  . 5    x  2y  z  6  8. 2 x  y  3z  13 3x  2 y  3 z  16  Multiply each side of the first equation by –2 and add to the second equation to eliminate x;  2 x  4 y  2 z  12   2 x  y  3 z  13  5 y  5 z   25 yz 5 Multiply each side of the first equation by –3 and add to the third equation to eliminate x: 3x  6 y  3 z  18

3x  2 y  3z  16  8 y  6 z  34 Multiply each side of the first result by 8 and add to the second result to eliminate y: 8 y  8 z  40  8 y  6 z  34  2z  6 z  3 Substituting and solving for the other variables: y  (3)  5 x  2(2)  (3)  6 x43 6 y2 x  1 The solution is x  1, y  2, z  3 or (1, 2, 3) .  2 x  4 y  z   15  9.  x  2 y  4 z  27 5 x  6 y  2 z  3 

Multiply the first equation by 1 and the second

1293 Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities

equation by 2, and then add to eliminate x: 2 x  4 y  z  15  2 x  4 y  8 z  54  8 y  9 z  69 Multiply the second equation by 5 and add to the third equation to eliminate x:  5 x  10 y  20 z   135 5 x  6 y  2 z  3  16 y  18 z  138 Multiply both sides of the first result by 2 and add to the second result to eliminate y: 16 y  18 z  138 16 y  18 z  138 00 The system is dependent. 16 y  18 z  138 18 z  138  16 y 9 69 y  z 8 8 Substituting into the second equation and solving for x: 69  9 x  2  z    4 z  27 8  8 9 69 x  z   4 z  27 4 4 7 39 x z 4 4 9 69 7 39 , z is The solution is x  z  , y  z  8 8 4 4  7 39 any real number or ( x, y, z ) x  z  , 4 4  9 69  y  z  , z is any real number  . 8 8 

third equation to eliminate x: 7 x  28 y  21z  105  7 x  5 y  9 z  10  33 y  12 z  115 115 3 Multiply the first result by 1 and adding it to the second result:  11y  4 z  40  115   11y  4 z  3   11 y  4 z 

5 3 The system has no solution. The system is inconsistent. 0

3x  2 y  8 11.   x  4 y  1  x  2 y  5z   2  12. 5 x  3z  8 2 x  y 0   1 0  3  4  13. A  C   2 4    1 5  1 2  5 2   1  3 0  ( 4)   4  4    2  1 4  5   3 9   1  5 2  2   4 4   1 0   6 1 6  0   6 0  14. 6 A  6   2 4    6  2 6  4    12 24   1 2  6(1) 6  2    6 12   1 0

 x  4 y  3 z  15  10. 3x  y  5 z   5  7 x  5 y  9 z  10 

0  4 3 1  2   1 2  1(3)  0(1) 1(0)  0( 2)   1(4)  0(1)    2(4)  4(1) 2( 3)  4(1) 2(0)  4( 2)   1(4)  2(1) 1( 3)  2(1) 1(0)  2(2) 

15. AB   2 4    1

Multiply the first equation by 3 and then add the second equation to eliminate x: 3x  12 y  9 z  45  3x  y  5 z   5   11y  4 z  40 Multiply the first equation by 7 and add to the

0  4 3    12  2  8   2 5  4 

1294 Copyright © 2020 Pearson Education, Inc.


Chapter 11 Review Exercises

3  4 0   4 3  5  1 1 1 2    5 2    4(3)  3(1)  0(5) 4(4)  3(5)  0(2)     1(3)  1(1)  2(5) 1( 4)  1(5)  2(2) 

16. BC  

 9 31     6 3

 4 6 17. A     1 3 Augment the matrix with the identity and use row operations to find the inverse: 4 6 1 0  1 3 0 1    1 3 0 1  Interchange       4 6 1 0   r1 and r2  3 0 1 1    R2   4r1  r2  0  6 1  4 1  0 1  0

1

3 0 1  16

2 3

1 0 2 1  16

1 2  3

 1 Thus, A1   12   6

 R2   16 r2   R1  3r2  r1 

1 . 2 3 

1 3 3 18. A  1 2 1 1 1 2  Augment the matrix with the identity and use row operations to find the inverse:

1 3 3 1 0 0  1 2 1 0 1 0    1 1 2 0 0 1 3 3 1 0 0 1  0 1  2 1 1 0  0  4 1 1 0 1 3 3 1 0 0 1  0 1 2 1 1 0  0  4 1 1 0 1 3 0  1 0 3  2  0 1 2 1 1 0  0 0 7 3  4 1  1 0 3  2 3 0   1 1 0   0 1 2   3 1  74 71  7 0 0

 R2   r1  r2     R3  r1  r3 

 R2   r2   R1  3 r2  r1     R3  4 r2  r3 

 R3  17 r3 

1 0 0  5 7  1  0 1 0 7  3 0 0 1 7 

9 7 1 7  74

3 7  R1  3 r3  r1   72      R2   2 r3  r2  1 7

  75  Thus, A1   17  3  7

9 7 1 7  74

3 7   72  . 1  7

 4  8 19. A     1 2  Augment the matrix with the identity and use row operations to find the inverse:  4  8 1 0  1 2 0 1    1 2 0 1  Interchange       4  8 1 0   r1 and r2   1 2 0 1   R2  4r1  r2    0 0 1 4  1  2 0 1   R1  r1  0 1 4  0 There is no inverse because there is no way to obtain the identity on the left side. The matrix is singular.

1295 Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities  3x  2 y  1 20.  10 x  10 y  5 Write the augmented matrix:  3  2 1 10 10 5  

9  1 0  11  2  0 1  11 0 0 1 

3  2 1    1 16 2 

 R2  3r1  r2 

 16 2   1  3  2 1

 Interchange     r1 and r2 

 16 2   1   0 50 5

 R2  3r1  r2 

 1 16   0 1

2  1  10 

 0  1  0 1

2 5

1 10 

The solution is x 

1 R2   50 r2

 R1  16r2  r1  2 1 2 1  or  ,  . ,y 5 10  5 10 

5 x  6 y  3 z  6  21. 4 x  7 y  2 z  3 3 x  y  7 z  1 

Write the augmented matrix:  5 6 3 6     4 7  2 3 3 1 7 1   1 1 1 9      4 7  2 3  R1  r2  r1  3  1 7 1   1 9 1 1    R2   4r1  r2   0 11 2 39    0 2  4  26   R3   3r1  r3     1 1 1 9  1   R2   11 r2  39  2    0 1  11 11   R3   1 r3    2   2 13 0 1  9 60   1 0  11 11  R1   r2  r1   39  2  0 1  11   11   R3   r2  r3  104  24 0 0 11 11  

1 0 0   0 1 0  0 0 1

60  11 39  11  13  3

 R3  1124 r3 

9  13 3 13  3 

9  R1  11 r3  r1     R2  2 r3  r2  11  

The solution is x  9, y 

13 13 ,z or 3 3

 13 13   9, ,  .  3 3 2 x  y  z  5  22.  4 x  y  3z  1 8x  y  z  5 

Write the augmented matrix:  2 1 1 5    4 1 3 1  8 1 1 5   2 5 1 1     0 3 5 9   0 3 5 15  

 R2   2r1  r2     R3   4r1  r3 

5 1  1 12 2 2   5 1 3 3  0    0 3 5 15

 R1  12 r1     R2   1 r2  3  

 1 0  13 1  R1   12 r2  r1    5 3  0 1    3    R3  3 r2  r3  0  6 0 0 There is no solution; the system is inconsistent.  2z  1  x   3 23. 2 x  3 y  4x  3 y  4z  3 

Write the augmented matrix: 1 1 0 2 2 3 0 3   4 3  4 3 1 1 0  2   0 3 4 5 0 3 4 1

1296 Copyright © 2020 Pearson Education, Inc.

 R2   2r1  r2     R3   4r1  r3 


Chapter 11 Review Exercises

1 0  2 1  5 4  0 1  3 3 0 3 4 1  1 0 2 1  5 4  0 1  3 3 0 0 8  6   1   0  0 1   0  0

0 2 1  4 1  53  3  0 1  34  0 0  12   1 0  23   0 1  34 

R2  13 r2

 R3  3r2  r3 

 R3  81 r3   R1  2r3  r1    4  R2   3 r3  r2 

1 2 3 The solution is x   , y   , z   or 2 3 4 1 2 3    , ,  .  2 3 4  x y z 0  24.  x  y  5 z  6 2 x  2 y  z  1 

Write the augmented matrix:  1 1 1 0   1 1 5 6     2  2 1 1 1 0  1 1   0 0  6 6  0 0 1 1  1 1 1 0   0 0 1 1 0 0 1 1  1 1 0 1   0 0 1 1 0 0 0 0 

 R2   r1  r2     R3   2r1  r3 

 R2   16 r2   R1  r2  r1     R3  r2  r3 

The system is dependent. x  y 1   z  1 The solution is x  y  1 , z  1 , y is any real number or ( x, y, z ) x  y  1, z  1, y is any

 x y z t  1 2 x  y  z  2t  3  25.   x  2 y  2 z  3t  0  3x  4 y  z  5t  3 Write the augmented matrix:  1 1 1 1 1 2 1 1 2 3   1  2  2 3 0    1 5 3 3  4 1  1 1 1 1  R2   2r1  r2  0 3 1 4 1    R   r1  r3    0 1 1  2 1  3 R   3 r1  r4    8  6  4 0 1 4 1  1 1 1 1  0 1 1  2 1   0 3 1 4 1   8  6  0 1 4 1  1 1 1 1 0 1 1 2 1  0 3 1 4 1    0 1 4 8  6  1 2 1 0 0 0 1 1 2 1   0 0 2  2  2    0 0 5 10 5  1 0 0 1 2 0 1 1 2 1   0 0 1 1 1   0 0 1 2 1  1 0 0 1 2 0 1 0 1 0    0 0 1 1 1   0 0 0 1 2 

 Interchange     r2 and r3 

 R2  r2   R1  r2  r1     R3  3 r2  r3  R  r r   4 2 4   R3   12 r3     R4  1 r4  5  

 R2 =  r3  r2     R4 =  r3  r4 

 1 0 0 0 4  R1   r4  r1  0 1 0 0 2       R2  r4  r2  0 0 1 0 3  R  r  r    4 3   3  0 0 0 1 2  The solution is x  4, y  2, z  3, t  2 or (4, 2, 3, 2) .

real number .

1297 Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities

26.

27.

3 4 1 3

Dy  2 13  0  39  39 3 0

 3(3)  4(1)  9  4  5

1 4 0 1 6 1 2 2 6 1 2 6  1 4 0 1 3 4 3 4 1 4 1 3  1(6  6)  4(3  24)  0(1  8)  1(0)  4( 27)  0(9)  0  108  0  108

28.

2 1 3 0 1 5 1 5 0 5 0 1  (3) 1 2 6 0 2 0 2 6 2 6 0  2(0  6)  1(0  2)  3(30  0)  2(6)  1(2)  3(30)  12  2  90  100

Dy D

Dx  26  2, 13 D

39  3 or (2, 3). 13

 x  2y  z  6  31.  2 x  y  3z  13 3 x  2 y  3 z  16 

Set up and evaluate the determinants to use Cramer’s Rule: 1 2 1 D  2 1 3 3 2 3 2 1 1 3 1 3 2  (1) 3 2 2 3 2 3

 1 3  6   2(3  6)  ( 1)(4  3)

Set up and evaluate the determinants to use Cramer’s Rule: D

1 2  1(2)  3(2)  2  6  8 3 2

Dx 

4 2  4(2)  4(2)  8  8  16 4 2

Dy =

1 4  1(4)  3(4)  4  12  8 3 4 D Dx 16 8  1  2, y y  D D 8 8

or (2, 1) .

 3  6  1  10 6 2 1 Dx  13 1 3 16 2 3 6

Set up and evaluate the determinants to use Cramer’s Rule: 2 3 D   4  9  13 3 2

1 3 13 3 13 1 2  (1) 2 3 16 3 16 2

 6  3  6   2(39  48)  (1)(26  16)  18  18  10  10 1 6 1 Dy  2 13 3 3 16 3 1

2 x  3 y  13  0 30.  3x  2 y  0  Write the system is standard form: 2 x  3 y  13  3 x  2 y  0

13 3 Dx   26  0  26 0 2

y

1

 x  2y  4 29.  3x  2 y  4

The solution is x 

The solution is x 

2 3 2 13 13 3 6  (1) 3 3 3 16 16 3

 1 39  48   6(6  9)  (1)( 32  39)  9  18  7  20 1 2 6 Dz  2 1 13 3 2 16 1

2 13 2 1 1 13 2 6 3 16 3 2 2 16

 116  26   2(32  39)  6(4  3)  10  14  6  30 D 10 The solution is x  x   1 , 10 D

1298 Copyright © 2020 Pearson Education, Inc.


Chapter 11 Review Exercises

y

Dy D

D 30 20   3 or  2, z  z  10 10 D

(1, 2, 3) .

32. Let

x

y

 8.

a b

2x y  2  8   16 by Theorem (14). 2a b The value of the determinant is multiplied by k when the elements of a column are multiplied by k.

Then

33. Let

x

y

 8.

a b y

x

 8 by Theorem (11). The b a value of the determinant changes sign when any 2 columns are interchanged.

Then

34. Find the partial fraction decomposition:  6  B  A x( x  4)    x( x  4)    x ( x  4) x x 4    6  A( x  4)  Bx 6  A(4  4)  B (4)

Let x =4, then

4B  6 3 2 6  A(0  4)  B (0)

B

Let x = 0, then

4 A  6

0  4  A(0)(0  1)  B(0  1)  C (0) 2 4   B B4 Let x  2 , then 2  4  A(2)(2  1)  B (2  1)  C (2) 2 2  2 A  B  4C 2 A   2  4  4(3) 2A  6 A3 x4 3 4 3   2 2 x 1 x ( x  1) x x

36. Find the partial fraction decomposition: x A Bx  C   ( x 2  9)( x  1) x  1 x 2  9

Multiply both sides by ( x  1)( x 2  9) . x  A( x 2  9)  ( Bx  C )( x  1) Let x  1 , then

1  A  1  9   B  1  C   1  1 2

1  A(10)  ( B  C )(0) 1  10 A 1 A 10 Let x  0 , then

0  A 02  9   B  0   C   0  1 0  9A  C  1 0  9    C  10  9 C 10

3 A 2 3 3  6  2 2 x( x  4) x x4

Let x  1 , then 1  A 12  9   B 1  C  1  1

35. Find the partial fraction decomposition: x4 A B C   2 2 x 1 x ( x  1) x x

Multiply both sides by x 2 ( x  1) x  4  Ax( x  1)  B ( x  1)  Cx 2 Let x  1 , then

1  4  A(1)(1  1)  B(1  1)  C (1) 2 3  C C  3 Let x  0 , then

1299 Copyright © 2020 Pearson Education, Inc.

1  A(10)  ( B  C )(2) 1  10 A  2 B  2C  1 9 1  10     2 B  2    10   10  9 1  1  2 B  5


Chapter 11: Systems of Equations and Inequalities

(1)2  A(1  1)((1) 2  1)

1 5 1 B 10

2B 

 B( 1  1)((1) 2  1)  (C ( 1)  D)( 1  1)( 1  1)

1 1 9 x x  10  10 2 10 ( x 2  9)( x  1) x  1 x 9 

37. Find the partial fraction decomposition: x3 Ax  B Cx  D  2  2 2 x  4 ( x 2  4) 2 ( x  4) 2

2

Multiply both sides by ( x  4) . x3  ( Ax  B )( x 2  4)  Cx  D x3  Ax3  Bx 2  4 Ax  4 B  Cx  D x3  Ax3  Bx 2  (4 A  C ) x  4 B  D A  1; B  0 4A  C  0 4(1)  C  0 C  4 4B  D  0 4(0)  D  0 D0 x3 ( x 2  4) 2

x x2  4

 4x ( x 2  4) 2

38. Find the partial fraction decomposition: x2 x2  ( x 2  1)( x 2  1) ( x 2  1)( x  1)( x  1) A B Cx  D    x  1 x  1 x2  1

Multiply both sides by ( x  1)( x  1)( x 2  1) . x 2  A( x  1)( x 2  1)  B ( x  1)( x 2  1)  (Cx  D)( x  1)( x  1) Let x  1 , then 12  A(1  1)(12  1)  B (1  1)(12  1)  (C (1)  D)(1  1)(1  1) 1  4A 1 A 4 Let x  1 , then

1   4B 1 B 4 Let x  0 , then 02  A(0  1)(02  1)  B (0  1)(02  1)  (C (0)  D)(0  1)(0  1)

0  A B  D 1  1   D 4  4 1 D 2 Let x  2 , then 22  A(2  1)(22  1)  B (2  1)(22  1)  (C (2)  D)(2  1)(2  1) 4  15 A  5B  6C  3D 0

1  1 1 4  15    5     6C  3   4  4 2 15 5 3 6C  4    4 4 2 6C  0 C0 1 1 1  x2 4 4    22 2 2 x  x  1 1 x 1 x 1 x 1



39. Solve the first equation for y, substitute into the second equation and solve: 2 x  y  3  0  y   2 x  3  2 2  x  y  5 x 2  ( 2 x  3) 2  5  x 2  4 x 2  12 x  9  5 5 x 2  12 x  4  0  (5 x  2)( x  2)  0 2 or x  2 5 11 y y 1 5  2 11  Solutions:   ,   , (2, 1) . 5  5 x

1300 Copyright © 2020 Pearson Education, Inc.


Chapter 11 Review Exercises 40. Multiply each side of the second equation by 2 and add the equations to eliminate xy:  2 xy  y 2  10   2 xy  y 2  10  2 2   2 xy  6 y 2  4  xy  3 y  2 

Substitute x   y and solve: 3x 2  4 xy  5 y 2  8 3( y ) 2  4( y ) y  5 y 2  8 3y2  4 y2  5 y2  8

2

7 y  14

4 y2  8

2

y 2

y2  2  y   2

y 2 If y  2 : 2x

 2    2   10  2 2 x  8  x  2 2 2

If y   2 :

 

2x  2   2

  10   2 2 x  8 2

 x  2 2

Solutions:

 2 2, 2  ,  2 2,  2 

41. Substitute into the second equation into the first equation and solve:  x 2  y 2  6 y  x2  3 y  2

3y  y  6y y2  3 y  0 y ( y  3)  0  y  0 or y  3 If y  0 :

x 2  3(0)  x 2  0  x  0

If y  3 : x 2  3(3)  x 2  9  x  3 Solutions: (0, 0), (–3, 3), (3, 3).

42. Factor the second equation, solve for x, substitute into the first equation and solve: 3x 2  4 xy  5 y 2  8  2 2  x  3 xy  2 y  0 x 2  3 xy  2 y 2  0 ( x  2 y )( x  y )  0  x   2 y or x   y Substitute x   2 y and solve: 3 x 2  4 xy  5 y 2  8 3( 2 y ) 2  4( 2 y ) y  5 y 2  8 12 y 2  8 y 2  5 y 2  8 9 y2  8 y2 

8 2 2  y 9 3

If y 

2 2 : 3

 2 2  4 2 x   2    3  3 

If y 

2 2 : 3

 2 2  4 2 x   2    3  3 

If y  2 :

x 2

If y   2 : x  2 Solutions:  4 2 2 2   4 2 2 2  , ,  ,   ,  2, 2 , 3   3 3   3

 2,  2 

 x 2  3x  y 2  y   2  43.  x 2  x  y 1  0  y  Multiply each side of the second equation by –y and add the equations to eliminate y: x 2  3x  y 2  y   2  x2  x  y2  y  0  2 x  2 x 1 If x  1: 12  3(1)  y 2  y   2

y2  y  0 y ( y  1)  0 y  0 or y  1 Note that y  0 because that would cause division by zero in the original system. Solution: (1, –1)

44. 3 x  4 y  12 Graph the line 3 x  4 y  12 . Use a solid line since the inequality uses  . Choose a test point not on the line, such as (0, 0). Since 3  0   4  0   12 is true, shade the side of the line

containing (0, 0).

1301 Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities y

Solve the first equation for x: x  2  y . Substitute and solve:  2(2  y )  y  2  4  2y  y  2 3y  6 y2 x  22  0 The point of intersection is (0, 2). The corner point is (0, 2).

 x y 12 

x



45. y  x 2

Graph the parabola y  x 2 . Use a solid curve since the inequality uses  . Choose a test point not on the parabola, such as (0, 1). Since 0  12 is false, shade the opposite side of the parabola from (0, 1). y

 y  x2



x



 2 x  y  2 46.   x y  2 Graph the line  2 x  y  2 . Use a solid line since the inequality uses ≤. Choose a test point not on the line, such as (0, 0). Since  2(0)  0  2 is true, shade the side of the line containing (0, 0). Graph the line x  y  2 . Use a solid line since the inequality uses ≥. Choose a test point not on the line, such as (0, 0). Since 0  0  2 is false, shade the opposite side of the line from (0, 0). The overlapping region is the solution. y 5

x+y=2 x –5

5

–2x + y = 2

x0   y0  47.   x y  4 2 x  3 y  6 Graph x  0; y  0 . Shaded region is the first quadrant. Graph the line x  y  4 . Use a solid line since the inequality uses ≤. Choose a test point not on the line, such as (0, 0). Since 0  0  4 is true, shade the side of the line containing (0, 0). Graph the line 2 x  3 y  6 . Use a solid line since the inequality uses ≤. Choose a test point not on the line, such as (0, 0). Since 2(0)  3(0)  6 is true, shade the side of the line containing (0, 0). y 8

x+ y=4 (0, 2) x (0, 0) (3, 0) –2 2x + 3y = 6

8

The overlapping region is the solution. The graph is bounded. Find the vertices: The x-axis and yaxis intersect at (0, 0). The intersection of 2 x  3 y  6 and the y-axis is (0, 2). The intersection of 2 x  3 y  6 and the x-axis is (3, 0). The three corner points are (0, 0), (0, 2), and (3, 0).

–5

The graph is unbounded. Find the vertices: To find the intersection of x  y  2 and 2 x  y  2 , solve the system:  x y  2   2 x  y  2

x0   0 y  48.  2 x  y  8  x  2 y  2 Graph x  0; y  0 . Shaded region is the first quadrant. Graph the line 2 x  y  8 . Use a solid

1302 Copyright © 2020 Pearson Education, Inc.


Chapter 11 Review Exercises

line since the inequality uses ≤. Choose a test point not on the line, such as (0, 0). Since 2(0) + 0 ≤ 8 is true, shade the side of the line containing (0, 0). Graph the line x  2 y  2 . Use a solid line since the inequality uses ≥ . Choose a test point not on the line, such as (0, 0). Since 0 + 2(0) ≥ 2 is false, shade the opposite side of the line from (0, 0). y 9

(0, 8)

2x + y = 8

(0, 1) x + 2y = 2

(4, 0)

–1–1

x 9

(2, 0)

The overlapping region is the solution. The graph is bounded. Find the vertices: The intersection of x  2 y  2 and the y-axis is (0, 1). The intersection of x  2 y  2 and the x-axis is (2, 0). The intersection of 2 x  y  8 and the y-axis is (0, 8). The intersection of 2 x  y  8 and the xaxis is (4, 0). The four corner points are (0, 1), (0, 8), (2, 0), and (4, 0). 49. Graph the system of inequalities: 2 2  x  y  16   x  y  2 2

y 5 x2+ y2 = 16 x 5

–5

Graph the parabola y  x 2 . Use a solid line since the inequality uses ≤ . Choose a test point not on the parabola, such as (1, 2). Since 2  12 is false, shade the opposite side of the parabola from (1, 2). Graph the hyperbola xy  4 . Use a solid line since the inequality uses ≤ . Choose a test point not on the hyperbola, such as (1, 2). Since 1  2  4 is true, shade the same side of the hyperbola as (1, 2). The overlapping region is the solution. y 5

y = x2

–5 5 x xy = 4 –5

51. Maximize z  3x  4 y subject to x  0 , y  0 , 3x  2 y  6 , x  y  8 . Graph the constraints. y (0,8)

2

Graph the circle x  y  16 .Use a solid line since the inequality uses ≤ . Choose a test point not on the circle, such as (0, 0). Since 02  02  16 is true, shade the side of the circle containing (0, 0). Graph the line x  y  2 . Use a solid line since the inequality uses ≥ . Choose a test point not on the line, such as (0, 0). Since 0  0  2 is false, shade the opposite side of the line from (0, 0). The overlapping region is the solution.

–5

50. Graph the system of inequalities: 2  y  x   xy  4

x+y=2

(0,3)

(2,0)

(8,0) x

The corner points are (0, 3), (2, 0), (0, 8), (8, 0). Evaluate the objective function: Vertex Value of z  3 x  4 y (0, 3) z  3(0)  4(3)  12 (0, 8) z  3(0)  4(8)  32 z  3(2)  4(0)  6 (2, 0) (8, 0) z  3(8)  4(0)  24 The maximum value is 32 at (0, 8).

1303 Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities 52. Minimize z  3 x  5 y subject to x  0 , y  0 , x  y  1 , 3x  2 y  12 , x  3 y  12 . Graph the constraints. y

(0,4)

0  A  10 If there are to be infinitely many solutions, the result of elimination should be 0 = 0. Therefore, A  10  0 or A  10 .

 ,  12 7

(0,1)

2 x  5 y  5 53.  4 x  10 y  A Multiply each side of the first equation by –2 and eliminate x: 4 x  10 y  10  4 x  10 y  A 

24 7

(4,0)

x

(1,0)

To find the intersection of 3x  2 y  12 and x  3 y  12 , solve the system: 3x  2 y  12   x  3 y  12 Solve the second equation for x: x  12  3 y Substitute and solve: 3(12  3 y )  2 y  12 36  9 y  2 y  12 7 y   24 24 y 7 72 12  24  x  12  3    12   7 7  7   12 24  The point of intersection is  ,  . 7 7  The corner points are (0, 1), (1, 0), (0, 4), (4, 0),  12 24   , . 7 7 

Evaluate the objective function: Vertex Value of z  3x  5 y z  3(0)  5(1)  5 (0, 1) z  3(0)  5(4)  20 (0, 4) z  3(1)  5(0)  3 (1, 0) z  3(4)  5(0)  12 (4, 0)  12 24   12   24  156  ,  z  3   5   7 7 7  7  7  The minimum value is 3 at (1, 0).

2 x  5 y  5 54.  4 x  10 y  A Multiply each side of the first equation by –2 and eliminate x: 4 x  10 y  10  4 x  10 y  A  0  A  10 If the system is to be inconsistent, the result of elimination should be 0 = any number except 0. Therefore, A  10  0 or A  10 .

55. y  ax 2  bx  c At (0, 1) the equation becomes: 1  a (0) 2  b(0)  c c 1

At (1, 0) the equation becomes: 0  a(1) 2  b(1)  c 0  abc abc  0 At (–2, 1) the equation becomes: 1  a( 2) 2  b( 2)  c 1  4a  2b  c 4a  2b  c  1 The system of equations is:  a bc  0  4a  2b  c  1  c1  Substitute c  1 into the first and second equations and simplify: 4a  2b  1  1 a  b 1  0 a  b  1 4a  2b  0 a  b  1 Solve the first equation for a, substitute into the second equation and solve:

1304 Copyright © 2020 Pearson Education, Inc.


Chapter 11 Review Exercises 4(b  1)  2b  0  4b  4  2b  0  6b  4 b a

Substituting and solving for the other variables: 5  3z  11 x  5  2(2)  10 x  9  10 3z  6 x 1 z2 Thus, 1 small box, 5 medium boxes, and 2 large boxes of cookies should be purchased.

2 3

2 1 1   3 3

58. a.

1 2 The quadratic function is y   x 2  x  1 . 3 3

56. Let x = the number of pounds of coffee that costs $6.00 per pound, and let y = the number of pounds of coffee that costs $9.00 per pound. Then x  y  100 represents the total amount of coffee in the blend. The value of the blend will be represented by the equation: 6 x  9 y  6.90(100) . Solve the system of equations:  x  y  100  6 x  9 y  690 Solve the first equation for y: y  100  x . Solve by substitution: 6 x  9(100  x)  690 6 x  900  9 x  690 3x   210 x  70 y  100  70  30 The blend is made up of 70 pounds of the $6.00per-pound coffee and 30 pounds of the $9.00per-pound coffee. 57. Let x = the number of small boxes, let y = the number of medium boxes, and let z = the number of large boxes. Oatmeal raisin equation: x  2 y  2 z  15 Chocolate chip equation: x  y  2 z  10 Shortbread equation: y  3 z  11  x  2 y  2 z  15   x  y  2 z  10  y  3 z  11 

Multiply each side of the second equation by –1 and add to the first equation to eliminate x:  x  2 y  2 z  15  x  y  2 z  10  y  3 z  11 y 5

Let x = the number of lower-priced packages, and let y = the number of quality packages. 8 x  6 y  120(16) Peanut inequality: 4 x  3 y  960 Cashew inequality: 4 x  6 y  72(16) 2 x  3 y  576 The system of inequalities is: x0   y0   4 x  3 y  960 2 x  3 y  576

b. Graphing:

To find the intersection of 2 x  3 y  576 and 4 x  3 y  960 , solve the system: 4 x  3 y  960  2 x  3 y  576 Subtract the second equation from the first: 4 x  3 y  960 2 x  3 y  576 2 x  384 x  192 Substitute and solve: 2(192)  3 y  576 3 y  192 y  64 The corner points are (0, 0), (0, 192), (240, 0), and (192, 64).

1305 Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities 59. Let x = the speed of the boat in still water, and let y = the speed of the river current. The distance from Chiritza to the Flotel Orellana is 100 kilometers. Rate Time Distance trip downstream x  y 5 / 2 100 trip downstream x  y 3 100

The system of equations is: 5  ( x  y )  100 2 3( x  y )  100 Multiply both sides of the first equation by 6, multiply both sides of the second equation by 5, and add the results. 15 x  15 y  600 15 x  15 y  500 30 x  1100 1100 110 x  30 3  110  3   3 y  100  3  110  3 y  100 10  3 y 10 y 3 The speed of the boat is 110 / 3  36.67 km/hr ; the speed of the current is 10 / 3  3.33 km/hr .

60. Let x = the number of hours for Bruce to do the job alone, let y = the number of hours for Bryce to do the job alone, and let z = the number of hours for Marty to do the job alone. Then 1/x represents the fraction of the job that Bruce does in one hour. 1/y represents the fraction of the job that Bryce does in one hour. 1/z represents the fraction of the job that Marty does in one hour. The equation representing Bruce and Bryce working together is: 1 1 1 3     0.75 x y  4 / 3 4

working together is: 1 1 1 3     0.375 x z  8 / 3 8 Solve the system of equations:  x 1  y 1  0.75  1 1  y  z  0.625  1 1  x  z  0.375 Let u  x 1 , v  y 1 , w  z 1 u  v  0.75  v  w  0.625 u  w  0.375 

Solve the first equation for u: u  0.75  v . Solve the second equation for w: w  0.625  v . Substitute into the third equation and solve: (0.75  v)  (0.625  v)  0.375 2v  1 v  0.5 u  0.75  0.5  0.25 w  0.625  0.5  0.125 Solve for x, y, and z : x  4, y  2, z  8 (reciprocals) Bruce can do the job in 4 hours, Bryce in 2 hours, and Marty in 8 hours. 61. Let x = the number of gasoline engines produced each week, and let y = the number of diesel engines produced each week. The total cost is: C  450 x  550 y . Cost is to be minimized; thus, this is the objective function. The constraints are: 20  x  60 number of gasoline engines needed and capacity each week. 15  y  40 number of diesel engines needed and capacity each week. x  y  50 number of engines produced to prevent layoffs. Graph the constraints.

The equation representing Bryce and Marty working together is: 1 1 1 5     0.625 y z 8 / 5 6 The equation representing Bruce and Marty 1306 Copyright © 2020 Pearson Education, Inc.


Chapter 11 Test y  2x  7

y

y  2  3  7  6  7  1 (20,40)

(60,40)

(20,30) (60,15) (35,15) x

The corner points are (20, 30), (20, 40), (35, 15), (60, 15), (60, 40) Evaluate the objective function: Vertex Value of C  450 x  550 y (20, 30) C  450(20)  550(30)  25,500 (20, 40) C  450(35)  550(40)  31, 000 (35, 15) C  450(35)  550(15)  24, 000 (60, 15) C  450(60)  550(15)  35, 250  60, 40  C  450  60   550  40   49, 000 The minimum cost is $24,000, when 35 gasoline engines and 15 diesel engines are produced. The excess capacity is 15 gasoline engines, since only 20 gasoline engines had to be delivered.

The solution of the system is x  3 , y  1 or (3, 1) . Elimination: Multiply each side of the first equation by 2 so that the coefficients of x in the two equations are negatives of each other. The result is the equivalent system 4 x  2 y  14   4x  3y  9 We can replace the second equation of this system by the sum of the two equations. The result is the equivalent system 4 x  2 y  14  5 y  5  Now we solve the second equation for y. 5 y  5 5  1 y 5 We back-substitute this value for y into the original first equation and solve for x. 2 x  y  7 2 x   1  7 2 x  6 6 x 3 2 The solution of the system is x  3 , y  1 or (3, 1) .

62. Answers will vary.

Chapter 11 Test 1. 2 x  y  7   4x  3y  9 Substitution: We solve the first equation for y, obtaining y  2x  7 Next we substitute this result for y in the second equation and solve for x. 4x  3 y  9 4x  3 2x  7  9 4 x  6 x  21  9 10 x  30 30 x 3 10 We can now obtain the value for y by letting x  3 in our substitution for y.

1 2.  x  2 y  1 3 5 x  30 y  18 We choose to use the method of elimination and multiply the first equation by 15 to obtain the equivalent system 5 x  30 y  15   5 x  30 y  18

We replace the second equation by the sum of the two equations to obtain the equivalent system 5 x  30 y  15  03  The second equation is a contradiction and has no solution. This means that the system itself has no solution and is therefore inconsistent.

1307 Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities x  y  2z  5

 x  y  2 z  5 (1)  3.  3 x  4 y  z  2 (2) 5 x  2 y  3z  8 (3) 

We use the method of elimination and begin by eliminating the variable y from equation (2). Multiply each side of equation (1) by 4 and add the result to equation (2). This result becomes our new equation (2). x  y  2z  5 4 x  4 y  8 z  20 3x  4 y  z  2

3 x  4 y  z  2 7x

 7 z  18 (2)

We now eliminate the variable y from equation (3) by multiplying each side of equation (1) by 2 and adding the result to equation (3). The result becomes our new equation (3). x  y  2z  5 2x  2 y  4 z  10 5 x  2 y  3z  8

5x  2 y  3 z  8 7x

 7 z  18 (3)

Our (equivalent) system now looks like  x  y  2 z  5 (1)   7 z  18 (2) 7 x 7 x  7 z  18 (3)  Treat equations (2) and (3) as a system of two equations containing two variables, and eliminate the x variable by multiplying each side of equation (2) by 1 and adding the result to equation (3). The result becomes our new equation (3). 7 x  7 z  18  7 x  7 z  18 7 x  7 z  18 7 x  7 z  18 0  0 (3) We now have the equivalent system  x  y  2 z  5 (1)   7 z  18 (2) 7 x  0  0 (3)  This is equivalent to a system of two equations with three variables. Since one of the equations contains three variables and one contains only two variables, the system will be dependent. There are infinitely many solutions. We solve equation (2) for x and determine that 18 x   z  . Substitute this expression into 7 equation (1) to obtain y in terms of z.

18    z    y  2z  5 7  18 z   y  2z  5 7 17 y  z  7 17 7 18 17 The solution is x   z  , y  z  , 7 7  18 z is any real number or ( x, y, z ) x   z  , 7  17  y  z  , z is any real number  . 7  y  z

 3x  2 y  8 z  3 (1)  4.   x  23 y  z  1 (2)  6 x  3 y  15 z  8 (3)

We start by clearing the fraction in equation (2) by multiplying both sides of the equation by 3.  3x  2 y  8 z  3 (1)  3x  2 y  3z  3 (2)  6 x  3 y  15 z  8 (3)  We use the method of elimination and begin by eliminating the variable x from equation (2). The coefficients on x in equations (1) and (2) are negatives of each other so we simply add the two equations together. This result becomes our new equation (2). 3x  2 y  8 z  3 3 x  2 y  3z  3  5 z  0 (2)

We now eliminate the variable x from equation (3) by multiplying each side of equation (1) by 2 and adding the result to equation (3). The result becomes our new equation (3). 3x  2 y  8 z  3  6 x  4 y  16 z  6 6 x  3 y  15 z  8

6 x  3 y  15 z  8  7 y  31z  14 (3)

Our (equivalent) system now looks like 3x  2 y  8 z  3 (1)  5 z  0 (2)   7 y  31z  14 (3) We solve equation (2) for z by dividing both

1308 Copyright © 2020 Pearson Education, Inc.


Chapter 11 Test sides of the equation by 5 . 5 z  0 z0 Back-substitute z  0 into equation (3) and solve for y. 7 y  31z  14 7 y  31(0)  14 7 y  14 y  2 Finally, back-substitute y  2 and z  0 into equation (1) and solve for x. 3x  2 y  8 z  3 3x  2(2)  8(0)  3 3x  4  3 3x  1 1 x 3 The solution of the original system is 1 1  x  , y  2 , z  0 or  , 2, 0  . 3 3  5.  4 x  5 y  z  0  2 x  y  6  19  x  5 y  5 z  10 

We first check the equations to make sure that all variable terms are on the left side of the equation and the constants are on the right side. If a variable is missing, we put it in with a coefficient of 0. Our system can be rewritten as  4x  5 y  z  0  2 x  y  0 z  25  x  5 y  5 z  10  The augmented matrix is 0   4 5 1  2 1 0 25    1 5 5 10  6. The matrix has three rows and represents a system with three equations. The three columns to the left of the vertical bar indicate that the system has three variables. We can let x, y, and z denote these variables. The column to the right of the vertical bar represents the constants on the right side of the equations. The system is  3 x  2 y  4 z  6 3x  2 y  4 z  6   or 1  0  8  2 x y z x  8z  2   2 x  1y  3 z  11 2 x  y  3 z  11  

1 1  4

6 3  3 2   1 8   2 2   4 6  6 4    0 8    1 3  1 11  6 4   1 8  5 12 

7. 2 A  C  2 0 4    1

1 8. A  3C  0  3 1  0  3

1  4 6  4   3  1 3 2   1 8  1 12 18   11 19  4    3 9    3 5  2   3 24   6 22 

9. Here we are taking the product of a 3  2 matrix and a 2  3 matrix. Since the number of columns in the first matrix is the same as the number of rows in the second matrix (2 in both cases), the operation can be performed and will result in a 3  3 matrix. 4 6 1 2 5 CB   1 3  0 3 1   1 8   4( 2)  6  3 4  5  6 1   4 1  6  0   1  1  ( 3)0 1( 2)  ( 3)3 1  5  ( 3)1    ( 1)1  8  0 ( 1)( 2)  8  3 ( 1)5  8  1

 4 10 26    1 11 2     1 26 3 

10. Here we are taking the product of a 2  3 matrix and a 3  2 matrix. Since the number of columns in the first matrix is the same as the number of rows in the second matrix (3 in both cases), the operation can be performed and will result in a 2  2 matrix. 1 1  1 2 5    BA    0 4  0 3 1   3 2     1  1   2   0  5  3  0 1  3  0  1 3  16 17     3 10 

1309 Copyright © 2020 Pearson Education, Inc.

1   1   2    4   5  2  0   1  3  4   1  2

 


Chapter 11: Systems of Equations and Inequalities 11. We first form the matrix 3 2 1 0   A | I2     5 4 0 1 

Next we use row operations to transform  A | I 2 

into reduced row echelon form. 1 23 13 0  3 2 1 0   5 4 0 1      5 4 0 1  1 23 13 0    5  0 23  3 1  1 23 13 0    5 3  0 1  2 2  1 0 2 1  5 3  0 1  2 2   2 Therefore, A1   5  2

 R  13 r  1

1

 R2  5r1  r2 

R2  32 r2

 R   23 r  r  1

2

1

1 3 . 2 

12. We first form the matrix  1 1 1 1 0 0  B | I   3   2 5 1 0 1 0  2 3 0 0 0 1  Next we use row operations to transform  B | I 3 

into reduced row echelon form.

1 1 1 1 0 0   2 5 1 0 1 0     2 3 0 0 0 1  1 1 1 1 0 0   R2  2r1  r2   0 7 3 2 1 0     R3  2r1  r3  0 5 2 2 0 1  1 0 0 1 1 1   3  0 1  7  72 17 0  R2  17 r2 0 5 2 2 0 1   

1 0 74   0 1  73  1 0 0 7

5 7  72  74

1 7 1 7  75

4 7  73

5 7  72

1 7 1 7

1   0  0 1  0 0

0 1 0 0 1 0

Thus, B

1

0  0  1 

0  0  1 4 5 7   0 3 3 4  0 2 2 3  1 4 5 7 

 R1  r2  r1     R3  5r2  r3 

 R3  7r3   R1   74 r3  r1    R  3r r   2 7 3 2 

 3 3 4    2 2 3   4 5 7 

13. 6 x  3 y  12   2 x  y  2

We start by writing the augmented matrix for the system.  6 3 12   2 1 2    Next we use row operations to transform the augmented matrix into row echelon form.  6 3 12   2 1 2   R1  r2   2 1 2    6 3 12   R  r       2 1 1  12 1    6 3 12 

 R1  12 r1 

1  12 1    0 6 18 

 R2  6r1  r2 

1  12   0 1

 R2  16 r2 

1  3 

1 0 12     0 1 3 

1310 Copyright © 2020 Pearson Education, Inc.

 R2  12 r2  r1 


Chapter 11 Test

The solution of the system is x  12 , y  3 or

 12 , 3

1  14.  x  y  7 4  8 x  2 y  56 We start by writing the augmented matrix for the system. 1 14 7    8 2 56 

Next we use row operations to transform the augmented matrix into row echelon form. 1 14 7    8 2 56  R2  8R1  r2 1 14 7    0 0 0  The augmented matrix is now in row echelon form. Because the bottom row consists entirely of 0’s, the system actually consists of one equation in two variables. The system is dependent and therefore has an infinite number of solutions. Any ordered pair satisfying the 1 equation x  y  7 , or y  4 x  28 , is a 4 solution to the system.

15.  x  2 y  4 z  3  2 x  7 y  15 z  12  4 x  7 y  13z  10 

 1 2 4 3   2 7 15 12     4 7 13 10  1 2 4 3   0 3 7 6   0 1 3 2  1 2 4 3   0 1 3 2   0 3 7 6 

 R2  2r1  r2     R3  4r1  r3   R2   r3     R3  r2 

1 2 4 3   0 1 3 2   R3  3r2  r3   0 0 2 0  1 2 4 3   0 1 3 2   R3   12 r3   0 0 1 0  The matrix is now in row echelon form. The last row represents the equation z  0 . Using z  0 we back-substitute into the equation y  3 z  2 (from the second row) and obtain y  3 z  2 y  3  0   2 y  2 y Using  2 and z  0 , we back-substitute into the equation x  2 y  4 z  3 (from the first row) and obtain x  2 y  4 z  3

x  2  2   4  0   3

We start by writing the augmented matrix for the system.  1 2 4 3   2 7 15 12     4 7 13 10  Next we use row operations to transform the augmented matrix into row echelon form.

x 1 The solution is x  1 , y  2 , z  0 or (1, 2, 0) .

16. 2 x  2 y  3 z  5   x  y  2z  8  3x  5 y  8 z  2 

We start by writing the augmented matrix for the system.  2 2 3 5  1 1 2 8     3 5 8 2  Next we use row operations to transform the augmented matrix into row echelon form.

1311 Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities

 2 2 3 5  1 1 2 8     3 5 8 2  1 1 2 8    2 2 3 5   3 5 8 2 

Dy 

18.

2 5 3

7

 R1  r2     R2  r1 

  2  7    5  3  14  15  29

2 4 6 1 4 0 1 2 4 2

Dx 58   2 D 29 Dy 145   5 y D 29 The solution of the system is x  2 , y  5 or (2, 5) . x

8  1 1 2  R2  2r1  r2    0 4 7 11   R3  3r1  r3   0 8 14 26  1 1 2 8     0 1  7  11   R2  14 r2  4 4   0 8 14 26  1 1 2 8     0 1  7  11   R3  8r2  r3  4 4   0 4  0 0 The last row represents the equation 0  4 which is a contradiction. Therefore, the system has no solution and is be inconsistent.

17.

4 23   4 19    23 3  145 3 19

4 0 1 0 1 4  (4) 6 2 4 1 4 1 2

 2  4(4)  2(0)   4 1(4)  (1)(0)   6 1(2)  (1)4

20.  4 x  3 y  2 z  15  2 x  y  3 z  15  5 x  5 y  2 z  18 

The determinant D of the coefficients of the variables is 4 3 2 D  2 1 3 5 5 2 4

1

3

5

2

  3

2 3 5

2

2

2

1

5

5

 4  2  15   3  4  15   2 10  5   4  13  3 11  2  5   52  33  10  9 Since D  0 , Cramer’s Rule can be applied. 15 3 2 Dx  15 1 3 18 5 2  15

1

3

5

2

  3

15 3 18

2

2

15

1

18

5

 15  2  15   3  30  54   2  75  18   15  13  3  24   2  57 

 2(16)  4(4)  6(6)  32  16  36  12

 9

19. 4 x  3 y  23   3 x  5 y  19

The determinant D of the coefficients of the variables is 4 3 D   4  5    3 3  20  9  29 3 5 Since D  0 , Cramer’s Rule can be applied. 23 3 Dx    23 5    319   58 19 5 1312 Copyright © 2020 Pearson Education, Inc.


Chapter 11 Test

4

15

2 y 2  3x 2  5 22.  y  x  1  y  x 1  Substitute x  1 for y into the first equation and solve for x:

2

Dy  2 15 3 5 4

18

2

15 3 18

2

 15

2 3 5

2

2

2 15 5

2  x  1  3x 2  5 2

18

 4  30  54   15  4  15   2  36  75 

2 x 2  2 x  1  3x 2  5

 4  24   15 11  2  39 

2 x 2  4 x  2  3x 2  5

 9 4

3

15

Dz  2

1

15

5

5

18

1

15

5

18

  3

4

 x2  4 x  3  0

2 15 5

18

 15

2

1

5

5

 4 18  75   3  36  75   15 10  5   4  57   3  39   15  5   36 Dy D 9 9 x x   1, y    1 , D 9 D 9 D 36 z z  4 D 9 The solution of the system is x  1 , y  1 , z  4 or (1, 1, 4) . 2 2 3x  y  12 21.  y2  9x  2

Substitute 9x for y into the first equation and solve for x: 3x 2   9 x   12 3x 2  9 x  12  0

x2  4x  3  0 ( x  1)( x  3)  0 x  1 or x  3 Back substitute these values into the second equation to determine y: x  1 : y  11  2 x  3 : y  3 1  4 The solutions of the system are (1, 2) and (3, 4) .  x 2  y 2  100 23.  4 x  3 y  0

Graph the circle x 2  y 2  100 . Use a solid curve since the inequality uses  . Choose a test point not on the circle, such as (0, 0). Since 02  02  100 is true, shade the same side of the circle as (0, 0); that is, inside the circle. Graph the line 4 x  3 y  0 . Use a solid line since the inequality uses ≥ . Choose a test point not on the line, such as (0, 1). Since 4(0)  3(1)  0 is false, shade the opposite side of the line from (0, 1). The overlapping region is the solution.

x 2  3x  4  0 ( x  1)( x  4)  0 x  1 or x  4 Back substitute these values into the second equation to determine y: x  1 : y 2  9(1)  9 y  3 x  4 : y 2  9(4)  36

y   36 (not real) The solutions of the system are (1, 3) and (1, 3) .

1313 Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities

24.

3x  7

 x  3 The denominator contains the repeated linear factor x  3 . Thus, the partial fraction decomposition takes on the form 3x  7 A B   2 2  x  3 x  3  x  3 2

Clear the fractions by multiplying both sides by

 x  3 . The result is the identity 3x  7  A  x  3  B 2

or 3x  7  Ax   3 A  B  We equate coefficients of like powers of x to obtain the system 3  A  7  3 A  B Therefore, we have A  3 . Substituting this result into the second equation gives 7  3A  B 7  3  3  B 2  B Thus, the partial fraction decomposition is 3x  7 3 2 .   2 2 3 x  3 x x      3

25.

4x2  3

x x2  3

2

The denominator contains the linear factor x and the repeated irreducible quadratic factor x 2  3 . The partial fraction decomposition takes on the form 4 x2  3 A Bx  C Dx  E   2  2 2 2 x x 3 x x 3 x2  3

We clear the fractions by multiplying both sides

by x x 2  3 2

 to obtain the identity

2

4x  3  A x  3 2

  x  x  3  Bx  C   x  Dx  E  2

2

Collecting like terms yields 4 x 2  3   A  B  x 4  Cx3   6 A  3B  D  x 2   3C  E  x   9 A

Equating coefficients, we obtain the system

A B  0   C0  6 A  3 B  D  4  3C  E  0  9 A  3  1 From the last equation we get A   . 3 Substituting this value into the first equation 1 gives B  . From the second equation, we 3 know C  0 . Substituting this value into the fourth equation yields E  0 . 1 1 Substituting A   and B  into the third 3 3 equation gives us 6   13   3  13   D  4 2  1  D  4 D5 Therefore, the partial fraction decomposition is 4x2  3 x  x  3 2

2

1 3

x

1 x 3

5x

 x  3  x  3 2 2

2

26.  x  0 y  0   x  2 y  8 2 x  3 y  2

The inequalities x  0 and y  0 require that the graph be in quadrant I. x  2y  8 1 y   x4 2 Test the point  0, 0  . x  2y  8 0  2  0  8 ? 0  8 false The point  0, 0  is not a solution. Thus, the

graph of the inequality x  2 y  8 includes the 1 half-plane above the line y   x  4 . Because 2 the inequality is non-strict, the line is also part of the graph of the solution.

1314 Copyright © 2020 Pearson Education, Inc.


Chapter 11 Test 2x  3y  2

The corner points of the feasible region are  0,1 ,  3, 2  , and  0,8  .

2 2 x 3 3 Test the point  0, 0  . y

y

2x  3 y  2

8

2  0  3 0  2 ? 0  2 false The point  0, 0  is not a solution. Thus, the

graph of the inequality 2 x  3 y  2 includes the 2 2 x . 3 3 Because the inequality is non-strict, the line is also part of the graph of the solution. The overlapping shaded region (that is, the shaded region in the graph below) is the solution to the system of linear inequalities.



x  3 y  3





half-plane below the line y 

4

x

2x  y  8

Corner point,  x, y  Value of obj. function, z

 0,1  3, 2   0,8 

z  5  0   8 1  8 z  5  3  8  2   31

z  5  0   8  8   64

From the table, we can see that the maximum value of z is 64, and it occurs at the point  0,8  .

The graph is unbounded. The corner points are  4, 2  and  8, 0  . 27. The objective function is z  5 x  8 y . We seek the largest value of z that can occur if x and y are solutions of the system of linear inequalities x  0  2 x  y  8  x  3 y  3  2x  y  8 x  3 y  3 y  2 x  8 3 y   x  3 1 y  x 1 3 The graph of this system (the feasible points) is shown as the shaded region in the figure below.

28. Let j = unit price for flare jeans, c = unit price for camisoles, and t = unit price for t-shirts. The given information yields a system of equations with each of the three women yielding an equation. 2 j  2c  4t  90 (Megan)   3t  42.5 (Paige)  j  j  3c  2t  62 (Kara) 

We can solve this system by using matrices.  2 2 4 90  1 1 2 45   1 0 3 42.5  1 0 3 42.5  R1  12 r1       1 3 2 62  1 3 2 62 

1315 Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities

1 1 2 45   0 1 1 2.5   0 2 0 17 

 R2  r1  r2     R3  r1  r3 

1 1 2 45   0 1 1 2.5   0 2 0 17 

 R2  r2 

1 0 3 42.5  0 1 1 2.5    0 0 2 12 

 R1   r2  r1     R3  2r2  r3 

1 0 3 42.5 R3  12 r3  0 1 1 2.5    6  0 0 1 The last row represents the equation z  6 . Substituting this result into y  z  2.5 (from the y  z  2.5 second row) gives y  6  2.5 y  8.5 Substituting z  6 into x  3 z  42.5 (from the first row) gives x  3z  42.5

x  3  6   42.5 x  24.5 Thus, flare jeans cost $24.50, camisoles cost $8.50, and t-shirts cost $6.00.

35 1  4 15  1  4 16  4 44 The solution set is 5 .

3. 2 x3  3x 2  8 x  3  0 The graph of Y1  2 x3  3 x 2  8 x  3 appears to have an x-intercept at x  3 .

Using synthetic division: 32

3 6

2

3

1. 2 x 2  x  0 x  2 x  1  0 x  0 or 2 x  1  0 2x  1 1 x 2  1 The solution set is 0,  .  2

2.

3x  1  4

 3x  1   4 2

3 3

1

0

Therefore, 2 x  3x  8 x  3  0 3

2

 x  3  2 x 2  3x  1  0  x  3 2 x  1 x  1  0 1 or x  1 2 1   The solution set is 1,  ,3 . 2   x x1 4. 3  9

x  3 or x  

 

3x  32

Chapter 11 Cumulative Review

8 9

x 1

3x  32 x  2 x  2x  2 x  2 The solution set is 2 .

5. log 3  x  1  log 3  2 x  1  2 log 3   x  1 2 x  1   2

 x  1 2 x  1  32 2 x2  x  1  9 2 x 2  x  10  0

 2 x  5 x  2   0 5 or x  2 2 Since x  2 makes the original logarithms 5 undefined, the solution set is   . 2 x

2

3 x  1  16 3x  15 x5 Check:

1316 Copyright © 2020 Pearson Education, Inc.


Chapter 11 Cumulative Review

6.

3x  e

10.

   ln e

ln 3

x

1  0.910 ln 3  1  The solution set is   0.910  . ln 3   x

2 x3 x4  1

g ( x) 

2x

3

2 x 3  g  x x4  1

x 1 Thus, g is an odd function and its graph is symmetric with respect to the origin. 8.

4

5 x2 5 x Inverse y2 x( y  2)  5 xy  2 x  5 xy  5  2 x 5  2x 5  2 y x x 5 1 Thus, f ( x)   2 x

Domain of f = {x | x  2} Range of f = { y | y  0} Domain of f 1 = {x | x  0} Range of f 1 = { y | y  2} .

x 2  y 2  2 x  4 y  11  0 x 2  2 x  y 2  4 y  11 ( x 2  2 x  1)  ( y 2  4 y  4)  11  1  4

11. a.

( x  1) 2  ( y  2) 2  16 Center: (1,–2); Radius: 4

9.

5 x2

y

x ln 3  1

7. g ( x) 

f ( x) 

y  3x  6 The graph is a line. x-intercept: 0  3x  6 3x  6 x  2

y-intercept: y  3 0  6 6

f ( x )  3x  2  1

Using the graph of y  3x , shift the graph horizontally 2 units to the right, then shift the graph vertically upward 1 unit. b.

x2  y 2  4 The graph is a circle with center (0, 0) and radius 2.

Domain: (, ) Range: (1, ) Horizontal Asymptote: y  1

1317 Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities

f. y  e x

c.

yx

d.

y

g.

y  ln x

h.

2 x2  5 y 2  1 The graph is an ellipse. x2 y2  1

3

1 x

1 2

2

1 5

2

 x   y      1  2   5   2   5 

e.

y x

1318 Copyright © 2020 Pearson Education, Inc.


Chapter 11 Projects

i.

b.

x2  3 y 2  1 The graph is a hyperbola x2 y 2  1 1 1



3 2



2

 x  y  1     1   3     3 



 

f has a local maximum of 7 at x  1 and a local minimum of 3 at x  1 . c. j.

f is increasing on the intervals (, 1) and (1, ) .

x2  2 x  4 y  1  0 x2  2 x  1  4 y 4 y  ( x  1) 2 1 y  ( x  1) 2 4

Chapter 11 Projects Project I – Internet-based Project 1. 80% = 0.80 40% = 0.40 20% = 0.20

18% = 0.18 50% = 0.50 60% = 0.60

2% = 0.02 10% = 0.10 20% = 0.20

0.80 0.18 0.02  2. 0.40 0.50 0.10  0.20 0.60 0.20 

12.

3. 0.80  0.18  0.02  1.00 0.40  0.50  0.10  1.00 0.20  0.60  0.20  1.00 The sum of each row is 1 (or 100%). These represent the three possibilities of educational achievement for a parent of a child, unless someone does not attend school at all. Since these are rounded percents, chances are the other possibilities are negligible.

f ( x)  x3  3x  5

a.

Let Y1  x3  3x  5 . 



 

The zero of f is approximately 2.28 .

1319 Copyright © 2020 Pearson Education, Inc.


Chapter 11: Systems of Equations and Inequalities

2

 0.8 0.18 0.02 2 4. P  0.4 0.5 0.1   0.2 0.6 0.2   0.716 0.246 0.038   0.54 0.382 0.078  0.44 0.456 0.104

Grandchild of a college graduate is a college graduate: entry (1, 1): 0.716. The probability is 71.6% 5. Grandchild of a high school graduate finishes college: entry (2,1): 0.54. The probability is 54%. 6. grandchildren → k = 2. v (2)  v (0) P 2  0.716 0.246 0.038  [0.317 0.565 0.118]  0.54 0.382 0.078  0.44 0.456 0.104  [0.583992 0.34762 0.068388]

College:  58.4% High School:  34.8% Elementary:  6.8%

0 0 0 0  0 0 0 1    0 0 1 0    0 0 1 1  0 1 0 0    0 1 0 1  0 1 1 0    0 1 1 1  u  1 0 0 0  1 0 0 1    1 0 1 0  1 0 1 1    1 1 0 0  1 1 0 1    1 1 1 0    1 1 1 1  (Remember, this is mod two. That means that you only write down the remainder when dividing by 2. ) v  uG

7. The matrix totally stops changing at 0.64885496 0.29770992 0.05343511 30 P  0.64885496 0.29770992 0.05343511 0.64885496 0.29770992 0.05343511

Project II a. 2  2  2  2  16 codewords. b. v  uG u will be the matrix representing all of the 4-digit information bit sequences.

0 0  0  0 0  0 0  0 v 1 1  1 1  1 1  1  1

0 0 0 0 0 0 0 0 1 1 1 0  0 1 0 1 0 1  0 1 1 0 1 1 1 0 0 0 1 1  1 0 1 1 0 1 1 1 0 1 1 0  1 1 1 0 0 0  0 0 0 1 1 1 0 0 1 0 0 1  0 1 0 0 1 0 0 1 1 1 0 0  1 0 0 1 0 0 1 0 1 0 1 0  1 1 0 0 0 1  1 1 1 1 1 1

c. Answers will vary, but if we choose the 6th row and the 10th row: 0101101 1001001 1102102 → 1100100 (13th row)

1320 Copyright © 2020 Pearson Education, Inc.


Chapter 11 Projects d. v  uG VH  uGH 0 0 0 0 GH   0 0  0 0

0 0  0  0

1 0  1  e. rH  [0 1 0 1 0 0 0] 1 1  0 0   [1 0 1]

1 1 1 1  0 1  1 0 0 0  1 0 0 1 

error code: 0010 000 r : 0101 000 0111 000 This is in the codeword list.

Project III 1 1 1 1 1 1 1  a. AT    3 4 5 6 7 8 9 

b. B  ( AT A) 1 AT Y  2.357  B   2.0357 

c. y  2.0357 x  2.357 d. y  2.0357 x  2.357

Project IV

Answers will vary.

1321 Copyright © 2020 Pearson Education, Inc.


Chapter 10 Analytic Geometry 14. G; the graph has vertex  h, k   1,1 and opens

Section 10.1

to the left. Therefore, the equation of the graph

Not applicable

has the form  y  1  4a  x  1 . 2

Section 10.2

 x2  x1    y2  y1  2

1.

15. E; the graph has vertex  h, k   1,1 and opens

2

to the right. Therefore, the equation of the graph has the form  y  1  4a  x  1 . 2

2

 4  2.    4  2 

16. D; the graph has vertex  h, k    0, 0  and opens

 x  4 2  9

down. Therefore, the equation of the graph has the form x 2  4ay . The graph passes through

x  4  3 x43 or x  4  3

the point  2, 1 so we have

3.

x  1 or

 2 2  4a  1

x  7

4  4a

The solution set is {7, 1} .

a 1 Thus, the equation of the graph is x 2  4 y .

4. (2, 5)

17. H; the graph has vertex  h, k    1, 1 and

5. 3, up

opens down. Therefore, the equation of the graph

6. (3, 5) ; x  3

has the form  x  1  4a  y  1 . 2

7. parabola; axis of symmetry

18. A; the graph has vertex  h, k    0, 0  and opens

8. latus rectum

to the right. Therefore, the equation of the graph has the form y 2  4ax . The graph passes

9. c

through the point 1, 2  so we have

10. (3, 2)

 2 2  4a 1

11. d

4  4a 1 a Thus, the equation of the graph is y 2  4 x .

12. False; y  2 13. B; the graph has a vertex  h, k    0, 0  and

19. C; the graph has vertex  h, k    0, 0  and opens

opens up. Therefore, the equation of the graph has the form x 2  4ay . The graph passes

to the left. Therefore, the equation of the graph has the form y 2  4ax . The graph passes

through the point  2,1 so we have

through the point  1, 2  so we have

 2 2  4a 1

 2 2  4a  1

4  4a

4  4a  1  a Thus, the equation of the graph is y 2  4 x .

1 a Thus, the equation of the graph is x 2  4 y .

1026 Copyright © 2020 Pearson Education, Inc.


Section 10.2: The Parabola 20. F; the graph has vertex  h, k    1, 1 and

23. The focus is (0, –3) and the vertex is (0, 0). Both lie on the vertical line x  0 . a = 3 and since (0, –3) is below (0, 0), the parabola opens down. The equation of the parabola is: x 2   4ay

opens up; further, a  1 . Therefore, the equation of the graph has the form  x  1  4  y  1 . 2

21. The focus is (4, 0) and the vertex is (0, 0). Both lie on the horizontal line y  0 . a = 4 and since (4, 0) is to the right of (0, 0), the parabola opens to the right. The equation of the parabola is: y 2  4ax

x2   4  3  y x 2  12 y

Letting y  3, we find x 2  36 or x  6 . The points  6, 3 and  6, 3 define the latus

y2  4  4  x

rectum.

y 2  16 x

Letting x  4, we find y 2  64 or y  8 . The points (4, 8) and (4, –8) define the latus rectum.

24. The focus is (–4, 0) and the vertex is (0, 0). Both lie on the horizontal line y  0 . a = 4 and since (–4, 0) is to the left of (0, 0), the parabola opens to the left. The equation of the parabola is: y 2   4ax

22. The focus is (0, 2) and the vertex is (0, 0). Both lie on the vertical line x  0 . a = 2 and since (0, 2) is above (0, 0), the parabola opens up. The equation of the parabola is: x 2  4ay

y2   4  4  x y 2  16 x

Letting x   4, we find y 2  64 or y  8 . The points (–4, 8) and (–4, –8) define the latus rectum.

x2  4  2  y x2  8 y

Letting y  2, we find x 2  16 or x  4 . The points (–4, 2) and (4, 2) define the latus rectum.

1027

Copyright © 2020 Pearson Education, Inc.


Chapter 10: Analytic Geometry 25. The focus is (–2, 0) and the directrix is x  2 . The vertex is (0, 0). a = 2 and since (–2, 0) is to the left of (0, 0), the parabola opens to the left. The equation of the parabola is: y 2   4ax

equation of the parabola is: x 2  4ay 1 x2  4   y 2 2 x  2y 1 Letting y  , we find x 2  1 or x  1 . 2 1  1  The points 1,  and  1,  define the latus 2  2  rectum.

y2   4  2  x y 2   8x

Letting x  – 2, we find y 2  16 or y  4 . The points (–2, 4) and (–2, –4) define the latus rectum.

26. The focus is (0, –1) and the directrix is y  1 . The vertex is (0, 0). a = 1 and since (0, –1) is below (0, 0), the parabola opens down. The equation of the parabola is: x 2   4ay x2   4 y

1 and the vertex is (0, 0). 2 1 1  1  The focus is  , 0  . a  and since  , 0  is 2 2  2  to the right of (0, 0), the parabola opens to the right. The equation of the parabola is: y 2  4ax

Letting y  –1, we find x 2  4 or x  2 . The points (–2, –1) and (2, –1) define the latus rectum.

1 y2  4   x 2 y2  2x

28. The directrix is x  

x 2   4 1  y

1 Letting x  , we find y 2  1 or y  1 . The 2 1   1  points  ,  1 and  , 1 define the latus 2  2  rectum.

1 and the vertex is (0, 0). 2 1  1  1 The focus is  0,  . a  and since  0,  is 2  2  2 above (0, 0), the parabola opens up. The

27. The directrix is y  

1028

Copyright © 2020 Pearson Education, Inc.


Section 10.2: The Parabola 29. Vertex: (0, 0). Since the axis of symmetry is vertical, the parabola opens up or down. Since (2, 3) is above (0, 0), the parabola opens up. The equation has the form x 2  4ay . Substitute the coordinates of (2, 3) into the equation to find a : 2 2  4a  3 4  12a 1 a 3 4 The equation of the parabola is: x 2  y . The 3 1 1   focus is  0,  . Letting y  , we find 3  3 x2 

31. The vertex is (2, –3) and the focus is (2, –5). Both lie on the vertical line x  2 . a  5   3  2 and since (2, –5) is below

4 2 2 1 or x   . The points  ,  and 9 3  3 3

(2, –3), the parabola opens down. The equation of the parabola is:

 2 1   3 , 3  define the latus rectum.  

 x  h   4a  y  k  2  x  2   4  2   y   3  2  x  2   8  y  3 2

Letting y  5 , we find

 x  2   16 2

x  2  4  x  2 or x  6 The points (–2, –5) and (6, –5) define the latus rectum.

30. Vertex: (0, 0). Since the axis of symmetry is horizontal, the parabola opens left or right. Since (2, 3) is to the right of (0, 0), the parabola opens to the right. The equation has the form y 2  4ax . Substitute the coordinates of (2, 3) into the equation to find a : 32  4a  2 9  8a 9 a 8 9 The equation of the parabola is: y 2  x . The 2 9 9  focus is  , 0  . Letting x  , we find 8 8  81 9 9 9 y2  or y   . The points  ,  and 16 4 8 4 9 9  ,   define the latus rectum. 8 4

32. The vertex is (4, –2) and the focus is (6, –2). Both lie on the horizontal line y  2 . a  4  6  2 and since (6, –2) is to the right of

(4, –2), the parabola opens to the right. The equation of the parabola is:

 y  k  2  4a  x  h 

 y   2    4  2  x  4  2

 y  2 2  8  x  4  1029

Copyright © 2020 Pearson Education, Inc.


Chapter 10: Analytic Geometry

Letting x  6 , we find

34. The vertex is (3, 0) and the focus is (3, –2). Both lie on the horizontal line x  3 . a  2  0  2

 y  2   16 2

and since (3, –2) is below of (3, 0), the parabola opens down. The equation of the parabola is:

y  2  4  y  6 or y  2 The points (6, –6) and (6, 2) define the latus rectum.

 x  h 2  4a  y  k   x  32  4  2  y  0   x  32  8 y Letting y  2 , we find

 x  32  16 x  3  4  x  1 or x  7 The points (–1, –2) and (7, –2) define the latus rectum.

33. The vertex is (–1, –2) and the focus is (0, –2). Both lie on the horizontal line y  2 . a  1  0  1 and since (0, –2) is to the right of

(–1, –2), the parabola opens to the right. The equation of the parabola is:

 y  k 2  4a  x  h 

 y   2    4 1  x   1  2

 y  2 2  4  x  1

35. The directrix is y  2 and the focus is (–3, 4). This is a vertical case, so the vertex is (–3, 3). a = 1 and since (–3, 4) is above y  2 , the parabola opens up. The equation of the parabola is: ( x  h) 2  4a ( y  k )

Letting x  0 , we find

 y  2 2  4 y  2  2  y  4 or y  0 The points (0, –4) and (0, 0) define the latus rectum.

( x  (3)) 2  4 1  ( y  3) ( x  3) 2  4( y  3)

Letting y  4 , we find ( x  3) 2  4 or x  3  2 . So, x  1 or x  5 . The points (–1, 4) and (–5, 4) define the latus rectum.

1030

Copyright © 2020 Pearson Education, Inc.


Section 10.2: The Parabola 36. The directrix is x   4 and the focus is (2, 4). This is a horizontal case, so the vertex is (–1, 4). a = 3 and since (2, 4) is to the right of x   4 , the parabola opens to the right. The equation of the parabola is: ( y  k ) 2  4a ( x  h)

38. The directrix is y   2 and the focus is (–4, 4). This is a vertical case, so the vertex is (–4, 1). a = 3 and since (–4, 4) is above y   2 , the parabola opens up. The equation of the parabola is: ( x  h) 2  4a ( y  k )

( y  4) 2  4  3  ( x  (1))

( x  (4)) 2  4  3  ( y  1)

( y  4) 2  12( x  1)

( x  4) 2  12( y  1)

Letting x  2 , we find ( y  4) 2  36 or y  4  6 . So, y   2 or y  10 . The points (2, –2) and (2, 10) define the latus rectum.

Letting y  4 , we find ( x  4) 2  36 or x  4  6 . So, x  10 or x  2 . The points (–10, 4) and (2, 4) define the latus rectum.

37. The directrix is x  1 and the focus is (–3, –2). This is a horizontal case, so the vertex is (–1, –2). a = 2 and since (–3, –2) is to the left of x  1 , the parabola opens to the left. The equation of the parabola is: ( y  k ) 2   4a ( x  h)

39. The equation x 2  4 y is in the form x 2  4ay where 4a  4 or a  1 . Thus, we have: Vertex: (0, 0) Focus: (0, 1) Directrix: y  1

( y  ( 2)) 2   4  2  ( x  (1)) ( y  2) 2   8( x  1)

Letting x  3 , we find ( y  2) 2  16 or y +2  4 . So, y  2 or y   6 . The points (–3, 2) and (–3, –6) define the latus rectum.

1031

Copyright © 2020 Pearson Education, Inc.


Chapter 10: Analytic Geometry

40. The equation y 2  8 x is in the form y 2  4ax where 4a  8 or a  2 . Thus, we have: Vertex: (0, 0) Focus: (2, 0) Directrix: x   2

43. The equation ( y  2)2  8( x  1) is in the form ( y  k ) 2  4a ( x  h) where 4a  8 or a  2 ,

h  1, and k  2 . Thus, we have: Vertex: (–1, 2); Focus: (1, 2); Directrix: x  3

41. The equation y 2  16 x is in the form y 2   4ax where  4a  16 or a  4 . Thus, we have: Vertex: (0, 0) Focus: (–4, 0) Directrix: x  4

44. The equation ( x  4) 2  16( y  2) is in the form ( x  h) 2  4a ( y  k ) where 4a  16 or a  4 ,

h   4, and k   2 . Thus, we have: Vertex: (–4, –2); Focus: (–4, 2) Directrix: y   6

42. The equation x 2   4 y is in the form x 2   4ay where  4a   4 or a  1 . Thus, we have: Vertex: (0, 0) Focus: (0, –1) Directrix: y  1

45. a.

The equation ( x  3) 2  ( y  1) is in the

form ( x  h) 2   4a ( y  k ) where – 4a  1 or a 

1 , h  3, and k  1 . Thus, 4

we have: Vertex: (3, –1); Focus: 3,  5 ; 4

Directrix: y   3 4

1032

Copyright © 2020 Pearson Education, Inc.


Section 10.2: The Parabola

48. The equation ( x  2) 2  4( y  3) is in the form ( x  h) 2  4a ( y  k ) where 4a  4 or a  1 ,

h  2, and k  3 . Thus, we have: Vertex: (2, 3); Focus: (2, 4); Directrix: y  2

46. The equation ( y  1) 2   4( x  2) is in the form ( y  k ) 2   4a ( x  h) where – 4a   4 or a  1 , h  2, and k  1 . Thus, we have: Vertex: (2, –1); Focus: 1,  1

49. Complete the square to put in standard form: y2  4 y  4x  4  0

Directrix: x  3

y 2  4 y  4  4 x

 y  2 2  4 x The equation is in the form ( y  k ) 2   4a( x  h) where  4a   4 or a  1 , h  0, and k  2 . Thus, we have: Vertex: (0, 2); Focus: (–1, 2); Directrix: x  1

47. The equation ( y  3) 2  8( x  2) is in the form ( y  k ) 2  4a ( x  h) where 4a  8 or a  2 , h  2, and k  3 . Thus, we have: Vertex: (2, –3); Focus: (4, –3) Directrix: x  0

50. Complete the square to put in standard form: x2  6 x  4 y  1  0 x2  6 x  9  4 y  1  9

 x  32  4  y  2  The equation is in the form ( x  h) 2  4a ( y  k ) where 4a  4 or a  1 , h  3, and k   2 . Thus, we have: Vertex: (–3, –2); Focus: (–3, –1) Directrix: y  3

1033

Copyright © 2020 Pearson Education, Inc.


Chapter 10: Analytic Geometry

53. Complete the square to put in standard form: y2  2 y  x  0

51. Complete the square to put in standard form: x2  8x  4 y  8 x 2  8 x  16  4 y  8  16

y2  2 y  1  x  1

( x  4) 2  4( y  2)

 y  12  x  1

The equation is in the form ( x  h) 2  4a ( y  k ) where 4a  4 or a  1 , h   4, and k   2 . Thus, we have: Vertex: (–4, –2); Focus: (–4, –1) Directrix: y  3

The equation is in the form ( y  k ) 2  4a ( x  h) where 4a  1 or a 

1 , h  1, and k  1 . 4

Thus, we have:  3  Vertex: (–1, –1); Focus:   , –1 4   5 Directrix: x   4

52. Complete the square to put in standard form: y 2  2 y  8x  1 54. Complete the square to put in standard form: x2  4 x  2 y

y 2  2 y  1  8x  1  1

 y  12  8 x

x2  4 x  4  2 y  4

The equation is in the form ( y  k ) 2  4a ( x  h) where 4a  8 or a  2 , h  0, and k  1 . Thus, we have: Vertex: (0, 1); Focus: (2, 1) Directrix: x   2

 x  2 2  2  y  2  The equation is in the form ( x  h) 2  4a ( y  k ) where 4a  2 or a 

1 , h  2, and k  2 . 2

Thus, we have: 3  Vertex: (2, –2); Focus:  2,   2  5 Directrix: y   2

1034

Copyright © 2020 Pearson Education, Inc.


Section 10.2: The Parabola

55. Complete the square to put in standard form: x2  4 x  y  4

57. ( y  1) 2  c( x  0) ( y  1) 2  cx

2

x  4x  4  y  4  4

(2  1) 2  c(1)  1  c

( x  2) 2  y  8

( y  1) 2  x

The equation is in the form ( x  h) 2  4a ( y  k ) where 4a  1 or a 

1 , h  2, and k   8 . Thus, 4

58. ( x  1) 2  c( y  2) (2  1) 2  c(1  2) 1   c  c  1

we have: 31   Vertex: (2, –8); Focus:  2,   4  33 Directrix: y   4

( x  1) 2   ( y  2)

59. ( y  1) 2  c( x  2) (0  1) 2  c(1  2) 1  c  c  1 2

( y  1)   ( x  2)

60. ( x  0) 2  c( y  (1)) x 2  c( y  1) 22  c(0  1)  4  c x 2  4( y  1)

61. ( x  0) 2  c( y  1)

56. Complete the square to put in standard form: y 2  12 y   x  1

x 2  c  y  1 22  c  2  1

y 2  12 y  36   x  1  36

4c x  4  y  1

( y  6) 2  ( x  37) The equation is in the form ( y  k ) 2   4a ( x  h) where  4a  1 or a 

2

62. ( x  1) 2  c( y  (1))

1 , h  37, and k   6 . Thus, 4

 x  12  c  y  1

we have: Vertex: (37, –6); Focus: 

147 , – 6  ;  4 

Directrix: x 

(0  1) 2  c(1  1)  1  2c  c  ( x  1) 2 

149 4

1035

Copyright © 2020 Pearson Education, Inc.

1 ( y  1) 2

1 2


Chapter 10: Analytic Geometry 2002  c 100  10 

63. ( y  0) 2  c( x  ( 2))

40, 000  90c

y 2  c( x  2) 12  c(0  2)  1  2c  c  y2 

444.44  c x 2  444.44  y  10 

1 2

1 ( x  2) 2

(–200,100)

(200,100)

2

64. ( y  0)  c( x  1) y 2  c  x  1 12  c  0  1 1  c

(0,10)

c  1 y    x  1 2

Since the height of the cable 50 feet from the center is to be found, the point (50, h) is a point on the parabola. Solve for h: 502  444.44  h  10 

65. Set up the problem so that the vertex of the parabola is at (0, 0) and it opens up. Then the equation of the parabola has the form: x 2  cy . The point (300, 80) is a point on the parabola. Solve for c and find the equation: 3002  c(80)  c  1125

2500  444.44h  4444.4 6944.4  444.44h 15.625  h The height of the cable 50 feet from the center is about 15.625 feet.

x 2  1125 y

67. Set up the problem so that the vertex of the parabola is at (0, 0) and it opens down. Then the equation of the parabola has the form: x 2  cy . The point (60, –25) is a point on the parabola. Solve for c and find the equation: 602  c( 25)  c  144

y (300,80) (150,h) x

h 50

(0,0)

80 h

x 2  144 y

Since the height of the cable 150 feet from the center is to be found, the point (150, h) is a point on the parabola. Solve for h: 1502  1125h 22,500  1125h 20  h The height of the cable 150 feet from the center is 20 feet.

y

x 25 (60,–25)

66. Set up the problem so that the vertex of the parabola is at (0, 10) and it opens up. Then the equation of the parabola has the form: x 2  c( y  10) . The point (200, 100) is a point on the parabola. Solve for c and find the equation:

To find the height of the bridge 10 feet from the center the point (10, y) is a point on the parabola. Solve for y: 102  144 y 100  144 y 0.69  y The height of the bridge 10 feet from the center 1036

Copyright © 2020 Pearson Education, Inc.


Section 10.2: The Parabola

is about 25 – 0.69 = 24.31 feet. To find the height of the bridge 30 feet from the center the point (30, y) is a point on the parabola. Solve for y: 302  144 y 900  144 y 6.25  y The height of the bridge 30 feet from the center is 25 – 6.25 = 18.75 feet. To find the height of the bridge, 50 feet from the center, the point (50, y) is a point on the parabola. Solve for y: 502  144 y 2500  144 y y  17.36 The height of the bridge 50 feet from the center is about 25 – 17.36 = 7.64 feet.

25 16 a is the distance from the vertex to the focus. Thus, the receiver (located at the focus) is 25  1.5625 feet, or 18.75 inches from the base 16 of the dish, along the axis of the parabola. 52  4a (4)  25  16a  a 

70. Set up the problem so that the vertex of the parabola is at (0, 0) and it opens up. Then the equation of the parabola has the form: x 2  4ay . Since the parabola is 6 feet across and 2 feet deep, the points (3, 2) and (–3, 2) are on the parabola. Substitute and solve for a : 9 32  4a(2)  9  8a  a  8 a is the distance from the vertex to the focus. Thus, the receiver (located at the focus) is 9  1.125 feet, or 13.5 inches from the base of 8 the dish, along the axis of the parabola.

68. Set up the problem so that the vertex of the parabola is at (0, 0) and it opens down. Then the equation of the parabola has the form: x 2  cy . The points (50, –h) and (40, –h+10) are points on the parabola. Substitute and solve for c and h: 502  c( h) 402  c( h  10) ch   2500 1600  ch  10c

71. Set up the problem so that the vertex of the parabola is at (0, 0) and it opens up. Then the equation of the parabola has the form: x 2  4ay . Since the parabola is 4 inches across and 1 inch deep, the points (2, 1) and (–2, 1) are on the parabola. Substitute and solve for a : 22  4a (1)  4  4a  a  1 a is the distance from the vertex to the focus. Thus, the bulb (located at the focus) should be 1 inch from the vertex.

y

x h

(40,–h+10) 10 (50,–h)

72. Set up the problem so that the vertex of the parabola is at (0, 0) and it opens up. Then the equation of the parabola has the form: x 2  4ay . Since the focus is 1 inch from the vertex and the depth is 2 inches, a  1 and the points ( x, 2) and ( x, 2) are on the parabola. Substitute and solve for x : x 2  4(1)(2)  x 2  8  x  2 2

1600    2500   10c 1600  2500  0c 900  10c 90  c 90h  2500 h  27.78 The height of the bridge at the center is about 27.78 feet.

The diameter of the headlight is 4 2  5.66 inches.

69. Set up the problem so that the vertex of the parabola is at (0, 0) and it opens up. Then the equation of the parabola has the form: x 2  4ay . Since the parabola is 10 feet across and 4 feet deep, the points (5, 4) and (–5, 4) are on the parabola. Substitute and solve for a :

73. Set up the problem so that the vertex of the parabola is at (0, 0) and it opens up. Then the equation of the parabola has the form: x 2  4ay . a is the distance from the vertex to the focus (where the source is located), so a = 2. Since the opening is 5 feet across, there is a point 1037

Copyright © 2020 Pearson Education, Inc.


Chapter 10: Analytic Geometry

(2.5, y) on the parabola. Solve for y: x 2  8 y

77. a.

2.52  8 y 6.25  8 y y  0.78125 feet The depth of the searchlight should be 0.78125 feet.

Imagine placing the Arch along the x-axis with the peak along the y-axis. Since the Arch is 630 feet high and is 630 feet wide at its base, we would have the points  315, 0 ,  0, 630 , and 315, 0 . The equation of the parabola would have the form y  ax 2  c . Using the point  0, 630 we have

630  a  0  c 2

74. Set up the problem so that the vertex of the parabola is at (0, 0) and it opens up. Then the equation of the parabola has the form: x 2  4ay . a is the distance from the vertex to the focus (where the source is located), so a = 2. Since the depth is 4 feet, there is a point (x, 4) on the parabola. Solve for x: x 2  8 y  x 2  8  4  x 2  32  x  4 2 The width of the opening of the searchlight should be 8 2  11.31 feet.

630  c The model then becomes y  ax 2  630 .

Next, using the point  315, 0 we get 0  a  315   630 2

630   315  a 2

a

630

 315

2



2 315

Thus, the equation of the parabola with the same given dimensions is 2 2 y x  630 . 315

75. Set up the problem so that the vertex of the parabola is at (0, 0) and it opens up. Then the equation of the parabola has the form: x 2  4ay . Since the parabola is 20 inches across and 6 inches deep, the points (10, 6) and (–10, 6) are on the parabola. Substitute and solve for a : 102  4a(6) 100  24a a  4.17 feet The heat will be concentrated about 4.17 inches from the base, along the axis of symmetry.

b. Using y  

630

315

2

x 2  630 , we get

x Width (ft) Height (ft), model 567 283.5 119.7 478 239 267.3 308 154 479.4

76. Set up the problem so that the vertex of the parabola is at (0, 0) and it opens up. Then the equation of the parabola has the form: x 2  4ay . Since the parabola is 4 inches across and 3 inches deep, the points (2, 3) and (–2, 3) are on the parabola. Substitute and solve for a : 22  4a (3) 4  12a 1 a  inch 3 The collected light will be concentrated 1/3 inch from the base of the mirror along the axis of symmetry.

c.

No; the heights computed by using the model do not fit the actual heights.

78. Ax 2  Ey  0

A  0, E  0

E y A This is the equation of a parabola with vertex at (0, 0) and axis of symmetry being the y-axis. E   The focus is  0,  . The directrix is 4 A   E E . The parabola opens up if   0 and y 4A A E down if   0 . A Ax 2   Ey  x 2  

1038

Copyright © 2020 Pearson Education, Inc.


Section 10.2: The Parabola

79. Cy 2  Dx  0

d. If E  0 , then

C  0, D  0

 D  D 2  4 AF 2A If D 2  4 AF  0 , there is no real solution. The graph contains no points.

Cy 2   Dx D y2   x C This is the equation of a parabola with vertex at (0, 0) and whose axis of symmetry is the x-axis.  D  , 0  . The directrix is The focus is    4C  D . The parabola opens to the right if x 4C D D   0 and to the left if   0 . C C 2

80. Ax  Dx  Ey  F  0 a.

Ax 2  Dx  F  0  x 

81. Cy 2  Dx  Ey  F  0 a.

If D  0 , then: Cy 2  Ey   Dx  F

 E E2  E2 C  y2  y  Dx F      C 4C 4C 2   2 E  E2  1  y Dx F       C  2C  4C  

A0

If E  0 , then:

2 E  F E2  D   y x       C  D 4CD  2C  

Ax 2  Dx   Ey  F  D D2  D2 A  x 2  x  2    Ey  F  A 4A 4A  

2 E  E 2  4CF  D    y  2C   C  x  4CD      This is the equation of a parabola with  E 2  4CF E  vertex at  , , and whose 4 2 CD C  

2 D  D2  1   x  2 A   A   Ey  F  4 A      2 D  F D2  E   x y       2A  A  E 4 AE  

axis of symmetry is parallel to the x-axis.

D  E  D 2  4 AF    x  2 A   A  y  4 AE      This is the equation of a parabola with  D D 2  4 AF  vertex at   , and whose 4 AE   2A

b. If D  0 , then

axis of symmetry is parallel to the y-axis.

c.

2

 E  E 2  4CF 2C E is a single If E 2  4CF  0 , then y   2C horizontal line. Cy 2  Ey  F  0  y 

b. If E  0 , then  D  D  4 AF 2A D 2 If D  4 AF  0 , then x   is a single 2A vertical line.

c.

y

D 

 E  E 2  4CF and 2C

 E  E 2  4CF are two horizontal 2C lines. y

 D  D 2  4 AF 2A

d. If D  0 , then

If D 2  4 AF  0 , then x

 E  E 2  4CF 2C

If E 2  4CF  0 , then

If E  0 , then Ax 2  Dx  F  0  x 

If D  0 , then Cy 2  Ey  F  0  y 

2

Ax 2  Dx  F  0  x 

C0

2

D  4 AF and 2A

Cy 2  Ey  F  0  y 

 E  E 2  4CF 2C

If E 2  4CF  0 , then there is no real solution. The graph contains no points.

2

 D  D  4 AF x are two vertical lines. 2A

1039

Copyright © 2020 Pearson Education, Inc.


Chapter 10: Analytic Geometry

82. y 2  2 y  8 x  1  0

5 85. tan    ,  is in quadrant II 8 Solve for sec  : sec2   1  tan 2 

2

y  2 y  1  8x

( y  1) 2  8 x

sec    1  tan 2  Since  is in quadrant II, sec   0 .

The equation is in the form

 y  k 2  4 x( x  h) where

sec    1  tan 2 

4a  8 so a  2, h  0, k  1.

2

25 89 89  5   1      1    8 64 64 8

The vertex is (0,1) and the focus is (2,1). Letting x = 2 gives

 y  12  8  2 where cos  

y  1  4 y  5 or y  3

The latus rectum endpoints are (2,5) and (2,-3). The distance between the vertex and one of the endpoints is d

 x2  x1 2   y2  y1 2

 2  0 2   5  12 

sin   1  cos 2  2

 8 89  64  1    1  89  89 

20  2 5

83. x  9 y 2  36

x-intercepts:

y-intercepts:

x  9(0) 2  36 x  36

1 1 89 89    sin   5 89  5 89 5  89   

cot  

1 1 8   tan   5  5    8

0  9 x 2  36 36  9 x 2

25 5 5 89   89 89 89

csc  

4  x2 x  2

  3  86. tan  cos 1      7  

The intercepts are: (0, 2), (0, 2), ( 36, 0) f ( y )  9 y 2  36

3  3 Let   cos 1    . Since cos    and  7 7

f (  y )  9(  y ) 2  36  9 y 2  36  f ( y )

    ,  is in quadrant II, and we let 2 x  3 and r  7 . Solve for y: ( 3) 2  y 2  49

So the function is symmetric with respect to the x-axis. 84.

1 1 8 8 89    sec   89 89 89   8   

4 x 1  8 x 1

y 2  40

22( x 1)  23( x 1)

y   40  2 10

2( x  1)  3( x  1)

Since  is in quadrant II, y  2 2 .

2 x  2  3x  3

 y 2 10 2 10  3   tan  cos 1      tan     7   3 x 3

 x  5 x5

The solution set is  5 .

1040

Copyright © 2020 Pearson Education, Inc.


Section 10.3: The Ellipse

Section 10.3

87. d  ( x2  x1 ) 2  ( y2  y1 ) 2 2

1 2      (3)    5   3 2    2

 11   11       3  2

2

1. d 

2

 4  2 2   2   5    2

2

9  3 2.     4  2

 121   121       9   4 

3. x-intercepts:

x2  4 x  2   2, 0  ,  2, 0 

( x  h) 2  ( y  k ) 2  r 2 ( x  (12)) 2  ( y  7) 2 

 6

2

y-intercepts: y 2  16  4  0 

y  4   0, 4  ,  0, 4 

89. Using ExpReg on the data gives the function y  83464.8(0.8231) x . Let x  13 .

The intercepts are  2, 0  ,  2, 0  ,  0, 4  , and

 0, 4  .

y  83464.8(0.8231)(3)  $6600

4.

f (b)  f (a) ln(5  3)  ln(1  3)  ba 5 1 ln 8  ln 4  5 1 8 ln ln 2  4 4 4

6.

 x  2 2   y   3   12 2

 x  2 2   y  32  1 7. ellipse 8. b 9. (0, 5); (0,5)

 17. So 2 1  cos 34 . cos17  2

92.

 2,5 ; change x to  x : 2    2   2

5. left 1; down 4

1  cos    91. Using the identity cos    , let 2 2

  34. Then

2

y 2  16

( x  12) 2  ( y  7) 2  6

90.

02  16  4 x 2 4 x 2  16

1573 11 13   36 6

88.

22  32  13

10. 5; 3; x 11.

 2, 3  6, 3

x2  5x  2  4

12. a

x2  5x  6

13. C; the major axis is along the x-axis and the vertices are at  4, 0  and  4, 0  .

x2  5x  6

or x 2  5 x  6

x2  5x  6  0

x2  5x  6  0

( x  6)( x  1)  0

( x  2)( x  3)  0

14. D; the major axis is along the y-axis and the vertices are at  0, 4  and  0, 4  .

x  6, x  1 x  2, x  3 The solution set is 1, 2,3, 6 .

15. B; the major axis is along the y-axis and the vertices are at  0, 2  and  0, 2  . 1041

Copyright © 2020 Pearson Education, Inc.


Chapter 10: Analytic Geometry 16. A; the major axis is along the x-axis and the vertices are at  2, 0  and  2, 0  . 17.

x2 y 2  1 25 4 The center of the ellipse is at the origin. a  5, b  2 . The vertices are (5, 0) and (–5, 0). Find the value of c: c 2  a 2  b 2  25  4  21  c  21

The foci are

 21, 0 and   21, 0 .

y2 1 16 The center of the ellipse is at the origin. a  4, b  1 . The vertices are (0, 4) and (0, –4). Find the value of c: c 2  a 2  b 2  16  1  15

20. x 2 

c  15

The foci are 0, 15 and 0,  15

18.

x2 y 2  1 9 4 The center of the ellipse is at the origin. a  3, b  2 . The vertices are (3, 0) and (–3, 0). Find the value of c: c2  a 2  b2  9  4  5  c  5

The foci are

19.

 5, 0 and   5, 0 .

21. 4 x 2  y 2  16 Divide by 16 to put in standard form: 4 x 2 y 2 16   16 16 16 x2 y 2  1 4 16 The center of the ellipse is at the origin. a  4, b  2 . The vertices are (0, 4) and (0, –4). Find the value of c: c 2  a 2  b 2  16  4  12

x2 y 2  1 9 25 The center of the ellipse is at the origin. a  5, b  3 . The vertices are (0, 5) and (0, –5). Find the value of c: c 2  a 2  b 2  25  9  16 c4 The foci are (0, 4) and (0, –4).

c  12  2 3

The foci are 0, 2 3 and 0,  2 3 .

1042

Copyright © 2020 Pearson Education, Inc.


Section 10.3: The Ellipse

22. x 2  9 y 2  18 Divide by 18 to put in standard form: x 2 9 y 2 18   18 18 18 x2 y2  1 18 2 The center of the ellipse is at the origin.

a  3 2, b  2 . The vertices are 3 2, 0

24. 4 y 2  9 x 2  36 Divide by 36 to put in standard form: 4 y 2 9 x 2 36   36 36 36 x2 y2  1 4 9 The center of the ellipse is at the origin. a  3, b  2 . The vertices are (0, 3) and (0, –3). Find the value of c: c2  a 2  b2  9  4  5  c  5

and 3 2, 0 . Find the value of c: 2

2

2

c  a  b  18  2  16 c4 The foci are (4, 0) and (–4, 0).

25. 23. 4 y 2  x 2  8 Divide by 8 to put in standard form: 4 y2 x2 8   8 8 8 x2 y2  1 8 2 The center of the ellipse is at the origin. a  8  2 2, b  2 .

x2 y2  1 16 16

This is a circle whose center is at (0, 0) and radius = 4. The focus of the ellipse is  0, 0  and the vertices are  4, 0  ,  4, 0  ,  0, 4  ,  0, 4  .

the value of c: c2  a 2  b2  8  2  6 The foci are

x 2  y 2  16

The vertices are 2 2, 0 and  2 2, 0 . Find

c 6

The foci are 0, 5 and 0,  5 .

 6, 0 and   6, 0 . 1043

Copyright © 2020 Pearson Education, Inc.


Chapter 10: Analytic Geometry 29. Center: (0, 0); Focus: (0, –4); Vertex: (0, 5); Major axis is the y-axis; a  5; c  4 . Find b:

x2 y 2  1 4 4 This is a circle whose center is at (0, 0) and radius = 2. The focus of the ellipse is  0, 0  and

26. x 2  y 2  4 

b 2  a 2  c 2  25  16  9 b3 x2 y 2  1 Write the equation: 9 25

the vertices are  2, 0  ,  2, 0  ,  0, 2  ,  0, 2  .

27. Center: (0, 0); Focus: (3, 0); Vertex: (5, 0); Major axis is the x-axis; a  5; c  3 . Find b: 2

2

30. Center: (0, 0); Focus: (0, 1); Vertex: (0, –2); Major axis is the y-axis; a  2; c  1 . Find b:

2

b  a  c  25  9  16 b4 x2 y 2  1 Write the equation: 25 16

b2  a 2  c 2  4  1  3  b  3

Write the equation:

x2 y 2  1 3 4

31. Foci: (±2, 0); Length of major axis is 6. Center: (0, 0); Major axis is the x-axis; a  3; c  2 . Find b:

28. Center: (0, 0); Focus: (–1, 0); Vertex: (3, 0); Major axis is the x-axis; a  3; c  1 . Find b: b2  a 2  c 2  9  1  8

b2  a 2  c2  9  4  5  b  5

b2 2 x2 y 2  1 Write the equation: 9 8

Write the equation:

1044

Copyright © 2020 Pearson Education, Inc.

x2 y 2  1 9 5


Section 10.3: The Ellipse 32. Foci: (0, ±2); length of the major axis is 8. Center: (0, 0); Major axis is the y-axis; a  4; c  2 . Find b :

35. Foci: (0, ±3); x-intercepts are ±2. Center: (0, 0); Major axis is the y-axis; c  3; b  2 . Find a :

b 2  a 2  c 2  16  4  12  b  2 3

Write the equation:

a 2  b 2  c 2  4  9  13  a  13

x2 y 2  1 12 16

Write the equation:

33. Focus:  4, 0  ; Vertices:  5, 0  and  5, 0  ;

36. Vertices: (±4, 0); y-intercepts are ±1. Center: (0, 0); Major axis is the x-axis; a  4; b  1 . Find c: c 2  a 2  b 2  16  1  15

Center:  0, 0  ; Major axis is the x-axis. a  5 ; c  4 . Find b: b 2  a 2  c 2  25  16  9  b  3

Write the equation:

a  15

x2 y 2  1 25 9

Write the equation:

34. Focus: (0, –4); Vertices: (0, ±8). Center: (0, 0); Major axis is the y-axis; a  8; c  4 . Find b:

x2  y2  1 16

37. Center: (0, 0); Vertex: (0, 4); b  1 ; Major axis is the y-axis; a  4; b  1 .

Write the equation: x 2 

b 2  a 2  c 2  64  16  48  b  4 3

Write the equation:

x2 y 2  1 4 13

x2 y 2  1 48 64

1045

Copyright © 2020 Pearson Education, Inc.

y2 1 16


Chapter 10: Analytic Geometry 38. Vertices: (±5, 0); c  2 ; Major axis is the xaxis; a  5; Find b :

43. The equation

b 2  a 2  c 2  25  4  21 x2 y 2  1 25 21

2

( y  k )2

 1 (major axis parallel b a2 to the y-axis) where a  3, b  2, h  3, and k  1 . Solving for c:

form

b  21

Write the equation:

( x  h) 2

( x  3) 2 ( y  1) 2   1 is in the 4 9

c2  a 2  b2  9  4  5  c  5 Thus, we have: Center: (3, –1)

3, 1  5  , 3, 1  5 

Foci:

Vertices: (3, 2), (3, –4)

39. Center:  1,1

Major axis: parallel to x-axis Length of major axis: 4  2a  a  2 Length of minor axis: 2  2b  b  1 ( x  1) 2  ( y  1) 2  1 4

44. The equation

40. Center:  1, 1

( y  1) 2 1 4

41. Center: 1, 0 

Major axis: parallel to y-axis Length of major axis: 4  2a  a  2 Length of minor axis: 2  2b  b  1 ( x  1) 2 

2

( y  k )2

1 a b2 (major axis parallel to the x-axis) where a  3, b  2, h   4, and k   2 . Solving for c: c2  a 2  b2  9  4  5  c  5 Thus, we have: Center: (–4, –2); Vertices: (–7, –2), (–1, –2)

form

Major axis: parallel to y-axis Length of major axis: 4  2a  a  2 Length of minor axis: 2  2b  b  1 ( x  1) 2 

( x  h) 2

( x  4) 2 ( y  2) 2   1 is in the 9 4

 

Foci:  4  5,  2 ,  4  5,  2

y2 1 4

42. Center:  0,1

Major axis: parallel to x-axis Length of major axis: 4  2a  a  2 Length of minor axis: 2  2b  b  1 x2  ( y  1) 2  1 4

45. Divide by 16 to put the equation in standard form:

1046

Copyright © 2020 Pearson Education, Inc.


Section 10.3: The Ellipse

( x  5) 2  4( y  4) 2  16 ( x  5) 2 4( y  4) 2 16   16 16 16 2 2 ( x  5) ( y  4)  1 16 4 The equation is in the form ( x  h) 2 ( y  k ) 2   1 (major axis parallel to the a2 b2 x-axis) where a  4, b  2, h  5, and k  4 . Solving for c: c 2  a 2  b 2  16  4  12  c  12  2 3 Thus, we have: Center: (–5, 4)

 

Foci: 5  2 3, 4 , 5  2 3, 4

47. Complete the square to put the equation in standard form: x2  4x  4 y2  8 y  4  0 ( x 2  4 x  4)  4( y 2  2 y  1)   4  4  4 ( x  2) 2  4( y  1) 2  4

( x  2) 2 4( y  1) 2 4   4 4 4 2 ( x  2)  ( y  1) 2  1 4 The equation is in the form ( x  h) 2 ( y  k ) 2   1 (major axis parallel to the a2 b2 x-axis) where a  2, b  1, h   2, and k  1 .

Vertices: (–9, 4), (–1, 4)

Solving for c: c 2  a 2  b 2  4  1  3  c  3 Thus, we have: Center: (–2, 1)

46. Divide by 18 to put the equation in standard form: 9( x  3) 2  ( y  2) 2  18

Foci:

Vertices: (–4, 1), (0, 1)

9( x  3) 2 ( y  2) 2 18   18 18 18 2 2 ( x  3) ( y  2)  1 2 18 The equation is in the form ( x  h) 2 ( y  k ) 2   1 (major axis parallel to the b2 a2 y-axis) where a  3 2, b  2,

48. Complete the square to put the equation in standard form: x 2  3 y 2  12 y  9  0

h  3, and k   2 . Solving for c: c 2  a 2  b 2  18  2  16  c  4 Thus, we have: Center: (3, –2) Foci: (3, 2), (3, –6)

Vertices:

  2  3,1 ,   2  3,1

x 2  3( y 2  4 y  4)   9  12 x 2  3( y  2)2  3 x 2 3( y  2)2 3   3 3 3 2 x  ( y  2)2  1 3

3,  2  3 2  , 3,  2  3 2  1047

Copyright © 2020 Pearson Education, Inc.


Chapter 10: Analytic Geometry

The equation is in the form ( x  h) 2 ( y  k ) 2   1 (major axis parallel to the a2 b2 x-axis) where a  3, b  1, h  0, and k  2 . Solving for c: c2  a 2  b2  3  1  2  c  2 Thus, we have: Center: (0, 2)

  2, 2 ,  2, 2 Vertices:   3, 2  ,  3, 2 

Foci:

50. Complete the square to put the equation in standard form: 4 x2  3 y2  8x  6 y  5 4( x 2  2 x)  3( y 2  2 y )  5 4( x 2  2 x  1)  3( y 2  2 y  1)  5  4  3 4( x  1) 2  3( y  1) 2  12 4( x  1) 2 3( y  1) 2 12   12 12 12 2 2 ( x  1) ( y  1)  1 3 4 The equation is in the form ( x  h) 2 ( y  k ) 2   1 (major axis parallel to the b2 a2 y-axis) where a  2, b  3, h  1, and k  1 .

49. Complete the square to put the equation in standard form: 2 x2  3 y 2  8x  6 y  5  0 2( x 2  4 x)  3( y 2  2 y )  5

Solving for c: c 2  a 2  b 2  4  3  1  c  1 Thus, we have: Center: (–1, 1) Foci: (–1, 0), (–1, 2) Vertices: (–1, –1), (–1, 3)

2( x 2  4 x  4)  3( y 2  2 y  1)   5  8  3 2( x  2) 2  3( y  1) 2  6 2( x  2) 2 3( y  1) 2 6   6 6 6 2 2 ( x  2) ( y  1)  1 3 2 The equation is in the form ( x  h) 2 ( y  k ) 2   1 (major axis parallel to the a2 b2 x-axis) where a  3, b  2, h  2, and k  1 .

Solving for c: c 2  a 2  b 2  3  2  1  c  1 Thus, we have: Center: (2, –1) Foci: (1, –1), (3, –1) Vertices:

51. Complete the square to put the equation in standard form: 9 x 2  4 y 2  18 x  16 y  11  0

 2  3,  1 ,  2  3,  1

9( x 2  2 x)  4( y 2  4 y )  11 9( x 2  2 x  1)  4( y 2  4 y  4)  11  9  16 9( x  1) 2  4( y  2) 2  36

1048

Copyright © 2020 Pearson Education, Inc.


Section 10.3: The Ellipse

9( x  1) 2 4( y  2) 2 36   36 36 36 ( x  1) 2 ( y  2) 2  1 4 9 The equation is in the form ( x  h) 2 ( y  k ) 2   1 (major axis parallel to the b2 a2 y-axis) where a  3, b  2, h  1, and k   2 . Solving for c: c2  a 2  b2  9  4  5  c  5 Thus, we have: Center: 1, 2 

53. Complete the square to put the equation in standard form: 4x2  y2  4 y  0 4 x2  y 2  4 y  4  4

1, 2  5  , 1, 2  5 

Foci:

Vertices:

4 x 2  ( y  2) 2  4

1,1 , 1, 5 

4 x 2 ( y  2) 2 4   4 4 4 2 y  ( 2) x2  1 4 The equation is in the form ( x  h) 2 ( y  k ) 2   1 (major axis parallel to the b2 a2 y-axis) where a  2, b  1, h  0, and k   2 . Solving for c: c2  a 2  b2  4  1  3  c  3 Thus, we have: Center: (0,–2)

52. Complete the square to put the equation in standard form: x 2  9 y 2  6 x  18 y  9  0

Foci:

( x 2  6 x)  9( y 2  2 y )  9 2

 0,  2  3  ,  0,  2  3 

Vertices: (0, 0), (0, –4)

2

( x  6 x  9)  9( y  2 y  1)  9  9  9 ( x  3) 2  9( y  1) 2  9 ( x  3) 2 9( y  1) 2 9   9 9 9 ( x  3) 2  ( y  1) 2  1 9 The equation is in the form ( x  h) 2 ( y  k ) 2   1 (major axis parallel to the a2 b2 x-axis) where a  3, b  1, h  3, and k  1 .

Solving for c: c 2  a 2  b 2  9  1  8  c  2 2 Thus, we have: Center: (–3, 1)

 

Foci:  3  2 2, 1 ,  3  2 2, 1 Vertices: (0, 1), (–6, 1)

1049

Copyright © 2020 Pearson Education, Inc.


Chapter 10: Analytic Geometry 54. Complete the square to put the equation in standard form: 9 x 2  y 2  18 x  0

56. Center: (–3, 1); Vertex: (–3, 3); Focus: (–3, 0); Major axis parallel to the y-axis; a  2; c  1 . Find b: b2  a 2  c 2  4  1  3  b  3

9( x 2  2 x  1)  y 2  9 9( x  1) 2  y 2  9

Write the equation:

9( x  1) 2 y 2 9   9 9 9 y2 ( x  1) 2  1 9 The equation is in the form ( x  h) 2 ( y  k ) 2   1 (major axis parallel to the b2 a2 y-axis) where a  3, b  1, h  1, and k  0 . Solving for c: c2  a 2  b2  9  1  8  c  2 2 Thus, we have: Center: (1, 0)

 

Foci: 1, 2 2 , 1,  2 2

57. Vertices: (4, 3), (4, 9); Focus: (4, 8); Center: (4, 6); Major axis parallel to the y-axis; a  3; c  2 . Find b:

b2  a 2  c2  9  4  5  b  5

Vertices: (1, 3), (1, –3)

Write the equation:

55. Center: (2, –2); Vertex: (7, –2); Focus: (4, –2); Major axis parallel to the x-axis; a  5; c  2 . Find b: b 2  a 2  c 2  25  4  21  b  21

Write the equation:

( x  3) 2 ( y  1) 2  1 3 4

( x  4) 2 ( y  6) 2  1 5 9

58. Foci: (1, 2), (–3, 2); Vertex: (–4, 2); Center: (–1, 2); Major axis parallel to the x-axis; a  3; c  2 . Find b: b2  a 2  c2  9  4  5  b  5

( x  2) 2 ( y  2) 2  1 25 21

Write the equation:

1050

Copyright © 2020 Pearson Education, Inc.

( x  1) 2 ( y  2) 2  1 9 5


Section 10.3: The Ellipse 59. Foci: (5, 1), (–1, 1); Length of the major axis = 8; Center: (2, 1); Major axis parallel to the x-axis; a  4; c  3 . Find b: b 2  a 2  c 2  16  9  7  b  7

Write the equation:

( x  2) 2 ( y  1) 2  1 16 7

62. Center: (1, 2); Focus: (1, 4); contains the point (2, 2); Major axis parallel to the y-axis; c  2 . The equation has the form: ( x  1) 2 ( y  2) 2  1 b2 a2 Since the point (2, 2) is on the curve: 1 0  2 1 2 b a 1  1  b2  1  b  1 b2 Find a : a2  b2  c2  1  4  5  a  5

60. Vertices: (2, 5), (2, –1); c  2 ; Center: (2, 2); Major axis parallel to the y-axis; a  3; c  2 . Find b: b2  a 2  c2  9  4  5  b  5

Write the equation:

( x  2) 2 ( y  2) 2  1 5 9

Write the equation: ( x  1) 2 

61. Center: (1, 2); Focus: (4, 2); contains the point (1, 3); Major axis parallel to the x-axis; c  3 . The equation has the form: ( x  1) 2 ( y  2) 2  1 a2 b2 Since the point (1, 3) is on the curve: 0 1  2 1 2 a b 1  1  b2  1  b  1 b2 Find a : a 2  b 2  c 2  1  9  10  a  10

Write the equation:

( y  2) 2 1 5

63. Center: (1, 2); Vertex: (4, 2); contains the point (1, 5); Major axis parallel to the x-axis; a  3 . The equation has the form: ( x  1) 2 ( y  2) 2  1 a2 b2 Since the point (1, 5) is on the curve: 0 32  1 9 b2 9  1  b2  9  b  3 2 b Solve for c: c 2  a 2  b 2  9  9  0 . Thus, c  0 .

( x  1) 2  ( y  2) 2  1 10

Write the equation: 1051

Copyright © 2020 Pearson Education, Inc.

( x  1) 2 ( y  2) 2  1 9 9


Chapter 10: Analytic Geometry 66. Rewrite the equation: y  9  9 x2 y 2  9  9 x2 , 2

2

2

2

9 x  y  9, x y   1, 1 9

y0 y0 y0

64. Center: (1, 2); Vertex: (1, 4); contains the point (1  3,3) ; Major axis parallel to the y-axis; a2.

The equation has the form:

( x  1) 2 2

( y  2) 2

b a2 Since the point (1  3,3) is on the curve: 3 1  1 4 b2 1 1   b2  4  b  2 2 4 b

1

67. Rewrite the equation: y   64  16 x 2 y 2  64  16 x 2 ,

( x  1) 2 ( y  2) 2 Write the equation:  1 4 4 Solve for c: c 2  a 2  b 2  4  4  0 . Thus, c  0 .

2

2

2

2

16 x  y  64, x y   1, 4 64

y0 y0 y0

65. Rewrite the equation: y  16  4 x 2 y 2  16  4 x 2 ,

68. Rewrite the equation:

y0

4 x 2  y 2  16,

y0

x2 y2   1, 4 16

y0

y   4  4x2 y 2  4  4 x2 , 2

2

2

2

4 x  y  4, x y   1, 1 4

1052

Copyright © 2020 Pearson Education, Inc.

y0 y0 y0


Section 10.3: The Ellipse 69. The center of the ellipse is (0, 0). The length of the major axis is 20, so a  10 . The length of half the minor axis is 6, so b  6 . The ellipse is situated with its major axis on the x-axis. The x2 y2  1. equation is: 100 36

72. Assume that the half ellipse formed by the gallery is centered at (0, 0). Since the distance between the foci is 100 feet and Jim is 6 feet from the nearest wall, the length of the gallery is 112 feet. 2a  112 or a  56 . The distance from the center to the foci is 50 feet, so c  50 . Find the height of the gallery which is b : b 2  a 2  c 2  3136  2500  636

70. The center of the ellipse is (0, 0). The length of the major axis is 30, so a  15 . The length of half the minor axis is 10, so b  10 . The ellipse is situated with its major axis on the x-axis. The x2 y2   1. equation is: 225 100 The roadway is 12 feet above the axis of the ellipse. At the center ( x  0 ), the roadway is 2 feet above the arch. At a point 5 feet either side of the center, evaluate the equation at x  5 :

b  636  25.2 The ceiling will be 25.2 feet high in the center.

73. Place the semi-elliptical arch so that the x-axis coincides with the water and the y-axis passes through the center of the arch. Since the bridge has a span of 120 feet, the length of the major axis is 120, or 2a  120 or a  60 . The maximum height of the bridge is 25 feet, so x2 y2  1. b  25 . The equation is: 3600 625 The height 10 feet from the center: y2 102  1 3600 625 y2 100  1 625 3600 3500 y 2  625  3600 y  24.65 feet The height 30 feet from the center: y2 302  1 3600 625 y2 900  1 625 3600 2700 y 2  625  3600 y  21.65 feet The height 50 feet from the center: y2 502  1 3600 625 y2 2500  1 625 3600 1100 2 y  625  3600 y  13.82 feet

52 y2  1 225 100 y2 25 200  1  100 225 225 200  9.43 225 The vertical distance from the roadway to the arch is 12  9.43  2.57 feet. At a point 10 feet either side of the center, evaluate the equation at x  10 : y  10

102 y 2  1 225 100 y2 100 125  1  100 225 225 125  7.45 225 The vertical distance from the roadway to the arch is 12  7.45  4.55 feet. At a point 15 feet either side of the center, the roadway is 12 feet above the arch. y  10

71. Assume that the half ellipse formed by the gallery is centered at (0, 0). Since the hall is 100 feet long, 2a  100 or a  50 . The distance from the center to the foci is 25 feet, so c  25 . Find the height of the gallery which is b : b 2  a 2  c 2  2500  625  1875 b  1875  43.3 The ceiling will be 43.3 feet high in the center.

1053

Copyright © 2020 Pearson Education, Inc.


Chapter 10: Analytic Geometry 74. Place the semi-elliptical arch so that the x-axis coincides with the water and the y-axis passes through the center of the arch. Since the bridge has a span of 100 feet, the length of the major axis is 100, or 2a  100 or a  50 . Let h be the maximum height of the bridge. The equation is: x2 y2  2  1. 2500 h The height of the arch 40 feet from the center is 10 feet. So (40, 10) is a point on the ellipse. Substitute and solve for h :

282

132 1 400 a 784 169 231  1  2 400 400 a 231a 2  313600  2

a 2  1357.576 a  36.845 The span of the bridge is 73.69 feet.

77. Because of the pitch of the roof, the major axis will run parallel to the direction of the pitch and the minor axis will run perpendicular to the direction of the pitch. The length of the major axis can be determined from the pitch by using the Pythagorean Theorem. The length of the minor axis is 8 inches (the diameter of the pipe).

402 102  1 2500 h 2 102 2

 1

1600 9  2500 25

h 9h 2  2500

50  16.67 3 The height of the arch at its center is 16.67 feet. h

75. If the x-axis is placed along the 100 foot length and the y-axis is placed along the 50 foot length, x2 y2  1. the equation for the ellipse is: 502 252 Find y when x = 40: 402 y 2  1 502 252 1600 y2  1 625 2500 9 2 y  625  25 y  15 feet To get the width of the ellipse at x  40 , we need to double the y value. Thus, the width 10 feet from a vertex is 30 feet.

2(5) = 10

2(4) = 8

The length of the major axis is

8  10   164  2 41 inches. 2

2

78. The length of the football gives the length of the major axis so we have 2a  11.125 or a  5.5625 . At its center, the prolate spheroid is a circle of radius b. This means 2 b  28.25 28.25 b 2 2

76. Place the semi-elliptical arch so that the x-axis coincides with the major axis and the y-axis passes through the center of the arch. Since the height of the arch at the center is 20 feet, b  20 . The length of the major axis is to be found, so it is necessary to solve for a . The equation is:

4 4  28.25   ab 2    5.5625     471 . 3 3  2  The football contains approximately 471 cubic inches of air.

Thus,

79. Since the mean distance is 93 million miles, a  93 million. The length of the major axis is 186 million. The perihelion is 186 million – 94.5 million = 91.5 million miles. The distance from the center of the ellipse to the sun (focus) is 93 million – 91.5 million = 1.5 million miles.

x2

y2  1. a 2 400 The height of the arch 28 feet from the center is to be 13 feet, so the point (28, 13) is on the ellipse. Substitute and solve for a :

1054

Copyright © 2020 Pearson Education, Inc.


Section 10.3: The Ellipse

Therefore, c  1.5 million. Find b: b2  a 2  c2

 93  10

b2  a 2  c 2

 483.8  106

  1.5 10 

6 2

6 2

 8.64675  10  8646.75  10

x2

b  92.99  106 The equation of the orbit is: x2 y2  1 2 2 93  106 92.99  106

We can simplify the equation by letting our units for x and y be millions of miles. The equation then becomes: x2 y2  1 8649 8646.75

483.2  106

 5448.5  106

2

1

  897.5 10  2

6 2

 2.8880646  1019

  13.5 10 

6 2

b  5374.07  106 The equation of the orbit of Pluto is: x2 y2  1 2 2 5448.5  106 5374.07  106

b  141.36  106 The equation of the orbit is: x2 y2  1 2 2 142  106 141.36  106

 

 

y2

82. The mean distance is 4551 million + 897.5 million = 5448.5 million miles. The aphelion is 5448.5 million + 897.5 million = 6346 million miles. Since a  5448.5  106 and c  897.5  106 , we can find b: b2  a 2  c 2

 1.998175  1016

x2 y2  1 234, 062.44 233, 524.2

80. Since the mean distance is 142 million miles, a  142 million. The length of the major axis is 284 million. The aphelion is 284 million – 128.5 million = 155.5 million miles. The distance from the center of the ellipse to the sun (focus) is 142 million – 128.5 million = 13.5 million miles. Therefore, c  13.5 million. Find b: b2  a 2  c2  142  10

483.8  10

6 2

We can simplify the equation by letting our units for x and y be millions of miles. The equation then becomes:

6 2

6 2

b  483.2  106 The equation of the orbit of Jupiter is:

12

 

2

 2.335242  1017

15

   23.2 10 

 

We can simplify the equation by letting our units for x and y be millions of miles. The equation then becomes: x2 y2  1 29, 686,152.25 28,880, 646

We can simplify the equation by letting our units for x and y be millions of miles. The equation then becomes: x2 y2  1 20,164 19, 981.75

83. e 

c  0.75 . Perihelion: a – c = 5 a c  0.75a

a  0.75a  5

81. The mean distance is 507 million – 23.2 million = 483.8 million miles. The perihelion is 483.8 million – 23.2 million = 460.6 million miles.

0.25a  5 a  20 ac  5 20  c  5

Since a  483.8  106 and c  23.2  106 , we can find b:

c  15 So the aphelion is a + c = 35 million mi.

1055

Copyright © 2020 Pearson Education, Inc.


Chapter 10: Analytic Geometry

84.

d ( M ,V )  d ( M , B)

x2 y 2  1 49 4

( 2 5  ( 5))  (0  y ) 

Area of rectangle: (2x)(2y) = 4xy

( 2 5  ( 5))  (0  y )  (0  ( 5))  (2  y )

y  2 1

2

2

2

2

2

(0  ( 5))  (2  y ) 2

x2 49

20  20 5  25  y 2  25  4  4 y  y 2

x2 49

5 54  y

A  8x 1 

2

16  20 5  4 y

88. The center of the ellipse is the midpoint of the vertices. So the center is (4,0). So h = 4, k = 0 and a = 2. One focus is at 4  c  4  3 , so c  3 . Then b 2  a 2  c 2  4  3  1  b  1.

On the calculator, set Y1 equal to this equation and find the max. The max y is 28 so the max are is 28 m2. 85. Let a  324  18 and b  100  10. . Then c2  a 2  b2  324  100  224

The equation of the ellipse is

 x  4 2 4

 y 2  1.

The points of intersection satisfy

 x  4 2

c  224  4 14 The vertices on the major axis are (18, 0) and (18, 0) and the vertices on the

4

 y2   x  2  y2 2

 x  4  4  x  2 2

2

x 2  8 x  16  4 x 2  16 x  16

minor axis are (10, 0) and (10, 0) . The foci are

3x 2  8 x  0

(4 14, 0) and (4 14, 0) . We are looking for the distance between the foci which is: c 2  a 2  b2

x(3 x  8)  0 x  0 or x  83

 324  100

Substitute each x into either equation to solve for y.

 224 2c  2  4 14  8 14  29.93 cm

x  0; (0  2) 2  y 2  1 y 2  3 (no real solution)

86. Given that the length of the major axis is 20 then the coordinates of the vertices are (10, 0) and (10, 0) and a  10 . The length of the minor axis is 9 so the vertices are 9 9   9  0,   and  0,  and b  . So the 2 2   2

equation of the ellipse is

2

2

8 8  x  ;   2   y2  1 3 3  5 y2  9

x2 y2  1. 100 20.25

y

5 3

The points of intersection are 8 8 5  5  ,   and  ,  . 3 3   3 3 

87. The ellipse x 2  5 y 2  20 can be written as x2 y 2   1 , so the vertices are at 20 4 ( 2 5, 0) and (2 5, 0) . The endpoints of the

minor axis are at (0, 2) and (0, 2) . V  (2 5, 0) and B  (0, 2) and M  (5, y )

1056

Copyright © 2020 Pearson Education, Inc.


Section 10.3: The Ellipse 91. Answers will vary.

Ax 2  Cy 2  F  0

89. a.

Ax 2  Cy 2   F 2

92.

2

Ax Cy  1 F F x2 y2  1 ( F / A) ( F / C ) where A  0, C  0, F  0 , and  F / A and  F / C are positive. F F If A  C , then    . So, this is the A C equation of an ellipse with center at (0, 0).

0  ( x  5)2  12 12  ( x  5) 2  12  x  5 x  5  12  5  2 3

The zeros are x  5  2 3 and 5  2 3 . The x-intercepts are 5  2 3 and 5  2 3 . 93.

b. If A  C , the equation becomes: F Ax 2  Ay 2   F  x 2  y 2   A This is the equation of a circle with center at (0, 0) F and radius of  . A

2  2 is a horizontal 1 asymptote. The denominator is zero at x  5 , so x  5 is a vertical asymptote. The domain is  x | x  5 .

Ax 2  Cy 2  Dx  Ey   F  

A x2 

D  E   x   C  y2  y   F A  C   2

94. F  80 cos  50º  i  sin  50º  j

 80  0.6428i  0.7660 j  51.423i  61.284 j  W  F  AB   51.423i  61.284 j 12i

2

D  E  D2 E 2    F A x    C  y    2A  2C  4 A 4C  

 51.426(12)  61.284  0  617.1 ft-lb

where A  C  0 . D2 E 2  F . Let U  4 A 4C

a.

95. a  14, A  52º b cot  52º   14 b  14 cot  52º   14   0.7813  10.94

If U is of the same sign as A (and C ) , then 2

2

x D  y E    2 A  2C    1 U U A C

c 14 c  14 csc  52º   14  1.2690  17.77

csc  52º  

This is the equation of an ellipse with center at  D E  ,  .  2 A 2C 

B  90  A  90  52  38

b. If U  0 , the graph is the single point

96. 2 3 tan  5 x   7  9

 D E  ,  .  2 A 2C 

c.

2x  3 ; The degree of the numerator, x5 p( x)  2 x  3, is n  1 . The degree of the denominator, q( x)  x  5, is m  1 . Since f ( x) 

n  m , the line y 

Ax 2  Cy 2  Dx  Ey  F  0, A  0, C  0

90.

f ( x)  ( x  5)2  12

2 3 tan  5 x   2

If U is of the opposite sign as A (and C ) , this graph contains no points since the left side always has the opposite sign of the right side.

tan  5 x   5x  x

1057

Copyright © 2020 Pearson Education, Inc.

1 3

 6

 30

 5

k


Chapter 10: Analytic Geometry

On the interval 0      7 13  ,  , .  30 30 30 

 2

Section 10.4 , the solution set is

 52   5 2 

3x 2  14 x  8 (3x  2)( x  4) (3x  2)   ( x  4)( x  3) ( x  3) x 2  x  12 Now we can evaluate. (3(4)  2) 10 10 R (4)    7 ((4)  3) 7

3. x-intercepts: 02  9  4 x 2 4 x 2  9 9 x 2   (no real solution) 4

2 x  1  ln 8 2 x  ln 8  1

y-intercepts: y 2  9  4  0 

ln 8  1  0.5397 2

2

y2  9

 0, 3 ,  0,3 The intercepts are  0, 3 and  0,3 . y  3 

f ( x  h)  f ( x) 2( x  h) 2  7( x  h)  (2 x 2  7 x)  99. h h 2 2 2 2 x  4 xh  2h  7 x  7h  2 x  7 x  h 2 4 xh  2h  7h  h h(4 x  2h  7)  h  4 x  2h  7

4. True; the graph of y 2  9  x 2 is a hyperbola with its center at the origin. 5. right 5; down 4 x2  9 ; p  x   x 2  9, q  x   x 2  4 x2  4 The vertical asymptotes are the zeros of q .

6. y 

As h approaches 0 the expressions becomes 4 x  2(0)  7  4 x  7

q  x  0 x2  4  0

x  100. log 3   1  4 2  x 34   1 2 x 81   1 2 x 82  2 x  164

x2  4 x  2, x  2 The lines x  2, and x  2 are the vertical asymptotes. The degree of the numerator, p( x)  x 2  9 , is n  2 . The degree of the

denominator, q ( x)  x 2  4 , is m  2 . 1 Since n  m , the line y   1 is a horizontal 1 asymptote. Since this is a rational function and there is a horizontal asymptote, there are no oblique asymptotes.

101. ( x  3) 2  20 x  3   20 x  3  20

7. hyperbola

 3  2 5

25  25  50  5 2

25 5 2.    2 4  

e 2 x 1  8

x

2

2

97. R( x) 

98.

 2  32  1   4  

1. d 

The solution set is 3  2 5, 3  2 5

8. transverse axis

9. b 1058

Copyright © 2020 Pearson Education, Inc.


Section 10.4: The Hyperbola

10.

 2, 4  ;  2, 2 

11.

 2, 6  ;  2, 4 

Write the equation: x 2 

y2  1. 8

12. c 13. 2; 3; x 4 4 14. y   x ; y  x 9 9

15. B; the hyperbola opens to the left and right, and has vertices at  1, 0  . Thus, the graph has an

equation of the form x 2 

y2  1. b2

20. Center: (0, 0); Focus: (0, 5); Vertex: (0, 3); Transverse axis is the y-axis; a  3; c  5 . Find the value of b: b 2  c 2  a 2  25  9  16 b4 y 2 x2  1. Write the equation: 9 16

16. C; the hyperbola opens up and down, and has vertices at  0, 2  . Thus, the graph has an

equation of the form

y 2 x2  1. 4 b2

17. A; the hyperbola opens to the left and right, and has vertices at  2, 0  . Thus, the graph has an

equation of the form

x2 y 2  1. 4 b2

18. D; the hyperbola opens up and down, and has vertices at  0, 1 . Thus, the graph has an

equation of the form y 2 

x2  1. b2

21. Center: (0, 0); Focus: (0, –6); Vertex: (0, 4) Transverse axis is the y-axis; a  4; c  6 . Find the value of b: b 2  c 2  a 2  36  16  20

19. Center: (0, 0); Focus: (3, 0); Vertex: (1, 0); Transverse axis is the x-axis; a  1; c  3 . Find the value of b: b2  c 2  a 2  9  1  8

b  20  2 5

Write the equation:

b 82 2

1059

Copyright © 2020 Pearson Education, Inc.

y 2 x2  1. 16 20


Chapter 10: Analytic Geometry 22. Center: (0, 0); Focus: (–3, 0); Vertex: (2, 0) Transverse axis is the x-axis; a  2; c  3 . Find the value of b: b2  c 2  a 2  9  4  5

24. Focus: (0, 6); Vertices: (0, –2), (0, 2) Center: (0, 0); Transverse axis is the y-axis; a  2; c  6 . Find the value of b: b 2  c 2  a 2  36  4  32  b  4 2

b 5

x2 y 2  1. Write the equation: 4 5

Write the equation:

25. Vertices: (0, –6), (0, 6); asymptote: y  2 x ; Center: (0, 0); Transverse axis is the y-axis; a  6 . Find the value of b using the slope of the a 6 asymptote:   2  2b  6  b  3 b b Find the value of c: c 2  a 2  b 2  36  9  45

23. Foci: (–5, 0), (5, 0); Vertex: (3, 0) Center: (0, 0); Transverse axis is the x-axis; a  3; c  5 . Find the value of b: b 2  c 2  a 2  25  9  16  b  4

Write the equation:

y 2 x2  1. 4 32

x2 y 2  1. 9 16

c3 5

Write the equation:

1060

Copyright © 2020 Pearson Education, Inc.

y 2 x2  1. 36 9


Section 10.4: The Hyperbola 26. Vertices: (–4, 0), (4, 0); asymptote: y  2 x ; Center: (0, 0); Transverse axis is the x-axis; a  4 . Find the value of b using the slope of the b b asymptote:   2  b  8 a 4 Find the value of c: c 2  a 2  b 2  16  64  80

28. Foci: (0, –2), (0, 2); asymptote: y   x ; Center: (0, 0); Transverse axis is the y-axis; c  2 . Using the slope of the asymptote: a   1   b  a  b  a b Find the value of b: b2  c2  a2

Write the equation:

 c  2

a2  b2  c2

c4 5 2

2

y x  1. 16 64

b 2  b 2  4  2b 2  4 b2  2  b  2 a 2

(a  b)

Write the equation:

27. Foci: (–4, 0), (4, 0); asymptote: y   x ; Center: (0, 0); Transverse axis is the x-axis; c  4 . Using the slope of the asymptote: b   1   b  a  b  a . a Find the value of b: b2  c2  a2  a2  b2  c2 c  4

29.

b 2  b 2  16  2b 2  16  b 2  8

Write the equation:

x2 y 2  1 25 9 The center of the hyperbola is at (0, 0). a  5, b  3 . The vertices are  5, 0  and

 5, 0  . Find the value of c:

b 82 2 a 82 2

y 2 x2  1. 2 2

c 2  a 2  b 2  25  9  34  c  34

( a  b)

The foci are

x2 y 2  1. 8 8

 34, 0  and   34, 0 .

The transverse axis is the x-axis. The asymptotes 3 3 are y  x; y   x . 5 5

1061

Copyright © 2020 Pearson Education, Inc.


Chapter 10: Analytic Geometry

30.

y 2 x2  1 16 4 The center of the hyperbola is at (0, 0). a  4, b  2 . The vertices are (0, 4) and (0, –4). Find the value of c: c 2  a 2  b 2  16  4  20 c  20  2 5

32. 4 y 2  x 2  16 Divide both sides by 16 to put in standard form: 4 y 2 x 2 16 y 2 x2     1 16 16 16 4 16 The center of the hyperbola is at (0, 0). a  2, b  4 . The vertices are  0, 2  and

 0, 2  . Find the value of c:

The foci are 0, 2 5 and 0,  2 5 .

c 2  a 2  b 2  4  16  20  c  20  2 5

The transverse axis is the y-axis. The asymptotes are y  2 x; y   2 x .

The foci are 0, 2 5 and 0,  2 5 .

The transverse axis is the y-axis. The asymptotes 1 1 are y  x and y   x . 2 2

31. 4 x 2  y 2  16 Divide both sides by 16 to put in standard form: 4 x 2 y 2 16 x2 y 2     1 16 16 16 4 16 The center of the hyperbola is at (0, 0). a  2, b  4 . The vertices are (2, 0) and (–2, 0). Find the value of c: c 2  a 2  b 2  4  16  20 c  20  2 5

33. y 2  9 x 2  9 Divide both sides by 9 to put in standard form: y 2 9 x2 9 y2     x2  1 9 9 9 9 The center of the hyperbola is at (0, 0). a  3, b  1 . The vertices are (0, 3) and (0, –3). Find the value of c: c 2  a 2  b 2  9  1  10

The foci are 2 5, 0 and  2 5, 0 .

c  10

The transverse axis is the x-axis. The asymptotes are y  2 x; y   2 x .

The foci are 0, 10 and 0,  10 .

The transverse axis is the y-axis. The asymptotes are y  3x; y   3x .

1062

Copyright © 2020 Pearson Education, Inc.


Section 10.4: The Hyperbola

34. x 2  y 2  4 Divide both sides by 4 to put in standard form: x2 y 2 4 x2 y 2     1. 4 4 4 4 4 The center of the hyperbola is at (0, 0). a  2, b  2 . The vertices are  2, 0  and

36. 2 x 2  y 2  4 Divide both sides by 4 to put in standard form: x2 y 2  1. 2 4 The center of the hyperbola is at (0, 0). a  2, b  2 .

 2, 0  . Find the value of c: 2

2

The vertices are

2

c  a b  44 8  c  8  2 2

Find the value of c: c 2  a 2  b2  2  4  6

The foci are 2 2, 0 and  2 2, 0 .

The foci are

The transverse axis is the x-axis. The asymptotes are y  x; y   x .

Find the value of c: c 2  a 2  b2  1  1  2 c 2

The foci are

c 2  a 2  b 2  25  25  50

 6, 0  and   6, 0 .

37. The center of the hyperbola is at (0, 0). a  1, b  1 . The vertices are 1, 0  and  1, 0  .

 0, 5  . Find the value of c:

 c 6

The transverse axis is the x-axis. The asymptotes are y  2 x; y   2 x .

35. y 2  x 2  25 Divide both sides by 25 to put in standard form: y 2 x2  1. 25 25 The center of the hyperbola is at (0, 0). a  5, b  5 . The vertices are  0,5  and

c  50  5 2

 2, 0 and   2, 0 .

 2, 0 and   2, 0 .

The transverse axis is the x-axis. The asymptotes are y  x; y   x .

The foci are 0,5 2 and 0,  5 2 .

The equation is: x 2  y 2  1 .

The transverse axis is the y-axis. The asymptotes are y  x; y   x .

38. The center of the hyperbola is at (0, 0). a  1, b  1 . The vertices are  0,  1 and  0, 1 .

Find the value of c: c 2  a 2  b2  1  1  2 c 2

The foci are 0,  2 and 0, 2 . The transverse axis is the y-axis. The asymptotes are y  x; y   x . The equation is: y 2  x 2  1 .

1063

Copyright © 2020 Pearson Education, Inc.


Chapter 10: Analytic Geometry 39. The center of the hyperbola is at (0, 0). a  6, b  3 .

42. Center: (–3, 1); Focus: (–3, 6); Vertex: (–3, 4); Transverse axis is parallel to the y-axis; a  3; c  5 . Find the value of b:

The vertices are  0, 6  and  0, 6  . Find the

b 2  c 2  a 2  25  9  16  b  4 ( y  1) 2 ( x  3) 2   1. Write the equation: 9 16

value of c: c 2  a 2  b 2  36  9  45 c  45  3 5

The foci are 0, 3 5 and 0,3 5 . The transverse axis is the y-axis. The asymptotes are y  2 x; y  2 x . The equation is:

y 2 x2  1. 36 9

40. The center of the hyperbola is at (0, 0). a  2, b  4 .

The vertices are  2, 0  and  2, 0  . Find the value of c: c 2  a 2  b 2  4  16  20 c  20  2 5

43. Center: (–3, –4); Focus: (–3, –8); Vertex: (–3, –2); Transverse axis is parallel to the y-axis; a  2; c  4 . Find the value of b: b 2  c 2  a 2  16  4  12

The foci are 2 5, 0 and 2 5, 0 . The transverse axis is the x-axis. The asymptotes are y  2 x; y  2 x . The equation is:

b  12  2 3

x2 y 2  1. 4 16

Write the equation:

41. Center: (4, –1); Focus: (7, –1); Vertex: (6, –1); Transverse axis is parallel to the x-axis; a  2; c  3 . Find the value of b: b2  c 2  a 2  9  4  5  b  5 ( x  4) 2 ( y  1) 2 Write the equation:  1. 4 5

1064

Copyright © 2020 Pearson Education, Inc.

( y  4) 2 ( x  3) 2   1. 4 12


Section 10.4: The Hyperbola 44. Center: (1, 4); Focus: (–2, 4); Vertex: (0, 4); Transverse axis is parallel to the x-axis; a  1; c  3 . Find the value of b:

46. Focus: (–4, 0); Vertices: (–4, 4), (–4, 2); Center: (–4, 3); Transverse axis is parallel to the y-axis; a  1; c  3 . ind the value of b: b2  c 2  a 2  9  1  8

b2  c 2  a 2  9  1  8 b 82 2

Write the equation: ( x  1) 2 

b 82 2

( y  4) 2 1. 8

Write the equation: ( y  3) 2 

45. Foci: (3, 7), (7, 7); Vertex: (6, 7); Center: (5, 7); Transverse axis is parallel to the x-axis; a  1; c  2 . Find the value of b: b2  c 2  a 2  4  1  3

47. Vertices: (–1, –1), (3, –1); Center: (1, –1); Transverse axis is parallel to the x-axis; a  2 . 3 Asymptote: y  1   x  1 2 Using the slope of the asymptote, find the value of b: b b 3    b3 a 2 2 Find the value of c: c 2  a 2  b 2  4  9  13

b 3

Write the equation: ( x  5) 2 

( x  4) 2 1. 8

( y  7) 2 1. 3

c  13

Write the equation:

1065

Copyright © 2020 Pearson Education, Inc.

( x  1) 2 ( y  1) 2  1. 4 9


Chapter 10: Analytic Geometry 48. Vertices: (1, –3), (1, 1); Center: (1, –1); Transverse axis is parallel to the y-axis; a  2 . 3 Asymptote: y  1   x  1 2 Using the slope of the asymptote, find the value of b: a 2 3 4    3b  4  b  b b 2 3 Find the value of c: 16 52 52 2 13 c 2  a 2  b2  4   c  9 9 9 3 ( y  1) 2 9( x  1) 2 Write the equation:  1. 4 16

49.

50.

( y  3) 2 ( x  2) 2  1 4 9 The center of the hyperbola is at (2, –3). a  2, b  3 . The vertices are (2, –1) and (2, –5). Find the value of c: c 2  a 2  b 2  4  9  13  c  13

Foci: 2,  3  13 and 2,  3  13

Transverse axis: x  2 , parallel to the y-axis 2 Asymptotes: y  3  ( x  2); 3 2 y  3   ( x  2) 3

51. ( y  2) 2  4( x  2) 2  4 Divide both sides by 4 to put in standard form: ( y  2) 2  ( x  2) 2  1 . 4 The center of the hyperbola is at (–2, 2). a  2, b  1 . The vertices are (–2, 4) and (–2, 0). Find the value of c: c2  a2  b2  4  1  5  c  5

( x  2) 2 ( y  3) 2  1 4 9 The center of the hyperbola is at (2, –3). a  2, b  3 . The vertices are (0, –3) and (4, –3). Find the value of c: c 2  a 2  b 2  4  9  13  c  13

Foci:  2  13, 3 and  2  13, 3 . Transverse axis: y  3 , parallel to x-axis.

Foci:

  2, 2  5  and   2, 2  5  .

Transverse axis: x   2 , parallel to the y-axis. Asymptotes: y  2  2( x  2); y  2   2( x  2) .

3 ( x  2); 2 3 y  3   ( x  2) 2

Asymptotes: y  3 

1066

Copyright © 2020 Pearson Education, Inc.


Section 10.4: The Hyperbola

52. ( x  4) 2  9( y  3) 2  9 Divide both sides by 9 to put in standard form: ( x  4) 2  ( y  3) 2  1 . 9 The center of the hyperbola is (–4, 3). a  3, b  1 . The vertices are (–7, 3) and (–1, 3). Find the value of c: c 2  a 2  b 2  9  1  10  c  10

Foci:  4  10, 3 and  4  10, 3

54. ( y  3) 2  ( x  2) 2  4 Divide both sides by 4 to put in standard form: ( y  3) 2 ( x  2) 2   1 . The center of the 4 4 hyperbola is at (–2, 3). a  2, b  2 . The vertices are (–2, 5) and (–2, 1). Find the value of c: c 2  a 2  b2  4  4  8  c  8  2 2

1 1 Asymptotes: y  3  ( x  4), y  3   ( x  4) 3 3

53. ( x  1)2  ( y  2) 2  4 Divide both sides by 4 to put in standard form: ( x  1) 2 ( y  2) 2  1. 4 4 The center of the hyperbola is (–1, –2). a  2, b  2 . The vertices are (–3, –2) and (1, –2). Find the value of c: c 2  a 2  b2  4  4  8  c  8  2 2

Transverse axis: x   2 , parallel to the y-axis. Asymptotes: y  3  x  2; y  3   ( x  2)

Transverse axis: y  3 , parallel to the x-axis.

Foci: 1  2 2,  2 and 1  2 2,  2

Foci:  2, 3  2 2 and  2, 3  2 2

55. Complete the squares to put in standard form: x2  y 2  2 x  2 y  1  0 ( x 2  2 x  1)  ( y 2  2 y  1)  1  1  1 ( x  1) 2  ( y  1) 2  1 The center of the hyperbola is (1, –1). a  1, b  1 . The vertices are (0, –1) and (2, –1). Find the value of c: c 2  a 2  b2  1  1  2  c  2

Foci: 1  2, 1 and 1  2,  1 .

Transverse axis: y   2 , parallel to the x-axis. Asymptotes: y  2  x  1; y  2   ( x  1)

Transverse axis: y  1 , parallel to x-axis. Asymptotes: y  1  x  1; y  1   ( x  1) .

1067

Copyright © 2020 Pearson Education, Inc.


Chapter 10: Analytic Geometry 56. Complete the squares to put in standard form: y2  x2  4 y  4 x  1  0

58. Complete the squares to put in standard form: 2 x2  y2  4x  4 y  4  0

( y 2  4 y  4)  ( x 2  4 x  4)  1  4  4

2( x 2  2 x  1)  ( y 2  4 y  4)  4  2  4

( y  2) 2  ( x  2) 2  1 The center of the hyperbola is (2, 2). a  1, b  1 . The vertices are  2,1 and  2,3 .

2( x  1) 2  ( y  2) 2  2 ( y  2) 2 1 2 The center of the hyperbola is (–1, 2). a  1, b  2 . The vertices are (–2, 2) and (0, 2). Find the value of c: c 2  a 2  b2  1  2  3  c  3 ( x  1)2 

Find the value of c: c2  a2  b2  1  1  2  c  2

Foci:  2, 2  2  and  2, 2  2  .

Transverse axis: x  2 , parallel to the y-axis. Asymptotes: y  2  x  2; y  2   ( x  2) .

 1  3, 2  and  1  3, 2 .

Foci:

Transverse axis: y  2 , parallel to the x-axis. Asymptotes: y  2  2( x  1); y  2   2( x  1) .

57. Complete the squares to put in standard form: y2  4x2  4 y  8x  4  0 ( y 2  4 y  4)  4( x 2  2 x  1)  4  4  4 ( y  2) 2  4( x  1) 2  4 ( y  2) 2  ( x  1) 2  1 4 The center of the hyperbola is (–1, 2). a  2, b  1 . The vertices are (–1, 4) and (–1, 0). Find the value of c: c2  a2  b2  4  1  5  c  5

59. Complete the squares to put in standard form: 4 x 2  y 2  24 x  4 y  16  0 4( x 2  6 x  9)  ( y 2  4 y  4)  16  36  4 4( x  3) 2  ( y  2) 2  16 ( x  3) 2 ( y  2) 2  1 4 16 The center of the hyperbola is (3, –2). a  2, b  4 . The vertices are (1, –2) and (5, –2). Find the value of c: c 2  a 2  b 2  4  16  20

Foci:   1, 2  5  and   1, 2  5  .

Transverse axis: x  1 , parallel to the y-axis. Asymptotes: y  2  2( x  1); y  2   2( x  1) .

c  20  2 5

Foci: 3  2 5,  2 and 3  2 5,  2 . Transverse axis: y   2 , parallel to x-axis. Asymptotes: y  2  2( x  3); y  2   2( x  3) 1068

Copyright © 2020 Pearson Education, Inc.


Section 10.4: The Hyperbola 61. Complete the squares to put in standard form: y 2  4 x 2  16 x  2 y  19  0 ( y 2  2 y  1)  4( x 2  4 x  4)  19  1  16 ( y  1) 2  4( x  2) 2  4 ( y  1) 2  ( x  2) 2  1 4 The center of the hyperbola is (–2, 1). a  2, b  1 . The vertices are (–2, 3) and (–2, –1). Find the value of c: c2  a 2  b2  4  1  5

60. Complete the squares to put in standard form: 2 y 2  x2  2 x  8 y  3  0

c 5

2( y 2  4 y  4)  ( x 2  2 x  1)  3  8  1

Foci:

2( y  2) 2  ( x  1) 2  4 ( y  2) 2 ( x  1) 2  1 2 4 The center of the hyperbola is (1,–2). a  2, b  2 .

Vertices: 1, 2  2 and 1, 2  2

  2, 1  5  and   2, 1  5  .

Transverse axis: x   2 , parallel to the y-axis. Asymptotes: y  1  2( x  2); y  1   2( x  2) .

Find the value of c: c2  a2  b2  2  4  6 c 6

Foci: 1,  2  6 and 1,  2  6 . Transverse axis: x  1 , parallel to the y-axis. 2 ( x  1); 2 2 y2 ( x  1) 2

Asymptotes: y  2 

62. Complete the squares to put in standard form: x2  3 y 2  8x  6 y  4  0 ( x 2  8 x  16)  3( y 2  2 y  1)   4  16  3 ( x  4) 2  3( y  1) 2  9 ( x  4) 2 ( y  1) 2  1 9 3 The center of the hyperbola is (–4, –1). a  3, b  3 . The vertices are (–7, –1) and (–1, –1). Find the value of c: c 2  a 2  b 2  9  3  12 c  12  2 3

Foci:  4  2 3,  1 and  4  2 3,  1 . Transverse axis: y  1 , parallel to x-axis. Asymptotes: 3 3 y 1  ( x  4); y  1   ( x  4) 3 3 1069

Copyright © 2020 Pearson Education, Inc.


Chapter 10: Analytic Geometry 65. Rewrite the equation: y    25  x 2 y 2   25  x 2 , 2

2

2

2

x  y  25, y x   1, 25 25

y0 y0 y0

63. Rewrite the equation: y  16  4 x 2 y 2  16  4 x 2 , y 2  4 x 2  16, 2

2

y x   1, 16 4

y0 y0 y0

66. Rewrite the equation: y  1  x 2 y 2  1  x 2 , 2

2

x  y  1,

y0 y0

64. Rewrite the equation: y   9  9 x2 y 2  9  9x2 , y 2  9 x 2  9, 2

2

y x   1, 9 1

y0 y0 y0

67.

( x  3) 2 y 2  1 4 25 The graph will be a hyperbola. The center of the hyperbola is at (3, 0). a  2, b  5 . The vertices are (5, 0) and (1, 0). Find the value of c: c 2  a 2  b 2  4  25  29  c  29

Foci:  3  29, 0  and  3  29, 0 

Transverse axis is the x-axis. 5 5 Asymptotes: y  ( x  3); y   ( x  3) 2 2

1070

Copyright © 2020 Pearson Education, Inc.


Section 10.4: The Hyperbola

70. y 2  12( x  1) The graph will be a parabola. The equation is in the form ( y  k ) 2   4a( x  h) where – 4a   12 or a  3 , h  1, and k  0 . Thus, we have: Vertex: (1, 0) ; Focus: (4, 0) ; Directrix: x  2

68.

( y  2) 2 ( x  2) 2  1 16 4 The graph will be a hyperbola. The center of the hyperbola is at (2, –2). a  4, b  2 . The vertices are (2, 2) and (2, –6). Find the value of c: c 2  a 2  b 2  16  4  20  c  20  2 5

Foci: 2,  2  2 5 and 2,  2  2 5

71. The graph will be an ellipse. Complete the square to put the equation in standard form: 25 x 2  9 y 2  250 x  400  0

Transverse axis: x  2 , parallel to the y-axis Asymptotes: y  2  2( x  2); y  2  2( x  2)

(25 x 2  250 x)  9 y 2   400 25( x 2  10 x)  9 y 2   400 25( x 2  10 x  25)  9 y 2   400  625 25( x  5) 2  9 y 2  225 25( x  5) 2 9 y 2 225   225 225 225 ( x  5) 2 y 2  1 9 25 The equation is in the form ( x  h) 2 ( y  k ) 2   1 (major axis parallel to the b2 a2 y-axis) where a  5, b  3, h  5, and k  0 .

69. x 2  16( y  3) The graph will be a parabola. The equation is in the form ( x  h) 2  4a ( y  k ) where 4a  16 or a  4 , h  0, and k  3 . Thus, we have: Vertex: (0, 3); Focus: (0, 7) ; Directrix: y  1

Solving for c: c 2  a 2  b 2  25  9  16  c  4 Thus, we have: Center: (5, 0) Foci: (5, 4), (5, –4) Vertices: (5, 5), (5, –5)

1071

Copyright © 2020 Pearson Education, Inc.


Chapter 10: Analytic Geometry 72. The graph will be an ellipse. Complete the square to put the equation in standard form: x 2  36 y 2  2 x  288 y  541  0 ( x 2  2 x)  (36 y 2  288 y )  5 41 ( x 2  2 x)  36( y 2  8 y )  5 41 ( x 2  2 x  1)  36( y 2  8 y  16)   541  1  576 ( x  1) 2  36( y  4) 2  36 ( x  1) 2 36( y  4) 2 36   36 36 36 ( x  1) 2  ( y  4) 2  1 36 The equation is in the form ( x  h) 2 ( y  k ) 2   1 (major axis parallel to the a2 b2 x-axis) where a  6, b  1, h  1, and k  4 . Solving for c: c 2  a 2  b 2  36  1  35  c  35 Thus, we have: Center: (1, 4)

Foci:

74. The graph will be a hyperbola. Complete the squares to put in standard form: 9 x 2  y 2  18 x  8 y  88  0 9( x 2  2 x  1)  ( y 2  8 y  16)  88  9  16 9( x  1) 2  ( y  4) 2  81 ( x  1) 2 ( y  4) 2  1 9 81 The center of the hyperbola is (1, 4) . a  9, b  81 . The vertices are (2, 4) and (4, 4) . Find the value of c: c 2  a 2  b 2  9  81  90

1  35, 4 , 1  35, 4

Vertices: (7, 4) , (5, 4)

c  90  3 10

Foci: 1  3 10, 4 and 1  3 10, 4 . Transverse axis: x   2 , parallel to the y-axis. Asymptotes: y  4  3( x  1); y  4   3( x  1) .

73. The graph will be a parabola. Complete the square to put the equation in standard form: x 2  6 x  8 y  31  0 x 2  6 x  8 y  31 x 2  6 x  9  8 y  31  9 ( x  3) 2  8 y  40 ( x  3) 2  8( y  5) The equation is in the form ( x  h) 2  4a ( y  k ) where 4a  8 or a  2 , h  3, and k  5 . Thus, we have: Vertex: (3, 5) ; Focus: (3, 3) ; Directrix: y   7

1072

Copyright © 2020 Pearson Education, Inc.


Section 10.4: The Hyperbola 75. First note that all points where a burst could take place, such that the time difference would be the same as that for the first burst, would form a hyperbola with A and B as the foci. Start with a diagram: (x, y)

B

76. First note that all points where the strike could take place, such that the time difference would be the same as that for the first strike, would form a hyperbola with A and B as the foci. Start with a diagram: (x, y)

B

A 2 miles

A 1 mile

Assume a coordinate system with the x-axis containing BA and the origin at the midpoint of BA . The ordered pair  x, y  represents the location of

Assume a coordinate system with the x-axis containing BA and the origin at the midpoint of BA . The ordered pair  x, y  represents the location

the fireworks. We know that sound travels at 1100 feet per second, so the person at point A is 1100 feet closer to the fireworks display than the person at point B. Since the difference of the distance from  x, y  to A and from  x, y  to B is the

of the lightning strike. We know that sound travels at 1100 feet per second, so the person at point A is 2200 feet closer to the lightning strike than the person at point B. Since the difference of the distance from  x, y  to A and from  x, y 

constant 1100, the point  x, y  lies on a hyperbola

to B is the constant 2200, the point  x, y  lies on

whose foci are at A and B. The hyperbola has the equation x2 y2  1 a 2 b2 where 2a  1100 , so a  550 . Because the distance between the two people is 2 miles (10,560 feet) and each person is at a focus of the hyperbola, we have 2c  10,560 c  5280 b 2  c 2  a 2  52802  5502  27,575,900 The equation of the hyperbola that describes the location of the fireworks display is y2 x2  1 5502 27,575,900 Since the fireworks display is due north of the individual at A, we let x  5280 and solve the equation for y. y2 52802  1 5502 27,575,900

a hyperbola whose foci are at A and B. The hyperbola has the equation x2 y2  1 a2 b2 where 2a  2200 , so a  1100 . Because the distance between the two people is 1 mile (5,280 feet) and each person is at a focus of the hyperbola, we have 2c  5, 280 c  2, 640

b 2  c 2  a 2  26402  11002  5, 759, 600 The equation of the hyperbola that describes the location of the lightning strike is y2 x2  1 11002 5, 759, 600 Since the lightning strike is due north of the individual at A, we let x  2640 and solve for y. y2 26402  1 2 5, 759, 600 1100 y2   4.76 5, 759, 600

y2  91.16 27,575,900

y 2  27, 415, 696 y  5236 The lightning strikes 5236 feet (approximately 0.99 miles) due north of the person at point A.

2

y  2,513,819, 044 y  50,138 Therefore, the fireworks display was 50,138 feet (approximately 9.5 miles) due north of the person at point A.

1073

Copyright © 2020 Pearson Education, Inc.


Chapter 10: Analytic Geometry 77. To determine the height, we first need to obtain the equation of the hyperbola used to generate the hyperboloid. Placing the center of the hyperbola at the origin, the equation of the x2 y2 hyperbola will have the form 2  2  1 . a b The center diameter is 200 feet so we have 200 a  100 . We also know that the base 2 diameter is 400 feet. Since the center of the hyperbola is at the origin, the points  200, 360 

78. First note that all points where an explosion could take place, such that the time difference would be the same as that for the first detonation, would form a hyperbola with A and B as the foci. Start with a diagram: 

(1200, 0) A

 200 2  360 2  1 b2 100 2

3

b2 3602

(a, 0)

(1200, 0) B

Since A and B are the foci, we have 2c  2400  c  1200 Since D1 is on the transverse axis and is on the hyperbola, then it must be a vertex of the hyperbola. Since it is 300 feet from B, we have a  900 . Finally, b 2  c 2  a 2  12002  9002  630, 000 Thus, the equation of the hyperbola is y2 x2  1 810, 000 630, 000

hyperbola (recall the center is 360 feet above ground). Therefore,

3602

D1 (0, 0)

(1200, y)

2400 ft

and  200, 360  must be on the graph of our

4

D2

1

b2 b 2  43, 200

The point 1200, y  needs to lie on the graph of the hyperbola. Thus, we have

b  43, 200  120 3 The equation of the hyperbola is x2 y2  1 10, 000 43, 200

1200 2 810, 000

At the top of the tower we have x 

300  150 . 2

y2 1 630, 000

7 y2  630, 000 9

y 2  490, 000 y  700 The second explosion should be set off 700 feet due north of point B.

y2 1502  1 10, 000 43, 200 y2  1.25 43, 200

79. a.

y 2  54000 y  232.4 The height of the tower is approximately 232.4  360  592.4 feet.

Since the particles are deflected at a 45 angle, the asymptotes will be y   x .

b. Since the vertex is 10 cm from the center of the hyperbola, we know that a  10 . The b slope of the asymptotes is given by  . a Therefore, we have b b 1   1  b  10 10 a Using the origin as the center of the hyperbola, the equation of the particle path would be x2 y2  1 , x  0 100 100 1074

Copyright © 2020 Pearson Education, Inc.


Section 10.4: The Hyperbola 80. Assume the origin lies at the center of the hyperbola. From the equation we know that the hyperbola has a transverse axis that is parallel to the y-axis. The foci of the hyperbola are located at  0, c 

parabola is given as a  6 . We also know that the distance focus of the parabola is located at  0, k  a    0,5 . Thus,

y2 x2  1 484 100 (32) 2 y 2  1 484 100 1024 y 2  1 484 100 256 y 2  1 121 100 y2 256   1 100 121 13500 y2  121 13500 y 121

ka 5 k 6 5 k  1 and the equation of our parabola becomes x 2  4  6   y   1 

30 15 11 Therefore the width is 30 15  30 15  60 15   21.13 mi  11 11  11 

c 2  a 2  b 2  9  16  25 or c  5 Therefore, the foci of the hyperbola are at  0, 5  and  0,5 .

If we assume the parabola opens up, the common focus is at  0,5  . The equation of our parabola will be x 2  4a  y  k  . The focal length of the

y

x 2  24  y  1

x2 y2   1. a2 b2 If the eccentricity is close to 1, then c  a and b  0 . When b is close to 0, the hyperbola is very narrow, because the slopes of the asymptotes are close to 0. If the eccentricity is very large, then c is much larger than a and b is very large. The result is a hyperbola that is very wide, because the slopes of the asymptotes are very large.

or y

83. Assume

1 2 x 1 . 24

81. Since the distance between the vertices is 18, the vertices are (0,9) and (0, 9) giving a  9 . The foci are 4 inches from the vertices so the foci are (0,13) and (0, 13) giving c  13 . Solving for b 2 we have b2  c 2  a 2 .  132  92  88

y2

So the equation of the hyperbola is: y 2 x2  1 81 88

82. Let x = 32 and solve for y.

 2

x2

 1 , the opposite is true. When the a b2 eccentricity is close to 1, the hyperbola is very wide because the slopes of the asymptotes are close to 0. When the eccentricity is very large, the hyperbola is very narrow because the slopes of the asymptotes are very large.

For

84. If a  b , then c 2  a 2  a 2  2a 2 . Thus, c2 c  2 or  2 . The eccentricity of an 2 a a equilateral hyperbola is 2 .

1075

Copyright © 2020 Pearson Education, Inc.


Chapter 10: Analytic Geometry

85.

87. Put the equation in standard hyperbola form: Ax 2  Cy 2  F  0 A  C  0, F  0

x2  y 2  1 (a  2, b  1) 4 This is a hyperbola with horizontal transverse axis, centered at (0, 0) and has asymptotes: 1 y x 2 x2 y2   1 (a  1, b  2) 4 This is a hyperbola with vertical transverse axis, 1 centered at (0, 0) and has asymptotes: y   x . 2 Since the two hyperbolas have the same asymptotes, they are conjugates.

Ax 2  Cy 2   F Ax 2 Cy 2  1 F F y2 x2  1  F   F   A  C      Since  F / A and  F / C have opposite signs, this is a hyperbola with center at (0, 0). The transverse axis is the x-axis if  F / A  0 and the y-axis if  F / A  0 .

88. Ax 2  Cy 2  Dx  Ey  F  0 , A  C  0 .

    A x  D   C  y  E   D  E  F 2A 2C 4 A 4C A x2  D x  C y2  E y   F A C 2

2

2

2

2 2 Let U  D  E  F . 4 A 4C a. If U  0 , then 2

86.

2

2

y2 

 a 2 x 2  b2  1 2  2 b x 

2

x D  y E     2 A 2C     1 U U A C U U and having opposite signs. This with C A is the equation of a hyperbola whose center E   D , is   .  2 A 2C 

y x  2 1 2 a b Solve for y: y2 x2  1  a2 b2  x2  y 2  a 2 1  2   b 

b. If U  0 , then

A x D 2A

ax b 2 y 1 b x2

  C  y  2EC   0  y  2EC   CA  x  2DA  A y E  x D  2C 2A C  2

2

2

b2 gets x2 close to 0, so the expression under the radical gets closer to 1. Thus, the graph of the hyperbola a a gets closer to the lines y   x and y  x . b b These lines are the asymptotes of the hyperbola.

As x   or as x   , the term

2

which is the graph of two intersecting lines, E   D containing the point   ,  , with  2 A 2C  slopes 

1076

Copyright © 2020 Pearson Education, Inc.

A . C


Section 10.4: The Hyperbola 92. r  6sin 

1 89. y   sin  3x     5 2 1 1 Amplitude: A    2 2 2 2 Period: T   3    Phase Shift:    3 3 Vertical Shift: B  5

r 2  6r sin  x2  y 2  6 y x2  y2  6 y  0 x2  y 2  6 y  9  9 x 2  ( y  3) 2  9 The graph will be a circle with radius 3 and center  0,3 .

Check for symmetry: Polar axis: Replace  by   . The result is r  6sin(  )  6sin  . The test fails.

90. a  7, b  10, C  100º c 2  a 2  b 2  2ab cos C c 2  7 2  102  2  7 10 cos100º  149  140 cos100º

 : Replace  by    . 2 r  6sin(   )

The line  

c  149  140 cos100º  13.16 a 2  b 2  c 2  2bc cos A cos A 

102  13.162  7 2 102  13.162  7 2 224.1856   2bc 2(10)(13.16) 263.2

 224.1856  A  cos   31.6º  263.2  B  180º  A  C  180º 31.6º 100º  48.4º 1

91.

  12,  3    x  r cos   12 cos     3  1  12    6  2

 6(sin  cos   cos  sin  )  6(0  sin  )  6sin  The graph is symmetric with respect to the line   . 2 The pole: Replace r by  r .  r  6sin  . The test fails. Due to symmetry with respect to the line      , assign values to  from  to . 2 2 2   2   3   6 0

r  6sin 

  y  r sin   12sin     3

 3  12     6 3 2  

The rectangular coordinates are 6, 6 3 .

6 

6 3   5.2 2 3 0

 6  3  2

3 6 3  5.2 2

1077

Copyright © 2020 Pearson Education, Inc.

6


Chapter 10: Analytic Geometry

(2 x  3) 2  x 2  5 x(2  x)  1

95.

4 x 2  12 x  9  x 2  10 x  5 x 2  1 5 x 2  12 x  9  10 x  5 x 2  1 12 x  9  10 x  1 2 x  8 x  4

The solution set is 4 .

93.

 x  x y  y2   3  (2) 8  5  96.  1 2 , 1  ,  2   2 2   2 1 3   ,  2 2

y  3e x 1  4 x  3e y 1  4 x  4  3e y 1

97. Since sin  

x4  e y 1 3  x4 ln    y 1  3   x4 1 y  ln    1  f ( x)  3 

opposite x  , then the adjacent hypotenuse 4

side is 16  x 2 . cos  

adjacent 16  x 2  hypotenuse 4

94.

Section 10.5 1. sin A cos B  cos A sin B 2. 2sin  cos 

The area of the left side of the semicircle is 1 A   r2 4 1 2 9  3   4 4 The area of the triangle under the line in Quadrant II is 1 A  bh 2 1 9  33  2 2 The area between the curves is 9 9    2.57 units 2 4 2

3.

1  cos  2

4.

1  cos  2

5. cot  2  

AC B

6. d 7. B 2  4 AC  0 8. c 9. True 10. False; cot  2   1078

Copyright © 2020 Pearson Education, Inc.

AC B


Section 10.5: Rotation of Axes; General Form of a Conic

11. x 2  4 x  y  3  0 A  1 and C  0; AC  (1)(0)  0 . Since AC  0 , the equation defines a parabola.

21. x 2  4 xy  y 2  3  0 A  1, B  4, and C  1; A  C 1 1 0 cot  2     0 B 4 4   2     2 4   x  x cos  y  sin 4 4 2 2 2  x  y   x  y   2 2 2   2 2 y  x sin  y  cos  x  y 4 4 2 2 2   x  y   2

12. 2 y 2  3 y  3x  0 A  0 and C  2; AC  (0)(2)  0 . Since AC  0 , the equation defines a parabola. 13. 6 x 2  3 y 2  12 x  6 y  0 A  6 and C  3; AC  (6)(3)  18 . Since AC  0 and A  C , the equation defines an ellipse.

14. 2 x 2  y 2  8 x  4 y  2  0 A  2 and C  1; AC  (2)(1)  2 . Since AC  0 and A  C , the equation defines an ellipse.

22. x 2  4 xy  y 2  3  0 A  1, B   4, and C  1; A  C 1 1 0 cot  2     0 B 4 4   2     2 4   2 2 x  x cos  y  sin  x  y 4 4 2 2 2   x  y   2   2 2 y  x sin  y  cos  x  y 4 4 2 2 2   x  y   2

15. 3 x 2  2 y 2  6 x  4  0 A  3 and C   2; AC  (3)( 2)   6 . Since AC  0 , the equation defines a hyperbola. 16. 4 x 2  3 y 2  8 x  6 y  1  0 A  4 and C   3; AC  (4)( 3)   12 . Since AC  0 , the equation defines a hyperbola.

17. 2 y 2  x 2  y  x  0 A  1 and C  2; AC  (1)(2)   2 . Since AC  0 , the equation defines a hyperbola. 18. y 2  8 x 2  2 x  y  0 A   8 and C  1; AC  ( 8)(1)   8 . Since AC  0 , the equation defines a hyperbola.

23. 5 x 2  6 xy  5 y 2  8  0 A  5, B  6, and C  5; AC 55 0 cot  2     0 B 6 6   2     2 4   2 2 x  x cos  y  sin  x  y 4 4 2 2 2   x  y   2   2 2 y  x sin  y  cos  x  y 4 4 2 2 2   x  y   2

19. x 2  y 2  8 x  4 y  0 A  1 and C  1; AC  (1)(1)  1 . Since AC  0 and A  C , the equation defines a circle.

20. 2 x 2  2 y 2  8 x  8 y  0 A  2 and C  2; AC  (2)(2)  4 . Since AC  0 and A  C , the equation defines a circle.

1079

Copyright © 2020 Pearson Education, Inc.


Chapter 10: Analytic Geometry

24. 3x 2  10 xy  3 y 2  32  0

26. 11x 2  10 3 xy  y 2  4  0

A  3, B  10, and C  3; AC 33 0 cot  2     0 B 10 10   2     2 4   2 2 x  x cos  y  sin  x  y 4 4 2 2 2   x  y   2   2 2 y  x sin  y  cos  x  y 4 4 2 2 2   x  y   2

A  11, B  10 3, and C  1; A  C 11  1 10 3    B 3 10 3 10 3   2     3 6 3 1   x  x cos  y  sin  x  y  6 6 2 2 1 3 x  y   2 3   1 y  x sin  y  cos  x  y 6 6 2 2 1  x  3 y  2

cot  2  

25. 13 x 2  6 3 xy  7 y 2  16  0

2 

6 3 A  C 13  7    B 3 6 3 6 3

cot  2  

 2   3 3

A  C 4 1 3 3    ; cos 2   B 4 4 5

 3 1     5  sin   2

  1 3 x  x cos  y  sin  x  y 3 3 2 2 1  x  3 y  2   3 1 y  x sin  y  cos  x  y  3 3 2 2 1  3x  y  2

27. 4 x 2  4 xy  y 2  8 5 x  16 5 y  0 A  4, B   4, and C  1;

A  13, B   6 3, and C  7; cot  2  

4 2 2 5   ; 5 5 5

 3 1     5  1  1  5 cos   2 5 5 5

x  x cos   y  sin  

5  x  2 y   5

y  x sin   y  cos   

1080

Copyright © 2020 Pearson Education, Inc.

5 2 5 x  y 5 5

5  2 x  y   5

2 5 5 x  y 5 5


Section 10.5: Rotation of Axes; General Form of a Conic

28. x 2  4 xy  4 y 2  5 5 y  5  0 A  1, B  4, and C  4; cot  2  

29. 25 x 2  36 xy  40 y 2  12 13 x  8 13 y  0 A  25, B   36, and C  40;

A  C 1 4 3 3    ; cos 2   B 4 4 5

 3 1     5  sin   2

cot  2  

4 2 2 5 ;   5 5 5

sin  

 3 1     5  1  1  5 cos   2 5 5 5

cos  

5 2 5 x  y 5 5

x  x cos   y  sin  

y  x sin   y  cos  

2 5 5 x  y 5 5

5 13  9  3  3 13 2 13 13 13

1

3 13 2 13 x  y 13 13

13  3 x  2 y   13

y  x sin   y  cos  

5  2 x  y   5

5 13  4  2  2 13 ; 2 13 13 13

1

x  x cos   y  sin  

5  x  2 y   5

A  C 25  40 5 5   ; cos 2  B  36 12 13

2 13 3 13 x  y 13 13

13  2 x  3 y   13

30. 34 x 2  24 xy  41 y 2  25  0 A  34, B   24, and C  41; cot  2  

A  C 34  41 7 7   ; cos  2   B  24 24 25 7 25  2

7 1 9 3 16 4 25  ; cos     sin   25 5 2 25 5 4 3 1 x  x  cos   y  sin   x  y    4 x  3 y   5 5 5 3 4 1 y  x  sin   y  cos   x  y    3 x  4 y   5 5 5 1

31. x 2  4 xy  y 2  3  0 ;   45º 2

y

2

 2   2  2   2   x  y     4   x  y      x  y      x  y     3  0   2   2  2   2  1 2 1 2 2 2 2 x  2 xy   y   2 x  y   x  2 xy   y 2  3  0 2 2 1 2 1 1 1 x  xy   y 2  2 x2  2 y 2  x2  xy   y 2  3 2 2 2 2 2 3 x   y 2  3

 

 

x 2 y 2  1 1 3 Hyperbola; center at the origin, transverse axis is the x -axis,

1081

Copyright © 2020 Pearson Education, Inc.

x'

3 y' (1, 0) –3

(–1, 0)

–3

x


Chapter 10: Analytic Geometry

vertices (±1, 0). 32. x 2  4 xy  y 2  3  0 ;   45º 2

y 3

2

 2   2  2   2   x  y     4   x  y      x  y       x  y     3  0   2   2  2   2  1 2 1 x  2 xy   y 2  2 x2  y 2  x2  2 xy   y 2  3  0 2 2 1 2 1 1 1 x  xy   y 2  2 x2  2 y 2  x2  xy   y 2  3 2 2 2 2 2  x   3 y 2  3

 

 

y'

x'

(0, 1)

x

–3

(0, –1)

3

–3

y 2 x  2  1 1 3 Hyperbola; center at the origin, transverse axis is the y  -axis, vertices (0, ±1).

33. 5 x 2  6 xy  5 y 2  8  0 ;   45º 2

y 3

2

 2   2  2   2  5   x  y     6   x  y     x  y     5   x  y     8  0 2 2 2 2        5 2 5 x  2 xy   y 2  3 x2  y 2  x2  2 xy   y 2  8  0 2 2 5 2 5 2 5 5 x  5 xy   y   3 x2  3 y 2  x2  5 xy   y 2  8 2 2 2 2 2 8 x   2 y 2  8

 

 

x'

y'

(0, 2) x –3

3 (0, –2)

x 2 y 2  1 1 4 Ellipse; center at the origin, major axis is the y  -axis, vertices (0, ±2).

–3

34. 3x 2  10 xy  3 y 2  32  0 ;   45º 2

y

2

 2   2  2   2  3   x  y     10   x  y      x  y    3   x  y     32  0  2   2  2   2  3 2 3 x   2 xy   y 2  5 x2  y 2  x2  2 xy   y 2  32  0 2 2 3 2 3 2 3 3 2 x   3 xy   y   5 x  5 y 2  x2  3xy   y 2  32 2 2 2 2 2  2 x   8 y 2  32

 

 

y 2 x  2  1 4 16 Hyperbola; center at the origin, transverse axis is the y  -axis, vertices (0, ±2).

1082

Copyright © 2020 Pearson Education, Inc.

x'

5

y' (0, 2)

x

–5

(0, –2)

–5

5


Section 10.5: Rotation of Axes; General Form of a Conic

35. 13x 2  6 3 xy  7 y 2  16  0 ;   60º

2

1  1  1 13  x   3 y    6 3  x   3 y    2  2  2 13 4



 2

  3x  y    7 

1



y

2

 3 x   y    16  0

(2, 0)

 x  2 3xy  3 y   2  3x  2 xy  3 y   4  3x  2 3xy  y   16 2

13 4

x 2 

3 3

2

13 3

x y  

2

39 4

y 2 

2

9 2

2

x 2  3 3 x y  

9 2

y 2 

7

21 4

2

x 2 

y'

2

7 3 2

7

x y  

4

x –3

y 2  16

3 (–2, 0)

4 x   16 y   16 2

2

x 2

Ellipse; center at the origin, major axis is the x -axis, vertices (±2, 0).

4

x'

3

y 2 1

–3

1

36. 11x 2  10 3 xy  y 2  4  0 ;   30º 1 11 2

2

2

 3x  y   10 3  12  3x  y   12  x  3 y    12  x  3 y   4  0

 

y 1

y'

11 5 3 1 3x2  2 3xy   y 2  3 x2  2 xy   3 y 2  x2  2 3 xy   3 y 2  4 4 2 4 33 2 11 3 11 2 15 2 15 2 1 2 3 3 x  xy   y   x  5 3xy   y   x  xy   y 2  4 4 2 4 2 2 4 2 4 2  16 x  4 y 2  4

x'

1, 0 2

x –1

1 – 1, 0

2

–1

4 x 2  y  2  1 x '2 y '2  1 1 1 4 Hyperbola; center at the origin, transverse axis is the x -axis, vertices   12 , 0  .

37. 4 x 2  4 xy  y 2  8 5 x  16 5 y  0 ;   63.4º 2

y 4

2

 5   5  5   5  4   x  2 y     4   x  2 y      2 x  y       2 x  y     5   5  5   5   5   5   8 5   x  2 y     16 5   2 x  y     0  5   5  4 2 4 1 x   4 xy   4 y 2  2 x2  3xy   2 y 2  4 x2  4 xy   y 2 5 5 5  8 x   16 y   32 x  16 y   0 4 2 16 16 2 8 2 12 8 4 4 1 x  xy   y   x  xy   y 2  x2  xy   y 2  40 x  0 5 5 5 5 5 5 5 5 5 5 y 2  40 x  0

 

 

y 2  8 x  Parabola; vertex at the origin, axis of symmetry is the x ' axis, focus at (2, 0).

1083

Copyright © 2020 Pearson Education, Inc.

y'

x'

(2, 0)

–4

4

–4

x


Chapter 10: Analytic Geometry

38. x 2  4 xy  4 y 2  5 5 y  5  0 ;   63.4º 2

2

 5   5  5   5   x  2 y     4   x  2 y      2 x  y     4   2 x  y      5   5  5   5   5   5 5   2 x  y    5  0  5  1 2 4 4 x  4 xy   4 y 2  2 x2  3 xy   2 y 2  4 x2  4 xy   y 2 5 5 5  10 x  5 y   5  0 1 2 4 4 8 12 8 16 16 4 x  xy   y 2  x2  xy   y 2  x2  xy   y 2 5 5 5 5 5 5 5 5 5  10 x   5 y   5  0

 

 

5 x2  10 x  5 y   5  0 x 2  2 x   1   y   1  1 ( x  1) 2   y  1  Parabola; vertex at (–1, 0), axis of symmetry parallel to the y  -axis; focus at  x ', y '    1,   . 4 

39. 25 x 2  36 xy  40 y 2  12 13 x  8 13 y  0 ;   33.7º 2

 13   13   13   13  25   3x  2 y     36   3x  2 y      2 x  3 y     40   2 x  3 y     13   13   13   13   13   13   12 13   3x  2 y     8 13   2 x  3 y     0  13   13  25 36 40 9 x2  12 xy   4 y 2  6 x2  5 xy   6 y 2  4 x2  12 xy   9 y 2 13 13 13  36 x   24 y   16 x  24 y   0

225 2 300 100 2 216 2 180 216 2 x  xy   y  x  xy   y 13 13 13 13 13 13 160 2 480 360 2  x  xy   y   52 x  0 13 13 13

1084

Copyright © 2020 Pearson Education, Inc.

2


Section 10.5: Rotation of Axes; General Form of a Conic

13x 2  52 y 2  52 x  0 x 2  4 x   4 y 2  0

 x   2  2  4 y 2  4 ( x   2) 2 y 2  1 4 1 Ellipse; center at (2, 0), major axis is the x -axis, vertices (4, 0) and (0, 0). y

5

y'

x' (2, 1) (4, 0) x –3

(2, –1) –1

40. 34 x 2  24 xy  41y 2  25  0 ;   36.9º 2

2

1  1  1  1  34   4 x   3 y     24   4 x  3 y      3x  4 y     41  3x  4 y     25  0 5  5  5  5  34 24 41 16 x 2  24 x y   9 y 2  12 x2  7 xy   12 y 2  9 x2  24 xy   16 y 2  25 25 25 25 544 2 816 306 2 288 2 168 288 2 369 2 984 656 2 x  x y   y  x  xy   y  x  xy   y   25 25 25 25 25 25 25 25 25 25 25 x 2  50 y 2  25

x 2  2 y  2  1

Ellipse; center at the origin, major axis is the x -axis, vertices (±1, 0). y 2 y' x' (1, 0) –2

x 2

(–1, 0) –2

1085

Copyright © 2020 Pearson Education, Inc.

x '2 y ' 2  1 1 1 2


Chapter 10: Analytic Geometry

41. 16 x 2  24 xy  9 y 2  130 x  90 y  0 A  16, B  24, and C  9; cot  2  

A  C 16  9 7 7    cos  2   B 24 24 25

7 25  2

7 1 9 3 25  16  4    36.9o sin    ; cos   25 5 2 25 5 4 3 1 x  x  cos   y  sin   x  y    4 x  3 y   5 5 5 3 4 1 y  x  sin   y  cos   x  y    3 x  4 y   5 5 5 1

2

2

1  1  1  1  16   4 x  3 y     24   4 x  3 y      3 x  4 y     9   3 x  4 y    5  5  5  5  1  1   130   4 x   3 y     90   3x  4 y     0 5 5     16 24 2 2 2 2 16 x   24 xy   9 y   12 x  7 xy   12 y  25 25 9 9 x2  24 xy   16 y 2  104 x   78 y   54 x  72 y   0  25 256 2 384 144 2 288 2 168 288 2 x  xy   y  x  xy   y 25 25 25 25 25 25 81 2 216 144 2  x  xy   y   50 x  150 y   0 25 25 25 25 x 2  50 x   150 y   0

x 2  2 x    6 y  ( x  1) 2   6 y   1 1  ( x  1) 2   6  y    6  4  1  Parabola; vertex  1,  , focus 1,   ; axis of symmetry parallel to the y ' axis. 3  6 

y'

y 5

1, 1 6

x' x

–5

1, – 4 3

1086

Copyright © 2020 Pearson Education, Inc.


Section 10.5: Rotation of Axes; General Form of a Conic

42. 16 x 2  24 xy  9 y 2  60 x  80 y  0 A  16, B  24, and C  9; cot  2  

7 A  C 16  9 7    cos  2   24 24 25 B

7 25  2

7 1 9 3 25  16  4    36.9  ; cos   sin   25 5 2 25 5 4 3 1 x  x cos   y  sin   x  y    4 x  3 y   5 5 5 3 4 1 y  x sin   y  cos   x  y    3 x  4 y   5 5 5 1

2

2

1  1  1  1  16   4 x  3 y     24   4 x  3 y      3x  4 y     9   3x  4 y    5  5  5  5  1  1   60   4 x   3 y     80   3x  4 y     0 5 5     16 24 16 x 2  24 xy   9 y 2  12 x2  7 xy   12 y 2 25 25 9 9 x 2  24 xy   16 y 2  48 x  36 y   48 x  64 y   0  25 256 2 384 144 2 288 2 168 288 2 x  xy   y  x  xy   y 25 25 25 25 25 25 81 2 216 144 2  x  xy   y   100 y   0 25 25 25 25 x2  100 y   0

x 2   4 y  Parabola; vertex (0, 0), axis of symmetry is the y ' axis, focus (0, –1).

y'

y 2

x'

x –2

2 (0, –1) –2

43. A  1, B  3, C   2

B 2  4 AC  32  4(1)( 2)  17  0 ; hyperbola

44. A  2, B  3, C  4

B 2  4 AC  (3) 2  4(2)(4)   23  0 ; ellipse

45. A  1, B  7, C  3

B 2  4 AC  (7) 2  4(1)(3)  37  0 ; hyperbola

46. A  2, B  3, C  2

B 2  4 AC  (3) 2  4(2)(2)   7  0 ; ellipse

47. A  9, B  12, C  4

B 2  4 AC  122  4(9)(4)  0 ; parabola

1087

Copyright © 2020 Pearson Education, Inc.


Chapter 10: Analytic Geometry

48. A  10, B  12, C  4

B 2  4 AC  122  4(10)(4)  16  0 ; ellipse

49. A  10, B  12, C  4

B 2  4 AC  (12) 2  4(10)(4)  16  0 ; ellipse

50. A  4, B  12, C  9

B 2  4 AC  122  4(4)(9)  0 ; parabola

51. A  3, B   2, C  1

B 2  4 AC  ( 2) 2  4(3)(1)   8  0 ; ellipse

52. A  3, B  2, C  1

B 2  4 AC  22  4(3)(1)   8  0 ; ellipse

21 21 x  21 y 2  171 y  324  0 2 A  C 4  21 17 17 A  4, B  4 21, and C  21; cot  2      cos  2   B 4 21 4 21 4 21

53. 4 x 2  4 21xy 

 17  2  cot 1    47.58  4 21    23.6

54. 20 x 2  10 xy 

19 48 x  89 y 2  89 y  0 2 5

A  20, B  10, and C  89; cot  2  

A  C 20  89 69 69    cos  2   B 10 10 10

 69  2  cot 1    8.25  10    4.1

55. A  A cos 2   B sin  cos   C sin 2  B   B (cos 2   sin 2  )  2(C  A)(sin  cos  ) C   A sin 2   B sin  cos   C cos 2  D  D cos   E sin  E    D sin   E cos  F  F

 

56. A  C   A cos 2   B sin  cos   C sin 2   A sin 2   B sin  cos   C cos 2 

 

 A cos 2   sin 2   C sin 2   cos 2   A(1)  C (1)  A  C

1088

Copyright © 2020 Pearson Education, Inc.


Section 10.5: Rotation of Axes; General Form of a Conic

57. B '2  [ B(cos 2   sin 2  )  2(C  A) sin  cos  ]2  [ B cos 2  ( A  C ) sin 2 ]2  B 2 cos 2 2  2 B( A  C ) sin 2 cos 2  ( A  C ) 2 sin 2 2 4 A ' C '  4[ A cos 2   B sin  cos   C sin 2  ][ A sin 2   B sin  cos   C cos 2  ]

1 cos 2    1 cos 2  1 cos 2   sin 2   B  4  A  1 cos 2   B  sin 2   C A C   2     2   2 2  2   2   [ A(1  cos 2 )  B(sin 2 )  C (1  cos 2 )][ A(1  cos 2 )  B (sin 2 )  C (1  cos 2 )]  [( A  C )  B sin 2  ( A  C ) cos 2 ][( A  C )  ( B sin 2  ( A  C ) cos 2 )]

 ( A  C ) 2  [ B sin 2  ( A  C ) cos 2 ]2  ( A  C ) 2  [ B 2 sin 2 2  2 B( A  C ) sin 2 cos 2  ( A  C ) 2 cos 2 2 ] B '2  4 A ' C '  B 2 cos 2 2  2 B ( A  C ) sin 2 cos 2  ( A  C ) 2 sin 2 2  ( A  C ) 2  B 2 sin 2 2  2 B( A  C ) sin 2 cos 2  ( A  C ) 2 cos 2 2  B 2 (cos 2 2  sin 2 2 )  ( A  C ) 2 (cos 2 2  sin 2 2 )  ( A  C ) 2  B 2  ( A  C ) 2  ( A  C ) 2  B 2  ( A2  2 AC  C 2 )  ( A2  2 AC  C 2 )  B 2  4 AC

58. Since B 2  4 AC  B 2  4 AC  for any rotation  (Problem 55), choose  so that B   0 . Then B 2  4 AC   4 AC  .

a.

If B 2  4 AC   4 AC   0 then AC   0 . Using the theorem for identifying conics without completing the square, the equation is a parabola.

b. If B 2  4 AC   4 AC   0 then AC   0 . Thus, the equation is an ellipse (or circle). c.

If B 2  4 AC   4 AC   0 then AC   0 . Thus, the equation is a hyperbola.

59. d 2  ( y2  y1 ) 2  ( x2  x1 ) 2   x2 sin   y2 cos   x1 sin   y1 cos     x2 cos   y2 sin   x1 cos   y1 sin   2

   x2  x1  sin    y2  y1  cos      x2  x1  cos    y2  y1  sin   2

2

  x2  x1  sin 2   2  x2  x1  y2  y1  sin  cos    y2  y1  cos 2  2

2

  x2  x1  cos 2   2  x2  x1  y2  y1  sin  cos    y2  y1  sin 2  2

2

  x2  x1  sin 2   cos 2    y2  y1  cos 2   sin 2  2

  x2  x1    y2  y1  2

2

2

1089

Copyright © 2020 Pearson Education, Inc.

2


Chapter 10: Analytic Geometry z  r  cos   i sin    29  cos 291.8º  i sin 291.8º 

60. x1/ 2  y1/ 2  a1/ 2 1/ 2

y

1/ 2

a

1/ 2

x

y  a1/ 2  x1/ 2

1/ 2 1/ 2

y  a  2a

x

(4 x  1)  3(2 x  3)  2  (2 x  3)  8(4 x  1)  8 x 2

2

67. x

2a1/ 2 x1/ 2  (a  x)  y 2

4ax  (a  x)  2 y (a  x)  y

61 – 62. Answers will vary. 63. a  7, b  9, c  11 a  b  c  2bc cos A cos A 

9  11  7 153 b c a   2bc 2(9)(11) 198 2

2

2

2

68.

 

2(4 x 2  1)7 (2 x  3) 2  (12 x 2  3  64 x 2  96 x) 

2(2 x  3)2  3  52 x 2  96 x 

(4 x 2  1)16 (4 x 2  1)16 (4 x 2  1)9 2(2 x  3) 2 52 x 2  3  96 x  (4 x 2  1)9

f ( x)  4e x 1  5

Using the graph of y  4e x 1 , shift the graph down 5 units. Horizontal Asymptote: y  5 69. log 5 x  log 5 ( x  4)  1

b 2  a 2  c 2  2ac cos B 89 a 2  c 2  b 2 7 2  112  92   2ac 2(7)(11) 154

log 5 ( x( x  4))  1 5  x ( x  4)

 89   54.7º B  cos   154  1

5  x2  4 x x2  4x  5  0

C  180o  A  B  180o  39.4o  54.7 o  85.9o

( x  5)( x  1)  0 x  5 or x  1 We cannot use the negative answer since the domain of the log function must be positive. So the solutions set is 5 .

1 64. A  ab sin C 2 1  (14)(11) sin 30 2  38.5 65. xy  1

(r cos  )(r sin  )  1 r 2 cos  sin   1

66. r 

2

2

 153   39.4º A  cos 1   198 

cos B 

7

2(4 x 2  1)7 (2 x  3) 2 3(4 x 2  1)  32 x(2 x  3) 



2

2

2

 (4 x 2  1)8 

B 2  4 AC  ( 2) 2  4(1)(1)  4  4  0 The graph of the equation is part of a parabola.

2

3

 (4 x 2  1)8  6  (4 x 2  1)8 (2 x  3) 2  64 x(2 x  3)3 (4 x 2  1)7

0  x 2  2 xy  y 2  2ax  2ay  a 2

2

2

2

4ax  a 2  2ax  x 2  2ay  2 xy  y 2

2

8

x 2  y 2  22  (  5) 2  29 y 5  x 2   291.8º The polar form of z  2  5i is tan  

1090

Copyright © 2020 Pearson Education, Inc.


Section 10.6: Polar Equations of Conics

equation and complete the square in x. x2  6 x  y2  0

70. The minimum occurs when x 1  0 2 x  25 2 x x  25 2

 x  6x  9  y  9 2

1 2

 x  32  y 2  9

2 x  x 2  25

3. conic; focus; directrix

4 x  x  25

4. parabola; hyperbola; ellipse

2

2

3 x 2  25

5. b

25 5  x 3 3 From substitution we see that the positive answer only is acceptable. The minimum value is

6. True 7. e  1; p  1 ; parabola; directrix is perpendicular to the polar axis and 1 unit to the right of the pole.

2

 5  1 5     25  2  8  0 3  3 

8. e  1; p  3 ; parabola; directrix is parallel to the polar axis and 3 units below the pole.

 5   25   3   25   4  0   2 3  100  5   4 0 3  2 3

9.

10  5  4   8.33 3  2 3

71. Find the inverse of g(x). x  y7 2 x2 

2

y7

( x  2) 2  y  7 ( x  2) 2  7  y  g 1 ( x) g 1 (3)  (3  2)2  7

4 4  2  3sin   3  2  1  sin    2  2  3 1  sin  2 3 4 ep  2, e  ; p  2 3 Hyperbola; directrix is parallel to the polar axis 4 and units below the pole. 3 r

2 ; ep  2, e  2; p  1 1  2 cos  Hyperbola; directrix is perpendicular to the polar axis and 1 unit to the right of the pole.

10. r 

 12  7  8

Section 10.6 1. r cos  ; r sin  2. r  6 cos  Begin by multiplying both sides of the equation by r to get r 2  6r cos  . Since r cos   x and r 2  x 2  y 2 , we obtain x 2  y 2  6 x . Move all the variable terms to the left side of the

1091

Copyright © 2020 Pearson Education, Inc.


Chapter 10: Analytic Geometry

11.

12.

3 1  sin  ep  3, e  1, p  3 Parabola; directrix is parallel to the polar axis 3  3 3  units below the pole; vertex is  ,  . 2 2 

3 3  4  2 cos   1  4 1  cos    2  3 4 ;  1 1  cos  2 3 1 3 ep  , e  ; p  4 2 2 Ellipse; directrix is perpendicular to the polar 3 axis and units to the left of the pole. 2 r

14. r 

6 6  1 8  2sin    8 1  sin    4  3 4  1 1  sin  4 3 ep  4

r

8 4  3sin  8 2 r   3  1  3 sin  4  1  sin   4  4  3 8 ep  2, e  , p  4 3

15. r 

1 e ; p3 4 Ellipse; directrix is parallel to the polar axis and 3 units above the pole.

Ellipse; directrix is parallel to the polar axis

8 3

units above the pole; vertices are 8   3   ,  and  8,  . 7 2  2 

1 1  cos  ep  1, e  1, p  1 Parabola; directrix is perpendicular to the polar axis 1 unit to the right of the pole; vertex is 1   , 0 . 2 

13. r 

1 8  32 so the center is at Also: a   8    2 7 7 32 3   24 3  24 24   8  7 , 2    7 , 2  , and c  7  0  7     so that the second focus is at  24 24 3   48 3   7  7 , 2  7 , 2      Directrix

8   7, 2   

y

(2, )

(2, 0)

 3   8, 2   

1092 Copyright © 2020 Pearson Education, Inc.

Polar x Axis


Section 10.6: Polar Equations of Conics

10 5  4 cos  10 2 r   4  1  4 cos  5  1  cos   5  5  4 5 ep  2, e  , p  5 2 Ellipse; directrix is perpendicular to the polar 5 axis units to the right of the pole; vertices are 2  10   , 0  and 10,   . 9  1 10  50 so the center is at Also: a   10    2 9 9 50   40  40 40  10  9 ,     9 ,   , and c  9  0  9 so     that the second focus is at  40 40   80   9  9 ,    9 ,  .    

16. r 

 2,    2  

y

12 4  8sin  12 3 r  4 1  2sin   1  2sin 

18. r 

3 2 Hyperbola; directrix is parallel to the polar axis 3 units above the pole; vertices are 2 3     1,  and  3,  . 2   2  1 Also: a   3  1  1 so the center is at 2    3    1  1, 2    2, 2  [or  2, 2  ], and       c  2  0  2 so that the second focus is at    3     2  2, 2    4, 2  [or  4, 2  ].       ep  3, e  2, p 

Directrix

Polar x Axis

(10, )

 3   2, 2   

 10 ,0   9   

9 3  6 cos  9 3 r  3 1  2 cos   1  2 cos 

17. r 

3 2 Hyperbola; directrix is perpendicular to the polar 3 axis units to the left of the pole; vertices are 2  3, 0  and 1,   . ep  3, e  2, p 

1  3  1  1 so the center is at 2 1  1,     2,   [or  2, 0  ], and c  2  0  2

Also: a 

so that the second focus is at  2  2,     4,   [or  4, 0  ].

1093

Copyright © 2020 Pearson Education, Inc.


Chapter 10: Analytic Geometry

8 2  sin  8 4 r   1  1  1 sin  2  1  sin   2  2  1 ep  4, e  , p  8 2 Ellipse; directrix is parallel to the polar axis 8 units below the pole; vertices are    8 3   8,  and  ,  . 2   3 2  1 8  16 so the center is at Also: a   8    2 3 3 8 8  16    8    8  3 , 2    3 , 2  , and c  3  0  3 so that      8 8    16   the second focus is at   ,    ,  . 3 3 2   3 2 

 8 8   16   16   3  3 , 0    3 , 0  [or   3 ,   ].      

19. r 

6 3  2sin  6 2 r  2  2  3 1  sin   1  sin  3 3  

21. r  3  2sin    6  r 

2 , p3 3 Ellipse; directrix is parallel to the polar axis 3 units below the pole; vertices are    6 3   6,  and  ,  .  2 5 2  1 6  18 so the center is at Also: a   6    2 5 5 12 12  18    12    6  5 , 2    5 , 2  , and c  5  0  5 so     that the second focus is at  12 12    24    5  5 ,2 5 ,2.     ep  2, e 

8 2  4 cos  8 4  r 2 1  2 cos   1  2 cos 

20. r 

ep  4, e  2, p  2 Hyperbola; directrix is perpendicular to the polar axis 2 units to the right of the pole; vertices are 4   , 0  and   4,   . 3  1 4 4 Also: a   4    so the center is at 2 3 3 4 4  8   8   3  3 , 0    3 , 0  [or   3 ,   ], and       8 8 c   0  so that the second focus is at 3 3

1094

Copyright © 2020 Pearson Education, Inc.


Section 10.6: Polar Equations of Conics

 6  4, 0    2, 0  , and c  2  0  2 so that the second focus is at  2  2, 0    4, 0  .

2 2  cos  2 1 r   1  1  1 cos  2  1  cos   2  2 

22. r  2  cos    2  r 

1 , p2 2 Ellipse; directrix is perpendicular to the polar axis 2 units to the left of the pole; vertices are 2  2, 0  and  ,   . 3  1 2 4 Also: a   2    so the center is at 2 3 3 4  2  2 2   2  3 , 0    3 , 0  , and c  3  0  3 so that     2 2  4  the second focus is at   , 0    , 0  . 3 3  3  ep  1, e 

 1  3 3  3csc  sin    sin  24. r    1 1  sin  csc   1 1 sin  sin  3 sin 3         sin    1  sin   1  sin  ep  3, e  1, p  3 Parabola; directrix is parallel to the polar axis 3  3 3  units below the pole; vertex is  ,  . 2 2 

 1  6 6  6sec  cos    cos  23. r    2  cos  2sec   1  1  2  1 cos   cos   6  6  cos       cos   2  cos   2  cos  6 3 r  1  1  2  1  cos   1  cos  2 2  

1 1  cos  r  r cos   1

25. r 

1 ep  3, e  , p  6 2 Ellipse; directrix is perpendicular to the polar axis 6 units to the left of the pole; vertices are  6, 0  and  2,   .

Also: a 

r  1  r cos  r 2  (1  r cos  ) 2 x 2  y 2  (1  x) 2

1  6  2   4 so the center is at 2

x2  y2  1  2 x  x2 y2  2x 1  0

1095

Copyright © 2020 Pearson Education, Inc.


Chapter 10: Analytic Geometry

3 1  sin  r  r sin   3

30. r 

26. r 

r  3  r sin  r  (3  r sin  ) 2 2

12 4  8sin  4r  8r sin   12 4r  12  8r sin  r  3  2r sin  r 2  (3  2r sin  ) 2

x 2  y 2  (3  y ) 2

x 2  y 2  (3  2 y ) 2

x2  y 2  9  6 y  y2

x 2  y 2  9  12 y  4 y 2

x2  6 y  9  0

x 2  3 y 2  12 y  9  0

8 27. r  4  3sin  4r  3r sin   8 4r  8  3r sin 

31. r 

16r 2  (8  3r sin  ) 2

8 2  sin  2r  r sin   8 2r  8  r sin  4r 2  (8  r sin  ) 2

16( x 2  y 2 )  (8  3 y ) 2

4( x 2  y 2 )  (8  y )2

16 x 2  16 y 2  64  48 y  9 y 2

4 x 2  4 y 2  64  16 y  y 2

16 x 2  7 y 2  48 y  64  0

4 x 2  3 y 2  16 y  64  0

10 28. r  5  4 cos  5r  4r cos   10 5r  10  4r cos 

32. r 

8 2  4 cos  2 r  4 r cos   8 2 r  8  4 r cos 

25r 2  (10  4r cos  ) 2 25( x 2  y 2 )  (10  4 x)2

r  4  2r cos 

25 x 2  25 y 2  100  80 x  16 x 2

r  (4  2 r cos  ) 2 2

x 2  y 2  (4  2 x) 2

9 x 2  25 y 2  80 x  100  0

x 2  y 2  16  16 x  4 x 2

29. r 

9 3  6 cos  3 r  6 r cos   9 3 r  9  6 r cos  r  3  2r cos 

3x 2  y 2  16 x  16  0

33. r (3  2sin  )  6 3 r  2 r sin   6 3 r  6  2 r sin 

r 2  (3  2 r cos  ) 2 2

2

x  y  (3  2 x)

9 r 2  (6  2 r sin  ) 2

2

9( x 2  y 2 )  (6  2 y ) 2

x 2  y 2  9  12 x  4 x 2

9 x 2  9 y 2  36  24 y  4 y 2

3x 2  y 2  12 x  9  0

9 x 2  5 y 2  24 y  36  0

1096

Copyright © 2020 Pearson Education, Inc.


Section 10.6: Polar Equations of Conics 34. r (2  cos  )  2 2r  r cos   2 2r  2  r cos 

ep 1  e cos  4 e ; p3 5 12 12 5 r  4 1  cos  5  4 cos  5

39. r 

4r 2  (2  r cos  ) 2 4( x 2  y 2 )  (2  x)2 4 x2  4 y 2  4  4 x  x2 3x 2  4 y 2  4 x  4  0

ep 1  e sin  2 e ; p3 3 2 6  r 2   3 2sin 1  sin  3

6sec  2sec   1 6 r 2  cos  2r  r cos   6 2r  6  r cos 

40. r 

r

35.

4r 2  (6  r cos  ) 2

ep 1  e sin  e  6; p  2 12 r 1  6sin 

4( x 2  y 2 )  (6  x) 2

41. r 

4 x 2  4 y 2  36  12 x  x 2 3x 2  4 y 2  12 x  36  0

36. r 

3csc  csc   1

ep 1  e cos  e  5; p  5 25 r 1  5cos 

42. r 

3 r 1  sin  r  r sin   3 r  3  r sin  r  (3  r sin  ) 2 2

43. Consider the following diagram:

x 2  y 2  (3  y ) 2

P = ( r, )

x2  y 2  9  6 y  y2 2

x  6y 9  0 

ep 1  e sin  e  1; p  1

r

d( D, P)

r

37. r 

Pole O (Focus F)

1 1  sin 

Q p

d ( F , P )  e  d ( D, P ) d ( D, P )  p  r cos  r  e( p  r cos  ) r  ep  er cos  r  e r cos   ep r (1  e cos  )  ep ep r 1  e cos 

ep 1  e sin  e  1; p  2 2 r 1  sin 

38. r 

1097

Copyright © 2020 Pearson Education, Inc.

Directrix D

Polar Axis


Chapter 10: Analytic Geometry 44. Consider the following diagram:

46. r 

Directrix D

1  0.206 cos  At aphelion, the greatest distance from the sun, cos   1 .

d( D, P) P = ( r,  )

p

r

r

Polar Axis

Q

Pole O (Focus F)

r

4 107

4  107

1.155 1  0.967 cos  At aphelion, the greatest distance from the sun, cos   1 . 1.155 1.155 r  1  0.967(1) 0.794  35 AU At perihelion, the shortest distance from the sun, cos   1 . 1.155 1.155 r  1  0.967(1) 1.967  0.587 AU

47. r 

d (D , P) Q

6  107

6  107

P = ( r,  )

(3.442)107 (3.442)107  1  0.206(1) 1.206

 2.854  107 miles

45. Consider the following diagram:

Pole O (Focus F)

(3.442)107 (3.442)107  1  0.206(1) 0.794

 4.335  107 miles At perihelion, the shortest distance from the sun, cos   1 .

d ( F , P )  e  d ( D, P ) d ( D, P )  p  r sin  r  e( p  r sin  ) r  ep  er sin  r  e r sin   ep r (1  e sin  )  ep ep r 1  e sin 

r

 3.442 107

Polar Axis

p Directrix D

d ( F , P )  e  d ( D, P ) d ( D, P )  p  r sin  r  e( p  r sin  ) r  ep  er sin  r  e r sin   ep r (1  e sin  )  ep ep r 1  e sin 

1098

Copyright © 2020 Pearson Education, Inc.


Section 10.6: Polar Equations of Conics

M (1  e) m(1  e)   M  Me  m  me e e M m  M  m  e( M  m )  e  M m M m M 1  M  m  M ( M  m  M  m)   p M m M m M m M (2m) 2mM   M m M m

0.8 0.8 gives r    0.4 so 2 1  sin 2 2 the vertex (peak) is 0.4 inches above the focus. Since the focus is at the pole (0,0), the vertex is  0, a    0, 0.4  . The parabola is concave down

48. Letting  

so  x  h   4a  y  k  . So, 2

x 2  1.6  y  0.4  . The water hits the ground

when x  4 , so 42  1.6  y  0.4  10  y  0.4 y  9.6 The water hits the ground 9.6 inches below the focus. This is, the base of the tank is 9.6 inches below the focus. The puncture is at the vertex, so the puncture is 9.6 + 0.4 = 10 inches above the base of the tank.

49. Letting   

 2

gives r 

51.

GM e 1 1  GM e   1  ; Using cos   2  r r0  r0 v0  r0 v0 2 r

ep and the fact that e  1 , if the 1  e cos 

graph is a parabola, r

250  125 so 1  sin   2 

p 1 1  cos  1 cos  . or    1  cos  r p p p

Comparing to the giving trajectory equation, it must be that 1  1 

the vertex is 125 meters above the focus. Since the focus is at the pole (0,0), the vertex is  0, a    0, 125  . The parabola is concave up

p

r0

GM e and r0 v0 2

1 GM e . Equating the two expressions gives  p r0 v0 2

so we have  x  h   4a  y  k  . So, 2

1 GM e GM e 1 2GM e . So and    2 r0 r0 v0 2 r r0 v0 r0 v0 2 0

x 2  500  y  125  . The right end of the board is

located at x  2.5 , so

v0 2 

 2.5   500  y  125  2

0.0125  y  125 y  124.9875 The vertex is at (0, -125) and the right end of the board is at (0, -124.9875) so the displacement at the center is 0.0125 meters.

2GM e . Using the positive solution, the r0

escape velocity is ve 

2GM e . r0

52. a  7, b  8, c  10 1 1 s   a  b  c    7  8  10  12.5 2 2 K  s ( s  a)( s  b)( s  c)

ep M (1  e) so p  ; 1 e e ep m(1  e) so p  m 1 e e

50. M 

12.5 5.5 4.5 2.5 

 27.81

1099

Copyright © 2020 Pearson Education, Inc.

773.4375


Chapter 10: Analytic Geometry

1  53. y  4 cos  x 5 

60.

Ampl: 4  4; Period:

2 1

f ( x)  a ( x  3) 2  8  10

5  a ((0)  3) 2  8 1 3  9a  a   3 1 2 f ( x)   ( x  3)  8 3

5

54. 2 cos 2 x  cos x  1  0 (2 cos x  1)(cos x  1)  0 (2 cos x  1)  0 or (cos x  1)  0 1 cos x  or cos x  1 2 x

f ( x )  a ( x  h) 2  k

61. The figure is a trapezoid so we can find the length of each end and use the area formula for a trapezoid. The left side has a length or 3 (the yint) and the right side has a length of 1 f (8)  (8)  3  7. The area of the trapezoid is 2 1 1 (b1  b2 )h  (3  7)8  5(8)  40 sq units 2 2

 5

, , 3 3

  5  The solution set is  , ,   . 3 3 

55. For v  10i  24 j , v  (10) 2  ( 24) 2  676  26 .

56.

Section 10.7

s  r 7 14  r 12 12 24   14  ft r   7 

1.

3  3;

2   4 2

2. plane curve; parameter 3. b

57. First find k. 1  e k (15) 2 1 ln  15k 2 1 ln k  2  0.04621 15

4. a 5. False; for example: x  2 cos t , y  3sin t define the same curve as in problem 3. 6. True 7. x(t )  3t  2, y (t )  t  1, 0  t  4 x  3( y  1)  2 x  3y  3  2 x  3 y 1 x  3y 1  0

0.4  e 0.04621t ln 0.4  0.04621t ln 0.4 k  19.83 yrs 0.04621

58. Constant: none Decreasing:  1, 0

Increasing:  2, 1 and  0,   59.

2 5  k 6 5 k  12  k 

12 5

1100

Copyright © 2020 Pearson Education, Inc.


Section 10.7: Plane Curves and Parametric Equations 8. x(t )  t  3, y (t )  2t  4, 0  t  2 y  2( x  3)  4 y  2x  6  4 y  2 x  10 2 x  y  10  0

11. x(t )  t 2  4, y (t )  t 2  4,    t   y  ( x  4)  4 y  x 8 For   t  0 the movement is to the left. For 0  t   the movement is to the right.

9. x(t )  t  2, y (t )  t , t  0

12. x(t )  t  4, y (t )  t  4, t  0 y  x  4 4  x 8

y  x2

13. x(t )  3t 2 , y (t )  t  1 ,    t   x  3( y  1) 2

10. x(t )  2t , y (t )  4t , t  0  x2  y  4    2 x 2 , x  0  2 

1101

Copyright © 2020 Pearson Education, Inc.


Chapter 10: Analytic Geometry

17. x(t )  t , y (t )  t 3/2 , t  0

14. x(t )  2t  4, y (t )  4t 2 ,    t  

 

2

2  x4 y  4    x  4  2 

y  x2 y  x3

15. x(t )  2et , y (t )  1  et , t  0 x y  1 2 2y  2  x

18. x(t )  t 3/ 2  1, y (t )  t , t  0

 

x  y2

3/ 2

1

x  y3  1

19. x(t )  2 cos t , y (t )  3sin t , 0  t  2

16. x(t )  et , y (t )  e t , t  0

y  x 1 

3/ 2

x  cos t 2

1 x

2

2

y  sin t 3

x  y 2 2       cos t  sin t  1 2  3 x2 y 2  1 4 9

1102

Copyright © 2020 Pearson Education, Inc.


Section 10.7: Plane Curves and Parametric Equations 20. x(t )  2 cos t , y (t )  3sin t , 0  t   x  cos t 2 2

22. x(t )  2 cos t , y (t )  sin t , 0  t 

y  sin t 3

x  cos t 2

2

x  y 2 2       cos t  sin t  1 2 3     x2 y 2  1 4 9

2

2

y0

x2  y2  1 4

y  sin t 3

x y  1 4 9

 4

sec2 t  1  tan 2 t

2

2

x  0, y  0

23. x(t )  sec t , y (t )  tan t , 0  t 

x  y 2 2       cos t  sin t  1 2  3 2

y  sin t

2 x 2 2     y   cos t  sin t  1 2  

21. x(t )  2 cos t , y (t )  3sin t ,    t  0 x  cos t 2

 2

x2  1  y2 x2  y 2  1

1  x  2, 0  y  1

y0

24. x(t )  csc t , y (t )  cot t ,

  t 4 2

csc2 t  1  cot 2 t x2  1  y2 x2  y 2  1

1  x  2, 0  y  1

y

2,1

1

(1, 0)

1103

Copyright © 2020 Pearson Education, Inc.

1

x


Chapter 10: Analytic Geometry 36. x(t )  t  1, y (t )  t  2; 0  t  4

25. x(t )  sin 2 t , y (t )  cos 2 t , 0  t  2 2

2

sin t  cos t  1 x  y 1

37. x(t )  3cos t , y (t )  2sin t ; 0  t  2 38.     x(t )  cos   t  1  , y (t )  4sin   t  1  ; 0  t  2 2 2    

39. Since the motion begins at (2, 0), we want x = 2 and y = 0 when t = 0. For the motion to be clockwise, we must have x positive and y negative initially. x  2 cos  t  , y  3sin  t 

26. x(t )  t 2 , y (t )  ln t , t  0 y  ln x 1 y  ln x 2

2

 2  

x  2 cos  t  , y  3sin  t  , 0  t  2

40. Since the motion begins at (0, 3), we want x = 0 and y = 3 when t = 0. For the motion to be counter-clockwise, we need x negative and y positive initially. x   2sin  t  , y  3cos  t  2

 27. x(t )  t , y (t )  4t  1; x(t ) 

28. x(t )  t , y (t )   8t  3; x(t ) 

x   2sin  2t  , y  3cos  2t  , 0  t  1

t 1 , y (t )  t 4

41. Since the motion begins at (0, 3), we want x = 0 and y = 3 when t = 0. For the motion to be clockwise, we need x positive and y positive initially. x  2sin t  , y  3cos t 

3t , y (t )  t 8

29. x(t )  t , y (t )  t 2  1

2

x(t )  t 3 , y (t )  t 6  1

x(t )  t 3 , y (t )   2 t 6  1

42. Since the motion begins at (2, 0), we want x = 2 and y = 0 when t = 0. For the motion to be counter-clockwise, we need x positive and y positive initially. x  2 cos t  , y  3sin t 

x(t )  3 t , y  t

32. x(t )  t , y (t )  t 4  1

 1    2

x  2sin  2t  , y  3cos  2t  , 0  t  1

30. x(t )  t , y (t )   2 t 2  1

31. x(t )  t , y  t 3

 1    2

x(t )  t 3 , y (t )  t12  1 3

2

2  3  2   2  x  2 cos  t  , y  3sin  t  , 0  t  3  3   3 

2

33. x(t )  t , y (t )  t 3 , t  0; x(t )  t , y (t )  t , t  0 2

34. x(t )  t , y (t )  t 2 , t  0; x(t )  t , y (t )  t , t  0

 3 

35. x(t )  t  2, y (t )  t ; 0  t  5 1104

Copyright © 2020 Pearson Education, Inc.


Section 10.7: Plane Curves and Parametric Equations

43. C1

44. C1

C2

C2

C3 C3

C4 C4

45. x(t )  t sin t , y (t )  t cos t 7

–7

11

–5

1105

Copyright © 2020 Pearson Education, Inc.


Chapter 10: Analytic Geometry 46. x(t )  sin t  cos t , y (t )  sin t  cos t 2

c.

3

–3

–2

The maximum height occurs at the vertex of the quadratic function. b 50 t   1.5625 seconds 2a 2(16) Evaluate the function to find the maximum height: 16(1.5625) 2  50(1.5625)  6  45.0625 The maximum height is 45.0625 feet.

d. We use x  3 so that the line is not on top of the y-axis. 50

47. x(t )  4sin t  2sin(2t ) y (t )  4 cos t  2 cos(2t ) 3.5 –7.5

7.5

0 –6.5

50. a.

48. x(t )  4sin t  2sin(2t ) y (t )  4 cos t  2 cos(2t ) 6

–9

5 0

Use equations (1): x(t )   40 cos 90º  t  0 1  32  t 2   40sin 90º  t  5 2  16t 2  40t  5

y (t )  

9

b. The ball is in the air until y  0 . Solve: 16t 2  40t  5  0

–6

49. a.

t

Use equations (1): x(t )   50 cos 90º  t  0

 40  1920   0.12 or 2.62 32 The ball is in the air for about 2.62 seconds. (The negative solution is extraneous.) 

1  32  t 2   50sin 90º  t  6 2  16t 2  50t  6

y (t )  

c.

b. The ball is in the air until y  0 . Solve: 16t 2  50t  6  0 t

 40  402  4(16)(5) 2(16)

50  502  4(16)(6) 2(16)

50  2884 32   0.12 or 3.24 The ball is in the air for about 3.24 seconds. (The negative solution is extraneous.) 

The maximum height occurs at the vertex of the quadratic function. b 40 t   1.25 seconds 2a 2(16) Evaluate the function to find the maximum height: 16(1.25) 2  40(1.25)  5  30 The maximum height is 30 feet.

1106

Copyright © 2020 Pearson Education, Inc.


Section 10.7: Plane Curves and Parametric Equations d. We use x  3 so that the line is not on top of the y-axis. 40

0

52. Let y1  1 be the bus’s path and y2  5 be Jodi’s path. a. Bus: Using the hint, 1 x1 (t )  (3)t 2  1.5 t 2 2 y1 (t )  1

5

0

Jodi: x2 (t )  5(t  2) y2 (t )  3

51. Let y1  1 be the train’s path and y2  5 be Bill’s path. a.

b. Jodi will catch the bus if x1  x2 .

Train: Using the hint, 1 x1 (t )  (2)t 2  t 2 2 y1 (t )  1

1.5 t 2  5(t  2) 1.5 t 2  5t  10 1.5 t 2  5 t  10  0 Since b 2  4ac  (5) 2  4(1.5)(10) ,  25  60  35  0 the equation has no real solution. Thus, Jodi will not catch the bus.

Bill: x2 (t )  5(t  5) y2 (t )  5

b. Bill will catch the train if x1  x2 .

c.

t 2  5(t  5) t 2  5t  25 t 2  5 t  25  0 Since b 2  4ac  (5) 2  4(1)(25) ,  25  100  75  0 the equation has no real solution. Thus, Bill will not catch the train.

c.

y

53. a.

10 t7

5

y (t )  

t  10 t 5

Use equations (1): x(t )  145cos 20º  t

50

Bill t  10

100

1  32  t 2  145sin 20º  t  5 2

b. The ball is in the air until y  0 . Solve: 16 t 2  145sin 20º  t  5  0

Train x

t

145sin 20º 

145sin 20º 2  4(16)(5) 2( 16)

  0.10 or 3.20 The ball is in the air for about 3.20 seconds. (The negative solution is extraneous.)

1107

Copyright © 2020 Pearson Education, Inc.


Chapter 10: Analytic Geometry c.

Find the horizontal displacement: x  145cos 20º  3.20   436 feet

e.

x  125cos 40º  t y  16 t 2  125sin 40º  t  3 120

d. The maximum height occurs at the vertex of the quadratic function. b 145sin 20º t   1.55 seconds 2a 2(16) Evaluate the function to find the maximum height:

500

0 60

16 1.55   145sin 20º  (1.55)  5  43.43 2

55. a.

The maximum height is about 43.43 feet.

Use equations (1): x(t )   40 cos 45º  t  20 2t 1  9.8  t 2   40sin 45º  t  300 2  4.9t 2  20 2t  300

y (t )  

e. 250

b. The ball is in the air until y  0 . Solve: 0

 4.9t 2  20 2t  300  0

440 –50

54. a.

t

Use equations (1): x(t )  125cos 40º  t

b. The ball is in the air until y  0 . Solve:

c.

16 t 2  125sin 40º  t  3  0 t

2

2( 4.9)

Find the horizontal displacement:

x  20 2 11.23  317.6 meters

125 sin 40º 2  4(16)(3)

2(16)   0.037 or 5.059

d. The maximum height occurs at the vertex of the quadratic function. 20 2 b t   2.89 seconds 2a 2( 4.9) Evaluate the function to find the maximum height:

The ball is in the air for about 5.059 sec. (The negative solution is extraneous.) c.

 20 2   4( 4.9)(300)

 5.45 or 11.23 The ball is in the air for about 11.23 seconds. (The negative solution is extraneous.)

y (t )  16 t 2  125sin 40º  t  3

125 sin 40º 

 20 2 

Find the horizontal displacement: x  125cos 40º  5.059   484.41 feet

 4.9  2.89   20 2  2.89   300 2

 340.8 meters

d. The maximum height occurs at the vertex of the quadratic function. b 125sin 40º t   2.51 seconds 2a 2(16) Evaluate the function to find the maximum height:

e. 350

16  2.51  125 sin 40º  2.51  3  103.87 2

The maximum height is about 103.87 feet.

0

400 0

1108

Copyright © 2020 Pearson Education, Inc.


Section 10.7: Plane Curves and Parametric Equations 56. a.

Use equations (1): x(t )   40 cos 45º  t  20 2t

57. a.

1 1 y (t )     9.8  t 2   40sin 45º  t  300 2 6 4.9 2  t  20 2 t  300 6

b. The ball is in the air until y  0 . Solve:

4.9 2 t  20 2t  300  0 6

2

d B

b. Let d represent the distance between the cars. Use the Pythagorean Theorem to find

Find the horizontal displacement:

(0,0)

P

 4.9   20 2  20 2  4    (300)  6  t   4.9  2   6    8.51 or 43.15 The ball is in the air for about 43.15 seconds. (The negative solution is extraneous.)

c.

At t  0 , the Camry is 5 miles from the intersection (at (0, 0)) traveling east (along the x-axis) at 40 mph. Thus, x  40t  5 , y  0 , describes the position of the Camry as a function of time. The Impala, at t  0 , is 4 miles from the intersection traveling north (along the y-axis) at 30 mph. Thus, x  0 , y  30t  4 , describes the position of the Impala as a function of time.

the distance: d  (40t  5) 2  (30t  4) 2 .

x  20 2  43.15   1220.5 meters

c.

d. The maximum height occurs at the vertex of the quadratic function. b 20 2 t   17.32 seconds 2a   4.9  2   6  Evaluate the function to find the maximum height: 4.9  17.32 2  20 2 17.32   300 6  544.9 meters

Note this is a function graph not a parametric graph.

d. The minimum distance between the cars is 0.2 miles and occurs at 0.128 hours (7.68 min). e.

e. 700

y

0

1300

5

–100

Impala

t  0.25

t  0.125

t  0.25 Camry

t0 t  0.125 t0

1109

Copyright © 2020 Pearson Education, Inc.

5

x


Chapter 10: Analytic Geometry 58. a.

At t  0 , the Boeing 747 is 550 miles from the intersection (at (0, 0)) traveling west (along the x-axis) at 600 mph. Thus, x   600t  550 , y  0 , describes the position of the Boeing 747 as a function of time. The Cessna, at t  0 , is 100 miles from the intersection traveling south (along the y-axis) at 120 mph. Thus, x  0 , y  120t  100 describes the position of the Cessna as a function of time.

c.

Note this is a function graph not a parametric graph.

b.

C

d. The minimum distance between the planes is 9.8 miles and occurs at 0.913 hours (54.8 min). e.

d

y

B

t  0 200

Let d represent the distance between the planes. Use the Pythagorean Theorem to find the distance: 2

t  56

t  56 t0

500

Boeing 747

2

d  ( 600t  550)  (120t  100) . Cessna

59. a.

1 We start with the parametric equations x(t )   v0 cos   t and y (t )   gt 2   v0 sin   t  h . 2 2 We are given that   45 , g  32 ft/sec , and h  3 feet. This gives us 2 1 2 v0 t  3 v0 t ; y (t )    32  t 2   v0 sin 45  t  3  16t 2  2 2 2 where v0 is the velocity at which the ball leaves the bat. x(t )   v0  cos 45  t 

b.

Letting v0  90 miles/hr  132 ft/sec , we have 2 132  t  3  16t 2  66 2 t  3 2 66 2 33 2   2.9168 sec The height is maximized when t   2  16  16 y (t )  16t 2 

y  16  2.9168   66 2  2.9168   3  139.1 2

The maximum height of the ball is about 139.1 feet. c.

From part (b), the maximum height is reached after approximately 2.9168 seconds.  2 x(t )   v0 cos   t  132    2.9168   272.25 2   The ball will reach its maximum height when it is approximately 272.25 feet from home plate. 1110

Copyright © 2020 Pearson Education, Inc.

x

(0,0)


Section 10.7: Plane Curves and Parametric Equations d. The ball will reach the left field fence when x  310 feet. x   v0 cos   t  66 2 t 310  66 2 t t

310

 3.3213 sec 66 2 Thus, it will take about 3.3213 seconds to reach the left field fence.

y  16  3.3213  66 2  3.3213  3  136.5 2

Since the left field fence is 37 feet high, the ball will clear the Green Monster by 136.5  37  99.5 feet. 60. a.

x(t )   v0 cos   t , t

y (t )   v0 sin   t  16t 2

x v0 cos

 x   x  y  v0 sin     16    v0 cos    v0 cos  16 y  (tan  ) x  2 x2 v0 cos 2 

2

y is a quadratic function of x; its graph is a parabola with a 

16 , b  tan  , and c  0 . v0 cos 2  2

y0

b.

 v0 sin   t  16t 2  0 t  v0 sin   16t   0 t  0 or v0 sin   16t  0 v sin  t 0 16

c.

 v sin   v0 sin(2 ) x(t )   v0 cos   t   v0 cos    0 feet  32  16 

d.

x y

2

 v0 cos   t   v0 sin   t  16t 2 16t 2   v0 cos   t   v0 sin   t  0 t 16t   v0 cos     v0 sin     0 t  0 or 16t   v0 cos     v0 sin    0 v0 sin   v0 cos  v0   sin   cos   16 16 v0 At t   sin   cos   : 16 t

2 v  v x  v0 cos   0  sin   cos     0 cos   sin   cos    16  16

y

v0 2  cos 2   sin  cos  16

 (recall we want x  y )

1111

Copyright © 2020 Pearson Education, Inc.


Chapter 10: Analytic Geometry

2

v 2  v2 x  y  2  0 cos   sin   cos     0 2 cos   sin   cos    16  16   Note: since  must be greater than 45 ( sin   cos   0 ), thus absolute value is not needed. _________________________________________________________________________________________________ 2

2

61. x   x2  x1  t  x1 ,

62. a.

y   y2  y1  t  y1 ,    t  

x(t )  cos3 t , y (t )  sin 3 t , 0  t  2

1

x  x1 t x2  x1

–1.5

 x  x1  y   y2  y1     y1  x2  x1  y y  y  y1   2 1   x  x1   x2  x1 

1.5

–1

This is the two-point form for the equation of a line. Its orientation is from  x1, y1  to  x2 , y2  .

b.

  y 

cos 2 t  sin 2 t  x1/ 3

2

1/ 3 2

x2 / 3  y2 / 3  1

63. The line connecting  R,0  and  x, y  and slope m 

y0 y  so y  m( x  R) . The line intersects the x  ( R) x  R

circle so substitute this expression for y in the equation for the circle x 2  y 2  R 2 : x 2   m( x  R )   R 2 2

x 2  m 2 ( x  R )2  R 2 x 2  m 2 ( x 2  2 xR  R 2 )  R 2 x 2  m 2 x 2  2m2 xR  m 2 R 2  R 2 (1  m 2 ) x 2  2m 2 xR  R 2 ( m2  1)  0

Using the quadratic formula gives x 

2m 2 R  (2m 2 R )2  4(1  m 2 ) R 2 (m 2  1) 2

2(1  m )

2m 2 R  4m 4 R 2  4 R 2 (m 4  1) 2(1  m 2 )

2m 2 R  4 R 2 2m 2 R  2 R  m 2 R  R   2(1  m 2 ) 2(1  m 2 ) (1  m 2 )

So x 

 m 2 R  R  R (m 2  1)  m 2 R  R R (1  m 2 ) The first value is for the fixed point, so the second    R or x   2 2 (1  m ) (1  m ) (1  m 2 ) (1  m 2 )

value is for the other point. x ( m) 

R (1  m 2 ) Using this for x in y  m( x  R) gives (1  m 2 )

 R  Rm 2   R  Rm 2  R  Rm 2   2 R  2mR  R   m  y  m    m   2 2 1  1  1  m2  1  m2 m m      2mR ,   m  . y ( m)  1  m2

Thus x( m) 

1112

Copyright © 2020 Pearson Education, Inc.

R (1  m 2 ) , (1  m 2 )


Section 10.7: Plane Curves and Parametric Equations

64. The slope of the line containing (1,1) and (x,y) is m 

y 1 , so m  x  1  y  1 or y  mx  m  1 . Substitute this x 1

expression for y in y  x 2 . mx  m  1  x 2  x 2  mx  (m  1)  0 . Using the quadratic formula gives x

( m)  ( m)2  4  1  m  1) m  m 2  4m  4 m  ( m  2)2 m  (m  2)    2(1) 2 2 2

So x

m  (m  2) m  (m  2) 2m  2  1 or x    m 1 2 2 2

The first value is from the fixed point, so the second value is from the other point. Thus, x(m)  m  1 . Substituting this expression for x in y  x 2 gives y  (m  1)2 . Thus x(m)  m  1 , y  (m  1)2 ,   m   .

65 – 66. Answers will vary.

69.

67. 3x  4 y  8 4 y  3 x  8 3 y  x2 4

  cos 1 

3960   3960  248 

 0.345032 radians s1  r  3960(0.345032)  1366.3 miles Total distance  s1  s2 x 68. y  2 cos  2 x   sin , 2

 1366.3  1366.3  2733 miles 0  x  2

70. d  2 cos(4 t ) a. Simple harmonic b. 2 meters c.

 seconds 2

d.

2 oscillation/second 

1113 Copyright © 2020 Pearson Education, Inc.


Chapter 10: Analytic Geometry 74. log5 (7  x)  log 5 (3 x  5)  log 5 (24 x) log5  (7  x )(3 x  5)   log 5 (24 x)

71. Dividing: 11 2x  2 2x  1 4 x2  9 x  7

(7  x)(3x  5)  24 x 16 x  3x 2  35  24 x

  4x  2x  2

3 x 2  8 x  35  0

 11x  7

(3 x  7)( x  5)  0

11     11x   2 

7 x  , x  5 3

25 2 11 25 P( x)  2 x   2 2  2 x  1

We cannot use the negative value since we cannot take the log of a negative value. So the 7  solution set is  3  .  

Thus, the oblique asymptote is y  2 x 

72.

f ( x) 

11 . 2

75.

1 x3

1 1  f ( x  h)  f ( x ) x  h  3 x  3  h h x  3   x  3  h  x  h  3 x  3  h  x  3 x  3 h  1         x  h  3 x  3   h    1  h        x  h  3 x  3   h  1   x  h  3 x  3

As h  0

1

1

 x  h  3 x  3  x  0  3 x  3 

1 3  1 3  (2)  1   (0)  1 f (b)  f (a)  4  4   20 ba  2  1   0  1  2 3 1  1 2 3 2 c 1 4 4 c2  3

c 

1

 x  32

1 2  3 2       2 2  2  2 1 4

2 3



2 3 3

The only answer that is in the interval  0, 2 is 2 3 c 3 .

73. cos 285º  cos  240º  45º   cos 240º  cos 45º  sin 240º  sin 45º



4 3

 2  6   6 4 2 1114 Copyright © 2020 Pearson Education, Inc.


Chapter 10 Review Exercises

Chapter 10 Review Exercises

a  2, b  8  2 2 . Find the value of c: c 2  a 2  b 2  2  8  10

1. y 2  16 x This is a parabola. a4 Vertex: (0, 0) Focus: (–4, 0) Directrix: x  4 2.

c  10 Center: (0, 0)

  2, 0 ,  2, 0 Foci:   10, 0  ,  10, 0  Vertices:

x2  y2  1 25 This is a hyperbola. a  5, b  1 . Find the value of c: c 2  a 2  b 2  25  1  26

Asymptotes: y  2 x; y  2 x 6. x 2  4 x  2 y This is a parabola. Write in standard form: x2  4 x  4  2 y  4

c  26 Center: (0, 0) Vertices: (5, 0), (–5, 0)

Foci:

 26, 0 ,   26, 0

Asymptotes: y  3.

( x  2) 2  2( y  2) 1 a 2 Vertex: (2, –2) 3  Focus:  2,   2  5 Directrix: y   2

1 1 x; y   x 5 5

y 2 x2  1 25 16 This is an ellipse. a  5, b  4 . Find the value of c: c 2  a 2  b 2  25  16  9 c3 Center: (0, 0) Vertices: (0, 5), (0, –5) Foci: (0, 3), (0, –3)

7. y 2  4 y  4 x 2  8 x  4 This is a hyperbola. Write in standard form: ( y 2  4 y  4)  4( x 2  2 x  1)  4  4  4 ( y  2) 2  4( x  1) 2  4 ( y  2) 2 ( x  1) 2  1 4 1 a  2, b  1 . Find the value of c:

4. x 2  4 y  4 This is a parabola. Write in standard form: x2   4 y  4 x 2   4( y  1) a 1 Vertex: (0, 1) Focus: (0, 0)

c2  a 2  b2  4  1  5 c 5 Center: (1, 2) Vertices: (1, 0), (1, 4)

 

Foci: 1, 2  5 , 1, 2  5 Directrix:

y2

Asymptotes: y  2  2( x  1); y  2   2( x  1)

5. 4 x 2  y 2  8 This is a hyperbola. Write in standard form: x2 y 2  1 2 8 1115 Copyright © 2020 Pearson Education, Inc.


Chapter 10: Analytic Geometry

8. 4 x 2  9 y 2  16 x  18 y  11 This is an ellipse. Write in standard form: 4 x 2  9 y 2  16 x  18 y  11 4( x 2  4 x  4)  9( y 2  2 y  1)  11  16  9 2

2

2

2

4( x  2)  9( y  1)  36 ( x  2) ( y  1)  1 9 4 a  3, b  2 . Find the value of c:

11. Parabola: The focus is (–2, 0) and the directrix is x  2 . The vertex is (0, 0). a = 2 and since (–2, 0) is to the left of (0, 0), the parabola opens to the left. The equation of the parabola is: y 2   4ax y2   4  2  x y 2   8x

c 2  a 2  b2  9  4  5  c  5 Center: (2, 1); Vertices: (–1, 1), (5, 1)



Foci: 2  5, 1 , 2  5, 1

9. 4 x 2  16 x  16 y  32  0 This is a parabola. Write in standard form: 4( x 2  4 x  4)  16 y  32  16

12. Hyperbola: Center: (0, 0); Focus: (0, 4); Vertex: (0, –2); Transverse axis is the y-axis; a  2; c  4 . Find b: b 2  c 2  a 2  16  4  12

4( x  2) 2  16( y  1) ( x  2) 2   4( y  1)

a 1 Vertex: (2, –1); Focus:  2,  2  ;

b  12  2 3

Directrix: y  0

Write the equation:

10. 9 x 2  4 y 2  18 x  8 y  23 This is an ellipse. Write in standard form: 9( x 2  2 x  1)  4( y 2  2 y  1)  23  9  4 9( x  1) 2  4( y  1) 2  36 ( x  1)2 ( y  1) 2  1 4 9 a  3, b  2 . Find the value of c: c2  a 2  b2  9  4  5

c 5 Center: (1, –1) Vertices: (1, –4), (1, 2)

Foci:

1,  1  5  , 1,  1  5 

1116 Copyright © 2020 Pearson Education, Inc.

y 2 x2  1 4 12


Chapter 10 Review Exercises 13. Ellipse: Foci: (–3, 0), (3, 0); Vertex: (4, 0); Center: (0, 0); Major axis is the x-axis; a  4; c  3 . Find b:

Write the equation:

( x  2) 2 ( y  3) 2  1 1 3

b 2  a 2  c 2  16  9  7 b 7

Write the equation:

x2 y 2  1 16 7

16. Ellipse: Foci: (–4, 2), (–4, 8); Vertex: (–4, 10); Center: (–4, 5); Major axis is parallel to the yaxis; a  5; c  3 . Find b: b 2  a 2  c 2  25  9  16

14. Parabola: The focus is (2, –4) and the vertex is (2, –3). Both lie on the vertical line x  2 . a = 1 and since (2, –4) is below (2, –3), the parabola opens down. The equation of the parabola is: ( x  h) 2   4a ( y  k )

 b4 2

Write the equation:

( x  4) ( y  5) 2  1 16 25

( x  2) 2   4 1  ( y  (3)) ( x  2) 2   4( y  3)

17. Hyperbola: Center: (–1, 2); a  3; c  4 ; Transverse axis parallel to the x-axis; Find b: b 2  c 2  a 2  16  9  7  b  7

Write the equation:

15. Hyperbola: Center: (–2, –3); Focus: (–4, –3); Vertex: (–3, –3); Transverse axis is parallel to the x-axis; a  1; c  2 . Find b: b2  c 2  a 2  4  1  3 b 3

1117 Copyright © 2020 Pearson Education, Inc.

( x  1) 2 ( y  2) 2  1 9 7


Chapter 10: Analytic Geometry 18. Hyperbola: Vertices: (0, 1), (6, 1); Asymptote: 3 y  2 x  9  0 ; Center: (3, 1); Transverse axis is parallel to the x-axis; a  3 ; The slope of the 2 Find b: asymptote is  ; 3 b b  2    3b   6  b  2 a 3 3

Write the equation:

20. x 2  2 y 2  4 x  8 y  2  0 A  1 and C  2; AC  (1)(2)  2 . Since AC  0 and A  C , the equation defines an ellipse. 21. 9 x 2  12 xy  4 y 2  8 x  12 y  0 A  9, B  12, C  4

( x  3) 2 ( y  1) 2  1 9 4

B 2  4 AC  (12) 2  4(9)(4)  0 Parabola 22. 4 x 2  10 xy  4 y 2  9  0 A  4, B  10, C  4 B 2  4 AC  102  4(4)(4)  36  0 Hyperbola

23. x 2  2 xy  3 y 2  2 x  4 y  1  0 A  1, B   2, C  3 B 2  4 AC  ( 2) 2  4(1)(3)   8  0 Ellipse

19. y 2  4 x  3 y  8  0 A  0 and C  1; AC  (0)(1)  0 . Since AC  0 , the equation defines a parabola.

_________________________________________________________________________________________________ 24. 2 x 2  5 xy  2 y 2 

9 0 2

AC 22     0  2    B 5 2 4 2 2 2 x  x 'cos   y 'sin   x ' y'   x ' y ' 2 2 2 2 2 2 y  x 'sin   y 'cos   x ' y'   x ' y ' 2 2 2 A  2, B  5, and C  2; cot  2  

2

2

 2   2  2   2  9 2   x ' y '   5   x ' y '    x ' y '   2   x ' y '    0  2   2  2   2  2 5 9 x '2  2 x ' y ' y '2  x '2 ' y '2  x '2  2 x ' y ' y '2   0 2 2 2 2 9 2 1 2 9 x ' y ' x '  y '   9 x '2  y '2  9   1 2 2 2 1 9

 

 

Hyperbola; center at (0, 0), transverse axis is the x'-axis, vertices at  x ', y '    1, 0  ; foci at  x ', y '    10, 0 ;

1118 Copyright © 2020 Pearson Education, Inc.


Chapter 10 Review Exercises

asymptotes: y '  3x ' .

25. 6 x 2  4 xy  9 y 2  20  0 A  6, B  4, and C  9; cot  2  

AC 69 3 3    cos  2    B 4 4 5

  3    3  1    5   1    5   4 2 5 1 5             63.4º sin   ; cos    2 5 5 2 5 5 5 2 5 5 x ' y'   x ' 2 y ' 5 5 5 2 5 5 5 y  x 'sin   y 'cos   x ' y'   2 x ' y ' 5 5 5

x  x 'cos   y 'sin  

2

2

 5   5  5   5  6   x ' 2 y '   4   x ' 2 y '   2 x ' y '   9   2 x ' y '   20  0   5   5  5   5  6 2 4 9 2 2 2 2 2 x '  4 x ' y ' 4 y '  2 x '  3 x ' y ' 2 y '  4 x '  4 x ' y ' y '  20  0 5 5 5 6 2 24 24 2 8 2 12 8 2 36 2 36 9 x'  x ' y ' y '  x '  x ' y ' y '  x '  x ' y ' y '2  20 5 5 5 5 5 5 5 5 5 2 2 x ' y ' 10 x '2  5 y '2  20   1 2 4

 

 

Ellipse; center at the origin, major axis is the y'-axis, vertices at  x ', y '    0, 2  ; foci at  x ', y '   0,  2 .

1119 Copyright © 2020 Pearson Education, Inc.


Chapter 10: Analytic Geometry

26. 4 x 2  12 xy  9 y 2  12 x  8 y  0 A  4, B  12, and C  9; cot  2  

5 AC 49 5    cos  2   12 12 13 B

5 5   1  1    4 2 13 9 3 13 13  13  sin      ; cos         33.7º 2 13 13 2 13 13 x  x 'cos   y 'sin  

3 13 2 13 13 x ' y'   3x ' 2 y ' 13 13 13

y  x 'sin   y 'cos  

2 13 3 13 13 x ' y'   2 x ' 3 y ' 13 13 13

2

 13   13   13   13  4   3x ' 2 y '   12   3x ' 2 y '    2 x ' 3 y '   9   2 x ' 3 y '   13   13   13   13 

2

 13   13   12   3x ' 2 y '   8   2 x ' 3 y '   0  13   13  4 12 9 9 x '2  12 x ' y ' 4 y '2  6 x '2  5 x ' y ' 6 y '2  4 x '2  12 x ' y ' 9 y '2 13 13 13

36 13 24 13 16 13 24 13 x ' y ' x ' y'  0 13 13 13 13 36 2 48 16 2 72 2 60 72 2 36 2 108 81 2 x'  x ' y ' y'  x '  x ' y ' y'  x'  x ' y ' y '  4 13x '  0 13 13 13 13 13 13 13 13 13 

13 y '2  4 13 x '  0

y '2  

4 13 x' 13

Parabola; vertex at the origin, focus at  x ', y '    13 , 0 . 13

4 1  cos  ep  4, e  1, p  4 Parabola; directrix is perpendicular to the polar axis 4 units to the left of the pole; vertex is  2,   .

27. r 

1120 Copyright © 2020 Pearson Education, Inc.


Chapter 10 Review Exercises

6 3  2  sin   1  1  sin    2  1 ep  3, e  , p  6 2 Ellipse; directrix is parallel to the polar axis 6 units below the pole; vertices are    3     6,  and  2,  . Center at  2, 2  ; other 2 2      

28. r 

  focus at  4,  .  2

4 1  cos  r  r cos   4

30. r 

r  4  r cos  r  (4  r cos  ) 2 2

x 2  y 2  (4  x) 2 x 2  y 2  16  8 x  x 2 y 2  8 x  16  0

31. r 

8 4  8cos  4r  8r cos   8 4r  8  8r cos  r  2  2r cos  r 2  (2  2r cos  ) 2 x 2  y 2  (2  2 x )2 x2  y 2  4  8x  4 x2

3x 2  y 2  8 x  4  0

8 2  4  8cos  1  2 cos  ep  2, e  2, p  1 Hyperbola; directrix is perpendicular to the polar axis 1 unit to the right of the pole; vertices are 2  4   , 0  and   2,   . Center at  3 , 0  ; other   3  8   focus at   ,   .  3 

29. r 

32. x(t )  4t  2, y (t )  1  t ,    t  

x  4(1  y )  2 x  4  4y  2 x  4y  2

1121 Copyright © 2020 Pearson Education, Inc.


Chapter 10: Analytic Geometry 33. x(t )  3sin t , y (t )  4 cos t  2, 0  t  2 x y2  sin t ,  cos t 3 4 sin 2 t  cos 2 t  1 2

2

 x  y2     1 3  4 

36.

x y  cos  t  ;  sin  t  4 3 2 2   4  4  2     4 2  x y         cos  t  ;  sin  t  4 2  3 2       x(t )  4 cos  t  ; y (t )  3sin  t  , 0  t  4 2   2 

x 2 ( y  2) 2  1 9 16

37. Write the equation in standard form: x2 y 2 4 x 2  9 y 2  36   1 9 4 The center of the ellipse is (0, 0). The major axis is the x-axis. a  3; b  2; c 2  a 2  b 2  9  4  5  c  5. For the ellipse: Vertices: (–3, 0), (3, 0);

Foci: 34. x(t )  sec 2 t , y (t )  tan 2 t , 0  t 

 4

  5, 0 ,  5, 0

For the hyperbola: Foci: (–3, 0), (3, 0); Vertices:

  5, 0 ,  5, 0 ;

Center: (0, 0) a  5; c  3; b2  c 2  a 2  9  5  4  b  2

The equation of the hyperbola is:

38. Let ( x, y ) be any point in the collection of points. The distance from

tan 2 t  1  sec 2 t  y  1  x

35. Answers will vary. One example: y  2 x  4 x(t )  t , y (t )  2t  4 x(t ) 

4t , y (t )  t 2

x2 y 2  1 5 4

( x, y ) to (3, 0)  ( x  3) 2  y 2 . The distance from 16 16 ( x, y ) to the line x  is x  . 3 3 Relating the distances, we have: 3 16 ( x  3) 2  y 2  x 4 3 ( x  3) 2  y 2  x2  6 x  9  y 2 

1122 Copyright © 2020 Pearson Education, Inc.

9  16  x  16  3

2

9  2 32 256  x  x  16  3 9 


Chapter 10 Review Exercises

16 x 2  96 x  144  16 y 2  9 x 2  96 x  256 7 x 2  16 y 2  112 7 x 2 16 y 2  1 112 112 x2 y2  1 16 7 The set of points is an ellipse.

39. Locate the parabola so that the vertex is at (0, 0) and opens up. It then has the equation: x 2  4ay . Since the light source is located at the focus and is 1 foot from the base, a  1 . Thus, x 2  4 y . The width of the opening is 2, so the point (1, y) is located on the parabola. Solve for y: 12  4 y  1  4 y  y  0.25 feet The mirror is 0.25 feet, or 3 inches, deep. 40. Place the semi-elliptical arch so that the x-axis coincides with the water and the y-axis passes through the center of the arch. Since the bridge has a span of 60 feet, the length of the major axis is 60, or 2a  60 or a  30 . The maximum height of the bridge is 20 feet, so b  20 . The x2 y2   1. 900 400 The height 5 feet from the center: 52 y2  1 900 400 25 y2  1 400 900 875 y 2  400   y  19.72 feet 900 The height 10 feet from the center: 102 y2  1 900 400 y2 100  1 400 900 800 y 2  400   y  18.86 feet 900

equation is:

The height 20 feet from the center: 202 y 2  1 900 400 y2 400  1 400 900 500 y 2  400   y  14.91 feet 900 41. First note that all points where an explosion could take place, such that the time difference would be the same as that for the first detonation, would form a hyperbola with A and B as the foci. Start with a diagram: N

D2

(1000, 0)

D1

A

(0, 0) ( a, 0)

(1000, y)

(1000, 0) B

2000 feet

Since A and B are the foci, we have 2c  2000 c  1000 Since D1 is on the transverse axis and is on the hyperbola, then it must be a vertex of the hyperbola. Since it is 200 feet from B, we have a  800 . Finally, b 2  c 2  a 2  10002  8002  360, 000 Thus, the equation of the hyperbola is y2 x2  1 640, 000 360, 000 The point 1000, y  needs to lie on the graph of the hyperbola. Thus, we have

1000 2 640, 000

y2 1 360, 000

y2 9  360, 000 16 y 2  202,500

y  450 The second explosion should be set off 450 feet due north of point B.

1123 Copyright © 2020 Pearson Education, Inc.


Chapter 10: Analytic Geometry 42. a.

Train: x1  3 t 2 ; 2 Let y1  1 for plotting convenience. Mary: x2  6(t  2);

height:

16(1.43) 2   80 sin  35º   (1.43)  6  38.9 ft

d. Find the horizontal displacement: x   80 cos  35º   (2.99)  196 feet

(or roughly 65.3 yards)

Let y2  3 for plotting convenience.

b.

Since b 2  4ac  ( 4) 2  4(1)(8)  16  32  16  0 the equation has no real solution. Thus, Mary will not catch the train. c.

t2



50

44. Answers will vary.

Chapter 10 Test t 3

t4

10

1.

Mary

t3

t2

t4

20

Train

x

Use equations (1) in section 9.7. x   80 cos  35º   t 1 y   (32) t 2   80sin  35º   t  6 2

b. The ball is in the air until y  0 . Solve: 16 t 2   80sin  35º   t  6  0 t

80 sin  35º  

 80 sin  35º    4(16)(6) 2

2(16)

 45.89  2489.54 32   0.13 or 2.99 The ball is in the air for about 2.99 seconds. (The negative solution is extraneous.) 

c.

50

y 5

43. a.

e.

Mary will catch the train if x1  x2 . 3 t 2  6(t  2) 2 3 t 2  6t  12 2 t2  4t  8  0

The maximum height occurs at the vertex of the quadratic function. b 80sin  35º  t   1.43 seconds 2a 2(16) Evaluate the function to find the maximum

 x  12

y2 1 4 9 Rewriting the equation as 

 x   1    y  0 2  1 , we see that this is the 2

22 32 equation of a hyperbola in the form

 x  h 2  y  k 2

  1 . Therefore, we have a2 b2 h  1 , k  0 , a  2 , and b  3 . Since a 2  4 and b 2  9 , we get c 2  a 2  b 2  4  9  13 , or c  13 . The center is at  1, 0  and the

transverse axis is the x-axis. The vertices are at  h  a, k    1  2, 0  , or  3, 0  and 1, 0  .

The foci are at  h  c, k   1  13, 0 , or

 1  13, 0 and  1  13, 0 . The asymptotes are y  0   y

3 3  x   1  , or y   2  x  1 and 2

3  x  1 . 2

1124 Copyright © 2020 Pearson Education, Inc.


Chapter 10 Test

focus is a  1.5 . Because the focus lies above the vertex, we know the parabola opens upward. As a result, the form of the equation is

2. 8 y   x  1  4 2

Rewriting gives ( x  1) 2  8 y  4

 x  h 2  4a  y  k  where  h, k    1,3 and a  1.5 . Therefore,

  1  ( x  1) 2  8  y       2   1    x  1  4(2)  y      2    This is the equation of a parabola in the form 2

 x  h 2  4a  y  k  . Therefore, the axis of symmetry is parallel to the y-axis and we have 1  h, k   1,   and a  2 . The vertex is at 2  1  h, k   1,   , the axis of symmetry is x  1 , 2  1    3 the focus is at  h, k  a    1,   2    1,  , 2    2 and the directrix is given by the line y  k  a ,

the equation is

 x  12  4 1.5 y  3  x  12  6  y  3 The points  h  2a, k  , that is  4, 4.5  and  2, 4.5  , define the lattice rectum; the line y  1.5 is the directrix.

5 or y   . 2

3. 2 x 2  3 y 2  4 x  6 y  13 Rewrite the equation by completing the square in x and y. 2 x 2  3 y 2  4 x  6 y  13

2 x 2  4 x  3 y 2  6 y  13

vertex  0, 4  is a  4 . Then,

2

b 2  a 2  c 2  42  32  16  9  7 The form of the equation is

2  x  1  3  y  1  18 2

2

 x  h 2  y  k 2

 x   1    y  1  1 2

2

9 6 This is the equation of an ellipse with center at  1,1 and major axis parallel to the x-axis.

Since a 2  9 and b 2  6 , we have a  3 , b  6 , and c 2  a 2  b 2  9  6  3 , or

Since the center, focus, and vertex all lie on the line x  0 , the major axis is the y-axis. The distance from the center  0, 0  to a focus  0,3 is c  3 . The distance from the center  0, 0  to a

   2  x  2 x  1  3  y  2 y  1  13  2  3 2 x 2  2 x  3 y 2  2 y  13

2

5. The center is  h, k    0, 0  so h  0 and k  0 .

c  3 . The foci are  h  c, k   1  3,1 or

 1  3,1 and  1  3,1 . The vertices are at  h  a, k    1  3,1 , or  4,1 and  2,1 . 4. The vertex  1,3 and the focus  1, 4.5  both

lie on the vertical line x  1 (the axis of symmetry). The distance a from the vertex to the

 1 b2 a2 where h  0 , k  0 , a  4 , and b  7 . Thus, we get x2 y 2  1 7 16 To graph the equation, we use the center  h, k    0, 0  to locate the vertices. The major

axis is the y-axis, so the vertices are a  4 units above and below the center. Therefore, the vertices are V1   0, 4  and V2   0, 4  . Since c  3 and the major axis is the y-axis, the foci are 3 units above and below the center. Therefore, the foci are F1   0,3 and

1125 Copyright © 2020 Pearson Education, Inc.


Chapter 10: Analytic Geometry

F2   0, 3 . Finally, we use the value b  7

and F2  2, 2  2 3 . The asymptotes are given

to find the two points left and right of the center:

by the lines a y  k    x  h  . Therefore, the asymptotes b are 2 y2    x  2 2 2

  7, 0 and  7, 0 .

y

2  x  2  2 2

6. The center  h, k    2, 2  and vertex  2, 4  both

lie on the line x  2 , the transverse axis is parallel to the y-axis. The distance from the center  2, 2  to the vertex  2, 4  is a  2 , so the other vertex must be  2, 0  . The form of the equation is

 y  k 2  x  h 2

7. 2 x 2  5 xy  3 y 2  3 x  7  0 is in the form

 1 a2 b2 where h  2 , k  2 , and a  2 . This gives us

Ax 2  Bxy  Cy 2  Dx  Ey  F  0 where A  2 , B  5 , and C  3 .

 y  2 2  x  2 2

B 2  4 AC  52  4  2  3

 1 4 b2 Since the graph contains the point

 25  24

 x, y    2  10,5  , we can use this point to

1 Since B 2  4 AC  0 , the equation defines a hyperbola.

determine the value for b.

 5  2 2 4

 2  10  2  1  2

8. 3 x 2  xy  2 y 2  3 y  1  0 is in the form

b2 9 10  1 4 b2 5 10  4 b2

Ax 2  Bxy  Cy 2  Dx  Ey  F  0 where A  3 , B  1 , and C  2 . B 2  4 AC   1  4  3 2  2

 1  24

b2  8

 23 Since B  4 AC  0 , the equation defines an ellipse. 2

b2 2 Therefore, the equation becomes

 y  2 2  x  2 2 4

8

1

Since c 2  a 2  b 2  4  8  12 , the distance from the center to either focus is c  2 3 . Therefore, the foci are c  2 3 units above and

below the center. The foci are F1  2, 2  2 3

1126 Copyright © 2020 Pearson Education, Inc.


Chapter 10 Test

9. x 2  6 xy  9 y 2  2 x  3 y  2  0 is in the form 2

2

Ax  Bxy  Cy  Dx  Ey  F  0 where A  1 , B  6 , and C  9 .

B 2  4 AC   6   4 1 9  2

 36  36

2

0 Since B 2  4 AC  0 , the equation defines a parabola.

10. 41x 2  24 xy  34 y 2  25  0 Substituting x  x 'cos   y 'sin  and y  x 'sin   y 'cos  transforms the equation into one that represents a rotation through an angle  . To eliminate the x ' y ' term in the new

equation, we need cot  2  

AC . That is, we B

need to solve 41  34 cot  2   24 7 cot  2    24 Since cot  2   0 , we may choose

4  4  4 3  3 3 41 x ' y '   24  x ' y '   x ' y '  5  5  5 5  5 5 2

3  4 34  x ' y '   25 5  5 Multiply both sides by 25 and expand to obtain

41 9 x '2  24 x ' y ' 16 y '2  24 12 x '2  7 x ' y ' 12 y '2

2

34 16 x '  24 x ' y ' 9 y '

2

  625

625 x '2  1250 y '2  625 x '2  2 y ' 2  1 x 2 y 2  1 1 1 2 1 2  2 2 This is the equation of an ellipse with center at  0, 0  in the x ' y ' plane . The vertices are at Thus: a  1  1 and b 

90  2  180 , or 45    90 .

 1, 0  and 1, 0  in the x ' y ' plane .

( 7, 24)

1 1 2   c 2 2 2  2  The foci are located at   , 0  in the  2  x ' y ' plane . In summary: c2  a 2  b2  1 

7 2  24 2  25

24

3 4 4 3 x ' y ' and y  x ' y ' 5 5 5 5 Substituting these values into the original equation and simplifying, we obtain 41x 2  24 xy  34 y 2  25  0 x

2 7

xy   plane

xy  plane

center

(0, 0)

(0, 0)

We have cot  2    7 so it follows that 24 7 cos  2    . 25

vertices

(1, 0)

 7  1    1  cos  2   25   16  4  sin   2 2 25 5

minor axis

 2  0,  2   

cos  

1  cos  2  2

 7  1     25    2

9 3  25 5

intercepts

foci

3   With these values, the rotation formulas are

  cos 1    53.13 5

1127 Copyright © 2020 Pearson Education, Inc.

 2  , 0     2 

3 4  3 4  , ,  ,   5 5  5 5 2 2 3 2 ,   ,  5 10   2 2 3 2 ,    5 10   3 2 2 2  ,  , 5   10  3 2 2 2   10 ,  5   


Chapter 10: Analytic Geometry

The graph is given below.

11. r 

ep 3  1  e cos  1  2 cos 

3 . Since e  1 , this is 2 the equation of a hyperbola. 3 r 1  2 cos  r 1  2 cos    3

Therefore, e  2 and p 

r  2r cos   3 Since x  r cos  and x 2  y 2  r 2 , we get r  2r cos   3

r  2r cos   3 r   2r cos   3 2

x  y   2 x  3 2

2

2

To find the rectangular equation for the curve, we need to eliminate the variable t from the equations. We can start by solving equation (1) for t. x  3t  2 3t  x  2 x2 t 3 Substituting this result for t into equation (2) gives x2 y  1 , 2  x  25 3 13. We can draw the parabola used to form the reflector on a rectangular coordinate system so that the vertex of the parabola is at the origin and its focus is on the positive y-axis. y

2

2

( 2, 1.5)

x 2  y 2  4 x 2  12 x  9

ft (2, 1.5)

3x 2  12 x  y 2  9

 3  x  4 x  4   y  9  12

2

3 x 2  4 x  y 2  9 2

3 x  2  y2  3 2

 x  2

1

12.

y2 1 3

x

0 x  3  0   2  2 1

x  3 1  2  1

4

x  3  4   2  10

9

x  3  9   2  25

x

The form of the equation of the parabola is x 2  4ay and its focus is at  0, a  . Since the point  2,1.5  is on the graph, we have 22  4a 1.5 

 x(t )  3t  2 (1)   y (t )  1  t (2) t

2

2

2

2

0

 x, y  y  1 0  1  2,1 y  1 1  0 1, 0  y  1  4  1 10, 1 y  1  9  2  25, 2  y

4  6a a2 3 The microphone should be located 23 feet (or 8

inches) from the base of the reflector, along its axis of symmetry.

1128 Copyright © 2020 Pearson Education, Inc.


Chapter 10 Cumulative Review y

9 x3  12 x 2  11x  2 .

ft

2

( 2, 1.5)

2

Using synthetic division on the quotient and x = 2: 2 9  12  11  2 18 12 2

x

0

2

2

F  0, 23

Thus, f ( x)  ( x  5) 9 x3  12 x 2  11x  2 .

(2, 1.5)

9 6 1 0 Since the remainder is 0, 2 is a zero for f. So x  2 is a factor; thus,

 .

f ( x)  ( x  5)  x  2  9 x 2  6 x  1

 ( x  5)  x  2  3 x  1 3 x  1

Chapter 10 Cumulative Review

1.

1 is also a zero for f (with 3 multiplicity 2). Solution set: 5,  1 , 2 . 3

Therefore, x  

f  x  h  f  x h

3  x +h  +5  x  h   2  3 x +5 x  2 2

2

3 x  2 xh  h

2

2

6  x  x2

3.

0  x2  x  6

h

x2  x  6  0

 5 x  5h  2  3x 2  5 x  2

 x  3 x  2   0

h 2 2 3 x  6 xh  3h  5 x  5h  2  3 x 2  5 x  2  h 6 xh  3h 2  5h   6 x  3h  5 h

2. 9 x 4 +33 x3  71x 2  57 x  10=0 There are at most 4 real zeros. Possible rational zeros: p  1,  2,  5,  10; q  1, 3, 9; p 1 1 2 2  1,  ,  , 2,  ,  ,  5, q 3 9 3 9 5 5 10 10  ,  , 10,  ,  3 9 3 9 Graphing y1  9 x 4 +33x3  71x 2  57 x  10 indicates that there appear to be zeros at x = –5 and at x = 2. Using synthetic division with x = –5: 5 9 33 71 57 10

f ( x)  x 2  x  6 x   3, x  2 are the zeros of f .

Interval Test Value

 , 3

 3, 2 

 2,  

4

0

3

Value of f

6

6

6

Conclusion

Positive

Negative Positive

The solution set is  x  3  x  2  , or  3, 2 . 4.

f  x   3x  2

a.

Domain:  ,   ; Range:  2,   .

b.

f  x   3x  2 y  3x  2 x  3y  2 x2 3

Inverse

y

log3  x  2   y  f 1  x   log3  x  2 

55

10

Domain of f 1 = range of f =  2,   .

9 12 11 2

0

Range of f 1 = domain of f =  ,   .

45

60

Since the remainder is 0, –5 is a zero for f. So x  ( 5)  x  5 is a factor. The other factor is the quotient: 1129 Copyright © 2020 Pearson Education, Inc.


Chapter 10: Analytic Geometry

5.

f  x   log 4  x  2 

a.

 x  h 2  4a  y  k 

f  x   log 4  x  2   2

 x  12  4ay  0  12  4a  2 

x  2  42 x  2  16

1  8a

x  18 The solution set is 18 .

b.

1 8 1 2  x  1  2 y or y  2  x  12 a

f  x   log 4  x  2   2 x  2  42

and x  2  0

x  2  16

and x  2

x  18

and x  2

e.

This graph is a hyperbola with center  0, 0  and vertices  0, 1 , containing the point

 3, 2  .  y  k 2  x  h 2

2  x  18

 2,18

a2

6. a.

This graph is a line containing points  0, 2  and 1, 0  . y 0   2  2   2 x 1 0 1 using y  y1  m  x  x1 

 2 2  32 1

y  0  2  x  1 y  2 x  2 or 2 x  y  2  0 b. This graph is a circle with center point (2, 0) and radius 2.

 x  h 2   y  k 2  r 2  x  2 2   y  0 2  22  x  2 2  y 2  4

 0, 2  . a2

f. 

b2

 x  0 2  y  0 2 32

22

x2 y2  1 9 4

d. This graph is a parabola with vertex 1, 0 

and y-intercept  0, 2  .

1 b2 4 9  1 1 b2 9 4 2 1 b 9 3 2 b 3b 2  9

This is the graph of an exponential function with y-intercept  0,1 , containing the point

1, 4  .

1 1 

b2  3 The equation of the hyperbola is: y 2 x2  1 1 3

This graph is an ellipse with center point (0, 0); vertices  3, 0  and y-intercepts

 x  h 2  y  k 2

1

y 2 x2  1 1 b2

slope 

c.

b2

y  A  bx

y-intercept  0,1  1  A  b0  A 1  A  1 point 1, 4   4  b1  b Therefore, y  4 x .

1130 Copyright © 2020 Pearson Education, Inc.


Chapter 10 Projects 7. sin  2   0.5   2k   6 5 or 2   2k   6 where k is any integer. 2 

  k 12 , 5   k 12



 6

.

9. Using rectangular coordinates, the circle with center point (0, 4) and radius 4 has the equation:

 x  h 2   y  k 2  r 2  x  0 2   y  4 2  42 2

11. cot  2   1, where 0o    90o 2 

8. The line containing point (0,0), making an angle of 30o with the positive x-axis has polar

equation:  

The domain is  3   k , where k is any integer  . x x 4  

  k  k     , where k is any 4 8 2

integer. On the interval 0o    90o , the solution is     22.5o . 8 x  tan t 5

12. x(t )  5 tan t  sec2 t  1  tan 2 t

2

2

y (t )  5sec 2 t  5 1  tan 2 t  x x  5 1      5   5  5  

2

x  y  8 y  16  16 x2  y 2  8 y  0 Converting to polar coordinates: r 2  8r sin   0

x2 5. 5

The rectangular equation is y 

r 2  8r sin  r  8sin 

Chapter 10 Projects Project I – Internet-based Project Project II 1. Figure: 37.1 10 6

Sun

(0, 0)

3 10. f  x   sin x  cos x f will be defined provided sin x  cos x  0 . sin x  cos x  0

4458.0 10 6

4495.1 10 6

c  37.2  106 b2  a 2  c 2

sin x   cos x

b 2  4495.1 106

sin x  1 cos x tan x  1 3  k , k is any integer x 4

b  4494.9  106 x2

   37.110  2

6 2

y2  1 (4495.1 x 106 )2 (4494.9 x 106 ) 2

1131 Copyright © 2020 Pearson Education, Inc.


Chapter 10: Analytic Geometry

The focal length is 0.03125 m. 1 1 z  x2  y2 8 8

2. Figure: 1467.7 10 6 4445.8  10 6

2.

Sun

(0, 0)

5913.5  10 6

Target

x

77381.2  106  4445.8  106  11827  106

a  0.5 11827  106  5913.5  106 c  1467.7  10

6

2

b  5913.5  10

  1467.7 10 

6 2

6 2

b  5728.5  106 x2 (5913.5 x 106 ) 2

y2 (5728.5 x 106 ) 2

1

4. Shift  Pluto's distance  Neptune's distance  1467.7  106  37.1 106  1430.6  106 ( x  1430.6 x 106 ) 2 (5913.5 x 106 ) 2

y2 (5728.5 x 106 ) 2

1

5. Yes. One must adjust the scale accordingly to see it. 6.

6

0

9.551

11.78

0.5

1.950

0

9.948

5.65

0.125

0.979

T3

0

9.928

5.90

0.125

1.021

T4

0

9.708

11.89

0.5

2.000

T5

9.510

9.722

11.99

11.31

0

T6

9.865

9.917

5.85

12.165

0

T7

9.875

9.925

5.78

12.189

0

T8

9.350

9.551

11.78

10.928

0

1 2 1 2 x  y , y = Rsinθ, x = Rcosθ 8 8

Project IV

Figure 1

(0, 0)

x1 , 70 

6

x2 , 70  280 ft

280 ft ( 525, 350)

(525, 350) 1050 ft

1.

Project III 1. As an example, T1 will be used. (Note that any of the targets will yield the same result.) z  4ax 2  4ay 2

2

x  4ay (525) 2  4a(350) 272625  1400a a  196.875 x 2  787.5 y

0.5  16a a

y

T1

6

7. No, The timing is different. They do not both pass through those points at the same time.

0.5  4a(0) 2  4a(2) 2

Z

4. T1 through T4 do not need to be adjusted. T5 must move 11.510 m toward the y-axis and the z coordinate must move down 10.81 m. T6 must move 10.865 m toward the y-axis and the z coordinate must move down 12.04 m. T7 must move 8.875 toward the y-axis and z must move down 12.064m. T8 must move 7.35 m toward the y-axis and z must move down 10.425 m.

 4431.6 10 , 752.6 10  ,  4431.6 10 , 752.6 10  6

T2

z

3. The two graphs are being graphed with the same center. Actually, the sun should remain in the same place for each graph. This means that the graph of Pluto needs to be adjusted.

R

1 32

1132 Copyright © 2020 Pearson Education, Inc.


Chapter 10 Projects 2.

Let y  70 . (The arch needs to be 280 ft high. Remember the vertex is at (0, 0), so we must measure down to the arch from the x-axis at the point where the arch’s height is 280 ft.) x 2  787.5(70) x 2  55125  x  234.8 The channel will be 469.6 ft wide.

3.

Figure 2 (0, 350) 280 ft

280 ft (0, 0)

( 525, 0)

x2

(525, 0)

1050 ft

x2 a2

y2 b2

1

1. 4t  2  sec 2 t , 2

1  t  tan t ,

0t  0t 

4

4 For the x-values, t = 1.99, which is not in the domain [0, π/4]. Therefore there is no t-value that allows the two x values to be equal.

2. On the graphing utility, solve these in parametric form, using a t-step of π/32. It appears that the two graphs intersect at about (1.14, 0.214). However, for the first pair, t = 0.785 at that point. That t-value gives the point (2, 1) on the second pair. There is no intersection point.

4. x1  4t  2

x2 (280) 2  1 275625 122500  (280) 2  x 2  1   275625  122500 

y1  1  t D=R; R = R 1  y1  t

x  4(1  y )  2 x  4y  2 x2  sec 2 t

x 2  99225 x  315 The channel will be 630 feet wide.

5.

Project V

3. Since there were no solutions found for each method, the “solutions” matched.

x2 y2  1 275625 122500

4.

channel doesn’t shrink in width in a flood as fast as a parabola.

If the river rises 10 feet, then we need to look for how wide the channel is when the height is 290 ft. For the parabolic shape: x 2  787.5(60) x 2  47250 x  217.4 There is still a 435 ft wide channel for the ship. For the semi-ellipse: x2 (290) 2  1 275625 122500  (290) 2  x 2  1   275625  122500  x 2  86400 x  293.9 The ship has a 588-ft channel. A semiellipse would be more practical since the

1  tan 2 t  sec 2 t 1 y  x

y2  tan 2 t

D=[1,2], R=[0,1]

x  y 1 x  4 y  1   x  y 1 5y  0 y0 x 1 The t-values that go with those x, y values are not the same for both pairs. Thus, again, there is no solution.

5. x : t

3/ 2

 ln t

3

y : t  2t  4 Graphing each of these and finding the intersection: There is no intersection for the x-values, so there is no intersection for the system. Graphing the two parametric pairs: The parametric equations show an intersection point. However, the t-value that gives that point for

1133 Copyright © 2020 Pearson Education, Inc.


Chapter 10: Analytic Geometry

each parametric pair is not the same. Thus there is no solution for the system. Putting each parametric pair into rectangular coordinates: x1  ln t  t  e x D = R, R  (0, ) y1  t 3  e3 x x2  t 2  t  x 3 3

2

D  [0, ), R  [4, )

y2  2t  4  2 x 3  4 Then solving that system:  y  e3 x  2  y  2 x 3  4 This system has an intersection point at (0.56, 5.39). However, ln t = 0.56, gives t = 1.75 and 2

t   0.56 

2/3

7. Efficiency depends upon the equations. Graphing the parametric pairs allows one to see immediately whether the t-values will be the same for each pair at any point of intersection. Sometimes, solving for t, as was done in the first method is easy and can be quicker. It leads straight to the t-values, so that allow the method to be efficient. If the two graphs intersect, one must be careful to check that the t-values are the same for each curve at that point of intersection.

 0.68 . Since the t-values are not

the same, the point of intersection is false for the system. 6. x: 3 sin t = 2 cos t  tan t = 2/3  t = 0.588 y: 4 cos t +2 = 4 sin t  by graphing, the solution is t = 1.15 or t = 3.57. Neither of these are the same as for the x-values, thus the system has no solution. Graphing parametrically: If the graphs are done simultaneously on the graphing utility, the two graphs do not intersect at the same t-value. Tracing the graphs shows the same thing. This backs up the conclusion reached the first way. x1  3sin t y1  4 cos t  2 x y2 cos t  3 4 2 2 sin t  cos t  1 sin t 

x 2 ( y  2) 2  1 9 16 D=[-3, 3], R=[-2, 6] x2  2 cos t

y2  4sin t

x y sin t  2 4 cos 2 t  sin 2 t  1 cos t 

x2 y 2  1 4 16 D=[-2, 2], R=[-4,4] Solving the system graphically: x  1.3 , y  3.05 . However, the t-values associated with these values are not the same. Thus there is no solution. (Similarly with the symmetric pair in the third quadrant.)

1134 Copyright © 2020 Pearson Education, Inc.


Chapter 9 Polar Coordinates; Vectors Section 9.1

15. C 16. C

1.

17. B 18. D 19. A The point lies in quadrant IV.

 x2  x1 2   y2  y1 2

2.

20. D 21.

2

6 3.    9 2

4. 22.

5.

23.

b a

6. 

24.

4

7. pole, polar axis

25.

8. r cos  ; r sin  9. b 10. d 11. True

26.

12. False 13. A 14. B 919 Copyright © 2020 Pearson Education, Inc.


Chapter 9: Polar Coordinates; Vectors 34.

27.

28.

35.

29.

30.

a.

r  0,  2    0

4    5,   3  

b.

r  0, 0    2

5    5,  3  

c.

r  0, 2    4

 8   5,   3 

a.

r  0,  2    0

5    4,   4  

b.

r  0, 0    2

7     4,  4  

c.

r  0, 2    4

 11   4,  4  

a.

r  0,  2    0

 2,  2 

b.

r  0, 0    2

  2,  

c.

r  0, 2    4

 2, 2 

36.

31.

32.

37.

33.

920 Copyright © 2020 Pearson Education, Inc.


Section 9.1: Polar Coordinates 38.

42.

a.

r  0,  2    0

 3,   

b.

r  0, 0    2

  3, 0 

c.

r  0, 2    4

 3, 3 

39.

r  0,  2    0

3    1,   2  

b.

r  0, 0    2

3    1,  2  

c.

r  0, 2    4

 5   1,   2 

a.

r  0,  2    0

 2,   

b.

r  0, 0    2

  2, 0 

c.

r  0, 2    4

 2, 3 

r  0,  2    0

5    2,   3  

b.

r  0, 0    2

4     2,  3  

c.

r  0, 2    4

 7   2,   3 

  3 0  0 2  y  r sin   3sin  3 1  3 2

43. x  r cos   3cos

  Rectangular coordinates of the point  3,  are  2  0, 3 .

40.

a.

a.

3  40  0 2 3 y  r sin   4sin  4  (1)   4 2

44. x  r cos   4 cos

 3  Rectangular coordinates of the point  4,  are  2   0,  4  .

41.

45. x  r cos    2 cos 0   2 1   2 y  r sin   – 2sin 0  – 2  0  0 Rectangular coordinates of the point  – 2, 0  are

  2, 0  . a.

r  0,  2    0

5    3,   4  

b.

r  0, 0    2

7    3,  4  

c.

(r  0, 2    4

 11   3,  4  

46. x  r cos   3cos   3(1)  3 y  r sin   3sin   3  0  0 Rectangular coordinates of the point  3,   are

 3, 0  .

921 Copyright © 2020 Pearson Education, Inc.


Chapter 9: Polar Coordinates; Vectors

47. x  r cos   6 cos y  r sin   6sin

 2   52. x  r cos    6 cos     6    3 2  4  2 

 5 3  6      3 3 6  2 

5 1  6  3 6 2

 2   y  r sin    6sin      6     3 2  4  2 

 5  Rectangular coordinates of the point  6,   6 

  Rectangular coordinates of the point  6,   4 

are 3 3, 3 .

5 1 5  5  3 2 2  5 3 5 3  5   y  r sin   5sin    3 2  2   5  Rectangular coordinates of the point  5,   3 

53. x  r cos    2 cos( )   2  1  2

48. x  r cos   5cos

y  r sin   – 2sin( )  – 2  0  0

Rectangular coordinates of the point  – 2,    are  2, 0  .   54. x  r cos    3cos      3  0  0  2   y  r sin   – 3sin      3(1)  3  2   Rectangular coordinates of the point  – 3,   2  are  0, 3 .

5 5 3 are  ,  . 2  2

49. x  r cos    2 cos

 3 2   2     2 4  2 

3 2  2  2 4 2 3   Rectangular coordinates of the point   2,  4   y  r sin    2sin

are

11  7.5( 0.3420)   2.57 18 11 y  r sin   7.5sin  7.5(0.9397)  7.05 18 11   Rectangular coordinates of the point  7.5,  18   are about   2.57, 7.05  .

55. x  r cos   7.5cos

 2,  2  .

50. x  r cos    2 cos

2  1  2     1 3  2

2 3  2   3 3 2 2   Rectangular coordinates of the point   2,  3   y  r sin    2sin

are 3 2, 3 2 .

91  3.1( 0.9994)  3.10 90 91 y  r sin   3.1sin  3.1( 0.0349)  0.11 90 91   Rectangular coordinates of the point  3.1,  90   are about  3.10, 0.11 .

56. x  r cos   3.1cos

are 1,  3 . 3 5 3   51. x  r cos    5cos     5   6 2 2      1 5 y  r sin    5sin     5      6  2 2

57. x  r cos   6.3cos  3.8   6.3( 0.7910)   4.98 y  r sin   6.3sin  3.8   6.3( 0.6119)  3.85

  Rectangular coordinates of the point   5,   6  5 3 5 ,   . are  2  2

Rectangular coordinates of the point  6.3, 3.8  are about   4.98,  3.85  .

922 Copyright © 2020 Pearson Education, Inc.


Section 9.1: Polar Coordinates 58. x  r cos   8.1cos  5.2   8.1(0.4685)  3.79

64. The point (3, 3) lies in quadrant II.

y  r sin   8.1sin  5.2   8.1(  0.8835)  7.16

r  x 2  y 2  (3) 2  32  3 2

Rectangular coordinates of the point  8.1, 5.2 

 y  3      Polar coordinates of the point  3, 3 are

are about  3.79,  7.16  . 59. r  x 2  y 2  32  02  9  3

3    3 2,  . 4  

 y 0   tan 1    tan 1    tan 1 0  0 x 3 Polar coordinates of the point (3, 0) are (3, 0) .

r  x 2  y 2  52  5 3

2  

  10,  . 3   3 1 ,   lies in quadrant III. 66. The point   2  2

61. r  x 2  y 2  (1) 2  02  1  1  y  0      The point lies on the negative x-axis, so    . Polar coordinates of the point (1, 0) are 1,   .

  tan 1    tan 1    tan 1 0  0 x 1

2

2  3  1   r  x 2  y 2      1 1    2   2  1   y 2   tan 1 1  11   tan 1    tan 1   6 x 3 3     2    7 The point lies in quadrant III, so      6 6   3 1 Polar coordinates of the point   ,   are 2 2   7  1,  .  6 

62. r  x 2  y 2  02  ( 2) 2  4  2  2  

  tan 1    tan 1   x 0 2  is undefined,   . 0 2

 . 2   Polar coordinates of the point (0, 2) are  2,   . 2 

The point lies on the negative y-axis, so   

67. The point (1.3, 2.1) lies in quadrant IV.

63. The point (1, 1) lies in quadrant IV. 2

2

2

r  x 2  y 2  1.32  ( 2.1) 2  6.1  2.47

2

r  x  y  1  (1)  2 1  1 

 y   2.1      The polar coordinates of the point 1.3, 2.1 are

  tan 1    tan 1    1.02 1.3 x

   tan    tan    tan (1)   4 x  1  Polar coordinates of the point (1, 1) are 1  y 

Polar coordinates of the point 5,5 3 are

  Polar coordinates of the point (0, 2) are  2,  .  2

Since

2

  tan 1 

2  is undefined,   0 2

 y  

  100  10

5 3  1 3   tan 5 3  

  tan 1    tan 1   x 0 Since

65. The point 5,5 3 lies in quadrant I.

60. r  x 2  y 2  02  22  4  2  y  

  tan 1    tan 1    tan 1 (1)   x 3 4

1

 2.47, 1.02  .

   2,   . 4 

923

Copyright © 2020 Pearson Education, Inc.


Chapter 9: Polar Coordinates; Vectors 68. The point (0.8, 2.1) lies in quadrant III.

75.

r  x 2  y 2  ( 0.8)2  ( 2.1) 2  5.05  2.25

r 2  2sin  cos    1

1   2.1 

1  y 

2 xy  1 2(r cos  )(r sin  )  1

  tan    tan    1.21 x   0.8 

r 2 sin 2  1

Since the point lies in quadrant III,   1.21    1.93 . The polar coordinates of the point   0.8, 2.1 are

4x2 y  1

76.

4(r cos  ) 2 r sin   1 4r 2 cos 2  r sin   1 1 r 3 cos 2  sin   4

 2.25, 1.93 . 69. The point (8.3, 4.2) lies in quadrant I. r  x 2  y 2  8.32  4.22  86.53  9.30  y  4.2      The polar coordinates of the point  8.3, 4.2  are

  tan 1    tan 1    0.47 x 8.3

 9.30, 0.47  .

77.

x4 r cos   4

78.

y  3 r sin   3 r  cos 

79.

70. The point (2.3, 0.2) lies in quadrant II. 2

2

2

r  r cos  2

2

x  y2  x

2

r  x  y  ( 2.3)  0.2  5.33  2.31

x2  x  y 2  0 1 1 x2  x   y 2  4 4 2 1 1  2 x   y  2 4  

 0.2   y     Since the point lies in quadrant II,     0.09  3.05 . The polar coordinates of the point   2.3, 0.2 

  tan 1    tan 1     0.09  2.3 x

are  2.31, 3.05  . 71.

r  r sin   r 2

2 x2  2 y 2  3

2

x  y 2  y  x2  y 2

2 x2  y2  3 2r 2  3 r2 

3 or r  2

r 2  cos 

81.

3 6  2 2

r 3  r cos 

 r   r cos x  y   x x  y   x  0 2 3/ 2

72. x 2  y 2  x

2 3/ 2

2

r  r cos  r  cos  2

73.

r  sin   1

80.

2

2 3/ 2

x2  4 y

 r cos  2  4r sin  r 2 cos 2   4r sin   0

74.

y2  2x

 r sin  2  2r cos  r 2 sin 2   2r cos   0

924

Copyright © 2020 Pearson Education, Inc.


Section 9.1: Polar Coordinates r  sin   cos 

82.

3 3  cos  r (3  cos  )  3 3r  r cos   3 r

86.

r  r sin   r cos  2

2

x  y2  y  x x2  x  y 2  y  0 1 1 1 1 x2  x   y 2  y    4 4 4 4 2 2 1 1 1     x   y       2  2 2 

3 x2  y2  x  3 3 x2  y 2  x  3

2

9 x  9 y  x2  6 x  9

r2

83.

2

8x2  6 x  9 y2  9  0

r2  4

64 x 2  48 x  72 y 2  72  0 3   64  x 2  x   72 y 2  72 4   9   2 3  9  64  x  x    72 y 2  72  64   4 64    64 

x2  y 2  4

r4

84.

9 x2  y2  x2  6 x  9

2

r  16 2

x  y 2  16

2

3  64  x    72 y 2  81 8  

4 1  cos  r (1  cos  )  4 r  r cos   4 r

85.

x2  y 2  x  4 x2  y 2  x  4 x 2  y 2  x 2  8 x  16 y2  8  x  2

87. a.

For this application, west is a negative direction and north is positive. Therefore, the rectangular coordinate is (10, 36) .

b. The distance r from the origin to (10, 36) is r  x 2  y 2  ( 10) 2  (36) 2  1396  2 349  37.36 .  y Since the point (10, 36) lies in quadrant II, we use   180  tan 1   . Thus, x  36  1  18    180  tan 1    180  tan     105.5 . 10   5     18   The polar coordinate of the point is  2 349, 180  tan 1       37.36, 105.5  .  5  

c.

For this application, west is a negative direction and south is also negative. Therefore, the rectangular coordinate is (3, 35) .

d. The distance r from the origin to (3, 35) is r  x 2  y 2  (3) 2  (35) 2  1234  35.13 .  y Since the point (3, 35) lies in quadrant III, we use   180  tan 1   . Thus, x

925

Copyright © 2020 Pearson Education, Inc.


Chapter 9: Polar Coordinates; Vectors

 35  1  35    180  tan    265.1  3  3   

  180  tan 1 

  35   The polar coordinate of the point is  1234, 180  tan 1      35.13, 265.1  .  3   88. Rewrite the polar coordinates in rectangular form: Since P1   r1 , 1  and P2   r2 ,  2  , we have that  x1 , y1    r1 cos 1 , r1 sin 1  and

 x1 , y1    r2 cos  2 , r2 sin  2  . d 

 x2  x1 2   y2  y1 2  r2 cos  2  r1 cos 1 2   r2 sin  2  r1 sin 1 2

 r22 cos 2  2  2r1r2 cos  2 cos 1  r12 cos 2 1  r22 sin 2  2  2r1r2 sin  2 sin 1  r12 sin 2 1

 r12 cos 2 1  sin 2 1  r22 cos 2  2  sin 2  2  2r1r2  cos  2 cos 1  sin  2 sin 1   r12  r22  2r1r2 cos  2  1 

89. a.

At 10:15 a.m.,  80, 25  . At 10:25 a.m.,

90.

110, 5  . b. At 10:15 a.m.:

so  72.50,33.81 .

x  80 cos 25  72.50 y  80sin 25  33.81

At 10:25 a.m., x  110 cos(5)  109.58 y  110sin(5)  9.59 So, 109.58, 9.59  .

See the figure. 1  180  24  156 , so radar station A is located at (150,156) on the second system. Using the Law of Cosines,

c.

rate=

distance  time

 342.5 mph

109.58  72.52   9.59  33.812 1 h 6

r2  1002  1502  2 100 150 cos 56  125.4 . Use the Law of Sines to find the measure of Angle B in triangle ABC: sin B sin 56 100sin 56   sin B  100 125.4 125.4 100sin 56    B  sin 1    41.4  125.4 

Then  2  1  B  156  41.4  114.6 , so

radar station C is located at 125.4,114.6  on

the second system. 91. x  r cos  and y  r sin  92 – 93. Answers will vary.

926

Copyright © 2020 Pearson Education, Inc.


Section 7.5: Simple Harmonic Motion; Damped Motion; Combining Waves 94. log 4 ( x  3)  log 4 ( x  1)  2

the graph by a factor of 2 and flip on the x axis to the y value becomes y  2(8)  16 . Then we shift the graph vertically 5 units so the y value becomes y  16  5  11 . Thus the final point is (0, 11) .

 x  3 log 4  2  x  1  42 

x3 x 1

98. z  w  (2  5i )(4  i )

16( x  1)  x  3 16 x  16  x  3 15 x  19 x

 8  2i  20i  5i 2  8  18i  5  13  18i

19 15

99. 4sin  cos   1 2(2sin  cos  )  1



19 The solution set is: . 15

2sin  2   1 sin  2  

95. f  x   2 x3  6 x 2  7 x  8

Examining f  x   2 x3  6 x 2  7 x  8 , there is

5  2 n 6 5      n or 2  n 12 12  5 13 17 The solution set is . , , , 12 12 12 12 2 

two variations in sign; thus, there are 2 or 0 positive real zeros. Examining

6

 2 n or 2 

f   x   2   x   6   x   7   x   8 , 3

1 2

2

 2 x3  6 x 2  7 x  8 there is one variation in sign; thus, there is one negative real zero.

100. A  65º , B  37º , c  10 C  180º  A  B  180º  65º  37º  78º

 x  x y  y2  96.  1 2 , 1 2   2

sin A sin C  a c sin 65º sin 78º  a 10 10sin 65º a  9.27 sin 78º

1   3  7  2   2  ,  2 2     5    2 , 9    5 , 9  2 2   4 2   

sin B sin C  b c sin 37º sin 78º  b 10 10sin 37º b  6.15 sin 78º

97. We move the graph horizontally left 3 units so the x value becomes x  3  3  0 . We stretch

927

Copyright © 2020 Pearson Education, Inc.


Chapter 9: Polar Coordinates; Vector 101. sin(   )  sin  cos   cos  sin 

9. 

7  3    sin    12  4 6

10.   

sin

  3 3 cos  cos sin 4 6 4 6   2 3 2 1     2 2  2  2

11. 2n ; n

 sin

102.

2 2

13. c

6 2 6 2   4 4 4

5 x 2  3e3 x  e3 x 10 x

5x 

12. True

14. b 15. r  4 The equation is of the form r  a, a  0 . It is a circle, center at the pole and radius 4. Transform to rectangular form: r4

5 xe3 x ( x  3  2)  25 x 4 5 xe3 x (3 x  2) 25 x 4 e3 x (3x  2)  5 x3 

r 2  16 x 2  y 2  16

103. sin 5 x  sin x(sin 2 x) 2  sin x(1  cos 2 x) 2  sin x(1  2 cos 2 x  cos 4 x)  sin x  2sin x cos 2 x  cos 4 x sin x

Section 9.2 1.

 4, 6 

2. cos A cos B  sin A sin B 3.

16. r  2 The equation is of the form r  a, a  0 . It is a circle, center at the pole and radius 2. Transform to rectangular form: r2

 x  (2) 2   y  52  32  x  2 2   y  5 2  9

r2  4

4. odd, since sin( x)   sin x .

x2  y2  4

5. 

2 2

6. 

1 2

7. polar equation 8. False. They are sufficient but not necessary. 928

Copyright © 2020 Pearson Education, Inc.


Section 9.2: Polar Equations and Graphs  4 The equation is of the form    . It is a line, passing through the pole making an angle of   3    or  with the polar axis. Transform to 4  4  rectangular form:    4   tan   tan     4 y  1 x y  x

18.   

 3 The equation is of the form    . It is a line,  passing through the pole making an angle of 3 with the polar axis. Transform to rectangular form:   3  tan   tan 3 y  3 x y  3x

17.  

19. r sin   4 The equation is of the form r sin   b . It is a horizontal line, 4 units above the pole. Transform to rectangular form: r sin   4 y4

929

Copyright © 2020 Pearson Education, Inc.


Chapter 9: Polar Coordinates; Vector 20. r cos   4 The equation is of the form r cos   a . It is a vertical line, 4 units to the right of the pole. Transform to rectangular form:

22. r sin    2 The equation is of the form r sin   b . It is a horizontal line, 2 units below the pole. Transform to rectangular form: r sin    2 y  2

r cos   4 x4

21. r cos    2 The equation is of the form r cos   a . It is a vertical line, 2 units to the left of the pole. Transform to rectangular form: r cos    2 x  2

23. r  2 cos  The equation is of the form r  2a cos  , a  0 . It is a circle, passing through the pole, and center on the polar axis. Transform to rectangular form: r  2 cos  r 2  2r cos  x2  y 2  2x x2  2 x  y 2  0 ( x  1) 2  y 2  1 center (1, 0) ; radius 1

24. r  2sin  The equation is of the form r  2a sin  , a  0 . It is a circle, passing through the pole, and center  on the line   . Transform to rectangular form: 2

930

Copyright © 2020 Pearson Education, Inc.


Section 9.2: Polar Equations and Graphs 26. r   4 cos  The equation is of the form r  2a cos  , a  0 . It is a circle, passing through the pole, and center on the polar axis. Transform to rectangular form: r   4 cos 

r  2sin  r  2r sin  2

2

x  y2  2 y x2  y 2  2 y  0 x 2  ( y  1) 2  1 center (0, 1) ; radius 1

r 2   4r cos  x2  y 2   4 x x2  4 x  y 2  0 ( x  2) 2  y 2  4 center (2, 0) ; radius 2

25. r   4sin  The equation is of the form r  2a sin  , a  0 . It is a circle, passing through the pole, and center  on the line   . Transform to rectangular form: 2 r   4sin 

27. r sec   4 The equation is a circle, passing through the pole, center on the polar axis and radius 2. Transform to rectangular form: r sec   4 1 r 4 cos  r  4 cos 

r 2   4r sin  x2  y 2   4 y x2  y2  4 y  0 x 2  ( y  2) 2  4 center (0, 2) ; radius 2

r 2  4r cos  x2  y2  4 x x2  4 x  y 2  0 ( x  2) 2  y 2  4 center (2, 0) ; radius 2

931

Copyright © 2020 Pearson Education, Inc.


Chapter 9: Polar Coordinates; Vector 28. r csc   8 The equation is a circle, passing through the  pole, center on the line   and radius 4. 2 Transform to rectangular form: r csc   8 1 r 8 sin  r  8sin  r 2  8r sin  x2  y2  8 y x2  y 2  8 y  0

30. r sec    4 The equation is a circle, passing through the pole, center on the polar axis and radius 2. Transform to rectangular form: r sec    4 1  4 r cos  r   4 cos 

x 2  ( y  4) 2  16 center (0, 4) ; radius 4

r 2   4r cos  x2  y 2   4 x x2  4 x  y 2  0 ( x  2) 2  y 2  4 center (2, 0) ; radius 2

29. r csc    2 The equation is a circle, passing through the  pole, center on the line   and radius 1. 2 Transform to rectangular form: r csc    2 1 r  2 sin  r   2sin  r 2   2r sin  x2  y 2   2 y

31. E

x2  y 2  2 y  0

32. A

x 2  ( y  1) 2  1 center (0, 1) ; radius 1

33. F 34. B 35. H 932

Copyright © 2020 Pearson Education, Inc.


Section 9.2: Polar Equations and Graphs 36. G 37. D 38. C 39. r  2  2 cos  The graph will be a cardioid. Check for symmetry:

Polar axis: Replace  by   . The result is r  2  2 cos( )  2  2 cos  . The graph is symmetric with respect to the polar axis.

40. r  1  sin  The graph will be a cardioid. Check for symmetry:

 The line   : Replace  by    . 2 r  2  2 cos(   )  2  2  cos( ) cos   sin( ) sin  

Polar axis: Replace  by   . The result is r  1  sin( )  1  sin  . The test fails.

 2  2( cos   0)  2  2 cos  The test fails.

The line  

r  1  sin(   )

The pole: Replace r by  r . r  2  2 cos  . The test fails.

 1  sin    cos   cos    sin  

 1  (0  sin  )  1  sin  The graph is symmetric with respect to the line   . 2

Due to symmetry with respect to the polar axis, assign values to  from 0 to  .

r  2  2 cos 

0

4

 6  3  2 2 3 5 6 

 : Replace  by    . 2

2  3  3.7

The pole: Replace r by  r . r  1  sin  . The test fails.

3

Due to symmetry with respect to the line  

2

assign values to  from 

1 2  3  0.3 0

933

Copyright © 2020 Pearson Education, Inc.

  to . 2 2

 , 2


Chapter 9: Polar Coordinates; Vector

 

  

r  1  sin 

0

2

 3

6 0

 6

 3

 2

 2   3   6 0

3  0.1 2 1 2 1 3 2 3  1.9 1 2

1

r  3  3sin  6 3

3 3  5.6 2 9 2 3

 6  3  2

2

41. r  3  3sin  The graph will be a cardioid. Check for symmetry: Polar axis: Replace  by   . The result is r  3  3sin( )  3  3sin  . The test fails.

3 2 3

3 3  0.4 2 0

42. r  2  2 cos  The graph will be a cardioid. Check for symmetry:

Polar axis: Replace  by   . The result is r  2  2 cos( )  2  2 cos  . The graph is symmetric with respect to the polar axis.

 The line   : Replace  by    . 2 r  3  3sin(   )  3  3 sin    cos   cos    sin  

 : Replace  by    . 2 r  2  2 cos(   )

The line  

 3  3(0  sin  )  3  3sin  The graph is symmetric with respect to the line   . 2 The pole: Replace r by  r . r  3  3sin  . The test fails.  Due to symmetry with respect to the line   , 2   assign values to  from  to . 2 2

 2  2  cos    cos   sin    sin  

 2  2( cos   0)  2  2 cos  The test fails.

The pole: Replace r by  r . r  2  2 cos  . The test fails. Due to symmetry with respect to the polar axis, assign values to  from 0 to  .

934

Copyright © 2020 Pearson Education, Inc.


Section 9.2: Polar Equations and Graphs

r  2  2 cos 

0

0

 6  3  2 2 3 5 6 

43. r  2  sin  The graph will be a limaçon without an inner loop. Check for symmetry: Polar axis: Replace  by   . The result is r  2  sin( )  2  sin  . The test fails.

2  3  0.3 1 2

 : Replace  by    . 2 r  2  sin(   )

3

 2  sin    cos   cos    sin  

The line  

 2  (0  sin  )  2  sin  The graph is symmetric with respect to the line   . 2

2  3  3.7 4

The pole: Replace r by  r . r  2  sin  . The test fails. Due to symmetry with respect to the line   assign values to  from 

   2   3   6 0

r  2  sin  1 2

 6  3  2

3  1.1 2 3 2 2 5 2

2

935

Copyright © 2020 Pearson Education, Inc.

3  2.9 2 3

  to . 2 2

 , 2


Chapter 9: Polar Coordinates; Vector 44. r  2  cos  The graph will be a limaçon without an inner loop. Check for symmetry:

45. r  4  2 cos  The graph will be a limaçon without an inner loop. Check for symmetry:

Polar axis: Replace  by   . The result is r  2  cos( )  2  cos  . The graph is symmetric with respect to the polar axis.

Polar axis: Replace  by   . The result is r  4  2 cos( )  4  2 cos  . The graph is symmetric with respect to the polar axis.

 : Replace  by    . 2 r  2  cos(   )

 : Replace  by    . 2 r  4  2 cos(   )

The line  

The line  

 2   cos    cos   sin    sin  

 4  2  cos    cos   sin    sin  

 2  ( cos   0)  2  cos  The test fails.

 4  2( cos   0)  4  2 cos  The test fails.

The pole: Replace r by  r . r  2  cos  . The test fails.

The pole: Replace r by  r . r  4  2 cos  . The test fails.

Due to symmetry with respect to the polar axis, assign values to  from 0 to  .

Due to symmetry with respect to the polar axis, assign values to  from 0 to  .

r  2  cos 

r  4  2 cos 

0

1

0

2

3  1.1 2 3 2

 6  3  2 2 3 5 6 

 6  3  2 2 3 5 6 

2

2 5 2 2

3  2.9 2 3

4  3  2.3 3 4 5 4  3  5.7

936

Copyright © 2020 Pearson Education, Inc.

6


Section 9.2: Polar Equations and Graphs 46. r  4  2sin  The graph will be a limaçon without an inner loop. Check for symmetry:

47. r  1  2sin  The graph will be a limaçon with an inner loop. Check for symmetry:

Polar axis: Replace  by   . The result is r  4  2sin( )  4  2sin  . The test fails.

Polar axis: Replace  by   . The result is r  1  2sin( )  1  2sin  . The test fails.

 : Replace  by    . 2 r  4  2sin(   )

 : Replace  by    . 2 r  1  2sin(   )

The line  

The line  

 4  2 sin    cos   cos    sin  

 1  2 sin    cos   cos    sin  

 4  2(0  sin  )  4  2sin  The graph is symmetric with respect to the line   . 2

 1  2(0  sin  )  1  2sin  The graph is symmetric with respect to the line   . 2

The pole: Replace r by  r . r  4  2sin  . The test fails.

The pole: Replace r by  r . r  1  2sin  . The test fails.

 , 2

Due to symmetry with respect to the line  

Due to symmetry with respect to the line   assign values to  from 

  2   3   6 0 

 6  3  2

  to . 2 2

assign values to  from 

r  4  2sin 

 2   3   6 0

r  1  2sin 

2 4  3  2.3 3 4

 6  3  2

5 4  3  5.7 6

1 1  3   0.7 0 1 2 1  3  2.7

937

Copyright © 2020 Pearson Education, Inc.

3

  to . 2 2

 , 2


Chapter 9: Polar Coordinates; Vector 49. r  2  3cos  The graph will be a limaçon with an inner loop. Check for symmetry:

48. r  1  2sin  The graph will be a limaçon with an inner loop. Check for symmetry:

Polar axis: Replace  by   . The result is r  1  2sin( )  1  2sin  . The test fails.

Polar axis: Replace  by   . The result is r  2  3cos( )  2  3cos  . The graph is symmetric with respect to the polar axis.

 : Replace  by    . 2 r  1  2sin(   )

The line  

 : Replace  by    . 2 r  2  3cos(   )

The line  

 1  2 sin    cos   cos    sin  

 1  2(0  sin  )  1  2sin  The graph is symmetric with respect to the line   . 2

 2  3( cos   0)  2  3cos  The test fails.

The pole: Replace r by  r . r  1  2sin  . The test fails.

The pole: Replace r by  r . r  2  3cos  . The test fails.

Due to symmetry with respect to the line   assign values to  from 

   2   3   6 0  6  3  2

 2  3 cos    cos   sin    sin  

Due to symmetry with respect to the polar axis, assign values to  from 0 to  .

 , 2

  to . 2 2

r  1  2sin 

r  2  3cos 

0

1

 6  3  2 2 3

3 1  3  2.7 2 1

5 6 

0 1  3   0.7

2

3 3   0.6 2 1 2 2 7 2

2

1

938

Copyright © 2020 Pearson Education, Inc.

3 3  4.6 2 5


Section 9.2: Polar Equations and Graphs 50. r  2  4 cos  The graph will be a limaçon with an inner loop. Check for symmetry:

51. r  3cos(2 ) The graph will be a rose with four petals. Check for symmetry:

Polar axis: Replace  by   . The result is r  2  4 cos( )  2  4 cos  . The graph is symmetric with respect to the polar axis.

Polar axis: Replace  by   . r  3cos(2( ))  3cos( 2 )  3cos(2 ) . The graph is symmetric with respect to the polar axis.  : Replace  by    . 2 r  3cos  2(   ) 

The line  

 The line   : Replace  by    . 2 r  2  4 cos(   )

 3cos(2  2 )

 2  4 cos    cos   sin    sin  

 3 cos  2  cos  2   sin  2  sin  2  

 2  4( cos   0)  2  4 cos  The test fails.

 3(cos 2  0)  3cos  2  The graph is symmetric with respect to the line   . 2

The pole: Replace r by  r . r  2  4 cos  . The test fails. Due to symmetry with respect to the polar axis, assign values to  from 0 to  .

The pole: Since the graph is symmetric with

r  2  4 cos 

respect to both the polar axis and the line  

0

6

it is also symmetric with respect to the pole.

 6  3  2 2 3 5 6 

Due to symmetry, assign values to   from 0 to . 2 r  3cos  2   3 3  6 2  0 4 3   3 2  3 2

2  2 3  5.5 4 2 0 2  2 3  1.5 2

939

Copyright © 2020 Pearson Education, Inc.

 , 2


Chapter 9: Polar Coordinates; Vector 52. r  2sin(3 ) The graph will be a rose with three petals. Check for symmetry:

53. r  4sin(5 ) The graph will be a rose with five petals. Check for symmetry: Polar axis: Replace  by   .

Polar axis: Replace  by   . r  2sin 3( )   2sin(3 )   2sin  3  . The

r  4sin 5( )   4sin(5 )   4sin  5  .

test fails.

The test fails.  The line   : Replace  by    . 2 r  4sin 5(   )   4sin(5  5 )

 : Replace  by    . 2 r  2sin 3(   ) 

The line  

 4 sin  5  cos  5   cos  5  sin  5  

 2sin(3  3 )

 4 0  sin  5  

 2 sin  3  cos  3   cos  3  sin  3  

 4sin  5  The graph is symmetric with respect to the line   . 2 The pole: Replace r by  r . r  4sin  5  .

 2 0  sin  3    2sin  3 

The graph is symmetric with respect to the line   . 2 The pole: Replace r by  r . r  2sin  3  .

The test fails.

The test fails. Due to symmetry with respect to the line   assign values to  from 

  2   3   4   6 

0

r  2sin  3  2 0  2  1.4 2

Due to symmetry with respect to the line  

 , 2

assign values to  from 

  to . 2 2  r  2sin  3   2 6  2  1.4 4  0 3  2 2

  2   3   4   6

r  4 sin  5 

4 2 3  3.5 2 2  2.8

0

0

940

Copyright © 2020 Pearson Education, Inc.

2 0

  6  4  3  2

  to . 2 2 r  4sin  5  2 2 2  2.8 2 3  3.5 4

 , 2


Section 9.2: Polar Equations and Graphs 54. r  3cos(4 ) The graph will be a rose with eight petals. Check for symmetry:

55. r 2  9 cos(2 ) The graph will be a lemniscate. Check for symmetry:

Polar axis: Replace  by   . r  3cos(4( ))  3cos( 4 )  3cos(4 ) . The graph is symmetric with respect to the polar axis.

Polar axis: Replace  by   . r 2  9 cos(2( ))  9 cos( 2 )  9 cos(2 ) . The graph is symmetric with respect to the polar axis.

 : Replace  by    . 2 r  3cos  4(   ) 

 : Replace  by    . 2 r 2  9 cos  2(   ) 

The line  

The line  

 3cos(4  4 )

 9 cos(2  2 )

 3 cos  4  cos  4   sin  4  sin  4  

 9 cos  2  cos 2  sin  2  sin 2 

 3(cos 4  0)  3cos  4  The graph is symmetric with respect to the line   . 2

 9(cos 2  0)  9 cos  2  The graph is symmetric with respect to the line   . 2 The pole: Since the graph is symmetric with  respect to both the polar axis and the line   , 2 it is also symmetric with respect to the pole. Due to symmetry, assign values to   from 0 to . 2

The pole: Since the graph is symmetric with respect to both the polar axis and the line  

 , 2

it is also symmetric with respect to the pole. Due to symmetry, assign values to   from 0 to . 2 r  3cos  4   0 2 3   6 2  3 4 3   3 2  3 2

r   9 cos  2 

0

3

 6  4  3  2

941

Copyright © 2020 Pearson Education, Inc.

3 2  2.1 2 0 undefined undefined


Chapter 9: Polar Coordinates; Vector 57. r  2 The graph will be a spiral. Check for symmetry:

56. r 2  sin(2 ) The graph will be a lemniscate. Check for symmetry: Polar axis: Replace  by   .

Polar axis: Replace  by   . r  2 . The test fails.

r 2  sin(2( ))  sin( 2 )   sin(2 ) . The test fails.  The line   : Replace  by    . 2 2 r  sin  2(   ) 

 : Replace  by    . 2 r  2 . The test fails.

The line  

The pole: Replace r by  r . r  2 . The test fails.

 sin(2  2 )  sin  2  cos 2  cos  2  sin  2   0  sin  2 

r 2  sin  2 

0

 6  3  2 2 3 5 6 

3 2

3 2

0.1

 4  2 

The graph is symmetric with respect to the pole. Due to symmetry, assign values to  from 0 to  . 0

 

(r ) 2  sin  2 

r   sin  2 

r  2

 2   4 0

  sin  2  The test fails. The pole: Replace r by  r .

3 2 2

0.3 0.6 1 1.7 3.0 8.8 26.2 77.9

0 undefined undefined 0

942

Copyright © 2020 Pearson Education, Inc.


Section 9.2: Polar Equations and Graphs 59. r  1  cos  The graph will be a cardioid. Check for symmetry:

58. r  3 The graph will be a spiral. Check for symmetry:

Polar axis: Replace  by   . r  3 . The test fails.

Polar axis: Replace  by   . The result is r  1  cos( )  1  cos  . The graph is symmetric with respect to the polar axis.

 : Replace  by    . r  3 . 2 The test fails.

The line  

 : Replace  by    . 2 r  1  cos(   )  1  (cos    cos   sin    sin  )

The line  

The pole: Replace r by  r . r  3 . The test fails.

r  3



0.03

 2   4 0 

 4  2  3 2 2

0.2

 1  ( cos   0)  1  cos  The test fails.

0.4

The pole: Replace r by  r . r  1  cos  . The test fails. Due to symmetry, assign values to  from 0 to  .

1 2.4

 0

5.6

r  1  cos  0

3  1  0.1 6 2 1  3 2  1 2 2 3 3 2 5 3 1  1.9 6 2  2

31.5 117.2 995

943

Copyright © 2020 Pearson Education, Inc.


Chapter 9: Polar Coordinates; Vector 60. r  3  cos  The graph will be a limaçon without an inner loop. Check for symmetry:

61. r  1  3cos  The graph will be a limaçon with an inner loop. Check for symmetry:

Polar axis: Replace  by   . The result is r  3  cos( )  3  cos  . The graph is symmetric with respect to the polar axis.

Polar axis: Replace  by   . The result is r  1  3cos( )  1  3cos  . The graph is symmetric with respect to the polar axis.

 : Replace  by    . 2 r  3  cos(   )

The line  

 : Replace  by    . 2 r  1  3cos(   )

The line  

 3  cos    cos   sin    sin  

 1  3 cos    cos   sin    sin  

 3  ( cos   0)  3  cos  The test fails.

 1  3( cos   0)  1  3cos  The test fails.

The pole: Replace r by  r . r  3  cos  . The test fails.

The pole: Replace r by  r . r  1  3cos  . The test fails.

Due to symmetry, assign values to  from 0 to  .

Due to symmetry, assign values to  from 0 to  .

 0

r  3  cos  4

 0

3  3  3.9 6 2 7  3 2  3 2 2 5 3 2 5 3 3  2.1 6 2  2

r  1  3cos  2

 3 3 1   1.6 6 2  1  3 2  1 2 2 5 3 2 5 3 3 1  3.6 6 2  4

944

Copyright © 2020 Pearson Education, Inc.


Section 9.2: Polar Equations and Graphs 62. r  4 cos(3 ) The graph will be a rose with three petals. Check for symmetry:

63. The graph is a cardioid whose equation is of the form r  a  b cos  . The graph contains the point (6, 0) , so we have 6  a  b cos 0 6  a  b(1) 6  ab

Polar axis: Replace  by   . r  4 cos(3( ))  4 cos( 3 )  4 cos(3 ) . The graph is symmetric with respect to the polar axis.

The graph contains the point  3,

 : Replace  by    . 2 r  4 cos 3      

The line  

3  a  b cos

 4  cos  3  cos 3  sin  3  sin  3    4   cos 3  0    4 cos  3 

The test fails. The pole: Replace r by  r . r  4 cos  3  . Due to symmetry, assign values to  from 0 to  . 0

4

 6  3  2 2 3 5 6 

 2

64. The graph is a cardioid whose equation is of the form r  a  b cos  . The graph contains the point (6,  ) , so we have

The test fails.

r  4 cos  3 

 , so we have 2

3  a  b(0) 3a Substituting a  3 into the first equation yields: 6  ab 6  3b 3b Therefore, the graph has equation r  3  3cos  .

 4 cos  3  3 



6  a  b cos  6  a  b(1) 6  a b  

0

The graph contains the point  3,

4

3  a  b cos



 , so we have 2

 2

3  a  b(0) 3a Substituting a  3 into the first equation yields: 6  a b 6  3b b  3 Therefore, the graph has equation r  3  3cos  .

0 4 0 4

65. The graph is a limaçon without inner loop whose equation is of the form r  a  b sin  , where 0  b  a . The graph contains the point  4, 0  ,

so we have 4  a  b sin 0 4  a  b  0 4a   The graph contains the point  5,  , so we have  2

945

Copyright © 2020 Pearson Education, Inc.


Chapter 9: Polar Coordinates; Vector

5  a  b sin 5  a  b 1

 2

5  ab Substituting a  4 into the second equation yields: 5  ab 5  4b 1 b Therefore, the graph has equation r  4  sin  .

66. The graph is a limaçon with inner loop whose equation is of the form r  a  b sin  , where 0  a  b . The graph contains the point 1, 0  ,

Use substitution to find the point(s) of intersection: 8cos   2sec  2 8cos   cos  1 2 cos   4 1 cos    2  2 4 5  , , , for 0    2 3 3 3 3   1 If   , r  8cos  8    4 . 3 3 2 2 2  1 , r  8cos  8     4 . If   3 3  2 4 4  1 , r  8cos  8     4 . If   3 3  2 5 5 1 , r  8cos  8   4 . If   3 3 2   The points of intersection are  4,  and  3  5   4, .  3 

so we have 1  a  b sin 0 1  a  b 0 1 a   The graph contains the point  5,  , so we have  2 5  a  b sin 5  a  b 1

 2

5  ab Substituting a  1 into the second equation yields: 5  ab 5  1 b 4b Therefore, the graph has equation r  1  4sin  .

67. r  8cos  The equation is of the form r  2a cos  , a  0 . It is a circle, passing through the pole, and center on the polar axis. r  2sec  2 r cos  r cos   2 The equation is of the form r cos   a . It is a vertical line, 2 units to the right of the pole.

946

Copyright © 2020 Pearson Education, Inc.


Section 9.2: Polar Equations and Graphs 68. r  8sin  The equation is of the form r  2a sin  , a  0 . It is a circle, passing through the pole, and center  on the line   . 2 r  4 csc  4 r sin  r sin   4 The equation is of the form r sin   b . It is a horizontal line, 4 units above the pole.

69. r  sin  The equation is of the form r  2a sin  , a  0 . It is a circle, passing through the pole, and center  on the line   . 2 r  1  cos  The graph will be a limaçon without an inner loop. Check for symmetry: Polar axis: Replace  by   . The result is r  1  cos( )  1  cos  . The graph is symmetric with respect to the polar axis.  The line   : Replace  by    . 2 r  1  cos(   )  1  cos    cos   sin    sin  

 1  ( cos   0)  1  cos  The test fails. The pole: Replace r by  r . r  1  cos  . The test fails. Due to symmetry, assign values to  from 0 to  .

Use substitution to find the point(s) of intersection: 8sin   4 csc  4 8sin   sin  1 sin 2   2 2 sin    2  3 5 7  , , , for 0    2 4 4 4 4  2   If   , r  8sin  8  4 2 .  2  4 4  2 3 3  8 , r  8sin If   4 2.  2  4 4  5 2 5  8  , r  8sin If     4 2 .  2  4 4  7 2 7  8  , r  8sin If     4 2 .  2  4 4   The points of intersection are  4 2,  and 4  3    4 2, .  4 

0

r  1  cos  2

 3 1  1.9 6 2 3  3 2  1 2 2 1 3 2 5 3 1  0.1 6 2 0 

947

Copyright © 2020 Pearson Education, Inc.


Chapter 9: Polar Coordinates; Vector

Use substitution to find the point(s) of intersection: sin   1  cos  sin   cos   1

 sin   cos    1 2

 0  6  3  2 2 3 5 6 

2

sin   2sin  cos   cos 2   1 1  2sin  cos   1 2sin  cos   0 sin  cos   0 sin   0 or cos   0  3   0,  or   , for 0    2 2 2 If   0 , r  sin 0  0 (doesn’t check). If    , r  sin   0 . 2

If  

r  2  2 cos  4 2  3  3.7 3 2 1 2  3  0.3 0

, r  sin  1 . 2 2 3 3 , r  sin  1 (doesn’t check). If   2 2   The points of intersection are  0,   and 1,  .  2 70. r  3 The equation is of the form r  a, a  0 . It is a circle, center at the pole and radius 3. r  2  2 cos  The graph will be a limaçon without an inner loop. Check for symmetry: Polar axis: Replace  by   . The result is r  2  2 cos( )  2  2 cos  . The graph is symmetric with respect to the polar axis.  The line   : Replace  by    . 2 r  2  2 cos(   )

Use substitution to find the point(s) of intersection: 3  2  2 cos  1  2 cos  1  cos  2  5  , for 0    2 3 3   1 If   , r  2  2 cos  2  2    3 . 3 3 2 5 5 1  2  2   3 . , r  2  2 cos If   2 3 3   The points of intersection are  3,  and  3  5   3, .  3 

 2  2 cos    cos   sin    sin  

 2  2( cos   0)  2  2 cos  The test fails. The pole: Replace r by  r . r  2  2 cos  . The test fails. Due to symmetry, assign values to  from 0 to  .

948

Copyright © 2020 Pearson Education, Inc.


Section 9.2: Polar Equations and Graphs 71. r  1  sin  The graph will be a cardioid. Check for symmetry: Polar axis: Replace  by   . The result is r  1  sin( )  1  sin  . The test fails.

The pole: Replace r by  r . r  1  cos  . The test fails. Due to symmetry, assign values to  from 0 to  .

 0

 : Replace  by    . 2 r  1  sin(   )  1  sin( ) cos   cos( ) sin  

r  1  cos 2

 3 1  1.9 6 2 3  3 2  1 2 2 1 3 2 5 3  0.1 1 6 2

The line  

 1  (0  sin  )  1  sin  The graph is symmetric with respect to the line   . 2 The pole: Replace r by  r . r  1  sin  . The test fails. Due to symmetry with respect to the line      , assign values to  from  to . 2 2 2  r  1  sin    0

0

2

 

 3

6

0  6

 3

 2

1

3  0.1 2 1 2

1

Use substitution to find the point(s) of intersection: 1  sin   1  cos  sin   cos  sin  1 cos  tan   1  5 for 0    2  , 4 4

3 2 3 1  1.9 2

2

r  1  cos  The graph will be a limaçon without an inner loop. Check for symmetry: Polar axis: Replace  by   . The result is r  1  cos( )  1  cos  . The graph is symmetric with respect to the polar axis.  The line   : Replace  by    . 2 r  1  cos(   )

 2 , r  1  sin  1   1.7 . 4 2 4 5 5 2 , r  1  sin If    1  0.3 . 4 2 4  2  ,  and The points of intersection are 1   2 4  2 5  , 1  .  2 4 

If  

 1  cos    cos   sin    sin  

 1  ( cos   0)  1  cos  The test fails.

949

Copyright © 2020 Pearson Education, Inc.


Chapter 9: Polar Coordinates; Vector 1  cos   3cos  1  2 cos  1 cos   2  5  , for 0    2 3 3   1 3 If   , r  1  cos  1   . 3 3 2 2 5 5 1 3 , r  1  cos  1  . If   3 3 2 2

72. r  1  cos  The graph will be a limaçon without an inner loop. Check for symmetry: Polar axis: Replace  by   . The result is r  1  cos( )  1  cos  . The graph is symmetric with respect to the polar axis.  The line   : Replace  by    . 2 r  1  cos(   )  1  cos    cos   sin    sin  

3  3 5 The points of intersection are  ,  and  ,  .

 1  ( cos   0)  1  cos  The test fails. The pole: Replace r by  r . r  1  cos  . The test fails. Due to symmetry, assign values to  from 0 to  .

 0

2 3

73. r 

2 3 

2 Check for symmetry: 1  cos 

Polar axis: Replace  by   . The result is

r  1  cos  2

r

2 2  . 1  cos    1  cos 

The graph is symmetric with respect to the polar axis.  The line   : Replace  by    . 2 2 r 1  cos      2  1   cos  cos   sin  sin   2  1  ( cos   0) 2  1  cos  The test fails. 2 . The pole: Replace r by  r . r  1  cos  The test fails.

 3 1  1.9 6 2 3  3 2  1 2 2 1 3 2 5 3 1  0.1 6 2 0  r  3cos  The equation is of the form r  2a cos  , a  0 . It is a circle, passing through the pole, and center on the polar axis.

Use substitution to find the point(s) of intersection: 950

Copyright © 2020 Pearson Education, Inc.


Section 9.2: Polar Equations and Graphs

Due to symmetry, assign values to  from 0 to  .

 0  6

74. r 

2 1  cos  undefined

1 3 2

 3  2 2 3 5 6

1 3 2

1

2 2  . The graph is 1  2 cos( ) 1  2 cos  symmetric with respect to the polar axis.  The line   : Replace  by    . 2 2 r 1  2 cos     

r

 14.9

4 2 4 3 2

Check for symmetry:

Polar axis: Replace  by   . The result is

r

2

2 1  2 cos 

 1.1

2 1  2  cos  cos   sin  sin  

2 2  1  2   cos   0  1  2 cos 

The test fails. The pole: Replace r by  r . r  The test fails. Due to symmetry, assign values to  from 0 to  .

 0  6  3  2 2 3 5 6 

2 1  2 cos  2 2   2.7 1 3

r

undefined 2 1 2 1 3 2 3

951

Copyright © 2020 Pearson Education, Inc.

 0.7

2 . 1  2 cos 


Chapter 9: Polar Coordinates; Vector

75. r 

1 3  2 cos 

76. r 

Check for symmetry:

1 1  cos 

Check for symmetry:

Polar axis: Replace  by   . The result is

Polar axis: Replace  by   . The result is

1 1 r  . The graph is 3  2 cos    3  2 cos 

r

symmetric with respect to the polar axis.  The line   : Replace  by    . 2 1 r 3  2 cos      1  3  2  cos  cos   sin  sin   1 1   3  2   cos   0  3  2 cos 

symmetric with respect to the polar axis. The line   r  

The test fails.

0  6  3  2 2 3 5 6 

 : Replace  by    . 2

1 1  cos      1

1   cos  cos   sin  sin   1 1    cos   0 

1 1  cos  The test fails. 

1 . The pole: Replace r by  r . r  3  2 cos  The test fails. Due to symmetry, assign values to  from 0 to  .

1 1  . The graph is 1  cos    1  cos 

The pole: Replace r by  r . r  The test fails.

1 3  2 cos  1 1  0.8 3 3 1 2 1 3 1 4 1  0.2 3 3 1 5

r

Due to symmetry, assign values to  from 0 to  .

 0  6

1 1  cos  undefined

r

1 1 3 2

 7.5

 2 3  2 2 2 2 3 3 5 1  0.5 6 1 3 2 

952

Copyright © 2020 Pearson Education, Inc.

1 2

1 . 1  cos 


Section 9.2: Polar Equations and Graphs

78. r 

3

Check for symmetry:

Polar axis: Replace  by   . r 

3 . The 

test fails. The line   r

fails.

Polar axis: Replace  by   . r   . The test fails.  : Replace  by    . r     . 2 The test fails.

The line  

The pole: Replace r by  r . r   . The test fails. r 

0

0

 6  3  2

  0.5 6   1.0 3   1.6 2   3.1

3 2 2

3  4.7 2 2  6.3

3 . The test fails.  

The pole: Replace r by  r . r 

77. r   ,   0 Check for symmetry:

 : Replace  by    . 2

3

r

0

undefined

 6  3  2

18  5.7  9  2.9  6  1.9  3  1.0  2  0.6  3  0.5 2

 3 2 2

953

Copyright © 2020 Pearson Education, Inc.

3

. The test


Chapter 9: Polar Coordinates; Vector 80. r  sin  tan  Check for symmetry:

1  2, 0     sin  Check for symmetry:

79. r  csc   2 

Polar axis: Replace  by   . r  sin( ) tan( )  ( sin  )( tan  )  sin  tan  The graph is symmetric with respect to the polar axis.

Polar axis: Replace  by   . r  csc( )  2   csc   2 . The test fails.  : Replace  by    . 2 r  csc      2

The line  

1

sin    

 : Replace  by    . 2 r  sin      tan     

The line  

2

1 2 sin  cos   cos  sin  1  2 0  cos   1  sin  1  2 sin   csc   2 The graph is symmetric with respect to the line   . 2

 tan   tan     sin  cos   cos  sin      1  tan  tan    tan   sin   1   sin  tan  The test fails.

The pole: Replace r by  r . r  sin  tan  . The test fails. Due to symmetry, assign values to  from 0 to  .

The pole: Replace r by  r . r  csc   2 . The test fails.  Due to symmetry, assign values to  from 0 to . 2  r  csc   2 0 undefined  0 6  2  2   0.6 4  2 3  2   0.8 3 3  1 2

r  sin  tan 

0

0

 6  3  2 2 3

1 3   0.3 2 3 3 2

5 6 

undefined 3 2 1  3       0.3 2  3  0

954

Copyright © 2020 Pearson Education, Inc.


Section 9.2: Polar Equations and Graphs     2 2 Check for symmetry:

81. r  tan  , 

2 Check for symmetry:

Polar axis: Replace  by   . r  tan( )   tan  . The test fails. The line  

82. r  cos

Polar axis: Replace  by   .

   r  cos     cos . The graph is symmetric 2  2 with respect to the polar axis.

 : Replace  by    . 2

 : Replace  by    . 2        r  cos    cos    2   2 2

The line   r  tan(   ) 

tan     tan 

1  tan    tan 

 tan    tan  1

 cos

The test fails. The pole: Replace r by  r . r  tan  . The test fails.

   3   4   6 0  6  4  3

 sin

2

 cos

2

 sin

2

 sin

2

2 The test fails.

r  tan 

The pole: Replace r by  r . r  cos

 3  1.7

 2

. The

test fails. Due to symmetry, assign values to  from 0 to  .

1 3    0.6 3 0 3  0.6 3 1 3  1.7

r  cos

0

1

 6

0.97

 3

3  0.87 2

 2 2 3 5 6 

2  0.71 2 1 2

955

Copyright © 2020 Pearson Education, Inc.

0.26 0

2


Chapter 9: Polar Coordinates; Vector 83. Convert the equation to rectangular form: r sin   a ya The graph of r sin   a is a horizontal line a units above the pole if a  0 , and |a| units below the pole if a  0 .

88. Convert the equation to rectangular form: r   2a cos  , a  0 r 2   2a r cos  x 2  y 2   2ax x 2  2ax  y 2  0 ( x  a)2  y 2  a 2 Circle: radius a, center at rectangular coordinates ( a, 0) .

84. Convert the equation to rectangular form: r cos   a xa The graph of r cos   a is a vertical line a units to the right of the pole if a  0 and |a| units to the left of the pole if a  0 .

Reading the graph we obtain 5 knots. Reading the graph we obtain 6 knots. Reading the graph we obtain 10 knots. Reading the graph we obtain approximately 80 to 150 . Reading the graph we obtain approximately 9 knots that occurs at approximately 90 to 100 .

89. a. b. c. d.

85. Convert the equation to rectangular form: r  2a sin  , a  0

e.

r 2  2a r sin  x 2  y 2  2ay

r  a cos   b sin 

90.

x 2  y 2  2ay  0

r  a  r cos   b  r sin  2

x 2  ( y  a)2  a 2 Circle: radius a, center at rectangular coordinates (0, a ).

2

x  y 2  ax  by x 2  ax  y 2  by  0

 2 a2   2 b2  a 2 b2   x  ax     y  by    4   4  4 4 

86. Convert the equation to rectangular form: r   2a sin  , a  0 r 2   2a r sin 

2 2 2 2  2 a   2 b   a  b  x y         2  2  2    

x 2  y 2   2ay x 2  y 2  2ay  0 x 2  ( y  a)2  a 2 Circle: radius a, center at rectangular coordinates (0, a).

So the equation is a circle with radius

2

a 2  b2 , 2

a b and center at  ,  in rectangular coordinates.  2 2

87. Convert the equation to rectangular form: r  2a cos  , a  0

r 2  cos(2 )

91.

r 2  cos 2   sin 2 

r 2  2a r cos 

r 2  r 2  r 2 cos 2   r 2 sin 2 

x 2  y 2  2ax

 r    r cos    r sin   x  y   x  y 2 2

x 2  2ax  y 2  0 ( x  a)2  y 2  a 2 Circle: radius a, center at rectangular coordinates (a, 0).

2

2 2

2

2

2

2

1 ab sin C . Let 2 A  (r2 ,  2 ), B  (r1 , 1 ), and C  (0, 0). Then a  r1 , b  r2 , and the measure of angle

92. The area of triangle ABC is K 

C   2  1 . So K 

956

Copyright © 2020 Pearson Education, Inc.

1 r1r2 sin( 2  1 ) . 2


Section 9.2: Polar Equations and Graphs

93. a.

99. y  2sin(5 x)

r 2  cos  : r 2  cos(   )

Ampl  2  2

r   cos  Not equivalent; test fails. 2

Period 

  r   cos( ) 2

r 2  cos  New test works.

b.

x3 is in lowest x  x  12 ( x  3)( x  4) terms. The denominator has zeros at –3 and 4. The degree of the numerator is n = 1 and the degree of the denominator is m  2 . Since n  m , the line y  0 is a horizontal asymptote. Since the denominator is zero at 4, x  4 is a vertical asymptotes. Since the factor ( x  3) cancels, x  3 is not an asymptote.

r 2  sin 

Test works.

  r   sin( ) 2

r 2   sin  Not equivalent; new test fails.

94. Answers will vary.

102.

, or the pole, depending on the

2 test(s) passed. However, an equation may fail these tests and still have a graph that is symmetric with respect to the polar axis, the

line  

 2

Value of f Conclusion

103.

32 x  3  91 x 32 x  3  32(1 x )

 , 3

 3, 8

 8, 

0

5

10

2 x  3  2(1  x) 2x  3  2  2x 4x  5 x

5 4

The solution set is 104.



5 . 4

6 x 2  7 x  20 6 x 2  7 x  20  0 (2 x  5)(3 x  4)  0

8 3 2  3 2 7 Negative Positive Negative 

5 4 x   ,x  2 3

The solution set is  x 3  x  8  , or, using

 

5 4 The solution set is  , 2 3

interval notation,  3,8 . 98.

1 (6  11  13)  15 2

 1080  6 30  32.86 sq units

5 1 x3 5 5  1( x  3) x  8 1  0  0 0 x3 x3 x3   x  8 f ( x)  x3 The zeros and values where the expression is undefined are x  8 and x  3 .

Chosen

s

 15(9)(4)(2)

, or the pole.

Interval Number

K  15(15  6)(15  11)(15  13)

96. Answers will vary. 97.

2

101. P (1)  3(1)5  2(1)3  7(1)  5  3 2 7 5  3 By the Remainder Theorem, the remainder is 3.

95. If an equation passes one or more of these tests, then it will definitely have a graph that is symmetric with respect to the polar axis, the

x3

100. R ( x) 

r 2  sin  : r 2  sin(   )

line  

2 5

7 180   420 3  957

Copyright © 2020 Pearson Education, Inc.


Chapter 9: Polar Coordinates; Vector

The polar form of z  1  i is    z  r  cos   i sin    2  cos  i sin  4 4 

105. Since f (2)  (2)3  4(2) 2  5  3 , the point on the line is (-2, 3). The slope is f (2)  3(2) 2  8(2)  4 . The equation of the line is:  y  y1   m  x  x1 

i

 2e 4

y  3  4( x  2) y  3  4 x  8 y  4 x  5

106. cos3 x  cos x cos 2 x  cos x(1  sin 2 x)  cos x  sin 2 x cos x

14. r  x 2  y 2  (1)2  12  2

Section 9.3

y  1 x 3  4 The polar form of z  1  i is tan  

1. 4  3i 2. a.

sin A cos B  cos A sin B

b.

cos A cos B  sin A sin B

3 3   z  r  cos   i sin    2  cos  i sin 4 4  

3 1 ,  2 2

3.

i

3

 2e 4

4. e7 , e12 5. real; imaginary 6. magnitude, modulus, argument 7. r1r2 e  1

i   2 

8. false; z n  r n e 

i n 

9. three

15. r  x 2  y 2 

10. True

tan  

11. c 12. a





2

y 1 3   x 3 3 11 6

13. r  x 2  y 2  12  12  2 tan  

 3    1  4  2

y 1 x

 4

958

Copyright © 2020 Pearson Education, Inc.

2


Section 9.3: The Complex Plane; De Moivre’s Theorem

The polar form of z  3 i is The polar form of z  3  i is 11 11   z  r  cos   i sin    2  cos  i sin 6 6   i

11

3 3    i sin z  r  cos   i sin    3  cos 2 2   i

3

 3e 2

 2e 6

18. r  x 2  y 2  ( 2) 2  02  4  2

16. r  x  y  1   3 2

2

2

  42 2

y  3 tan     3 x 1 5  3 The polar form of z  1  3i is 5 5   z  r  cos   i sin    2  cos  i sin 3 3   i

y 0  0 x 2

tan  

  The polar form of z   2 is z  r  cos   i sin    2  cos   i sin    2ei

5

 2e 3

19. r  x 2  y 2  42  ( 4) 2  32  4 2 y 4   1 x 4 7  4 The polar form of z  4  4i is tan  

17. r  x 2  y 2  02  (3) 2  9  3 y 3  x 0 3  2

tan  

7 7   z  r  cos   i sin    4 2  cos  i sin 4 4   i

7

 4 2e 4

959 Copyright © 2020 Pearson Education, Inc.


Chapter 9: Polar Coordinates; Vectors

20. r  x 2  y 2 

 9 3   9  324  18 2

2

y 9 3   x 9 3 3

tan  

6 The polar form of z  9 3  9 i is

   z  r  cos   i sin    18  cos  i sin  6 6 .  i

 18e 6

21. r  x 2  y 2  32  ( 4) 2  25  5 y 4  x 3   5.356 The polar form of z  3  4i is z  r  cos   i sin    5  cos 5.356  i sin 5.356  tan  

 5e

i 5.356

 3  7 2

y 3  2 x   0.714 The polar form of z  2  3 i is tan  



22. r  x 2  y 2  22 

z  r  cos   i sin    7  cos 0.714  i sin 0.714   7ei 0.714

23. r  x 2  y 2  ( 2) 2  32  13 tan  

y 3 3   x 2 2

  2.159 The polar form of z   2  3i is z  r  cos   i sin    13  cos 2.159  i sin 2.159   13ei 2.159

960 Copyright © 2020 Pearson Education, Inc.


Section 9.3: The Complex Plane; De Moivre’s Theorem

3 3   29. 3  cos  i sin   3  0  1i   3 i 2 2      30. 4  cos  i sin   4  0  1i   4 i 2 2 

31. 7ei  7  cos   i sin    7  1  0i   7

24. r  x 2  y 2  tan  

  5

2

  1  6 2

y 1 5   x 5 5

i    32. 3e 2  3  cos  i sin   3  0  1i  2 2   3i

5 5   33. 0.2  cos  i sin  0.2   0.1736  0.9848 i  9 9     0.035  0.197 i

  5.863 The polar form of z  5  i is z  r  cos   i sin  

10 10   34. 0.4  cos  i sin  0.4   0.9397  0.3420 i  9 9     0.376  0.137 i

 6  cos 5.863  i sin 5.863  6ei 5.863

 i    35. 2e 18  2  cos  i sin   2  0.985  0.174i  18 18    1.970  0.347 i  i    36. 3e 10  3  cos  i sin   3  0.951  0.309i  10 10    2.853  0.927i

 1 2 2  3    i sin 25. 2  cos   2  2  2 i  3 3      1  3 i

 7 7  3 1   26. 3  cos  i sin  3   i  6 6    2 2  

3 3 3  i 2 2

7  2 i 7 7  2    i sin   4   27. 4e 4  4  cos i 4 4  2    2

 2 2 2 2 i

28. 2e

i

5 6

 5 5  3 1    2  cos  i sin   2    i 6 6 2 2      3i

2 2       i sin  4  cos  i sin  37. z w  2  cos  9 9   9 9  i

2

i

i 

2     2

 2e 9  4e 9  8e  9

i

 8e 3

    8  cos  i sin  3 3  i

2

 2  

z 2e 9 2 i  9  9  1 i 9    e e  w 4 2 i 4e 9 1     cos  i sin  2 9 9 2 2   5 5   38. z w   cos  i sin    cos 9  i sin 9  3 3     i

2

i

5

i 

2 5   9 

 e 3 e 9  e  3  cos

11 11  i sin 9 9

961 Copyright © 2020 Pearson Education, Inc.

i

11

e 9


Chapter 9: Polar Coordinates; Vectors

i

2

i

 2 5 

 cos i

9

 i sin

13

i

 9

3

i

 12e

13 3    i  2   18

20  2  i   9 

 12e i

i

20 9

13

i

 13 3 

i

 13 3 

 7 

7 

40. z w  2e

 12e

 6e

i

10 9

 2  6e

14 i 9

4

 4

10 

z 2e 9 2 i    10  e  9 9  w 6 i 6e 9 1  e 3

2  i     3 

1  e 3

2  i  2  3  

1 i 4  e 3 3 1 4 4    cos  i sin 3 3 3  i

i

  i   

41. z w  2e 8  2e 10  2  2e  8 10  i

3 9    

9

 4e 40 9 9    4  cos  i sin  40 40  

15

3

 3 9  

 3 

z 4e 8 4 i   4 i    9  e  8 16   e  16  w 2 2 2e 16 3   i  2   16 

 2e 

i

29

 2e 16

43. z  2  2i

4 10  i   9   9

14 14    12  cos  i sin 9 9   i

i 

9

29 29    2  cos  i sin 16 16  

3 i    3 i  2   3 i 11  e 9   e 9   e 9 4 4 4 3 11 11    cos  i sin 4 9 9  4 9

3

15 15    8  cos  i sin 16 16  

2

 12e 9

z 3e 18 3 i  18  2  3 i  18  2    e  e 3 i w 4 4 4e 2

i



 8e 16

2 2    12  cos  i sin 9 9   i



42. z w  4e 8  2e 16  4  2e  8 16 

39. z w  3e 18  4e 2  3 4e

 i z 2e 8 2 i  8  10    e  e 40  i w 2 2e 10    cos  i sin 40 40

 i   i z e 3  5  e  3 9   e 9 w i e 9

r  22  22  8  2 2 2 tan    1 2



 4 

i    z  2 2  cos  i sin   2 2e 4 4 4 

w  3 i r

 3    1  4  2 2

2

1 3  3 3 11  6 11 i 11 11    i sin  2e 6 w  2  cos  6 6  

tan  

i

i

11

z w  2 2e 4  2e 6 

 11 

i  

 2 2  2e  4 i 

25

 4 2e  12

6 

 2  

i 

i

 4 2e 12

     4 2  cos  i sin  12 12   962 Copyright © 2020 Pearson Education, Inc.

25  

 4 2e  12 


Section 9.3: The Complex Plane; De Moivre’s Theorem

i



3

11 

z 2 2e 4 2 2 i  4  6  e   11 w 2 i 2e 6  2e

4 e 3

 2   i  9   

i

 19  i    12 

4 e 3

 2   i  3  9   

2

 64e 3

19   i  2  12 

i

 2e 

2 2    64  cos  i sin 3 3  

5

 2e 12 5 5    2  cos  i sin 12 12  

 1 3   64    i 2 2  

44. z  1  i

 32  32 3 i

r  1  (1)  2 2

2

3

 i 4  4 4     46. 3  cos  i sin   3e 9    9 9       4   4  i  3  i  33 e  9    27e 3  

1 tan    1 1 7  4 7 i 7   7 4  i sin  2 z  2 e 4   4

4 4    27  cos  i sin 3 3  

w  1 3 i

r  12   3

2

 1 3   27    i 2 2  

 42

 3  3 1 5  3 5 i 5 5    i sin  2e 3 w  2  cos  3 3  

tan  

z w  2e

7 i 4

 2e i 

 2 2e



7 5   3 

i

5

i

41

    32  cos  i sin  2 2 

17

 2 2e 12 17 17    2 2  cos  i sin 12 12   i

7

 7

 32  0  1 i   32 i

5 

4

  i 5   5 5     48.  2  cos  i sin     2  e 16   16 16       

z 2e 4 2 i  4  3  e   5 i w 2 2e 3 2 i 12 e  2 2    cos  i sin   2  12 12  3

5

  i  5    i  25  e  10    32e 2  

 2 2e 12

41  2  i   12 

27 27 3  i 2 2

 i       47.  2  cos  i sin     2e 10  10 10      

5 i 3

 2  2e  4

3

i  4

5  

i

5

 4e  16   4e 4

5 5    4  cos  i sin 4 4  

 i 29    2 2    i sin  45.  4  cos   4e  9 9      

3

 2 2   4   i 2 2   i

5

  2 2  2 2 i  4e 4

963 Copyright © 2020 Pearson Education, Inc.

4


Chapter 9: Polar Coordinates; Vectors

6

 i        49.  3  cos  i sin     3e 18  18 18      

 3 e 6

i (6 ) 18

i

6

6

6 5   i   5 5   52.  3e 18    3  cos  i sin   18 18       6  5   5    3  cos  6    i sin  6     18     18  5 5    27  cos  i sin  3 3  

 

 27e 3

    27e  cos  i sin  3 3  1 3   27   i 2 2   

1 3   27   i  2 2 

27 27 3  i 2 2

5

 5

 1 i 25  1  2 2    i sin  50.    cos e    5 5   2  2  5

5

53. 1  i r  12  (1) 2  2

2 ) 5

1 1 1   e  e i 2  e i 0 32 32 2 1    cos 2  i sin 2  32 1   1  0 i  32 1  32 i (5

4

1  1 1 7  4 7 7   1  i  2  cos  i sin  4 4   tan  

5

3 i     3 3   51.  5e 16    5  cos  i sin   16 16      4   3   3    5 cos  4    i sin  4    16   16    

  7 7   (1  i )5   2  cos  i sin   4 4    5  7   7    2  cos  5    i sin  5     4    4  35 35      4 2  cos  i sin  4 4    2 2  i  4 2    2   2

4

 

 

3 3    25  cos  i sin  4 4    2 2   25    i 2   2 

3 i 25 2 25 2  i  25e 4 2 2

i 27 27 3  i  27e 3 2 2

i

3

  4  4 i  4 2e 4

54.

3 i r

 3   (1)  4  2 2

tan  

1

3 11  6

964 Copyright © 2020 Pearson Education, Inc.

2



3 3


Section 9.3: The Complex Plane; De Moivre’s Theorem 57. 1  i

3  i  2  cos 330º  i sin 330º 

 3  i

6

r  12  12  2 1 tan    1 1

6

  11 11     2  cos  i sin  6 6       11   11    26 cos  6    i sin  6   6 6      



 64  cos11  i sin11 

  64  64ei

i

The three complex cube roots of 1  i  2e 4 are: 1   i   2 k  

2 i r

4

i    1  i  2  cos  i sin   2e 4 4 4 

 64  1  0 i 

55.

zk  3 2 e 3  4

 2   (1)  3 2

1

tan  

2

  2  i  k  3 

2



 6 2e  12

  2   i   0  i 3   6 2e 12

2 2

z0  6 2e  12

  2  3 i   1 i 3   6 2e 4

  5.668

z1  6 2e  12

2  i  3  cos 5.668º  i sin 5.668º 

 2  i    3  cos 5.668  i sin 5.668   3  cos  6  5.668   i sin  6  5.668   6

  2  17 i   2  i 3   6 2e 12

z2  6 2e  12

6

6

58.

3 i

 3    1  4  2 2

 27  cos 34.006  i sin 34.006 

r

 23  14.142i  27ei 2.590

tan  

 27  0.8519  0.5237i 

3 11  6

56. 1  5i

r  12   5

1

  6 2

2



3 3

11

 5  5 1   5.133 1  5 i  6  cos 5.133  i sin 5.133 tan  

1  5 i    6  cos  8  5.133  i sin  8  5.133  8

8

 1296  cos 41.064  i sin 41.064  1296  0.9753  0.2208i 

 1264  286.217i  1296ei 3.364

i 11 11   6  i sin 3  i  2  cos   2e 6 6  

The four complex fourth roots of are: 1  11   11   i  i  2 k   k   4 2e  24 2 

zk  4 2e 4  6

 11   11 i  k 0  i 2   4 2e 24

z0  4 2e  24

 11   23 i  k 1 i 2   4 2e 24

z1  4 2e  24

 11   35 i  k 2  i 2   4 2e 24

z2  4 2e  24

 11   47 i  k 2  i 2   4 2e 24

z3  4 2e  24

965 Copyright © 2020 Pearson Education, Inc.

i

11

3  i  2e 6


Chapter 9: Polar Coordinates; Vectors 61. 16 i

59. 4  4 3 i

r  42   4 3

r  02    16   256  16 2

  64  8 2

16 0   270º

tan  

4 3 tan    3 4 5  3

i

5

i 5 5   3  i sin 4  4 3 i  8  cos   8e 3 3  

i

i

5

The four complex fourth roots of 4  4 3 i  8e 3 are: zk

1  5   5 1  i   2 k  i   k    4 8e  12 2   4 8e 4  3

z0

 3   3 i   0  i  2e  8 2   2e 8  3   7 i   1 i 2   2e 8

 5 1  11 i    1 i 4  8e  12 2   4 8e 12

z2  2e  8

z0  8e

i

 3   11 i   2  i 2   2e 8

 5 1  17 i    2  i   4 8e 12

z2  4 8e  12 2 z3

1  3   3   i   2 k  i  k    2e  8 2 

zk  4 16e 4  2

z1  2e  8

4

3

The four complex fourth roots of 16 i  16e 2 are:

5 8e 12

4

z1

 5 1  i    0   12 2 

3

16 i  16  cos 270º  i sin 270º   16e 2

z3

 5 1  23 i    3  i  4 8e  12 2   4 8e 12

 3   15 i   3  i  2e  8 2   2e 8

62.  8 r  ( 8) 2  02  8

60.  8  8i

0 0 8   180º  

r  ( 8) 2  ( 8) 2  8 2

tan  

8 1 8 5  4

tan  

 8  8  cos180º i sin180º   8ei

The three complex cube roots of  8  8ei are: 5

1 i   2 k 

i 5 5   4  8  8i  8 2  cos  i sin   8 2e 4 4  

The three complex cube roots of  8  8i  8 are: 1  5   5 2  i   2 k  i  k    2 6 2e  12 3 

zk  3 8 2 e 3  4

z0  2

6

 5 2  5 i   0  i 2e  12 3   2 6 2e 12

z1  2

6

 5 2  13 i   1 i 2e  12 3   2 6 2e 12  5 2  7 i   2  i 3   2 6 2e 4

z2  2 6 2e  12

zk  3 8e 3 5 2e 4 i

  2  i  k  3 

 2e  3

  2   i   0  i 3   2e 3

z0  2e  3

  2  i   1 3   2ei

z1  2e  3 z2

  2  5 i   2  i  2e  3 3   2e 3

63. i r  02  12  1  1 1 tan   0



2 i

i  1(cos 90º  i sin 90º )  e 2 The five complex fifth roots of

966 Copyright © 2020 Pearson Education, Inc.


Section 9.3: The Complex Plane; De Moivre’s Theorem

i

i  1 cos 90º  i sin 90º   e 2 are: zk  5 1e

1   i   2 k  5 2 

z0

  2  i  k   1e  10 5 

z0

  2   i   0  i 10 5   10 1e e

z1

  2   i   1 i  1 e  10 5   e 2

   i  0  0   e  2   ei 0  1    i  0  1

i

z1  e  2   e 2  cos 90º  i sin 90º  0  1i  i    i  0  2 

z2  e  2   ei  cos180º  i sin180º  1  0 i  1

  2  9 i   2  i 5   e 10

   i  0  3 

z2  1 e  10

i

3

z3  e  2   e 2  cos 270º  i sin 270º  0  1i   i The complex fourth roots of unity are: 1, i ,  1,  i .

  2  13 i   3  i 5   e 10

z3  1 e  10

  2  17 i   4  i 5   e 10

z4  1 e  10

64. i r  02  (1) 2  1  1

tan  

1 3   0 2

3 i  e 2 i

i

3

The five complex fifth roots of  i  1e 2 are: 1  3   3 2  i   2 k  i  k    e  10 5 

zk  5 1e 5  2

z0

 3 2  3 i   0  i  1e  10 5   e 10

z1

1  3 2  7 i   1 i  1e 5  10 5   e 10

66. 1  1  0 i r  12  02  1  1 0 tan    0 1  0 1  0 i  ei 0 The six complex sixth roots of unity are:

1  3 2  11 i   2  i 5   e 10

z2  1 e 5  10

1  3 2  3 i   3  i 5  e 2

z3  1e 5  10

1  3 2  19 i   4  i 5   e 10

i

z4  1 e 5  10

1

zk  6 1e 6

65. 1  1  0 i r  12  02  1  1 0 tan    0 1   0º 1  0 i  1 cos 0º  i sin 0º   ei 0

The four complex fourth roots of unity are: i

1

zk  4 1e 4

 0  2 k 

   i 0 k  2 

 1e 

967 Copyright © 2020 Pearson Education, Inc.

 0  2 k 

  i k 

 1e  3 


Chapter 9: Polar Coordinates; Vectors

  i  0 

z0  e  3   ei 0  cos 0º  i sin 0º  1 0i  1   i  1

i

z1  e  3   e 3  cos 60º  i sin 60º 

1 3  i 2 2   i  2 

i

2

z2  e  3   e 3  cos120º  i sin120º 1 3   i 2 2   i  3 

z3  e  3   ei  cos180º  i sin180º  1  0 i  1 z4

  4 i  4  i e3  e 3

67. Let w  r  cos   i sin   be a complex number.

If w  0 , there are n distinct nth roots of w, given by the formula:    2k     2k    zk  n r  cos     i sin    , n  n   n  n where k  0, 1, 2, ... , n  1

 cos 240º  i sin 240º

1 3   i 2 2   i  5 

i

5

zk  n r for all k

z5  e  3   e 3  cos 300º  i sin 300º 1 3  i 2 2 The complex sixth roots of unity are: 1 3 1 3 1 3 1 3 1,  i,   i,  1,   i,  i . 2 2 2 2 2 2 2 2 

68. Since zk  n r for all k, each of the complex nth roots lies on a circle with center at the origin

and radius n w  n r , where w is the original complex number.

69. Examining the formula for the distinct complex nth roots of the complex number w  r  cos   i sin   ,    2k     2k    zk  n r  cos     i sin    , where k  0, 1, 2, ... , n  1 , we see that the zk are spaced apart by an n  n   n  n 2 . angle of n

70. Let z1  r1  cos 1  i sin 1  and z2  r2  cos  2  i sin  2  . Then r  cos 1  i sin 1  z1 r1ei1   1 z2 r2 ei2 r2  cos  2  i sin  2  

r1  cos 1  i sin 1 

 cos  2  i sin  2  r2  cos  2  i sin  2   cos  2  i sin  2  

r cos 1  cos  2  i cos 1  sin  2  i sin 1  cos  2  sin 1  sin  2  1 r2 cos 2  2  sin 2  2

r cos 1  cos  2  sin 1  sin  2  i  sin 1  cos  2  cos 1  sin  2   1 1 r2 r r i    1  cos 1   2   i sin 1   2    1 e  1 2  r2 r2

968 Copyright © 2020 Pearson Education, Inc.


Section 9.3: The Complex Plane; De Moivre’s Theorem 71. By the periodicity of the sine and cosine functions, we know cos   cos(  2k ) and sin   sin(  2k ) ,

where k is any integer. Then, rei  r (cos   i sin  )  r cos   2k   i sin   2k    re 

i   2 k 

, k any

integer. 72. Let r  1 and    . Then rei  1ei  cos   i sin   1  i  0  1 . So, ei  1  1  1  0 . 73. Assume the theorem is true for true for n  1 . For n = 0: z 0  r 0 ei (0 )  r 0  cos(0   )  i sin(0   ) 1  1   cos 0  i sin 0 1  1  1  0 1  1 True

For negative integers:

   r e     r cos(n )  i sin(n ) with n  1

z n  z n

1

n i ( n ) 1

1 r  cos(n )  i sin(n )  n

1

n

cos(n )  i sin(n ) cos(n )  i sin(n )  n    cos( n ) i sin( n ) r  cos(n )  i sin(n ) r (cos 2 (n )  sin 2 (n ) 1

n

 r  n  cos( n )  i sin(n )   r  n ei (  n )

z  a0 a1 0.1  0.4i 0.05  0.48i 0.5  0.8i 0.11  1.6i 0.9  0.7i 0.58  0.56i 1.1  0.1i 0.1  0.12i 0  1.3i 1.69  1.3i

74. a.

1  1i

1  3i

a2 0.13  0.35i 2.05  1.15i 0.87  1.35i 1.10  0.76i 1.17  3.09i 7  7 i

a3 a4 0.01  0.31i 0.01  0.395i 3.37  3.92i 3.52  25.6i 1.95  1.67i 0.13  7.21i 0.11  0.068i 1.09  0.085i 8.21  5.92i 32.46  98.47i 1  97i

9407  193i

a5 0.06  0.4i 641.7  180.8i 52.88  2.56i 0.085  0.85i 8643.6  6393.7i

a6 0.06  0.35i 379073  232071i 2788.5  269.6i 1.10  0.086i 33833744  110529134.4i

88454401  3631103i

7.8  1015  6.4  1014 i

b.

z1 and z4 are in the Mandlebrot set. a6 for the complex numbers not in the set have very large components.

c.

z 0.1  0.4i 0.5  0.8i 0.9  0.7i 1.1  0.1i 0  1.3i 1  1i

z a6 0.4 0.4 0.9 444470 1.1 2802 1.1 1.1 1.3 115591573 1.4 7.8  1015

The numbers which are not in the Mandlebrot set satisfy this condition. The numbers which are in the Mandlebrot set satisfy the condition an  2 . By the Zero-Product Property, e x  0 or sin y  0

e x  yi  7

75.

x

yi

e e  7

e x  0   or sin y  0  y  k , k an integer.

x

e (cos y  i sin y )  7 e x cos y  ie x sin y  7 x

x

e cos y  7 and e sin y  0

If y  k , then we have e x cos(k )  7 . If k is even, then cos(k )  1 , and we have e x 1  7  x  ln 7 . If k is odd, then

969 Copyright © 2020 Pearson Education, Inc.


Chapter 9: Polar Coordinates; Vectors cos( k )  1 , and we have

80. Since a = 5 is positive, then the graph opens up and the function has a maximum value. The x b 12 12 6 value is x      2a 2(5) 10 5

e x   1  7  e x  7   . , So x  yi  ln 7  ik , k an even integer, or

equivalently, x  yi  ln 7  i  2k  , k an

2

 6  6  6 f    5    12    4  5  5  5

integer.

 36  72  5    4  25  5 16  5

e x  yi  6i

76.

e x  e yi  6i e x (cos y  i sin y )  6i e x cos y  ie x sin y  6i

81. a  6, b  8, c  12

e x cos y  0 and e x sin y  6

a 2  b 2  c 2  2bc cos A

By the Zero-Product Property, e x  0 or cos y  0

cos A 

e x  0   or cos y  0  y   2k  1

If y   2k  1

 2

 2

, k an integer.

, k an integer. , then

  e x sin  2k  1   6 . If k is even, then 2    sin  2k  1   1 , and e x 1  6  x  ln 6 . If 2    k is odd, then sin  2k  1   1 , and 2  e x   1  6  e x  6   . So, x  yi  ln 6  i  2k  1

equivalently, x  yi  ln 6  i  4k  1

77. A 

 2

 2

, k an even integer , or

, k an integer .

1 1 ab sin C  (8)(11) sin(113)  40.50 2 2

   4 78. 240     180  3

79.

3

24 x 2 y 5  3 8  3  x 2  y 3  y 2  2 y 3 3x 2 y 2

b 2  c 2  a 2 82  122  62 172   2bc 2(8)(12) 192

 172  A  cos 1    26.4º  192 

b 2  a 2  c 2  2ac cos B cos B 

a 2  c 2  b 2 62  122  82 116   2ac 144 2  6 12 

 116  B  cos 1    36.3º  144  C  180o  A  B  180o  36.3o  26.4o  117.3o

82. 3log a x  2 log a y  5log a z  log a x3  log a y 2  log a z 5  log a

83. log 5 x  4  2 52  x  4 25  x  4 252  x  4 625  x  4 x  621

The soluition set is 621 . 84. ( f  g )( x)  f ( g ( x))  3(5 x3 ) 2  4(5 x3 )  3(25 x 6 )  4(5 x3 )  75 x 6  20 x3

970 Copyright © 2020 Pearson Education, Inc.

x3 y 2 z5


Section 9.4: Vectors

3 85. The line would have slope  . 2 2 f (6)  (6)  5  1 so the line contains the 3 point  6, 1 . 3 y  (1)   ( x  6) 2 3 y 1   x  9 2 3 y   x 8 2

86.

11. v  w

12. u  v

16sec2 x  16  16(sec2 x  1)  16 tan 2 x  4 tan x

13. 3v

14. 2w

Section 9.4 1. vector 2. 0 3. unit 4. position 5. horizontal, vertical

15. v  w

6. resultant 7. True 8. False 9. a 10. b

16. u  v

971 Copyright © 2020 Pearson Education, Inc.


Chapter 9: Polar Coordinates; Vectors 17. 3v  u  2w

31. P  ( 2,  1), Q  (6, 2) v   6  ( 2)  i    2  (1)  j  8i  j 32. P  (1, 4), Q  (6, 2) v   6  ( 1)  i  (2  4) j  7i  2 j 33. P  (1, 0), Q  (0, 1) v  (0  1)i  (1  0) j  i  j 34. P  (1, 1), Q  (2, 2) v  (2  1)i  (2  1) j  i  j 35. For v  3i  4 j , v  32  ( 4) 2  25  5 .

18. 2u  3v  w 36. For v  5i  12 j , v  (5) 2  122  169  13 .

37. For v  i  j , v  12  (1) 2  2 . 38. For v  i  j , v  (1) 2  ( 1) 2  2 . 19. True 20. False

K  G  F

21. False

C  F  E  D

39. For v   2i  3 j , v  ( 2) 2  32  13 . 40. For v  6i  2 j , v  62  22  40  2 10 .

22. True

41.

23. False

DE  HG

24. False

C  H  G  F

x 2  y 2  cos 2   sin 2   1 1

42.

x 2  y 2  12  cot 2 

25. True

 1  cot 2 

26. True

 csc 2   csc 

27. P  (0, 0), Q  (3, 4) v  (3  0)i  (4  0) j  3i  4 j

43. 2 v  3w  2  3i  5 j  3   2i  3 j

28. P  (0, 0), Q  (3,  5) v  (3  0)i  (5  0) j  3i  5 j

 6i  10 j  6i  9 j  j

44. 3v  2w  3  3i  5 j  2   2i  3j  9i  15 j  4i  6 j  13i  21j

29. P  (3, 2), Q  (5, 6) v  (5  3)i  (6  2) j  2i  4 j 30. P  (3, 2), Q  (6, 5) v   6  (3)  i  (5  2) j  9i  3 j

972 Copyright © 2020 Pearson Education, Inc.


Section 9.4: Vectors

45.

vw 

 3i  5 j    2i  3j

53. u 

 5i  8 j  52  ( 8) 2  89

46.

vw 

 3i  5 j    2i  3j

 i  2 j  12  ( 2) 2  5

47.

54. u 

ij v ij ij    2 2 v ij 2 1  (1) 1 1  i j 2 2 2 2  i j 2 2 v 2i  j   v 2i  j

2i  j 22  (1) 2

v  w  3i  5 j   2i  3j 2

2

 

2

 34  13 v  w  3i  5 j   2i  3 j 2

2

2

2

 3  ( 5)  ( 2)  3

55.

1 1 v  3v  (4)  3(4)  14 2 2

56.

3 3 3  v  (2)  4 4 2

 34  13

49. u 

50. u 

v 5i   5i v

5i 25  0

5i i 5

3 j 3 j 3j v     j 3  3j v 09

3i  4 j v 3i  4 j  51. u   2 3i  4 j v 3  ( 4) 2 3i  4 j  25 3i  4 j  5 3 4  i j 5 5

52. u 

5 2 5

2

 3  ( 5)  ( 2)  3

48.

2i  j

5i  12 j v 5i  12 j    5i  12 j v (5) 2  122 5i  12 j  169 5i  12 j  13 5 12  i j 13 13

i

1 5

j

2 5 5 i j 5 5

57. Let v  ai  bj . We want v  4 and a  2b . v  a 2  b2 

 2b 2  b 2  5b2

5b 2  4 5b 2  16 16 b2  5 b

16 4 4 5   5 5 5

 4 5 8 5 a  2b  2      5 5   v

8 5 4 5 8 5 4 5 i j or v   i j 5 5 5 5

58. Let v  ai  bj . We want v  3 and a  b . v  a 2  b 2  b 2  b 2  2b 2

2b 2  3 2b 2  9 9 b2  2 b

973 Copyright © 2020 Pearson Education, Inc.

9 3 3 2   2 2 2


Chapter 9: Polar Coordinates; Vectors

3 2 2 3 2 3 2 3 2 3 2 v i j or v   i j 2 2 2 2

ab

59. v  2i  j , w  xi  3 j,

61.

v  v  cos  i  sin  j

 5  cos  60º  i  sin  60º  j 1 3  j  5  i  2  2 5 5 3 j  i 2 2

vw 5

v  w  2i  j  xi  3j

 (2  x)i  2 j  (2  x) 2  22

62.

 x  4x  4  4

 8 cos  45º  i  sin  45º  j

2

 x  4x  8

 2 2  i j  8  2   2  4 2i  4 2 j

Solve for x: x2  4 x  8  5 x 2  4 x  8  25 x 2  4 x  17  0

63.

 4  16  4(1)(17) x 2(1)

v  14,   120º v  v  cos  i  sin  j

 14  cos 120º  i  sin 120º  j  1 3  j  14   i  2   2  7i  7 3j

The solution set is  2  21,  2  21 .

64.

 3 cos  240º  i  sin  240º  j  1 3  j  3   i  2   2 3 3 3 j  i 2 2

v  ( x  3) 2  32

 x2  6 x  9  9  x 2  6 x  18 Solve for x: 2

x  6 x  18  5 2

x  6 x  18  25 x  6x  7  0 ( x  7)( x  1)  0 x  7 or x  1 The solution set is {7, 1}.

v  3,   240º v  v  cos  i  sin  j

60. P  (3, 1), Q  ( x, 4), v   x  (3)  i  (4  1) j  ( x  3)i  3j

2

v  8,   45º

v  v  cos  i  sin  j

2

 4  84  2  4  2 21  2   2  21

v  5,   60º

65.

v  25,   330º

v  v  cos  i  sin  j  25  cos  330º  i  sin  330º  j  3 1  i  j   25  2 2   25 3 25 i j  2 2

974 Copyright © 2020 Pearson Education, Inc.


Section 9.4: Vectors

66.

  tan 1  5   78.7

v  15,   315º

tan   5

v  v  cos  i  sin  j

The angle is in quadrant III, thus,   258.7 .

 15  cos 315º i  sin 315º j  2 2  15 2 15 2  15  i j  i j 2  2 2  2

67. v  3i  3j  3  i  j

 v  cos  i  sin  j

tan   1   tan

1

1  45

68. v  i  3 j  v  cos  i  sin  j

  tan 1

 3   60

The angle is in quadrant I, thus,   60 .

69. v  3 3i  3j  3  3i  j  v  cos  i  sin  j

1

 3 1   40  i  j  2   2  20 3 i  20 j

76. F  100 cos  20º  i  sin  20º  j 77. F1  40  cos(30º )i  sin(30º ) j  3 1   40  i  j   20 3 i  20 j  2 2 

F2  60  cos( 45º )i  sin( 45º ) j

1    30 3 3  The angle is in quadrant II, thus,   150 . tan   

  tan 1  3  71.6 The angle is in quadrant II, thus,   108.4 . tan   3

75. F  40 cos  30º  i  sin  30º  j

The angle is in quadrant I, thus,   45 .

tan   3

74. v  i  3 j  v  cos  i  sin  j

  tan 1  

 2 2   60  i j   30 2 i  30 2 j 2   2 F  F1  F2  20 3 i  20 j  30 2 i  30 2 j

70. v  5i  5 j  5  i  j

 v  cos  i  sin  j

78. F1  30  cos  45º  i  sin  45º  j

tan   1   tan 1 1  45

The angle is in quadrant III, thus,   225 . 71. v  4i  2 j  2  2i  j

 2 2  i  30  j   15 2 i  15 2 j 2   2

F2  70  cos 120º  i  sin 120º  j

 v  cos  i  sin  j

1  1   tan 1     26.6 2  2 The angle is in quadrant IV, thus,   333.4 . tan   

 1 3  j   35 i  35 3j  70   i  2   2

F  F1  F2  15 2 i  15 2 j  (35) i  35 3j

72. v  6i  4 j  2  3i  2 j

 

 15 2  35 i  15 2  35 3 j

 v  cos  i  sin  j

2  2   tan 1     33.7 3  3 The angle is in quadrant IV, thus,   326.3 . tan   

 

 20 3  30 2 i  20  30 2 j

79. Let v a = the velocity of the plane in still air, v w = the velocity of the wind, and v g = the velocity of the plane relative to the ground.

73. v  i  5 j  v  cos  i  sin  j

975 Copyright © 2020 Pearson Education, Inc.


Chapter 9: Polar Coordinates; Vectors

a.

v a  550 j v w  100(cos 45i  sin 45 j)

To find the direction, find the angle between v g and the x-axis and consider a convenient vector such as due south. 50 2 tan   50 2  500   9.4

 2 2  i j  100  2   2  50 2i  50 2 j

b.

v g  va  vw

The plane is traveling with a ground speed of 435.1 mph in an approximate direction of 80.6 degrees west of south ( S 80.6 W ).

 550 j  50 2i  50 2 j

 50 2i  550  50 2 j

c.

The speed of the plane relative to the ground is: vg 

 50 2   550  50 2  2

2

 390281.7459  624.7 To find the direction, find the angle between v g and the x-axis. tan  

81. Let v a = the velocity of the plane in still air, v w = the velocity of the wind, and v g = the velocity of the plane relative to the ground. v g  va  v w va  500 cos  45º  i  sin  45º  j  2 2   500  i j  2 2    250 2 i  250 2 j

550  50 2

  83.5

50 2

v w  60  cos 120º  i  sin 120º  j  1 3   60   i  j 2   2  30i  30 3 j

The plane is traveling with a ground speed of 624.7 mph in an approximate direction of 6.5 degrees east of north ( N 6.5 E ). 80. Let v a = the velocity of the plane in still air, v w = the velocity of the wind, and v g = the

v g  va  v w  250 2 i  250 2 j  30i  30 3 j

velocity of the plane relative to the ground. a.

v a  500i v w  100(cos 315i  sin 315 j)

vg

2

2

and a convenient vector such as due east, i . j component tan   i component

 50 2  500 i  50 2 j

The speed of the plane relative to the ground is: vg 

 30  250 2    250 2  30 3 

To find the direction, find the angle between v g

 500i  50 2i  50 2 j

c.

 269,129.1  518.8 km/hr

v g  va  vw

The speed of the plane relative to the ground is:

 2 2  i j  100  2   2  50 2i  50 2 j

b.

 

 250 2  30 i  250 2  30 3 j

 50 2  500   50 2  2

 189289.3219  435.1

2

 250 2  30 3   250 2  30 

 1.2533

  51.5º The plane is traveling with a ground speed of about 518.8 km/hr in a direction of 38.6º east of north  N38.6E  .

976 Copyright © 2020 Pearson Education, Inc.


Section 9.4: Vectors

82. Let v a = the velocity of the plane in still air, v w = the velocity of the wind, and v g = the velocity of the plane relative to the ground. v g  va  v w va  600  cos  60º  i  sin  60º  j

84. Let F1 be the force of gravity and F2 be the force required to hold the weight on the ramp. F Then sin15  2 F1 sin15 

1 3   600  i  j   300 i  300 3 j 2  2

1200 sin15  4636

F1 

v w  40  cos  45º  i  sin  45º  j

 2 2   40  i j 2   2  20 2 i  20 2 j

So the weight of the car is 4636 lbs. 85. Let the positive x-axis point downstream, so that the velocity of the current is vc  3i . Let v w = the velocity of the boat in the water, and v g =

v g  va  v w

 300 i  300 3 j  20 2 i  20 2 j

 

the velocity of the boat relative to the land. Then v g  v w  v c and v g  k since the boat is going

 300  20 2 i  300 3  20 2 j

The speed of the plane relative to the ground is: vg

1200 F1

300  20 2    300 3  20 2  2

2

 407,964  638.7 km/hr

directly across the river. The speed of the boat is v w  20 ; we need to find the direction. Let v w  a i  b j , so

v w  a 2  b 2  20

To find the direction, find the angle between v g

a 2  b 2  400

and a convenient vector such as due east, i . j component tan   i component

Since v g  v w  v c ,

 300 3  20 2  300  20 2 

 1.6689   59.1º The plane is traveling with a ground speed of about 638.7 km/hr in a direction of about 30.9 degrees east of south ( S30.9E ).

83. Let F1 be the force of gravity and F2 be the force required to hold the weight on the ramp. F Then sin10  2 F1

k j  a i  b j  3i  (a  3) i  b j a3  0 a  3 k b a 2  b 2  400

9  b 2  400 b 2  391 k  b  391  19.8 v w  3i  391j and v g  391j

Find the angle between v w and j : cos  

vw  j vw j

3  0   391(1)

700 F1

700 F1  sin10  4031

  8.6º

sin10 

So the combined weight of the boat and its trailer is 4031 lbs.

2

2

20 0  1

391  0.9887 20

The heading of the boat needs to be about 8.6º upstream. The velocity of the boat directly across the river is about 19.8 kilometers per hour. The time to cross the river is:

977 Copyright © 2020 Pearson Education, Inc.


Chapter 9: Polar Coordinates; Vectors sin 73.74 sin   120 20   9.21 90  9.21  73.74  7.05 So the plane should head N 7.05 E .

0.5  0.025 hours or 19.8 0.5 t  60  1.52 minutes . 19.8

t

86. Let v a = the velocity of the plane in still air, v w = the velocity of the wind, and v g = the

b.

velocity of the plane relative to the ground. v g  va  v w

  73.74  9.21  82.95 v a  120 cos  83.20º   20  120sin  82.95º    124.05 25mi Travel time   0.2 hr = 12 min 124.05mph 2

v a  250  cos  i  sin  j

 ij  v w  40   i  j     i  j  40  40   i  j  20 2  i  j  2  11  v g  va  v w

88.

 250 cos  i  250sin  j  20 2 i  20 2 j  ai Examining the j components:

250sin   20 2  0 250sin   20 2 20 2  0.11314 250   6.5 The heading of the plane should be about N83.5˚E, that is, about 6.5 north of east. sin  

Examining the i components: 250 cos  6.5º  i  20 2 i  a i 276.7  a The speed of the plane relative to the ground is about 276.7 miles per hour.

87. a.

v a  v a cos  73.74º  i  sin  73.74º  j

v a  120  cos  i  sin  j v a  120i To find  we use the law of sines:

a. Find  : tan  

1 2

1  26.57 2 So   90    63.43 and   180  63.43  116.57 Using Law of Sines, Find angle A: sin116.57 sin A  10 2  2sin116.57  A  sin 1    10  10.30 The boat must head 10.30  26.37  36.87 left of perpendicular to the shore.

978 Copyright © 2020 Pearson Education, Inc.

  tan 1

2


Section 9.4: Vectors

b. v a  10 cos 126.57º   2  10sin 126.57º    8.954 km/h 2

90. Let F1 be the tension on the left cable and F2 be the tension on the right cable. Let F3 represent the force of the weight of the box. F1  F1 cos 145º  i  sin 145º  j

5 km.

 F1   0.8192i  0.5736 j

5 km  0.25 hr (15 min) 8.945 km / h

F2  F2 cos  50º  i  sin  50º  j  F2  0.6428i  0.7660 j

The boat must travel Time: 

2

89. Let F1 be the tension on the left cable and F2 be the tension on the right cable. Let F3 represent the force of the weight of the box. F1  F1  cos 155º  i  sin 155º  j  F1   0.9063i  0.4226 j

F3   800 j For equilibrium, the sum of the force vectors must be zero. F1  F2  F3   0.8192 F1 i  0.5736 F1 j  0.6428 F2 i  0.7660 F2 j  800 j

F2  F2 cos  40º  i  sin  40º  j  F2  0.7660i  0.6428 j

   0.8192 F1  0.6428 F2  i

F3  1000 j For equilibrium, the sum of the force vectors must be zero. F1  F2  F3   0.9063 F1 i  0.4226 F1 j  0.7660 F2 i  0.6428 F2 j  1000 j

   0.9063 F1  0.7660 F2  i

  0.4226 F1  0.6428 F2  1000  j

0 Set the i and j components equal to zero and solve:   0.9063 F1  0.7660 F2  0  0.4226 F1  0.6428 F2  1000  0

Solve the first equation for F2 and substitute the result into the second equation to solve the system: 0.9063 F2  F1  1.1832 F1 0.7660 0.4226 F1  0.6428 1.1832 F1   1000  0 1.1832 F1  1000 F1  845.2 F2  1.1832  845.2   1000

The tension in the left cable is about 845.2 pounds and the tension in the right cable is about 1000 pounds.

  0.5736 F1  0.7660 F2  800  j

0 Set the i and j components equal to zero and solve:  0.8192 F1  0.6428 F2  0  0.5736 F1  0.7660 F2  800  0 Solve the first equation for F2 and substitute the

result into the second equation to solve the system: 0.8192 F2  F1  1.2744 F1 0.6428 0.5736 F1  0.7660 1.2744 F1   800  0 1.5498 F1  800 F1  516.2 F2  1.2744  516.2   657.8

The tension in the left cable is about 516.2 pounds and the tension in the right cable is about 657.8 pounds.

91. Let F1 be the tension on the left end of the rope and F2 be the tension on the right end of the rope. Let F3 represent the force of the weight of the tightrope walker. F1  F1 cos 175.8º  i  sin 175.8º  j  F1   0.99731i  0.07324 j

F2  F2 cos  3.7º  i  sin  3.7º  j  F2  0.99792i  0.06453 j F3  150 j

979 Copyright © 2020 Pearson Education, Inc.


Chapter 9: Polar Coordinates; Vectors

For equilibrium, the sum of the force vectors must be zero. F1  F2  F3

Set the i and j components equal to zero and solve:  0.99780 F1  0.99897 F2  0  0.06627 F1  0.04536 F2  135  0

  0.99731 F1 i  0.07324 F1 j  0.99792 F2 i  0.06453 F2 j  150 j

Solve the first equation for F2 and substitute the

   0.99731 F1  0.99792 F2  i

result into the second equation to solve the system: 0.99780 F2  F1  0.99883 F1 0.99897

  0.07324 F1  0.06453 F2  150  j

0 Set the i and j components equal to zero and solve:  0.99731 F1  0.99792 F2  0  0.07324 F1  0.06453 F2  150  0

0.06627 F1  0.04536  0.99883 F1   135  0 0.11158 F1  135

F1  1209.9 F2  0.99883(1209.9)  1208.4

and substitute the

Solve the first equation for F2

result into the second equation to solve the system: 0.99731 F2  F1  0.99939 F1 0.99792 0.07324 F1  0.06453  0.99939 F1   150  0

The tension in the left end of the rope is about 1209.9 pounds and the tension in the right end of the rope is about 1208.4 pounds.

93.

0.13773 F1  150 F1  1089.1 F2  0.99939(1089.1)  1088.4

The tension in the left end of the rope is about 1089.1 pounds and the tension in the right end of the rope is about 1088.4 pounds.

First find FN : FN  (20 lbs )(cos 20)  18.7939 lbs Now find the force causing the bos to slide down the incline. Fd  (20 lbs )(sin 20)  6.8404 lbs The frictional force f is f  FN . Therefore f  Fd right at the moment the box begins to slide. So FN  Fd F 6.8404 lbs  0.36  d  FN 18.7939 lbs

92. Let F1 be the tension on the left end of the rope and F2 be the tension on the right end of the rope. Let F3 represent the force of the weight of the tightrope walker. F1  F1 cos 176.2º  i  sin 176.2º  j  F1   0.99780i  0.06627 j

F2  F2 cos  2.6º  i  sin  2.6º  j  F2  0.99897i  0.04536 j F3  135 j For equilibrium, the sum of the force vectors must be zero. F1  F2  F3

94.

  0.99780 F1 i  0.06627 F1 j  0.99897 F2 i  0.04536 F2 j  135 j

   0.99780 F1  0.99897 F2  i

  0.06627 F1  0.04536 F2  135  j

0

Tg  (3 lbs )(sin  )

To keep box from sliding:

980 Copyright © 2020 Pearson Education, Inc.


Section 9.4: Vectors

97. F1  3000i

T  Tg 2  3sin  2 sin   3 2   sin 1  41.8 3

F2  2000 cos  45º  i  sin  45º  j  2 2  i j  2000  2   2  1000 2 i  1000 2 j F  F1  F2  3000i  1000 2 i  1000 2 j

95. Left box: FN1  W1 T = F1 Right box:  T  F2  W2 sin 35  0 FN2  W2 cos 35 T  W2 sin 35  F2 Tensions are equal so: F1  W2 sin 35  F2  FN1  W2 sin 35   FN2  W1  W2 sin 35   W2 cos 35 W  sin 35   cos 35  W1  2

F 

100  sin 35  0.6 cos 35  0.6

 3000  1000 2   1000 2  2

2

 4635.2 The monster truck must pull with a force of approximately 4635.2 pounds in order to remain unmoved.

98. a.

F1  7000i F2  5500 cos  40º  i  sin  40º  j

W1 

 3000  1000 2 i  1000 2 j

 5500  0.766044i  0.642788 j

 13.68 lb

 4213.24 i  3535.33j F  F1  F2  7000i  4213.24 i  3535.33 j  11, 213.24 i  3535.33 j

96.

F  (11, 213.24) 2  (3535.33) 2  11, 757.4 The farmer will not be successful in removing the stump. The two tractors will have a combined pull of only about 11,757.4 pounds, which is less than the 6 tons needed.

b.

F2  5500 cos  25º  i  sin  25º  j

R  F1  F2  800(cos10i  sin10 j)  710(cos 35i  sin 35 j) R 

2

(800 cos 10  710 cos 35 )  (800 sin 10  710 sin 35 )

 1474.3 N

Direction  is 800sin10  710sin 35 tan   800 cos10  710 cos 35  0.3988

  tan 1 (0.3988)  21.7

F1  7000i  5500  0.906308i  0.422618 j

2

 4984.69 i  2324.40 j

F  F1  F2  7000i  4984.69 i  2324.40 j  11,984.69 i  2324.40 j F  (11,984.69) 2  (2324.40) 2  12, 208.0 The farmer will be successful in removing the stump. The two tractors will have a combined pull of about 12,208 pounds, which is more than the 6 tons needed.

981 Copyright © 2020 Pearson Education, Inc.


Chapter 9: Polar Coordinates; Vectors

99. a.

Let u  3, 1 . Then u'  u  v  3, 1  4,5  1, 4 .

The new coordinate will be (1, 4).

b. 

101. The given forces are: F1  3i; F2  i  4 j; F3  4i  2 j; F4   4 j A vector v  a i  b j needs to be added for equilibrium. Find vector v  a i  b j : F1  F2  F3  F4  v  0 3i  (i  4 j)  (4i  2 j)  (4 j)  (ai  bj)  0 0i  2 j  (ai  bj)  0 ai  (2  b) j  0 a  0; 2  b  0 b2 Therefore, v  2 j .

100. a.

Let a  3, 0 , b  1, 2 , c  3,1 , and d  1,3 . Then a'  a  v  3, 0  3, 2  0, 2 , b'  b  v  1, 2  3, 2  2, 4 ,

c'  c  v  3, 1  3, 2  6, 1 , and d'  d  v  1,3  3, 2  4, 1 .

The vertices of the new parallelogram A ' B ' C ' D ' are (0, 2), (2, 4), (6, 1), and (4, 1).

b.

1 1 3  v   3, 2   ,1 . Then 2 2 2 1 3 9 a'  a  v  3, 0   ,1   ,1 , 2 2 2 1 3 5 b'  b  v  1, 2   ,1   , 1 , 2 2 2 1 3 3 c'  c  v  3, 1   ,1  , 2 , and 2 2 2 1 3 1 d'  d  v  1,3   ,1   , 4 . 2 2 2 The vertices of the new parallelogram  9   5  3  A ' B ' C ' D ' are   , 1 ,   , 1 ,  , 2  , 2 2     2   1  and   , 4  .  2 

102. Let x = Bill’s force. We have FBill  xi, FAdam  240 cos 30i  240 sin 30 j  207.846i  120 j, FChuck  110 cos  25  i   25  sin 30 j  99.6939i  46.4880 j Then F  FBill  FAdam  FChuck  ( x  307.5400)i  73.5120 j . F  ( x  307.5400) 2  73.51202  500 2

( x  307.5400)  73.5120

x  187.0 lb

982 Copyright © 2020 Pearson Education, Inc.

2

 5002


Section 9.4: Vectors

103. Let  = direction angle of the boulder due east. We have FBill  200i, FAdam  240 cos 30i  240 sin 30 j  207.846i  120 j, FChuck  110 cos  25  i   25  sin 30 j  99.6939i  46.4880 j F  FBill  FAdam  FChuck  (507.5400)i  73.5120 j . So

111.

 73.5120    8.2 north of east.  507.5400 

 x2  x1 2   y2  y1 2   7   5  2  1   8  2

  tan 1 

 144  81

104 – 106. Answers will vary. 107.

3

 225  15

x2  3

x 2  y 2  20 x  4 y  55  0

112.

3

x2 3 x  2  27 x  29

( x 2  20 x  100)  ( y 2  4 y  4)  55  100  4 ( x  10) 2  ( y  2) 2  49

The solution set is  29 .

113.

f (0)  03  2(0) 2  9(0)  18  18 0  x3  2 x 2  9 x  18

108. 3x3  12 x 2  36 x  3x( x 2  4 x  12)  3x( x  6)( x  2)

0  ( x3  2 x 2 )  (9 x  18) 0  x 2 ( x  2)  9( x  2) 0  ( x 2  9)( x  2) 0  ( x  3)( x  3)( x  2) x  3, x  3, x  2

  1  109. tan cos 1     2   Find the angle  , 0    , whose cosine

The x-intercepts are -3, 3, -2. The y-intercept is 18.

1 . 2 1 cos   , 0   2   3  1  So, cos 1     2 3

equals

4( x  5) 2  9  53

114.

4( x 2  10 x  25)  9  53 4 x 2  40 x  100  44  0

  1    Thus, tan cos 1     tan    3 .    3 2   3 cos(6 x  3 ) 2 3 2  Amplitude = ; Period =  2 6 3 3  Phase Shift =  6 2

110. y 

12 2   9 2

4 x 2  40 x  56  0 a  4, b  40, c  56

x

(40)  (40) 2  4(4)(56) 2(4)

40  704 40  8 11  8 8  5  11 

The solution set is 5  11,5  11

983 Copyright © 2020 Pearson Education, Inc.


Chapter 9: Polar Coordinates; Vectors

115.

f ( x)  f (3) x 4  34 x 4  81   x3 x 3 x 3 ( x 2  9)( x 2  9)  x3 ( x  3)( x  3)( x 2  9)  x3  ( x  3)( x 2  9)  x3  3x 2  9 x  27

116. ( f  g )( x)  25   5sin  

vw 0  0 2 2 v w 1  1 (1) 2  12   90º

b.

cos  

c.

The vectors are orthogonal.

11. v  2i  j, w  i  2 j a. v  w  2(1)  1(2)  2  2  0 b.

cos  

2

 25  25sin  2

vw  v w 0 5 5

0 2

2

12  (2) 2

2 1

0 0 5

  90º

 25(1  sin  ) 2

c.

 25cos 2   5cos 

The vectors are orthogonal.

12. v  2i  2 j, w  i  2 j a. v  w  2(1)  2(2)  2  4  6 6

cos  

c.

The vectors are neither parallel nor orthogonal.

Section 9.5 1. c 2  a 2  b 2  2ab cos C 2. dot product

vw  v w

b.

3. orthogonal

2

2

2  2 12  22 6 3 3 10    10 2 2 5 10   18.4º

13. v  3 i  j, w  i  j

4. parallel 5. True

a.

v  w  3 (1)  (1)(1)  3  1

6. False

b.

cos  

vw  v w

7. d 

8. b 9. v  i  j, w  i  j a. v  w  1(1)  (1)(1)  1  1  0 b.

c.

vw 0  0 v w 12  (1) 2 12  12   90º

cos  

3 1

4 2   75o

c.

3 1

 3   (1) 1  1

3 1 2 2

2

2

6 2 4

The vectors are neither parallel nor orthogonal.

14. v  i  3 j, w  i  j a.

v  w  1(1)  3(1)  1  3

The vectors are orthogonal.

10. v  i  j, w  i  j a. v  w  1(1)  1(1)  1  1  0

984 Copyright © 2020 Pearson Education, Inc.

2

2


Section 9.5: The Dot Product

b.

cos  

vw  v w 1 3

4 2   105º

c.

1 3 12 

1 3 2 2

 3  1  (1)

2

2

2

c.

vw 50  2 2 v w 3  4 (6) 2  (8) 2 50 50    1 50 25 100   180º

cos  

1 Note that v   w and   180º , so the 2 vectors are parallel.

cos   

vw v w 75

3  ( 4) 92  ( 12) 2 75 75   1 75 25 225   0º

c.

2

2

vw  v w

4 0

0 0   0 4 1 4   90º

c.

The vectors are orthogonal.

2

2

2

0  (3)

2

0 0  0 1 3 3

The vectors are orthogonal.

19. v  i  a j, w  2i  3 j Two vectors are orthogonal if the dot product is zero. Solve for a: vw  0 1(2)  (a )(3)  0 2  3a  0 3a  2 2 a 3 20. v  i  j, w  i  b j Two vectors are orthogonal if the dot product is zero. Solve for b: vw  0 1(1)  1(b)  0 1 b  0 b  1

vw

w

2

w

2(1)  (3)(1)

 1  (1)  2

2

2

 i  j

5 5 5  i  j  i  j 2 2 2

1 1 5 5  v 2  v  v 1   2i  3 j    i  j    i  j 2 2 2 2 

22. v  3i  2 j, w  2i  j

0 2

c.

v1 

1 Note that v  w and   0º , so the 3 vectors are parallel.

cos  

0 2

21. v  2i  3 j, w  i  j

17. v  4i , w  j a. v  w  4(0)  0(1)  0  0  0 b.

vw v w

1 0   90º

The vectors are neither parallel nor orthogonal.

16. v  3i  4 j, w  9i  12 j a. v  w  3(9)  ( 4)(12)  27  48  75 b.

cos  

b.

2 6 4

15. v  3i  4 j, w  6i  8 j a. v  w  3(6)  4(8)  18  32  50 b.

18. v  i , w  3 j a. v  w  1(0)  0(3)  0  0  0

2

2

0 1

v1 

vw

w

2

w

3(2)  2(1)

 2 1  2

2

2

 2i  j

4 8 4  2i  j   i  j 5 5 5  8 4  v 2  v  v1   3i  2 j    i  j  5   5 7 14  i j 5 5 

985 Copyright © 2020 Pearson Education, Inc.


Chapter 9: Polar Coordinates; Vectors

23. v  i  j, w  i  2 j v1 

vw

w

2

w

28. Let 12ai  9aj be the parallel vector.

1(1)  (1)(2)   

 12   2 2 

2

 i  2 j 

 1 1 2    i  2 j   i  j 5 5 5  1 2  6 3 v 2  v  v1   i  j     i  j   i  j  5 5  5 5

24. v  2i  j, w  i  2 j v1 

vw

w

2

w

2(1)  (1)( 2)

 1  ( 2)  2

2

2

 i  2 j

4 4 8  i  2 j  i  j 5 5 5 4 8  6 3 v 2  v  v 1   2i  j    i  j   i  j 5 5  5 5 

25. v  3i  j, w   2i  j v1 

vw

w

2

w

3( 2)  1(1)

 ( 2)  (1)  2

2

2

  2i  j

7 14 7   2i  j   i  j 5 5 5  14 7  1 2 v 2  v  v1   3i  j   i  j   i  j 5  5 5  5 

26. v  i  3j, w  4i  j v1 

vw

w

2

w

1(4)  (3)(1)

42  (1) 2

2

 4i  j 

7 28 7  4i  j  i  j 17 17 17 7   28 v 2  v  v1   i  3 j   i  j   17 17  11 44  i j 17 17

5  (12a ) 2  (9a) 2 25  144a 2  81a 2 25  225a 2 25 a2  225 1 a 3 1 If a  then 3

1 1 1 12   i  9   j  4i  3 j . If a   then 3 3 3      1  1 12    i  9    j  4i  3 j  3  3

29. F  3  cos  60º  i  sin  60º  j 1 3  3 3 3  3  i  j  i  j 2  2 2 2   3 3 3  W  F  AB   i  j   6i 2  2 3 3 3  (6)   0   9 ft-lb 2 2 30. F  20  cos  30º  i  sin  30º  j  3 1   20  i  j   10 3i  10 j 2   2  W  F  AB  10 3i  10 j 100i

 10 3(100)  10  0 

 1000 3  1732 ft-lb

31. a.

I  (0.02) 2  (0.01) 2  0.0005  0.022 The intensity of the sun’s rays is about 0.022 watts per square centimeter.

27. Let 4ai  3aj be the parallel vector. 15  (4a ) 2  (3a) 2

A  (300) 2  (400) 2  250, 000  500

225  16a 2  9a 2

The area of the solar panel is 500 square centimeter.

225  25a 2

a2  9 a  3 We can use the positive answer so the vector with magnitude 15 is 4(3)i  3(3) j  12i  9 j .

b.

W  I  A  (0.02i  0.01j)  (300i  400 j)  (0.02)(300)  (0.01)(400)  6  (4)  10  10

This means 10 watts of energy is collected.

986 Copyright © 2020 Pearson Education, Inc.


Section 9.5: The Dot Product

c.

To collect the maximum number of watts, I and A should be parallel with the solar panels facing the sun. R  (0.75) 2  ( 1.75) 2  3.625  1.90

32. a.

About 1.90 inches of rain fell. A  (0.3) 2  (1) 2  1.09  1.04

The area of the opening of the gauge is about 1.04 square inches.

b.

V  R  A  (0.75i  1.75 j)  (0.3i  j)  (0.75)(0.3)  (1.75)(1)  0.225  (1.75)  1.525  1.525

This means the gauge collected 1.525 cubic inches of rain.

c.

To collect the maximum volume of rain, R and A should be parallel and oriented in opposite directions.

33. Split the force into the components going down the hill and perpendicular to the hill. Fd 8º

Fp

F

35. We must determine the component force going down the ramp. Fd  F sin 20º  250sin 20º  85.5 Timmy must exert about 85.5 pounds of force to hold the piano in position. 36. We must determine the angle  if the force of the boulder is F  5000 pounds and the component force going down the hill is Fd  1000 pounds. Fd  F sin  1000  5000sin  1000 sin    0.2 5000   sin 1 (0.2)  11.5 The angle of inclination of the hill is about 11.5.   37. W  F  AB W  2, AB  4i F  cos  i  sin  j 2   cos  i  sin  j  4i 2  4 cos  1  cos  2   60º

38. Let u  a1i  b1 j , v  a2 i  b2 j , and w  a3i  b3 j . Fd  F sin 8º  5300sin 8º  737.6 Fp  F cos8º  5300 cos8º  5248.4 The force required to keep the Sienna from rolling down the hill is about 737.6 pounds. The force perpendicular to the hill is approximately 5248.4 pounds.

34. Split the force into the components going down the hill and perpendicular to the hill. Fd

u v  w

  a1i  b1 j  a2 i  b2 j  a3i  b3 j   a1i  b1 j  a2 i  a3i  b2 j  b3 j

  a1i  b1 j  (a2  a3 )i  (b2  b3 ) j  a1 (a2  a3 )  b1 (b2  b3 )  a1a2  a1a3  b1b2  b1b3  a1a2  b1b2  a1a3  b1b3

  a1i  b1 j a2 i  b2 j   a1i  b1 j  a3i  b3 j  uv uw

39. Since 0  0 i  0 j and v =a i +b j , we have that 0 v  0 a  0b  0 .

10º Fp F

40. Let v  x i  y j . Since v is a unit vector, we Fd  F sin10º  4500sin10º  781.4 Fp  F cos10º  4500 cos10º  4431.6

The force required to keep the Silverado from rolling down the hill is about 781.4 pounds. The force perpendicular to the hill is approximately 4431.6 pounds.

have that v  x 2  y 2  1 , or x 2  y 2  1 . If  is the angle between v and i , then  xi  yj  i vi   x . Now, cos   v i 1 1

987 Copyright © 2020 Pearson Education, Inc.


Chapter 9: Polar Coordinates; Vectors

x2  y 2  1 cos 2   y 2  1

cos 60 

y 2  1  cos 2  y 2  sin 2  y  sin  Thus, v  cos  i  sin  j .

0.5 

41. If v  a1i  b1 j  cos  i  sin  j and w  a2 i  b2 j  cos  i  sin  j , then cos(   )  v  w  a1a2  b1b2  cos  cos   sin  sin  42. Let v  a i  b j . The projection of v onto i is v1  the projection of v onto i  a i  bi   i v i a(1)  b(0)  1 2 i i i  ai 2 12 i 12  02

0.5 26 16  y 2

   4  5 y 2

18.5 y 2  40 y  88  0 Using a solving utility we find two solutions: y  3.515 or y  1.353 . The y  3.515 will not work so the solution is y  1.353

46. u  xi  2 j and v  7i  3 j u  v  7 x  6, u 

x 2  4, v  58

cos 30 

v  j   ai  bj  j   a  0    b 1  b ,

0.8660 

0

Therefore, the vectors are orthogonal. 44. ( v   w )  w  v  w   w  w

 vw 

vw

w

2

u v  0.8660 u v 7x  6 x 2  4 58

0.8660 58 x 2  4  7 x  6

 w v  v w w v  v w 2   w  vv  w v vw 2  w v vw  v  ww 2 2   w  vv  v  ww 2 2 2 2   w   v   v   w 

 v w   w 

2

6.5(16  y 2 )  16  40 y  25 y 2

v 2  v  v1  ai  bj  ai  bj

v  v1  v 2   v  i  i   v  j j.

26 16  y 2

0.5 26 16  y 2  4  5 y

Since v  i   ai  bj  i   a 1   b  0   a and

43.

u v  0.5 u v 4  5y

2

w

2

0.8660 58 x  4    7 x  6 2

2

2

43.5( x 2  4)  49 x 2  84 x  36 5.5 x 2  84 x  138  0 Using a solving utility we find two solutions: x  16.769 or x  1.496 . The x  1.496 will not work so the solution is y  16.769

47. Since we want orthogonal vectors then their dot product is zero. uv  0 2 x  x  3   8   0 2 x 2  24  0

0 Therefore, the vectors are orthogonal.

2 x 2  24 x 2  12 x   12  2 3

45. u  i  5 j and v  4i  yj u  v  4  5 y, u  26, v  16  y 2

988 Copyright © 2020 Pearson Education, Inc.


Section 9.5: The Dot Product   48. If F is orthogonal to AB , then F  AB  0 . So,  W  F  AB  0 .

49. a.

If u  a1i  b1 j and v  a2 i  b2 j , then since u  v , a12  b12  u

and

2

 v

2

 a2 2  b2 2

u  v   u  v   (a1  a2 )(a1  a2 )  (b1  b2 )(b1  b2 )

 

 a12  b12  a2 2  b2 2

0

b. The legs of the angle can be made to correspond to vectors u  v and u  v . 50.

 u v   u v  2

54. (1  sin 2  )(1  tan 2  )  (cos 2  )(sec 2  ) 1  cos 2   cos 2  1 55. If the rectangle is 19 inches long and we cut out x from each end then the resulting length would be 19 – 2x. If the rectangle is 13 inches wide and we cut out x from each end then the resulting width would be 13 – 2x. Turning up the ends would make the height of the box x. Thus the volume of the box would be V  x(19  2 x)(13  2 x)  4 x3  64 x 2  247 x

ln 7 x 1  ln 3  2 x  4

2

 u  v   u  v   u  v   u  v   (u  u  u  v  v  u  v  v)  (u  u  u  v  v  u  v  v)  2(u  v)  2(u  v)  4(u  v)

( x  1) ln 7  ln 3  ln 2 x ln 7  ln 7  ln 3  ( x  4) ln 2 x ln 7  ln 7  ln 3  x ln 2  4 ln 2 x ln 7  x ln 2  ln 3  4 ln 2  ln 7 x(ln 7  ln 2)  ln 3  4 ln 2  ln 7

ln 3  4 ln 2  ln 7  4.634 ln 7  ln 2 The solution set is {4.634}. x

f  x   x3  5 x 2  27

57.

f ( x)  3 x  4  9

Average rate of change of f from x  3 to x2

58.

f ( x) 

g  2  g  3 2   3

 1  5    2(1)  2 4 

2 x2  5 x 2  2 x  15

2 x2  5 ( x  3)( x  5)

Since the function is undefined at x = -3 and 5, then the vertical asymptotes are x = -3 and x = 5. The horizontal asymptote is obtained by using the coefficients of the highest powered terms in the numerator and denominator. So the horizontal asymptote is y  2.

 23  5  2 2  27    33  5  3 2  27      5 15   45  60  12  5 5

53. 5cos 60  2 tan

x4

51. Answers will vary. 52.

7 x 1  3  2 x  4

56.

59. Using the sum formula we have: cos80 cos 70  sin 80 sin 70  cos(80  70)

5 9 2 2 2

 cos(150)  

60.

x

f (9) 

3 2

12 12 b   9 2a 2 4 2    3 3

2 2 (9)  12(9)  10  44 3

The vertex is  9, 44  and since a is positive the graph is concave up. 989 Copyright © 2020 Pearson Education, Inc.


Chapter 9: Polar Coordinates; Vectors

1

61. ( f  g )( x) 

3

 3 tan  2  9  2   1

3

 9(tan 2   1  2   1

14. x  3 and z  1 is the set of all points of the form (3, y, 1) , a line parallel to the y -axis .

1

 9 tan   9  2

3

2

1

9sec   2

15. d  (4  0) 2  (1  0) 2  (2  0) 2 3

 16  1  4  21

2

27 sec3 

16. d  (1  0) 2  ( 2  0) 2  (3  0) 2  1 4  9  14

17. d  (0  (1)) 2  ( 2  2) 2  (1  (3)) 2

Section 9.6 1.

 x2  x1    y2  y1  2

 1  16  16  33

2

2. components

18. d  (4  ( 2))2  (0  2) 2  (3  3) 2  36  4  36  76  2 19

3. 1 4. False 5. True

19. d  (3  4) 2  (2  ( 2)) 2  (1  ( 2)) 2

6. a

 1  16  9  26

7. y  0 is the set of all points of the form ( x, 0, z ) , the set of all points in the xz-plane.

20. d  (4  2) 2  (1  (3)) 2  (1  (3))2  4  16  4  24 2 6

8. x  0 the set of all points of the form (0, y, z ) , the set of all points in the yz-plane. 9. z  2 is the set of all points of the form ( x, y, 2) , the plain two units above the xy-plane.

21. The bottom of the box is formed by the vertices (0, 0, 0), (2, 0, 0), (0, 1, 0), and (2, 1, 0). The top of the box is formed by the vertices (0, 0, 3), (2, 0, 3), (0, 1, 3), and (2, 1, 3).

10. y  3 is the set of all points of the form ( x, 3, z ) , the plane three units to the right of the xz-plane.

22. The bottom of the box is formed by the vertices (0, 0, 0), (4, 0, 0), (4, 2, 0), and (0, 2, 0). The top of the box is formed by the vertices (0, 0, 2), (4, 0, 2), (0, 2, 2), and (4, 2, 2).

11. x   4 is the set of all points of the form (4, y, z ) , the plain four units to the left of the yz-plane.

23. The bottom of the box is formed by the vertices (1, 2, 3), (3, 2, 3), (3, 4, 3), and (1, 4, 3). The top of the box is formed by the vertices (3, 4, 5), (1, 2, 5), (3, 2, 5), and (1, 4, 5).

12. z  3 is the set of all points of the form ( x, y , 3) , the plane three units below the xyplane.

24. The bottom of the box is formed by the vertices (5, 6, 1), (3, 6, 1), (5, 8, 1), and (3, 8, 1). The top of the box is formed by the vertices (3, 8, 2), (5, 6, 2), (3, 6, 2), and (5, 8, 2).

13. x  1 and y  2 is the set of all points of the form (1, 2, z ) , a line parallel to the z -axis .

990 Copyright © 2020 Pearson Education, Inc.


Section 9.6: Vectors in Space 25. The bottom of the box is formed by the vertices (–1, 0, 2), (4, 0, 2), (–1, 2, 2), and (4, 2, 2). The top of the box is formed by the vertices (4, 2, 5), (–1, 0, 5), (4, 0, 5), and (–1, 2, 5).

38.

26. The bottom of the box is formed by the vertices (–2, –3, 0), (–6, –3, 0), (–2, 7, 0), and (–6, 7, 0). The top of the box is formed by the vertices (–6, 7, 1), (–2, –3, 1), (–2, 7, 1), and (–6, –3, 1).

39. 2 v  3w  2  3i  5 j  2k   3   2i  3j  2k   6i  10 j  4k  6i  9 j  6k   j  2k

27. v  (3  0)i  (4  0) j  (1  0)k  3i  4 j  k

40. 3v  2w  3  3i  5 j  2k   2   2i  3j  2k   9i  15 j  6k  4i  6 j  4k  13i  21j  10k

v  62  22  (  2) 2  36  4  4  44  2 11

28. v  (3  0)i  (5  0) j  (4  0)k  3i  5 j  4k

41.

29. v  (5  3)i  (6  2) j  (0  (1))k  2i  4 j  k

v  w   3i  5 j  2k     2i  3j  2k   3i  5 j  2k  2i  3j  2k  5i  8 j  4k  52  (  8) 2  42  25  64  16  105

30. v  (6  (3))i  (5  2) j  (1  0)k  9i  3 j  k

42.

vw 

 i  2 j  0k

31. v  (6  ( 2))i  ( 2  (1)) j  (4  4)k  8i  j

 12  (  2) 2  02  1 4  0  5

32. v  (6  (1))i  (2  4) j  (2  ( 2))k  7i  2 j  4k 33.

43.

 32  (5) 2  22  ( 2) 2  32  ( 2) 2  38  17

44.

v  (  6) 2  122  42

 32  (5) 2  22  ( 2) 2  32  ( 2) 2  38  17

v  12  ( 1) 2  12  111  3

36.

45. u 

v 5i 5i   i 2 2 2 5 v 5 0 0

46. u 

3 j 3j v    j 2 2 2 3 v 0  (3)  0

v  ( 1) 2  ( 1) 2  12  111  3

37.

v  w  3i  5 j  2k   2i  3 j  2k

 36  144  16  196  14

35.

v  w  3i  5 j  2k   2i  3j  2k

v  32  (  6) 2  (  2) 2  9  36  4  49  7

34.

 3i  5 j  2k     2i  3j  2k 

v  (  2) 2  32  (  3) 2  4  9  9  22

991

Copyright © 2020 Pearson Education, Inc.


Chapter 9: Polar Coordinates; Vectors

47. u 

v v

52. v  w   i  j   i  j  k   1 ( 1)  1(1)  0  ( 1)  1  1  0  0

3i  6 j  2k 3  ( 6)  ( 2) 2

2

2

3i  6 j  2k  7 3 6 2  i  j k 7 7 7 v 48. u  v

cos  

1  1  0 (1) 2  12  (1) 2 0  2 3 0    radians  90º 2

 6i  12 j  4k ( 6) 2  122  42

 6i  12 j  4k 14 3 6 2   i  j k 7 7 7

 

12  12  12 i  j k

cos    

2i  j  k 2

2

cos  

vw v w

2 2  1  (3) 2 12  22  22 2 2

2

vw v w

3

2  2  (1) 2 12  22  32 3  9 14 3   0.2673 3 14   1.30 radians  74.5º

vw v w 0

1  (1)  02 12  12  12 0  2 3 0    radians  90º 2 2

2

54. v  w   2i  2 j  k    i  2 j  3k   2 1  2(2)  (1)(3)  2 43 3

51. v  w   i  j   i  j  k   11  ( 1)(1)  0 1  11 0  0 cos  

2

14 9 2    0.1782 3 14   1.75 radians  100.3º

2  (1)  1 2i  j  k  6 2 1 1  i j k 6 6 6 6 6 6  i j k 3 6 6 2

2

53. v  w   2i  j  3k    i  2 j  2k   2 1  1(2)  (3)(2)  226  2

i  jk

3 1 1 1  i j k 3 3 3 3 3 3  i j k 3 3 3 v 50. u  v

0

v 49. u  v

vw v w

2

2

2

55. v  w   3i  j  2k    i  j  k   3 1  (1)(1)  2(1)  3 1 2 0

992

Copyright © 2020 Pearson Education, Inc.


Section 9.6: Vectors in Space

cos   

vw v w

cos  

0

3  (1)  2 1  1  (1) 0  14 3 0    radians  90º 2 2

2

2

2

2

2

2 2 2 c    2 2 2 7 v 49 3  ( 6)  ( 2)   106.6º

cos  

2

v  7  cos 64.6º i  cos149.0º j  cos106.6º k  6 6 a 3    2 2 2 7 v 196 ( 6)  12  4   115.4º

60. cos  

6 12 12 b    2 2 2 v 196 7 ( 6)  12  4   31.0º

cos  

vw v w

2 c 4 4    2 2 2 7 v 196 ( 6)  12  4   73.4º

cos  

52

3  4  1 6 2  82  2 2 52  26 104 52  52 1   0 radians  0º 2

2

62  ( 8) 2  22

6 6 b 6    2 2 2 7 v 49 3  ( 6)  ( 2)   149.0º

57. v  w   3i  4 j  k    6i  8 j  2k   3  6  4  8  1 2  18  32  2  52

2

cos  

1  3  2 12  (1) 2  12 0  14 3 0    radians  90º 2

cos  

2

a 3 3 3    2 2 2 7 v 49 3  ( 6)  ( 2)   64.6º

0 2

2

59. cos  

vw v w 2

52

3  ( 4)  1 52  26 104 52  52 1   0 radians  0º

56. v  w   i  3j  2k    i  j  k   1 1  3(1)  2(1)  1 3  2 0 cos  

vw v w

2

v  14  cos115.4º i  cos 31.0º j  cos 73.4º k 

a 1 1 3    2 2 2 3 v 3 1 1 1   54.7º

61. cos  

b 1 1 3    2 2 2 3 v 3 1 1 1   54.7º

58. v  w   3i  4 j  k    6i  8 j  2k   3  6  ( 4)  ( 8)  1  2  18  32  2  52

cos  

c 1 1 3    2 2 2 3 v 3 1 1 1   54.7º

cos  

v  3  cos 54.7º i  cos 54.7º j  cos 54.7º k 

993

Copyright © 2020 Pearson Education, Inc.


Chapter 9: Polar Coordinates; Vectors

c 2 2   2 2 2 v 38 3  (5)  2   71.1º

a 1 1 3    2 2 2 3 v 3 1  (1)  (1)   54.7º

cos  

b 1 1 3    2 2 2 3 v 3 1  (1)  (1)   125.3º

v  38  cos 60.9º i  cos144.2º j  cos 71.1º k 

62. cos  

cos  

a  v

66. cos  

c 1 1 3    2 2 2 3 v 3 1  (1)  (1)   125.3º

cos  

2 2  3  ( 4) 2

2

2 29

3 29



4 29

2

  68.2º b  v

cos  

v  3  cos 54.7º i  cos125.3º j  cos125.3º k 

3 2  3  ( 4) 2

2

2

  56.1º c  v

cos  

a 1 1 2 63. cos      2 2 2 2 v 2 1 1  0   45º

4 2  3  ( 4) 2

2

2

  138.0º v  29  cos 68.2º i  cos 56.1º j  cos138.0º k 

b 1 1 2 cos      2 2 2 2 v 2 1 1  0   45º

67. a.

d  2,3, 4  1, 1,3  4, 1, 2  2  1  4,3  1  1, 4  3  2  7,1,5

c 0 0   0 2 2 2 v 2 1 1  0   90º

cos  

b.

(7  0) 2  (1  0) 2  (5  0) 2  (7) 2  (1) 2  (5) 2

v  2  cos 45º i  cos 45º j  cos 90º k 

 49  1  25

a 0 0 64. cos     0 2 2 2 v 2 0 1 1   90º

 75  5 3  8.66 The distance between the hand and the origin is approximately 8.66 feet.

b 1 1 2    2 2 2 2 v 2 0 1 1   45º

68. If the point P   x, y , z  is on the sphere with

cos  

center C   x0 , y0 , z0  and radius r, then the distance between P and C is

c 1 1 2 cos      2 2 2 2 v 2 0 1 1   45º

d  P0 , P  

 x  x0    y  y0    z  z0   r . 2

2

Therefore, the equation of the sphere is

 x  x0    y  y0    z  z0   r 2 . 2

v  2  cos 90º i  cos 45º j  cos 45º k  a 3 3   2 2 2 v 38 3  (5)  2   60.9º b 5 5   2 2 2 v 38 3  (5)  2   144.2º

2

69.

 x  3   y  1   z  1  12 2 2 2  x  3   y  1   z  1  1

70.

 x  1   y  2    z  2   22 2 2 2  x  1   y  2    z  2   4

65. cos  

cos  

2

2

2

994

Copyright © 2020 Pearson Education, Inc.

2

2

2

2

2


Section 9.6: Vectors in Space

71.

77. Write the force as a vector: 2 2 2   cos   2 2 2 9 3 2 1  2 1 cos   3 2 cos   3 2  2 1 F  3 i  j  k  3 3 3  2  2 1 1  W  3 i  j  k   2j  3  2  3 3 3  3   2 newton-meters (joules)

x2  y2  z 2  2 x  2 y  2 ( x  2 x)  ( y 2  2 y )  z 2  2 ( x 2  2 x  1)  ( y 2  2 y  1)  z 2  2  1  1 ( x  1) 2  ( y  1) 2  ( z  0) 2  4 Center: (–1, 1, 0); Radius: 2 2

72.

x 2  y 2  z 2  2 x  2 z  1 ( x  2 x)  y 2  ( z 2  2 z )  1 ( x 2  2 x  1)  y 2  ( z 2  2 z  1)  1  1  1 ( x  1) 2  ( y  0) 2  ( z  1) 2  1 Center: (–1, 0, 1); Radius: 1 2

73.

x2  y 2  z 2  4 x  4 y  2 z  0 ( x  4 x)  ( y 2  4 y )  ( z 2  2 z )  0

78. Write the force as a vector:

2

cos 

( x  4 x  4)  ( y  4 y  4)  ( z 2  2 z  1)  4  4  1 2

2

x2  y 2  z 2  4 x  0 ( x 2  4 x)  y 2  z 2  0 2 ( x  4 x  4)  y 2  z 2  4 ( x  2) 2  ( y  0) 2  ( z  0) 2  4 Center: (2, 0, 0); Radius: 2

75.

2 x 2  2 y 2  2 z 2  8 x  4 z  1 1 ( x 2  4 x)  y 2  ( z 2  2 z )   2 1 2 2 2 ( x  4 x  4)  y  ( z  2 z  1)    4  1 2 9 2 2 2 ( x  2)  ( y  0)  ( z  1)  2

79. W  F  AB   2i  j  k    3i  2 j  5k   2  3  (1)(2)  (1)(5)  9 newton-meters (joules) 3 5 x2

80.

3 5  0 x2 5( x  2) 3  0 x2 x2 3  5 x  10 0 x2 5 x  13 0 x2

3x 2  3 y 2  3z 2  6 x  6 y  3 ( x 2  2 x)  ( y 2  2 y )  z 2  1 ( x 2  2 x  1)  ( y 2  2 y  1)  z 2  1  1  1 ( x  1) 2  ( y  1) 2  ( z  0) 2  3

Center: (–1, 1, 0); Radius:

2 2  9 3

2 3 1 cos   3 2 1 2 F  1 i  j  k  3 3  3 2 1  2 W  1 i  j  k   (1i  2 j  2k ) 3 3  3 2 1 2  1 1   2   2  3 3  3 8  newton-meters (joules) 3

3 2 Center: (2, 0, –1); Radius: 2

76.

cos  

( x  2) 2  ( y  2) 2  ( z  1) 2  9 Center: (2, –2, –1); Radius: 3

74.

2 22  22  12

3

The quotient possibly changes sign only where x-values make the numerator or denominator 0. 13 and x  2 . We need to This occurs at x  5  13   13  check the intervals  , 2 ,  2,  ,  ,  .  5  5  995

Copyright © 2020 Pearson Education, Inc.


Chapter 9: Polar Coordinates; Vectors

Interval

( , 2)

Number

1

Chosen

8

Value of f Conclusion

 13   2,  5 5 2 1

f ( x)  ( x  i )( x  (i ))  x  (1  3i )  x  (1  3i ) 

 13   ,  5

 ( x  i )( x  i )  ( x  1)  3i  ( x  1)  3i 

  x  2 x  1  9i    x  1 x  2 x  10   x2  i2

3

2

2

2

2

 x 4  2 x3  10 x 2  1x 2  2 x  10

Negative Positive Negative

 x 4  2 x3  11x 2  2 x  10

We need to also check the endpoints. x  2 makes the denominator zero so it is not included 13 in the solution set. x  makes the function 5 equal to zero so it is included in the solution set.

86.

 13  The solution set is  x 2  x   or, using 5   13  interval notation,  2,  .  5

81.

2

f ( x)  2 x  3; g ( x)  x 2  x  1

5 x 8 5 x y 8 x( y  8)  5 xy  8 x  5 xy  8 x  5 8x  5 y  f 1 ( x ) x y

  3 tan 2    3 tan 2    8    8 87. y       8  8    3 tan    3 tan    4 4   

( f  g )( x)  f ( x 2  x  1)  2( x 2  x  1)  3  2 x2  2 x  2  3  2 x2  2 x  5

82. sin 80 cos 50  cos80 sin 50   sin(80  50)  sin 30 1  2

4 3(1)  3(1) 6 24      4 4 4

88. The area under one-half of the semicircle is 1 1 A   r 2   (6) 2  9 .The area under the 4 4 line is a triangle with height and base of 6 so 1 1 A  bh  (6)(6)  18 . Thus the area of the 2 2 region enclosed between the two graphs would be 9  18 square units.

83. a  3, b  6 c 2  a 2  b 2  32  62  9  36  45 c  45  3 5  6.71 a 3 1   b 6 2  1 A  tan 1    26.6  2

tan A 

B  90  A  90  26.6  63.4

84. d  (9  (1)) 2  3  (2)) 2  100  25

Section 9.7

 125  5 5

1. True

85. Since 1  3i and i are zeros, their conjugates 1  3i and i are also zeros of f .

2. True 3. True 996

Copyright © 2020 Pearson Education, Inc.


Section 9.7: The Cross Product 4. False; It is orthogonal to both.

i

15. a.

5. False

3 4  3  2  1 4  6  4  2 1 2

8.

2 5   2(3)  2  5  6  10   4 2 3

k

1 3  2 1

6. True 7.

j

v  w  2 3

3 1 2 1 2 3 i j k  2 1 3 1 3 2

 5i  5 j  5k i

b.

j

k

w  v  3  2 1

2 3 1

9.

6

5

 2 1

 6(1)  ( 2)(5)   6  10  4

10.

4 0   4  3  5  0  12  0  12 5 3

11.

A B C 1 4 2 4 2 1 A B C 2 1 4  3 1 1 1 1 3 1 3 1

 5i  5 j  5k i

c.

 0i  0 j  0k  0 i

d.

i

16. a.

2

A

j

3 2 3  2 1

3 2 1 2 1 3 i j k  2 1 3 1 3 2

 i  5 j  7k i

b.

j

0 2

B

1 2 0

2

k

w  v  3  2 1

1 3 1 3

k

v  w  1

A B C 1  2 3 0 2 2 2

3 1 2 1 2 3 i j k 3 1 2 1 2 3

 0i  0 j  0k  0

1 5 1 3 3 5 A B C 0 2 5 2 5 0

 2 3

k

2 3 1

A B C 1 3 5 5 0 2

j

v  v  2 3 1

 ( 6  0) A  (2  25) B  (0  15)C   6 A  23B  15C

14.

 2 1 3 1 3 2 i j k  2 1 3 1 3 2

A B C 2 4 0 4 0 2 A B C 0 2 4  1 3 3 3 3 1 3 1 3

k

3  2 1

 (6  4) A  (0  12) B  (0  6)C  2 A  12 B  6C

13.

j

w  w  3  2 1

 (1  12) A  (2  4) B  (6  1)C  11A  2 B  5C

12.

 2 1 3 1 3 2 i j k 3 1 2 1 2 3

 C

2

 2 1 3 1 3 2 i j k 3 2 1 2 1 3

 1i  5 j  7k   i  5 j  7k

 (4  6) A  ( 2  0) B  (2  0)C  10 A  2 B  2C

997

Copyright © 2020 Pearson Education, Inc.


Chapter 9: Polar Coordinates; Vectors

i

c.

j

k

i

w  w  3  2 1

18. a.

3  2 1 

3

 2 1 3 1 3 2 i j k  2 1 3 1 3 2

 0i  0 j  0k  0 i

d.

j k

b.

k

2 1 1 4 2

3 2 1 2 1 3 i j k 3 2 1 2 1 3

2 1 3 1 3 2 i j k 4 2 1 2 1 4

 8i  5 j  14k

i j k

i j k

c.

vw  1 1 0

ww  3 2 1

3 2 1

1 0 1 0 1 1 i j k 1 1 2 1 2 1

 0i  0 j  0k  0 i

d.

i j k

4 2 1 2 1 4 i j k 4 2 1 2 1 4

1 1 0

1 1 2 1 2 1 i j k 1 0 1 0 1 1

 0i  0 j  0k  0 i

19. a.

j

k

v  w  2 1 2

0 1 1

i j k ww  2 1 1

2 1 1

1 2 2 2 2 1 i j k 1 1 0 1 0 1

 1i  2 j  2k  i  2 j  2k

1 1 2 1 2 1 i j k 1 1 2 1 2 1

 0i  0 j  0k  0

i

i j k

b.

j

k

w  v  0 1 1

v v  1 1 0

2 1 2

1 1 0 

k

1 4 2

 1i  1j  1k  i  j  k

j

v v  1 4 2

wv  2 1 1

2 1 3 1 3 2 i j k 2 1 3 1 3 2

 1i  1j  1k  i  jk

d.

j

 0i  0 j  0k  0

c.

1

wv  3

2 1 1

b.

2

4 2 1 2 1 4 i j k 2 1 3 1 3 2 i

1 3 2

17. a.

k

  8i  5 j  14k

v  v  1 3 2

j

vw  1 4 2

1 0 1 0 1 1 i j k 1 0 1 0 1 1

1 1 0 1 0 1 i j k 1 2 2 2 2 1

 1i  2 j  2k  i  2 j  2k

 0i  0 j  0k  0

998

Copyright © 2020 Pearson Education, Inc.


Section 9.7: The Cross Product

i j k

c.

i

w  w  0 1 1

21. a.

0 1 1 

 0i  0 j  0k  0

d.

 3i  1j  4k  3i  j  4k

j k

i

2 1 2

b.

i j k

1 0 1

c.

1 3 3 3 3 1  i j k 0 1 1 1 1 0

w  w  4 0 3

4 0 3

 i  6 j  k

 0i  0 j  0k  0

w  v  1 0 1

i

3 1 3

d.

0 1 1 1 1 0 i j k 1 3 3 3 3 1

k

1 1 1 

i j k

1 1 1 1 1 1 i j k 1 1 1 1 1 1

 0i  0 j  0k  0

w  w  1 0 1

1 0 1

i

22. a.

0 1 1 1 1 0 i j k 0 1 1 1 1 0

j

k

v  w  2 3

0 0 3 2

 0i  0 j  0k  0

i j k

d.

j

v  v  1 1 1

 i  6j  k

0 3 4 3 4 0 i j k 0 3 4 3 4 0

i j k

c.

0 3 4 3 4 0 i j k 1 1 1 1 1 1

 3i  1j  4k  3i  j  4k

vw  3 1 3

k

1 1 1

1 2 2 2 2 1 i j k 1 2 2 2 2 1

i j k

b.

j

w  v  4 0 3

 0i  0 j  0k  0

20. a.

1 1 1 1 1 1 i j k 0 3 4 3 4 0

v  v  2 1 2

k

4 0 3

1 1 0 1 0 1 i j k 1 1 0 1 0 1 i

j

v  w  1 1 1

3 0 2 0 2 3 i j k 3 2 0 2 0 3

 6i  4 j  6k

v v  3 1 3

3 1 3

i

1 3 3 3 3 1  i j k 1 3 3 3 3 1

b.

j

k

wv  0

 0i  0 j  0k  0

3 2 2 3 0

3 2 0 2 0 3 i j k 3 0 2 0 2 3

  6i  4 j  6k

999

Copyright © 2020 Pearson Education, Inc.


Chapter 9: Polar Coordinates; Vectors

i j

c.

k

i j k 27. v  v  3 3 2 3 3 2

ww  0 3 2

0 3 2 3 2 0 2 0 3 i j k 3 2 0 2 0 3

 0i  0 j  0k  0 i

d.

j

 0i  0 j  0k  0

k

i j k

v  v  2 3 0

28. w  w  1 1 3 1 1 3

2 3 0 

3 0 2 0 2 3 i j k 3 0 2 0 2 3

 0i  0 j  0k  0 i

j

k

i j k 29. (3u)  v  6 9 3 3 3 2

3 1 2 1 2 3 i j k 3 2 3 2 3 3

  27i  21j  9k

j k

i

24. v  w  3 3 2 1 1 3 

 7i  11j  6k j

k

i j k 31. u  (2 v)  2 3 1 6 6 4

2 1 2 3 3 1 i j k 6 4 6 4 6 6  18i  14 j  6k

3 2 3 2 3 3 i j k 3 1 2 1 2 3

 9i  7 j  3k i

3 2 3 2 3 3 i j k 4 12 4 12 4 4

 28i  44 j  24k

25. v  u  3 3 2 2 3 1 

j k

30. v  (4w )  3 3 2 4 4 12

3 2 3 2 3 3 i j k 1 3 1 3 1 1

i

9 3 6 3 6 9 i j k 3 2 3 2 3 3

 9i  7 j  3k i

1 3 1 3 1 1 i j k 1 3 1 3 1 1

 0i  0 j  0k  0

23. u  v  2 3 1 3 3 2 

3 2 3 2 3 3 i j k 3 2 3 2 3 3

i j k v w (  3 )   9 9  6 32. 1 1 3

j k

26. w  v  1 1 3 3 3 2

9  6 9 6 9 9 i j k 1 3 1 3 1 1   21i  33 j  18k 

1 3 1 3 1 1  i j k 3 2 3 3 3 2  7i  11j  6k

1000

Copyright © 2020 Pearson Education, Inc.


Section 9.7: The Cross Product 33. u  (u  v ) i j k  u  2 3 1 3 3 2

i j k 37. v  (u  w )  v  2 3 1 1 1 3  3 1 2 1 2 3   v  i j k 1 3 1 3 1 1     3i  3 j  2k    10i  5 j  5k 

 3 1 2 1 2 3  i  u j k 3 2 3 3   3 2   2i  3j  k    9i  7 j  3k 

 3(10)  3(5)  2  5  30  15  10  25

 2(9)  (3)(7)  1(3)  18  21  3 0

i j k 38. ( v  u)  w  3 3 2  w 2 3 1

i j k 34. v  ( v  w )  v  3 3 2 1 1 3

 3 2 3 2 3 3  i j kw  2 1 2 3   3 1  (9i  7 j  3k )  (i  j  3k )

 3 2 3 2 3 3   v  i j k 1 3 1 3 1 1     3i  3 j  2k    7i  11j  6k 

 9  1  7 1  3  3

 3  7  3(11)  2( 6)   21  33  12 0

 979  25 i j k 39. u  ( v  v)  u  3 3 2 3 3 2

i j k 35. u  ( v  w )  u  3 3 2 1 1 3

 3 2 3 2 3 3   u i j k 3 2 3 3   3 2   2i  3j  k    0i  0 j  0k 

 3 2 3 2 3 3  i j k  u 1 3 1 1   1 3   2i  3j  k    7i  11j  6k   2  7  (3)(11)  1( 6)  14  33  6   25

i j k  2 3 1 0 0 0 

i j k 36. (u  v)  w  2 3 1  w 3 3 2

3 1 2 1 2 3 i j k 0 0 0 0 0 0

 0i  0 j  0k  0

 3 1 2 1 2 3   i j k w 3 2  3 2  3 3    (9i  7 j  3k )  (i  j  3k )  9 1  (7)(1)  (3)(3)  9  7  9   25

1001

Copyright © 2020 Pearson Education, Inc.


Chapter 9: Polar Coordinates; Vectors

44. A vector that is orthogonal to both u and j  k is

i j k 40. (w  w )  v  1 1 3  v 1 1 3

uj k .

i

j

k

u   j  k   2 3 1

1 3 1 3 1 1  j k v  i 1 3 1 3 1 1    (0i  0 j  0k )  v

0 1 

i j k  0 0 0 3 3 2

1

3 1 2 1 2 3 i j k 1 1 0 1 0 1

  4i  2 j  2k

Actually, any vector of the form c   4i  2 j  2k  ,

0 0 0 0 0 0 j k  i 3 2 3 2 3 3  0i  0 j  0k  0

where c is a nonzero scalar, is orthogonal to both u and j  k .

45. u  P1 P2  1i  2 j  3k

i j k 41. u  v  2 3 1 3 3 2

v  P1 P3   2i  3 j  0k i

j k 2 3 2 3 0

u v  1

3 1 2 1 2 3 j k i 3 2 3 2 3 3  9i  7 j  3k 

Actually, any vector of the form c  9i  7 j  3k  ,

2 3 1 3 1 2 i j k 2 0 2 3 3 0

 9i  6 j  7k

where c is a nonzero scalar, is orthogonal to both u and v .

Area  u  v  (9) 2  ( 6) 2  7 2  166

i j k 42. u  w  2 3 1 1 1 3

46. u  P1 P2  2i  3j  k v  P1 P3   2i  4 j  k

3 1 2 1 2 3 j k  i 1 3 1 3 1 1  10i  5 j  5k Actually, any vector of the form c  10i  5 j  5k  , where c is a nonzero scalar, is

i

j k

u v  2

3 1

2 4 1 

3 1 4 1

i

2 1 2 1

j

2

3

2 4

k

 i  4 j  14k

orthogonal to both u and w .

Area  u  v  (1) 2  ( 4) 2  142  213

43. A vector that is orthogonal to both u and i  j is u   i  j .

47. u  P1 P2  3i  1j  4k

i j k u   i  j  2 3 1 1 1 0

v  P1 P3  1i  4 j  3k

3 1 2 1 2 3 j k  i 1 0 1 0 1 1  1i  1j  5k

i

j

k

u  v  3

1

4

1  4 3 

Actually, any vector of the form c  i  j  5k  ,

1

4

4 3

i

3 4 1 3

j

3

1

1  4

k

 19i  5 j  13k

where c is a nonzero scalar, is orthogonal to both u and i  j

Area  u  v  192  52  132  555

1002

Copyright © 2020 Pearson Education, Inc.


Section 9.7: The Cross Product

48. u  P1 P2  4i  j  3k

52. u  P1 P2  0i  1j  1k

v  P1 P3  4i  1j  0k i

j

v  P1 P3   2i  3 j  6k

k

i

j

k

u  v  4 1 3

u v  0

1

1

4 1 0 

1 3

2 3 6 4 3

i

1 0

4 0

4 1

j

4 1

1

k

 3i  12 j  8k

3 6

i

49. u  P1 P2  0i  1j  1k j

k

u v  0 1

1

3 2  2 1

2 2

0

i

1

3  2

j

0 1 3 2

u 

50. u  P1 P2  0i  2 j  0k i

j k

u v  0

2 0

2 3

k

i

0

0

4 0

j

0

2

4 3

So,

k

 0i  0 j  8k Area  u  v  02  02  82  64  8

v  P1 P3  5i  7 j  3k i

j

k

u v  3

0

2

5 7

3

2

7

3

k

3 2 1

3

i

1

2

2

3

j

1

3

2 1

k

vw vw 11i  1j  7k 171

i

11 19 19 7 19 i j k or 57 57 57

11 19 19 7 19 j k. i 57 57 57

i j k 54. v  w  2 3 1  2  4 3

51. u  P1 P2  3i  0 j  2k

0

j

 11 19 19 7 19    i j k 57 57 57  

4 3 0

1

 11  1 7   i j k 171 171   171

v  P1 P3   4i  3 j  0k

3 0

0

v  w  112  12  7 2  171

k

Area  u  v  ( 4) 2  (3)2  32  34

2 0

2 6

j

 11i  1j  7k

  4i  3 j  3k

1

53. v  w  1 3  2 2 1 3

v  P1 P3  3i  2 j  2k

1

0

Area  u  v  ( 9) 2  ( 2) 2  22  89

 (3) 2  (12) 2  ( 8) 2  217

i

  9i  2 j  2k

Area  u  v

i

1

3 1 2 1 2 3 i j k  4 3  2 3 2 4

 13i  8 j  2k 3 2 5

3

j

3 0 5 7

v  w  (13) 2  82  ( 2) 2  237

k

 14i  19 j  21k Area  u  v  (14) 2  (19) 2  ( 21) 2  998

1003 Copyright © 2020 Pearson Education, Inc.


Chapter 9: Polar Coordinates; Vectors



V   A  B  C

vw vw

u

  0i  14 j  7k    3i  6 j  2k 

13i  8 j  2k 237

 0(3)  14(6)  7(2)  98

 13  8 2   i j k 237 237 237    13 237 8 237 2 237    i j k 237 237 237  

So, 

 98 cubic units i j k 56. A  B  1 0 6 2 3 8

13 237 8 237 2 237 j k or i 237 237 237

13 237 8 237 2 237 i j k. 237 237 237

 18i  20 j  3k

i j k 55. A  B  3 2 4 2 1 2

V   A  B  C   18i  20 j  3k    8i  5 j  6k   18(8)  20(5)  3(6)

2 4 3 4 3 2 i j k 1 2 2 2 2 1

 226  226 cubic units

 0i  14 j  7k

u v

57. Prove:

2

0 6 1 6 1 0 i j k 3 8 2 8 2 3

 u

2

v

 u  v 

2

2

Let u  a1i  b1 j  c1k and v  a2 i  b2 j  c2 k . i

j

k

u  v  a1 b1 c1  a2 b2 c2 2

u v

b1 c1 b2 c2

i

a1 c1 a2 c2

j

a1 b1 a2 b2

k   b1c2  b2 c1  i   a1c2  a2 c1  j   a1b2  a2 b1  k

  b1c2  b2 c1    a1c2  a2 c1    a1b2  a2 b1  2

2

2

 b12 c2 2  2b1b2 c1c2  b2 2 c12  a12 c2 2  2a1a2 c1c2  a2 2 c12  a12 b2 2  2a1a2 b1b2  a2 2 b12  a12 b2 2  a12 c2 2  a2 2 b12  a2 2 c12  b12 c2 2  b2 2 c12  2a1a2 b1b2  2a1a2 c1c2  2b1b2 c1c2 u

2

 a12  b12  c12

v

2

 a2 2  b2 2  c2 2

 u  v    a1a2  b1b2  c1c2  2 2 2 2 u v   u  v    a12  b12  c12  a2 2  b2 2  c2 2    a1a2  b1b2  c1c2  2

2

 a12 a2 2  a12 b2 2  a12 c2 2  b12 a2 2  b12 b2 2  b12 c2 2  c12 a2 2  c12 b2 2  c12 c2 2

 a12 a2 2  a1a2 b1b2  a1a2 c1c2  a1a2 b1b2  b12 b2 2  b1b2 c1c2  a1a2 c1c2  b1b2 c1c2  c12 c2 2

 a b  a c  a2 b  a2 c  b c  b2 c  2a1a2 b1b2  2a1a2 c1c2  2b1b2 c1c2 2 2 1 2

2 2 1 2

2

2 1

2

2 1

2 2 1 2

2

2 1

_________________________________________________________________________________________________

1004 Copyright © 2020 Pearson Education, Inc.


Section 9.7: The Cross Product

60. Prove: u  v    v  u 

58. We know that for any two vectors u  v  u v sin  , where  is the angle

Let u  a1i  b1 j  c1k and v  a2 i  b2 j  c2 k

between u and v. Now, if u and v are orthogonal, then   90 , so u  v  u v sin 90  u v .

u v

i j k  a1 b1 c1 a2 b2 c2

59. By Problem 58, since u and v are orthogonal, we know u  v  u v . Since u and v are unit vectors, we have u  v  u

v  1 1  1 .

b1 c1 a c a b i  1 1 j 1 1 k b2 c2 a2 c2 a2 b2

  b1c2  b2c1  i   a1c2  a2c1  j   a1b2  a2b1  k

Thus u  v is a unit vector.

   b2c1  b1c2  i   a2c1  a1c2  j   a2b1  a1b2  k    b2c1  b1c2  i   a2c1  a1c2  j   a2b1  a1b2  k   b c a c a b     2 2 i  2 2 j  2 2 k  b c a c a1 b1  1 1  1 1 i j k   a2 b2 c2 a1 b1 c1   v  u

61. Prove: u  ( v  w )   u  v    u  w  Let u  a1i  b1 j  c1k , v  a2 i  b2 j  c2 k , and w  a3 i  b3 j  c3k . u  ( v  w)  u   a2  a3  i   b2  b3  j   c2  c3  k  i j k a1 b1 c1  a2  a3 b2  b3 c2  c3 

b1 c1 a1 c1 a1 b1 i j k b2  b3 c2  c3 a2  a3 c2  c3 a2  a3 b2  b3

  b1c2  b1c3  b2c1  b3c1  i   a1c2  a1c3  a2c1  a3c1  j   a1b2  a1b3  a2b1  a3b1  k   b1c2  b2c1  i   b1c3  b3c1  i   a1c2  a2c1  j   a1c3  a3c1  j   a1b2  a2b1  k   a1b3  a3b1  k   b1c2  b2c1  i   a1c2  a2c1  j   a1b2  a2b1  k   b1c3  b3c1  i   a1c3  a3c1  j   a1b3  a3b1  k  b c a c a b  a c a b   b c   1 1 i  1 1 j  1 1 k    1 1 i  1 1 j  1 1 k  a3 c3 a3 b3  a2 c2 a2 b2   b3 c3  b2 c2 i j k i j k  a1 b1 c1  a1 b1 c1 a2 b2 c2 a3 b3 c3  u  v   u  w 

1005 Copyright © 2020 Pearson Education, Inc.


Chapter 9: Polar Coordinates; Vectors

62. From Exercise 57, we have: u v

2

 u

2

v

2

 (u  v)2

 u

2

v

2

 u

 u

2

v

2

 u

 u

2

v

2

 u

2

v

2

u v  u

v cos   2

v

2

2

cos 2 

1  cos   2

sin 2 

v sin 

63. Let v  v1i  v2 j  v3k and w  w1i  w2 j  w3k . Then

2 v  3w  6  v  w   6  v2 w3  v3 w2  i   v3 w1  v1 w3  j   v1 w2  v2 w1  k  . v   2 v  3w   6  v2 w3  v3 w2  v  i   v3 w1  v1 w3  v  j   v1 w2  v2 w1  v  k   6  v2 w3  v3 w2  v1   v3 w1  v1 w3  v2   v1 w2  v2 w1  v3   0

Since v   2 v  3w   0 , v is orthogonal to  2 v  3w  . Similarly, w   2 v  3w   0 , so w is orthogonal to

 2 v  3w  . 64. Since a is orthogonal to both w and u, it is parallel to w  u , so it is a scalar multiple of that vector, say a  kv  w  u  . Similarly, b  k w  u  v  and c  ku  v  w  . Then a  v  kv  w  u   v  1 so that kv 

1 wu and therefore a  v w  u v  w  u

b  w  k w  u  v   w  1 so that k w  c  v  ku  v  w   u  1 so that ku 

1 u v and therefore b  w  u  v  w  u  v 

1 vw and therefore c  u v  w u v w

65. u  v  0  u and v are orthogonal. u  v  0  u and v are orthogonal. Therefore, if u  v  0 and u  v  0 , then either u  0 or v  0 .

67. The point ( 8, 15) lies in quadrant II. r

x 2  y 2  ( 8) 2  ( 15) 2  17

 y

15

  1.08   tan 1    tan 1   8   x

Polar coordinates of the point ( 8, 15) are

 1  66. cos 1   2  We are finding the angle  , 0     , whose 1 cosine equals . 2 1 cos   , 0   2   4  1    cos 1   2  4

17, 4.22 or  17, 1.08 . 68.

f ( x)  7 x 1  5 x  7 y 1  5 x  5  7 y 1

log  x  5  log 7 y 1

log 7  x  5   y  1 log 7 7 log 7  x  5  y  1

y  log 7  x  5  1

f ( x)  log 7  x  5  1 1

1006 Copyright © 2020 Pearson Education, Inc.


Chapter 9 Review Exercises

69. log 4

4   2.   2, 3  

x  log 4 x  log 4 z 3 z3 1

 log 4 x 2  log 4 z 3 1  log 4 x  3log 4 z 2   3    70. sec sin 1      sec     2 2  3    

71. The values of x that make the denominator zero cannot be in the domain. x 2  16  0 x 2  16 x  4 Therefore the domain is  x | x  4, x  4 .

4 4  1; y   2sin  3 3 3 4   are 1, 3 . Rectangular coordinates of   2, 3   x   2 cos

  3.  3,   P 2 

3 11 1     8 11 11   72. sin   8   2 2 2 16 4

1 1 ab sin C  (8)(9) sin(60) 2 2  3  36    18 3 square units  2 

73. K 

74.

    x  3cos     0; y  3sin     3  2  2  Rectangular coordinates of  3,   are (0, 3) . 2 

x 4 x 4 x  16   x x  4 x( x  4)

csc 1 (2)  csc 1 (1) 6  2  75.   2 1 1 3

4. The point (3, 3) lies in quadrant II. r  x 2  y 2  (3) 2  32  3 2 3   y     Polar coordinates of the point (3, 3) are

  tan 1    tan 1    tan 1 (1)   3 x 4  3     3 2,  4  or  3 2, 4  .    

Chapter 9 Review Exercises   1.  3,   6

5. The point (0, –2) lies on the negative y-axis. r  x 2  y 2  02  ( 2) 2  2  2   2    is undefined, so    ;     . 0 2 2 2 Polar coordinates of the point (0, –2) are  y  

  tan 1    tan 1   x 0

x  3cos

 3 3  3  ; y  3sin  6 2 6 2

3 3 3   Rectangular coordinates of  3,  are  , .  6  2 2

     2,  2  or   2, 2  .    

1007 Copyright © 2020 Pearson Education, Inc.


Chapter 9: Polar Coordinates; Vectors

6. The point  3, 4  lies in quadrant I.

9. a.

r  x 2  y 2  32  42  5 4  y   tan 1    tan 1    0.93 3 x

 4

 tan   tan   4 y 1 x yx x y 0

4 tan 1      4.07 3 Polar coordinates of the point (3, 4) are (5, 0.93) or (5, 4.07) .

7. a.



b. The graph is a line through the point  0, 0  with slope 1.

r  2sin  r 2  2r sin  x2  y 2  2 y 2 x  y2  2 y  0 x2  y 2  2 y  1  1 x 2   y  1  12 2

b. The graph is a circle with center (0,1) and radius 1.

10. a.

r 2  4r sin   8r cos   5 x2  y2  4 y  8x  5 x 2  8 x  16  y 2  4 y  4  5  16  4

 x  4    y  2   25 2

2

b. The graph is a circle with center  4, 2  and radius 5 .

8. a.

r 5 r 2  25 x 2  y 2  52

b. The graph is a circle with center  0, 0  and radius 5.

11. r  4 cos  The graph will be a circle with radius 2 and center (2, 0) . Check for symmetry: Polar axis: Replace  by   . The result is r  4 cos( )  4 cos  .

1008 Copyright © 2020 Pearson Education, Inc.


Chapter 9 Review Exercises

The graph is symmetric with respect to the polar axis.  : Replace  by    . 2 r  4 cos(   )

The line  

 4(cos  cos   sin  sin  )

 3  3(sin  cos   cos  sin  )  3  3(0  sin  )  3  3sin  The graph is symmetric with respect to the line   . 2

 4( cos   0)   4 cos  The test fails.

The pole: Replace r by  r . r  4 cos  . The test fails. Due to symmetry with respect to the polar axis, assign values to  from 0 to  .

 : Replace  by    . 2 r  3  3sin(   )

The line  

r  4 cos  4

0  2 3  3.5 6  2 3  0 2 2 2 3 5  2 3  3.5 6 4 

The pole: Replace r by  r . r  3  3sin  . The test fails. Due to symmetry with respect to the line   assign values to  from 

   2   3   6 0

r  3  3sin  6 3

 6  3  2

3 3  5.6 2 9 2 3 3 2

3

12. r  3  3sin  The graph will be a cardioid. Check for symmetry: Polar axis: Replace  by   . The result is r  3  3sin( )  3  3sin  . The test fails.

1009 Copyright © 2020 Pearson Education, Inc.

3 3  0.4 2 0

  to . 2 2

 , 2


Chapter 9: Polar Coordinates; Vectors

13. r  4  cos  The graph will be a limaçon without inner loop. Check for symmetry:

14. r  x 2  y 2  (1) 2  (1) 2  2 y 1 tan    1 x 1 5  4 The polar form of z  1  i is 5 5   . z  r  cos   i sin    2  cos  i sin 4 4  

Polar axis: Replace  by   . The result is r  4  cos( )  4  cos  . The graph is symmetric with respect to the polar axis.  : Replace  by    . 2 r  4  cos(   )

The line  

15. r  x 2  y 2  42  (3) 2  25  5 y 3 tan     x 4   5.64 The polar form of z  4  3 i is

 4  (cos  cos   sin  sin  )  4  ( cos   0)  4  cos  The test fails.

z  r  cos   i sin    5  cos 5.64  i sin 5.64  .

The pole: Replace r by  r . r  4  cos  . The test fails.

5  i 5 5  3 1   16. 2e 6  2  cos  i sin  2   i  6 6    2 2 

Due to symmetry with respect to the polar axis, assign values to  from 0 to  .

r  4  cos 

0

3

  3 i

 3 4  3.1 6 2  7 3 2  4 2 2 9 3 2 5 3 4  4.9 6 2  5

 1 2 2  3   17. 3  cos  i sin   3    i 3 3 2 2     3 3 3   i 2 2

1010 Copyright © 2020 Pearson Education, Inc.


Chapter 9 Review Exercises

18. 35 i 35 35   0.1e 18 0.1 cos  i sin  0.1 0.9848  0.1736 i  18 18    0.10  0.02i

    71 71    i sin 21. z  w  5  cos  i sin    cos 18 18   36 36   

i

i

i 

71

71  

i  

73  

     5  cos  i sin  36 36      5  cos  i sin  i 18 18  5e 18 z    72 72 72 w cos  i sin e 36 36 36   72  i  

 23  i  

i

 5e  18 36   5e  12   5e 12

     5  cos  i sin  12 12   3

4 4   5 5   i  cos  i sin 19. z  w   cos 9 9   18 18   i

4

i

i 

4 5   18 

 1 1e 9  e 9  e  9  cos

i

13

 e 18

13 13  i sin 18 18

i 

4 5    18 

e 9  cos

 6

i

20. z  w  3 cos 

i

4

e 6

 i sin

6

i

i 

9     5

 3  2e 5  e 9  6e  5

 6ei 2   6ei 0

 6  cos0  i sin 0  6 9 9 9 i 3   cos  i sin  5 5  3e 5 z     w   2   cos  i sin  2e 5 5 5   9  

3 i    3 i 8  e  5 5  e 5 2 2 3 8 8    cos  i sin  2 5 5 

3

5 i     5 5   23.  2  cos  i sin     2e 8  8 8        5   4  i  4   i  2  e  8    4e 2      4  cos  i sin 2 2  4(0  1 i )  4i

 

9 9      i sin   2  cos  i sin  5 5   5 5

9

      i   22. 3  cos  i sin     3e 9  9 9          i  3   i  33 e  9    27e 3    27  cos 60º  i sin 60º  1 3   27   i 2 2  27 27 3   i 2 2

4 4 4 i z cos 9  i sin 9 e 9   5 5 5 w cos  i sin e 18 18 18

i

 5e 18  e 36  5e  18 36   5e  36   5e 36

24. 1  3 i

r  12   3

 2 2

 3  3 1 5  3

tan  

1011 Copyright © 2020 Pearson Education, Inc.

4


Chapter 9: Polar Coordinates; Vectors 5 5   1  3 i  2  cos  i sin 3 3  

1  3 i    2e 6

  26  e 

 5  i  6   3 

i

5 3

  

z0  3 cos 120º  0   i sin 120º  0    3   cos 0º  i sin 0º   3

6

z1  3 cos 120º  1  i sin 120º  1 

 i10  64ei 2  64ei 0   64e 

3 3 3 i  3   cos120º  i sin120º     2 2

 64   cos1800º  i sin1800º 

i

2

 3e 3

 64   cos 0º i sin 0º 

z2  3 cos 120º  2   i sin 120º  2  

 64  0 i

3 3 3 i  3   cos 240º  i sin 240º     2 2

 64

i

25. 3  4i

4

 3e 3

r  32  42  5

27.

4 tan   3   0.9273

3  4i  5  cos 0.9273  i sin 0.9273  5ei 0.9273

  5 e

(3  4i ) 4  54 ei 0.9273 4 i 3.7092

  5 e  4

4 i 40.9273

28.

 625  cos  3.7092   i sin  3.7092    625   0.8432  0.5376i    527  336i

26. 27  0 i r  27 2  02  27 0 0 tan   27   0º 27  0i  27  cos 0º i sin 0º 

29. P  (1,  2), Q  (3,  6) v  (3  1)i    6  ( 2)  j  2i  4 j

The three complex cube roots of 27  0i  27  cos 0º i sin 0º  are:

v  22  ( 4)2  20  2 5

30. P  (0,  2), Q  (1, 1)

  0º 360º k   0º 360º k   zk  3 27   cos     i sin  3  3   3 3     

v  (1  0)i  1  ( 2)  j  i  3 j

 3 cos 120º k   i sin 120º k  

v  (1) 2  32  10

31. v  w    2i  j    4i  3 j  2i  2 j 32. 4 v  3w  4   2i  j  3  4i  3j   8i  4 j  12i  9 j   20i  13 j

1012 Copyright © 2020 Pearson Education, Inc.


Chapter 9 Review Exercises

33.

v   2i  j  ( 2) 2  12  5

34.

v  w   2i  j  4i  3 j

The angle is in quadrant II, thus,   120 .

39. v   4  1 i   2  3 j  1   2   k

 2i  j  2i  j v   v  2i  j ( 2) 2  12  2i  j 5



 3i  5 j  3k

2 5 5 i j 5 5

36. Let v  x  i  y  j,

40. 4 v  3w  4  3i  j  2k   3   3i  2 j  k   12i  4 j  8k  9i  6 j  3k  21i  2 j  5k

v  3 , with the direction

angle of v equal to 60o . v 3

41.

vw 

 6i  j  k

x2  y 2  9

 62  (1) 2  (1)2 o

The angle between v and i equals 60 . Thus,  xi  yj  i x x vi cos 60o     . 3 1 3 1 3 v  i We also conclude that v lies in Quadrant I. x cos 60o  3 1 x  2 3 3 x 2 x2  y 2  9 2

3 2 2  y 9  

 36  1  1  38

42.

v  w

 3i  j  2k   3i  2 j  k  32  12  ( 2) 2  ( 3) 2  22  (1) 2  14  14 0 i j k 43. v  w  3 1  2 3 2 1

2

9 36  9 27 3 y2  9     9    4 4 4 2

1 2 3 2 3 1 i j k 2 1 3 1 3 2

 3i  9 j  9k

27 3 3  4 2

Since v lies in Quadrant I, y  v  x  i  y  j

3 3 . So, 2

3 3 3 i j. 2 2

37. v  i  3 j  v  cos  i  sin  j tan   

 3i  j  2k    3i  2 j  k 

 3i  j  2k  3i  2 j  k

x2  y 2  3

y

2

 43  6.56

 5  5  7.24

2

 9  25  9

 ( 2) 2  12  42  (3)2

35. u 

 4  1   2  3  1   2  

38. d  P1 , P2  

3  3 1

  tan 1  3  60 1013 Copyright © 2020 Pearson Education, Inc.

2


Chapter 9: Polar Coordinates; Vectors

47. v  i  3j, w  i  j v  w  1(1)  (3)(1)  1  3   4

44. v  ( v  w ) i j k  v 3 1 2 3 2 1

cos  

3 2 3 1   1 2 i j k  v  3 1 3 2   2 1   3i  j  2k    3i  9 j  9k 

2 5



2 5 5

 1 1  1(1)  1 1  1 1 1 1 vw cos   v w 

 3i  9 j  9k      2 2 2   3 9 9 

1 1 1 1 2

2

2

12  (1) 2  12

1 1  3 3 3   70.5º 

 3  9 9   i j k 3 19 3 19   3 19  1 3 3    i j k 19 19 19    19 3 19 3 19  i j k   19 19   19

49. v  w   4i  j  2k    i  2 j  3k   4 1  (1)( 2)  2(3)  426  0 vw cos   v w

19 3 19 3 19 i j k or 19 19 19

19 3 19 3 19 i j k 19 19 19

0 4  (1)  2 2

2

2

12  ( 2) 2  (3) 2

0

  90º

46. v   2i  j, w  4i  3 j v  w   2(4)  1(3)   8  3  11

4

48. v  w   i  j  k    i  j  k 

1 2 3 2 3 1 i j k 2 1 3 1 3 2  vw

cos  

12  (3)2 (1) 2  12

10 2   153.4º

i j k 3 1 2 3 2 1 vw 45.   vw vw

4

 3  3  1  9  ( 2)(9) 0

So,

vw v w

50. v  2i  3 j, w  4i  6 j v  w   2  (4)   3 (6)   8  18  26

vw v w

cos  

11 ( 2)  12 42  (3) 2 2

11 11  5 5 5 5   169.7º 

vw v w 26 2 3 2

2

 4     6  2

2

26 26 26    1 26 13 52 676

  cos 1  1  180o Thus, the vectors are parallel. 1014 Copyright © 2020 Pearson Education, Inc.


Chapter 9 Review Exercises

51. v  2i  2 j, w  3i  2 j

54. v  2i  3 j, w  3i  j The projection of v onto w is given by:  2i  3j   3i  j vw v1  w  3i  j 2 2 w 32  12

v  w   2  (3)   2  (2)  6  4  10

cos    

vw v w

 2   22  3  22

10 10   0.9806 8  13 104

2

2

v  w   3 (4)   2  (6)  12  12  0

Thus, the vectors are orthogonal. 53. v  2i  j, w  4i  3 j The decomposition of v into 2 vectors v1 and v 2 so that v1 is parallel to w and v 2 is

and v 2  v  v1

 2i  j   4i  3j

  4  3 

2



 4i  3j

2

 2  4   1 3 25

9 27 9  3i  j  i  j 10 10 10

2

w

a 3 3 3 29    2 2 2 29 v 29 3  ( 4)  2   56.1º

55. cos  

b 4 4 4 29    2 2 2 v 29 29 3  ( 4)  2   138.0º

cos  

c 2 2 2 29    2 2 2 v 29 29 3  ( 4)  2   68.2º

2

2

 3i  j

cos  

vw w

vw w

10

9   27  2i  3 j   i  j   10 10  27 9  2i  3 j  i  j 10 10 7 21  i j 10 10

52. v  3i  2 j, w  4i  6 j

perpendicular to w is given by: v1 

 2  3   31

v 2  v  v1

 10  o   11.31  104  Thus, the vectors are neither parallel nor orthogonal.

  cos 1 

v1 

10

 4i  3j

1 4 3  4i  3j  i  j 5 5 5

v 2  v  v1

4 3   2i  j   i  j  5 5  4 3  2i  j  i  j 5 5 6 8  i j 5 5

 56. u  P1 P 2  i  2 j  3k  v  P1 P 3  5i  4 j  k

i j k u v  1 2 3 5 4 1 

2 3 4 1

i

1 3 5 1

j

1 2 5 4

k

  10i  14 j  6k Area  u  v  (10) 2  142  ( 6) 2  332  2 83  18.2 sq. units

57. v  u    u  v     2i  3 j  k   2i  3 j  k 58. u  v   3v   v  3  v  v   3  0  0

1015 Copyright © 2020 Pearson Education, Inc.


Chapter 9: Polar Coordinates; Vectors

59. Let the positive x-axis point downstream, so that the velocity of the current is v c  2i . Let v w = the velocity of the swimmer in the water and v g

1.085064 F1  2000 F1  1843.21 lb F2  0.884552(1843.21)  1630.41 lb

= the velocity of the swimmer relative to the land. Then v g  v w  v c . The speed of the

The tension in the left cable is about 1843.21 pounds and the tension in the right cable is about 1630.41 pounds.

swimmer is v w  5 , and the heading is directly across the river, so v w  5 j . Then v g  v w  v c  5 j  2i  2i  5 j

61. F  5 cos  60º  i  sin  60º  j 1 3  5 5 3  5 i  j  i  j 2 2  2 2  AB  20i   5 5 3  W  F  AB   i  j   20i 2  2 5 3 5    (20)    (0)  50 ft-lb 2  2 

v g  22  52  29  5.39 mi/hr

Since the river is 1 mile wide, it takes the swimmer about 0.2 hour to cross the river. The swimmer will end up (0.2)(2)  0.4 miles downstream.

60. Let F1 = the tension on the left cable, F2 = the tension on the right cable, and F3 = the force of the weight of the box. F1  F1 cos 140º  i  sin 140º  j

62. Split the force into the components going down the hill and perpendicular to the hill. Fd

 F1   0.7660i  0.6428 j

F2  F2 cos  30º  i  sin  30º  j  F2  0.8660i  0.5000 j F3   2000 j

Fp

F

Fd  F sin 5º  8000sin 5º  697.2 Fp  F cos 5º  8000 cos 5º  7969.6

For equilibrium, the sum of the force vectors must be zero.

The force required to keep the van from rolling down the street is about 697.2 pounds. The force perpendicular to the street is approximately 7969.6 pounds.

F1  F2  F3   0.766044 F1 i  0.642788 F1 j  0.866025 F2 i  0.5 F2 j  2000 j

   0.766044 F1  0.866025 F2  i

  0.642788 F1  0.5 F2  2000  j

Chapter 9 Test

0

1 – 3.

Set the i and j components equal to zero and solve:  0.766044 F1  0.866025 F2  0  0.642788 F1  0.5 F2  2000  0 Solve the first equation for F2 and substitute the result into the second equation to solve the system: 0.766044 F2  F1  0.884552 F1 0.866025

0.642788 F1  0.5  0.884552 F1   2000  0

1016 Copyright © 2020 Pearson Education, Inc.


Chapter 9 Test y

4. x  2 and y  2 3 r  x 2  y 2  (2) 2  (2 3) 2  16  4 and

3  4

y 2 3 tan     3 x 2 Since  x, y  is in quadrant I, we have   3 .



 2



x

 

 0

The point (2, 2 3) in rectangular coordinates is

the point 4, 3 in polar coordinates. 

r7

5.

5 4

2

 x y  7 2

2

2

2

7.

x  y  49 Thus the equation is a circle with center (0, 0) and radius = 7. 2

2

y 

3 4

 

x y 7 2

  2

7 4

3 2

r sin 2   8sin   r r 2 sin 2   8r sin   r 2 y 2  8 y  x2  y 2 8 y  x 2 or 4  2  y  x 2

The graph is a parabola with vertex (0, 0) and focus (0, 2) in rectangular coordinates. 

 4

y

x

 

 4



3 4



 2



 4

 0 7  4

5  4 

3 2



6. tan   3 sin  3 cos  r sin  3 r cos  y  3 or y  3x x Thus the equation is a straight line with m = 3 and b = 0.

x

 

 0

5 4

 

7 4

3 2

8. r 2 cos   5 Polar axis: Replace  with  : r 2 cos( )  5 r 2 cos   5 Since the resulting equation is the same as the original, the graph is symmetrical with respect to the polar axis.

The line   2 : Replace  with    : r 2 cos(   )  5 r 2 (cos  cos   sin  sin  )  5 r 2 ( cos  )  5  r 2 cos   5 Since the resulting equation is not the same as

1017 Copyright © 2020 Pearson Education, Inc.


Chapter 9: Polar Coordinates; Vectors

10.

the original, the graph may or may not be symmetrical with respect to the line  

2

.

17     11 11     17 z  w   2  cos  i sin  i sin   3  cos  36 36     90 90    

The pole: Replacing r with r : (r ) 2 cos   5

i

r 2 cos   5 Since the resulting equation is the same as the original, the graph is symmetrical with respect to the pole. Note: Since we have now established symmetry about the pole and the polar axis, it can be shown that the graph must also be symmetric about the line   2 .

i

11

 17 11   i 

i

107

 2  3  e  36 90   6e 180 107 107    6  cos  i sin  180 180  

i

11

11 17

w 3e 90 3 i  11.   e 90 36 17 z 2 i 2e 36

9. r  5sin  cos 2  The polar axis: Replace  with  : r  5sin( ) cos 2 ( )

 7 

33

3 i   20  3 i 20  e e 2 2 3  [cos( 3320 )  i sin( 3320 )] 2 

r  5( sin  ) cos 2  r  5sin  cos 2  Since the resulting equation is the not same as the original, the graph may or may not be symmetrical with respect to the polar axis. The line    : Replace  with    : 2 r  5sin(   ) cos 2 (   ) r  5(sin  cos   cos  sin  )( cos  )

17

 2e 36  3e 90

Since  720 has the same terminal side as 3320 , we can write

w 3  (cos 3320  i sin 3320 ) z 2

22 22 22 5  i 180    i sin 12. w  [3(cos )]   3e   180 180  

2

5

5

r  5(0  cos   (1)  sin  )(cos 2  )

 22   22  11 i  5 i 5 i  5  180  180   3 e 3 e  243e 18

r  5sin  cos 2  Since the resulting equation is the same as the original, the graph is symmetrical with respect to the line    . 2 The pole: Replacing r with r : r  5sin  cos 2 

5

11 11    243  cos  i sin  18 18  

13. Let w  8  8 3 i ; then w  (8) 2  (8 3) 2  64  192  256  16

r  5sin  cos 2  Since the resulting equation is not the same as the original, the graph may or may not be symmetrical with respect to the pole.

so we can write w in polar form as 2 i  1 3  2 2  i sin )  16e 3 w  16    i   16(cos 3 3  2 2  Using De Moivre’s Theorem, the three distinct 3rd roots of w are 1  2   2 2  i  i  2 k   k 3    2 3 2e  9

zk  3 16e 3  3

where k  0, 1, and 2 . So we have

1018 Copyright © 2020 Pearson Education, Inc.


Chapter 9 Test

z0

19. v1  2 v 2  v 3  4, 6  2 3, 6  8, 4

 2 2  2  0  i i  2 3 2e  9 3   2 3 2e 9

z1  2

3

 4  2(3)  (8), 6  2(6)  4  4  6  8, 6  12  4

 2 2  8 i  1 i 2e  9 3   2 3 2e 9

z2  2 3 2e

 2 2  i  2  3   9

i

 6,  10  6i  10 j

14

 2 3 2e 9

20 – 21. If ij is the angle between v i and v j , then vi  v j

cos ij 

15.

v 

 5 2    5 2   100  10 2

2

v 1 16. u   5 2,  5 2  v 10

2 2 , 2 2

17. From Exercise 16, we can write 2 2 v  v  u  10 , 2 2

4(3)  6(6)

52  45 4(8)  6(4)

and are orthogonal if cos ij  0 . Thus, vectors v1 and v 4 are parallel and v 2 and v 3 are orthogonal.

22. The angle between vectors v1 and v 2 is

 10 cos 315, sin 315  10(cos 315 i  sin 315 j) Thus, the angle between v and i is 315 .

 v v   48  cos 1  1 2   cos 1    v  v   52  45  . 2   1  cos 1 (0.992278)  172.87

18. From Exercise 17, we can write v  10 cos 315 i  sin 315 j  10

. Thus,

48 8  6 65 65 8 1 cos 13    52  80 8 65 65 4(10)  6(15) 130 cos 14   1 52  325 130 (3)(8)  (6)(4) 0 cos  23   0 60 45  80 (3)10  (6)15 120 8 cos  24    45  325 15 65 65 20 1 (8)10  (4)15   cos 34  20 65 65 80  325 The vectors v i and v j are parallel if cos ij  1 cos 12 

14. v  8 2  3 2 , 2 2  7 2  5 2, 5 2

vi  v j

2  2 i     j  5 2 i  5 2 j 2  2 

1019 Copyright © 2020 Pearson Education, Inc.


Chapter 9: Polar Coordinates; Vectors

i

23.

j

u v  2

3 1

1 

k

3

3 1 3

2

2

i

2

1

1 2

j

2

3

1

3

 Using the right triangle in the sketch, we 16 conclude tan    2 so that 8   tan 1 2  63.435 .

k

Thus the three force vectors in the problem can be written as F1  F1 (cos116.565 i  sin116.565 j)

  6  3 i   4   1  j   6  3 k  9i  5 j  3k 24. To find the direction angles for u , we first

 F1 (0.44721i  0.89443j)

F2  F2 (cos 63.435 i  sin 63.435 j)

evaluate u .

 F2 (0.44721i  0.89443 j) F3  1200 j Since the system is in equilibrium, we need F1  F2  F3  0 i  0 j .

u  (2) 2  (3) 2  12  4  9  1  14

From the Theorem on Direction Angles, we have 2 3 1 , cos   , and cos   . cos   14 14 14 Thus, the direction angles can be found by using the inverse cosine function. That is, 2   cos 1  57.7 14 3  143.3   cos 1 14 1  74.5   cos 1 14

This means  F1 (0.44721)  F2 (0.44721)  0   0 and  F1 (0.89443)  F2 (0.89443)  1200   0 . The first equation gives F1  F2 ; if we call

this common value F and substitute into the second equation we get 2  F  (0.89443)  1200 1200  670.82 2(0.89443) Thus, the cable must be able to endure a tension of approximately 670.82 lbs. F 

25. The area of a parallelogram with u and v as adjacent sides is given by u  v . From problem (1), we have that u  v  9i  5 j  3k . Therefore, the area of the parallelogram is u v 

 9 2   5 2  32

 81  25  9

Chapter 9 Cumulative Review

 115  10.724 square units

1.

26. We first calculate the angle  .  

  2

ln e x 9  ln 1

16 F1

2

e x 9  1

x2  9  0  x  3 x  3  0 x  3 or x  3 The solution set is 3,3 .

F2

16

1200 lbs

2. The line containing point (0, 0), making an angle of 30o with the positive x-axis has polar

F3

equation  

1020 Copyright © 2020 Pearson Education, Inc.

 6

.


Chapter 9 Cumulative Review

Using rectangular coordinates:  y   tan 1   x y tan   x



x2    y   2 x4 3

x2  y3  2 x4

which is not equivalent to x 2  y 3  2 x 4 . y-axis: Replace x by  x :

  x 2  y 3  2   x  4

6

x 2  y3  2 x 4

3   tan   tan    6 3

So,

which is equivalent to x 2  y 3  2 x 4

3 y  3 x

Origin: Replace x by  x and y by  y :

  x  2    y 3  2   x  4

3 y x 3

x2  y3  2 x4

3. The circle with center point (h, k) = (0,1) and radius r = 3 has equation:

 x  h 2   y  k 2  r 2  x  0 2   y  12  32 2 x 2   y  1  9

4.

which is not equivalent to x 2  y 3  2 x 4 . Therefore, the graph is symmetric with respect to the y-axis.

6. y  ln x ln x,   ln x, ln x,   ln x,

when ln x  0 when ln x  0 when x  1 when 0<x  1

f  x   ln 1  2 x  f will be defined provided 1  2 x  0 . 1  2x  0 1  2x 1 x 2  1 1  The domain of is  x x   or  ,  . 2 2   

7. y  sin x when sin x  0 sin x,   sin x, when sin x  0 when 0  x   sin x,   sin , when   x  2 x 

5. x 2  y 3  2 x 4 Test for symmetry: x-axis: Replace y by  y :

1021 Copyright © 2020 Pearson Education, Inc.


Chapter 9: Polar Coordinates; Vectors

10. Graphing x  3 and y  4 using rectangular coordinates: x  3 yields a vertical line passing through the point  3, 0  . y  4 yields a horizontal line passing through

the point  0, 4  .

when x  0 sin x, 8. y  sin x   x x0  sin , when 

11. Graphing r  2 and  

using polar coordinates: 3 r  2 yields a circle, centered at  0, 0  , with radius

= 2.



 3

yields a line passing through the point  0, 0  ,

forming an angle of  

 3

with the positive x-axis.

 1 9. sin 1     2

We are finding the angle  ,  1 sine equals  . 2 1 sin    , 2    6  1  1  sin      6  2

     , whose 2 2

    2 2

12. y  4 cos( x) is of the form y  a cos( x) Amplitude: a  4  4 Period:

2

1022 Copyright © 2020 Pearson Education, Inc.

2

2


Chapter 9 Projects

Chapter 9 Projects

 2 2  Magnitude  1  0.25  i  2   2

Project I

2

2. The aircraft will fall (lose altitude).

If h is high enough such that cos(2 h)  0 and sin(2 h)  1 , then

3. The aircraft will speed up. 4. The aircraft will slow down. 5. W  700 lb 

Magnitude  1  0.25  0  i 

2.205 kg  1543.5 kg 1 lb

6. F  1543.5 kg   9.80 m/s 2  15,126.3 kg  m/s

 1   0.25   1.03 2

If h is high enough such that cos(2 h)  0 and sin(2 h)  1 , then

Magnitude  1  0.25  0  i   1.03

2

 15,126.3 N

If h is high enough such that cos(2 h)  1 and sin(2 h)  0 , then

7. The lift force of the Wright brother’s plane must have exceeded 15,126.3 newtons in order for it to have gotten off the ground.

Magnitude  1  0.25  1  0.75 (min).

Because sine and cosine oscillate between 1 and 1, the magnitude will oscillate between a maximum and a minimum. 1.25 SWR   1.67 .75

2.205 kg  5292 kg 8. W  2400 lb  1 lb

F   5292 kg   9.80 m/s 2

 51,861.6 kg  m/s 2  51,861.6 N The lift force of the Cessna 172P must exceed 51,861.6 newtons in order to get off the ground.

9. W  560, 000 lb 

2.205 kg  1, 234,800 kg 1 lb

F  1, 234,800 kg   9.80 m/s 2  12,101, 040 kg  m/s

2

  2 2  1      1.19 8    8 

1. The aircraft will rise (gain altitude).

2

 12,101, 040 N The lift force of the Boeing 787 must exceed 5,510,295 newtons in order to get off the ground.

Project II

2. The distance between two consecutive minima will be the period of cosine (the value of cosine 2  1. is 1 once per cycle): Period  2 3. The distance between two consecutive maxima will be the period of cosine (the value of cosine 2 is 1 once per cycle): Period   1. 2 4. The distance between a minimum and a maximum is half a period: 0.5(1)  0.5 . 5. The pager must be sensitive enough to receive a minimum signal strength of 0.75. 6.

1. If h  0 , then cos(2 h)  1 and sin(2 h)  0 ,

Imaginary axis

then Magnitude  1  0.25(1)  1.25 (max). If h is high enough such that cos(2 h)  and sin(2 h) 

2 2



2 , then 2 

1023 Copyright © 2020 Pearson Education, Inc.

Real axis


Chapter 9: Polar Coordinates; Vectors 

Since the magnitude of a complex number is the distance from (0, 0) to the point, z, the minimum is 0.75 and the maximum is 1.25





Project III 

a. A  100e0.05 , 0    30

g. Doubling the interest rate causes the time to double to be less than half.  0.5  19.7  9.85, not 7.5 

 



Project IV 

A.

b. Approximately 19.7 years.

a. ei  cos   i sin   1  i (0)  1



Therefore, ei  1  0 . 



b.



c. Approximately 26.1 years.  





eix  e ix cos x  i sin x   cos( x)  i sin( x)   2i 2i cos x  i sin x  cos x  i sin x 2i sin x   2i 2i  sin x eix  e ix cos x  i sin x   cos( x)  i sin( x)   2 2 cos x  i sin x  cos x  i sin x 2 cos x   2 2  cos x

c. sin(1  i ) 

d. A  100e0.10 , 0    30 

 



e 1  ei (1)  e  e i (1) 2i e 1 (cos1  i sin1)  e  cos( 1)  i sin( 1) 

2i 0.1988  i (0.3096)  1.4687  2.2874i  2i 1.2699  2.597i i    1.2985  0.6350i i 2i



e. Approximately 7.5 years 

d. a  bi  r1 (cos x  i sin x)  r1eix ,





ei (1i )  ei (1 i ) e 1i  e1i  2i 2i

r1  a 2  b 2 

c  di  r2 (cos y  i sin y )  r2 eiy ,

f. Approximately 13.5 years.

r2  c 2  d 2

(a  bi )(c  di )  r1eix  r2 eiy  r1r2 eix eiy  r1r2 eix  iy  r1r2 ei ( x  y )

 r1r2  cos( x  y )  i sin( x  y ) 

1024 Copyright © 2020 Pearson Education, Inc.


Chapter 9 Projects

three points of intersection, however, the “missing” point is complex so it will not show up on the graph.

a  bi r1eix r1 ix iy r1 i ( x  y )   e  e c  di r2 eiy r2 r2 r  1  cos( x  y )  i sin( x  y )  r2

 



B. a. 1.

x  u  iv  

i (u  iv)3  8  0 i (u 3  3u 2 (iv)  3u (iv) 2  (iv)3 )  8  0 i (u 3  3iu 2 v  3uv 2  iv3 )  8  0

2.

v3  3u 2 v  8  0



8  v3 u  3v

3

b. ix  8  0

2

3

 x3  8i  0

2

u  3uv  0 2

x3  8i  0

2

u (u  3v )  0 2

x3  8i 8i  8(0  i )  8(cos 90  i sin 90)

2

u  0 or u  3v  0

If u 2  3v 2  0 , then u 2  3v 2  0

  90 360   90 360     zk  3 8  cos  k   i sin  k  3 3 3   3     2 cos  30  120k   i sin  30  120k  

u 2  3v 2 8  v3 3v 3 9v  8  v3

3v 2 

z0  2 cos  30   i sin  30  

8v3  8

 3 1   2   i   3  i  2 2  z1  2 cos  30  120   i sin  30  120  

v3  1 v 1

If u  0 and v  2 , then x  2i . If v  1 , then u   3 . Thus, x  3  i or x   3  i

3.



(v 3  3u 2 v  8)  (u 3  3uv 2 )i  0

8  v3 and u   3v 3v

Graph u   

 3 1   2   i    3  i 2   2 z1  2 cos  30  240   i sin  30  240    2  0  1i   2i

These solutions do match those in part (a). If u  0 , then 8  v3 3v 3 8v  0 v  2 0



u  0 or u 2  3v 2  0



4.

The points of intersection are (1, 1.73) and (1, 1.73) , which matches up to the second set of intersection points. There should be

1025 Copyright © 2020 Pearson Education, Inc.


Chapter 8 Applications of Trigonometric Functions 11. opposite = 2; adjacent = 3; hypotenuse = ? (hypotenuse) 2  22  32  13

Section 8.1 1. a  52  32  25  9  16  4

hypotenuse  13

1 2. tan   , 0    90 2 1   tan 1    26.6o 2

sin  

opp 2 2 13 2 13     hyp 13 13 13 13

adj 3 3 13 3 13     hyp 13 13 13 13 opp 2  tan   adj 3

cos  

1 3. sin   , 0    90 2 1   sin 1  30 2

csc  

hyp 13  opp 2

hyp 13  adj 3 adj 3  cot   opp 2

sec  

4. False; sin 52  cos 38 5. b 6. angle of elevation

12. opposite = 3; adjacent = 3; hypotenuse = ? (hypotenuse) 2  32  32  18

7. True

hypotenuse  18  3 2

8. False 9. opposite = 5; adjacent = 12; hypotenuse = ? (hypotenuse) 2  52  122  169

sin  

hypotenuse  169  13 opp 5 hyp 13 sin   csc     hyp 13 opp 5 adj 12 hyp 13 cos   sec     hyp 13 adj 12 opp 5 adj 12 tan   cot     adj 12 opp 5

cos  

opp 3 3 2 2     hyp 3 2 3 2 2 2

adj 3 3 2 2     hyp 3 2 3 2 2 2 opp 3 tan    1 adj 3 csc  

hyp 3 2   2 opp 3

hyp 3 2   2 adj 3 adj 3 cot    1 opp 3

sec  

10. opposite = 3; adjacent = 4, hypotenuse = ? (hypotenuse) 2  32  42  25 hypotenuse  25  5 opp 3 hyp 5   sin   csc   hyp 5 opp 3 adj 4 hyp 5   cos   sec   hyp 5 adj 4 opp 3 adj 4   tan   cot   adj 4 opp 3

838 Copyright © 2020 Pearson Education, Inc.


Section 8.1: Right Triangle Trigonometry; Applications 13. adjacent = 2; hypotenuse = 4; opposite = ? (opposite) 2  22  42 (opposite) 2  16  4  12 opposite  12  2 3 opp 2 3 3   hyp 4 2 adj 2 1 cos     hyp 4 2

sin  

tan  

opp 2 3   3 adj 2

tan  

opp 2   2 adj 1

csc  

hyp  opp

sec  

hyp 3   3 adj 1

cot  

adj 1 1 2 2     opp 2 2 2 2

3  2

3 2 6   2 2 2

16. opposite = 2; adjacent = (hypotenuse)  2  2

2

3 ; hypotenuse = ?

 3  7 2

hyp 4 4 3 2 3     opp 2 3 2 3 3 3 hyp 4 sec    2 adj 2

sin  

adj 2 2 3 3     opp 2 3 2 3 3 3

opp 2 2 7 2 7     hyp 7 7 7 7

cos  

adj 3 3 7 21     hyp 7 7 7 7

tan  

opp 2 2 3 2 3     adj 3 3 3 3

csc  

hyp 7  opp 2

csc  

cot  

14. opposite = 3; hypotenuse = 4; adjacent = ? 32  (adjacent) 2  42 (adjacent) 2  16  9  7 adjacent  7

hypotenuse  7

sin  

opp 3  hyp 4

sec  

hyp 7 7 3 21     adj 3 3 3 3

cos  

adj 7  hyp 4

cot  

adj 3  opp 2

opp 3 3 7 3 7     adj 7 7 7 7 hyp 4  csc   opp 3 tan  

hyp 4 4 7 4 7     sec   adj 7 7 7 7 cot  

2 ; adjacent = 1; hypotenuse = ?

(hypotenuse) 2 

 2  1  3 2

2

hypotenuse  3 opp  sin   hyp

2  3

1  (adjacent)  2

2

2 3 6   3 3 3

adj 1 1 3 3     cos   hyp 3 3 3 3

 5

5 ; adjacent = ?

2

(adjacent) 2  5  1  4 adjacent  4  2 sin  

adj 7  opp 3

15. opposite =

17. opposite = 1; hypotenuse =

opp 1 1 5 5     hyp 5 5 5 5

adj 2 2 5 2 5     hyp 5 5 5 5 opp 1 tan    adj 2 cos  

csc  

hyp 5   5 opp 1

hyp 5  adj 2 adj 2 cot    2 opp 1

sec  

839 Copyright © 2020 Pearson Education, Inc.


Chapter 8: Applications of Trigonometric Functions

18. adjacent = 2; hypotenuse = (opposite)  2  2

2

 5

5 ; opposite = ?

25. tan 20º 

2

(opposite)  5  4  1 2

opposite  1  1 sin  

0

opp 1 1 5 5     hyp 5 5 5 5

26. cot 40º 

adj 2 2 5 2 5 cos       hyp 5 5 5 5 opp 1 tan    adj 2 csc  

hyp 5   5 opp 1

 cos 2 35º  sin 2 35º 1

19. sin 38º  cos 52º  sin 38º  sin(90º  52º )  sin 38º  sin 38º 0

28. sec 35º  csc 55º  tan 35º  cot 55º  sec 35º  sec(90º 55º )  tan 35º  tan(90º 55º )  sec 35º  sec 35º  tan 35º  tan 35º

20. tan12º  cot 78º  tan12º  tan(90º  78º )  tan12º  tan12º 0

22.

sin 50º cos(90º  50º )  cot 40º  sin 40º sin 40º cos 40º  cot 40º  sin 40º  cot 40º  cot 40º 0

27. cos 35º  sin 55º  cos 55º  sin 35º  cos 35º  cos(90º 55º )  sin(90º 55º )  sin 35º  cos 35º  cos 35º  sin 35º  sin 35º

hyp 5  adj 2 adj 2 cot    2 opp 1

sec  

21.

cos 70º sin(90º  70º )  tan 20º  cos 20º cos 20º sin 20º  tan 20º  cos 20º  tan 20º  tan 20º

 sec2 35º  tan 2 35º  (1  tan 2 35º )  tan 2 35º 1

cos10º sin(90º  10º ) sin 80º   1 sin 80º sin 80º sin 80º

29. b  5, B  20º b a 5 tan  20º   a tan B 

cos 40º sin(90º  40º ) sin 50º   1 sin 50º sin 50º sin 50º

a

23. 1  cos 2 20º  cos 2 70º  1  cos 2 20º  sin 2 (90º 70º )  1  cos 2 20º  sin 2 (20º )

 1  cos 2 20º  sin 2 (20º )

5 5   13.74 tan  20º  0.3640

b c 5 sin  20º   c

sin B 

 11 0

c

24. 1  tan 2 5º  csc2 85º  sec2 5º  csc2 85º  sec2 5º  sec2 (90º  85º )

5 5   14.62 sin  20º  0.3420

A  90º  B  90º  20º  70º

 sec2 5º  sec2 5º 0

840

Copyright © 2020 Pearson Education, Inc.


Section 8.1: Right Triangle Trigonometry; Applications 33. b  4, A  10º

30. b  4, B  10º b tan B  a 4 tan 10º   a a

a b a tan 10º   4 a  4 tan 10º   4  (0.1763)  0.71 tan A 

4 4   22.69 tan 10º  0.1763

b c 4 cos 10º   c cos A 

b c 4 sin 10º   c sin B 

4 4 c   23.04 sin 10º  0.1736 A  90º  B  90º 10º  80º

c

4 4   4.06 cos 10º  0.9848

B  90º  A  90º 10º  80º

34. b  6, A  20º

31. a  6, B  40º b a b tan  40º   6 b  6 tan  40º   6  (0.8391)  5.03

a b a tan  20º   6 a  6 tan  20º   6  (0.3640)  2.18

a c 6 cos  40º   c

b c 6 cos  20º   c

tan B 

cos B 

c

cos A 

6 6   7.83 cos  40º  0.7660

A  90º  B  90º  40º  50º

b a b tan  50º   7 b  7 tan  50º   7  (1.1918)  8.34 tan B 

a c 7 cos  50º   c cos B 

6 6   6.39 cos  20º  0.9397

35. a  5, A  25º b a b cot  25º   5 b  5cot  25º   5   2.1445   10.72 cot A 

c a c csc  25º   5 c  5csc  25º   5   2.3662   11.83 csc A 

7 7   10.89 0.6428 cos  50º 

A  90  B  90  50  40

c

B  90º  A  90º  20º  70º

32. a  7, B  50º

c

tan A 

B  90  A  B  90º  A  90  25  65

841 Copyright © 2020 Pearson Education, Inc.


Chapter 8: Applications of Trigonometric Functions 36. a  6, A  40º

39. a  5, b  3

a cot A  b b cot  40º   6 b  6 cot  40º   6  1.1918   7.15

c 2  a 2  b 2  52  32  25  9  34 c  34  5.83 a 5  b 3 5 A  tan 1    59.0 3

tan A 

c a c csc  45º   6 c  6 csc  40º   6  1.5557   9.33 csc A 

B  90  A  90  59.0  31.0

40. a  2, b  8 c 2  a 2  b 2  22  82  4  64  68

B  90  A  90  40  50

c  68  8.25

37. c  9, B  20º

a 2 1   b 8 4 1 A  tan 1    14.0 4

tan A 

b sin B  c b sin  20º   9 b  9sin  20º   9  (0.3420)  3.08

B  90  A  90  14.0  76.0

41. a  2, c  5

a c a cos  20º   9 a  9 cos  20º   9  (0.9397)  8.46 cos B 

c2  a 2  b2 b 2  c 2  a 2  52  22  25  4  21 b  21  4.58 a 2  c 5 2 A  tan 1    23.6º 5

sin A 

A  90  A  90  20  70

38. c  10, A  40º a c a sin  40º   10 a  10sin  40º   10  (0.6428)  6.43 sin A 

B  90  A  90  23.6  66.4

42. b  4, c  6 c 2  a 2  b2 a 2  c 2  b 2  62  42  36  16  20

b cos A  c b cos  40º   10 b  10 cos  40º   10  (0.7660)  7.66

a  20  4.47 b 4 2   c 6 3 2 A  tan 1    48.2º 3

cos A 

B  90  A  90  40  50

B  90º  A  90º  48.2º  41.8º

842

Copyright © 2020 Pearson Education, Inc.


Section 8.1: Right Triangle Trigonometry; Applications 43. c  5, a  2

Case 2:   25º , b  5

2 sin A  5

c

2 A  sin    23.6 5 B  90º  A  90º  23.6º  66.4º The two angles measure about 23.6 and 66.4º . 1

44. c  3, a  1 B  90º  A  90º  19.5º  70.5º The two angles measure about 19.5 and 70.5º .

25º

cos  25º   c

b.

45. c  8,   35º

5 c

5 5   5.52 in. cos  25º  0.9063

There are two possible cases because the given side could be adjacent or opposite the given angle.

48. Case 1:  

a

a

 , a3 8

a.

35º

b

a 8 a  8sin  35º 

b 8 b  8cos  35º 

 8(0.5736)

 8(0.8192)

 4.59 in.

 6.55 in.

sin  35º  

cos  35º  

46. c  10,   40º 

a

40º

c 8

b

 3 sin    8 c 3 3 c   7.84 m.    0.3827 sin   8

Case 2:  

 , b3 8

c

a

b

a 10 a  10sin  40º 

b 10 b  10 cos  40º 

 10(0.6428)

 10(0.7660)

 6.43 cm.

 7.66 cm.

cos  40º  

sin  40º  

47. Case 1:   25º , a  5 a. c

_ 8

25º

b

c

 3 cos    8 c 3 3 c   3.25 m.    0.9239 cos   8

b. There are two possible cases because the given side could be adjacent or opposite the given angle.

sin  25º  

_

49. tan  35º  

5 c

5 5   11.83 in. sin  25º  0.4226

AC

100 AC  100 tan  35º   100(0.7002)  70.02 feet

843 Copyright © 2020 Pearson Education, Inc.


Chapter 8: Applications of Trigonometric Functions 56. opposite side = 10 feet, adjacent side = 35 feet 10 tan   35 10   tan 1    15.9º  35 

AC

50. tan  40º  

100 AC  100 tan  40º   100(0.8391)  83.91 feet

51. Let x = the height of the Eiffel Tower. x tan  85.361º   80 x  80 tan  85.361º   80(12.3239)  985.91 feet

57. a.

52. Let x = the distance to the shore.

The truck is traveling at 111.96 ft/sec, or 111.96 ft 1 mile 3600 sec    76.3 mi/hr . sec 5280 ft hr

feet 25º

x

tan  25º   x

100 x

b.

100 100   214.45 feet tan  25º  0.4663

c.

20º

x

50 x

50 50   137.37 meters tan  20º  0.3640

54. Let x = the distance up the building feet

x 22 x  22sin  70º   22(0.9397)  20.67 feet

sin  70º  

300 6 50 A  tan 1 6  80.5º The angle of elevation of the sun is about 80.5º .

30 30   82.42 feet tan  20º  0.3640

A ticket is issued for traveling at a speed of 60 mi/hr or more. 60 mi 5280 ft 1hr    88 ft/sec. hr mi 3600 sec 30 If tan   , the trooper should issue a 88  30  ticket. Now, tan 1    18.8 , so a ticket  88  is issued if   18.8º .

58. If the camera is to be directed to a spot 6 feet above the floor 12 feet from the wall, then the “side opposite” the angle of depression is 3 feet. (see figure) 12 3 1 tan A   A 12 4 3 1 A  tan 1  14.0 4 The angle of depression should be about 14.0 .

x

70º

55.

30 x

The truck is traveling at 82.42 ft/sec, or 82.42 ft 1 mile 3600 sec    56.2 mi/hr . sec 5280 ft hr

meters

x

tan  20º  

x

53. Let x = the distance to the base of the plateau.

tan  20º  

Let x represent the distance the truck traveled in the 1 second time interval. 30 tan 15º   x 30 30 x   111.96 feet tan 15º  0.2679

tan A 

300 feet A 50 feet

844

Copyright © 2020 Pearson Education, Inc.


Section 8.1: Right Triangle Trigonometry; Applications

59. a.

61. Let h = the height of the monument.

4.22  5.9  1012  24.898  1012  2.4898  1013 Proxima Centauri is about 2.4898  1013 miles from Earth.

b. Construct a right triangle using the sun, Earth, and Proxima Centauri as shown. The hypotenuse is the distance between Earth and Proxima Centauri.

b

Sun

h 789 h  789 tan  35.1º 

tan  35.1º  

 789(0.7028)

a

35.1º

ft

 554.52 ft

62. The elevation change is 11200  9000  2200 ft . Let x = the length of the trail.

Proxima Centauri

h

x

Parallax

ft

17º

c

2200 x 2200 2200 x   7524.67 ft. sin 17º  0.2924

sin17º  Earth

a 9.3  107  c 2.4898  1013 sin   0.000003735 sin  

63. Begin by finding angle   BAC : (see figure)

The parallax of Proxima Centauri is 0.000214 . 60. a.

12

11.14  5.9  10

  65.726 10

12 13

 6.5726  10 61 Cygni is about 6.5726  1013 miles from Earth.

b. Construct a right triangle using the sun, Earth, and 61 Cygni as shown. The hypotenuse is the distance between Earth and 61 Cygni. b Sun 61 Cygni 

a

40º

B i

D

 m

  sin 1 0.000003735   0.000214

m

i

E

C

1 2 0.5   63.4º DAC  40º  63.4º  103.4º EAC  103.4º  90º  13.4º Now, 90º 13.4º  76.6º The control tower should use a bearing of S76.6˚E. tan  

64. Find AMB and subtract from 80˚ to obtain  (see figure). 80º

M

Parallax



c



C

Earth

a 9.3  107 sin    c 6.5726  1013 sin   0.000001415

B

CMA  80 30 2 15 AMB  tan 1 2  63.4º   80º  63.4º  16.6º The bearing of the ship from port is S16.6ºE . tan AMB 

  sin 1 0.000001415   0.00008 The parallax of 61 Cygni is 0.00008 .

845 Copyright © 2020 Pearson Education, Inc.


Chapter 8: Applications of Trigonometric Functions 65. Let y = the height of the embankment.

.8

sin  

y

a  2760  sin   1451   2150   a  2760sin  cos 1     1451  2760    a  278

36o2’   362 '  36.033 y 51.8 y  51.8sin  36.033   30.5 meters

sin  36.033  

The antenna is about 253 feet tall. 67. Let x, y, and z = the three segments of the highway around the bay (see figure).

The embankment is about 30.5 meters high.

y

Let h = the height of the building, a = the height of the antenna, and x = the distance between the surveyor and the base of the building.

x 140º 40º

sin  40º  

2595 h

x

o

x

x 2595 x  2595  cos 34  2150 The surveyor is located approximately 2150 feet from the building.

z

h 2595 h  2595  sin 34  1451 The building is about 1451 feet high.

a

b

1 a

1  1.1918 mi tan  40º 

tan  50º  

Let  = the angle of inclination from the surveyor to the top of the antenna. 2150 cos   2760  2150    cos 1    38.8  2760 

1 z

1  1.3054 mi sin  50º 

tan  40º  

sin 34 

1 x

1  1.5557 mi sin  40º 

sin  50º  

cos 34 

c.

b

mi

The length of the highway  x  y  z

2760

b.

z 50º 130º

a

a

34

mi

66. a.

mi

51

h  a 1451  a  2760 2760 2760  sin   1450  a

d.

1 b

1  0.8391 mi tan  50º 

a yb  3 y  3 a b

 3  1.1918  0.8391  0.9691 mi The length of the highway is about: 1.5557  0.9691  1.3054  3.83 miles .

68. Let x = the distance from George at which the camera must be set in order to see his head and feet. x 20º

ft

846

Copyright © 2020 Pearson Education, Inc.


Section 8.1: Right Triangle Trigonometry; Applications

tan  20º   x

h   h  100  tan  61º  tan 54º    

4 x

4  10.99 feet tan  20º 

h

If the camera is set at a distance of 10 feet from George, his feet will not be seen by the lens. The camera would need to be moved back about 1 additional foot (11 feet total). 69. We construct the figure below: 32º 32º

23º

ft y

x

tan  32º   x

23º

500 x

500 tan  32º 

tan(61) tan(54)

h  100 tan  61 

 tan(61)  h 1    100 tan  61   tan(54)  h

100 tan  61 

 580.61  tan  61    1  tan  54     Thus, the height of the balloon is approximately 580.61 feet.

71. Let h represent the height of Lincoln's face. tan  23º   y

h

500 y

500 tan  23º 

b 32º

35º

feet

Distance = x  y 500 500   tan  32º  tan  23º 

b 800 b  800 tan  32º   499.90

 1978.09 feet

bh 800 b  h  800 tan  35º   560.17

tan  32º  

tan  35º  

70. Let h = the height of the balloon. 54º

h

Thus, the height of Lincoln’s face is: h  (b  h)  b  560.17  499.90  60.27 feet

61º

72. Let h represent the height of tower above the Sky Pod.

h 61º

h

54º

ft

x x

b

h tan  54º   x h x tan  54º 

h x  100 h  ( x  100) tan  61º 

tan  61º  

20.1º

24.4º

feet

b 4000 b  4000 tan  20.1º   1463.79 tan  20.1º  

bh 4000 b  h  4000 tan  24.4º   1814.48 tan  24.4º  

Thus, the height of tower above the Sky Pod is: h  (b  h)  b  1814.48  1463.79  350.69 feet 847 Copyright © 2020 Pearson Education, Inc.


Chapter 8: Applications of Trigonometric Functions 73. Let x = the distance between the buildings.

right triangles formed is 

1451

x

o

10.3



 2

.

 

x

1451 x 1451  7984 x tan 10.3 

tan  

Let x = the length of the segment from the vertex of the angle to the smaller circle. Then the hypotenuse of the smaller right triangle is x  2 , and the hypotenuse of the larger right triangle is x  2  2  4  x  8 . Since the two right triangles are similar, we have that: x 2 x8  2 4 4( x  2)  2( x  8) 4 x  8  2 x  16 2x  8 x4 Thus, the hypotenuse of the smaller triangle is   2 1 4  2  6 . Now, sin     , so we have 2 6 3

The two buildings are about 7984 feet apart. 74. tan     

2070 630

 2070    630   2070    tan 1    630 

    tan 1 

 2070  1  67   tan 1    cot    630   55   33.69 Let x = the distance between the Arch and the boat on the Missouri side. x tan   630 x  630 tan   630 tan  33.69 

that:

x  420 Therefore, the Mississippi River is approximately 2070  420  1650 feet wide at the St. Louis riverfront.

78. a.

75. The height of the beam above the wall is 46  20  26 feet. 26  2.6 tan   10   tan 1 2.6  69.0º The pitch of the roof is about 69.0º . 10  6 4  15 15 1  4  A  tan    14.9º  15  The angle of elevation from the player’s eyes to the center of the rim is about 14.9º .

1  sin 1   3 1   2  sin 1    38.9 3 2

3960   cos     2  3960  h

b.

d  3960

c.

3960  d  cos    3960  h 7920  

d.

76. tan A 

3960  2500  cos    3960  h 7920   3960 0.9506  3960  h 0.9506(3960  h)  3960 3764  0.9506h  3960 0.9506h  196 h  206 miles

77. A line segment drawn from the vertex of the angle through the centers of the circles will bisect  (see figure). Thus, the angle of the two 848

Copyright © 2020 Pearson Education, Inc.


Section 8.1: Right Triangle Trigonometry; Applications

e.

3960 3960  d   cos    7920  3960  300 4260 d  3960   cos 1   7920  4260   3960  d  7970 cos 1    4260   2990 miles

The office building is about 2633 feet from the base of the tower. b. Let y = the difference in height between 1 WTC and the office building. Together with the result from part (a), we get the following diagram y

20 2633

79. Refer to the diagram below

opposite tan   adjacent y tan 20  2633 y  958 The 1 WTC is about 958 feet taller than the office building. Therefore, the office building is 1776  958  818 feet tall.

If we let x = length shown in the figure, we see 3 that, tan   and x 3 tan 52  x 3 x  2.34 ft. tan 52 Now we add 1 foot. 1  2.34  3.34 ft The player should hit the top cushion at a point that is 3.34 feet from upper left corner. 80. a. The distance between the buildings is the length of the side adjacent to the angle of elevation in a right triangle.

81. Extend the tangent line until it meets a line extended through the centers of the pulleys at P. Let x  d ( P, B ), y  the distance from P to the center of the smaller circle, and x  d ( A, B ) . . Using similar triangles gives

24  y 6.5  which yields y  15 . y 2.5 Use the Pythagorean Theorem twice to find x and z: x 2  2.52  152 x  14.79 ( z  14.79) 2  6.52   24  15 

1776

z  23.66

34 x

opposite and we know the angle adjacent measure, we can use the tangent to find the distance. Let x = the distance between the buildings. This gives us 1776 tan 34  x 1776 x tan 34 x  2633

Since tan  

2

2.5  0.1667 15 2.5    cos 1    1.4033 radians  15      1.4033  1.7383 radians

cos  

The arc length, s2 , where the belt touches the top half of the larger pulley is 6.5(1.7383)  , 11.30 inches.

849 Copyright © 2020 Pearson Education, Inc.


Chapter 8: Applications of Trigonometric Functions

sight from the top of the lighthouse is tangent to 362 the Earth. Note also that 362 feet  miles. 5280

The arc length, s1 , where the belt touches the top half of the smaller pulley is 2.5(1.4033)  , 3.51 inches. The length of the belt is about: 2(11.30 + 3.51 + 23.66) = 76.94 inches. 82. Let x = the hypotenuse of the larger right triangle and z = length of its third side. Then 24  x is the hypotenuse of the smaller triangle and let y be its third side. The two triangles are similar so

  cos 1 

3960  o   0.33715  3960  362 / 5280 

6.5 x 20 which yields 24  x  .  2.5 24  x 3 cos  

Verify the airplane information: Let  = the central angle formed by the plane, the center of the Earth and the point P. 3960    cos 1    1.77169  3960  10, 000 / 5280  Note that d d tan   1 and tan   2 3690 3690 d1  3960 tan  d 2  3960 tan  So, d1  d 2  3960 tan   3960 tan 

3 8

  cos 1

6.5 3  cos 1    1.1864 rad x 8

    1.1864  1.9552 rad z  6.5 tan   16.07 in; y  2.5 tan   6.18 in;

Distance between points of tangency = z  y  22.25

 3960 tan(0.33715)  3960 tan(1.77169)

The arc length, s2 , where the belt touches the top half of the larger pulley is: 6.5 1.9552   12.71 in.

 146 miles To express this distance in nautical miles, we express the total angle    in minutes. That is,

The arc length, s2 , where the belt touches the bottom half of the smaller pulley is 2.5 1.9552   4.89 in.

nautical miles. Therefore, a plane flying at an altitude of 10,000 feet can see the lighthouse 120 miles away.

     0.33715o  1.77169o   60  126.5

The distance between the points of tangency is z  y  16.07  6.18  22.25 inches. The length of the belt is about: 2s2  2( z  y )  2s1  2(12.71 + 4.89 + 22.25) = 79.69 in. 83 – 84. Answers will vary. 85. Let  = the central angle formed by the top of the lighthouse, the center of the Earth and the point P on the Earth’s surface where the line of

850

Copyright © 2020 Pearson Education, Inc.


Section 8.1: Right Triangle Trigonometry; Applications 87. sin 12  sin  4  6   sin 4  cos 6  cos 4  sin 6

Verify the ship information:

2 3 2 1    2 2 2 2 6 2   4 4 1 6 2  4 

88.

Let  = the central angle formed by 40 nautical miles then.  

40 2  60 3

o

3960 3960  x 3960 cos  (2 / 3)  0.33715   3960  x  3960  x  cos  (2 / 3)  0.33715   3960 cos(   ) 

89.

1 or sin   1 2  7 11  , , 2 6 6

sin   

3960  3960 cos  (2 / 3)  0.33715 

So the solution set is

ft     0.06549 mi   5280  mi    346 feet Therefore, a ship that is 346 feet above sea level can see the lighthouse from a distance of 40 nautical miles. 2 3

2sin 2   sin   1  0 (2sin   1)(sin   1)  0

 0.06549 miles

86. 3 1

f (5)  f (4) 52   0.236 54 1 f (4.5)  f (4) 4.5  2   0.243 4.5  4 0.5 f (4.1)  f (4) 4.1  2   0.248 4.1  4 0.1

2sin   1  0 or sin   1  0

3960 3960  x  cos  (2 / 3)  0.33715  x

 21 19  3 15  18 3

6 1 5 1 0 Since the remainder is 0 then ( x  3) is a factor

90.

 7 11 , , 2 6 6

.

x 14  3 8 8 x  14(3) 8 x  42

x

42 21   5.25 8 4

91. Since the polynomial has 4 roots the remaining zero would be the conjugate of 3  5 which is 3 5 .

of x 4  2 x3  21x 2  19 x  3 . 92.

(e 2 x  1) 2  (2e x ) 2 (e4 x  2e2 x  1)  (4e2 x )  (e 2 x  1) 2 (e4 x  2e 2 x  1) 

851 Copyright © 2020 Pearson Education, Inc.

(e4 x  2e2 x  1) 1 (e4 x  2e2 x  1)


Chapter 8: Applications of Trigonometric Functions 93. Using the Remainder Theorem we find

sin A sin C  a c sin 40º sin 95º  5 a 5sin 40º a  3.23 sin 95º

P (2)  2(2) 4  3(2)3  (2)  7 .  65 The remainder is 65. ( x  h) 2  ( y  k ) 2  r 2

94.

sin B sin C  b c sin 45º sin 95º  5 b 5sin 45º b  3.55 sin 95º

( x  (4)) 2  ( y  0) 2  ( 5)2 ( x  4) 2  y 2  5

95. The domain is all real numbers or  ,   .

12. c  4, A  45º , B  40º C  180º  A  B  180º  45º  40º  95º

Section 8.2

sin A sin C  a c sin 45º sin 95º  a 4 4sin 45º a  2.84 sin 95º

1. sin A cos B  cos A sin B 2. sin A  A

1 2

6

or

5 6

The solution set is

   . 5 , 6 6

sin B sin C  b c sin 40º sin 95º  b 4 4sin 40º b  2.58 sin 95º

3. sin(40)  0.64 sin(80)  0.98 4. sin 1 (0.76)  49.5

13. b  3, A  50º , C  85º B  180º  A  C  180º  50º  85º  45º

5. a 6.

sin A sin B  a b sin 50º sin 45º  a 3 3sin 50º a  3.25 sin 45º

sin A sin B sin C   a b c

7. d 8. False 9. False: You must have at least one angle opposite one side.

sin C sin B  c b sin 85º sin 45º  c 3 3sin 85º c  4.23 sin 45º

10. ambiguous case 11. c  5, B  45º , C  95º A  180º  B    180º  45º  95º  40º

852

Copyright © 2020 Pearson Education, Inc.


Section 8.2: The Law of Sines 14. b  10, B  30º , C  125º A  180º  B  C  180º  30º  125º  25º

17. b  2, B  40º , C  100º A  180º  B  C  180º  40º  100º  40º

sin A sin B  a b sin 25º sin 30º  a 10 10sin 25º a  8.45 sin 30º

sin A sin B  a b sin 40º sin 40º  a 2 2sin 40º a 2 sin 40º

sin C sin B  c b sin125º sin 30º  c 10 10sin125º c  16.38 sin 30º

sin C sin B  c b sin100º sin 40º  c 2 2sin100º c  3.06 sin 40º

15. b  7, A  40º , B  45º C  180º  A  B  180º  40º  45º  95º

sin A sin B  a b sin100º sin 30º  a 6 6sin100º a  11.82 sin 30º

sin A sin B  a b sin 40º sin 45º  a 7 7 sin 40º a  6.36 sin 45º

sin C sin B  c b sin 50º sin 30º  c 6 6sin 50º c  9.19 sin 30º

sin C sin B  c b sin 95º sin 45º  c 7 7 sin 95º c  9.86 sin 45º

16. c  5, A  10º , B  5º C  180º  A  B  180º  10º  5º  165º sin A sin C  a c sin10º sin165º  a 5 5sin10º a  3.35 sin165º sin B sin C  b c sin 5º sin165º  b 5 5sin 5º b  1.68 sin165º

18. b  6, A  100º , B  30º C  180º  A  B  180º  100º  30º  50º

19. A  55º , B  25º , a  4 C  180º  A  B  180º  55º  25º  100º sin A sin B  a b sin 55º sin 25º  b 4 4sin 25º b  2.06 sin 55º sin C sin A  c a sin100º sin 55º  c 4 4sin100º c  4.81 sin 55º

853 Copyright © 2020 Pearson Education, Inc.


Chapter 8: Applications of Trigonometric Functions 20. A  50º , C  20º , a  3 B  180º  A  C  180º  50º  20º  110º

23. A  110º , C  30º , c  3 B  180º  A  C  180º  110º  30º  40º

sin A sin B  a b sin 50º sin110º  b 3 3sin110º b  3.68 sin 50º

sin A sin C  a c sin110º sin 30º  a 3 3sin110º a  5.64 sin 30º

sin C sin A  c a sin 20º sin 50º  c 3 3sin 20º c  1.34 sin 50º

sin C sin B  c b sin 30º sin 40º  b 3 3sin 40º b  3.86 sin 30º

21. B  64º , C  47º , b  6 A  180º  B  C  180º 64º 47º  69º

24. B  10º , C  100º , b  2 A  180º  B  C  180º  10º  100º  70º

sin A sin B  a b sin 69º sin 64º  a 6 6sin 69º a  6.23 sin 64º

sin A sin B  a b sin 70º sin10º  a 2 2sin 70º a  10.82 sin10º

sin C sin B  c b sin 47º sin 64º  c 6 6sin 47º c  4.88 sin 64º

sin C sin B  c b sin100º sin10º  c 2 2sin100º c  11.34 sin10º

22. A  70º , B  60º , c  4 C  180º  A  B  180º  70º  60º  50º

25. A  40º , B  40º , c  2 C  180º  A  B  180º  40º  40º  100º

sin A sin C  a c sin 70º sin 50º  a 4 4sin 70º a  4.91 sin 50º

sin A sin C  a c sin 40º sin100º  a 2 2sin 40º a  1.31 sin100º

sin B sin C  b c sin 60º sin 50º  b 4 4sin 60º b  4.52 sin 50º

sin B sin C  b c sin 40º sin100º  b 2 2sin 40º b  1.31 sin100º

854

Copyright © 2020 Pearson Education, Inc.


Section 8.2: The Law of Sines 26. B  20º , C  70º , a  1 A  180º  B  C  180º  20º 70º  90º sin A sin B  a b sin 90º sin 20º  b 1 1sin 20º b  0.34 sin 90º sin C sin A  c a sin 70º sin 90º  c 1 1sin 70º c  0.94 sin 90º

A  180º  B  C  180º  40º  28.8º  111.2º sin B sin A  b a sin 40º sin111.2º  4 a 4sin111.2º a  5.80 sin 40º One triangle: A  111.2º , C  28.8º , a  5.80

29. b  9, c  4, B  115º sin B sin C  b c sin115º sin C  9 4 4sin115º sin C   0.4028 9

27. a  3, b  2, A  50º

C  sin 1  0.4028 

sin B sin A  b a sin B sin  50º   2 3 2sin  50º   0.5107 sin B  3

C  23.8º or C =156.2º The second value is discarded because B  C  180º . A  180º  B  C  180º  115º  23.8º  41.2º

B  sin 1  0.5107  B  30.7º or B  149.3º The second value is discarded because A  B  180º . C  180º  A  B  180º  50º  30.7º  99.3º sin C sin A  c a sin 99.3º sin 50º  c 3 3sin 99.3º c  3.86 sin 50º One triangle: B  30.7º , C  99.3º , c  3.86

28. b  4, c  3, B  40º

sin B sin A  b a sin115º sin 41.2º  9 a 9sin 41.2º  6.55 a sin115º One triangle: A  41.2º , C  23.8º , a  6.55

30. a  2, c  1, A  120º sin C sin A  c a sin C sin120º  1 2 1sin120º sin C   0.4330 2

C  sin 1  0.4330 

sin B sin C  b c sin 40º sin C  4 3 3sin 40º sin C   0.4821 4

C  25.7º or C =154.3º The second value is discarded because A  C  180º . B  180º  A  C  180º  120º  25.7º  34.3º

C  sin 1  0.4821 C  28.8º or C  151.2º The second value is discarded because B  C  180º .

sin B sin A  b a sin 34.3º sin120º  2 b

855 Copyright © 2020 Pearson Education, Inc.


Chapter 8: Applications of Trigonometric Functions

b

2sin 34.3º  1.30 sin120º

sin B sin A2  b a2

One triangle: B  34.3º , C  25.7º , b  1.30

sin 40º sin 34.6º  2 a2

31. a  7, b  14, A  30º

a2 

sin B sin A  b a sin B sin 30º  14 7 14sin 30º sin B  1 7

Two triangles: A1  65.4º , C1  74.6º , a1  2.83 or A2  34.6º , C2  105.4º , a2  1.77 33. b  4, c  6, B  20º

B  sin 1 1

sin B sin C  b c sin 20º sin C  4 6 6sin 20º sin C   0.5130 4 C  sin 1  0.5130 

B  90º There is one solution. C  180º  A  B  180º  30º  90º  60º sin C sin A  c a sin 60º sin 30º  7 c 7 sin 60º  12.12 c sin 30º

C1  30.9º or C2  149.1º For both values, B  C  180º . Therefore, there are two triangles. A1  180º  B  C1  180º  20º  30.9º  129.1º

One triangle: B  90º , C  60º , c  12.12

sin B sin A1  b a1

32. b  2, c  3, B  40º sin B sin C  b c sin 40º sin C  2 3 3sin 40º sin C   0.9642 2 C  sin 1  0.9642 

sin 20º sin129.1º  4 a1

a1 

4sin129.1º  9.07 sin 20º

A2  180º  B  C2  180º  20º  149.1º  10.9º sin B sin A2  b a2

C1  74.6º or C2  105.4º For both values, B  C  180º . Therefore, there are two triangles.

sin 20º sin10.9º  4 a2

A1  180º  B  C1  180º  40º  74.6º  65.4º

a2 

sin B sin A1  b a1

4sin10.9º  2.20 sin 20º

Two triangles: A1  129.1º , C1  30.9º , a1  9.07 or A2  10.9º , C2  149.1º , a2  2.20

sin 40º sin 65.4º  2 a1

a1 

2sin 34.6º  1.77 sin 40º

2sin 65.4º  2.83 sin 40º

34. a  3, b  7, A  70º sin B sin 70º  7 3 7 sin 70º sin B   2.1926 3

A2  180º  B  C2  180º  40º  105.4º  34.6º

856

Copyright © 2020 Pearson Education, Inc.


Section 8.2: The Law of Sines

There is no angle B for which sin B  1 . Thus, there is no triangle with the given measurements. 35. a  8, c  3, C  125º sin C sin A  c a sin125º sin A  3 8 8sin125º sin A   2.1844 3 There is no angle A for which sin A  1 . Thus, there is no triangle with the given measurements.

36. b  4, c  5, B  95º sin C sin B  c b sin C sin 95º  5 4 5sin 95º sin C   1.2452 4 There is no angle C for which sin C  1 . Thus, there is no triangle with the given measurements.

37. a  7, c  3, C  12º

sin17º sin12º  3 b2

b2 

3sin17º  4.22 sin12º

Two triangles: A1  29.0º , B1  139.0º , b1  9.47 or A2  151.0º , B2  17.0º , b2  4.22 38. b  4, c  5, B  40º sin B sin C  b c sin 40º sin C  4 5 5sin 40º sin C   0.8035 4 C  sin 1  0.8035 

C1  53.5º or C2  126.5º For both values, B  C  180º . Therefore, there are two triangles. A1  180º  B  C1  180º  40º  53.5º  86.5º

sin A sin C  a c sin A sin12º  7 3 7 sin12º sin A   0.4851 3 A  sin 1  0.4851

sin B sin A1  b a1 sin 40º sin 86.5º  4 a1

a1 

A1  29.0º or A2  151.0º For both values, A  C  180º . Therefore, there are two triangles. B1  180º  A1  C  180º  29º  12º  139º sin B1 sin C  b1 c

4sin 86.5º  6.21 sin 40º

A2  180º  B  C2  180º  40º  126.5º  13.5º sin B sin A2  b a2 sin 40º sin13.5º  4 a2

a2 

sin139º sin12º  3 b1

b1 

sin B2 sin C  b2 c

4sin13.5º  1.45 sin 40º

Two triangles: A1  86.5º , C1  53.5º , a1  6.21 or A2  13.5º , C2  126.5º , a2  1.45

3sin139º  9.47 sin12º

B2  180º  A2    180º 151º 12º  17º

857 Copyright © 2020 Pearson Education, Inc.


Chapter 8: Applications of Trigonometric Functions 39. QPR  180º  25º  155º PQR  180º  155º  15º  10º Let c represent the distance from P to Q. sin15º sin10º  1000 c 1000sin15º  1490.48 feet c sin10º

sin 65.5º sin 45.3º  880 x 880sin 65.5º x  1126.57 feet sin 45.3º

h h  x 1126.57 h  1126.57  sin 69.2º  1053.15 feet The bridge is about 1053.15 feet high. sin 69.2º 

40. From Problem 39, we have that the distance from P to Q is 1490.48 feet. Let h represent the distance from Q to D. h sin 25º  1490.48 h  1490.48sin 25º  629.90 feet

43. Let A = the angle opposite the road. Then angle A  180º 50º 43º  87º . Let x equal the side opposite the 50º angle and y equal the side opposite the 43º angle. Using the Law of Sines, we can solve for x and y. sin 87º sin 50º  200 x 200sin 50º x  153.42 ft. sin 87º

Equation 1: 41. Let h = the height of the plane and x = the distance from Q to the plane (see figure).

sin 87º sin 43º  200 y 200sin 43º y  136.59 ft. sin 87º

Equation 2:

44. Let x = the distance between the runners. First we must calculate h, the distance between runner A and the helicopter. Then we will calculate the two remaining angles in the left triangle (see figure), angle B, the supplementary angle to runner B and C, the top angle. Then we will use the Law of Siner to solve for x.

PRQ  180º  50º  25º  105º sin 50º sin105º  1000 x 1000sin 50º  793.07 feet x sin105º

h

h h sin 25º   x 793.07 h   793.07  sin 25º  335 .16 feet The plane is about 335.16 feet high.

38º

C B

1700 h 1700 h  2761.26 sin 38º

Solve for h: sin 38º 

B

ft 69.2º

x

45º

x

42. Let h = the height of the bridge, x = the distance from C to point A (see figure).

A

1700

Solve for B,C: B  180º 45º  135º C  180º 38º 135º  7º

65.5º

h

sin 7º sin135º  x 2761.26 2761.26sin 7º x sin135º  475.90 feet

C ACB  180º  69.2º  65.5º  45.3º

The distance between the runners is about 475.90 feet. 858

Copyright © 2020 Pearson Education, Inc.


Section 8.2: The Law of Sines 45. Let h = the height of the tree, and let x = the distance from the first position to the center of the tree (see figure).

20º

ft

30º

Equation 2:

sin 30º sin 60º  h x h sin 60º x sin 30º sin 20º sin 70º  h x  40 h sin 70º x  40 sin 20º

h sin 60º h sin 70º   40 sin 30º sin 20º  sin 60º sin 70º  h     40  sin 30º sin 20º  40 h sin 60º sin 70º  sin 30º sin 20º  39.39 feet

The height of the tree is about 39.39 feet. 46. Let x = the length of the new ramp (see figure). x

57.7

o

28.1o

Set the two equations equal to each other and solve for h.

12º 168º

es mil 1 . 461

x

Using the Law of Sines twice yields two equations relating x and h. Equation 1:

S

29.6o

10º 60º h

79.4o

K

ft

h

O From the diagram we find that KSO  180  79.4  57.7  42.9 and OKS  180  28.1  42.9  109.0 . We can use the Law of Sines to find the distance between Oklahoma City and Kansas City, as well as the distance between Kansas City and St. Louis. sin 42.9 sin109.0  OK 461.1 461.1sin 42.9 OK   332.0 sin109.0 sin 28.1 sin109.0  KS 461.1 461.1sin 28.1 KS   229.7 sin109.0

Therefore, the total distance using the connecting flight is 332.0  229.7  561.7 miles. Using the connecting flight, Adam would receive 561.7  461.1  100.6 more frequent flyer miles. 48. The time of the actual trip was: 50  300 350 t   1.4 hour 250 250

Q

18º

Using the Law of Sines: sin162º sin12º  x 10 10sin162º x  14.86 feet sin12º The new ramp is about 14.86 feet long. 47. Note that KOS  57.7  29.6  28.1 (See figure)

 mi 10º

P

mi

R

RQ  300, PR  50, P  10º Solve the triangle: sin10º sin Q  300 50 50sin10º sin Q   0.0289414 300 Q  sin 1  0.0289414   1.65845º R  180º  10º  1.65845º  168.34155º

859 Copyright © 2020 Pearson Education, Inc.


Chapter 8: Applications of Trigonometric Functions c  300 km . Using angles A and B, we can find C  180  130.0688  49.8974  0.0338 Using the Law of Sines, we can determine b and a. sin B sin C  b c c  sin B b sin C 300  sin130.0688  sin 0.0338  389,173.319 sin A sin C  a c c  sin A a sin C 300  sin 49.8974  sin 0.0338  388,980.139 At the time of the measurements, the moon was about 389,000 km from Earth.

sin10º sin168.34155º  300 PQ 300sin168.34155º PQ   349.115 sin10º 349.115  1.396459 hour 250 The trip should have taken 1.396459 hour but, because of the incorrect course, took 1.4 hour. Thus, the trip took 0.003541 hour, or about 12.7 seconds, longer. t

49. a.

Find C ; then use the Law of Sines (see figure):

B 60º

a C

mi 55º

b

A C  180º  60º  55º  65º

sin 55º sin 65º  a 150 150sin 55º a  135.58 miles sin 65º

51. Let h = the perpendicular distance from R to PQ, (see figure). R

sin 60º sin 65º  b 150 150sin 60º b  143.33 miles sin 65º Station Able is about 143.33 miles from the ship, and Station Baker is about 135.58 miles from the ship.

b.

ft

h 60º

P ft Q sin R sin 60º  123 184.5 123sin 60º sin R   0.5774 184.5 R  sin 1  0.5774   35.3º

a 135.6   0.68 hours r 200 min 0.68 hr  60  41 minutes hr

t

RPQ  180º  60º  35.3º  84.7º

50. Consider the figure below. C

h 184.5 h  184.5sin 84.7º  183.72 feet

sin 84.7º 

b a

c B A We are given that A  49.8974 , B  180  49.9312  130.0688 , and 860

Copyright © 2020 Pearson Education, Inc.


Section 8.2: The Law of Sines 52. Let   AOP sin  sin15º  9 3 9sin15º sin    0.7765 3   sin 1  0.7765  50.94º

sin 95º sin 42.5º  DE 0.125 0.125sin 95º DE   0.184 miles sin 42.5º The approximate length of the highway is AD  DE  BE  1.295  0.184  1.165  2.64 mi.

or   180º  50.94º  129.06º A  114.06º or A  35.94º sin114.06º sin15º  a 3 3sin114.06º a  10.58 inches sin15º sin 35.94º sin15º  or a 3 3sin 35.94º a  6.80 inches sin15º The approximate distance from the piston to the center of the crankshaft is either 6.80 inches or 10.58 inches.

54. Let PR = the distance from lighthouse P to the ship, QR = the distance from lighthouse Q to the ship, and d = the distance from the ship to the shore. From the diagram, QPR  75º and PQR  55º , where point R is the ship.

P

D

E

R

a.

Use the Law of Sines: sin 50º sin 55º  3 PR 3sin 55º PR   3.21 miles sin 50º The ship is about 3.21 miles from lighthouse P.

b. Use the Law of Sines: sin 50º sin 75º  3 QR 3sin 75º QR   3.78 miles sin 50º The ship is about 3.78 miles from lighthouse Q.

0.125 mi

C

mi

d 35º

Q

53. A  180º  140º  40º ; B  180º  135º  45º ; C  180º  40º  45º  95º

A 140º

15º

mi

0.125 mi

B 135º sin 40º sin 95º  BC 2 2sin 40º BC   1.290 mi sin 95º sin 45º sin 95º  AC 2 2sin 45º AC   1.420 mi sin 95º BE  1.290  0.125  1.165 mi

c.

Use the Law of Sines: sin 90º sin 75º  3.2 d 3.2sin 75º d  3.10 miles sin 90º The ship is about 3.10 miles from the shore.

55. Determine other angles in the figure:

AD  1.420  0.125  1.295 mi For the isosceles triangle, 180º  95º CDE  CED   42.5º 2

50º 40º 65º

88 in 65º 65º

861 Copyright © 2020 Pearson Education, Inc.


Chapter 8: Applications of Trigonometric Functions ABC  180º  95º  40º  45º

Using the Law of Sines: sin(65  40) sin 25  88 L 88sin 25 L  38.5 inches sin105 The awning is about 38.5 inches long.

sin 40º sin 45º  100 x 100sin 45º x  110.01 feet sin 40º The ranger is about 110.01 feet from the tower.

56. The tower forms an angle of 95˚ with the ground. Let x be the distance from the ranger to the tower. B 45º

ft

A

95º

x

40º

C

57. Let h = height of the pyramid, and let x = distance from the edge of the pyramid to the point beneath the tip of the pyramid (see figure).

h 40.3º

46.27º

ft

ft

x

Using the Law of Sines twice yields two equations relating x and y: sin 46.27º sin(90º  46.27º ) Equation 1:  h x  100 ( x  100) sin 46.27º  h sin 43.73º x sin 46.27º 100sin 46.27º  h sin 43.73º h sin 43.73º 100sin 46.27º sin 46.27º sin 40.3º sin(90º  40.3º )  h x  200 x   h 200 sin 40.3º sin 49.7º   x

Equation 2:

x sin 40.3º 200sin 40.3º  h sin 49.7º h sin 49.7º  200sin 40.3º x sin 40.3º Set the two equations equal to each other and solve for h. h sin 43.73º 100sin 46.27º h sin 49.7º  200sin 40.3º  sin 46.27º sin 40.3º h sin 43.73º  sin 40.3º  100sin 46.27º  sin 40.3º  h sin 49.7º  sin 46.27º  200sin 40.3º  sin 46.27º h sin 43.73º  sin 40.3º  h sin 49.7º  sin 46.27º  100sin 46.27º  sin 40.3º  200sin 40.3º  sin 46.27º 100sin 46.27º  sin 40.3º  200sin 40.3º  sin 46.27º h sin 43.73º  sin 40.3º  sin 49.7º  sin 46.27º  449.36 feet The current height of the pyramid is about 449.36 feet. _________________________________________________________________________________________________

862

Copyright © 2020 Pearson Education, Inc.


Section 8.2: The Law of Sines

58. Let h = the height of the aircraft, and let x = the distance from the first sensor to a point on the ground beneath the airplane (see figure).

59. Using the Law of Sines: Mercury B

x 5º 70º 15º

ft

20º

h

Earth

Equation 2:

Sun

149,600,000

x

Using the Law of Sines twice yields two equations relating x and h. Equation 1:

15º

57,910,000 C

sin 20º sin 70º  h x h sin 70º x sin 20º

sin15º sin 75º  h x  700 h sin 75º x  700 sin15º

sin15º sin B  57,910, 000 149, 600, 000 149, 600, 000  sin15º sin B  57,910, 000 14,960  sin15º  5791  14,960  sin15º  o B  sin 1    41.96 5791   or B  138.04o

Set the equations equal to each other and solve for h.

C  180o  41.96o  15º  123.04o or

h sin 70º h sin 75º   700 sin 20º sin15º  sin 70º sin 75º  h     700  sin 20º sin15º   700 h sin 70º sin 75º  sin 20º sin15º  710.97 feet

C  180o  138.04o  15º  26.96o

The height of the aircraft is about 710.97 feet.

sin15º sin C  57,910, 000 x 57,910, 000  sin C x sin15 57,910, 000  sin123.04o  sin15º  187,564,951.5 km or 57,910, 000  sin 26.96o x sin15º  101, 439,834.5 km So the possible distances between Earth and Mercury are approximately 101,440,000 km and 187,600,000 km.

863 Copyright © 2020 Pearson Education, Inc.


Chapter 8: Applications of Trigonometric Functions 60. Using the Law of Sines:

62.

V enus B x

Earth

10 º

108,200,000  C

Sun

149,600,000

sin10º sin B  108, 200, 000 149, 600, 000 149, 600, 000  sin10º sin B  108, 200, 000 1496  sin10º  1082 1496  sin10º   o B  sin 1    13.892 1082  

or

B  166.108o

C  180  13.892  10  156.108 or C  180  166.108  10  13.892

sin10º sin C  x 108, 200, 000 108, 200, 000  sin C x sin10º 108, 200, 000  sin156.108 x sin10º  252,363, 760.4 km or 108, 200, 000  sin 3.892 x sin10º  42, 293, 457.3 km So the approximate possible distances between Earth and Venus are 42,300,000 km and 252,400,000 km.

63.

61. Since there are 36 equally spaced cars, each car 360  10 . The angle between is separated by 36 the radius and a line segment connecting 170 consecutive cars is  85 (see figure). If 2 we let r = the radius of the wheel, we get sin10 sin 85  22 r 22sin 85 r  126 sin10 The length of the diameter of the wheel is approximately d  2r  2 126   252 feet.

a  b a b sin A sin B     c c c sin C sin C sin A  sin B  sin C A B  A B  2sin  cos  2  2     C C 2sin   cos   2   2  C A B  sin    cos   2 2    2   C sin  C  cos   2 C A B  cos   cos  2 2     C C sin   cos   2   2 A B  1 cos  cos   A  B     2  2   C 1    sin   sin  C  2 2 

a  b a b sin A sin B sin A  sin B      c c c sin C sin C sin C A B  A B  2sin  cos  2  2     C sin  2    2 A B   cos  A  B  2sin    2  2      C C   2sin   cos   2 2 A B   C sin  cos    2  2 2    C C sin   cos   2 2 A B  C  sin  sin 2   2    C C sin   cos   2   2 A B  1  sin   sin  2  A  B   2      1  C   cos   cos  C  2 2 

864

Copyright © 2020 Pearson Education, Inc.


Section 8.2: The Law of Sines

64. a 

b sin A b sin 180º  ( B   )  sin B sin B b  sin( B  C ) sin B b   sin B cos C  cos B sin C  sin B b sin C  b cos C  cos B sin B  b cos C  c cos B

a b a b 65.  c ab ab c 1 sin  ( A  B )  2  1   cos  C  2   1 cos  ( A  B )  2  1   sin  C  2  1 1 sin  ( A  B )  sin  C  2   2   1 1 cos  C  cos  ( A  B)  2  2  1  1   tan  ( A  B)  tan  C  2  2  1  1   tan  ( A  B)  tan     ( A  B )   2 2      A  B  1       tan  ( A  B)  tan     2   2  2  1   A B   tan  ( A  B)  cot   2   2  1 tan  ( A  B )  2    1 tan  ( A  B )  2 

66. Since PQR and PP ' R are inscribed angles intersecting the same arc, they are congruent. Therefore, b sin B  sin  PQR   sin  PP ' R   2r sin B 1 sin A sin C    b a c 2r (from the Law of Sines).

67 – 69. Answers will vary. 70. Let x be the distance from the second surveyor to the bottom of the mountain. Then x + 900 is the distance from the first surveyor to the bottom of the mountain. Then we have the following equations: tan 35 

h h and tan 47  x 900  x

Solve for x in the second equation: h and substitute into the first equation tan 47 and solve for h: x

h

tan 35 

h tan 47 h   tan 35  900  h  tan 47  900 

630.187  0.653h  h 0.347h  630.187 h  1816

So the height of the mountain is approximately 1816  2  1818 meters . 71. 0  3 x3  4 x 2  27 x  36 Possible rational zeros: p  1,  2,  3,  6; q  1, 3; 1 2 p  1,  2,  3,  6,  ,  q 3 3

Using synthetic division: We try x  3 : 3 3

4 9

 27  36 15 36

3

5

 12

0

Since the remainder is 0, x  (3)  x  3 is a factor. The other factor is the quotient: 3x 2  5 x  12 .

Thus, 0   x  3 3 x 2  5 x  12

  x  3 3 x  4  x  3 4   The zeros are  3,  ,3 . 3  

865 Copyright © 2020 Pearson Education, Inc.


Chapter 8: Applications of Trigonometric Functions

72. d 

 x2  x1  2   y2  y1 2

 2  (1) 2   1  (7) 2

 32   6 2

y

3 and 2 contains the point (-2, -5). The equation of the line is y  y1  m( x  x1 )

78. The slope of the perpendicular line is m 

 9  36  45  3 5  6.71

3 ( x  (2)) 2 3 y  5  ( x  2) 2 3 y5  x3 2 3 y  x2 2

  7  73. tan  cos 1      8   7 Since cos    , 0     , let x   7 and 8 r  8 . Solve for y: 49  y 2  64 y 2  15 y   15

y  (5) 

Since  is in quadrant II, y  15 .

79. h( x)  5( x)3  4( x)  1

 15 15  7  y . Thus, tan cos 1          8 x  7 7  

 5 x 3  4 x  1  (5 x3  4 x  1)  h( x) nor  h( x)

1  74. y  4sin  x 2 

Therefore f ( x) is neither even nor odd.

The graph of y  sin x is stretched vertically by a factor of 4 and stretched horizontally by a factor of 2 .

80.

1 ( x  6)  4 x  0 3 1 x  2  4x  0 3 13 x2  0 3 13 x2 3 6 x 13

75. log a 100  0.2 x 76.

3 1  . 9 3

The solution set is x | x 

f (b)  f (a) (e 2(3)  3ln 3)  (e 2(1)  3ln1)  3 1 ba 6 e  3ln 3  e2   199.668 2

77. The horizontal asymptote will be constructed using the coefficients of the highest power of the variable in the numerator and denominator,

866

Copyright © 2020 Pearson Education, Inc.

6 6  or  ,   . 13  13 


Section 8.3: The Law of Cosines

Section 8.3

c 2  a 2  b 2  2ab cos C

 x2  x1    y2  y1  2

1. d 

a2  b2  c2 2ab 2.052  32  42 2.7975 cos C   2(2.05)(3) 12.3 cos C 

2

2 2   45 or 4

2. cos  

The solution set is 45 or  4  3. Cosines

 2.7975  C  cos 1    103.1º  12.3 

B  180º  A  C  180º 30º 103.1º  46.9º

11. a  2, b  3, C  95º

4. a

c 2  a 2  b 2  2ab cos C

5. b

c 2  22  32  2  2  3cos 95º  13  12 cos 95º

6. False: Use the Law of Cosines

c  13  12 cos 95º  3.75

7. False

a 2  b 2  c 2  2bc cos A

8. True

b2  c 2  a 2 2bc 32  3.752  22 19.0625  cos A  2(3)(3.75) 22.5 cos A 

9. a  2, c  4, B  45º b 2  a 2  c 2  2ac cos B b 2  22  42  2  2  4 cos 45º

 19.0625  A  cos 1    32.1º  22.5 

2  20  16  2  20  8 2

B  180º  A  C  180º 32.1º 95º  52.9º

12. a  2, c  5, B  20º

b  20  8 2  2.95

b 2  a 2  c 2  2ac cos B

a 2  b 2  c 2  2bc cos A

b 2  22  52  2  2  5cos 20º  29  20 cos 20º

2bc cos A  b 2  c 2  a 2

b2  c 2  a 2 2bc 2.952  42  22 20.7025 cos A   2(2.95)(4) 23.6 cos A 

 20.7025  A  cos 1    28.7º  23.6 

C  180º  A  B  180º 28.7º 45º  106.3º

10. b  3, c  4, A  30º a 2  b 2  c 2  2bc cos A a 2  32  42  2  3  4 cos 30º  3  25  24    2   25  12 3

a  25  12 3  2.05

b  29  20 cos 20º  3.19 a 2  b 2  c 2  2bc cos A cos A 

b2  c 2  a 2 2bc

 29  20 cos 20º   5  2  0.97681 cos A  2

2

2

2( 29  20 cos 20º )(5)

A  cos 1  0.97681  12.4º C  180º  A  B  180º 12.4º 20º  147.6º

13. a  6, b  5, c  8 a 2  b 2  c 2  2bc cos A cos A 

b 2  c 2  a 2 52  82  62 53   2bc 2(5)(8) 80

 53  A  cos 1    48.5º  80 

867 Copyright © 2020 Pearson Education, Inc.


Chapter 8: Applications of Trigonometric Functions

b 2  a 2  c 2  2ac cos B

b 2  a 2  c 2  2ac cos B

a 2  c2  b2 2ac 2 6  82  52 75  cos B  2(6)(8) 96 cos B 

cos B 

 23  B  cos 1    44.0º  32 

 75  B  cos 1    38.6º  96 

C  180º  A  B  180º 68.0º 44.0º  68.0º

17. a  3, b  4, C  40º

C  180º  A  B  180º 48.5º 38.6º  92.9º

c 2  a 2  b 2  2ab cos C

14. a  8, b  5, c  4

c 2  32  42  2  3  4 cos 40º  25  24 cos 40º

a  b  c  2bc cos A 2

2

2

c  25  24 cos 40º  2.57

23 b 2  c 2  a 2 52  4 2  82 cos A    2bc 2(5)(4) 80

a 2  b 2  c 2  2bc cos A

 23  A  cos 1     125.1º  80 

cos A 

a 2  c 2  b 2 82  42  52 55   2ac 2(8)(4) 64

B  180º  A  C  180º 48.6º 40º  91.4º

 55  B  cos 1    30.8º  64 

18. a  2, c  1, B  10º b 2  a 2  c 2  2ac cos B

C  180º  A  B  180º 125.1º 30.8º  24.1º

b 2  22  12  2  2 1cos10º  5  4 cos10º b  5  4 cos10º  1.03

15. a  9, b  6, c  4 a  b  c  2bc cos A 2

cos A 

2

2

a 2  b 2  c 2  2bc cos A

6 4 9 29 b c a   2bc 2(6)(4) 48 2

2

2

2

2

2

cos A 

 29  A  cos 1     127.2º  48 

cos B 

C  180º  A  B  180º 160.3º 10º  9.7º

9 4 6 61 a c b   2ac 2(9)(4) 72 2

2

2

2

2

19. b  2, c  4, A  75º a 2  b 2  c 2  2bc cos A

 61  B  cos    32.1º  72  1

a 2  22  42  2  2  4 cos 75º  20  16 cos 75º a  20  16 cos 75º  3.98

C  180º  A  B  180º 127.2º 32.1º  20.7º

b 2  a 2  c 2  2ac cos B

16. a  4, b  3, c  4

cos B 

a 2  b 2  c 2  2bc cos A

cos A 

1.9391 b 2  c 2  a 2 1.032  12  22   2bc 2(1.03)(1) 2.06

 1.9391  A  cos 1     160.3º  2.06 

b 2  a 2  c 2  2ac cos B 2

b 2  c 2  a 2 42  2.57 2  32 13.6049   2bc 2(4)(2.57) 20.56

 13.6049  A  cos 1    48.6º  20.56 

b 2  a 2  c 2  2ac cos B

cos B 

a 2  c 2  b 2 42  42  32 23   2ac 2(4)(4) 32

9 b 2  c 2  a 2 32  42  42   2bc 2(3)(4) 24

a 2  c 2  b 2 3.982  42  22 26.84   2ac 2(3.98)(4) 31.84

 26.84  B  cos 1    32.5º  31.84 

 9  A  cos 1    68.0º  24 

C  180º  A  B  180º 75º 32.5º  72.5º

868

Copyright © 2020 Pearson Education, Inc.


Section 8.3: The Law of Cosines 20. a  6, b  4, C  60º

a 2  b 2  c 2  2bc cos A

c 2  a 2  b 2  2ab cos C c 2  62  42  2  6  4 cos 60º  28

a 2  b 2  c 2  2bc cos A b 2  c 2  a 2 42  5.292  62 7.9841 cos A    2bc 2(4)(5.29) 42.32

 7.9841  A  cos 1    79.1º  42.32 

b  13  3.61 a 2  b 2  c 2  2bc cos A

b 2  a 2  c 2  2ac cos B b 2  52  32  2  5  3cos105º  34  30 cos105º

cos A 

C  180º  A  B  10º 56.3º 90º  33.7º

c 2  a 2  b 2  2ab cos C a 2  b 2  c 2 52  6.462  32 57.7316   2ab 2(5)(6.46) 64.6

 57.7316  C  cos    26.7º  64.6  1

A  180º  B  C  180º 105º 26.7º  48.3º

22. b  4, c  1, A  120º a 2  b 2  c 2  2bc cos A

25. a  20, b  29, c  21 a 2  b 2  c 2  2bc cos A

cos A 

b 2  c 2  a 2 292  212  202 882   2bc 2(29)(21) 1218

 882  A  cos 1    43.6º  1218  b 2  a 2  c 2  2ac cos B

a  4  1  2  4 1cos120º  21 2

a  21  4.58

cos B 

a 2  c 2  b 2 202  212  292  0 2ac 2(20)(21)

B  cos 1 0  90º

c 2  a 2  b 2  2ab cos C a 2  b 2  c 2 4.582  42  12 35.9764   2ab 2(4.58)(4) 36.64

 35.9764  C  cos    10.9º  36.64  1

C  180º  A  B  180º 43.6º 90º  46.4º

26. a  4, b  5, c  3 a 2  b 2  c 2  2bc cos A

B  180º  A  C  180º 120º 10.9º  49.1º

cos A 

b 2  c 2  a 2 52  32  42   0.6 2bc 2(5)(3)

A  cos 1 0.6  53.1º

23. a  2, b  2, C  70º c 2  a 2  b 2  2ab cos C

b 2  a 2  c 2  2ac cos B

c 2  22  22  2  2  2 cos 70º  8  8cos 70º c  8  8cos 70º  2.29

b 2  c 2  a 2 ( 13) 2  22  32   0.55470 2bc 2( 13)(2)

A  cos 1  0.55470   56.3º

b  13  12 cos105º  6.46

cos C 

24. a  3, c  2, B  90º b 2  32  22  2  3  2 cos 90º  13

21. a  5, c  3, B  105º

2

B  180º  A  C  180º 55.1º 70º  54.9º

b 2  a 2  c 2  2ac cos B

B  180º  A  C  180º 79.1º 60º  40.9º

2

b 2  c 2  a 2 22  2.292  22 5.2441   2bc 2(2)(2.29) 9.16

 5.2441  A  cos 1    55.1º  9.16 

c  28  5.29

cos C 

cos A 

cos B 

a 2  c 2  b 2 42  32  52  0 2ac 2(4)(3)

B  cos 1 0  90º C  180º  A  B  180º 53.1º 90º  36.9º

869 Copyright © 2020 Pearson Education, Inc.


Chapter 8: Applications of Trigonometric Functions 27. a  2, b  2, c  2

30. a  4, b  3, c  6

a  b  c  2bc cos A 2

cos A 

2

a 2  b 2  c 2  2bc cos A

2

b 2  c 2  a 2 22  22  22   0.5 2bc 2(2)(2)

cos A 

A  cos 1 0.5  60º

 29  A  cos 1    36.3º  36 

b 2  a 2  c 2  2ac cos B

cos B 

b 2  a 2  c 2  2ac cos B

a 2  c 2  b 2 22  22  22   0.5 2ac 2(2)(2)

cos B 

B  cos 1 0.5  60º

28. a  3, b  3, c  2

C  180o  A  B  180o  36.3o  26.4o  117.3o

a 2  b 2  c 2  2bc cos A

31. a  15, b  13, c  3

b 2  c 2  a 2 32  22  32 1   2bc 2(3)(2) 3

a 2  b 2  c 2  2bc cos A

1 A  cos 1    70.53º  3

cos A 

cos B 

3  2 3 1 a c b   2ac 2(3)(2) 3 2

2

2

2

2

b 2  a 2  c 2  2ac cos B

1 B  cos 1    70.53º 3

cos B 

C  180º  A  B  180º 70.53º 70.53º  38.9º

C  180o  A  B  180o  127.1o  43.8o  9.1o

a 2  b 2  c 2  2bc cos A

112  122  a 2 112  122  62 229   2bc 2(11)(12) 264

32. a  9, b  7, c  10 a 2  b 2  c 2  2bc cos A

 229  A  cos 1    29.84º  264 

cos A 

b 2  a 2  c 2  2ac cos B

cos B 

2

2

2

2

68 b 2  c 2  a 2 7 2  102  92   2bc 2(7)(10) 140

 68  A  cos 1    60.94º  140 

6  12  11 6  12  11 59   2ac 144 2  6 12  2

a 2  c 2  b 2 152  32  132 65   2ac 2(15)(3) 90

 65  B  cos 1    43.8º  90 

29. a  6, b  11, c  12

cos A 

47 b 2  c 2  a 2 132  32  152   2bc 2(13)(3) 78

 47  A  cos 1     127.1º  78 

b 2  a 2  c 2  2ac cos B 2

a 2  c 2  b 2 42  62  32 43   2ac 48 2  4  6 

 43  B  cos 1    26.4º  48 

C  180º  A  B  180º 60º 60º  60º

cos A 

b 2  c 2  a 2 32  62  42 29   2bc 2(3)(6) 36

2

b 2  a 2  c 2  2ac cos B

 59  o B  cos 1    65.81  144 

cos B 

C  180o  A  B  180o  29.8o  65.8o  84.4o

a 2  c 2  b 2 92  102  7 2 132   2ac 2(9)(10) 180

 132  B  cos 1    42.83º  180  C  180o  60.94o  42.83o  76.2o

870

Copyright © 2020 Pearson Education, Inc.


Section 8.3: The Law of Cosines 33. B  20 , C  75 , b  5 sin B sin C  b c b sin C 5sin 75   14.12 c sin B sin 20 A  180  20  75  85

sin A sin B  a b b sin A 5sin 85   14.56 a sin B sin 20

34. A  50 , B  55 , c  9 C  180  50  55  75 sin C sin B  c b c sin B 9sin 55   7.63 b sin C sin 75 sin C sin A  c a c sin A 9sin 50   7.14 a sin C sin 75

35. a  6 , b  8 , c  9 a 2  b 2  c 2  2bc cos A

c 2  a 2  b 2  2ab cos C a2  b2  c2 2ab 2 6  82  92 19   2  6  8  96

cos C 

C  cos 1

19  78.6 96

36. a  14 , b  7 , A  85 sin 85 sin B  14 7 sin 85 sin B   0.49810 2 B  sin 1  0.49810   29.9 or 150.1 The second value is discarded since A  B  180 . Therefore, B  29.9 . C  180  29.9  85  65.1 sin 85 sin 65.1  c 14 14  sin 65.1  12.75 c sin 85 37. B  35 , C  65 , a  15 A  180  35  65  80

b2  c2  a 2 2bc 2 8  92  62 109   2  8  9  144

sin A sin C  a c a sin C 15sin 65   13.80 c sin A sin 35

109  40.8 144

sin A sin B  a b a sin B 15sin 35   8.74 b sin A sin 80

cos A 

A  cos 1

b 2  a 2  c 2  2ac cos B a2  c2  b2 2ac 2 6  9 2  82 53   2  6  9  108

cos B 

B  cos 1

53  60.6 108

871 Copyright © 2020 Pearson Education, Inc.


Chapter 8: Applications of Trigonometric Functions 38. a  4 , c  5 , B  55 2

2

10sin10  0.578827 3 B  sin 1  0.578827   35.4 or 144.6

sin B 

2

b  a  c  2ac cos B b 2  42  52  2  4  5  cos 55

Since both values yield A  B  180 , there are two triangles. B1  35.4 and B2  144.6 C1  180  10  35.4  134.6 C2  180  10  144.6  25.4 Using the Law of Cosines we get

b 2  41  40 cos 55 b  41  40 cos 55  4.25

sin 55

sin A 4 41  40 cos 55 4sin 55 sin A   0.77109 41  40 cos 55 

c1  32  102  2  3 10  cos134.6

A  sin 1  0.77109   50.5 or 129.5 We discard the second value since A  B  180 . Therefore, A  50.5 . C  180  55  50.5  74.5

 12.29

c2  32  102  2  3 10  cos 25.4  7.40

42. A  65 , B  72 , b  7 sin 72 sin 65  a 7 7 sin 65  6.67 a sin 72

39. A  38 , B  52 , c  8 C  180  38  52  90 sin C sin B  c b c sin B 8sin 52   6.30 b sin C sin 90

C  180  65  72  43 sin 43 sin 72  c 7 7 sin 43  5.02 c sin 72

sin C sin A  c a c sin A 8sin 38   4.93 a sin C sin 90

43. b  5 , c  12 , A  60 a 2  b 2  c 2  2bc cos A

40. A  73º , C  17º , a  20 B  180º  A  C  180º  73º  17º  90º

a 2  52  122  2  5 12  cos 60  109 a  109  10.44

sin A sin B  a b sin 73º sin 90º  b 20 20sin 90º b  20.91 sin 73º

sin 60

sin B 5 109 5sin 60 sin B   0.414751 109

sin C sin A  c a sin17º sin 73º  c 20 20sin17º c  6.11 sin 73º

B  sin 1  0.414751  24.5 or 155.5

We discard the second value because it would give A  B  180 . Therefore, B  24.5 . C  180  60  24.5  95.5

41. a  3 , b  10 , A  10 sin10 sin B  3 10

872

Copyright © 2020 Pearson Education, Inc.


Section 8.3: The Law of Cosines 44. a  10 , b  10 , c  15 a 2  b 2  c 2  2bc cos A

sin A sin130º  100 227.56 100sin130º sin A  227.56  100sin130º  A  sin 1    19.7º  227.56  Since the angle of the triangle is 19.7˚, the pilot should fly at a bearing of N 19.7 E .

b2  c2  a 2 2bc 2 10  152  102 225 3    2 10 15  300 4

cos A 

A  cos 1

3  41.4 4

b 2  a 2  c 2  2ac cos B a 2  c2  b2 2ac 2 10  152  102 225 3    2 10 15  300 4

cos B 

B  cos

1 3

4

47. After 10 hours the ship will have traveled 150 nautical miles along its altered course. Use the Law of Cosines to find the distance from Barbados on the new course. a  600, b  150, C  20º c 2  a 2  b 2  2ab cos C  6002  1502  2  600 150 cos 20º

 41.4

 382,500  180, 000 cos 20º

c  382,500  180, 000 cos 20º

c 2  a 2  b 2  2ab cos C a 2  b2  c2 2ab 2 10  102  152 25 1    2 10 10  200 8

cos C 

 461.9 nautical miles

a.

 1 C  cos 1     97.2  8

 124,148.39  A  cos 1     153.6º  138,570  The captain needs to turn the ship through an angle of 180  153.6  26.4 .

45. Find the third side of the triangle using the Law of Cosines: a  150, b  35, C  110º c 2  a 2  b 2  2ab cos C  1502  352  2 150  35cos110º  23, 725  10,500 cos110º

b.

c  23, 725  10,500 cos110º  165 The ball is approximately 165 yards from the center of the green.

46. a.

The angle inside the triangle at Sarasota is 180  50  130 . Use the Law of Cosines to find the third side: a  150, b  100, C  130º c 2  a 2  b 2  2ab cos C  1502  1002  2 150 100 cos130º  32,500  30, 000 cos130º

c  32,500  30, 000 cos130º  227.56 mi

b. Use the Law of Sines to find the angle inside the triangle at Ft. Myers:

Use the Law of Cosines to find the angle opposite the side of 600: b2  c 2  a 2 cos A  2bc 2 150  461.92  6002 124,148.39  cos A  2(150)(461.9) 138,570

48. a.

461.9 nautical miles  30.8 hours are 15 knots required for the second leg of the trip. (The total time for the trip will be about 40.8 hours.) t

After 15 minutes, the plane would have flown 220(0.25) = 55 miles. Find the third side of the triangle: a  55, b  330,   10º c 2  a 2  b 2  2ab cos C

 552  3302  2  55  330 cos10º  111,925  36,300 cos10º c  111,925  36,300 cos10º  276

Find the measure of the angle opposite the 330-mile side:

873 Copyright © 2020 Pearson Education, Inc.


Chapter 8: Applications of Trigonometric Functions

The pitcher needs to turn through an angle of about 92.8˚ to face first base.

a 2  c2  b2 2ac 2 55  2762  3302 29, 699   2(55)(276) 30,360

cos B 

50. a.

Find x in the figure: 3rd

 29, 699  B  cos     168.0º  30,360  The pilot should turn through an angle of 180  168.0  12.0 .

2nd

1

 2  5716  5520    5716  2760 2  2  x  5716  2760 2  42.58 feet It is about 42.58 feet from the pitching rubber to first base.

b. Use the Pythagorean Theorem to find y in the figure: 602  602  (46  y ) 2

2nd

60 .5

ft

y

Home

45

90 ft

1st

60 ft

x 2  462  602  2(46)(60) cos 45º

Find x in the figure: 3rd

60 ft x

45

Home

b. If the total trip is to be done in 90 minutes, and 15 minutes were used already, then there are 75 minutes or 1.25 hours to complete the trip. The plane must travel 276 miles in 1.25 hours: 276 r  220.8 miles/hour 1.25 The pilot must maintain a speed of 220.8 mi/hr to complete the trip in 90 minutes. 49. a.

46

ft

y

7200  (46  y ) 2

90 ft x

46  y  7200  84.85 y  38.85 feet It is about 38.85 feet from the pitching rubber to second base.

1st

x 2  60.52  902  2(60.5)(90) cos 45º

 2  11, 760.25  10,980    2 

c.

 11, 760.25  5445 2 x  11, 760.25  5445 2  63.7 feet It is about 63.7 feet from the pitching rubber to first base. b. Use the Pythagorean Theorem to find y in the figure: 902  902  (60.5  y ) 2

16, 200  (60.5  y )

Find B in the figure by using the Law of Cosines: 462  42.582  602 329.0564 cos B   2(46)(42.58) 3917.36  329.0564  B  cos 1    85.2º  3917.36  The pitcher needs to turn through an angle of 85.2˚ to face first base.

51. a.

Find x by using the Law of Cosines:

2

60.5  y  16, 200  127.3 y  66.8 feet It is about 66.8 feet from the pitching rubber to second base.

c.

Find B in the figure by using the Law of Cosines: 60.52  63.7 2  902 382.06 cos B   2(60.5)(63.7) 7707.7

250 ft

500 ft x y

100 ft

 382.06  B  cos 1     92.8º  7707.7 

874

Copyright © 2020 Pearson Education, Inc.

80

10


Section 8.3: The Law of Cosines

x 2  5002  1002  2(500)(100) cos80º

x 2  30.12  51.42  2(30.1)(51.4) cos89.2º

 260, 000  100, 000 cos80º x  260, 000  100, 000 cos80º  492.58 ft

The guy wire needs to be about 492.58 feet long. b. Use the Pythagorean Theorem to find the value of y:

 3547.97  3094.28cos89.2º x  3547.97  3094.28cos89.2º  59.2 mm

b. The length of 59.2 mm is very close to the average male length of 59.4 mm. 54. a.

Find x by using the Law of Cosines:

y 2  1002  2502  72,500 y  269.26 feet The guy wire needs to be about 269.26 feet long. 52. Find x by using the Law of Cosines:

x y

x 2  48.82  62.22  2(48.8)(62.2) cos89º

500 ft

 6250.28  6070.72 cos89º x  6250.28  6070.72 cos89º  78.4 mm

95 85 5

x 2  5002  1002  2(500)(100) cos85º  260, 000  100, 000 cos85º x  260, 000  100, 000 cos85º  501.28 feet The guy wire needs to be about 501.28 feet long.

b. The length of 78.4 mm is less than 80 so this indicates a typical female. 55. a. Begin by finding angle NP by using the Law of Cosines:

Find y by using the Law of Cosines: y 2  5002  1002  2(500)100 cos 95º  260, 000  100, 000 cos 95º y  260, 000  100, 000 cos 95º  518.38 feet The guy wire needs to be about 518.38 feet long.

53. a.

Find x by using the Law of Cosines:

242  202  82  2(20)(8) cos NP 242  202  82  2(20)(8) cos NP 242  202  82  cos NP 2(20)(8) 0.35  cos NP

NP  110.49

Now we can find the distance from the ball to the goalie:

875 Copyright © 2020 Pearson Education, Inc.


Chapter 8: Applications of Trigonometric Functions 56. Consider the figure:

G 2  202  42  2(20)(4) cos110.49 G 2  416  160 cos110.49 G 2  470.01 G  21.73 yd

Now use the Law of Cosines to solve for the two angles,  and  . 42  202  21.732  2(20)(21.73) cos  42  202  21.732  2(20)(21.73) cos  42  202  21.732  cos  2(20)(21.73)   9.9

First find the angle at the near post by using the Law of Cosines. 302  242  82  2(24)(8) cos NP

4  24  21.73  2(24)(21.73) cos  2

2

2

302  242  82  2(24)(8) cos NP

4  24  21.73  2(24)(21.73) cos  2

2

2

302  242  82  cos NP 2(24)(8) NP  132.6

4  24  21.73  cos  2(24)(21.73)   8.3 2

2

2

Now find the angle at the ball using the Law of Cosines.

b. The distance from the ball to the goalie is 21.73 yards as calculated in part a. c.

82  242  302  2(24)(30) cos B 82  242  302  2(24)(30) cos B

The total of the angles is 9.9  8.3  18.2 . Thus equal angles 18.2 would be  9.1 . The angle of the 2 goalie needs to make with the goal on the near post side is 180  9.1  110.49  60.41 . Using the Law of Sines gives:

82  242  302  cos B 2(24)(30) B  11.32

Half of the angle (angle  ) is 5.66 . Thus angle   180  90  5.66  84.34 and angle   132.6  84.34  48.26 . We can now solve for x.

sin 60.41 sin 9.1  20 x x sin 60.41  20sin 9.1

x

x 24 x  24sin 5.66  2.37 yd

sin 5.66 

20sin 9.1  3.64 yd sin 60.41

Consider the smaller triangle:

The goalie needs to move 4 – 3.64 = 0.36 yds.

Use the Law of Cosines to solve for d:

876

Copyright © 2020 Pearson Education, Inc.


Section 8.3: The Law of Cosines

d 2  2.37 2  42  2(2.37)(4) cos 48.26

c 2  a 2  b 2  2ab cos C  102  102  2 10 10  cos  45 

d 2  8.994 d  3.0 yds

 2  100  100  200    2   

57. Find x by using the Law of Cosines:

c  100 2  2  10 2  2  7.65

x 400 ft 90 ft

 200  100 2  100 2  2

The footings should be approximately 7.65 feet apart.

45

x 2  4002  902  2(400)(90) cos  45º 

60. Use the Law of Cosines:

A

 168,100  36, 000 2

x  168,100  36, 000 2  342.33 feet It is approximately 342.33 feet from dead center to third base.

58. Find x by using the Law of Cosines:

L

r

O

B

x

L2  x 2  r 2  2 x r cos  x 2  2 x r cos   r 2  L2  0

Using the quadratic formula:

x 280 ft 60 ft

x

45

x 2  2802  602  2(280)(60) cos  45º   82, 000  16,800 2

x  82, 000  16,800 2  241.33 feet It is approximately 241.33 feet from dead center to third base.

59. Use the Law of Cosines:

10

c

x x

2r cos   4r 2 cos 2   4 r 2  L2

2

2r cos   4 r cos 2   r 2  L2 2

2 2r cos   2 r cos 2   r 2  L2 2 2

x  r cos   r 2 cos 2   L2  r 2

61. d 2  r 2  r 2  2  r  r  cos 

45o 10

x

2r cos   (2r cos  )2  4(1)(r 2  L2 ) 2(1)

 2r 2  2r 2 cos   2r 2 (1  cos  )  1  cos    4r 2   2    2r

1  cos  2

   2r sin   2     d  s  r so 2r sin    r or 2sin     . 2   2

Since sin   2sin cos and cos  1 , Then 2 2 2 877 Copyright © 2020 Pearson Education, Inc.


Chapter 8: Applications of Trigonometric Functions

sin   2sin

0   .

62. cos

2

  . Therefore, sin    for

64.

C 1  cos C  2 2  

1

a2  b2  c2 2ab 2

65 – 69. Answers will vary.

2ab  a 2  b 2  c 2 4ab

70. Domain:  x x  3

( a  b) 2  c 2  4ab 

63. sin

y-intercept: R (0) 

 a  b  c  a  b  c  2 s (2s  c  c) 4ab

4 s( s  c)  4ab

1 2 vertical asymptotes: x  1 The multiplicity of 1 is odd so the graph will approach plus or minus infinity on either side of the asymptote. Since the degree of the numerator and denominator are equal then the horizontal asymptote is: y  2 .

s( s  c) ab

C 1  cos C  2 2 

1

a 2  b2  c 2 2ab 2

2ab  a 2  b 2  c 2 4ab

(a 2  2ab  b 2  c 2 ) 4ab

2(0)  1 1 1   3 03 3

x-interecpt: x  

4ab

cos A cos B cos C   a b c b2  c 2  a 2 a 2  c 2  b2 a 2  b2  c2    2bca 2acb 2abc 2 2 2 2 2 2 2 b  c  a  a  c  b  a  b2  c2  2abc 2 2 2 a b c  2abc

 ( a  b) 2  c 2

(a  b  c)(a  b  c ) 4ab

(a  b  c)(b  c  a ) 4ab

(2s  2b)(2s  2a ) 4ab

4( s  b)( s  a) 4ab

( s  a )( s  b) ab

4 x  3x 1

71.

4ab

ln 4 x  ln 3x 1 x ln 4  ( x  1) ln 3 x ln 4  x ln 3  ln 3 x ln 4  x ln 3  ln 3 x(ln 4  ln 3)  ln 3 ln 3 x  3.819 ln 4  ln 3

The solution is

878

Copyright © 2020 Pearson Education, Inc.

ln 3   3.819 . ln 4  ln 3


Section 8.4: Area of a Triangle

5 72. cos    ; x  5, r  7 7 2 6 tan    ; x  5, y  2 6 5

1

x

x

4  3 ln 3  x 2  4  3 

76.

sin  

y 2 6 x 5 5 6 ;cot      7 12 r y 2 6

csc  

7 7 6 7 r r ;sec       12 5 y 2 6 x

 x

1 2

x

 1

x

43 x

2

2

 1

Find  :

 2

2

1

x 2

 x

2

3

4x  3  x 1 4 x  3  x  1 or 4 x  3   x  1 3x  4 5x  2 4 2 x x 3 5 The solution set is 2 4      , 5    3 ,     

4 4  The equation is: y  3sin  4 x  .



A 5y  2 x(5 y  2)  A 5 xy  2 x  A 5 xy  A  2 x A  2x  f 1 ( x ) y 5x

2

2

x 2

  2

x

1

1  4  3x   ln 3 x   2  

 2  2 

74. Swap the variables x and y and solve for y:

ln 3 x 

1  4  3x   ln 3 x   2  

77.

.

  

 x

73. The graph is a reflected sine graph with

amplitude 3 and period

2

   8 78. 96    180  15

79. The x value of the vertex would be b 2    , a  0 . This means the x value 2a 2a would be negative. The graphs is concave down and the y-intercept is 5. The only option is for the vertex to be in Quadrant II. Since the vertex is in Quadrant II and the graph is concave down, there are 2 x-intercepts.

75. F (b)  F (a )  F (2)  F (1)  23   13      3(2)  C      3(1)  C  3 3      8   1     6C 3C  3   3  8 1    6C  3C 3 3 8 1    6C  3C 3 3 2  3

Section 8.4 1 1. K  bh 2

2. False; cos 2 3. K  4.

 2

1  cos  2

1 ab sin C 2

s ( s  a)( s  b)( s  c) ;

879 Copyright © 2020 Pearson Education, Inc.

1 (a  b  c) 2


Chapter 8: Applications of Trigonometric Functions

5. K 

16. a  4, b  3, c  4

1 (3)(4) sin 90  6 2

1 1 11  a  b  c   2  4  3  4  2 2 K  s ( s  a)( s  b)( s  c)

s

6. True 7. c

 11   3  5   3            2   2  2   2 

8. c 9. a  2, c  4, B  45º K

17. a  3, b  4, C  50º

1 1 ac sin B  (2)(4) sin 45º  2.83 2 2

K

1 1 K  bc sin   (3)(4) sin 30º  3 2 2

K

1 1 ac sin B  (2)(1)sin10º  0.17 2 2

19. b  1, c  8, A  75º

11. a  5, b  7, C  94º

1 1 K  bc sin A  (1)(8) sin 75º  3.86 2 2

1 1 ab sin C  (5)(7) sin 94º  17.46 2 2

12. a  2, c  5, B  20º

20. a  6, b  4, C  60º

1 1 K  ac sin B  (2)(5) sin 20º  1.71 2 2

K

1 1 ab sin C  (6)(4) sin 60º  10.39 2 2

21. a  3, c  2, B  115º

13. a  7, b  4, c  9 1 1  a  b  c   2  7  4  9   10 2 K  s ( s  a)( s  b)( s  c)

K

s

1 1 ab sin C  (3)(4) sin 50º  4.60 2 2

18. a  2, c  1, B  10º

10. b  3, c  4, A  30º

K

495  5.56 16

1 1 ac sin B  (3)(2) sin115º  2.72 2 2

22. b  4, c  1, A  120º

10  3 6 1  180  13.42

1 1 K  bc sin A  (4)(1) sin120º  1.73 2 2

14. a  8, b  5, c  4

23. a  12, b  35, c  37

1 1 17 a  b  c   8  5  4    2 2 2 K  s ( s  a)( s  b)( s  c)

s

1 1  a  b  c   2 12  35  37   42 2 K  s ( s  a)( s  b)( s  c)

s

1071  17  1   7   9            8.18 16  2  2   2   2 

15. a  9, b  6, c  4

 42  30  7  5 

44100  210

24. a  4, b  5, c  3

1 1 19 s   a  b  c   9  6  4  2 2 2 K  s ( s  a )( s  b)( s  c)

1 1 a  b  c    4  5  3  6  2 2 K  s ( s  a)( s  b)( s  c)

s

1463  19   1   7   11          9.56 16  2  2  2  2 

 6  2 1 3  36  6

880

Copyright © 2020 Pearson Education, Inc.


Section 8.4: Area of a Triangle 25. a  4, b  4, c  4 1 1 s   a  b  c    4  4  4  6 2 2 K  s ( s  a)( s  b)( s  c)

 6  2  2  2  

48  6.93

26. a  3, b  3, c  2 1 1  a  b  c   2 3  3  2  4 2 K  s ( s  a)( s  b)( s  c)

s

 4 11 2   8  2.83

1 1  b sin C  K  bc sin A  b  sin A 2 2  sin B  b 2 sin A sin C 2sin B 1 1  c sin A  K  ac sin B   c sin B 2 2  sin C  c 2 sin A sin B  2sin C 

31. A  40º , B  20º , a  2 C  180º  A  B  180º  40º  20º  120º K

27. a  11, b  14, c  20 1 1 45  a  b  c   2 11  14  20   2 2 K  s ( s  a)( s  b)( s  c)

s

 45  23   17  5          5498.4375  74.15  2  2   2  2 

28. a  4, b  3, c  6 1 1 13 a  b  c    4  3  6   2 2 2 K  s ( s  a)( s  b)( s  c)

32. A  50º , C  20º , a  3 B  180º  A  C  180º  50º  20º  110º K

455  5.33 16

sin A sin B .  a b a sin B Solving for b, so we have that b  . Thus, sin A 1 1  a sin B  K  ab sin C  a  sin C 2 2  sin A  a 2 sin B sin C  2sin A

29. From the Law of Sines we know

sin A sin B sin C , we have that   a b c b sin C c sin A and a  . Thus, c sin B sin C

a 2 sin B sin C 32 sin110º  sin 20º   1.89 2sin A 2sin 50º

33. B  70º , C  10º , b  5 A  180º  B  C  180º  70º  10º  100º K

s

 13  5   7   1            2  2   2   2 

a 2 sin B sin C 22 sin 20º  sin120º   0.92 2sin A 2sin 40º

b 2 sin A sin C 52 sin100º  sin10º   2.27 2sin B 2sin 70º

34. A  70º , B  60º , c  4 C  180º  A  B  180º  70º  60º  50º K

c 2 sin A sin B 42 sin 70º  sin 60º   8.50 2sin C 2sin 50º

35. A  110º , C  30º , c  3 B  180º  A  C  180º  110º  30º  40º K

c 2 sin A sin B 32 sin110º  sin 40º   5.44 2sin C 2sin 30º

36. B  10º , C  100º , b  2 A  180º  B  C  180º  10º  100º  70º K

b 2 sin A sin C 22 sin 70º  sin100º   10.66 2sin B 2sin10º

30. From

37. Area of a sector 

1 2 r  where  is in radians. 2

 7  180 18 1 7  112 2 ASector   82   ft 2 18 9

  70 

881 Copyright © 2020 Pearson Education, Inc.


Chapter 8: Applications of Trigonometric Functions 42. Begin by adding a diagonal to the diagram.

1  8  8sin 70º  32sin 70º ft 2 2 112 ASegment   32sin 70º  9.03 ft 2 9 ATriangle 

38. Area of a sector 

1 2 r  where  is in radians. 2

 2  180 9 1 2 25 2 ASector   52   in 2 9 9 1 25 ATriangle   5  5sin 40º  sin 40º in 2 2 2 25 25 ASegment   sin 40º  0.69 in 2 9 2

  40 

1 (140)(86)(sin 85)  5997.1 sq. feet 2 By the law of cosines, d 2  (140) 2  (86) 2  2(140)(86)(cos85)  19600  7396  2098.71  24897.29 Aupper  

39. Find the area of the lot using Heron's Formula: a  100, b  50, c  75

d  24897.29  157.8 Using Heron’s formula for the lower triangle,

1 1 225  a  b  c   2 100  50  75   2 2 K  s ( s  a)( s  b)( s  c)

s

138  38  157.8  166.9 2 Alower   166.9(28.9)(128.9)(9.1) s

 225   25  125   75          2   2  2   2 

 5657811.7  2378.6 sq. feet Total Area  5997.1  2378.6  8376 sq. feet

52, 734,375 16  1815.46 Cost   $31815.46   $5446.38 

43. Divide home plate into a rectangle and a triangle. 12” 17”

40. Diameter of canvas is 24 feet; radius of canvas is 12 feet; angle is 260˚. 1 Area of a sector  r 2 where  is in radians. 2  13   260   180 9 1 936 2 13 ASector  12    104  326.73 ft 2 2 9 9

8.5”

ARectangle  lw  (17)(8.5)  144.5 in 2 Using Heron’s formula we get ATriangle  s ( s  a )( s  b)( s  c) 1 1  a  b  c   12  12  17   20.5 2 2 Thus, ATriangle  (20.5)(20.5  12)(20.5  12)(20.5  17) s

1 1 a  b  c    8.05  4.55  8.75   10.675  2 2

 (20.5)(8.5)(8.5)(3.5)

K  s ( s  a)( s  b)( s  c) 

8.5”

17”

41. Find the area of the lot using Heron's Formula: a  8.05, b  4.55, c  8.75 s

12”

 5183.9375

10.675  2.625 6.125 1.925

 72.0 sq. in.

 330.3754  18.18 m 2

882

Copyright © 2020 Pearson Education, Inc.


Section 8.4: Area of a Triangle

So, ATotal  ARectangle  ATriangle

Find the area of the three triangles:

 144.5  72.0 2

 216.5 in The area of home plate is about 216.5 in 2 .

44. Find the area of the shaded region by subtracting the area of the triangle from the area of the semicircle. Area of the semicircle 1 1 25 ASemicircle   r 2  (5) 2   in 2 2 2 2 The triangle is a right triangle. Find the other leg: 82  b 2  102 b 2  100  64  36 b  36  6 1 ATriangle   8  6  24 in 2 2 AShaded region  12.5  24  15.27 in 2

45. The area is the sum of the area of a triangle and a sector. 1 1 ATriangle  r  r sin(   )  r 2 sin(    ) 2 2 1 2 ASector  r  2 1 2 1 r sin       r 2 2 2 1 2  r  sin(   )    2 1  r 2  sin  cos   cos  sin     2 1 2  r  0  cos   (1) sin     2 1 2  r   sin   2

K

46. Use the Law of Cosines to find the lengths of the diagonals of the polygon. x 2  352  802  2  35  80 cos15º  7625  5600 cos15º x  7625  5600 cos15º  47.072 feet The interior angle of the third triangle is: 180  100  80 . y 2  452  202  2  45  20 cos80º

1  35  80  47.072   81.036 2 s1  a1  81.036  35  46.036

s1 

s1  b1  81.036  80  1.036 s1  c1  81.036  47.072  33.964 K1  81.036(46.036)(1.036)(33.964)  362.307 ft 2 1  40  45.961  47.072   66.5165 2 s2  a2  66.5165  40  26.5165 s2 

s2  b2  66.5165  45.961  20.5555 s2  c2  66.5165  47.072  19.4445 K 2  66.5165(26.5165)(20.5555)(19.4445)  839.6247 ft 2 1 (45  20  45.961)  55.4805 2 s3  a3  55.4805  45  10.4805

s3 

s3  b3  55.4805  20  35.4805 s3  c3  55.4805  45.961  9.5195 K 3  55.4805(10.4805)(35.4805)(9.5195)  443.1626 ft 2 The approximate area of the lake is 362.307  839.6247  443.1626  1645.1 ft 2

47. Use Heron’s formula: a  87 , b  190 , c  173 1 1 s   a  b  c    87  190  173  225 2 2 K  s  s  a  s  b  s  c 

 225  225  87  225  190  225  173  225 138  35  52   56,511, 000  7517.4 The building covers approximately 7517.4 square feet of ground area.

48. Use Heron’s formula: a  1028 , b  1046 , c  965 1 1 s   a  b  c   1028  1046  965   1519.5 2 2

 2425  1800 cos80º y  2425  1800 cos80º  45.961 feet

883 Copyright © 2020 Pearson Education, Inc.


Chapter 8: Applications of Trigonometric Functions K  s  s  a  s  b  s  c 

The area of the Bermuda Triangle is approximately 442,816 square miles.

 1519.5  491.5  473.5  554.5   442,816

49. Letting d  0 gives K  ( s  a )( s  b)( s  c)( s  0)  abc(0) cos 2   s ( s  a)( s  b)( s  c ) where s

1 1 (a  b  c  0)  (a  b  c) . 2 2

sin 75 sin 30 , where d is the distance from a vertex to the center. So  d a a sin 75 a sin(90  15) a cos15 a d    . The area of the triangle is sin 30 sin(2 15) 2sin15  cos15 2sin15

50. a. Using the Law of Sines

2

Ki 

1 1 a a 2 cos15 a 2   d  d  sin 30    2sin15  cos15   cot15, i  1, 2, . Since there are 12  2 2  2sin15  4sin15 4

a2 cot15  3a 2 cot15. The radius of the 4 a 1 inscribed circle is perpendicular to each side at its midpoint. So, tan15  2 , or a  2r tan15. Using K  bh r 2 1 1 2 gives the area of each triangle as K i  ar   2r tan(15)r  r tan15. Since there are 12 congruent triangles, the 2 2

congruent triangles, the area of the dodecagon is K  12 Ki  12 

total area of the dodecagon is K  12 K i  12r 2 tan b.

51. a.

b.

K

12

.

n  a2   cot or K  n  r 2 tan 4 n n 1 OC  AC 2 AC 1 OC    2 1 1 1  cos  sin  2 1  sin  cos  2

Area OAC 

c.

1 BD  OA 2 1  BD 1 2 BD 1   OB  2 OB

Area OAB 

1 OC  BC 2 OC BC 2 1   OB   2 OB OB

Area OCB 

d.

2 1 OB cos  sin  2 2 1  OB sin  cos  2

e.

1 OB sin(   ) 2

OC OA OC OB cos      OB cos  1 OC OC OB Area OAB  Area OAC  Area OCB 2 1 1 1 OB sin(   )  sin  cos   OB sin  cos  2 2 2

884

Copyright © 2020 Pearson Education, Inc.


Section 8.4: Area of a Triangle

cos  cos 2  sin(   )  sin  cos   sin  cos  cos  cos 2 

cos  cos  sin  cos   sin  cos  cos  cos  sin(   )  sin  cos   cos  sin  sin(   ) 

52. a.

Area of OBC 

1 sin  1 1  sin   2 2

b.

Area of OBD 

1 tan  sin  1  tan    2 2 2 cos 

c.

  Area OBD Area OBC  Area OBC 1 1 sin  sin     2 2 2 cos  sin  sin     cos   sin  sin    sin  sin  sin  cos   1  1 sin  cos 

53. The grazing area must be considered in sections. Region A1 represents three-fourth of a circle with radius 100 feet. Thus, 2 3 A1   100   7500  23,561.94 ft 2 4

A3 

1 (10)(90) sin 40.49º  292.19 ft 2 2

The angle for the sector A2 is 90º  40.49º  49.51º . A2 

2 1   90   49.51   3499.66 ft 2  2 180  

Since the cow can go in either direction around the barn, both A2 and A3 must be doubled. Thus, the total grazing area is: 23,561.94  2(3499.66)  2(292.19)  31,145 ft 2 54. We begin by dividing the grazing area into five regions: three sectors and two triangles (see figure). Region A1 is a sector representing three-fourths of a circle with radius 100 feet: 2 3 Thus, A1   100   7500  23,561.9 ft 2 . 4 To find the areas of regions A2 , A3 , A4 , and A5 , we first position the rectangular barn on a rectangular coordinate system so that the lower right corner is at the origin. The coordinates of the corners of the barn must then be O(0, 0) , P (20, 0) , Q(20,10) , and R (0,10) . T

Angles are needed to find regions A2 and A3 : (see the figure)

y

A2

C

R D B

10 ft

90 ft A

In ABC , CBA  45º , AB  10, AC  90 . Find BCA : sin CBA sin BCA  90 10 sin 45º sin BCA  90 10 10sin 45º  0.0786 sin BCA  90  10sin 45º  BCA  sin 1    4.51º 90   BAC  180º  45º  4.51º  130.49º

DAC  130.49º  90º  40.49º

S

90 ft

10 ft Q P O 20 ft A1

80 ft

A3 A4

A5

U

x

Now, region A2 is a sector of a circle with center Q(20,10) and radius 90 feet. The equation of the circle then is ( x  20) 2  ( y  10) 2  902 . Likewise, region A5 is a sector of a circle with center O(0, 0) and radius 80 feet. The equation of this circle then is x 2  y 2  802 . We use a graphing calculator to find the intersection point

885 Copyright © 2020 Pearson Education, Inc.


Chapter 8: Applications of Trigonometric Functions

S of the two sectors. Let Y1  802  x 2 and

Thus, the total grazing area is: 23,561.9  4220.5  454  288.5  2448.6

Y2  902  ( x  20)2  10 .

 30,973 ft 2



55. a.

Area: 1 1 s   a  b  c    9  10  17   18 2 2



 

The approximate coordinates are S (57.7,55.4) . Now, consider QRS (i.e. region A3 ). The “base” of this triangle is 20 feet and the “height” is approximately 55.4  10  45.4 feet (the ycoordinate of the intersection point minus the side of the barn). Thus, the area of region A3 is

K  s  s  a  s  b  s  c   18 18  9 18  10 18  17   18  9  8 1  1296  36 Since the perimeter and area are numerically equal, the given triangle is a perfect triangle.

1 A3   20  45.4  454 ft 2 . Likewise, consider 2 ORS (i.e. region A4 ). The “base” of this triangle is 10 feet and the “height” is about 57.7 feet (the x-coordinate of the intersection point). 1 Thus, A4  10  57.7  288.5 ft 2 . 2

b. Perimeter: P  a  b  c  6  25  29  60

Area: 1 1 s   a  b  c    6  25  29   30 2 2

To find the area of sectors A2 and A5 , we must determine their angles: TQS and SOU ,

K  s  s  a  s  b  s  c 

respectively. Now, we know A3  454 ft 2 . Also, we know A3  Thus,

 30  30  6  30  25  30  29 

1  90  20sin  SQR  . 2

 30  24  5 1

1  90  20sin  SQR   454 2 sin  SQR   0.5044

 3600  60 Since the perimeter and area are numerically equal, the given triangle is a perfect triangle.

SQR  0.5287 rad. Since TQR is a right angle, we have TQS 

 2

Perimeter: P  a  b  c  9  10  17  36

2K 2K 1 h a , so h1  . Similarly, h 2  a b 2 1 2K and h 3  . Thus, c a b c 1 1 1      h1 h 2 h 3 2 K 2 K 2 K

56. K 

 .5287  1.0421 rad. So,

1 2 1 r    902 1.0421  4220.5 ft 2 . 2 2 1 Similarly,  80 10sin  SOR   288.5 2 sin  SOR   0.72125 A2 

a  b  c 2s  2K 2K s  K 

SOR  0.8056 rad.

So, SOU  A5 

 2

 .8056  0.7652 rad. and

1  802  0.7652  2448.6 ft 2 2

886

Copyright © 2020 Pearson Education, Inc.


Section 8.4: Area of a Triangle

1 1 ah and K  ab sin C , which 2 2 means h  b sin C . From the Law of Sines, we sin A sin B a sin B know , so b  . Therefore,  a b sin A a sin B sin C  a sin B  h .  sin C  sin A  sin A 

57. We know K 

58. C is on the unit circle so the distance from the origin to C is 1. Therefore: 1 ac sin  2 1  1 1  sin 105  2 1  sin  45  60  2 1  sin 45 cos 60  cos 45 sin 60 2 1 2 1 2 3 1  2 6          2  2 2 2 2  2  4 4 

A

2 6 or 8

2 1 3

8

59. Using the formula from Problem 57 with OPQ A B sin 2 2 . Now, gives r  sin  POQ  c sin

 A B POQ  180     2 2 and 1 C  180  180  C   90  2 2 C C   sin  90    cos 2 2  A B c sin sin 2 2 . So, r  C cos 2

C cos C 2  60. cot  2 sin C 2

A B  sin 2 2 r ( s  a )( s  b) ab

c  sin

( s  b)( s  c) ( s  a )( s  c) bc ac  ( s  a)( s  b) r ab c ( s  b)( s  c) ( s  a )( s  c) ab  r bc ac ( s  a)( s  b) c

c ab( s  a )( s  b)( s  c) 2 r abc 2 ( s  a)( s  b)

c ( s  c) 2 c s  c   r r c c2 sc  r 

61. cot

A B C s a s b s c  cot  cot    r r r 2 2 2 s a  s b s c  r 3s  (a  b  c)  r 3s  2s  r s  r

62. K  Area POQ  Area POR  Area QOR 1 1 1  rc  rb  ra 2 2 2 1  r a  b  c 2  rs

Now, K  s ( s  a)( s  b)( s  c) , so rs  s ( s  a)( s  b)( s  c) s ( s  a)( s  b)( s  c) s ( s  a )( s  b)( s  c)  s

r

63 – 65. Answers will vary.

887 Copyright © 2020 Pearson Education, Inc.


Chapter 8: Applications of Trigonometric Functions

66. For f ( x)  3 x 2  12 x  5 , a  3, b  12, c  5. Since a  3  0, the graph opens down, so the vertex is a maximum point. The b 12 12    2. maximum occurs at x  2a 2(3)  6 The maximum value is f (2)  3(2) 2  12(2)  5  12  24  5  17 . 67.

69. csc   sin   

 ,  3

( 3, 1)

( 1, 3)

(3,  )

Number Chosen

4

2

0

4

Value of f

3 7

1 5

1 9

5 16

Conclusion

Negative

Positive

Negative

Positive

1  sin 2  sin 

cos 2  sin  cos   cos  sin   cos  cot  

x 1 0 ( x  3)( x  3) The zeros and values where the expression is undefined are x  1, x  3, and x  3 . Interval

1  sin  sin 

70. x 2  25  0 x 2  25 so x  5 or x  5 The domain is  , 5    5,   .

71. Using the Pythagorean Theorem, we have w2  l 2  122

The solution set is  x x  3 or  1  x  3  ,

144  w2  l 2

or, using interval notation,  , 3   1,3 .

l  144  w

. The perimeter is

2

P  2w  2l  2 w  2 144  w2  7 2 7 2 , ;x   ,y 68. P     3 3  3 3  2

  2 7 r       3   3 

72.

2

2

 7  2      1  9  9

73. (5 x  7)  5  0.05

2 7 y x sin t   ; cos t    3 3 r r csc t 

3 3 2 r ;   2 y 2

sec t 

3 3 7 r   7 x 7

0.05  (5 x  7)  5  0.05 0.05  5 x  12  0.05 11.95  5 x  12.05 2.39  x  2.41 The solution set is  2.39, 2.41

cot t 

x  y

x( x  7)  18

74.

2 2 14 y tan t   3    7 x 7 7  3 

f ( x)  2 x3  5 x 2  13 x  6 p must be a factor of 6: p  1,  2, 3, 6 q must be a factor of 2: q  1, 2 The possible rational zeros are: p 1 3   ,  , 1, 2, 3, 6 q 2 2

2

x  7 x  18  0 ( x  9)( x  2)  0 x  9, x  2

The solution set is 2,9 .

7 3   7   14 2 2 2 3

75.

f (1)  3(1) 4  7(1) 2  2  2 . The point on the line is (1, -2). The slope of the tangent line is

888

Copyright © 2020 Pearson Education, Inc.


Section 8.5: Simple Harmonic Motion; Damped Motion; Combining Waves

f (1)  12(1)3  14(1)  2 . The equation of the tangent line is: y  y1  m( x  x1 ) y  (2)  2( x  1) y  2  2 x  2 y  2 x

Section 8.5 2  1. 5  5 ;  4 2 2  0.105 rad/sec 60

2.   3.

2

 12



 6

 x  y  7 sin    6 

4. simple harmonic; amplitude

15. d  5sin(3t ) a. Simple harmonic b. 5 meters c.

2 seconds 3

d.

3 oscillation/second 2

16. d  4sin(2t ) a. Simple harmonic b. 4 meters

π seconds 1 oscillation/second d.  c.

17. d  8cos(2t ) a. Simple harmonic b. 8 meters c. 1 second d. 1 oscillation/second   18. d  5cos  t  2  a. Simple harmonic

5. simple harmonic; damped

b. 5 meters

6. True

c.

4 seconds

7. d   5cos  t 

d.

1 oscillation/second 4

 2  8. d   10 cos  t   3  2  9. d   7 cos  t  5 

1  19. d   9sin  t  4  a. Simple harmonic

b. 9 meters

10. d   4 cos  4 t 

c.

8 seconds

11. d   5sin   t 

d.

1 oscillation/second 8

 2  12. d  10sin  t   3  2  13. d   7 sin  t  5 

14. d   4sin  4 t 

20. d   2 cos(2t ) a. Simple harmonic b. 2 meters c.

π seconds

d.

1 oscillation/second 

889 Copyright © 2020 Pearson Education, Inc.


Chapter 8: Applications of Trigonometric Functions 25. d  t   e  t / 2 cos t

21. d  3  7 cos(3t ) a. Simple harmonic b. 7 meters c.

2 second 3

d.

3 oscillations/second 2

22. d  4  3sin(t ) a. Simple harmonic

26. d  t   e  t / 4 cos t

b. 3 meters c.

2 seconds

d.

1 oscillation/second 2

23. d  t   e  t /  cos  2t 

27.

f  x   x  cos x

28.

f  x   x  cos  2 x 

24. d  t   e  t / 2 cos  2t 

890 Copyright © 2020 Pearson Education, Inc.


Section 8.5: Simple Harmonic Motion; Damped Motion; Combining Waves

29.

f  x   x  sin x

33.

f  x   sin x  sin  2 x 

f  x   cos  2 x   cos x

30.

f  x   x  cos x

34.

31.

f  x   sin x  cos x

35. a.

f  x   sin  2 x  sin x 1 cos(2 x  x)  cos(2 x  x) 2 1   cos( x)  cos(3 x)  2 

b.

32.

f  x   sin  2 x   cos x

36. a.

F  x   sin  3x  sin x 1 cos(3x  x)  cos(3x  x) 2 1   cos(2 x)  cos(4 x)  2 

891 Copyright © 2020 Pearson Education, Inc.


Chapter 8: Applications of Trigonometric Functions b.

39. a.

H  x   2sin  3 x  cos  x  1   2    sin(3x  x )  sin(3 x  x)  2  sin(4 x)  sin(2 x)

b.

37. a.

G  x   cos  4 x  cos  2 x  1 cos(4 x  2 x)  cos(4 x  2 x) 2 1   cos(2 x)  cos(6 x)  2 

b.

40. a.

g  x   2sin  x  cos  3 x  1   2    sin( x  3 x)  sin( x  3x)  2  sin(4 x)  sin(2 x)  sin(4 x)  sin(2 x)

38. a.

h  x   cos  2 x  cos  x  1 cos(2 x  x)  cos(2 x  x) 2 1   cos( x)  cos(3 x)  2 

b.

41. a.

 2 2 (0.7) 2    d  10e0.7t / 2(25) cos     t   5  4(25) 2     42 0.49  d  10e0.7t / 50 cos  t   25 2500    

b. 



892 Copyright © 2020 Pearson Education, Inc.




Section 8.5: Simple Harmonic Motion; Damped Motion; Combining Waves

42. a.

46. a. 



  2 (0.6) 2    d  18e 0.6 t / 2(30) cos     t   2  4(30) 2     2 0.36  d  18e 0.6 t / 60 cos  t   4 3600   

  2  2 (0.7) 2  d  5e 0.7 t / 2(10) cos     t   3  4(10) 2    2   4 0.49 d  5e 0.7 t / 20 cos  t   9 400   

b. 







b.







b.

43. a.

b.

 2 2 (0.75) 2    cos     d  15e t   6  4(20) 2     2 0.5625  d  15e0.75 t / 40 cos  t   9 1600    0.75 t / 2(20)

47. a. 

Damped motion with a bob of mass 20 kg and a damping factor of 0.7 kg/sec.

b. 20 meters leftward 

c. 

44. a.

 2 2 (0.65) 2    d  16e0.65 t / 2(15) cos     t   5  4(15) 2     42 0.4225  d  16e0.65 t / 30 cos  t   25 900   



d. The displacement of the bob at the start of the second oscillation is about 18.33 meters.



b. 



e.

The displacement of the bob approaches zero, since e0.7 t / 40  0 as t   .

48. a.

Damped motion with a bob of mass 20 kg and a damping factor of 0.8 kg/sec.



45. a.



 2 2 (0.8) 2    d  5e0.8 t / 2(10) cos     t   3  4(10) 2    2  4 0.64  d  5e0.8 t / 20 cos  t   9 400   

b. 20 meters leftward 

c. 





d. The displacement of the bob at the start of the second oscillation is about 18.10 meters. 893 Copyright © 2020 Pearson Education, Inc.


Chapter 8: Applications of Trigonometric Functions 51. a.

Damped motion with a bob of mass 15 kg and a damping factor of 0.9 kg/sec.

b. 15 meters leftward e.

49. a.

Damped motion with a bob of mass 40 kg and a damping factor of 0.6 kg/sec.

d. The displacement of the bob at the start of the second oscillation is about 12.53 meters.

 





b. 30 meters leftward c.



c.

The displacement of the bob approaches zero, since e 0.8 t / 40  0 as t   .





d. The displacement of the bob at the start of the second oscillation is about 28.47 meters.

e.

The displacement of the bob approaches zero, since e0.9 t / 30  0 as t   .

52. a.

Damped motion with a bob of mass 25 kg and a damping factor of 0.8 kg/sec.

b. 10 meters leftward e.

50. a.

Damped motion with a bob of mass 35 kg and a damping factor of 0.5 kg/sec.

d. The displacement of the bob at the start of the second oscillation is 9.53 meters.

 





b. 30 meters leftward c.



c.

The displacement of the bob approaches zero, since e 0.6 t / 80  0 as t   .





e.

d. The displacement of the bob at the start of the second oscillation is about 29.16 meters.

The displacement of the bob approaches zero, since e0.8 t / 50  0 as t   .

53. The maximum displacement is the amplitude so we have a  0.80 . The frequency is given by

e.

 520 . Therefore,   1040 and the 2 motion of the diaphragm is described by the equation d  0.80 cos 1040 t  . f 

The displacement of the bob approaches zero, since e 0.5 t / 70  0 as t   .

894 Copyright © 2020 Pearson Education, Inc.


Section 8.5: Simple Harmonic Motion; Damped Motion; Combining Waves c.

54. If we consider a horizontal line through the center of the wheel as the equilibrium line, then 165 the amplitude is a   82.5 . The wheel 2 2 1 completes 1.6 so the period is  and  1.6   3.2 . We want the rider to be at the lowest position at time t  0 . Since a cos  t  peaks at

0  t  3 . To do so, we consider the graphs of y  0.4, y =e t / 3 cos  t  , and y  0.4 .

On the interval 0  t  3 , we can use the INTERSECT feature on a calculator to determine that y  e t / 3 cos  t  intersects y  0.4 when t  0.35, t  1.75 , and

t  0 if a  0 and is at its lowest if a  0 , we select a cosine model and need a  82.5 . Using the model d  a cos  t   b , we have

t  2.19, y  e t / 3 cos  t  intersects y  0.4 when t  0.67 and t  1.29 and the graph shows that 0.4  e t / 3 cos  t   0.4 when t  3 .

d  82.5cos  wt   b . When t  0 , the rider

should be 15 feet above the ground. That is, 15  82.5cos  0   b

Therefore, the voltage V is between –0.4 and 0.4 on the intervals 0.35  t  0.67 , 1.29  t  1.75 , and 2.19  t  3 .

15  82.5  b 97.5  b Therefore, the equation that describes the rider’s motion is d  97.5  82.5cos  3.2 t  .

  

 

 f   440 . Therefore,   880 and the 2 movement of the tuning fork is described by the equation d  0.01sin  880 t  .

 

 

  329.63 . Therefore,   659.26 and 2

 



V 

58. a.



Let Y1  1

1 1 sin  2   sin  4 x  . 2 4

t

0



b. On the interval 0  t  3 , the graph of V touches the graph of y  e t / 3 when t  0, 2 . The graph of V touches the graph



 

the movement of the tuning fork is described by the equation d  0.025sin  659.26 t  .



 

56. The maximum displacement is the amplitude so we have a  0.025 . The frequency is given by

57. a.



55. The maximum displacement is the amplitude so we have a  0.01 . The frequency is given by

f 

We need to solve the inequality 0.4  e t / 3 cos  t   0.4 on the interval

1

of y   e t / 3 when t  1, 3 .

895 Copyright © 2020 Pearson Education, Inc.




Chapter 8: Applications of Trigonometric Functions

b. Let Y1  

1 1 1 sin  2   sin  4 x   sin  8 x  . 2 4 8



c.

Let Y1 

1 1 sin  2   sin  4 x  2 4 1 1  sin  8 x   sin 16 x  8 16

61. The sound emitted by touching * is y  sin  2  941 t   sin  2 1209  t  .

Let Y1  sin  2  941 x   sin  2 1209  x  .



d. f  x  

59.

1 1 1 sin  2 x   sin  4 x   sin  8 x  2 4 8 1 1  sin 16 x   sin  32 x  16 32

Y1  2.35  sin x 

sin(3 x ) 3

sin(5 x ) 5

sin(3 x ) 7

62 – 63. CBL Experiments 64. a.

sin(9 x )

y3  y1  y2  3cos( 1t )  3cos( 2 t )  3  cos( 1t )  cos( 2 t ) 

9

   2     2  t   3cos  1 t  3  2 cos  1  2   2     2     2   6 cos  1 t   3cos  1 t  2   2  y3  0 if t 

60.

Y1  1.6  cos x 

1 9

cos(3 x) 

1 25

cos(5 x) 

1 49

  1  2

or t 

  1  2

. Since

   , y first equals 0 at  1  2  1  2 3  t seconds.  1  2

cos(7 x)

b.

1  t

2 2 2 2  , 2     ; 20 10 T1 19 T2

 2   19 10

896

Copyright © 2020 Pearson Education, Inc.

1 190   4.87 sec 20  19 39 190


Section 8.5: Simple Harmonic Motion; Damped Motion; Combining Waves

No, the waves are not in tune since there is an interference pattern present.

c.

1 67. y    sin x x 





65. Let Y1  

 1  y   2  sin x x 

sin x . x









 1  y   3  sin x x 



As x approaches 0,

sin x approaches 1. x



66. y  x sin x 

 



Possible observation: As x gets larger, the graph  1  of y   n  sin x gets closer to y  0 . x  68. Answers will vary.



y  x 2 sin x

69. We fill swap the x and y and solve for y. x3 y x4 y 3 x y4 x( y  4)  y  3

 



xy  4 x  y  3 xy  y  4 x  3 y ( x  1)  4 x  3 4x  3 y x 1 4x  3 1 f ( x)  x 1

y  x3 sin x 







70. log 7 x  3log 7 y  log 7 ( x  y ) 

Possible observations: The graph lies between the bounding curves y   x, y   x 2 , y   x3 , respectively, touching them at odd multiples of  . The x-intercepts of each graph are the 2 multiples of  .

log 7 x  log 7 y 3  log 7 ( x  y )  log 7 ( xy 3 )  log 7 ( x  y )   xy 3  log 7   x  y 

897

Copyright © 2020 Pearson Education, Inc.


Chapter 8: Applications of Trigonometric Functions 71. log( x  1)  log( x  2)  1

73. g ( f ( x))  g ( 3  5 x )

log  ( x  1)( x  2)   1

10  ( x  1)( x  2) x 2  x  12  0 ( x  4)( x  3)  0 So x  4 or x  3 But x  3 will not work since we cannot take the log of a negative number. The solution set is:  4 4    72. cos   , 0    . Thus, 0   , which 5 2 2 4

the Pythorean Theorem, x  5, r  7, y  2 6

lies in quadrant I. 2 x  4, r  5

csc  

4 2  y 2  52 , y  0 y 2  25  16  9, y  0 y3

So, sin  

cos

 2

sin

 2

3 3 and tan   . 5 4

1 2

4 5 

3 y  1   ( x  3) 2 3 9 y 1   x  2 2 3 11 y   x 2 2

9 5  9  3 3 10  3 10 2 10 10 10 10

1 x 2   ln x  2 x x 76. 0 2 x2

1  cos  2 1 2

4 5 

 

1 5  1  1 10  10 2 10 10 10 10

The numerator must be zero. 1 x 2   ln x  2 x  0 x x  ln x  2 x  0 x(1  2 ln x)  0 1  2 ln x  0 2 ln x  1 1 ln x  2

1  45 1  cos    tan      1  cos  1  54 2 

1 5 9 5

r 7 7 6   y 12 2 6

75. The slope of the perpendicular line would be 3 m   and a point on the line is (3, 1). 2 The normal line is: ( y  y1 )  m( x  x1 )

1  cos  2

2

 3  5 x  7  10  5 x The radicand cannot be negative so 3  5x  0 5 x  3 3 x 5 3  The domain is  ,  . 5  5 74. cos   , tan   0 (quadrant IV) 7 Since  is in quadrant IV and using

10  x 2  x  2

means

 3  5x   7

1 1  9 3

1

e 2 x

898

Copyright © 2020 Pearson Education, Inc.


Chapter 8 Review Exercises 2. adjacent = 2; hypotenuse = 4; opposite = ? (opposite) 2  22  42

Note that the x=0 answer will not work in the

  1

original equation so the solution set is e 2

(opposite) 2  16  4  12

77. The function is moved to the left 3 units and is stretched by a factor. This does not change the range so the range is [5,8] .

opposite  12  2 3 opp 2 3 3   hyp 4 2 adj 2 1   cos   hyp 4 2

sin  

78. x 2 (5 x  3)( x  2)  0 f ( x)  x 2 (5 x  3)( x  2)

3 x  0, x  , x  2 are the zeros of f . 5 Interval Number

( ,  2)

( 2, 0)

tan  

3 5

( , )

(0, )

3 5

hyp 4 4 3 2 3     opp 2 3 2 3 3 3 hyp 4  2 sec   adj 2 csc  

4

1

0.5

1

Value of f

736

8

0.3125

6

Conclusion

Positive

Negative

Negative

Positive

Chosen

cot  

 3 The solution set is  x  2  x   or, using 5  3  interval notation,  2,  .  5

sec 55º csc(90º 55º ) csc 35º   1 csc 35º csc 35º csc 35º

5. cos 2 40º  cos 2 50º  sin 2 (90º 40º )  cos 2 50º

Chapter 8 Review Exercises

 sin 2 50º  cos 2 50º 1

1. opposite = 4; adjacent = 3; hypotenuse = ? (hypotenuse) 2  42  32  25

6. c  10, B  20º

hypotenuse  25  5 opp 4  hyp 5 adj 3  cos   hyp 5 opp 4  tan   adj 3

adj 2 2 3 3     opp 2 3 2 3 3 3

3. cos 62º  sin 28º  cos 62º  cos(90º 28º )  cos 62º  cos 62º 0 4.

sin  

opp 2 3   3 adj 2

b c b sin 20º  10 b  10sin 20º  3.42 sin B 

hyp 5  opp 4 hyp 5  sec   adj 3 adj 3  cot   opp 4 csc  

a c a cos 20º  10 a  10 cos 20º  9.40 cos B 

A  90º  B  90º  20º  70º

899

Copyright © 2020 Pearson Education, Inc.


Chapter 8: Applications of Trigonometric Functions 10. a  3, c  1, C  110º

7. b  2, c  5

sin C sin A  c a sin110º sin A  1 3 3sin110º sin A   2.8191 1 No angle A exists for which sin A  1 . Thus, there is no triangle with the given measurements.

c2  a 2  b2 a 2  c 2  b 2  52  22  25  4  21 a  21  4.58 b 2  c 5 2 B  sin 1    23.6º 5

sin B 

A  90º  B  90º  23.6º  66.4º

11. a  3, c  1, B  100º b 2  a 2  c 2  2ac cos B

8. A  50º , B  30º , a  1 C  180º  A  B  180º  50º  30º  100º

 32  12  2  3 1cos100º  10  6 cos100º

sin A sin B  a b sin 50º sin 30º  b 1 1sin 30º b  0.65 sin 50º

b  10  6 cos100º  3.32 a 2  b 2  c 2  2bc cos A cos A 

b 2  c 2  a 2 3.322  12  32 3.0224   2bc 2(3.32)(1) 6.64

 3.0224  A  cos 1    62.9º  6.64 

sin C sin A  c a sin100º sin 50º  1 c 1sin100º c  1.29 sin 50º

C  180º  A  B  180º 62.9º 100º  17.1º

12. a  3, b  5, B  80º sin A sin B  a b sin A sin 80º  3 5 3sin 80º  0.5909 sin A  5  3sin 80º  A  sin 1   5   A  36.2º or A  143.8º The value 143.8º is discarded because A  B  180º . Thus, A  36.2º .

9. A  100º , c  2, a  5 sin C sin A  c a sin C sin100º  2 5 2sin100º  0.3939 sin C  5  2sin100º  C  sin 1   5   C  23.2º or C  156.8º The value 156.8º is discarded because A  C  180º . Thus,   23.2º . B  180º  A  C  180º  100º  23.2º  56.8º

C  180º  A  B  180º  36.2º  80º  63.8º sin C sin B  c b sin 63.8º sin 80º  5 c 5sin 63.8º c  4.56 sin 80º

sin B sin A  b a sin 56.8º sin100º  5 b 5sin 56.8º b  4.25 sin100º

900

Copyright © 2020 Pearson Education, Inc.


Chapter 8 Review Exercises C  180º  A  B  180º  80º  36.2º  63.8º

13. a  2, b  3, c  1 a 2  b 2  c 2  2bc cos A cos A 

sin C sin A  c a sin 63.8º sin 80º  c 5 5sin 63.8º c  4.56 sin 80º

3 1  2 b c a  1 2bc 2(3)(1) 2

2

2

2

2

2

A  cos 1 1  0º No triangle exists with an angle of 0˚.

14. a  10, b  7, c  8 17. a  1, b 

a 2  b 2  c 2  2bc cos A cos A 

b 2  c 2  a 2 7 2  82  102 13   2bc 2(7)(8) 112

a 2  b 2  c 2  2bc cos A 2

b 2  a 2  c 2  2ac cos B a 2  c 2  b 2 102  82  7 2 115   2ac 2(10)(8) 160

 115  B  cos 1    44.0º  160  C  180º  A  B  180º  83.3º  44.0º  52.7º

b 2  a 2  c 2  2ac cos B 2

c 2  a 2  b 2  2ab cos C  12  32  2 1  3cos 40º  10  6 cos 40º

cos A 

b c a 3  2.32  1 13.3824   2bc 2(3)(2.32) 13.92 2

2

18. a  3, A  10º , b  4 sin B sin A  b a sin B sin10º  4 3 4sin10º  0.2315 sin B  3  4sin10º  B  sin 1   3   B1  13.4º or B2  166.6º For both values, A  B  180º . Therefore, there are two triangles.

a 2  b 2  c 2  2bc cos A 2

2

C  180º  A  B  180º  39.6º  18.6º  121.8º

c  10  6 cos 40º  2.32 2

2

4 1 12       3 a c b    2   91 cos B   2ac 96 4 2(1)   3  91  B  cos 1    18.6º  96  2

15. a  1, b  3, C  40º

2

2

 1    4   12 2 3 2 2 2 b c a 27 cos A       2bc 37 1  4   2    2  3   27  A  cos 1    39.6º  37 

 13  A  cos    83.3º  112  1

cos B 

1 4 , c 2 3

2

2

 13.3824  A  cos 1    16.0º  13.92  B  180º  A  C  180º 16.0º 40º  124.0º

16. a  5, b  3, A  80º sin B sin A  b a sin B sin 80º  3 5 3sin 80º sin B   0.5909 5  3sin 80º  B  sin 1   5   B  36.2 or B  143.8 The value 143.8 is discarded because A  B  180º . Thus, B  36.2 .

C1  180º  A  B1  180º  10º  13.4º  156.6º

901

Copyright © 2020 Pearson Education, Inc.


Chapter 8: Applications of Trigonometric Functions 21. a  2, b  3, C  40º

sin A sin C1  a c1

K

sin10º sin156.6º  c1 3

22. b  4, c  10, A  70º

3sin156.6º c1   6.86 sin10º

1 1 K  bc sin A  (4)(10) sin 70º  18.79 2 2

C2  180º  A  B2  180º  10º  166.6º  3.4º

23. a  4, b  3, c  5

sin A sin C2  a c2

1 1 (a  b  c )  (4  3  5)  6 2 2 K  s ( s  a)( s  b)( s  c ) s

sin10º sin 3.4º  3 c2 c2 

1 1 ab sin C  (2)(3) sin 40º  1.93 2 2

3sin 3.4º  1.02 sin10º

 6  2  31  36  6

24. a  4, b  2, c  5 1 1 s  (a  b  c)  (4  2  5)  5.5 2 2 K  s ( s  a)( s  b)( s  c)

Two triangles: B1  13.4º , C1  156.6º , c1  6.86 or B2  166.6º , C2  3.4º , c2  1.02 19. a  4, A  20º , B  100º C  180º  A  B  180º  20º  100º  60º

 5.5 1.5 3.5  0.5 

 14.4375

sin A sin B  a b sin 20º sin100º  4 b 4sin100º b  11.52 sin 20º

 3.80

25. A  50º , B  30º , a  1 C  180º  A  B  180º  50º  30º  100º K

sin C sin A  c a sin 60º sin 20º  4 c 4sin 60º c  10.13 sin 20º

a 2 sin B sin C 12 sin 30º  sin100º   0.32 2sin A 2sin 50º

26. To find the area of the segment, we subtract the area of the triangle from the area of the sector. 1 1    ASector  r 2   62  50   15.708 in 2 2 2 180   1 1 A Triangle  ab sin    6  6sin 50º  13.789 in 2 2 2 ASegment  15.708  13.789  1.92 in 2

20. c  5, b  4 , A  70º a 2  b 2  c 2  2bc cos A a 2  42  52  2  4  5cos 70º  41  40 cos 70º

27. c  12 feet, a  8 feet. We need to find A and B (see figure).

a  41  40 cos 70º  5.23

c 2  a 2  b 2  2ab cos C

B

a 2  b2  c 2 cos C  2ab 5.232  42  52 18.3529   2(5.23)(4) 41.48

ft

ft

A

sin A 

 18.3529  C  cos 1    64.0º  41.48  B  180º  A  C  180º  70º  64.0º  46.0º

8 8  A  sin 1    41.8 12  12 

B  180  90  A  180  90  41.8  48.2

902

Copyright © 2020 Pearson Education, Inc.


Chapter 8 Review Exercises 31. Let  = the inclination (grade) of the trail. The “rise” of the trail is 4100  5000  900 feet (see figure).

28. Let x = the distance across the river. x tan(25)  50 x  50 tan(25)  23.32 Thus, the distance across the river is 23.32 feet.

ft 

29. Let x = the distance the boat is from shore (see figure). Note that 1 mile = 5280 feet.

900 4100 900    sin 1    12.7º  4100  The trail is inclined about 12.7º from the lake to the hotel. sin  

ft x

ft

1454 x  5280 1454 x  5280  tan(5) 1454 x  5280 tan(5)  16, 619.30  5280  11,339.30 Thus, the boat is approximately 11,339.30 feet, 11,339.30  2.15 miles, from shore. or 5280 tan(5) 

32. Let h = the height of the helicopter, x = the distance from observer A to the helicopter, and   AHB (see figure).

H x

h 40º

A B ft   180º  40º  25º  115º sin 40º sin115º  x 100 100sin 40º x  70.92 feet sin115º h h  x 70.92 h  70.92sin 25º  29.97 feet The helicopter is about 29.97 feet high. sin 25º 

40º

y

25º

30. Let x = the distance traveled by the glider between the two sightings, and let y = the distance from the stationary object to a point on the ground beneath the glider at the time of the second sighting (see figure).

10º

ft

33.   180º  120º  60º ;   180º  115º  65º ;   180º  60º  65º  55º

ft

A 120º 

x

y 200 y  200 tan(10) x y tan(40)  200 x  y  200 tan(40)

tan(10) 

D

mi 

E

0.25 mi  C 0.25 mi

B 115º sin 60º sin 55º  3 BC 3sin 60º BC   3.17 mi sin 55º

x  200 tan(40)  y  200 tan(40)  200 tan(10)  167.82  35.27  132.55 The glider traveled 132.55 feet in 1 minute, so the speed of the glider is 132.55 ft/min.

903

Copyright © 2020 Pearson Education, Inc.


Chapter 8: Applications of Trigonometric Functions

sin 65º sin 55º  AC 3 3sin 65º AC   3.32 mi sin 55º

131.8  11.32 hours . The trip takes 18 about 0.21 hour, or about 12.6 minutes longer. t  4

35. Find the lengths of the two unknown sides of the middle triangle: x 2  1002  1252  2 100 125  cos 50º

BE  3.17  0.25  2.92 mi AD  3.32  0.25  3.07 mi

 25, 625  25, 000 cos 50º

For the isosceles triangle, CDE  CED 

x  25, 625  25, 000 cos 50º  97.75 feet

180º  55º  62.5º 2

y 2  702  502  2  70  50  cos100º

sin 55º sin 62.5º  0.25 DE 0.25sin 55º  0.23 miles DE  sin 62.5º

 7400  7000 cos100º y  7400  7000 cos100º  92.82 feet

Find the areas of the three triangles: 1 K1  (100)(125) sin 50º  4787.78 ft 2 2 1 K 2  (50)(70) sin100º  1723.41 ft 2 2 1 s  (50  97.75  92.82)  120.285 2 K 3  120.285  70.285  22.535  27.465 

The length of the highway is 2.92  3.07  0.23  6.22 miles. 34. a.

After 4 hours, the sailboat would have sailed 18(4)  72 miles. Find the third side of the triangle to determine the distance from the island: mi

ST 15º

mi

B

 2287.47 ft 2 The approximate area of the lake is 4787.78 + 1723.41 + 2287.47 = 8798.67 ft 2 .

BWI c

a  72, b  200, C  15º

36. Find angle AMB and subtract from 80˚ to obtain  .

c 2  a 2  b 2  2ab cos C

 



B

b. Find the measure of the angle opposite the 200 side: a 2  c2  b2 cos B  2ac 722  131.82  2002 17, 444.76 cos B   2(72)(131.8) 18,979.2

40 4 10 AMB  tan 1 4  76.0º

tan AMB 

  80º  76.0º  4.0º The bearing is S4.0E .

 17, 444.76  B  cos 1     156.8º  18,979.2  The sailboat should turn through an angle of 180  156.8  23.2 to correct its course.

c.

80º

M

c 2  722  2002  2  72  200 cos15º  45,184  28,800 cos15º c  131.8 miles The sailboat is about 131.8 miles from the island.

37. a.

tan  c   s tan  c  0.3

c  tan 1  0.3 c  16.7

The original trip would have taken: 200 t  11.11 hours . The actual trip takes: 18

904

Copyright © 2020 Pearson Education, Inc.


Chapter 8 Test

b.

c.

x 5 5sin16.7  x sin16.7 

15

25

0

x  1.44 ft.

38. a.

tan  c  k tan  c  0.1

–15

d. The displacement of the bob at the start of the second oscillation is about 13.92 meters.

 c  tan 1  0.1  5.7 b.

x 5 5sin 5.7  x sin 5.7 

e.

x  0.50 ft.   39. d (t )   3cos  t  2 

It approaches zero, since e 0.6 t / 40  0 as t.

44. y  2sin x  cos  2 x  ,

0  x  2

40. d  6sin(2 t ) a. Simple harmonic b. 6 feet c.  seconds d.

1 oscillation/second 

41. d   2 cos( t ) a. Simple harmonic b. 2 feet c. 2 seconds d.

Chapter 8 Test

1 oscillation/second 2

42. a.

1. opposite = 3; adjacent = 6; hypotenuse = ? (hypotenuse) 2  32  62  45

 2 2 (0.75) 2    d  15e0.75 t / 2(40) cos     t   5  4(40) 2   

hypotenuse  45  3 5

 42 0.5625  d  15e0.75 t / 80 cos  t   25 6400   

b.

sin  

adj 6 2 5 2 5     hyp 3 5 5 5 5 opp 3 1   tan   adj 6 2

cos  

15

0

opp 3 1 5 5     hyp 3 5 5 5 5

25

csc   –15

Damped motion with a bob of mass 20 kg and a damping factor of 0.6 kg/sec. b. 15 meters leftward

43. a.

hyp 3 5   5 opp 3

hyp 3 5 5   adj 6 2 adj 6  2 cot   opp 3

sec  

905

Copyright © 2020 Pearson Education, Inc.


Chapter 8: Applications of Trigonometric Functions 2. sin 40  cos 50  sin 40  sin  90  50   sin 40  sin 40 0

Use the law of sines to find B . a b  sin A sin B 8 5  sin 52.41 sin B 5 sin B   sin 52.41  8 sin B  0.495 Since b is not the longest side of the triangle, we have that B  90 . Therefore B  sin 1 (0.495)  29.67

3. Use the law of cosines to find a: a 2  b 2  c 2  2bc cos A  (17) 2  (19) 2  2(17)(19) cos 52  289  361  646(0.616)  252.064 a  252.064  15.88

C  180  A  B  180  52.41  29.67  97.92

Use the law of sines to find B . a b  sin A sin B 15.88 17  sin 52 sin B 17 sin B  (sin 52)  0.8436 15.88

6. A  55º , C  20º , a  4 B  180º  A  C  180º  55º  20º  105º Use the law of sines to find b.

Since b is not the longest side of the triangle, we know that B  90 . Therefore, B  sin 1 (0.8436)  57.5

sin A sin B  a b sin 55º sin105º  b 4 4sin105º b  4.72 sin 55º

C  180  A  B  180  52  57.5  70.5

4. Use the Law of Sines to find b :

Use the law of sines to find c. sin C sin A  c a sin 20º sin 55º  c 4 4sin 20º c  1.67 sin 55º

a b  sin A sin B 12 b  sin 41 sin 22 12  sin 22 b  6.85 sin 41

C  180  A  B  180  41  22  117 Use the Law of Sines to find c:

7. a  3, b  7, A  40º Use the law of sines to find B sin B sin A  b a sin B sin 40º  7 3 7 sin 40º  1.4998 sin B  3 There is no angle B for which sin B  1 . Therefore, there is no triangle with the given measurements.

a c  sin A sin C 12 c  sin 41 sin117 12  sin117 c  16.30 sin 41

5. Use the law of cosines to find A . a 2  b 2  c 2  2bc cos A 82  (5) 2  (10) 2  2(5)(10) cos A 64  25  100  100 cos A 100 cos   61 cos A  0.61 A  cos 1 (0.61)  52.41

906

Copyright © 2020 Pearson Education, Inc.


Chapter 8 Test 8. a  8, b  4, C  70º

12. Let A = the angle of depression from the balloon to the airport.

c  a  b  2ab cos C 2

2

2

mi A

c 2  82  42  2  8  4 cos 70º  80  64 cos 70º

AP

MSFC

c  80  64 cos 70º  7.62

ft

Note that 5 miles = 26,400 feet.

a 2  b 2  c 2  2bc cos A

600 1  26400 44  1  A  tan 1    1.3  44 

tan A 

b 2  c 2  a 2 42  7.622  82 10.0644 cos A    2bc 2(4)(7.62) 60.96  10.0644  A  cos 1    80.5º  60.96 

The angle of depression from the balloon to the airport is about 1.3 .

B  180º  A  C  180º 80.5º 70º  29.5º

13. We can find the area of the shaded region by subtracting the area of the triangle from the area of the semicircle. Since triangle ABC is a right triangle, we can use the Pythagorean Theorem to find the length of the third side. a 2  b2  c 2

9. a  8, b  4, C  70º 1 ab sin C 2 1  (8)(4) sin 70  15.04 square units 2

K

10. a  8, b  5, c  10

a 2  6 2  82

1 1 s   a  b  c    8  5  10   11.5 2 2 K  s ( s  a)( s  b)( s  c)

a 2  64  36  28 a  28  2 7 The area of the triangle is 1 1 A  bh  2 7  6   6 7 square cm . 2 2 The area of the semicircle is 2 1 1 A   r 2    4   8 square cm . 2 2 Therefore, the area of the shaded region is 8  6 7  9.26 square centimeters .

 11.5(11.5  8)(11.5  5)(11.5  10)

 

 11.5(3.5)(6.5)(1.5)  392.4375  19.81 square units

11. Let  = the angle formed by the ground and the ladder.

14. Begin by adding a diagonal to the diagram. ft

5

ft

72

A

Then sin A 

11 d

10.5 12

7

8

1 (5)(11)(sin 72)  26.15 sq. units 2 By the law of cosines, d 2  (5) 2  (11) 2  2(5)(11)(cos 72)  25  121  110(0.309)  112.008

 10.5  A  sin 1    61.0  12  The angle formed by the ladder and ground is about 61.0 .

Aupper  

d  112.008  10.58

907

Copyright © 2020 Pearson Education, Inc.


Chapter 8: Applications of Trigonometric Functions

Using Heron’s formula for the lower triangle, 7  8  10.58 s  12.79 2 Alower   12.79(5.79)(4.79)(2.21)

17. Using Heron’s formula: 5 x  6 x  7 x 18 x   9x s 2 2 K  9 x(9 x  5 x)(9 x  6 x)(9 x  7 x)  9 x  4 x  3x  2 x

 783.9293  28.00 sq. units Total Area  26.15  28.00  54.15 sq. units

 216 x 4

 6 6 x2

15. Use the law of cosines to find c: c 2  a 2  b 2  2ab cos C

Thus, (6 6) x 2  54 6

 (4.2) 2  (3.5) 2  2(4.2)(3.5) cos 32  17.64  12.25  29.4(0.848)  4.9588

x2  9 x3 The sides are 15, 18, and 21.

c  4.9588  2.23 Madison will have to swim about 2.23 miles.

18. Since we ignore all resistive forces, this is simple harmonic motion. Since the rest position  t  0 

is the vertical position  d  0  , the equation will

16. Since OAB is isosceles, we know that 180  40 A  B   70 2 Then, sin A sin 40  OB AB sin 70 sin 40  AB 5 5sin 40  3.420 AB  sin 70 Now, AB is the diameter of the semicircle, so the 3.420  1.710 . radius is 2 1 1 2 ASemicircle   r 2   1.710   4.593 sq. units 2 2

have the form d  a sin(t ) . 42

5 feet a

Now, the period is 6 seconds, so 2 6

 

 2 6

radians/sec 3 From the diagram we see a  sin 42 5 a  5  sin 42 

1 ab sin(O) 2 1  (5)(5)(sin 40)  8.035 sq. units 2

ATriangle 

 t  Thus, d (t )  5  sin 42   sin  or 3    t  d  3.346  sin   .  3 

ATotal  ASemicircle  ATriangle  4.593  8.035  12.63 sq. units

908

Copyright © 2020 Pearson Education, Inc.


Chapter 8 Cumulative Review

Chapter 8 Cumulative Review

4. y  3sin  x 

3x 2  1  4 x

Amplitude:

A  3 3

Period:

T

Phase Shift:

 0  0  

1.

3x 2  4 x  1  0  3x  1 x  1  0 1 x  or x  1 3

2

2

1  The solution set is  ,1 . 3 

2. Center (5, 1) ; Radius 3

 x  h 2   y  k 2  r 2  x  (5) 2   y  12  32  x  52   y  12  9

3.

    5. y  2 cos  2 x     2 cos  2  x    2    Amplitude: A   2  2 2  2

Period:

T

Phase Shift:

    2

f  x   x 2  3x  4 f will be defined provided g  x   x 2  3x  4  0 . x 2  3x  4  0  x  4  x  1  0

6. tan   2,

x  4, x  1 are the zeros.

Test Number

  x  1

2

6

Positive

1  x  4

0

4

Negative

4 x

5

6

Positive

g ( x ) Pos./Neg.

Interval

3    2 , so  lies in quadrant IV. 2 

5

a.

The domain of f  x   x 2  3x  4 is

 x x  1 or x  4  . b.

3    2 , so sin   0 . 2 2 5 2 5   sin    5 5 5 3    2 , so cos   0 2 1 5 5   cos   5 5 5

909

Copyright © 2020 Pearson Education, Inc.


Chapter 8: Applications of Trigonometric Functions

c.

sin(2 )  2sin  cos 

7. a.

y  ex , 0  x  4 

 2 5  5   2     5   5   20 4   25 5

d.

cos(2 )  cos 2   sin 2  2

 5  2 5        5   5   5 20   25 25 15 3   25 5

e.

2

b.

y  sin x , 0  x  4

5 5 5 2

5 5 10

c.

2

y  e x sin x , 0  x  4  



d.

y  2 x  sin x , 0  x  4 

3    2 2 3 1    4 2 1 1  Since  lies in Quadrant II, cos     0 . 2 2 

1



3    2 2 3 1    4 2 1 1  Since  lies in Quadrant II, sin     0 . 2 2 

1  cos  1  cos       2 2 

8. a.

yx

5 5

5 5 5  2 



5 1 1  cos  1  5 sin      2 2 2 

f.

5 5 10

910

Copyright © 2020 Pearson Education, Inc.


Chapter 8 Cumulative Review

b.

y  x2

c.

y x

d.

e.

f.

y  ln x

g.

y  sin x

h.

y  cos x

i.

y  tan x

y  x3

y  ex

911

Copyright © 2020 Pearson Education, Inc.


Chapter 8: Applications of Trigonometric Functions

Using the Bounds on Zeros Theorem: 10 8  f ( x)  3  x5  x 4  7 x3  14 x 2  12 x   3 3  10 8 a4   , a3  7, a2  14, a1  12, a0   3 3

9. a  20, c  15, C  40o sin C sin A  c a o sin 40 sin A  15 20 20sin 40o sin A  15  20sin 40o  A  sin 1   15   o A1  58.99 or A2  121.01o For both values, A  C  180º . Therefore, there are two triangles. o

o

o

o

 8 Max 1,   12  3   Max 1, 39  39



sin 40o sin 81.01o  b1 15 sin 40o

o

o

o

o



From the graph it appears that there are x1 intercepts at ,1, and 2. 3 Using synthetic division with 1: 1 3  10 21  42 36  8 3 7 14  28 8

 7.59

3

Two triangles: A1  59.0o , B1  81.0o , b1  23.05 or





o

sin 40o sin18.99o  b2 15 sin 40o



 23.05

sin C sin B2  c b2

b2 

  



B2  180  A2  C  180  40  121.01  18.99

15sin18.99o

3

The smaller of the two numbers is 15. Thus, every zero of f lies between –15 and 15. Graphing using the bounds: (Second graph has a better window.)

o

sin C sin B1  c b1

15sin 81.01o

10

 8 10  1  Max   , 12 ,  14 , 7 ,   3 3    1  14  15

B1  180  A1  C  180  40  58.99  81.01

b1 

 14  7  

 7 14  28

8

0

Since the remainder is 0, x  1 is a factor. The other factor is the quotient: 3x 4  7 x3  14 x 2  28 x  8 .

A2  121.0o , B2  19.0o , b2  7.59 .

10. 3x5  10 x 4  21x3  42 x 2  36 x  8  0 Let f  x   3 x5  10 x 4  21x3  42 x 2  36 x  8  0

Using synthetic division with 2 on the quotient: 2 3  7 14  28 8 6 2 24  8

f ( x ) has at most 5 real zeros.

Possible rational zeros:

3 1

p  1, 2, 4, 8; q  1,  2, 3; p 1 1 2 4 8  1,  ,  , 2,  , 4,  , 8,  q 2 3 3 3 3

12

4

0

Since the remainder is 0, x  2 is a factor. The other factor is the quotient: 3x3  x 2  12 x  4 . Using synthetic division with

912

Copyright © 2020 Pearson Education, Inc.

1 on the quotient: 3


Chapter 8 Cumulative Review

The vertical asymptotes are the zeros of q( x) :

1 3  1 12 4 3 1 0 4 3

x 2  2 x  15  0  x  5 x  3  0

0 12 0

x5  0 or x  3  0 x  5 x3

1 Since the remainder is 0, x  is a factor. The 3 other factor is the quotient:

Since n  m , the line y  2 is the horizontal asymptote.  26  R ( x) intersects y  2 at  , 2  , since:  11  2 2x  7x  4 2 x 2  2 x  15 2 x 2  7 x  4  2 x 2  2 x  15

3x 2  12  3 x 2  4  3  x  2i  x  2i  .

Factoring, 1  f ( x)  3( x  1)  x  2   x    x  2i  x  2i  3 

The real zeros are 1,2, and

1 . The imaginary 3

2

2 x  7 x  4  2 x  4 x  30 11x  26 26 x 11

zeros are 2i and 2i. Therefore, over the complex numbers, the equation 3x5  10 x 4  21x3  42 x 2  36 x  8  0 has solution 1   set 2i, 2i, , 1, 2  . 3   11. R ( x) 

2 x2  7 x  4 2

x  2 x  15

Graphing utility: 

(2 x  1)( x  4) ( x  3)( x  5)



p( x)  2 x 2  7 x  4; q ( x)  x 2  2 x  15; n  2; m  2



Interval

Test Value number of f

Location Point

 , 5

6

 12.22

Above x-axis

 6,12.22 

 5, 0.5

1

0.3125

Below x-axis

 1, 0.3125

 0.5,3

0

 0.27

Above x-axis

 0, 0.27 

 3, 4 

3.5

 0.94

Below x-axis

 3.5, 0.94 

 4,  

5

0.55

Above x-axis

 5, 0.55

R is in lowest terms.

The x-intercepts are the zeros of p ( x) : 2 x2  7 x  4  0  2 x  1 x  4   0 2x 1  0 or x  4  0 1 x x4 2 The y-intercept is 2  02  7  0  4  4 4 R (0)  2   . 0  2  0  15  15 15 2( x) 2  7( x)  4 2

2 x2  7 x  4

( x)  2( x)  15 x 2  2 x  15 is neither R( x) nor  R( x) , so there is no symmetry.

Graph by hand:

Domain:  x x   5, x  3

R( x) 

2

which

913

Copyright © 2020 Pearson Education, Inc.


Chapter 8: Applications of Trigonometric Functions

c.

f  x  g  x 4 x  4  x 2  5 x  24 0  x 2  x  28 x

1  12  4(1)(29) 2(1)

1  117 1  3 13  2 2  1  3 13 1  3 13  , . 2 2  

The solution set is  3x  12

12.

d.

 

ln 3x  ln 12 

4x  5  0 4 x  5 5 x 4

x ln  3  ln 12  x

ln 12  ln  3

 2.26

5   5  The solution set is  x x    or   ,   . 4  4   

The solution set is {2.26}. 13. log3  x  8   log3 x  2

2

x  5 x  24  0  x  8  x  3  0

 x  8  x   32 x2  8x  9

x  8, x  3 are the zeros.

x2  8x  9  0  x  9  x  1  0 x  9 or x  1 x  9 is extraneous because it makes the original logarithms undefined. The solution set is 1 .

Interval Test number 9  , 8 

 8,3  3,  

f.

f  x  0 4x  5  0 4 x  5 5 x 4

0

24

Negative

4

12

Positive

y  f ( x)  4 x  5 The graph of f is a line with slope 4 and yintercept 5.

 5 The solution set is   .  4

b.

g ( x) Pos./Neg. 12 Positive

The solution set is  x  8  x  3  or  8,3 .

f ( x)  4 x  5 ; g ( x)  x 2  5 x  24

a.

g  x  0

e.

log 3  x  8  x    2

14.

f  x  0

f  x   13 4 x  5  13 4x  8 x2 The solution set is 2 .

914

Copyright © 2020 Pearson Education, Inc.


Chapter 8 Projects

g.

y  g ( x)  x 2  5 x  24 The graph of g is a parabola with y-intercept 24 and x-intercepts 8 and 3. The xcoordinate of the vertex is b 5 5 x     2.5 . 2a 2 1 2

sin b 

CP , OC 2  CP 2  OP 2 OP C

The y-coordinate of the vertex is  b  y  f     f (2.5)  2a   (2.5) 2  5(2.5)  24  30.25

a

Q

O

sin a 

The vertex is  2.5, 30.25  . 2.

CQ , OC 2  CQ 2  OQ 2 OQ

For OPQ , we have that ( PQ ) 2  (OP ) 2  (OQ ) 2  2(OQ )(OP ) cos c

For CPQ , we have that ( PQ) 2  (CQ) 2  (CP ) 2  2(CQ)(CP ) cos C

3.

0  (OP ) 2  (OQ) 2  2(OQ)(OP ) cos c

 (CQ) 2  (CP) 2  2(CQ )(CP ) cos C  2(OQ)(OP ) cos c  (OQ) 2  (CQ) 2  (OP) 2

 (CQ) 2  2(CQ)(CP) cos C

4.

From part a: (OC ) 2  (OQ) 2  (CQ) 2

Chapter 8 Projects

(OC ) 2  (OP ) 2  (CP ) 2

Thus, 2(OQ)(OP) cos c  OQ 2  CQ 2  OP 2

Project I C

1.

 CQ 2  2(CQ)(CP) cos C 2(OQ)(OP) cos c  OC 2  OC 2  2(CQ)(CP) cos C

a

O

c

a b

B

Q

b c

A

5.

P

cos c 

2OC 2 2(CQ)(CP ) cos C  2(OQ)(OP ) 2(OQ)(OP )

cos c 

(CQ)(CP ) cos C OC 2  (OQ)(OP ) (OQ)(OP )

Triangles OCP and OCQ are plane right triangles. C

O

b

OC 2 (CQ)(CP) cos C  (OQ)(OP ) (OQ)(OP ) OC OC CQ CP      cos C OQ OP OQ OP  cos a cos b  sin a sin b cos C

cos c 

P

915

Copyright © 2020 Pearson Education, Inc.


Chapter 8: Applications of Trigonometric Functions Project II 1.

4.

Lewiston and Clarkston

Putting this on a circle of radius 1 in order to apply the Law of Cosines from A:

45 N 42.5

45

x 282  sin 48.5 sin 89.5 282sin 48.5 x  211.2 sin 89.5

0

111.5W

y 282  sin 42 sin 89.5 282sin 42 y  188.8 sin 89.5

113.5W O  113.5  111.3  2.2

cos c  cos 45 cos 42.5  sin 45 sin 42.5 cos 2.2 cos c  0.99870 c  2.93

Using a plane triangle, they traveled 211.2  188.7  399.9 miles.

   s  rc  3960  2.93    202.5 180  

The mileage by using spherical triangles and that by using a plane triangle are relatively close. The total mileage is basically the same in each case. This is because compared to the surface of the Earth, these three towns are very close to each other and the surface can be approximated very closely by a plane.

It is 202.5 miles from Great Falls to Lemhi. N

43.5

45

117.0W

46.5 N 45 N

c 43.5

Lemhi

45

Project III

0

1.

113.5W O  117.0  113.5  3.5

cos c  cos 45 cos 43.5  sin 45 sin 43.5 cos 3.5 cos c  0.99875 c  2.87

f1  sin( t ) 1 f3  sin(3 t ) 3 1 f5  sin(5 t ) 5 1 f 7  sin(7 t ) 7 1 f9  sin(9 t ) 9

   s  rc  3960  2.87    198.4 180   It is about 198.4 miles from Lemhi to Lewiston and Clarkston. 3.

x

  180  48.5  42  89.5

47.5 N

c

Lewiston/Clarkton

48.5

Great Falls

Great Falls

42.5

Lemhi

2.

42

y

N 45

282 miles

They traveled 202.5  198.4 miles just to go from Great Falls to Lewiston and Clarkston.

916

Copyright © 2020 Pearson Education, Inc.


Chapter 8 Projects

2.

f1  sin( t )

11.67 184.5  11.67    sin 1    4  184.5 

d. sin  

1 f1  f3  sin( t )  sin(3 t ) 3 1 1 f1  f3  f5  sin( t )  sin(3 t )  sin(5 t ) 3 5 f1  f3  f5  f 7 1 1 1  sin( t )  sin(3 t )  sin(5 t )  sin(7 t ) 3 5 7 f1  f3  f5  f 7  f9 1 1  sin( t )  sin(3 t )  sin(5 t ) 3 5 1 1  sin(7 t )  sin(9 t ) 7 9

e.

f. The angles are relatively small and for part (d), where 4 was acquired, it was arrived at by rounding. g. Answers will vary.

3. If one graphs each of these functions, one observes that with each iteration, the function becomes more square. 4.

h  sin 86 184.5 h  184.5sin 86  184.1 ft

Project V a. Answers will vary.

1 f1  f13  f3  sin( t )  cos(2 t )  sin(3 t ) 2 By adding in the cosine term, the curve does not become as flat. The waves at the “tops” and the “bottoms” become deeper.

Mountain

b.

 50 yd

Project IV Rock

a.

6

184 .5

ft

 70 yd 84

40

13 ft

Palm Tree

b. Let h = the height of the tower with a lean of 6 .

184.5

ft

6

h 84

sin  sin 40  70 50 70sin 40 sin    0.8999 50  70sin 40    sin 1    64 50  

h  sin 84 184.5 h  184.5sin 84  183.5 feet

13 ft

c.   180  64  116

2 ft 3

1 84.5

ft

c. 13 ft  16 in  11 ft 8 in  11

11 _23 ft

917

Copyright © 2020 Pearson Education, Inc.


Chapter 8: Applications of Trigonometric Functions Mountain 50 yd

d.

Rock 

116 x

70 yd 40

d L  sin(180   ) sin(    ) L sin(180   ) d sin(    ) L sin(180) cos(  )  cos180 sin(  ) d sin(    ) d

Palm Tree

d

The third angle (i.e., at the rock) is 24 . x 70  sin 24 sin116 70sin 24 x  32 sin116 The treasure is about 32 yards away from the palm tree.

L  (0) cos(  )  (1)   sin(  )   sin(    )

L sin(  ) sin(    ) y l y  l sin 

sin  

y

L sin  sin  sin(    )

Project VI highest point

a.

home plate

b. d

fence

ce stan l di a m 22.5 in i l =m

10

410’

147.5 32.5

x

d 410  sin147.5 sin 22.5 410sin147.5 d sin 22.5 d  575.7 feet

c.

y = height

nc e ista d l  im a  min l d=    x L

l 410  sin10 sin 22.5 410sin10 l sin 22.5 l  186.0 feet

y = height

d L  sin(180   ) sin(    ) L sin(180   ) d sin(    ) l L  sin  sin(    ) L sin  l sin(    )

918

Copyright © 2020 Pearson Education, Inc.


Chapter 7 Analytic Trigonometry Section 7.1 1. Domain:  x x is any real number ; Range:  y  1  y  1 2.

3,  

3. True

whose sine equals 1 .   sin   1,     2 2    2  sin 1  1   2 14. cos 1  1

3 1 4. 1; ;  ; 1 2 2

We are finding the angle  , 0     , whose cosine equals 1 . cos   1, 0    

5. x  sin y

 

6. 0  x  

cos

7. True

1

 1  

15. tan 1 0

8. True

We are finding the angle  , 

9. True

     , whose 2 2

tangent equals 0.

10. d

tan   0,

11. sin 1 0 We are finding the angle  , 

     , whose 2 2

sine equals 0. sin   0,

 0

 0

    2 2

1

tan 0  0

16. tan 1  1

    2 2

We are finding the angle  ,  tangent equals 1 .

sin 1 0  0

12. cos 1 1 We are finding the angle  , 0     , whose cosine equals 1. cos   1, 0      0 cos 1 1  0 13. sin 1  1

We are finding the angle  , 

tan   1,  4  tan 1 (1)   4

 

    , 2 2

685 Copyright © 2020 Pearson Education, Inc.

    2 2

     , whose 2 2


Chapter 7: Analytic Trigonometry

17. sin 1

 3 20. sin 1     2 

2 2

We are finding the angle  ,  2 . 2 2 sin   , 2   4 2  sin 1  2 4

     , whose 2 2

We are finding the angle  , 

sine equals

18. tan 1

sine equals  

    2 2

We are finding the angle  ,  tangent equals 3 , 3   6

tan  

tan 1

3 , 2    3   3  sin 1      3 2  

    2 2

 3 21. cos 1     2  We are finding the angle  , 0     , whose

     , whose 2 2

3 . 2 3 cos    , 2 5  6   3 5 cos 1     2   6

3 . 3 

3 . 2

sin   

3 3

     , whose 2 2

cosine equals      2 2

3   3 6

19. tan 1 3

0   

 2 22. sin 1     2 

  We are finding the angle  ,     , whose 2 2 tangent equals 3 .   tan   3,     2 2   3  1 tan 3 3

We are finding the angle  ,  sine equals 

2 . 2

2 , 2    4  2  sin 1      4  2  sin   

686 Copyright © 2020 Pearson Education, Inc.

     , whose 2 2

    2 2


Section 7.1: The Inverse Sine, Cosine, and Tangent Functions

 2 23. cos 1    2  We are finding the angle  , 0     , whose 2 . 2 2 cos   , 2   4  2  cos 1     4  2 

1 . 2 1 sin   , 2   6 1  sin 1    2 6

sine equals

cosine equals

0  

27. sin 1 0.1  0.10 28. cos 1 0.6  0.93 29. tan 1 5  1.37

 1 24. cos 1     2 We are finding the angle  , 0     , whose 1 cosine equals  . 2 1 cos    , 0     2 2  3  1  2 cos 1      2 3

30. tan 1 0.2  0.20

7  0.51 8

32. sin 1

1  0.13 8

34. tan 1 ( 3)  1.25 35. sin 1 ( 0.12)   0.12

We are finding the angle  , 

     , whose 2 2

36. cos 1 ( 0.44)  2.03

3 . 3

3 , 3    6   3  tan 1      3 6   tan   

31. cos 1

33. tan 1 ( 0.4)   0.38

 3 25. tan 1     3 

tangent equals 

    2 2

    2 2

2  1.08 3

38. sin 1

3  0.35 5

4   39. cos 1  cos  follows the form of the equation 5   4 f 1 f  x   cos 1 cos  x   x . Since is 5

in the interval 0,   , we can apply the equation

1 26. sin 1   2

We are finding the angle  , 

37. cos 1

4  4  . directly and get cos 1  cos  5  5 

     , whose 2 2

687 Copyright © 2020 Pearson Education, Inc.


Chapter 7: Analytic Trigonometry

    40. sin 1  sin     follows the form of the   10  

so sine is negative. The reference angle of

equation f 1 f  x   sin 1 sin  x   x . Since

and we want  to be in quadrant IV so sine 8 will still be negative. Thus, we have 9     sin    . Since  is in the interval sin 8 8 8  

    is in the interval   ,  , we can apply 10  2 2 the equation directly and get      sin 1  sin       . 10   10   

     2 , 2  , we can apply the equation above and   9       1  get sin 1  sin   sin  sin       . 8 8 8     

  3   41. tan 1  tan     follows the form of the  8  

  5   44. cos 1  cos     follows the form of the  3   

equation f 1 f  x   tan 1 tan  x   x . Since 3    is in the interval   ,  , we can apply 8  2 2 the equation directly and get  3  3   . tan 1  tan       8 8   

5  5  is in cos     cos  . The angle  3  3  5  quadrant I so the reference angle of  is . 3 3    5  Thus, we have cos   is   cos . Since 3 3 3  

in the interval 0,   , we can apply the equation above and get     5   1  cos 1  cos      cos  cos   . 3 3 3    

  9   43. sin 1  sin    follows the form of the   8 

  4   45. tan 1  tan    follows the form of the  5   

equation f 1 f  x   sin 1 sin  x   x , but we cannot use the formula directly since

9 is not 8

equation f 1 f  x   tan 1 tan  x   x , but

   in the interval   ,  . We need to find an  2 2    angle  in the interval   ,  for which  2 2 sin

5 is 3

angle  in the interval  0,   for which

3    is in the interval   ,  , we can apply 7  2 2 the equation directly and get   3   3 . sin 1  sin       7 7   

not in the interval  0,   . We need to find an

we cannot use the formula directly since 

equation f 1 f  x   sin 1 sin  x   x . Since

equation f 1 f  x   cos 1 cos  x   x , but

  3   42. sin 1  sin     follows the form of the   7 

9 is 8

we cannot use the formula directly since

4 is 5

   not in the interval   ,  . We need to find an  2 2    angle  in the interval   ,  for which  2 2

9 9  sin  . The angle is in quadrant III 8 8

688

Copyright © 2020 Pearson Education, Inc.


Section 7.1: The Inverse Sine, Cosine, and Tangent Functions

4  4  is in quadrant tan    tan  . The angle 5 5   II so tangent is negative. The reference angle of 4  is and we want  to be in quadrant IV 5 5 so tangent will still be negative. Thus, we have   4    tan    tan    . Since  is in the 5  5   5

not in the interval 0,   . We need to find an angle  in the interval 0,   for which    cos     cos  . The angle  is in  4 4

quadrant IV so the reference angle of 

2 is not 3

cannot use the formula directly since 

3 is not 4

2  2  is in tan     tan  . The angle  3 3   quadrant III so tangent is positive. The reference 2  is and we want  to be in angle of  3 3 quadrant I so tangent will still be positive. Thus,   2    is in the we have tan     tan   . Since 3  3  3

 3  sin     sin  . The reference angle of  4 3  is and we want  to be in quadrant IV 4 4 so sine will still be negative. Thus, we have  3      sin     sin    . Since    is in the  4  4  4 

   interval   ,  , we can apply the equation  2 2 above and get   3        sin 1  sin      sin 1  sin       . 4   4    4

   interval   ,  , we can apply the equation  2 2

above and get tan 1  tan   2    tan 1  tan     . 

3

3

    47. cos 1  cos     follows the form of the  4 

    49. tan 1  tan    follows the form of the  2 

equation f 1 f  x   cos 1 cos  x   x , but we cannot use the formula directly since 

 4

.

equation f 1 f  x   sin 1 sin  x   x , but we

   in the interval   ,  . We need to find an  2 2    angle  in the interval   ,  for which  2 2

 3  

4

  3   48. sin 1  sin     follows the form of the   4 

   in the interval   ,  . We need to find an angle  2 2     in the interval   ,  for which  2 2

  

above and get        cos 1  cos      cos 1  cos   .    4 4 4  

equation f 1 f  x   tan 1 tan  x   x . but we cannot use the formula directly since 

is

in the interval 0,   , we can apply the equation

  2   46. tan 1  tan     follows the form of the  3   

4

    Thus, we have cos     cos . Since is  4 4 4

   interval   ,  , we can apply the equation  2 2 above and get    4      1  tan 1  tan     tan  tan       . 5  5   5   

equation f 1 f  x   tan 1 tan  x   x . We    need to find an angle  in the interval   ,   2 2

is

689

Copyright © 2020 Pearson Education, Inc.


Chapter 7: Analytic Trigonometry

real number, we can apply the equation directly

 for which tan    tan  . In this case,  2

     tan   is undefined so tan 1  tan    would  2  2 

 f  x    tan  tan  x   x . We

56. Since there is no angle  such that sin   2 , the quantity sin 1  2  is not defined. Thus,

58. Since there is no angle  such that sin   1.5 , the quantity sin 1  1.5  is not defined. Thus,

sin sin 1  1.5  is not defined.

59.

f  x   5sin x  2 y  5sin x  2 x  5sin y  2

5sin y  x  2 x2 sin y  5

x2  f 1  x  5 The domain of f  x  equals the range of y  sin 1

2 Since  is in the interval  1,1 , we can 3 apply the equation directly and get  2  2  cos  cos 1       . 3 3   

f 1 ( x ) and is 

 2

x

   or   ,  in 2  2 2

interval notation. To find the domain of f 1  x  we note that the argument of the inverse sine x2 and that it must lie in the function is 5

53. tan tan 1 4 follows the form of the equation

and get tan tan 1    .

equation f f 1  x   cos cos 1  x   x .

real number, we can apply the equation directly

  2  52. cos  cos 1     follows the form of the  3  

f f 1  x   tan tan 1  x   x . Since  is a

1 1  directly and get sin  sin 1   . 4 4 

57. tan tan 1  follows the form of the equation

sin sin 1  2  is not defined.

1  51. sin  sin 1  follows the form of the equation 4  1 f f 1  x   sin sin 1  x   x . Since is in 4 the interval  1,1 , we can apply the equation

cos cos 1 1.2 is not defined.

    undefined so tan 1  tan    would also be  2  undefined.

55. Since there is no angle  such that cos   1.2 , the quantity cos 1 1.2 is not defined. Thus,

3  is . Thus, we have 2 2 3      tan     tan   . In this case, tan   is  2  2  2

1

and get tan tan 1  2   2 .

angle of 

real number, we can apply the equation directly

   need to find an angle  in the interval   ,   2 2  3  for which tan     tan  . The reference  2

f f 1  x   tan tan 1  x   x . Since 2 is a

  3   50. tan 1  tan     follows the form of the  2   equation f

54. tan tan 1  2  follows the form of the equation

also be undefined.

1

and get tan tan 1 4  4 .

f f 1  x   tan tan 1  x   x . Since 4 is a

690

Copyright © 2020 Pearson Education, Inc.


Section 7.1: The Inverse Sine, Cosine, and Tangent Functions

interval  1,1 . That is,

f 1 ( x ) and is 0  x 

x2 1 5 5  x  2  5 3  x  7 The domain of f 1  x  is  x | 3  x  7 , or 1 

2  x  2 The domain of f 1  x  is  x | 2  x  2 , or  2, 2  in interval notation. Recall that the domain of a function equals the range of its inverse and the range of a function equals the domain of its inverse. Thus, the range of f is  2, 2  .

y  2 tan x  3 x  2 tan y  3 2 tan y  x  3 x3 tan y  2 x3 y  tan 1  f 1  x  2 The domain of f  x  equals the range of f 1 ( x)

 2

x

 2

62.

f  x   3sin  2 x  y  3sin  2 x 

x  3sin  2 y 

   or   ,  in interval  2 2

sin  2 y  

notation. To find the domain of f 1  x  we note

x 3

2 y  sin 1

that the argument of the inverse tangent function can be any real number. Thus, the domain of f 1  x  is all real numbers, or  ,   in

x 3

1 x y  sin 1  f 1  x  2 3 The domain of f  x  equals the range of

interval notation. Recall that the domain of a function equals the range of its inverse and the range of a function equals the domain of its inverse. Thus, the range of f is  ,   . 61.

  , or  0,  in interval  3

that the argument of the inverse cosine function x and that it must lie in the interval  1,1 . is 2 That is, x 1    1 2 2  x  2

f  x   2 tan x  3

and is 

3

notation. To find the domain of f 1  x  we note

 3, 7  in interval notation. Recall that the domain of a function equals the range of its inverse and the range of a function equals the domain of its inverse. Thus, the range of f is also  3, 7  .

60.

f 1 ( x) and is 

 4

x

 4

   , or   ,  in  4 4

interval notation. To find the domain of f 1  x 

f  x   2 cos  3 x 

we note that the argument of the inverse sine x and that it must lie in the interval function is 3

y  2 cos  3 x  x  2 cos  3 y 

 1,1 . That is, x 1   1 3 3  x  3 The domain of f 1  x  is  x | 3  x  3 , or

x cos  3 y    2

 x 3 y  cos 1     2 1  x y  cos 1     f 1  x  3  2

 3,3 in interval notation. Recall that the domain of a function equals the range of its inverse and the range of a function equals the

The domain of f  x  equals the range of 691

Copyright © 2020 Pearson Education, Inc.


Chapter 7: Analytic Trigonometry

The domain of f 1  x  is  x | 0  x  2 , or

domain of its inverse. Thus, the range of f is  3,3 . 63.

0, 2  in interval notation. Recall that the domain of a function equals the range of its inverse and the range of a function equals the domain of its inverse. Thus, the range of f is 0, 2  .

f  x    tan  x  1  3 y   tan  x  1  3 x   tan  y  1  3 tan  y  1   x  3

65.

y  1  tan 1   x  3

y  3sin  2 x  1

  x  3  1  tan  x  3  f 1  x 

y  1  tan

1

x  3sin  2 y  1

1

sin  2 y  1 

1

(note here we used the fact that y  tan x is an odd function). The domain of f  x  equals the range of f 1 ( x) and is 1 

 2

x

 2

x 3

x 3 x  2 y  sin 1    1 3

2 y  1  sin 1

 1 , or

1  x 1 y  sin 1     f 1  x  2 3 2

     1  ,  1 in interval notation. To find the 2 2  

domain of f 1  x  we note that the argument of

The domain of f  x  equals the range of

the inverse tangent function can be any real number. Thus, the domain of f 1  x  is all real

1  1  f 1 ( x ) and is    x    , or 2 4 2 4  1  1    2  4 ,  2  4  in interval notation. To find  

numbers, or  ,   in interval notation. Recall

64.

f  x   3sin  2 x  1

that the domain of a function equals the range of its inverse and the range of a function equals the domain of its inverse. Thus, the range of f is  ,   .

the domain of f 1  x  we note that the argument

f  x   cos  x  2   1

lie in the interval  1,1 . That is,

of the inverse sine function is

x and that it must 3

x 1 3 3  x  3 The domain of f 1  x  is  x | 3  x  3 , or

y  cos  x  2   1

1 

x  cos  y  2   1 cos  y  2   x  1 y  2  cos 1  x  1

 3,3 in interval notation. Recall that the domain of a function equals the range of its inverse and the range of a function equals the domain of its inverse. Thus, the range of f is  3,3 .

y  cos 1  x  1  2  f 1 ( x)

The domain of f  x  equals the range of f 1 ( x) and is 2  x    2 , or  2,   2  in

interval notation. To find the domain of f 1  x  we note that the argument of the inverse cosine function is x  1 and that it must lie in the interval  1,1 . That is, 1  x  1  1 0 x2

692

Copyright © 2020 Pearson Education, Inc.


Section 7.1: The Inverse Sine, Cosine, and Tangent Functions

66.

f  x   2 cos  3 x  2 

68. 2 cos 1 x  

y  2 cos  3x  2 

cos 1 x 

x  2 cos  3 y  2  cos  3 y  2  

69. 3cos 1  2 x   2 cos 1  2 x  

1 x 2 y  cos 1     f 1  x  3 2 3

2 3

1 2 1 x 4

2x  

2 2   x    , or 3 3 3

 1 The solution set is   .  4

 2 2    3 ,  3  3  in interval notation. To find the  

domain of f 1  x  we note that the argument of

70. 6sin 1  3x   

x and that it must 2 lie in the interval  1,1 . That is,

the inverse cosine function is

sin 1  3x   

6   3 x  sin     6 1 3x   2 1 x 6  1 The solution set is   .  6

x 1 2 2  x  2 The domain of f 1  x  is  x | 2  x  2 , or 1 

 2, 2  in interval notation. Recall that the domain of a function equals the range of its inverse and the range of a function equals the domain of its inverse. Thus, the range of f is  2, 2  .

71. 3 tan 1 x   tan 1 x 

67. 4sin 1 x  

 3

x  tan

 3

 3

The solution set is

4

2 4 2  2  The solution set is   .  2  x  sin

2 3

2 x  cos

The domain of f  x  equals the range of

sin x 

0 2 The solution set is {0} .

x 3 y  2  cos 1   2 x 3 y  cos 1    2 2

1

2

x  cos

x 2

f 1 ( x) and is 

 3 .

72. 4 tan 1 x   tan 1 x  

 4

  x  tan     1  4 The solution set is {1} .

693

Copyright © 2020 Pearson Education, Inc.


Chapter 7: Analytic Trigonometry 77. Note that   2118  21.3 .

73. 4 cos 1 x  2  2 cos 1 x 2 cos 1 x  2  0

a.

2 cos 1 x  2 cos 1 x   x  cos   1 The solution set is {1} .

b.

74. 5sin 1 x  2  2sin 1 x  3 3sin 1 x   sin 1 x  

c.

 3

3   x  sin      2  3  3  The solution set is  .  2 

b.

c.

a.

  cos 1  tan  23.5  180  tan  29.75  180     D  24  1      13.92 hours or 13 hours, 55 minutes

b.

  cos 1  tan  0  180  tan  29.75  180     D  24  1      12 hours

c.

  cos 1  tan  22.8  180  tan  29.75  180     D  24  1      13.85 hours or 13 hours, 51 minutes

79. a.

76. Note that   4045  40.75 . a.

b.

c.

  cos 1  tan  0  180  tan  21.3  180    D  24  1        12 hours   cos 1  tan  22.8  180  tan  21.3  180    D  24  1        13.26 hours or 13 hours, 15 minutes

78. Note that   6110  61.167 .

75. Note that   2945  29.75 . a.

  cos 1  tan  23.5  180  tan  21.3  180    D  24  1        13.30 hours or 13 hours, 18 minutes

b.

  cos 1  tan  23.5  180  tan  40.75  180    D  24  1        14.93 hours or 14 hours, 56 minutes

c.

  cos 1  tan  0  180  tan  40.75  180    D  24  1        12 hours

  cos 1  tan  23.5  180  tan  61.167  180    D  24  1        18.96 hours or 18 hours, 57 minutes   cos 1  tan  0  180  tan  61.167  180    D  24   1        12 hours   cos 1  tan  22.8  180  tan  61.167  180    D  24  1        18.64 hours or 18 hours, 38 minutes

  cos 1  tan  23.5  180  tan  0  180    D  24  1        12 hours   cos 1  tan  0  180  tan  0  180    D  24  1        12 hours   cos 1  tan  22.8  180  tan  0  180    D  24  1        12 hours

d. There are approximately 12 hours of daylight every day at the equator.

  cos 1  tan  22.8  180  tan  40.75  180    D  24  1        14.83 hours or 14 hours, 50 minutes

80. Note that   6630  66.5 . a.

  cos 1  tan  23.5  180  tan  66.5  180    D  24   1        24 hours

694

Copyright © 2020 Pearson Education, Inc.


Section 7.1: The Inverse Sine, Cosine, and Tangent Functions

b.

  cos 1  tan  0  180  tan  66.5  180    D  24   1        12 hours

 34  6 82.   x   tan 1    tan 1   . x   x  34   6 a.  10   tan 1    tan 1    42.6  10   10  If you sit 10 feet from the screen, then the viewing angle is about 42.6 .  34   6  15   tan 1    tan 1    44.4  15   15  If you sit 15 feet from the screen, then the viewing angle is about 44.4 .  34   6    20   tan 1    tan 1    42.8 20    20  If you sit 20 feet from the screen, then the viewing angle is about 42.8 .

 cos  tan  22.8  180  tan  66.5  180     D  24  1        22.02 hours or 22 hours, 1 minute 1

c.

Therefore, a person atop Cadillac Mountain will see the first rays of sunlight about 3.35 minutes sooner than a person standing below at sea level.

d. The amount of daylight at this location on the winter solstice is 24  24  0 hours. That is, on the winter solstice, there is no daylight. In general, for a location at 6630 ' north latitude, it ranges from around-the-clock daylight to no daylight at all. 81. Let point C represent the point on the Earth’s axis at the same latitude as Cadillac Mountain, and arrange the figure so that segment CQ lies along the x-axis (see figure).

b. Let r = the row that result in the largest viewing angle. Looking ahead to part (c), we see that the maximum viewing angle occurs when the distance from the screen is about 14.3 feet. Thus, 5  3(r  1)  14.3 5  3r  3  14.3 3r  12.3 r  4.1 Sitting in the 4th row should provide the largest viewing angle.

y

P

D (x,y )

s

C

 2710   mi

x 2710 Q (2 71 0 ,0 )

c.

At the latitude of Cadillac Mountain, the effective radius of the earth is 2710 miles. If point D(x, y) represents the peak of Cadillac Mountain, then the length of segment PD is 1 mile 1530 ft   0.29 mile . Therefore, the 5280 feet point D( x, y )  (2710, y ) lies on a circle with radius r  2710.29 miles. We now have x 2710 cos    r 2710.29  2710    cos 1    0.01463 radians  2710.29  Finally, s  r  2710(0.01463)  39.64 miles ,

Set the graphing calculator in degree mode  34  6 and let Y1  tan 1    tan 1   : x   x 90

0 Use MAXIMUM: 90

2 (2710) 39.64  , so 24 t 24(39.64) t  0.05587 hours  3.35 minutes 2 (2710)



and

0

695

Copyright © 2020 Pearson Education, Inc.




Chapter 7: Analytic Trigonometry 86. Here we have 1  2118' , 1  15750 ' ,  2  3747 ' , and  2  14458' . Converting minutes to degrees gives 1  21.3 ,

The maximum viewing angle will occur when x  14.3 feet. a  0 ; b  3 ; The area is: tan 1 b  tan 1 a  tan 1 3  tan 1 0

83. a.

 

b.

a

 3

 3

      144   . Substituting these values, and 1  157 56  ,  2  37 47  , and 60

0

r  3960 , into our equation gives d  5518 miles. The distance from Honolulu to Melbourne is about 5518 miles. (remember that S and W angles are negative)

square units

3 ; b  1 ; The area is: 3

87. Let 1  sin 1 x and  2  cos 1

 3 tan b  tan a  tan 1  tan     3  1

1

1

1

cos 1  1  x 2 and tan  2 

    4  6 5  square units 12 

1  x2 

b.

 3

 3

x2 

7 16 7 7  16 4

0

x

square units

 7 7  The solution set is  ,   4 4 

88. Let 1  cos 1 tan 1 

square units 3 85. Here we have 1  4150 ' , 1  8737 ' ,  2  2118' , and  2  15750 ' . Converting minutes to degrees gives

       157   . Substituting these values, and

1  41 56  , 1  87 37  ,  2  21.3 , and 60 2

3 4

16 x 2  7

1 1 a   ; b  ; The area is: 2 2 1  1 sin 1 b  sin 1 a  sin 1    sin 1    2  2       6  6 

3 . So, 4

9 16 16  16 x 2  9

3 ; The area is: 2  3 1 sin 1 b  sin 1 a  sin 1    sin 0 2  

4 . Then 5

1  x2 

a  0; b 

84. a.

29 30

2

5 6

r  3960 , into our equation gives d  4250 miles. The distance from Chicago to Honolulu is about 4250 miles. (remember that S and W angles are negative)

696

Copyright © 2020 Pearson Education, Inc.

x and  2  tan 1 u . Then r

r 2  x2 u and sin  2  . So, x u2 1


Section 7.1: The Inverse Sine, Cosine, and Tangent Functions

r 2  x2 u  x u2 1

92.

r x u  2 2 x u 1 2

2

2

r u r x u x  x u

2

2

2

2

2

2

2

2

2

2

2

2

2

 12

 ( x 2  3)

 32

1

 x(2 x  1) 2

 (2 x  1)

 12

( x 2  3)

 32

 ( x 2  3)  x(2 x  1) 

 (2 x  1)

 12

( x 2  3)

 32

(  x 2  x  3)

e4 x  3 2

2

r 2  x2  u 2 2 x2  r 2

2

ln e 4 x  ln 3

4 x  ln 3

r 2  x2  u2 2 x2  r 2 u

( x 2  3)

93. e 4 x  7  10

r  x  2x u  r u 2

 12

2

 r  x  u  1  x u 2

(2 x  1)

x

r 2  x2 2 x2  r 2

ln 3 4

 ln 3  The solution set is    4 

89. 3x  2  5  9

94. The circumference of a circle is given by C  2 r . Thus,

3x  2  4 2  3x  2 3  2  So the solution is:   , 2  3  

C  2 (10)  20 inches 336 rev 1 min 336(20 in) 1 ft 1 mi 60 min     1 min 12 in 5280 ft 1 hr  19.912  20 mph



90. The function f is one-to-one because every horizontal line intersects the graph at exactly one point.

3       3  1  95. sin   cos        3  3   2   2  4 24 ,  in quadrant I 25 Solve for sin  : sin 2   cos 2   1

96. cos  

sin 2   1  cos 2 

91.

sin    1  cos 2  Since  is in quadrant I, sin   0 .

f ( x)  1  2 x y  1  2x x  1 2

2

49 7  24   sin   1  cos 2   1     25 625 25  

y

x 1  2y log 2 ( x  1)  log 2 2

 7  sin   25  7 25 7 tan       cos   24  25 24 24    25 

y

log 2 ( x  1)  y log 2 2 log 2 ( x  1)  y f 1 ( x)  log 2 ( x  1)

697

Copyright © 2020 Pearson Education, Inc.


Chapter 7: Analytic Trigonometry

cotangent equals

1 1 25   csc   sin   7  7    25  1 1 25 sec     cos   24  24    25  1 1 24 cot     7 tan    7    24 

cot   3,

4

6

12 

1

cot 1

3 3  12  4 3

11. csc 1 (1)     , 2 2   0 , whose cosecant equals 1 .   csc   1,     ,   0 2 2    2  1 csc (1)   2

We are finding the angle  , 

Section 7.2   1. Domain:  x x  odd integer multiples of  , 2 

Range:  y y  1 or y  1

12. csc 1 2     , 2 2   0 , whose cosecant equals 2 .   csc   2,     ,   0 2 2   4  1 csc 2 4

We are finding the angle  , 

2. True

1 5

 6  3 6

10. cot 1 1 We are finding the angle  , 0    , whose cotangent equals 1. cot   1, 0       4  cot 1 1  4

12

3.

0   



97. Quadrant II         f    f   tan    tan   4 6 4       6 98.

3.

5 5

4. x  sec y ,  1 , 0 ,  5. cosine 6. False 7. True

13. sec 1

8. True

2 3 3

We are finding the angle  , 0     ,  

9. cot 1 3 We are finding the angle  , 0    , whose

698

Copyright © 2020 Pearson Education, Inc.

 , 2


Section 7.2: The Inverse Trigonometric Functions (Continued)

whose secant equals

2 3 . 3

2 3 , 3   6

sec  

sec 1

14. sec

1

0    ,  

2 3 , 3    3  2 3  csc 1      3  3  csc   

 2

2 3   3 6

17. sec 1  2

We are finding the angle  , 0     ,   whose secant equals 2 . 0    ,  

sec    2,

0    ,  

3 4 3  sec 1  2  4

 2

 , 2

 2



2 3 2 1 sec   2   3

18. cot 1  1

We are finding the angle  , 0    , whose cotangent equals -1. cot   1, 0     3  4 3 1 cot  1  4

 3 15. cot 1    3   We are finding the angle  , 0    , whose 3 . 3

3 , 3 2  3    3 2 cot 1      3  3 cot   

whose secant equals  2 .

 , 2



cotangent equals 

    ,   0 2 2

We are finding the angle  , 0     ,  

  2

sec    2,

0   

19. csc 1  2

    , 2 2   0 , whose cosecant equals  2 .   csc    2,     ,   0 2 2    4  1 csc  2   4

We are finding the angle  , 

 2 3 16. csc 1    3  

    , 2 2 2 3   0 , whose cosecant equals  . 3

We are finding the angle  , 

20. sec 1 1

We are finding the angle  , 0     ,  

699

Copyright © 2020 Pearson Education, Inc.

 , 2


Chapter 7: Analytic Trigonometry

whose secant equals 1 . sec   1,

 0 sec

1

 1 24. sec 1 (3)  cos 1     3 We seek the angle  , 0     , whose cosine

 0    ,   2

1 1 equals  . Now cos    ,  lies in 3 3 quadrant II. The calculator yields  1 cos 1     1.91 , which is an angle in  3 quadrant II, so sec1   3  1.91 .

1  0

1 4 We seek the angle  , 0     , whose cosine

21. sec 1 4  cos 1

1 1 . Now cos   , so  lies in quadrant 4 4 1 I. The calculator yields cos 1  1.32 , which is 4 1 an angle in quadrant I, so sec  4   1.32 .

equals

 1 25. csc 1  3  sin 1     3

We seek the angle  ,  22. csc 1 5  sin 1

2

 

 2

, whose sine

1 1 equals  . Now sin    , so  lies in 3 3 quadrant IV. The calculator yields  1 sin 1     0.34 , which is an angle in  3 quadrant IV, so csc1  3  0.34 .

1 5

We seek the angle  , 

   , whose sine 2 2 1 1 equals . Now sin   , so  lies in 5 5 1 quadrant I. The calculator yields sin 1  0.20 , 5 which is an angle in quadrant I, so csc1 5  0.20 .

 1 26. cot 1     tan 1 ( 2)  2 We seek the angle  , 0     , whose tangent equals 2 . Now tan   2 , so  lies in quadrant II. The calculator yields tan 1   2   1.11 , which is an angle in

1 2 We seek the angle  , 0     , whose tangent

23. cot 1 2  tan 1

quadrant IV. Since  lies in quadrant II,   1.11    2.03 . Therefore,  1 cot 1     2.03 .  2

1 1 . Now tan   , so  lies in 2 2 1 quadrant I. The calculator yields an 1  0.46 , 2 which is an angle in quadrant I, so cot 1  2   0.46 .

equals

700

Copyright © 2020 Pearson Education, Inc.


Section 7.2: The Inverse Trigonometric Functions (Continued)

 4  3 30. sec 1     cos 1    3    4

 1  27. cot 1  5  tan 1    5  We seek the angle  , 0     , whose tangent

1

We are finding the angle  , 0     ,  

, 2 3 3 whose cosine equals  . Now cos    , so 4 4  lies in quadrant II. The calculator yields  3 cos 1     2.42 , which is an angle in  4  4 quadrant II, so sec 1     2.42 .  3

1

. Now tan    , so  lies in 5 5 quadrant II. The calculator yields  1  tan 1     0.42 , which is an angle in 5  quadrant IV. Since  is in quadrant II,   0.42    2.72 . Therefore, equals 

cot 1  5  2.72 .

 3  2 31. cot 1     tan 1    2    3 We are finding the angle  , 0     , whose

 1  28. cot  8.1  tan     8.1  We seek the angle  , 0     , whose tangent 1

1

2 2 . Now tan    , so  3 3 lies in quadrant II. The calculator yields  2 tan 1     0.59 , which is an angle in  3 quadrant IV. Since  is in quadrant II,  3   0.59    2.55 . Thus, cot 1     2.55 .  2

tangent equals 

1 1 . Now tan    , so  lies in 8.1 8.1 quadrant II. The calculator yields  1  tan 1     0.12 , which is an angle in  8.1  quadrant IV. Since  is in quadrant II,

equals 

  0.12    3.02 . Thus, cot 1  8.1  3.02 .

 1  32. cot 1  10  tan 1     10  We are finding the angle  , 0     , whose

 3  2 29. csc 1     sin 1     2  3

We seek the angle  , 

 2

 

 2

,  0,

1 . Now tan    , so  10 10 lies in quadrant II. The calculator yields  1  tan 1     0.306 , which is an angle in  10  quadrant IV. Since  is in quadrant II,

tangent equals 

2 2 whose sine equals  . Now sin    , so  3 3 lies in quadrant IV. The calculator yields  2 sin 1     0.73 , which is an angle in  3  3 quadrant IV, so csc1     0.73 .  2

1

  0.306    2.84 . So, cot 1  10  2.84 .

701

Copyright © 2020 Pearson Education, Inc.


Chapter 7: Analytic Trigonometry

 2 33. cos  sin 1  2  

1 equals  . 2

Find the angle  ,  equals

1 sin    , 2    6

     , whose sine 2 2

2 . 2

1  37. sec  cos 1  2  Find the angle  , 0    , whose cosine

equals

1  34. sin  cos 1  2  Find the angle  , 0    , whose cosine

1 , 2   3

0   

  1  38. cot sin 1      2  

Find the angle  , 

1   sin    ,     2 2 2    6   1    cot sin 1      cot      3 2    6 

3 . 2



3 , 2

0   

5 6

39. csc tan 1 1

Find the angle  , 

  3  5 3  tan cos 1      tan 2 6 3    

     , whose tangent 2 2

equals 1. tan   1,

  1  36. tan sin 1      2   Find the angle  , 

     , whose sine 2 2

1 equals  . 2

  3  35. tan cos 1       2   Find the angle  , 0    , whose cosine

cos   

0   

 1  sec  cos 1   sec  2 2 3 

 1 3  sin  cos 1   sin  2 3 2 

equals 

1 . 2 cos  

1 . 2 1 cos   , 2   3

    2 2

 3  1    tan sin 1      tan      3  2   6 

2   sin   ,    2 2 2   4  1 2   2 cos  sin   cos 4  2 2  

equals

      , whose sine 2 2

 4

csc tan 1 1  csc

702

Copyright © 2020 Pearson Education, Inc.

 4

    2 2

 2


Section 7.2: The Inverse Trigonometric Functions (Continued)

40. sec tan 1 3

Find the angle  ,  equals

1 equals  . 2

     , whose tangent 2 2

1 sin    , 2    6

3. tan   3,



    2 2

 2 3

  3  44. csc  cos 1      2    Find the angle  , 0    , whose cosine

41. sin  tan 1 (1) 

Find the angle  ,  equals 1 .

     , whose tangent 2 2

tan   1,

 

    2 2

  1    2 3 sec sin 1      sec     3  2   6 

3

sec tan 1 3  sec

3 . 2

equals 

cos   

    2 2



 4

3 2

0   

5 6

  3  5 2 csc  cos 1      csc 2 6    

2   sin  tan 1 (1)   sin      4 2     3  42. cos sin 1      2   

Find the angle  ,  equals 

     , whose sine 2 2

 5  2  45. cos 1  sin   cos 1    4    2  Find the angle  , 0    , whose cosine

3 . 2

3   ,    2 2 2    3  1    3   1 cos sin      cos     2  3 2     sin   

2 . 2

equals 

cos   

2 , 2

0   

3 4   5 3   cos 1  sin   4  4 



  1  43. sec sin 1      2  

 1  2   46. tan 1  cot   tan 1    3  3   

  Find the angle  ,     , whose sine 2 2

Find the angle  , 

703

Copyright © 2020 Pearson Education, Inc.

     , whose tangent 2 2


Chapter 7: Analytic Trigonometry

equals 

1 3

Since  is in quadrant I, x  2 2 .

.

tan   

1 3

,

1 y 1 2 2  tan  sin 1   tan      x 3 4 2 2 2  

     2 2

1  50. tan  cos 1  3 

 6 2    tan 1  cot  3 6  

 

1 1 . Since cos   and 0     , 3 3  is in quadrant I, and we let x  1 and r  3 . Solve for y: 1  y2  9 Let   cos 1

 3   7   47. sin 1 cos      sin 1      6   2    Find the angle  ,     , whose sine 2 2 3 . equals  2 3   sin    ,    2 2 2    3   7     sin 1 cos      3   6 

y2  8 y   8  2 2

Since  is in quadrant I, y  2 2 . 1 y 2 2  tan  cos 1   tan    2 2 3 1 x  1  51. sec  tan 1  2 

Let   tan 1

1 1 . Since tan   and 2 2

     ,  is in quadrant I, and we let 2 2 x  2 and y  1 . Solve for r: 22  1  r 2 

    48. cos 1  tan      cos 1  1   4  Find the angle  , 0    , whose cosine equals 1 . cos   1, 0       4      cos 1  tan         4 

r2  5 r 5

 is in quadrant I. 1 r 5  sec  tan 1   sec    x 2 2  

1  49. tan  sin 1  3 

 2 52. cos  sin 1  3  

1 1 Let   sin 1 . Since sin   and 3 3       ,  is in quadrant I, and we let 2 2 y  1 and r  3 . Solve for x: x2  1  9

Let   sin 1

2 2 . Since sin   and 3 3

     ,  is in quadrant I, and we let 2 2 y  2 and r  3 . Solve for x: x2  2  9 

x2  8

x2  7

x   8  2 2

x 7

704

Copyright © 2020 Pearson Education, Inc.


Section 7.2: The Inverse Trigonometric Functions (Continued)

Since  is in quadrant I, x  7 .  2 x 7 cos  sin 1   cos    3 r 3  

Since  is in quadrant IV, r  10 . y sin  tan 1 (3)   sin   r 10 3 10 3    10 10 10

  2  53. cot sin 1      3   

  3  56. cot  cos 1       3    3 3 Let   cos 1    . Since cos    3 and 3   0     ,  is in quadrant II, and we let x   3 and r  3 . Solve for y: 3  y2  9

 2 2 Let   sin 1   and  . Since sin    3 3         ,  is in quadrant IV, and we let 2 2 y   2 and r  3 . Solve for x: x2  2  9 x2  7

y2  6

x 7

y 6

Since  is in quadrant IV, x  7 .   x 2  7 2 14   cot sin 1      cot    y  2 2 2  3   

Since  is in quadrant II, y  6 .   3  x cot cos 1      cot   y 3    

54. csc  tan 1 ( 2)  Let   tan 1 ( 2) . Since tan    2 and

     ,  is in quadrant IV, and we let 2 2 x  1 and y   2 . Solve for r: 1 4  r2 

6

1 2

2 2



2 2

 2 5 57. sec  sin 1  5  

Let   sin 1

r 5 2

2 5 2 5 . Since sin   and 5 5

     ,  is in quadrant I, and we let 2 2 y  2 5 and r  5 . Solve for x: x 2  20  25

r 5

Since  is in quadrant IV, r  5 . csc  tan 1 ( 2)   csc  

 3

r 5 5   y 2 2

55. sin  tan 1 (3)  Let   tan 1 (3) . Since tan   3 and

x2  5 x 5

      ,  is in quadrant IV, and we let 2 2 x  1 and y  3 . Solve for r: 1 9  r2

Since  is in quadrant I, x  5 .  2 5 r 5 sec  sin 1  5   sec    5  x 5  1  58. csc  tan 1  2 

r 2  10 r   10

Let   tan 1

705

Copyright © 2020 Pearson Education, Inc.

1 1 . Since tan   and 2 2


Chapter 7: Analytic Trigonometry      ,  is in quadrant I, and we let 2 2 x  2 and y  1 . Solve for r: 22  1  r 2

64. Let   cos 1 u so that cos   u , 0     , 1  u  1 . Then, sin  tan cos 1 u  tan   cos 

r 5 2

r 5  is in quadrant I. 1 r 5   5 csc  tan 1   csc    2 y 1  

sin 2  1  cos 2   cos  cos 

1 u2 u

65. Let   sec 1 u so that sec   u , 0     and



2

, u  1 . Then,

sin sec 1 u  sin   sin 2   1  cos 2    3  2  59. sin 1  cos   sin 1      4  4   2 

 1

7    1  2 60. cos  sin   cos 1     6    2 3

1

61. Let   tan 1 u so that tan   u , 

2

  u   . Then,

 

 2

1 1  sec  sec 2  1 1   2 1  tan  1 u2

1  u  1 . Then,

 

sin 

sin  cos 

cos 2  u 1 u

 1  cos 2   1  u 2

u2 1 u

cos csc1 u  cos   cos  

 2

 

 2

sec 2 

 2

 

 2

,

u  1 . Then,

sin cos 1 u  sin   sin 2 

63. Let   sin 1 u so that sin   u , 

sec2   1

67. Let   csc1 u so that csc   u , 

62. Let   cos 1 u so that cos   u , 0     , 1  u  1 . Then,

tan sin 1 u  tan  

sec2 

66. Let   cot 1 u so that cot   u , 0     ,   u   . Then, 1 sin cot 1 u  sin   sin 2   csc2  1 1   2 1  cot  1 u2

,

cos tan 1 u  cos  

1

,

sin   cot  sin  sin 

cot  cot 2  csc 2   1   csc  csc  csc 

u2 1 u

68. Let   sec1 u so that sec   u , 0     and

sin 



1  sin 2 

2

, u  1 . Then,

cos sec 1 u  cos  

2

706

Copyright © 2020 Pearson Education, Inc.

1 1  sec  u


Section 7.2: The Inverse Trigonometric Functions (Continued) 69. Let   cot 1 u so that cot   u , 0     ,   u   . Then, 1 1 tan cot 1 u  tan    cot  u

      73. g 1  f      cos 1  sin   4 4    

 2  3  cos 1      2  4

70. Let   sec1 u so that sec   u , 0     and



2

74.

, u  1 . Then,

tan sec 1 u  tan    tan 2    sec2   1   u 2  1 ( if u  0;  if u  0)

   3   3  75. h  f 1      tan  sin 1      5   5    3  3 Let   sin 1    . Since sin    and 5 5  

 12   12    71. g  f 1     cos  sin 1  13   13     12 12 and Let   sin 1 . Since sin   13 13

 

x 2  (3) 2  52

x 2  122  132

x 2  9  25

x 2  144  169

x 2  16 x   16  4 Since  is in quadrant IV, x  4 .    3   3  h  f 1      tan  sin 1      5   5   

x 2  25 x   25  5 Since  is in quadrant I, x  5 .  12  x 5  12    g  f 1     cos  sin 1   cos    13 13 r 13     

72.

,  is in quadrant IV, and we let 2 2 y  3 and r  5 . Solve for x:

   ,  is in quadrant I, and we let 2 2 y  12 and r  13 . Solve for x:

  5   5   f 1  g     sin 1  cos  6 6         3  sin 1      2 3  

 tan  

 5  5   f  g 1     sin  cos 1  13   13     5 5 Let   cos 1 . Since cos   and 13 13 0     ,  is in quadrant I, and we let x  5 and r  13 . Solve for y:

3 y 3   4 4 x

   4   4  76. h  g 1      tan  cos 1      5   5    4  4 Let   cos 1    . Since cos    and 5  5 0     ,  is in quadrant II, and we let x  4 and r  5 . Solve for y: (4) 2  y 2  52

52  y 2  132 25  y 2  169

16  y 2  25

y 2  144

y2  9

y   144  12 Since  is in quadrant I, y  12 .

y   9  3 Since  is in quadrant II, y  3 .

 5 y 12  5   f  g 1     sin  cos 1   sin    13  r 13  13    

   4   4  h  g 1      tan  cos 1     5    5     3 y 3  tan     x 4 4

707

Copyright © 2020 Pearson Education, Inc.


Chapter 7: Analytic Trigonometry x  1 and r  4 . Solve for y: (1) 2  y 2  42

  12   12   77. g  h 1     cos  tan 1  5 5     12 12 and Let   tan 1 . Since tan   5 5

1  y 2  16 y 2  15

y   15

,  is in quadrant I, and we let 2 2 x  5 and y  12 . Solve for r:

 

Since  is in quadrant II, y  15 .    1   1  h  g 1      tan  cos 1      4   4   

r 2  52  122 r 2  25  144  169

 tan  

r   169  13 Now, r must be positive, so r  13 .   12   12  x 5  g  h 1     cos  tan 1   cos    5 r 13    5 

78.

   2   2  82. h  f 1      tan  sin 1      5   5    2  2 Let   sin 1    . Since sin    and 5  5

  5  5  f  h 1     sin  tan 1  12 12       5 5 and Let   tan 1 . Since tan   12 12

,  is in quadrant IV, and we let 2 2 y  2 and r  5 . Solve for x:

   ,  is in quadrant I, and we let 2 2 x  12 and y  5 . Solve for r:

y 15    15 x 1

 

x 2  (2)2  52 x 2  4  25

r 2  122  52

x 2  21

r 2  144  25  169

x   21

Since  is in quadrant IV, x  21 .    2   2  h  f 1      tan  sin 1     5    5   

r   169  13 Now, r must be positive, so r  13 .   5  5 y 5  f  h 1     sin  tan 1   sin    12 12 13 r     

 tan  

        79. g 1  f      cos 1  sin       3    3 

83. a.

 3  5  cos 1      2  6         80. g 1  f      cos 1  sin     6      6   1  2  cos 1      2 3

b.

y 2 21 2   21 x 21

Since the diameter of the base is 45 feet, we 45 have r   22.5 feet. Thus, 2  22.5    cot 1    31.89 .  14 

  cot 1

r h

r  r  h cot  h Here we have   31.89 and h  17 feet. Thus, r  17 cot  31.89   27.32 feet and cot  

   1   1  81. h  g 1      tan  cos 1      4   4    1  1 Let   cos 1    . Since cos    and 4  4 0     ,  is in quadrant II, and we let

the diameter is 2  27.32   54.64 feet.

708

Copyright © 2020 Pearson Education, Inc.


Section 7.2: The Inverse Trigonometric Functions (Continued)

c.

From part (b), we get h 

86.

r . cot 

22  61 feet. 2 r 61 h   37.96 feet. cot  22.5 /14 Thus, the height is 37.96 feet.

The radius is

84. a.

b.

c.

cot sec



 cot sec

Since the diameter of the base is 6.68 feet, ,  3.34    cot 1    50.14  4 

Let   sec 1

2  is in quadrant I. So

r   cot 1 h r r cot    h h cot  Here we have   50.14 and r  4 feet. 4 Thus, h   4.79 feet. The cot  50.14 

cot  

6 39

 5 3     6   

5 3 5 3 . Then sec   . 6 6

Because 0     

, and because sec   0 ,

6 39 2 39  39 13

87. Let 1  cos 1 x . Then cos 1  x . Because 0     , 1 is in quadrant I and

bunker will be 4.79 feet high.

sin 1  1  x 2 . Let  2  tan 1 1  x 2 . Then

 4.22    54.88  6 

tan  2  1  x 2  0 , so  2 is in quadrant I. So

TG  cot 1 

sec  2  1  tan 2  2  2  x 2

cot  

88 – 89. Answers will vary. 90.

( x 2  4)( x 2  25)  0

2x

x 2  4  0 or x 2  25  0 x  2 or x  5i So the complex zeros are:  2, 2, 5i,5i

2 y  gt 2

 2x   2 y  gt 2    The artillery shell begins at the origin and lands at the coordinates  6175, 2450  . Thus, 

f ( x)  4 x 4  21x 2  100 4 x 4  21x 2  100  0

  cot 1 

   2  2450  32.2 2.27 2     

  cot 1 

2  6175

 cot 1  2.437858   22.3

The artilleryman used an angle of elevation of 22.3 . b.

1



From part (a) we have USGA  50.14 . For steep bunkers, a larger angle of repose is required. Therefore, the Tour Grade 50/50 sand is better suited since it has a larger angle of repose. 85. a.

  3    3  1    sin  tan    cot sec  3 6   3      2 

1 

sec  

v0 t x

x sec   6175  sec  22.30325   2.27 t  2940.23 ft/sec

v0 

709

Copyright © 2020 Pearson Education, Inc.


Chapter 7: Analytic Trigonometry

So the domain is: {x | x  3, x  4, x  7} or 91.

3, 4    4, 7    7,   .

f (  x )  (  x )3  (  x ) 2  (  x )   x  x  x  f ( x) So the function is not even. f (  x )  (  x )3  (  x ) 2  (  x ) 3

2

97.

 ( x3  x 2  x)   f ( x) So the function is not odd.    7  92. 315  radians  180  4

93. 75  s  r

5 12

2   B 3 B  6 B6 and C 1 6 C6 y  4sin(6 x  6)

98.

 5   6   12  

94. a.

1  x2  1  c2 1  x2  1  c2  xc 1  x2  1  c2

5  7.85 in. 2

2

(10) 5 x  2(2) 2

2

31  5  5 y  2     10     3  2  2  2  5 31  The vertex is   ,   2 2 b. Since the leading coefficient is negative, the parabola is concave down. c. Since the graph has a maximum then the 5  graph is increasing on  ,   and 2  5   decreasing on   ,    2  95. log 5 ( x 2  16)  2

1 x  1 c

 x  c

2

2

x  c

2

 1  x  1  c   x  c 1  x  1  c  2

 x c

 x  c

2

2

2

2

2

( x  c )( x  c )

 1  x  1  c   x  c 1  x  1  c  2

2

( x  c )



2

2

( x  c)

 1 x  1 c   1 x  1 c  2

2

2

2

99.  4     4    3 f 1   f   sin    sin     3  2  3  2 2 4  4  5   3 2 3 2 6 

52  x 2  16

3 3  6 5



25  x 2  16 25  x 2  16

x2  9 x  3 The solution set is 3,3 .

3 36 5

Section 7.3

f x 3 Any number that would make the 96.  x7 g x4 argument of the square root negative or any denominator zero would not be in the domain.

1. sec2

 12

 tan 2

710

Copyright © 2020 Pearson Education, Inc.

      tan 2  1  tan 2 15  15  15 1


Section 7.3: Trigonometric Equations

2.

7. False because of the circular nature of the functions.

2 1 ,  2 2

8. True

4 x2  x  5  0

3.

 4 x  5 x  1  0

9. True

4 x  5  0 or x  1  0

10. False, 2 is outside the range of the sin function.

5 x or 4

x  1

11. d

5  The solution set is 1,  . 4 

12. a 13. 2sin   3  2 2sin   1 1 sin    2 7 11  2k  or    2k  , k is any integer  6 6  7  11  On 0    2 , the solution set is  , . 6 6 

4. x 2  x  1  0 x

  1 

 1  4 1 1 2 1 2

1 1 4 2 1 5  2 

1  5 1  5  , . 2   2

1 2 1 1  cos   2 1  cos  2  5  2k  , k is any integer    2k  or   3 3   5  On 0    2 , the solution set is  ,  . 3 3 

14. 1  cos  

The solution set is  5.

(2 x  1) 2  3(2 x  1)  4  0

(2 x  1)  1(2 x  1)  4  0 2 x(2 x  5)  0 2 x  0 or 2 x  5  0 5 x  0 or x 2  5 The solution set is 0,  .  2

15. 2sin   1  0 2sin   1 1 sin    2 7 11  2k  or    2k  , k is any integer  6 6  7  11  On 0    2 , the solution set is  , . 6 6 

6. 5 x3  2  x  x 2 Let y1  5 x3  2 and y2  x  x 2 . Use INTERSECT to find the solution(s):  



16. cos   1  0 cos   1     2k  , k is any integer



In this case, the graphs only intersect in one location, so the equation has only one solution. Rounding as directed, the solution set is 0.76 .

On the interval 0    2 , the solution set is   .

711

Copyright © 2020 Pearson Education, Inc.


Chapter 7: Analytic Trigonometry 17. tan   1  0 tan   1 3    k  , k is any integer 4

22. 4sin   3 3  3 4sin    2 3 2 3 3  4 2 4 5   2k  or    2k  , k is any integer 3 3  4  5  On 0    2 , the solution set is  ,  . 3 3 sin   

 3 7  On 0    2 , the solution set is  ,  . 4 4

18.

3 cot   1  0 3 cot   1 cot   



1 3



3 3

23. 4 cos 2   1 1 cos 2   4

2  k  , k is any integer 3

cos   

 2 5  On 0    2 , the solution set is  ,  . 3 3

 2  k  or    k  , k is any integer 3 3 On the interval 0    2 , the solution set is   2 4 5  , , .  , 3 3 3 3 



19. 4sec   6   2 4sec    8 sec    2 2 4  2k  or    2k  , k is any integer 3 3  2 4   On 0    2 , the solution set is  ,  . 3 3



24. tan 2  

1 3  3 3  5    k  or    k , k is any integer 6 6 On the interval 0    2 , the solution set is   5 7 11  , ,  , . 6 6 6 6 

 On 0    2 , the solution set is   . 2

25. 2sin 2   1  0 2sin 2   1 1 sin 2   2

21. 3 2 cos   2  1 3 2 cos    3 1 2



1 3

tan   

20. 5csc   3  2 5csc   5 csc   1     2k  , k is any integer 2

cos   

1 2

2 2

1 2  2 2  3    k or    k , k is any integer 4 4 On the interval 0    2 , the solution set is   3 5 7    , , , . 4 4 4 4  sin   

3 5  2k  or    2k  , k is any integer 4 4  3 5  On 0    2 , the solution set is  ,  . 4 4



712

Copyright © 2020 Pearson Education, Inc.


Section 7.3: Trigonometric Equations

On the interval 0    2 , the solution set is  3 7 11 15  , ,  , . 8  8 8 8

26. 4 cos 2   3  0 4 cos 2   3 3 cos 2   4

3  2 2 3 2 3 4   2k or   2k 2 3 2 3 4 4k 8 4k or   ,    9 3 9 3 k is any integer On the interval 0    2 , the solution set is  4 8 16   , , . 9 9 9 

31. sec

3 cos    2  5  k  or    k  , k is any integer 6 6 On the interval 0    2 , the solution set is   5 7 11  , ,  , . 6 6 6 6 



27. sin  3   1 3  2k  2  2k    , k is any integer 2 3 On the interval 0    2 , the solution set is   7  11  ,  , . 2 6 6  3 

2  3 3 2 5   k , k is any integer 3 6 5 3k   , k is any integer 4 2

32. cot

 5  On 0    2 , the solution set is   . 4

  28. tan    3 2

  33. cos  2    1 2   2     2k  2 3  2k  2  2 3    k  , k is any integer 4  3 7  On 0    2 , the solution set is  ,  . 4 4

 k , k is any integer 3 2  2 k , k is any integer  3  2  On 0    2 , the solution set is   . 3 2

29. cos  2   

1 2

2 4  2k or 2   2k 3 3 2     k or    k , k is any integer 3 3 On the interval 0    2 , the solution set is   2 4 5  , , .  , 3 3 3 3  2 

  34. sin  3    1 18     3    2k  18 2 4 3   2k  9 4 2k   , k is any integer  27 3 On the interval 0    2 , the solution set is  4 22 40  ,  , .  27 27 27 

30. tan  2   1 3  k , k is any integer 4 3 k     , k is any integer 8 2

2 

713

Copyright © 2020 Pearson Education, Inc.


Chapter 7: Analytic Trigonometry    35. tan     1 2 3       k 2 3 4      k 2 12      2k  , k is any integer 6 11  On 0    2 , the solution set is  .  6 

40. cos   

 5 7   2k  or    2k   , k is any    6 6   integer. Six solutions are 5 7  17  19 29 31 , , , .  , , 6 6 6 6 6 6

41. cos   0   3      2k  or  =  2k   , k is any 2 2   integer  3 5 7  9 11 . , , Six solutions are   , , , 2 2 2 2 2 2

   1 36. cos     3 4 2      5    2k  or    2k  3 4 3 3 4 3  7  23   2k  or   2k  3 12 3 12 7 23   6k  or   6k  , 4 4 k is any integer.  7  On 0    2 , the solution set is   . 4

37. sin  

2 2   3   2k  , k is any     2k  or   4 4   integer  3 9 11 17 19 . , , Six solutions are   , , , 4 4 4 4 4 4

42. sin  

43.

1 2

3  cot   0 cot   3

  5   2k  , k is any     2k or   6 6   integer. Six solutions are  5 13 17  25 29 , , , .  , , 6 6 6 6 6 6

       k   , k is any integer 6   Six solutions are  7 13 19 25 31  , , . , , , 6 6 6 6 6 6

38. tan   1        k   , k is any integer 4  

Six solutions are  

39. tan   

3 2

44. 2  3 csc   0 2 csc   3

 5 9 13 17  21 . , , , , , 4 4 4 4 4 4

  2   2k   , k is any     2k  or   3 3   integer  2 7 8 13 14 , , , , . Six solutions are   , 3 3 3 3 3 3

3 3

 5   k   , k is any integer    6   Six solutions are 5 11 17  23 29 35 , , , , .  , 6 6 6 6 6 6

45. cos  2    2 

1 2

2 4  2k  or 2   2k , k is any integer 3 3

714

Copyright © 2020 Pearson Education, Inc.


Section 7.3: Trigonometric Equations 51. tan   5

  2   k   , k is any integer     k  or   3 3    2 4 5 7 8 , , , , . Six solutions are   , 3 3 3 3 3 3

  tan 1  5   1.37   1.37 or     1.37  4.51 .

The solution set is 1.37, 4.51 .

46. sin  2   1

52. cot   2 1 tan   2

3 2   2k , k is any integer 2  3   k   , k is any integer    4   Six solutions are 3 7 11 15 19 23  , , . , , , 4 4 4 4 4 4

1     0.46 or     0.46  3.61 . The solution set is 0.46, 3.61 .

  tan 1    0.46 2

53. cos   0.9

3 47. sin   2 2  4  5   2k  or   2k , k is any integer 2 3 2 3  8 10   4k  or    4k   , k is any    3 3   integer. Six solutions are 8 10 20 22 32 34  , . , , , , 3 3 3 3 3 3

  cos 1  0.9   2.69   2.69 or   2  2.69  3.59 . The solution set is 2.69, 3.59 . 54. sin   0.2

  sin 1  0.2   0.20

  0.20  2 or      0.20  .  6.08  3.34 The solution set is 3.34, 6.08 .

 1 2  3   k , k is any integer 2 4  3   2k  , k is any integer    2   Six solutions are 3 7 11 15 19 23  , , . , , , 2 2 2 2 2 2

48. tan

55. sec   4 1 cos    4  1     1.82 or   2  1.82  4.46 . The solution set is 1.82, 4.46 .

  cos 1     1.82 4

56. csc   3 1 sin    3

49. sin   0.4

  sin 1  0.4   0.41   0.41 or     0.41  2.73 . The solution set is 0.41, 2.73 .

 1     0.34  2 or      0.34  .  5.94  3.48 The solution set is 3.48, 5.94 .

  sin 1     0.34 3

50. cos   0.6

  cos1  0.6   0.93   0.93 or   2  0.93  5.36 .

The solution set is 0.93, 5.36 .

715

Copyright © 2020 Pearson Education, Inc.


Chapter 7: Analytic Trigonometry 57. 5 tan   9  0 5 tan   9 9 tan    5

61.

2 cos 2   cos   0 cos  (2 cos   1)  0 cos   0  3  , 2 2

2 cos   1  0 2 cos   1 1 cos    2 2 4  , 3 3   2 4 3  The solution set is  , , , . 3 2  2 3

 9     1.064   or   1.064  2  2.08  5.22 The solution set is 2.08, 5.22 .

  tan 1     1.064 5

58. 4 cot   5 5 cot    4 4 tan    5

62.

or

sin 2   1  0 (sin   1)(sin   1)  0 sin   1  0 sin   1 3  2

sin   1  0 sin   1   2   3  The solution set is  , . 2 2 

 4     0.675   or   0.675  2 .  2.47  5.61 The solution set is 2.47, 5.61 .

  tan 1     0.675 5

63.

59. 3sin   2  0 3sin   2 2 sin   3

or

2sin 2   sin   1  0 (2sin   1)(sin   1)  0 2sin   1  0 or sin   1  0 2sin   1 sin   1 1   sin    2 2 7  11  , 6 6   7 11  The solution set is  , , . 6  2 6

2     0.73 or     0.73  2.41 . The solution set is 0.73, 2.41 .

  sin 1    0.73 3

60. 4 cos   3  0 4 cos   3 3 cos    4

64.

2 cos 2   cos   1  0 (cos   1)(2 cos   1)  0 cos   1  0 or cos   1  

2 cos   1  0 2 cos   1 1 cos   2  5  , 3 3 5   The solution set is  ,  , . 3  3

 3     2.42 or   2  2.42  3.86 . The solution set is 2.42, 3.86 .

  cos 1     2.42 4

716

Copyright © 2020 Pearson Education, Inc.


Section 7.3: Trigonometric Equations 65. (tan   1)(sec   1)  0 tan   1  0 or sec   1  0 tan   1 sec   1  5  0  , 4 4   5  The solution set is 0, , .  4 4 

sin 2   6  cos    1 1  cos 2   6 cos   6 cos 2   6 cos   5  0

 cos   5 cos   1  0 cos   5  0 or cos   5 (not possible)

1  66. (cot   1)  csc     0 2  csc  

2 cos 2   3cos   1  0

 2 cos   1 cos   1  0

1  cos    cos   1  cos

2 cos   1  0 1 cos   2

1  2 cos 2   1  cos  2 cos 2   cos   0



 cos   2 cos   1  0 

or

2 cos   1  0

 3

cos   

, 2 2

1 2

cos   sin  sin  1 cos  tan   1  5  , 4 4

1  sin    sin   sin   0 2

1  2sin 2   sin   0

  5  The solution set is  , . 4 4 

2sin 2   sin   1  0

 2sin   1 sin   1  0 sin   

or 1 2

, 3 3

cos      sin  

cos 2   sin 2   sin   0

2sin   1  0

cos   1  0 cos   1  0

71. cos    sin   

2 4 , 3 3   2 4 3  The solution set is  , , , . 3 2  2 3

2

 5

or

  5  The solution set is 0, , .  3 3 



68.

2  2 cos 2   3  3cos 

2

cos   0

2sin 2   3 1  cos  

2 1  cos 2   3 1  cos  

sin 2   cos 2   1  cos  2

2sin 2   3 1  cos    

70.

 3 7  The solution set is  , . 4  4

67.

cos   1  0 cos   1  

The solution set is   .

1 0 2 1 csc   2 (not possible)

cot   1  0 or cot   1 3 7   , 4 4

sin 2   6  cos     1

69.

sin   1  0 sin   1



7 11 ,  6 6   7 11  The solution set is  , , . 6  2 6

 2

717

Copyright © 2020 Pearson Education, Inc.


Chapter 7: Analytic Trigonometry

72.

73.

74.

cos   sin     0

1  sin   2 cos 2 

75.

cos     sin     0

1  sin   2(1  sin 2  )

cos   sin   0 sin    cos  sin   1 cos  tan   1 3 7  , 4 4  3 7  The solution set is  , . 4  4

1  sin   2  2sin 2  2sin 2   sin   1  0 (2sin   1)(sin   1)  0 2sin   1  0 or sin   1  0 1 sin   1 sin   2 3   5 2  , 6 6   5 3  The solution set is  , , . 2  6 6

tan   2sin  sin   2sin  cos  sin   2sin  cos  0  2sin  cos   sin  0  sin  (2 cos   1) 2 cos   1  0 or sin   0 1   0,  cos   2  5  , 3 3 5    The solution set is 0, ,  , . 3 3  

sin 2   2 cos   2

76.

1  cos 2   2 cos   2 cos 2   2 cos   1  0

 cos   1  0 2

cos   1  0 cos   1   The solution set is   .

77.

2sin 2   5sin   3  0

 2sin   3 sin   1  0 2sin   3  0 or sin   1  0 3  sin   (not possible)  2 2   The solution set is   . 2 2 78. 2 cos   7 cos   4  0

tan   cot  1 tan   tan  tan 2   1 tan   1  3 5 7   , , , 4 4 4 4   3 5 7  , , The solution set is  , . 4 4  4 4

 2 cos   1 cos   4   0 2 cos   1  0

or cos   4  0 1 cos   4 sin    2 (not possible) 2 4   , 3 3  2 4  The solution set is  , . 3   3

718

Copyright © 2020 Pearson Education, Inc.


Section 7.3: Trigonometric Equations

3(1  cos  )  sin 2 

79.

83.

tan 2   1  tan   0 This equation is quadratic in tan  . The discriminant is b 2`  4ac  1  4  3  0 . The equation has no real solutions.

3  3cos   1  cos 2  cos 2   3cos   2  0

 cos   1 cos   2   0 cos   1  0 or cos   2  0 cos   1 cos   2  0 (not possible)

84.

The solution set is 0 . 4(1  sin  )  cos 2 

80.

4  4sin   1  sin 2  sin 2   4sin   3  0

 sin   1 sin   3  0 sin   1  0 sin   1 3  2

or

sin   3  0 sin   3 (not possible)

 3  The solution set is   . 2 

sec   tan   cot  1 sin  cos    cos  cos  sin  1 sin 2   cos 2   cos  sin  cos  1 1  cos  sin  cos  sin  cos  1 cos  sin   1   2   Since sec   and tan   do not exist, the 2   2 equation has no real solutions.

85. x  5cos x  0 Find the zeros (x-intercepts) of Y1  x  5cos x :

3 sec  2 3 sec2   1  sec  2 2sec2   2  3sec  tan 2  

81.

sec 2   tan   0



 



2sec   3sec   2  0 (2sec   1)(sec   2)  0 2sec   1  0 or sec   2  0 1 sec   2 sec    2  5  , (not possible) 3 3  5    The solution set is  , . 3 3 





2

 







x  1.31, 1.98, 3.84

86. x  4sin x  0 Find the zeros (x-intercepts) of Y1  x  4sin x :

csc2   cot   1

82.



1  cot   cot   1 2

cot   cot   0 cot  (cot   1)  0 2

cot   0 or cot   1  3  5  ,  , 2 2 4 4   5 3   The solution set is  , , , . 2  4 2 4

719

Copyright © 2020 Pearson Education, Inc.


Chapter 7: Analytic Trigonometry 



 





90. sin x  cos x  x Find the intersection of Y1  sin x  cos x and Y2  x : 

 











x  1.26



x   2.47, 0, 2.47

91. x 2  2 cos x  0

Find the zeros (x-intercepts) of Y1  x 2  2 cos x :

87. 22 x  17 sin x  3 Find the intersection of Y1  22 x  17 sin x and Y2  3 :

 

 







x  1.02, 1.02 

92. x 2  3sin x  0

x  0.52

Find the zeros (x-intercepts) of Y1  x 2  3sin x :

88. 19 x  8cos x  2 Find the intersection of Y1  19 x  8cos x and Y2  2 :

  







 



x  1.72, 0 

93. x 2  2sin  2 x   3 x

x   0.30

Find the intersection of Y1  x 2  2sin  2 x  and Y2  3 x :

89. sin x  cos x  x Find the intersection of Y1  sin x  cos x and Y2  x :





   







x  0, 2.15



 

x  1.26

720

Copyright © 2020 Pearson Education, Inc.




Section 7.3: Trigonometric Equations

On the interval  0, 2 , the zeros of f are

94. x 2  x  3cos(2 x)

 2 4 5 , , , . 3 3 3 3

Find the intersection of Y1  x and Y2  x  3cos(2 x) : 2





f  x  0

98.

2 cos  3 x   1  0  

 

2 cos  3 x   1



cos  3 x   



2 4  2k or 3x   2k 3 3 2 2k 4 2k   x or x  , 9 3 9 3 k is any integer On the interval  0,  , the zeros of f are

x   0.62, 0.81

3x 

95. 6sin x  e x  2, x  0

Find the intersection of Y1  6sin x  e x and Y2  2 : 

 

1 2

2 4 8 , , . 9 9 9



99. a. 

f  x  0 3sin x  0



sin x  0 x  0  2k or x    2k , k is any integer On the interval  2 , 4 , the zeros of f are

x  0.76, 1.35

96. 4 cos(3 x)  e x  1, x  0

2, , 0, , 2, 3, 4 .

Find the intersection of Y1  4 cos(3 x)  e x and Y2  1 :

b.

f  x   3sin x

 

x  0.31

97.

f  x  0 4sin 2 x  3  0

c.

4sin 2 x  3 sin 2 x 

3 4

3 3  4 2  2 x   k or x   k , k is any integer 3 3 sin x  

3 2 3 3sin x  2 1 sin x  2 f  x 

x

 6

721

Copyright © 2020 Pearson Education, Inc.

 2k or x 

5  2k , k is any integer 6


Chapter 7: Analytic Trigonometry

On the interval  2 , 4 , the solution set is

 7 5 x interval  2 , 4 is  x  6 6  5 7 17  19  or x or x . 6 6 6 6 

 11 7  5 13 17   , , , , ,  . 6 6 6 6 6   6

d. From the graph in part (b) and the results of 3 part (c), the solutions of f  x   on the 2  11 7 interval  2 , 4 is  x  x 6 6  or

101.

a.

 5 13 17  x or x . 6 6 6 6 

b.

2 cos x  0 3  2k or x   2k , k is any 2 2 integer On the interval  2 , 4 , the zeros of f are 

b.

f  x   4 4 tan x  4 tan x  1 Graphing y1  tan x and y2  1 on the

cos x  0 x

f  x   4 4 tan x  4 tan x  1     x x    k  , k is any integer 4  

f  x  0

100. a.

f  x   4 tan x

   interval   ,  , we see that y1  y2 for  2 2        x   or   ,   . 2 4  2 4

3   3 5 7 . , , , , , 2 2 2 2 2 2

f  x   2 cos x

  2

  2



102.

f  x   cot x

a. c.

cot x   3

f  x   3

 5   k  , k is any integer x x  6  

2 cos x   3 cos x  

f  x   3

3 2

b.

f  x   3 cot x   3

5 7  2k or x   2k , k is any 6 6 integer On the interval  2 , 4 , the solution set is

Graphing y1 

 7 5 5 7 17 19  , ,  ,  , , . 6 6 6 6 6   6

0 x

x

1 and y2   3 on the tan x interval  0,   , we see that y1  y2 for

d. From the graph in part (b) and the results of part (c), the solutions of f  x    3 on the

722

Copyright © 2020 Pearson Education, Inc.

5  5  or  0, . 6  6 


Section 7.3: Trigonometric Equations 

f  x  g  x

b.

x 2 cos  3  4 2 x 2 cos  1 2 x 1 cos  2 2 x  x 5   2k or   2k 2 3 2 3 2 10 x  4k or x   4k , 3 3 k is any integer  2 10  On  0, 4  , the solution set is  , . 3 3 



103. a, d.

f  x   3sin  2 x   2 ; g  x  

7 2

c.

From the graph in part (a) and the results of part (b), the solution of f  x   g  x  on 

0, 4 is  x

f  x  g  x

b.

7 2 3 3sin  2 x   2 1 sin  2 x   2

3sin  2 x   2 

2x 

6

f  x   4 cos x ; g  x   2 cos x  3

5  2k 6 5 x  k , 12

 2k or 2 x 

 k or 12 k is any integer x

105. a, d.

2 10   2 10  x  or  , . 3 3   3 3 

  5  On  0,  , the solution set is  ,  . 12 12 

c.

From the graph in part (a) and the results of part (b), the solution of f  x   g  x  on

b.

4 cos x  2 cos x  3

  5   5 0,  is  x  x   or  ,  . 12   12 12   12

104. a, d.

f  x  g  x 6 cos x  3 cos x 

x f  x   2 cos  3 ; g  x   4 2

3 1  6 2

2 4  2k or x   2k , 3 3 k is any integer  2 4  On  0, 2  , the solution set is  , .  3 3  x

723

Copyright © 2020 Pearson Education, Inc.


Chapter 7: Analytic Trigonometry c.

For k  0 , t  0 sec. 3 For k  1 , t   0.43 sec. 7 6 For k  2 , t   0.86 sec. 7 The blood pressure will be 100 mmHg after 0 seconds, 0.43 seconds, and 0.86 seconds.

From the graph in part (a) and the results of part (b), the solution of f  x   g  x  on 

0, 2  is  x 

106. a, d.

2 4   2 4  x ,  or  . 3 3   3 3 

f  x   2sin x ; g  x   2sin x  2

b. Solve P  t   120 on the interval  0,1 .  7  100  20sin  t   120  3   7  20sin  t   20  3 

b.

 7  sin  t 1  3 

f  x  g  x

7  t  2 k  , k is any integer 3 2 3  2k  12  , k is any integer t 7 We need 3  2k  12  0 1 7 0  2k  12  73

2sin x  2sin x  2 4sin x  2 sin x 

2 1  4 2

5  2k or x   2k , 6 6 k is any integer   5  On  0, 2  , the solution set is  ,  . 6 6  x

c.

 12  2k  11 6 11  14  k  12

From the graph in part (a) and the results of part (b), the solution of f  x   g  x  on 

0, 2 is  x 

3  0.21 sec 14 The blood pressure will be 120mmHg after 0.21 sec .

For k  0 , t 

 5    5   x   or  , . 6 6 6 6 

 7  107. P  t   100  20sin  t  3  a. Solve P  t   100 on the interval  0,1 .

c.

Solve P  t   105 on the interval  0,1 .  7  100  20sin  t   105  3   7  20sin  t  5  3 

 7  100  20sin  t   100  3   7  20sin  t  0  3 

 7  3 sin  t   3  4 7 3 t  sin 1   3 4

 7  sin  t  0  3  7 t  k , k is any integer 3

t

3

t  k , k is any integer

3 3 sin 1   7 4

On the interval  0,1 , we get t  0.03

7

seconds, t  0.39 seconds, and t  0.89 seconds. Using this information, along with

We need 0  73 k  1 , or 0  k  7 . 3 724

Copyright © 2020 Pearson Education, Inc.


Section 7.3: Trigonometric Equations

the results from part (a), the blood pressure will be between 100 mmHg and 105 mmHg for values of t (in seconds) in the interval 0, 0.03  0.39, 0.43  0.86, 0.89 .

t

  108. h  t   125sin  0.157t    125 2    a. Solve h  t   125sin  0.157t    125  125 2  on the interval  0, 40 .

2

c.

 k , k is any integer

0.157t  k 

t

k 

 2

For k  1, t 

  sin  0.157t    0 2    Graphing y1  sin  0.157 x   and y2  0 2  on the interval  0, 40 , we see that y1  y2 for

2  30 seconds . 0.157

10  x  30 .



2  50 seconds . 0.157 So during the first 40 seconds, an individual on the Ferris wheel is exactly 125 feet above the ground when t  10 seconds and again when t  30 seconds .

For k  2, t 

  125sin  0.157t    0 2 

2 

, k is any integer

  125sin  0.157t    125  125 2 

, k is any integer

2  10 seconds . For k  0, t  0.157



0.157

  Solve h  t   125sin  0.157t    125  125 2  on the interval  0, 40 .

2 , k is any integer 0.157

0

  2k

 20 seconds . 0.157   2  60 seconds . For k  1, t  0.157   4 For k  2, t   100 seconds . 0.157 So during the first 80 seconds, an individual on the Ferris wheel is exactly 250 feet above the ground when t  20 seconds and again when t  60 seconds .

  sin  0.157t    0 2  0.157t 

For k  0, t 

  125sin  0.157t    125  125 2    125sin  0.157t    0 2 

  2k , k is any integer 2 2 0.157t    2k , k is any integer

0.157t 

  b. Solve h  t   125sin  0.157t    125  250 2  on the interval  0,80 .





So during the first 40 seconds, an individual on the Ferris wheel is more than 125 feet above the ground for times between about 10 and 30 seconds. That is, on the interval 10  x  30 , or 10, 30  .

  125sin  0.157t    125  250 2    125sin  0.157t    125 2    sin  0.157t    1 2  725

Copyright © 2020 Pearson Education, Inc.


Chapter 7: Analytic Trigonometry

the interval  0, 20 , we see that y1  y2 for

109. d  x   70sin  0.65 x   150 a.

d  0   70sin  0.65  0    150

0  x  6.06 , 8.44  x  15.72 , and 18.11  x  20 .

 70sin  0   150



 150 miles

b. Solve d  x   70sin  0.65 x   150  100 on



the interval  0, 20 . 70sin  0.65 x   150  100



So during the first 20 minutes in the holding pattern, the plane is more than 100 miles from the airport before 6.06 minutes, between 8.44 and 15.72 minutes, and after 18.11 minutes.

70sin  0.65 x   50 sin  0.65 x   

5 7

 5 0.65 x  sin 1     2 k  7  5 sin 1     2 k  7 x 0.65 3.94  2 k 5.94  2 k x or x  , 0.65 0.65 k is any integer 3.94  0 5.94  0 For k  0 , x  or x  0.65 0.65  6.06 min  8.44 min

d. No, the plane is never within 70 miles of the airport while in the holding pattern. The minimum value of sin  0.65x  is 1 . Thus,

the least distance that the plane is from the airport is 70  1  150  80 miles. 110. R    672sin  2  a.

  interval  0,  .  2 672sin  2   450

3.94  2 5.94  2 or x  0.65 0.65  15.72 min  18.11 min

For k  1 , x 

450 225  672 336  225  2  sin 1    2k  336 

sin  2  

For k  2 , 3.94  4 5.94  4 or x  x 0.65 0.65  25.39 min  27.78 min

 225  sin 1    2k  336   2 0.7337  2k 2.408  2k  or   , 2 2 k is any integer

So during the first 20 minutes in the holding pattern, the plane is exactly 100 miles from the airport when x  6.06 minutes , x  8.44 minutes , x  15.72 minutes , and x  18.11 minutes . c.

Solve R    672sin  2   450 on the

the interval  0, 20 .

0.7337  0 2.408  0 or   2 2  0.36685  1.204

70sin  0.65 x   150  100

 21.02

For k  0 ,  

Solve d  x   70sin  0.65 x   150  100 on

70sin  0.65 x   50 sin  0.65 x   

For k  1 ,  

5 7

Graphing y1  sin  0.65 x  and y2  

5 on 7

0.7337  2 2

 68.98

or  

2.408  2 2

 3.508

 4.3456

 200.99

 248.98

So the golfer should hit the ball at an angle of either 21.02 or 68.98 . 726

Copyright © 2020 Pearson Education, Inc.


Section 7.3: Trigonometric Equations 

b. Solve R    672sin  2   540 on the   interval  0,  .  2 672sin  2   540 540 135  672 168  135  2  sin 1    2k  168 



sin  2  

So, the golf ball will travel at least 480 feet if the angle is between about 22.79 and 67.21 . d. No; since the maximum value of the sine function is 1, the farthest the golfer can hit the ball is 672 1  672 feet.

 135  sin 1    2k 168    2 0.9333  2k 2.2083  2k  or   , 2 2 k is any integer

111. Find the first two positive intersection points of Y1   x and Y2  tan x . 

 26.74

 63.26

0.9330  2 2

 3.608

or  

 



2.2083  2

 4.246

112. a.

Solve R    672sin  2   480 on the



Let L be the length of the ladder with x and y being the lengths of the two parts in each hallway. L  x y cos  

  interval  0,  .  2 672sin  2   480

x

480 672 5 sin  2   7 sin  2  

L( ) 

Graphing y1  sin  2 x  and y2 

3 x

4 y

sin  

3 cos 

y

4 sin 

3 4   3sec   4 csc  cos  sin 

3sec  tan   4 csc  cot   0 3sec  tan   4 csc  cot 

5 on the 7

sec  tan  4  csc  cot  3 4 tan 3   3

  interval  0,  and using INTERSECT, we  2 see that y1  y2 when 0.3978  x  1.1730 radians, or 22.79  x  67.21 .

4  1.10064 3   47.74º

tan   3

 



The first two positive solutions are x  2.03 and x  4.91 .

2

 206.72  243.28 So the golfer should hit the ball at an angle of either 26.74 or 63.26 .

c.

0.9330  0 2.2083  0 or   2 2  0.46665  1.10415

For k  0 ,  

For k  1 ,  

  2

  2

b.

L  47.74º  

3 4  cos  47.74º  sin  47.74º 

 9.87 feet



727

Copyright © 2020 Pearson Education, Inc.


Chapter 7: Analytic Trigonometry

c.

3 4  and use the cos x sin x MINIMUM feature:

Graph Y1  

114. a. 



An angle of   47.74 minimizes the length at L  9.87 feet .

2  42.4º or 137.6º

  21.2º

d. For this problem, only one minimum length exists. This minimum length is 9.87 feet, and it occurs when   47.74 . No matter if we find the minimum algebraically (using calculus) or graphically, the minimum will be the same. 113. a.

107 

(40) 2 sin(2 ) 9.8 110  9.8 sin(2 )   0.67375 402 2  sin 1  0.67375  110 

or 68.8º

b. The maximum distance will occur when the angle of elevation is 45 : (40) 2 sin  2(45)  R  45    163.3 9.8 The maximum distance is approximately 163.3 meter

(34.8) 2 sin  2 

c.

9.8 107(9.8)  0.8659 sin  2   (34.8) 2

Let Y1  

(40) 2 sin(2 x) : 9.8

2  sin 1  0.8659  2  60º or 120º

  30º or 60º

b. Notice that the answers to part (a) add up to 90 . The maximum distance will occur when the angle of elevation is 90  2  45 : (34.8)2 sin  2  45    123.6 R  45   9.8 The maximum distance is 123.6 meters. c.

Let Y1  

d.

(34.8) 2 sin(2 x) 9.8

115. 



sin 40  1.33 sin  2 1.33sin  2  sin 40



sin 40  0.4833 1.33  2  sin 1  0.4833  28.90

sin  2 

d.

728

Copyright © 2020 Pearson Education, Inc.


Section 7.3: Trigonometric Equations

116.

121. Here we have n1  1.33 and n2  1.52 . n1 sin  B  n2 cos B

sin 50  1.66 sin  2 1.66sin  2  sin 50

sin  B n2  cos  B n1

sin 50  0.4615 1.66  2  sin 1  0.4615   27.48

sin  2 

tan  B 

117. Calculate the index of refraction for each: v1 sin 1  1 2 v2 sin  2 sin10º  1.2477 10º 8º sin 8º sin 20º  1.2798 20º 15º 30 '  15.5º sin15.5º sin 30º  1.3066 30º 22º 30 '  22.5º sin 22.5º sin 40º  1.3259 40º 29º 0 '  29º sin 29º sin 50º  1.3356 50º 35º 0 '  35º sin 35º sin 60º  1.3335 60º 40º 30 '  40.5º sin 40.5º sin 70º 70º 45º 30 '  45.5º  1.3175 sin 45.5º sin 80º 80º 50º 0 '  50º  1.2856 sin 50º

n2 n1

 B  tan 1

n2  1.52   tan 1    48.8 n1  1.33 

122. If  is the original angle of incidence and  is sin   n2 . The sin  angle of incidence of the emerging beam is also 1  , and the index of refraction is . Thus,  is n2 the angle of refraction of the emerging beam. The two beams are parallel since the original angle of incidence and the angle of refraction of the emerging beam are equal.

the angle of refraction, then

Yes, these data values agree with Snell’s Law. The results vary from about 1.25 to 1.34. 118.

v1 2.998  108   1.56 v2 1.92  108 The index of refraction for this liquid is about 1.56.

123.

3sin   3 cos  0  cos  cos  3 tan   3  0

119. Calculate the index of refraction: sin 1 sin 40º   1.47 1  40º ,  2  26º ; sin  2 sin 26º

tan   



120. The index of refraction of crown glass is 1.52. sin 30º  1.52 sin  2

3 3

5  k , where k is any integer 6

5    k , where k is any integer   |   6  

1.52sin  2  sin 30

124. Substitute x  2  3 to get

sin 30  0.3289 sin  2  1.52  2  sin 1  0.3352   19.20

8  4 3  2 tan   2 cot   3 tan   3 cot   0 (1)

Substitute x  2  3 to get 8  4 3  2 tan   2 cot   3 tan   3 cot   0 (2)

The angle of refraction is about 19.20 .

Subtract equation (1) from equation (2) to get 8 3  2 3 tan   2 3 cot   0 .

729

Copyright © 2020 Pearson Education, Inc.


Chapter 7: Analytic Trigonometry

So, tan   cot   4 sin  cos    4 cos  sin  sin 2   cos 2   4sin  cos  1  4sin  cos  1 sin  cos    4

csc  

125. Answers will vary. 126. Since the range of y  sin x is 1  y  1 , then y  5sin x  x cannot be equal to 3 when x  4 or x   since you are multiplying the result by 5 and adding x.

sec  

1 1 10 10 10     cos   3 10  3 10 10 3  10   

cot  

1  3 tan 

130. y  2sin  2 x   

127. 6 x  y  x  log 6 y 128. x 

1 1  10  10   1    10   sin   10  10  10   10   

 ( 9)  ( 9) 2  4(2)(8) 2(2)

Amplitude:

A  2 2

Period:

T

Phase Shift:

     2 2

9  81  64 4 9  17  4 

 9  17 9  17  , So the zeros are  . 4   4 10 3 10 , cos   10 10  10    sin   10  10 10 1 tan       cos   3 10  10 3 10 3  10   

129. sin   

730

Copyright © 2020 Pearson Education, Inc.

2

 

2  2


Section 7.4: Trigonometric Identities 131. First find the inverse of the function. 1 y  e x 1  3 2 1 x 1 y 3  e 2 2( y  3)  e x 1 ln  2( y  3)   ln e

136.

x 1

ln 2  ln( y  3)  x  1 ln 2  ln( y  3)  1  x y  ln 2  ln( x  3)  1 Since the argument of the ln function must be positive then the domain of the inverse function is  x | x  3 or  3,   .

0 1 2

3 

3   2 1 3 2

Section 7.4 1. True

132. s  r

2. True

    15(36)    180   3  9.425 cm

3. identity; conditional 4. 1

133. ax  3 y  10 3 y  ax  10 a 10 y  x 3 3 a 2 3 a6 134.

1 f (1)  f   cos 1 1  cos 1 1 2  2 1 4 1 1 2

5. 0 6. True 7. False, you need to work with one side only. 8. True 9. c

3( x) 5  ( x)2 3x  5  x2 3x    f ( x) 5  x2 The function is odd.

10. b

f ( x) 

1 8 f (4)  f (1) 2 135. m   4 1 3 15  15 5  2   3 6 2

11. tan   csc  

sin  1 1   cos  sin  cos 

12. cot   sec  

cos  1 1   sin  cos  sin 

13.

cos  1  sin  cos  1  sin     1  sin  1  sin  1  sin 2  cos  1  sin    cos 2  1  sin   cos 

5 y  8   ( x  1) 2 5 5 y 8   x  2 2 5 21 y   x 2 2

731

Copyright © 2020 Pearson Education, Inc.


Chapter 7: Analytic Trigonometry

14.

15.

16.

sin  1  cos  sin  1  cos     1  cos  1  cos  1  cos 2  sin  1  cos    sin 2  1  cos   sin 

18.

sin   cos  cos   sin   cos  sin  sin 2   sin  cos   cos   cos   sin    sin  cos  2 sin   sin  cos   cos 2   cos  sin   sin  cos  2 2 sin   cos   sin  cos   cos  sin   sin  cos  1  sin  cos 

19.

tan  tan 2   2 tan   1  sec2   tan  tan 2   1  2 tan   sec2   tan  2 sec   2 tan   sec2   tan  2 tan   tan  2 3sin 2   4sin   1  3sin   1 sin   1  sin 2   2sin   1  sin   1 sin   1 

20.

1 1 1  cos v  1  cos v   1  cos v 1  cos v 1  cos v 1  cos v 

 sin   cos   sin   cos    1 sin  cos  sin 2   2sin  cos   cos 2   1  sin  cos  sin 2   cos 2   2sin  cos   1  sin  cos  1  2sin  cos   1  sin  cos  2sin  cos   sin  cos  2

3sin   1 sin   1

 cos   1 cos   1 cos 2   1  2 cos   cos   1 cos   cos  

2  1  cos 2 v 2  sin 2 v

17.

 tan   1 tan   1  sec2 

cos   1 cos 

21. csc   cos  

1 cos   cos    cot  sin  sin 

22. sec   sin  

1 sin   sin    tan  cos  cos 

23. 1  tan 2 ( )  1  ( tan  ) 2  1  tan 2   sec2  24. 1  cot 2 ( )  1  ( cot  ) 2  1  cot 2   csc2   sin  cos   25. cos  (tan   cot  )  cos      cos  sin    sin 2   cos 2    cos     cos  sin   1    cos     cos  sin   1  sin   csc 

732

Copyright © 2020 Pearson Education, Inc.


Section 7.4: Trigonometric Identities  cos  sin   26. sin  (cot   tan  )  sin      sin  cos    cos 2   sin 2    sin     sin  cos  

36. tan 2  cos 2   cot 2  sin 2  sin 2  cos 2  2   cos   sin 2  cos 2  sin 2   sin 2   cos 2  

1

1    sin     sin  cos   1  cos   sec 

37. sec 4   sec 2   sec 2  (sec2   1)  (tan 2   1) tan 2   tan 4   tan 2 

1  cos 2 u tan u  1  cos 2 u

38. csc 4   csc 2   csc 2  (csc2   1)

27. tan u cot u  cos 2 u  tan u 

 (cot 2   1) cot 2   cot 4   cot 2 

 sin 2 u

1 sin u  cos u cos u  1  sin u   1  sin u      cos u   1  sin u 

39. sec u  tan u 

1  cos 2 u sin u  1  cos 2 u

28. sin u csc u  cos 2 u  sin u 

 sin 2 u

29. (sec   1)(sec   1)  sec2   1  tan 2 

cos 2 u cos u (1  sin u ) cos u  1  sin u 

30. (csc   1)(csc   1)  csc2   1  cot 2  31. (sec   tan  )(sec   tan  )  sec 2   tan 2   1

1 cos u  sin u sin u  1  cos u   1  cos u      sin u   1  cos u 

32. (csc   cot  )(csc   cot  )  csc2   cot 2   1

40. csc u  cot u 

33. cos 2  (1  tan 2  )  cos 2   sec 2  1  cos 2   cos 2  1

sin 2 u sin u (1  cos u ) sin u  1  cos u

41. 3sin 2   4 cos 2   3sin 2   3cos 2   cos 2 

35. (sin   cos  ) 2  (sin   cos  ) 2

 3(sin 2   cos 2  )  cos 2 

 sin 2   2sin  cos   cos 2 

 3 1  cos 2 

 sin   2sin  cos   cos  2

 3  cos 2 

 2sin   2 cos  2

1  cos 2 u sin u (1  cos u )

34. (1  cos 2  )(1  cot 2  )  sin 2   csc 2  1  sin 2   2 sin  1

2

1  sin 2 u cos u (1  sin u )

2

 2(sin 2   cos 2  )  2 1 2

733

Copyright © 2020 Pearson Education, Inc.


Chapter 7: Analytic Trigonometry

1 sec  sin  cos  sin  47.    1 csc  cos  cos  sin  sin  sin    cos  cos   tan   tan   2 tan 

42. 9sec 2   5 tan 2   4sec 2   5sec2   5 tan 2   4sec 2   5(sec 2   tan 2  )  4sec 2   5 1  5  4sec 2 

43. 1 

cos 2  1  sin 2   1 1  sin  1  sin  (1  sin  )(1  sin  )  1 1  sin   1  1  sin  

48.

 1  1  sin   sin 

44. 1 

sin 2  1  cos 2   1 1  cos  1  cos  (1  cos  )(1  cos  )  1 1  cos   1  (1  cos  )

csc   1 csc   1 csc   1   cot  cot  csc   1 csc2   1  cot  (csc   1) cot 2  cot  (csc   1) cot   csc   1 

1 1 1  sin   csc  49. 1  sin  1  1 csc  csc   1  csc  csc   1 csc  csc   1 csc    csc  csc   1 csc   1  csc   1

 1  1  cos    cos  1 1 1  tan v cot v 45.  1  tan v 1  1 cot v 1   1   cot v cot v   1   1   cot v  cot v  cot v  1  cot v  1

1 1 cos   1 sec   50. 1 cos   1 1 sec  1  sec   sec  1  sec  sec  1  sec   1  sec 

1 1 csc v  1 sin v 46.  1 csc v  1 1 sin v  1   1 sin v    sin v   1   1 sin v   sin v  1  sin v  1  sin v

734

Copyright © 2020 Pearson Education, Inc.


Section 7.4: Trigonometric Identities

51.

1  sin v cos v (1  sin v) 2  cos 2 v   cos v 1  sin v cos v(1  sin v) 

55.

 sec2   2sec  tan   tan 2 

1  2sin v  sin v  cos v cos v(1  sin v) 2

2

1 1 sin  sin 2   2    cos  cos  cos 2  cos 2  1  2sin   sin 2   cos 2  (1  sin  )(1  sin  )  1  sin 2  (1  sin  )(1  sin  )  (1  sin  )(1  sin  ) 1  sin   1  sin  

1  2sin v  1 cos v(1  sin v) 2  2sin v  cos v(1  sin v) 2(1  sin v)  cos v(1  sin v) 2  cos v  2sec v

52.

56. (csc   cot  ) 2

cos v 1  sin v cos 2 v  (1  sin v) 2   1  sin v cos v cos v(1  sin v) 

 csc 2   2 csc  cot   cot 2  1 1 cos  cos 2  2     sin  sin  sin 2  sin 2  1  2 cos   cos 2   sin 2  (1  cos  )(1  cos  )  1  cos 2  (1  cos  )(1  cos  )  (1  cos  )(1  cos  ) 1  cos   1  cos  

cos v  1  2sin v  sin v cos v(1  sin v) 2

2

2  2sin v cos v(1  sin v) 2(1  sin v)  cos v(1  sin v) 2  cos v  2sec v 

1 sin  sin   sin 53.   1 sin   cos  sin   cos  sin  1  cos  1 sin  1  1  cot 

54. 1 

(sec   tan  ) 2

57.

sin 2  1  cos 2   1 1  cos  1  cos  1  cos  1  cos    1 1  cos   1  1  cos    cos 

cos  sin   1  tan  1  cot  cos  sin    sin  cos  1 1 cos  sin  cos  sin    cos   sin  sin   cos  cos  sin  cos 2  sin 2    cos   sin  sin   cos  cos 2   sin 2   cos   sin  (cos   sin  )(cos   sin  )  cos   sin   sin   cos 

735

Copyright © 2020 Pearson Education, Inc.


Chapter 7: Analytic Trigonometry

58.

cot  tan   1  tan  1  cot  cos  sin   sin   cos  sin  cos  1 1 cos  sin  cos  sin  sin  cos    cos   sin  sin   cos  cos  sin  cos 2  sin 2    sin  (cos   sin  ) cos  (sin   cos  ) 

 cos 2   cos   sin 2   sin  sin  cos  (sin   cos  )

sin 3   cos3  sin  cos  (sin   cos  )

(sin   cos  )(sin 2   sin  cos   cos 2  ) sin  cos  (sin   cos  )

1 (sin  cos  )  sin  cos  cos 2  60.  2 2 cos   sin  (cos 2   sin 2  )  1 cos 2  sin   cos 2 sin  1 cos 2  tan   1  tan 2 

61.

tan 2   2 tan  (sec   1)  sec2   2sec   1 tan 2   (sec2   2sec   1)

sec 2   1  2 tan  (sec   1)  sec 2   2sec   1 sec 2   1  sec 2   2sec   1 2 2sec   2sec   2 tan  (sec   1)  2sec   2 2sec  (sec   1)  2 tan  (sec   1)  2sec   2 2(sec   1)(sec   tan  )  2(sec   1)  tan   sec  

sin 2   sin  cos   cos 2  sin  cos  2 sin  cos  cos 2  sin     sin  cos  sin  cos  sin  cos  sin  cos   1 cos  sin   1  tan   cot  

59. tan  

tan   sec   1 tan   sec   1 tan   (sec   1) tan   (sec   1)   tan   (sec   1) tan   (sec   1)

cos  sin  cos    1  sin  cos  1  sin  sin  (1  sin  )  cos 2   cos  (1  sin  )

62.

sin   sin 2   cos 2  cos  (1  sin  ) sin   1  cos  (1  sin  ) 1  cos   sec  

sin   cos   1 sin   cos   1 (sin   cos  )  1 (sin   cos  )  1   (sin   cos  )  1 (sin   cos  )  1

sin 2   cos 2   sin   cos   sin   cos   1 (sin   cos  ) 2  1

sin 2   cos 2   2sin   1 sin 2   2sin  cos   cos 2   1 sin 2   (1  sin 2  )  2sin   1  2sin  cos   1  1 2sin 2   2sin   2sin  cos  2sin  (sin   1)  2sin  cos  sin   1  cos  

736

Copyright © 2020 Pearson Education, Inc.


Section 7.4: Trigonometric Identities sin  cos   tan   cot  cos  sin   63. tan   cot  sin   cos  cos  sin  sin 2   cos 2   sin   cos sin 2   cos 2  cos  sin  sin 2   cos 2   1  sin 2   cos 2 

sin u cos u  tan u  cot u  2 cos 2 u  cos u sin u  2 cos 2 u 66. sin u cos u tan u  cot u  cos u sin u sin 2 u  cos 2 u u sin u  2 cos 2 u  cos sin 2 u  cos 2 u cos u sin u sin 2 u  cos 2 u   2 cos 2 u 1  sin 2 u  cos 2 u 1

1 cos 2   sec   cos  cos  cos   64. sec   cos  1 cos 2   cos  cos 

1 sin   sec   tan  cos  cos   67. cot   cos  cos   cos  sin  1  sin  cos   cos   cos  sin  sin  1  sin  sin    cos  cos  (1  sin  ) sin  1   cos  cos   tan  sec 

1  cos 2   cos 2 1  cos  cos  1  cos 2   1  cos 2  sin 2   1  cos 2 

sin u cos u  tan u  cot u 65.  1  cos u sin u  1 sin u cos u tan u  cot u  cos u sin u sin 2 u  cos 2 u u sin u  1  cos sin 2 u  cos 2 u cos u sin u sin 2 u  cos 2 u  1 1  sin 2 u  cos 2 u  1

1 sec  cos  68.  1  sec  1  1 cos  1  cos  cos   1 cos  1    1  cos       1  cos    1  cos   1  cos   1  cos 2  1  cos   sin 2 

 sin 2 u  (1  cos 2 u )  sin 2 u  sin 2 u  2sin 2 u

737

Copyright © 2020 Pearson Education, Inc.


Chapter 7: Analytic Trigonometry

69.

70.

1  tan 2  1  tan 2  1  tan 2  1   2 1  tan  1  tan 2  1  tan 2  1  tan 2   1  tan 2   1  tan 2  2 2   2 1  tan  sec 2  1  2 2 sec   2 cos 2 

1  cos  cos  1  cos 2   cos  sin 2   cos  sin   sin   cos   sin  tan 

73. sec   cos  

sin  cos   cos  sin  sin 2   cos 2   sin  cos  1  sin  cos  1 1   cos  sin   sec  csc 

1  cot 2  1  cot 2   2 cos 2    2 cos 2  2 2 1  cot  csc  1 cot 2     2 cos 2  csc 2  csc 2  cos 2  2  sin 2   sin   2 cos 2  1 sin 2  2  sin   cos 2   2 cos 2 

74. tan   cot  

 sin 2   cos 2 

75.

1

71.

72.

sec   csc  sec  csc    sec  csc  sec  csc  sec  csc  1 1   csc  sec   sin   cos  sin 2   tan  cos 2   cot  sin  sin 2   cos   cos  2 cos   sin  2 sin  cos   sin  cos   cos 2  sin   cos  sin  sin 2  cos   sin  sin    2 cos  cos  sin   cos  sin  (sin  cos   1) sin    cos  cos  (cos  sin   1)

76.

1 1 1  sin   1  sin    1  sin  1  sin  (1  sin  )(1  sin  ) 2  1  sin 2  2  cos 2   2sec 2  1  sin  1  sin   1  sin  1  sin  (1  sin  ) 2  (1  sin  ) 2  (1  sin  )(1  sin  ) 1  2sin   sin 2   (1  2sin   sin 2  ) 1  sin 2  4sin   cos 2  sin  1  4  cos  cos   4 tan  sec  

sin 2  cos 2   tan 2  

738

Copyright © 2020 Pearson Education, Inc.


Section 7.4: Trigonometric Identities

77.

78.

sec   sec    1  sin      1  sin   1  sin    1  sin   sec  (1  sin  )  1  sin 2  sec  (1  sin  )  cos 2  1 1  sin    cos  cos 2  1  sin   cos3 

80.

1  sin  (1  sin  )(1  sin  )  1  sin  (1  sin  )(1  sin  )

81.

(1  sin  ) 2 1  sin 2  (1  sin  ) 2  cos 2  

 1  sin      cos  

2

sin    1     cos  cos    (sec   tan  ) 2

2

82.

(sec v  tan v) 2  1 79. csc v(sec v  tan v) 

sec2 v  2sec v tan v  tan 2 v  1 csc v(sec v  tan v)

sec 2 v  2sec v tan v  sec2 v csc v(sec v  tan v)

2sec 2 v  2sec v tan v csc v(sec v  tan v) 2sec v(sec v  tan v)  csc v(sec v  tan v) 2sec v  csc v 1 2  cos v 1 sin v 1 sin v  2  cos v 1 sin v  2 cos v  2 tan v

83.

sec2 v  tan 2 v  tan v 1  tan v  sec v sec v sin v 1 cos v  1 cos v cos v  sin v cos v  1 cos v  cos v  sin v sin   cos  sin   cos   cos  sin  sin  cos  sin  cos      cos  cos  sin  sin  sin  cos   11 cos  sin  2 2 sin   cos   cos  sin  1  cos  sin   sec  csc  sin   cos  cos   sin   sin  cos  sin  cos  cos  sin      sin  sin  cos  cos  cos  sin   1 1 sin  cos  cos 2   sin 2   cos  sin  1  cos  sin   sec  csc  sin 3   cos3  sin   cos  (sin   cos  )(sin 2   sin  cos   cos 2  )  sin   cos  2 2  sin   cos   sin  cos   1  sin  cos 

739

Copyright © 2020 Pearson Education, Inc.


Chapter 7: Analytic Trigonometry

84.

85.

sin 3   cos3  1  2 cos 2  (sin   cos  )(sin 2   sin  cos   cos 2  )  1  cos 2   cos 2  (sin   cos  )(sin 2   cos 2   sin  cos  )  sin 2   cos 2  (sin   cos  )(1  sin  cos  )  (sin   cos  )(sin   cos  ) 1 1  sin  cos  cos    1 sin   cos  cos  1  sin   cos  sin  1 cos  sec   sin   tan   1

88.

89.

1  2sin   sin 2   2cos (1  sin  )  cos 2  1  2sin   sin 2   cos 2  1  2sin   sin 2   2cos (1  sin  )  (1  sin 2  )  1  2sin   sin 2   (1  sin 2  ) 2  2sin   2cos (1  sin  )  2sin   2sin 2  2(1  sin  )  2cos (1  sin  )  2sin  (1  sin  ) 2(1  sin  )(1  cos )  2sin  (1  sin  ) 1  cos  sin 

cos 2  cos 2   sin 2 

 cos 2 

86.

90.

cos   sin   sin 3  cos  sin  sin 3     sin  sin  sin  sin   cot   1  sin 2 

1  cos   sin  1  cos   sin  (1  cos  )  sin  (1  cos  )  sin    (1  cos  )  sin  (1  cos  )  sin  1  2cos  cos 2   2sin  (1  cos )  sin 2  1  2cos  cos 2   sin 2  1  2cos  cos 2   2sin  (1  cos )  1  cos 2   1  2cos  cos 2   (1  cos 2  ) 

 cot   cos 2  2

 2 cos 2   (sin 2   cos 2  )  (2 cos 2   1)2  87. cos 4   sin 4  (cos 2   sin 2  )(cos 2   sin 2  ) 

1  sin   cos  1  sin   cos  (1  sin  )  cos  (1  sin  )  cos    (1  sin  )  cos  (1  sin  )  cos  

cos 2   sin 2  cos 2   sin 2   1  tan 2  sin 2  1 cos 2  2 cos   sin 2   cos 2   sin 2  cos 2    cos 2   sin 2   

1  2 cos 2  1  cos 2   cos 2   sin  cos  sin  cos  2 sin   cos 2   sin  cos  sin 2  cos 2    sin  cos  sin  cos  sin  cos    cos  sin   tan   cot 

2  2 cos   2sin  (1  cos  ) 2 cos   2 cos 2  2(1  cos  )  2sin  (1  cos  )  2 cos  (1  cos  ) 2(1  cos  )(1  sin  )  2 cos  (1  cos  ) 1  sin   cos  1 sin    cos  cos   sec   tan 

(cos 2   sin 2  ) 2 (cos   sin 2  )(cos 2   sin 2  ) 2

cos 2   sin 2  cos 2   sin 2   cos 2   sin 2  

 1  sin 2   sin 2   1  2sin 2 

740

Copyright © 2020 Pearson Education, Inc.


Section 7.4: Trigonometric Identities

91. (a sin   b cos  ) 2  (a cos   b sin  ) 2

96. (sin   cos  ) 2  (cos   sin  )(cos   sin  )

 a 2 sin 2   2ab sin  cos   b 2 cos 2 

 sin 2   2sin  cos   cos 2   cos 2   sin 2    2sin  cos   2cos 2    2cos  (sin   cos  )

 a 2 cos 2   2ab sin  cos   b 2 sin 2   a 2 (sin 2   cos 2  )  b 2 (sin 2   cos 2  )  a 2  b2

92. (2a sin  cos ) 2  a 2 (cos 2   sin 2  ) 2  4a 2 sin 2  cos 2 

 a 2 cos 4   2cos 2  sin 2   sin 4 

  a  cos   2cos  sin   sin    a  cos   sin  

 a 4sin  cos   cos   2cos  sin   sin  2

2

2

4

2

2

 a 1 2

2

4

2

2

2

2

2

4

97. ln sec   ln

1 1  ln cos    ln cos  cos 

98. ln tan   ln

sin   ln sin   ln cos  cos 

99. ln 1  cos   ln 1  cos 

 ln  1  cos   1  cos  

4

 ln 1  cos 2 

2

 ln sin 2 

2

 2 ln sin 

 a2

93.

100. ln sec   tan   ln sec   tan 

tan   tan  tan   tan   1 1 cot   cot   tan  tan  tan   tan   tan   tan  tan  tan 

 ln  sec   tan   sec   tan    ln sec2   tan 2   ln tan 2   1  tan 2   ln 1

 tan  tan    (tan   tan  )     tan   tan  

0

101.

 tan  tan 

f  x   sin x  tan x

 sin x 

94. (tan   tan  )(1  cot  cot  )  (cot   cot  )(1  tan  tan  )  tan   tan   tan  cot  cot   tan  cot  cot   cot   cot   cot  tan  tan   cot  tan  tan   tan   tan   cot   cot   cot   cot   tan   tan  0

sin x cos x

sin 2 x cos x 1  cos 2 x  cos x 1 cos 2 x   cos x cos x  sec x  cos x 

 g  x

95. (sin   cos  ) 2  (cos   sin  )(cos   sin  )  sin 2   2sin  cos   cos 2   cos 2   sin 2   2sin  cos   2 cos 2   2 cos  (sin   cos  )

741

Copyright © 2020 Pearson Education, Inc.


Chapter 7: Analytic Trigonometry

102.

f  x   cos x  cot x  cos x 

cos x sin x

 4 sec 2   4sec 

Since sec   0 for 

cos 2 x  sin x 1  sin 2 x  sin x 1 sin 2 x   sin x sin x  csc x  sin x

f      

1  sin  cos   cos  1  sin  1  sin   1  sin   cos  1  sin  

 2

.

1  sin 2   cos 2  cos  1  sin  

1   sin 2   cos 2  

1  2 cos 2      cos   cos 2  cos 2  

 1200

1  2  cos 2     cos   cos 2  

cos  1  sin  

0 cos  1  sin  

1  2   1  2 cos   cos  

 1200 cos   cos 

1  sin    cos 

1200 1  1  cos 2  cos 

3

1200 1  sin 2 

cos  3

108. I t  4 A2

 csc  1 sec  tan  

csc  sec  csc   1 sec   tan   4 A2  csc  sec  1   tan    1  4 A2  1  csc    sec   

 g   f    tan   sec 

 4 A2 1  sin  1  sin  

sin  1  cos  cos  1  sin   cos  1  sin  1  sin    cos  1  sin  1  sin 2   cos  1  sin   

 

107. 1200sec  2sec2   1  1200

0

104.

2

 3 tan 2   3 tan  3 Since tan   0 for     . 2

11  cos  1  sin   

9sec 2   9  9 sec 2   1

106.

 g  x

103.

16  16 tan 2   16 1  tan 2 

105.

 4 A2 1  sin 2 

 4 A2 cos 2    2 A cos  

2

109. Let   sin 1 (x) . Then  x  sin  . So, x   sin   sin( ) because the sine function is

odd. This means   sin 1 x , and    sin 1 x . So, sin 1 ( x)   sin 1 x .

cos  cos  1  sin   2

cos  1  sin   g   

742

Copyright © 2020 Pearson Education, Inc.


Section 7.4: Trigonometric Identities

1 1 110. Let   tan 1   . Then  tan  . So x x   1 x  cot  . This means   cot 1 x . So, tan  1 cot 1 x  tan 1    x

118.

 /20

 /2 0 1 2    /2 

8  (4)    5   3  2

2

.

2

 16(13)  4 13

1 2 1  r   (8) 2 (54) 2 2 180 48 2  m  30.159 m 2 5

120. A 

113 – 114. Answers will vary. 115. Since a is negative then the graph opens up so the function has a maximum value. To find the maximum value we can find the vertex.

121. tup  tdown  6 hr

b 120 x   20 2a 2( 3)

dup

f (20)  3(20) 2  120(20)  50  1250

8 8  6 r 1 r 1

The vertex is (20,1250) so the maximum value of the function is 1250.

tup

d down 6 tdown

8(r  1)  8(r  1)  6(r 2  1) 8r  8  8r  8  6r 2  6

x 1 f ( x)  116. ; g ( x)  3 x  4 x2 (3x  4)  1 ( f  g )( x)  (3 x  4)  2 3x  3  3x  6 3( x  1)  3( x  2) x 1  x2

6r 2  16r  6  0 3r 2  8r  3  0 (3r  1)(r  3)  0 r 3

So, if no current, d  rt  3(6)  18 mi 122. If the angle is in quadrant III then x  8 and y  5. Solving for r we get:

117. For the point ( 12,5) , x  12 , y  5 ,

r  x 2  y 2  144  25  169  13 5 13 12 cos    13 5 tan    12

cos  / 2   cos  0 

 122  82  144  64  208

112. sin 2   cos 2   1 tan 2   1  sec2  1  cot 2   csc2 

sin  

The average rate of change is 

119.

111. Answers will vary.

f  / 2   f  0 

13 5 13 sec    12 12 cot    5

(8) 2  (5) 2  r 2 64  25  r 2 r  89

csc  

Since the secant function is negative in Quadrant r 89 III, the answer is sec     . x 8

743 Copyright © 2020 Pearson Education, Inc.


Chapter 7: Analytic Trigonometry 8. False

123. x 2  y 2  12 x  4 y  31  0 x 2  12 x  y 2  4 y  31

9. False

x  12 x  36  y  4 y  16  31  36  4

10. True

 x  6   y  2  9

11. a

2

2

2

124.

2

f  g ( x) 

12. d

x3 4 . x6

13. cos165º  cos 120º  45º   cos120º  cos 45º  sin120º  sin 45º

The domain of f is  x | x  4 .

1 2 3 2     2 2 2 2 1 2 6  4

The domain of g is  x | x  x  6 . x3 4 0 x6 x3 4 x6 x  3  4  x  6

14. sin105º  sin  60º  45º   sin 60º  cos 45º  cos 60º  sin 45º

x  3  4 x  24

3 2 1 2    2 2 2 2 1  6 2 4 

3 x  27

x9 The domain of f  g is  x | 6  x  9

 5  2   1   3  2

2

 32  42  9  16  25  5

2. 

3. a. b.

3 5 2 1 2   2 2 4 1

1 1  2 2

96 3 3 93

12  6 3 6

 2 3

4. y  4, r  5, x  3 (Quadrant 2) 3 x cos     5 r 5. congruent 6.

2 2 1 ;  ; 2 2 3 3

7. a.

b.

15. tan15º  tan(45º  30º ) tan 45º  tan 30º  1  tan 45º  tan 30º 3 1 3 3  3 3 1  1 3 3 3 3 3   3 3 3 3

Section 7.5 1.

744

Copyright © 2020 Pearson Education, Inc.


Section 7.5: Sum and Difference Formulas 16. tan195º  tan(135º 60º ) tan135º  tan 60º  1  tan135º  tan 60º 1  3  1  (1)  3 

1  3 1  3  1 3 1 3

1  2 3  3 1 3

4 2 3 2

20. tan

7  3 4   tan    12  12 12    tan  tan 4 3    1  tan  tan 4 3 1 3  1  1 3  1 3   1 3         1 3   1 3  

1 2 3  3 1 3

42 3 2

 2 3

5  3 2   sin   17. sin  12  12 12       sin  cos  cos  sin 4 6 4 6 2 3 2 1     2 2 2 2 1  6 2 4

18. sin

19. cos

7  4 3   cos    12  12 12       cos  cos  sin  sin 3 4 3 4 1 2 3 2     2 2 2 2 1 2 6  4

21. sin

  3 2   sin    12  12 12       sin  cos  cos  sin 4 6 4 6 2 3 2 1     2 2 2 2 1  6 2 4

 2 3

17  15 2   sin    12  12 12  5 5    sin  cos  cos  sin 4 6 4 6 2 3  2 1       2 2  2  2 1  6 2 4

22. tan

19  15 4   tan    12  12 12  5  tan  tan 4 3  5  1  tan  tan 4 3 

1 3 1  1 3

1 3 1 3  1 3 1 3

1 2 3  3 1 3

42 3 2

 2 3

745 Copyright © 2020 Pearson Education, Inc.


Chapter 7: Analytic Trigonometry



25. sin 20º  cos10º  cos 20º  sin10º  sin(20º  10º )  sin 30º 1  2

1 1     3 4  cos    cos     12   12 12  1      cos  cos  sin  sin 4 3 4 3 1  2 1 2 3    2 2 2 2 1  2 6 4 4 2 6   2 6 2 6

23. sec      12 

26. sin 20º  cos80º  cos 20º  sin 80º  sin(20º  80º )  sin( 60º )   sin 60º 

27. cos 70º  cos 20º  sin 70º  sin 20º  cos(70º  20º )  cos 90º 0

4 2 4 6 26 4 2 4 6  4  6 2 

 5 

5

28. cos 40º  cos10º  sin 40º  sin10º  cos(40º  10º )  cos 30º  1

24. cot      cot  12 tan 5  12 

29.

12 1   3 2  tan     12 12  1    tan  tan 4 6   1  tan  tan 4 6     1  tan 4  tan 6      tan   tan   4 6   1 1  1 3 3  1 3 1 3



3 2

3 2

tan 20º  tan 25º  tan  20º 25º  1  tan 20º tan 25º  tan 45º 1

30.

tan 40º  tan10º  tan  40º 10º  1  tan 40º tan10º  tan 30º 

31. sin

3 3

  7 7   7   cos  cos  sin  sin    12 12 12 12  12 12   6   sin     12     sin     2  1

3 1 3 1  3 1 3 1

32. cos

3  3  3 1 3 1 42 3  2 

5 7 5 7  5 7    cos  sin  sin  cos    12 12 12 12  12 12  12  cos 12  cos   1

 2  3

746

Copyright © 2020 Pearson Education, Inc.


Section 7.5: Sum and Difference Formulas

33. cos

  5 5   5   cos  sin  sin  cos    12 12 12 12  12 12 

a.

3 2 5 4  5        5 5 5  5 

 4   cos     12     cos     3   cos 3 1  2

34. sin

sin(   )  sin  cos   cos  sin 

b.

  5 5   5   cos  cos  sin  sin    18 18 18 18  18 18  6  sin 18   sin 3

c.

y

y

5

d.

2 5, y 

x

11 5 25

tan  

3 4

2 5   y  5 , y  0 2

y 2  25  20  5, y  0 y 5 5  5 1 , tan    5 2 2 5

2 5 5 tan   tan  1  tan   tan 

3  1   4  2   3  1  1       4  2  5  4 5 8 2

x4

sin   

tan(   ) 

x 2  25  9  16, x  0

2

8 5 3 5 25

x

x 2  32  52 , x  0

2

2 5

3

4 , 5

4 2 5 3  5       5 5 5  5 

6 54 5 25 10 5  25

(x, 3)

cos  

y

x

2 5 25

3 2 5 4  5        5 5 5  5 

2 5  ,   0 5 2

sin(   )  sin  cos   cos  sin 

3  35. sin   , 0    5 2

5

6 54 5 25

cos(   )  cos  cos   sin  sin 

3  2

cos  

5  , 0  5 2 4  sin    ,     0 5 2

36. cos  

747 Copyright © 2020 Pearson Education, Inc.


Chapter 7: Analytic Trigonometry y

y

 5, y  5

y

x 

5

 5  y  5 , y  0 2

2

2

y 2  25  5  20, y  0 y  20  2 5 sin  

2 5 , 5

tan  

2 5 5

2

4  37. tan    ,     3 2 1  cos   , 0    2 2 y 

x  ( 4)  5 , x  0 2

2

2

x 2  25  16  9, x  0 x3 3 cos   , 5

a.

tan  

4 4  3 3

sin(   )  sin  cos   cos  sin 

sin  

c.

11 5 25

4 , 5

sin  

a.

cos  

3 3  5 5

3 , 2

tan  

3  3 1

sin(   )  sin  cos   cos  sin   4  1  3  3                5   2   5   2 

 2 5  3  5   4               5  5  5   5

6 54 5 25

b.

43 3 10

cos(   )  cos  cos   sin  sin   3 1  4  3                5   2   5   2 

10 5  25 

1

y 3

sin(   )  sin  cos   cos  sin 

 x

y 2  4  1  3, y  0

 5  3  2 5   4               5  5  5   5

y

12  y 2  22 , y  0

cos(   )  cos  cos   sin  sin 

3 5 8 5 25

r 2  (3) 2  42  25 r 5

2 5 25

(1, y) 2



6 54 5  25

b.

y

r

4

 2 5  3  5   4               5  5  5   5

tan   tan  1  tan  tan 

 4 2   3   4 1 2     3 10  3 5  3  2

(x, )

x

5

tan(   ) 

d.

x

2 5 5

748

Copyright © 2020 Pearson Education, Inc.

3  4 3 10

x


Section 7.5: Sum and Difference Formulas sin(   )  sin  cos   cos  sin 

c.

sin(   )  sin  cos   cos  sin 

a.

3   12   1   5               13   2   13   2 

 4 1  3  3                5   2   5   2  

43 3 10

cos(   )  cos  cos   sin  sin 

b.

tan   tan  1  tan  tan  4   3 3   4 1     3  3

tan(   ) 

d.

3  5   1  12                   13 2      13   2  

3   12   1   5               13   2   13   2  

tan(   ) 

d.

 48  25 3 39 25 3  48  39 5 3 ,   12 2 1 3 sin    ,     2 2

38. tan  



x

540  507 3  180 1296  75 720  507 3  1221 240  169 3  407

y x

(x, )



5 3 ,      13 2  tan    3,     2

39. sin  

r 2  (12) 2  (5) 2  169 r  13

5 5 12 12   , cos    13 13 13 13 2 2 2 x  (1)  2 , x  0



5

x  4  1  3, x  0 2

3

x

x 3

3 , 2

tan  

1  3

1, 3 

y

(x, )

sin  

cos   

tan   tan  1  tan   tan 

y

r

5 3  12 26

5 3 54 3  12 3 12   5 3 36  5 3 1  12 3 36  15  12 3   36  5 3         36  5 3   36  5 3 

x

12 3  5 26

sin(   )  sin  cos   cos  sin 

c.

43 3 3  3 4 3 3  43 3   3 4 3         3 4 3   3 4 3 

 

5 3  12 12  5 3  26 26

3 3

749 Copyright © 2020 Pearson Education, Inc.

y

r 

x



x


Chapter 7: Analytic Trigonometry 1  ,    0 2 2 1  sin   , 0    3 2

x 2  52  132 , x  0

40. cos  

x  169  25  144, x  0 2

x  12

cos  

12 12  , 13 13

tan   

5 12

y

2

r 2  (1) 2  3  4

sin  

a.

3 1 1 , cos    2 2 2

sin  

5  12 3 5  12 3 or  26 26

x 82 2

cos  

12  5 3 26

a.

2 2 , 3

2 4

1 2 6 6

3  1 1 2 2               2   3   2   3 

c.

32 2 6

sin(   )  sin  cos   cos  sin   3   2 2  1 1               2   3   2 3

5  12 3 12  12  5 3 12  5  12 3   12  5 3         12  5 3   12  5 3  

cos(   )  cos  cos   sin  sin 

tan(   ) 

1 2 2

sin(   )  sin  cos   cos  sin 

b.

tan  

 3   2 2  1 1               2   3   2  3

5  12 3 26

tan   tan  1  tan  tan  5    3 12   5 1      3  12 

3

x 2  9  1  8. x  0

 5   1   12   3                 13   2   13   2 

d.

x

 3 3  3  , tan    2 2 1

sin(   )  sin  cos   cos  sin 

x

x 2  12  32 , x  0

 12   1   5   3                 13   2   13   2 

c.

y 3

cos(   )  cos  cos   sin  sin 

3 

(1, y)

y 2  4  1  3, y  0

 5   1   12   3                 13   2   13   2 

b.

(x, 1)

12  y 2  22 , y  0

sin(   )  sin  cos   cos  sin 

x

y

2

r2

y

 240  169 3 69

750

Copyright © 2020 Pearson Education, Inc.

1  2 6 6


Section 7.5: Sum and Difference Formulas

d.

tan(   ) 

tan   tan  1  tan  tan 

d.

2  3 4

 42

1  3 

4 3  2 4  4 6 4  4 3  2   4 6         4 6   4 6 

 2 2 1   2 2 1         2 2  1   2 2 1 

16 3  4 2  4 18  12 16  6

18 3  16 2 10

8  4 2 1 8 1

9 3  8 2 5

4 2 7

42. cos  

1 cos    1  sin    1    3

2

a.

sin    1  cos 2  1   1   4

1 9

  1



8 9





2 2 3

15 16



15 4

    sin      sin   cos  cos   sin 6 6 6 

b.

 1  3   2 2  1         3   2   3   2   

c.

1 ,  in quadrant IV 4

2

  1

b.

1  2 2  2 2 2 2 1 2 2

1 41. sin   ,  in quadrant II 3

a.

  tan   tan 4  tan      4  1  tan   tan   4 1  1 2 2  1   1    1  2 2

 2 2  1   1  3           3   2   3   2   

1 16

    sin      sin   cos  cos   sin 6 6 6   15   3   1   1                4   2  4 2

3  2 2 2 2  3  6 6

    cos      cos   cos  sin   sin 3 3 3 

2

c.

1  3 5 8

    cos      cos   cos  sin   sin 3 3 3 

2 2  3 6

 1   1   15   3              4   2   4   2  

751 Copyright © 2020 Pearson Education, Inc.

1 3 5 8


Chapter 7: Analytic Trigonometry

d.

 tan   tan   4 tan      4  1  tan   tan   4  15  1  1   15 1

44. From the solution to Problem 43, we have 2 2 1 3 , sin   , and sin   , cos   3 2 2 1 cos   . Thus, 3 g      cos    

 cos   cos   sin   sin 

 1  15   1  15         1  15   1  15  

 3  1   1  2 2            3   2  3   2  

1  2 15  15 1  15

16  2 15 14 8  15  7 

45. From the solution to Problem 43, we have 2 2 1 3 sin   , cos   , sin   , and 3 2 2 1 cos   . Thus, 3 g      cos    

43.  lies in quadrant I . Since x 2  y 2  4 , r  4  2 . Now, ( x, 1) is on the circle, so x 2  12  4

 cos   cos   sin   sin 

x 2  4  12

 3  1   1  2 2             3   2  3   2 

x  4  12  3 y 1 x 3  and cos    . r 2 r 2  lies in quadrant IV . Since x 2  y 2  1 ,

Thus, sin  

1  r  1  1 . Now,  , y  is on the circle, so 3  2

2

 sin   cos   cos   sin 

2

8 2 2 1 y   1      9 3 3

 1  1   3   2 2           3   2  3   2  

y 23 2 2 2 and   r 1 3 x 1 1 cos    3  . Thus, r 1 3 f      sin    

Thus, sin  

1 2 6 1 2 6   6 6 6

47. From the solution to Problem 43, we have 2 2 1 3 sin   , cos   , sin   , and 3 2 2 1 cos   . Thus, 3

 sin   cos   cos   sin   1   1   3  2 2            3   2   3   2   

3 2 2 32 2   6 6 6

46. From the solution to Problem 43, we have 2 2 1 3 sin   , cos   , sin   , and 2 3 2 1 cos   . Thus, 3 f      sin    

1 2    y 1 3 1 y2  1   3

3 2 2 32 2   6 6 6

1 2 6 1 2 6   6 6 6

752

Copyright © 2020 Pearson Education, Inc.


Section 7.5: Sum and Difference Formulas

1 sin  1 3 and tan    2   cos  3 3 3 2 2 2  sin  3  2 2 . Finally, tan    1 cos  3 tan   tan  h      tan      1  tan  tan 

3  2 2 3  3 1 2 2 3 3 2 2 3 3   2 6 3 1 3 3 6 2 3 2 6   3 2 6 3 2 6 

51. sin       sin   cos   cos   sin   sin 

52. cos       cos   cos   sin   sin   1  cos   0  sin    cos 

53. sin       sin   cos   cos   sin   0  cos    1 sin 

3 3  6 2  18 2  24 3

  sin 

9  6 6  6 6  24

54. cos       cos   cos   sin   sin 

48. From the solution to Problem 47, we have 3 and tan   2 2 . Thus, tan   3 tan   tan  h      tan      1  tan  tan 

3  2 2 3  3 1 2 2 3 3 2 2 3 3   2 6 3 1 3 3  6 2 3 2 6   3 2 6 3 2 6

    50. cos      cos  cos   sin  sin  2 2 2   0  cos   1  sin    sin 

 0  cos    1 sin 

27 3  24 2 8 2  9 3   15 5

    49. sin      sin  cos   cos  sin  2 2 2    1  cos   0  sin   cos 

 1  cos   0  sin    cos 

tan   tan  1  tan   tan  0  tan   1  0  tan   tan   1   tan 

55. tan      

tan 2  tan  1  tan 2  tan  0  tan   1  0  tan   tan   1   tan 

56. tan  2    

3 3  6 2  18 2  24 3 9  6 6  6 6  24 27 3  24 2 8 2 9 3  15 5

3 3  3  57. sin      sin  cos   cos  sin  2 2 2    1  cos   0  sin    cos 

753 Copyright © 2020 Pearson Education, Inc.


Chapter 7: Analytic Trigonometry 3 3  3  58. cos      cos  cos   sin  sin  2 2 2    0  cos   (1)  sin   sin 

65.

sin(   ) sin  cos   cos  sin   sin(   ) sin  cos   cos  sin  sin  cos   cos  sin  cos  cos   sin  cos   cos  sin  cos  cos  sin  cos  cos  sin   cos  cos  cos  cos   sin  cos  cos  sin   cos  cos  cos  cos  tan   tan   tan   tan 

59. sin(   )  sin(   )  sin  cos   cos  sin   sin  cos   cos  sin   2sin  cos  60. cos(   )  cos(   )  cos  cos   sin  sin   cos  cos   sin  sin   2 cos  cos  61.

62.

63.

64.

66.

cos(   ) cos  cos   sin  sin   cos(   ) cos  cos   sin  sin 

sin(   ) sin  cos   cos  sin   sin  cos  sin  cos  sin  cos  cos  sin    sin  cos  sin  cos   1  cot  tan 

cos  cos   sin  sin  cos  cos   cos  cos   sin  sin  cos  cos  cos  cos  sin  sin   cos  cos  cos  cos   cos  cos  sin  sin   cos  cos  cos  cos  1  tan  tan   1  tan  tan 

sin(   ) sin  cos   cos  sin   cos  cos  cos  cos  sin  cos  cos  sin    cos  cos  cos  cos   tan   tan 

cos(   ) sin(   ) cos  cos   sin  sin   sin  cos   cos  sin  cos  cos   sin  sin  sin  sin   sin  cos   cos  sin  sin  sin  cos  cos  sin  sin   sin  sin  sin  sin   sin  cos  cos  sin   sin  sin  sin  sin  cot  cot   1  cot   cot 

67. cot(   ) 

cos(   ) cos  cos   sin  sin   cos  cos  cos  cos  cos  cos  sin  sin    cos  cos  cos  cos   1  tan  tan  cos(   ) cos  cos   sin  sin   sin  cos  sin  cos  cos  cos  sin  sin    sin  cos  sin  cos   cot   tan 

754

Copyright © 2020 Pearson Education, Inc.


Section 7.5: Sum and Difference Formulas cos(   ) sin(   ) cos  cos   sin  sin   sin  cos   cos  sin  cos  cos   sin  sin  sin  sin   sin  cos   cos  sin  sin  sin  cos  cos  sin  sin   sin  sin  sin  sin   sin  cos  cos  sin   sin  sin  sin  sin  cot  cot   1  cot   cot 

68. cot(   ) 

69. sec(   ) 

71. sin(   )sin(   )   sin  cos   cos  sin   sin  cos   cos  sin    sin 2  cos 2   cos 2  sin 2   sin 2  (1  sin 2  )  (1  sin 2  )sin 2   sin 2   sin 2  sin 2   sin 2   sin 2  sin 2   sin 2   sin 2 

72. cos(   )cos(   )   cos  cos   sin  sin   cos  cos   sin  sin    cos 2  cos 2   sin 2  sin 2   cos 2  (1  sin 2  )  (1  cos 2  )sin 2   cos 2   cos 2  sin 2   sin 2   cos 2  sin 2   cos 2   sin 2 

73. sin(  k )  sin   cos k   cos   sin k 

1

 (sin  )(1) k  (cos  )(0)

cos(   )

1 cos  cos   sin  sin  1 sin  sin   cos  cos   sin  sin  sin  sin  1 1  sin  sin   cos  cos  sin  sin   sin  sin  sin  sin  csc  csc   cot  cot   1

 (1) k sin  , k any integer

70. sec(   ) 

1 cos(   )

1 cos  cos   sin  sin  1 cos  cos   cos  cos   sin  sin  cos  cos  1 1  cos  cos   cos  cos  sin  sin   cos  cos  cos  cos  sec  sec   1  tan  tan 

74. cos(  k )  cos   cos k   sin   sin k   (cos  )(1) k  (sin  )(0)  (1) k cos  , k any integer 1      75. sin  sin 1  cos 1 0   sin    2   6 2  2   sin    3  

3 2

  3   76. sin  sin 1  cos 1 1  sin   0  2 3       sin 3 3  2  3  4  77. sin sin 1  cos 1     5  5   3  4 Let   sin 1 and   cos 1    .  is in 5  5

755 Copyright © 2020 Pearson Education, Inc.


Chapter 7: Analytic Trigonometry

quadrant I;  is in quadrant II. Then sin  

3 , 5

sin   1  cos 2  2

16 4  1    1  25 5

4  0    , and cos    ,     . 5 2 2

 3  4 sin sin 1     tan 1  5 4      sin    

cos   1  sin 2  2

9 16 4 3  1    1   5 25 25 5  

 sin  cos   cos  sin 

sin   1  cos 

 4  4 3 3           5  5 5 5 16 9 25    25 25 25  1

2

2

16  4  1     1  25  5

9 3  25 5

 3  4  sin sin 1  cos 1      sin     5  5    sin  cos   cos  sin 

4 5  79. cos  tan 1  cos 1  3 13   4 5 Let   tan 1 and   cos 1 .  is in 3 13

3  4  4 3          5  5  5 5 12 12   25 25 24  25

quadrant I;  is in quadrant I. Then tan   0 

 3  4 78. sin sin 1     tan 1  5 4     3 4   Let   sin 1    and   tan 1 .  is in 4  5 quadrant IV;  is in quadrant I. Then

2

2

cos  

5  , 0  . 13 2

25 5  9 3

3 5

sin   1  cos 2  2

9 16 4 3  1    1   25 25 5 5

cos   1  sin 2 

sin   1  cos 2 

9 3  25 5

2

25 144 12 5  1    1   169 169 13  13 

sec   1  tan 2  2

9 25 5 3  1    1   4 16 16 4  

cos  

, and cos  

16 4  1    1  9 3

4  3 ,     0 , and tan   , 5 4 2  0  . 2

2

sec   1  tan 2 

sin   

16  4  1     1  5 25  

9 3  25 5

4 5

756

Copyright © 2020 Pearson Education, Inc.

4 , 3


Section 7.5: Sum and Difference Formulas

5 3  81. cos  sin 1  tan 1  13 4   3 1 5 and   tan 1 .  is in Let   sin 13 4

4 5  cos  tan 1  cos 1  3 13    cos      cos  cos   sin  sin 

quadrant I;  is in quadrant I. Then sin  

 3   5   4   12           5   13   5   13  15 48 33    65 65 65

0 

 5  3  80. cos  tan 1  sin 1     12  5   5  3 Let   tan 1 and   sin 1    .  is in 12  5 quadrant I;  is in quadrant IV. Then 3 5  tan   , 0    , and sin    , 5 12 2     0. 2 sec   1  tan 2 

 3  , and tan   , 0    . 4 2 2

cos   1  sin 2  2

25 144 12 5  1    1   13 169 169 13   sec   1  tan 2  2

9 25 5 3  1    1   16 16 4 4

cos  

4 5

sin   1  cos 2 

2

25 169 13  5  1    1   12 144 144 12  

cos  

5 , 13

12 13

2

16 4  1    1  25 5

9 3  25 5

5 3  cos sin 1  tan 1  13 4   cos    

sin   1  cos 2  2

144 25 5  12   1    1   13 169 169 13   cos   1  sin 2  2

9 16 4  3  1     1   25 25 5  5  5  3  cos  tan 1  sin 1     12  5    cos      cos  cos   sin  sin   12   4   5   3  48 15 33              13   5   13   5  65 65 65

 cos  cos   sin  sin  12 4 5 3     13 5 13 5 48 15   65 65 63  65 4 12   82. cos  tan 1  cos 1  3 13   4 12 Let   tan 1 and   cos 1 .  is in 3 13

quadrant I;  is in quadrant I. Then tan   0 

12   , and cos   , 0    . 13 2 2

757 Copyright © 2020 Pearson Education, Inc.

4 , 3


Chapter 7: Analytic Trigonometry 3   tan  sin 1   tan 5 6  1 3    tan  sin    5 6  1 3   1  tan  sin   tan 5 6  

sec   1  tan 2  2

16 4  1    1  9 3 cos  

25 5  9 3

3 3   4 3 3 3 1  4 3 9 3 12  12  3 3 12 9  3 12  3 3   12  3 3 12  3 3

3 5

sin   1  cos 2  2

9 16 4 3  1    1   25 25 5 5 sin   1  cos 2  2

144 25 5  12   1    1   169 169 13  13 

108  75 3  36 144  27 144  75 3  117 48  25 3  39 

4 12   cos  tan 1  cos 1  3 13    cos      cos  cos   sin  sin   3   12   4   5           5   13   5   13  36 20   65 65 16  65

3  84. tan   cos 1  4 5   3 Let   cos 1 .  is in quadrant I. Then 5 3  cos   , 0    . 5 2

3   83. tan  sin 1   5 6  3 Let   sin 1 .  is in quadrant I. Then 5 3  sin   , 0    . 5 2

sin   1  cos 2  2

9 16 4 3  1    1   5 25 25 5   4 sin  5 4 5 4  =   tan   cos  3 5 3 3 5

cos   1  sin 2  2

9 16 4 3  1    1   25 25 5 5

 3  tan  tan  cos 1  3 4 5     tan   cos 1    5  1 3  4 1  tan  tan  cos  4 5  4 1  1 1 3 1 3   3    4 7 3 7 7 1  1 3 3

3 sin  5 3 5 3  =   tan   cos  4 5 4 4 5

758

Copyright © 2020 Pearson Education, Inc.


Section 7.5: Sum and Difference Formulas

4   85. tan  sin 1  cos 1 1 5   1 4 and   cos 11 ;  is in Let   sin 5 4  quadrant I. Then sin   , 0    , and 5 2

4   sin  cos 1  sin 1 1 5  1 4    tan  cos  sin 1 1  5   tan  cos 1 4  sin 1 1   5   sin      cos    

cos   1 , 0     . So,   cos 1 1  0 .

cos   1  sin 2  2

16 4  1    1  25 5

3 4   (0)    (1) 5 5   4 3   (0)    (1) 5 5 4 4  5  3 3  5

9 3  25 5

4 sin  5 4 5 4  =   tan   cos  3 5 3 3 5  1 4  tan  sin  cos 1 1 5   4   tan  sin 1   tan cos 1 1 5   4  1  tan  sin 1   tan cos 1 1 5  4 4 0 4  3  3 4 1  0 1 3 3

87. cos cos 1 u  sin 1 v

sin   1 , 

2

 

 2

sin   1  cos 2   1  u 2 cos   1  sin 2   1  v 2

. So,   sin 1 

1

 2

2

cos cos 1 u  sin 1 v  cos(   )  cos  cos   sin  sin   u 1  v2  v 1  u 2

88. sin sin 1 u  cos 1 v

Let   sin u and   cos 1 v . Then 1

.

sin   1  cos 2  16 4  1    1  5 25  

Let   cos 1 u and   sin 1 v . Then cos   u, 0     , and   sin   v,     2 2 1  u  1 , 1  v  1

4   86. tan  cos 1  sin 1 1 5   1 4 and   sin -1 1 ;  is in Let   cos 5 4  quadrant I. Then cos   , 0    , and 2 5

sin  cos   cos  sin  cos  cos   sin  sin 

9 3  25 5

3 sin  5 3 5 3   =   , but tan is tan   cos  4 5 4 4 2 5 undefined. Therefore, we cannot use the sum formula for tangent. Rewriting using sine and cosine, we obtain:

     , and 2 2 cos   v, 0     . 1  u  1 , 1  v  1

sin   u , 

cos   1  sin 2   1  u 2

sin   1  cos 2   1  v 2

sin sin 1 u  cos 1 v  sin(   )

759 Copyright © 2020 Pearson Education, Inc.

 sin  cos   cos  sin   uv  1  u 2 1  v 2


Chapter 7: Analytic Trigonometry

89. sin tan 1 u  sin 1 v

sin   1  cos 2 

Let   tan 1 u and   sin 1 v . Then

 1

     , and 2 2   sin   v,     . 2 2   u   , 1  v  1 tan   u, 

 

sec   tan 2   1  u 2  1

1

cos  

u2  1

u2 11 u2 1 u2 u 1 u 2

u2 1

sec   tan 2   1  v 2  1

cos   1  sin 2   1  v 2

1

cos  

v 1 2

sin   1  cos 2 

sin   1  cos 2 

1 2 u 1

 1

 1

u2 11  u2 1 2

u 1 u

u

2

u2 1

sin tan 1 u  sin 1 v

v2  1

 cos  cos   sin  sin  

u 1 2

1

1

u 1 v 1 1  uv 2

2

u u 1 2

v v 1 2

u 2  1  v2  1

91. tan sin 1 u  cos 1 v

Let   tan u and   tan 1 v . Then 1

Let   sin u and   cos 1 v . Then 1

  tan   u,     , and 2 2   tan   v,     . 2 2   u   ,   v  

     , and 2 2 cos   v, 0     . 1  u  1 , 1  v  1

sin   u , 

cos   1  sin 2   1  u 2

sec   tan 2   1  u 2  1

cos  

v2 v 1 v 2

 cos(   )

u 1 v  v

v2  1  1 v2  1

cos tan 1 u  tan 1 v

2

90. cos tan 1 u  tan 1 v

1 v 1 2

 sin(   )  sin  cos   cos  sin  u 1   1  v2  v 2 u 1 u2 1 

1 u2 1

1

tan  

u 1 2

sin  u  cos  1 u2

760

Copyright © 2020 Pearson Education, Inc.


Section 7.5: Sum and Difference Formulas

sec tan 1 u  cos 1 v

sin   1  cos 2   1  v 2

tan  

 sec(   )

sin  1  v2  cos  v

tan sin 1 u  cos 1 v  tan(   ) 

1 u2

 1

1  v2 v

u 1 u2

1  v2 v

uv  1  u 2 1  v 2 v 1 u2 v 1  u 2  u 1  v2 v 1 u 

92. sec tan 1 u  cos 1 v

uv  1  u

1 v

v 1 u  u 1 v

2

2

Let   tan 1 u and   cos 1 v . Then      , and 2 2 cos   v, 0     .   u   , 1  v  1 tan   u, 

sec   tan 2   1  u 2  1

cos  

1 u2  1

sin   1  cos 2   1   

1 u 1 2

u2 11 u2 1 2

u u2 1 u

cos(   )

1 cos  cos   sin  sin  1  u 1 v   1  v2 2 2 u 1 u 1 1  v u 1  v2  u2 1 u2 1 1  v  u 1  v2

u2 1

2 2

2

1

tan   tan  1  tan  tan  u

u2 1 v  u 1  v2

93. sin   3 cos   1 Divide each side by 2: 1 3 1 sin   cos   2 2 2 Rewrite in the difference of two angles form  1 3 , and   : using cos   , sin   3 2 2 1 sin  cos   cos  sin   2 1 sin(   )  2  5    or     6 6    5     3 6 3 6 7    2 6   7  The solution set is  , . 2 6 

u2 1

sin   1  cos 2   1  v 2

761 Copyright © 2020 Pearson Education, Inc.


Chapter 7: Analytic Trigonometry

94.

3 sin   cos   1 Divide each side by 2: 3 1 1 sin   cos   2 2 2 Rewrite in the sum of two angles form using  1 3 , sin   , and   : cos   6 2 2 1 sin  cos   cos  sin   2 1 sin(   )  2  5    or     6 6    5   or    6 6 6 6 2   0 or  3  2  The solution set is 0, . 3  

96. sin   cos    2

Divide each side by 2 : 1 1 sin   cos   1 2 2 Rewrite in the sum of two angles form using  1 1 , sin   , and   : cos   4 2 2 sin  cos   sin  cos   1 sin(   )  1 3    2  3   4 2 7  4

 

The solution set is 74 . 97.

95. sin   cos   2 Divide each side by 2 : 1 1 sin   cos   1 2 2 Rewrite in the sum of two angles form using 1 1  , sin   , and   : cos   4 2 2 sin  cos   cos  sin   1 sin(   )  1     2     4 2   4   The solution set is   . 4

tan   3  sec  sin  1  3 cos  cos  sin   3 cos   1 sin   3 cos   1 Divide each side by 2: 1 3 1 sin   cos   2 2 2 Rewrite in the difference of two angles form  1 3 , and   : using cos   , sin   3 2 2 1 sin  cos   cos  sin   2 1 sin(   )  2  5    or     6 6  5        3 6 3 6   11     2 6 6  But since is not in the domain of the tangent 2 11  function then the solution set is  .  6 

762

Copyright © 2020 Pearson Education, Inc.


Section 7.5: Sum and Difference Formulas

98.

cot   csc    3 cos  1   3 sin  sin  cos   1   3 sin 

101.

3 sin   cos   1 Divide each side by 2: 3 1 1 sin   cos    2 2 2 Rewrite in the sum of two angles form using  1 3 , sin   , and   : cos   6 2 2 1 sin  cos   cos  sin    2 1 sin(   )   2 7 11    or     6 6  7  11   or    6 6 6 6 5    or  3 But since  is not in the domain of the cotangent function then the solution set is  5   .  3 

99. sin sin 1 v  cos 1 v

 

102.

f ( x  h)  f ( x ) h sin( x  h)  sin x  h sin x cos h  cos x sin h  sin x  h cos x sin h  sin x  sin x cos h  h cos x sin h  sin x 1  cos h   h sin h 1  cos h  cos x   sin x  h h f ( x  h)  f ( x ) h cos( x  h)  cos x h cos x cos h  sin x sin h  cos x  h  sin x sin h  cos x cos h  cos x  h  sin x sin h  cos x 1  cos h   h sin h 1  cos h   sin x   cos x  h h

  cos  sin v  sin  cos v 

 sin sin 1 v cos cos 1 v

1

1

 v  v  1  v2 1  v2  v2  1  v2 1

100. cos sin 1 v  cos 1 v

 

  sin  sin v  sin  cos v 

 cos sin 1 v cos cos 1 v

1

1

 1  v2  v  v  1  v2 0

763 Copyright © 2020 Pearson Education, Inc.


Chapter 7: Analytic Trigonometry

103. a.

1

1

1



1

1

1

 1  tan  tan 1  tan  2 tan tan 3

tan tan 1  tan 2  tan 3  tan tan 1  tan 2  tan 3 

tan tan 1 1  tan 1 2  tan tan 1 3 1

1

1

  3 3 1 2 3 3 1  tan  tan 1 tan  tan 2  3  3 0  1  1  2  1   0    2 3 1  1 9 10 tan  tan 1  tan  tan 2  3 1 3 1 1 3 1 1  1 2 1  tan  tan 1 tan  tan 2  tan tan 1 1  tan tan 1 2 1

1

1

1

1

1

b. From the definition of the inverse tangent function we know 0  tan 1 1 

, 0  tan 1 2 

, and 2 2  3  3  0  tan 1 3  . Thus, 0  tan 1 1  tan 1 2  tan 1 3  . On the interval  0,  , tan   0 if and only if 2 2  2 

   . Therefore, from part (a), tan 1 1  tan 1 2  tan 1 3   .

   sin t   sin t  cos   cos t  sin  

104. cos  sin 2 t   sin  sin t  cos t   sin t  cos  sin t   sin  cos t   sin t  sin t   

105. a.

  3 2   1200 tan    12  12 12    3 2 tan  tan tan  tan 4 6 12 12  1200   1200    3 2  tan 1  tan 1  tan  tan 12 12 4 6 3 1 3  1200  1  1  33

A  12(10) 2 tan

3 3

 1200  33 3  1200  3

 1200 

3 3 3 3

3 3 3 3  3 3 3 3

12  6 3  1200 2  3 6  2400  1200 3  1200 

764

Copyright © 2020 Pearson Education, Inc.


Section 7.5: Sum and Difference Formulas

b.

675   3 2  A  3(15) 2 cot    675cot     12   12 12  tan  3  2     12 12 

675 675 675 675 3 3   3 3   675  3   1 3 3 3 3 3 3 tan  tan 4 6 1  1  33 33 3 3  3   1  tan  tan 4 6 3 3 3 3 12  6 3  675    675   675  2  3 6 3 3 3 3 

 1350  675 3 cm3

106. a.

    A  3  52 cot   a 2  75cot   12    12   75

 3  2  75  3  2

 150  75 3 cm 2

b. We will use one of the small triangles to compute radius (see figure).

tan 15 

5

2

r 5 r tan 15  2 5 r 2 3  2

  2r  2  3   5 r

c.

5 42 3

 10  5 3  A  r2     2  

10  5 3 cm 2 2

 10  5 3   10  5 3     2 2     100  50 3  50 3  75    4   

175  100 3 cm 2 4

765 Copyright © 2020 Pearson Education, Inc.


Chapter 7: Analytic Trigonometry

d.

175  100 3  4 600  300 3  175  100 3 cm 2 4

150  75 3 

107. Note that    2  1 .

Then tan   tan  2  1  

tan  2  tan 1 m  m1  2 1  tan  2 tan 1 1  m2 m1   both lie in the interval  0,  . If v  0 , then  2        0 , so that     and  both lie in 2 2     the interval  ,   . Either way, 2     cot      cot  implies     , or 2 2         . Thus, tan 1 v  cot 1 v  . Note 2 2 1 that v  0 since cot 0 is undefined.

108. Let   tan 1 e  v . Then tan   e  v , so 1  cot    v  ev . Because 0    , we know 2 e

that e  v  0 , which means cot 1 ev  cot 1  cot      tan 1 e  v . 109. Let   sin 1 v and   cos 1 v . Then sin   v  cos  , and since     sin   cos     , cos      cos  . If 2 2        v  0 , then 0    , so that     and  2 2     both lie in the interval  0,  . If v  0 , then  2         0 , so that     and  both lie in 2 2    the interval  ,   . Either way, 2     cos      cos  implies     , or 2 2         . Thus, sin 1 v  cos 1 v  . 2 2

1 111. Let   tan 1   and   tan 1 v . Because v v  0,  ,   0 . Then tan  

1 1   cot  , and since v tan 

    tan   cot     , cot      cot  . 2 2        Because v  0 , 0    . So     and  2 2    both lie in the interval  0,  . Then  2    cot      cot  implies     or 2 2 

110. Let   tan 1 v and   cot 1 v . Then tan   v  cot  , and since     tan   cot     , cot      cot  . If 2  2     v  0 , then 0    , so that     and  2 2 

   . Thus, 2 1  tan 1     tan 1 v, if v  0 . v 2



766

Copyright © 2020 Pearson Education, Inc.


Section 7.5: Sum and Difference Formulas 112. sin(   )sin(    )sin(   )   sin  cos  cos  sin   sin  cos  cos  sin   sin  cos  cos  sin          cos   cos   cos   sin   sin     cos   sin   sin     cos   sin   sin     cos    sin    sin    sin          cos cos     cos cos      cos cos        sin 3   sin      sin       sin   sin sin s   in  sin          sin  sin   

 sin 3   sin   cot   cot     sin   cot   cot     sin   cot   cot     sin 3  sin  sin  sin   cot   cot   cot   cot   cot   cot  

 cos  cos   cos  cos   cos  cos    sin 3  sin  sin  sin          sin  sin   sin  sin   sin  sin    sin(   )  sin(   )  sin(    )   sin 3  sin  sin  sin       sin  sin   sin  sin   sin  sin    sin(180º   )  sin(180º   )  sin(180º   )   sin 3  sin  sin  sin       sin  sin   sin  sin   sin  sin    sin   sin   sin    sin 3  sin  sin  sin       sin  sin   sin  sin   sin  sin    sin 3 

113. 2cot      2  

 

1

tan    

2 tan   tan  1  tan  tan  2 1  tan  tan   tan   tan 

2 1   x  1 x  1  x  1   x  1

 



2 1  x2  1

x 1 x 1 2x2  2 2 x

114. The first step in the derivation,

116. x 2  5 x  1  2 x 2  11x  4

   tan   tan 2  , is impossible tan      2  1  tan   tan   2

 because tan is undefined. 2

115. If formula (7) is used, we obtain  tan  tan    2 tan      . However, this is 2  1  tan   tan  2  impossible because tan is undefined. Using 2 formulas (3a) and (3b), we obtain   sin      2    . tan      2  cos        2  cos   sin   cot 

3x 2  16 x  5  0 (3x  1)( x  5)  0 3x  1  0 or x  5  0 x

1 3

767 Copyright © 2020 Pearson Education, Inc.

x  5


Chapter 7: Analytic Trigonometry

For x  

1 3

120.

1 2 x  x2 4 1  x2  4 x  2 4 1 2  x  4x  4  2 1 4 1 2   x  2  3 4

f ( x) 

2

 1  1 y      5   1  3  3 1 5 5   1   9 3 9 For x  5

y   5  5  5  1 2

 25  25  1  1 The intersection points are:  1 5   ,   ,  5,1 3 9

117.

121.

The solution set is 6 .

radians

122.

 log 7 x3  log 7 y 2  log 7 z 5

 x3 y 2   log 7  5   z 

2

123.

sec    5 Note that sec  must be positive since  lies in quadrant IV. Thus, sec   5 .

2 5 2 5  5 1 1 1   cot   tan  2 2



2

3

4

2

2

5

4

3

4

2

5

2

2

 144 x18 y14

1 1 5 5    sec  5 5 5 sin  , so tan   cos   5 2 5 sin    tan   cos    2  .    5  5  5

 2 x y   3x y    2   x   y   3  x   y  4

cos  



 log 7 x 3 y 2  log 7 z 5

sec 2    2   1  4  1  5

1

3log 7 x  2 log 7 y  5log 7 z  log 7 x3  log 7 y 2  log 7 z 5

119. tan    2 and 270    360 (quadrant IV) Using the Pythagorean Identities: sec 2   tan 2   1

1  sin 

8 x  4  42 x 9 3( x  4)  2(2 x  9) 3 x  12  4 x  18  x  6 x6

4 1 2 1   A  r   (6) 2   2 2 4 36 9    14.14 m 2 8 2

csc  

23( x  4)  22(2 x 9)

17 180   510  6

118. 45 

124.

3x  2  2 x  3  1 3x  2  1  2 x  3

3x  2  1  2 x  3

2

3x  2  1  2 2 x  3  2 x  3 x  2 2x  3

5 2

x 2  4(2 x  3) x 2  8 x  12 x 2  8 x  12  0 ( x  6)( x  2)  0  x  6, x  2

The solution set is 2, 6

768

Copyright © 2020 Pearson Education, Inc.


Section 7.6: Double-angle and Half-angle Formulas

125.

6x ( x  3)

6x

3

1

 8( x  3) 4  4

 

( x  3)

1

 4

8( x  3) ( x  3)

1

4

c.

sin

 2

1  cos 2

6 x   8( x  3)  

1

( x  3) 4 6 x  8 x  24 1

( x  3) 4 14 x  24  , x  3 1 ( x  3) 4

1

d.

cos

2

2

4 5 

1 5  1  1 10  10 2 10 10 10 10

1  cos 2

1

2

4 5 

9 5  9  3 10  3 10 2 10 10 10 10

3    10. cos   , 0    . Thus, 0   , which 5 2 2 4 means

1. sin 2  , 2 cos 2  , 2sin 2  2.

lies in quadrant I. 2 x  3, r  5

Section 7.6

32  y 2  52 , y  0

y 2  25  9  16, y  0 y4

2

3. sin 

So, sin  

4. True

a.

4 3 24 sin(2 )  2sin  cos   2    5 5 25

b.

cos(2 )  cos 2   sin 2 

5. False, only the first one is equivalent. 6. False, you cannot add the arguments or tan.

4 . 5

2

7. b 8. c

c.

sin

 2

3    9. sin   , 0    . Thus, 0   , which 2 4 5 2 means

d.

x 2  32  52 , x  0

cos

x 2  25  9  16, x  0 x4 4 So, cos   . 5 3 4 24 sin(2 )  2sin  cos   2    5 5 25

b.

cos(2 )  cos 2   sin 2  2

 2

a.

2

lies in quadrant I.

2 y  3, r  5

11. tan  

1  cos  2 1 2

3 5 

2 5  1 1 5 5 2 5 5 5 5

1  cos  2 1 2

3 5 

8 5  4 2 52 5 2 5 5 5 5

4 3   3 ,    . Thus,   , 3 2 2 2 4

which means

16 9 7  4 3         25 25 25 5 5

2

9 16 7 3  4         25 25 25 5  5

2 x  3, y   4

769 Copyright © 2020 Pearson Education, Inc.

lies in quadrant II.


Chapter 7: Analytic Trigonometry

r 2  (3) 2  ( 4) 2  9  16  25 r 5 4 3 sin    , cos    5 5

a.

b.

2

 2 5  5         5   5   20 5 15 3     25 25 25 5

sin(2 )  2sin  cos   4   3  24  2       5   5  25

b.

cos(2 )  cos 2   sin 2 

c.

cos(2 )  cos 2   sin 2  2

 2 5  1     1  cos   5   sin  2 2 2

2

9 16 7  3  4         25 25 25  5  5 

c.

sin

 2

cos

 2

8 5  4 2 52 5 2 5 5 5 5



1  cos  2

d.



which means

2 x   2, y  1

2

a.

2

2

y2  9  6  3

lie in quadrant II.

y 3 sin  

r 5 1

lies in quadrant I.

 6   y  3

r 2  ( 2) 2  (1) 2  4  1  5

a.

5 2 2 5 , cos     5 5 5 5 sin(2 )  2sin  cos 

sin   

2 x   6, r  3

1 3   3 ,    . Thus,   , 2 2 2 2 4

52 5 10

6     ,     . Thus,   , 3 2 4 2 2

13. cos   

2 1 1 5 5 5     2 5 5 5 5

which means

 2 5  1     1  cos   5   cos   2 2 2 52 5 5  2

 3 1     5  2

12. tan  

5 2 5 10

 3 1     5  2

d.

5 2 5 5 2

1  cos  2

2



3 3

sin(2 )  2sin  cos   3  6  2         3   3 

 5  2 5 4  2         5  5  5  



770

Copyright © 2020 Pearson Education, Inc.

2 18 6 2 2 2   9 9 3


Section 7.6: Double-angle and Half-angle Formulas

b.

cos(2 )  cos 2   sin 2  2

 6  3         3   3  6 3 3 1     9 9 9 3

c.

which means

2 y   3, r  3

x2   3

c.

d.

 3 2

2 3 6 3 2 3 6 6 6 3

1

1  cos   cos   2 2

2

3 6 3  2 3 6 6



3 6 6

lies in quadrant II.

2

6 3

1

3 6 3 2

15. sec   3, sin   0 , so 0   

 . Thus, 2

  , which means lies in quadrant I. 2 4 1 cos   , x  1 , r  3 . 3 0

2

12  y 2  32 y2  9 1  8 y 82 2

x 6

a.

1  cos   sin  2 2

3 6 6

x2  9  3  6

cos  

3 3 3   , ,    2 . Thus, 14. sin    3 2 4 2

2

 6  3         3   3  6 3 3 1     9 9 9 3

3 6 3 2

 6 1      1  cos   3   cos  2 2 2 

cos(2 )  cos 2   sin 2 

2

 6 1      1  cos   3   sin  2 2 2 

d.

b.

sin  

6 3

sin(2 )  2sin  cos   3  6  2         3   3 

2 2 3

a.

sin(2 )  2sin  cos   2 

b.

cos(2 )  cos 2   sin 2 

2 18 6 2 2 2    9 9 3

771 Copyright © 2020 Pearson Education, Inc.

2

2 2 1 4 2   3 3 9

2 1 8 7 1 2 2            9 9 9 3  3 


Chapter 7: Analytic Trigonometry

c.

sin

1  cos  2

2

1

d.

cos

 2

2

1 3 

d.

2 3  1 1 3 3 2 3 3 3 3

52 5 5  2

1  cos  2

1 1 3   2

4 3  2

 2  3

16. csc    5, cos   0 , so    

2

3

3

3

6 3

17. cot   2, sec   0 , so

3 . Thus, 2

 5

r 5

sin  

2

x  5 1  4

a.

1 5

a.

5



2 5 5

b.

sin(2 )  2sin  cos 

cos(2 )  cos 2   sin 2  2

 2 5  5       5   5   20 5 15 3     25 25 25 5

cos(2 )  cos 2   sin 2  2

 2 5  5         5   5   20 5 15 3     25 25 25 5

c.

5 2 2 5 , cos    5 5 5

 5  2 5 20 4  2           5  25 5  5  

 5  2 5 4  2         5  5  5  

b.

sin(2 )  2sin  cos 

x  2 2

     . Thus, 2

r 2  ( 2) 2  12  4  1  5

2

cos  

52 5 10

      , which means lies in quadrant I. 4 2 2 2 x   2, y  1

  3    , which means lies in quadrant II. 2 2 4 2 1 5 , r  5, y  1  sin   5 5 x 2  (1) 2 

 2 5 1     5   1  cos    cos   2 2 2

2

c.

 2 5 1     5   1  cos    sin  2 2 2

 2 5 1     5   1  cos    sin  2 2 2  

2

 

52 5 5 2 52 5 10

772

Copyright © 2020 Pearson Education, Inc.

52 5 5 2 52 5 10


Section 7.6: Double-angle and Half-angle Formulas

d.

 2 5 1     5   1  cos    cos  2 2 2 

52 5 5 2

52 5  10

18. sec   2, csc   0 , so

3    2 . Thus, 2

3      , which means lies in quadrant II. 4 2 2 1 cos   , x  1, r  2 2 2 2 1  y  22

19. tan    3, sin   0 , so

3      , which means lies in quadrant II. 4 2 2 x  1, y  3 r 2  12  (3) 2  1  9  10 r  10

sin   a.

3 10

b.

cos(2 )  cos 2   sin 2  2

3 2 sin(2 )  2sin  cos   3 1 3  2          2  2  2

c.

cos(2 )  cos 2   sin 2 

1  cos  sin   2 2

sin

 2

d.

1  cos  2 1 2

1 2 

1 2  1 1 2 4 2

1  cos  cos   2 2 

1

10 10 2

10  10 10  2

2

3 1 3 1 1             2 2 4 4 2     2

2

 10   3 10          10   10  10 90 80 4     100 100 100 5

sin   

c.

3 10 1 10  , cos   10 10 10

 3 10   10   2         10   10  6 3   10 5

y 3

b.



sin  2   2sin  cos 

y2  4 1  3

a.

3    2 . Thus, 2

d.

10  10 20

1 10  10 2 5

1  cos  cos    2 2

1 3 2  2  3  3 2 2 4 2

1

773 Copyright © 2020 Pearson Education, Inc.

1

10 10 2

10  10 10  2 

10  10 20



1 10  10 2 5


Chapter 7: Analytic Trigonometry

20. cot   3, cos   0 , so    

3 . Thus, 2

 45  21. sin 22.5  sin    2 

  3  which means is in quadrant II.   2 2 2 4 x  3, y  1

r 2  (3) 2  (1) 2  9  1  10

r  10

1

10  , sin    10 10 cos   

a.

3 10



3 10 10

sin  2   2sin  cos  

cos(2 )  cos 2   sin 2  2

 3 10   10           10   10  90 10 80 4     100 100 100 5

c.

2

2 2 

2 2  4

2 2 2

2 2  4

2 2 2

10  3 10 20

1 10  3 10 2 5

 2 2  2 2          2 2  2 2 

2  2   2

 2 2      2   



1 10  3 10 2 5

 2  1

 1 2

10  3 10 10  2 10  3 10 20

2

2 2 

2 2 2   2 2 1 2

 3 10  1      1  cos   10   cos   2 2 2



1

1

 3 10  1     10   1  cos    sin  2 2 2

1  cos 45 2

7  7  1  cos  4  7 4 23. tan  tan    7 8  2  1  cos 4

2

10  3 10 10  2

d.

1

 45  22. cos 22.5  cos    2 

 10   3 10  6 3  2            10   10  10 5

b.

1  cos 45 2

774

Copyright © 2020 Pearson Education, Inc.

2


Section 7.6: Double-angle and Half-angle Formulas

9  9  1  cos  4  9 4 24. tan  tan   9  2  8 1  cos 4 2 2 2  2 2 1 2 1

 2 2   2 2         2 2   2 2 

2  2  

2

2

2 2 2

 2 1  1  2

27. sec

15 1 1   15 15  8  cos  4  8 cos    2  1  15 1  cos 4 2 1  2 1 2 2 1  2 2 4 2  2 2    2 2  2     2 2   2 2       2 2 2   2 2      2  2   2  2   

 330  25. cos165  cos    2  



1  cos 330 2 1

3 2   2 3   2 3 2 4 2

1  cos 390  390  26. sin195  sin    2  2  

1

3 2

2



2 3 4



2 3 2

775 Copyright © 2020 Pearson Education, Inc.

2 2 2

 2 2

 2 2

2

 2 2


Chapter 7: Analytic Trigonometry

28. csc

1 7 1    7  8 sin 7    8 sin  4   2  1  7 1  cos 4 2 1  2 1 2 2 1  2 2 4 2  2 2    2 2    2 2   2    2 2 2  2    2  2   2   

2 2 2

 2 2

 2 2

31.  lies in quadrant II. Since x 2  y 2  5 , r  5 . Now, the point (a, 2) is on the circle, so a 2  22  5 a 2  5  22 a   5  2 2   1  1 (a is negative because  lies in quadrant II.)

Thus, sin   cos  

2 5  5 20 4  2           25 5  5   5 

32. From the solution to Problem 31, we have 2 5 5 and cos    . sin   5 5

2  2 

Thus, g  2   cos  2   cos 2   sin 2 

2  2 

2

2

 2 2

33. Note: Since  lies in quadrant II,

quadrant I. Therefore, cos

 2

 2

must lie in

is positive. From the

solution to Problem 31, we have cos   

 1  cos    Thus, g    cos  2 2 2

2 2   2 2   2 2 2 4 2

 5 1     5   2

 3     3  30. cos     cos  4   2   8   3  1  cos     4   2  2 1     2     2

2

 5 2 5         5   5  5 20 15 3     25 25 25 5

  1  cos     4  2 

a 1 5   . Thus, r 5 5

f  2   sin  2   2sin  cos 

      29. sin     sin  4   2   8

1

b 2 2 5   and r 5 5

  2 2  4

2 2 2

776

Copyright © 2020 Pearson Education, Inc.

5 5 5 2 5 5 10

10 5  5 10

5 . 5


Section 7.6: Double-angle and Half-angle Formulas

34. Note: Since  lies in quadrant II,

quadrant I. Therefore, sin

 2

 2

must lie in

is positive. From the

solution to Problem 31, we have cos   

5 . 5

 1  cos    Thus, f    sin  2 2 2  5 1    5    2   

5 5 5 2

5 5 10

10 5  5

a 2  5  22 a   5  2 2   1  1 (a is negative because  lies in quadrant II.) b 2  2 . Thus, tan    a 1 h  2   tan  2 

2 tan  1  tan 2  2  2  1   2 

2

4 4 4   1  4 3 3

2 5

5 5

5 5 5 10 5 1 1 5   2 2

10

a 2  22  5

5 5

35.  lies in quadrant II. Since x 2  y 2  5 , r  5 . Now, the point (a, 2) is on the circle, so

36. From the solution to Problem 31, we have 2 5 5 and cos    . Thus, sin   5 5  5 1     1  cos     5  h    tan   2 sin  2 5 2 5 5 5  5 2 5 5 5 5  2 5

37.  lies in quadrant III. Since x 2  y 2  1 ,  1  r  1  1 . Now, the point   , b  is on the  4  circle, so 2  1 2   b 1  4  1 b2  1      4

2

2

15 15  1  b   1      16 4  4 (b is negative because  lies in quadrant III.) 1  a 1 Thus, cos    4   and r 1 4 15  b 4   15 . Thus, sin    r 1 4 2 g  2   cos  2   cos   sin 2  2

2  1   15          4   4  1 15 14 7     16 16 16 8

777 Copyright © 2020 Pearson Education, Inc.


Chapter 7: Analytic Trigonometry 38. From the solution to Problem 37, we have 1 15 and cos    . Thus, sin    4 4 f  2   sin  2 

41. From the solution to Problem 37, we have 1 15 and cos    . Thus, sin    4 4  1  cos    h    tan  2 sin  2

 2sin  cos 

 1 1    4   15  4 5  4 15  4 5  15

 15   1  15  2          8  4   4

39. Note: Since  lies in quadrant III,

quadrant II. Therefore, sin

 2

 2

must lie in

is positive. From

the solution to Problem 37, we have cos   

   Thus, f    sin 2 2 

1 . 4

1  cos  2

 1 1     4  2 

5 4  5  5  2  10  10 2 8 8 2 16 4

40. Note: Since  lies in quadrant III,

quadrant II. Therefore, cos

 2

 2

15



5 15 15



15 3

15 15

42.  lies in quadrant III. Since x 2  y 2  1 ,  1  r  1  1 . Now, the point   , b  is on the  4  circle, so 2  1 2   b 1  4

must lie in

is negative. From

 1 b2  1      4

1 the solution to Problem 37, we have cos    . 4 Thus,    g    cos 2 2   

5



2

2

15 15  1  b   1      16 4  4 (b is negative because  lies in quadrant III.)

1  cos  2

15  b 4  15 . Thus, tan    1 a  4 h  2   tan  2 

 1 1     4  2

3 3 3 2 6 6  4      2 8 8 2 16 4

2 tan  1  tan 2 

 15   2 15  2 15   15 1  15 14 7 1   15 

778

Copyright © 2020 Pearson Education, Inc.

2

2


Section 7.6: Double-angle and Half-angle Formulas

43. sin 4   sin 2 

2

46. sin 4  cos 4   sin 4 cos 4

 1  cos  2     2   1  1  2 cos  2   cos 2  2   4 1 1 1   cos  2   cos 2  2  4 2 4 1 1 1  1  cos  4     cos  2     4 2 4 2  1 1 1 1   cos  2    cos  4  4 2 8 8 3 1 1   cos  2   cos  4  8 2 8

2

2

44. sin  4   sin  2  2   2sin  2  cos  2 

 2(2sin  cos  ) 1  2sin 2 

 4sin  cos  1  2sin 2 

  cos    4sin  1  2sin 2    

  cos   4sin   8sin  3

1  cos(2 ) 1  cos(2 )  45. sin  cos   2 2 1  1  cos 2 (2 )  4 1  1  cos(4 )   1   4 2  1 1 1     cos(4 )  4 2 2  1 1   cos(4 ) 8 8 2

2

2

1 1     cos(4 )  8 8  1 2  1  cos(4 )  64 1 1  2 cos(4 )  cos 2 (4 )   64  1  cos  8   1   1  2 cos(4 )   64  2  1 1    2  4 cos(4 )  1  cos  8   64 2  1  3  4 cos(4 )  cos  8   128  3 1 1 cos  8    cos(4 )  128 32 128

47. cos(3 )  cos(2   )  cos  2  cos   sin  2  sin 

 2 cos 2   1 cos   2sin  cos  sin   2 cos   cos   2sin 2  cos  3

 2 cos3   cos   2 1  cos 2  cos   2 cos   cos   2 cos   2 cos3  3

 4 cos3   3cos 

48. cos  4   cos  2  2   2 cos 2 (2 )  1

   2  4 cos   4 cos   1  1 2

 2 2 cos 2   1  1 4

2

 8cos 4   8cos 2   2  1  8cos 4   8cos 2   1

779 Copyright © 2020 Pearson Education, Inc.


Chapter 7: Analytic Trigonometry cos  sin   cot   tan  sin  cos   52. cot   tan  cos   sin  sin  cos  cos 2   sin 2   cos   sin cos 2   sin 2  sin  cos  cos 2   sin 2  sin  cos    sin  cos  cos 2   sin 2  2 2 cos   sin   1  cos  2 

49. We use the result of problem 44 to help solve this problem: sin  5   sin(4   )  sin  4  cos  cos  4  sin 

 cos 4sin   8sin 3  cos  cos  2(2 )  sin 

 

 cos  4sin   8sin   1  2sin 2  2  sin  2

3



 1  sin  4sin   8sin  2

3

2

 sin  1  8sin 2  cos 2 

 sin  1  2  2sin  cos   4sin   12sin   8sin  3

5

 4sin   12sin 3   8sin 5 

 sin   8sin 3  1  sin 2 

 5sin   12sin   8sin   8sin   8sin  3

5

3

5

53. cot(2 ) 

1 1  2 tan  tan(2 ) 1  tan 2  1  tan 2   2 tan  1 1 2 cot   2 cot  cot 2   1 2  cot  2 cot  cot 2   1 cot    2 cot 2  2 cot   1  2 cot 

54. cot(2 ) 

1 1  2 tan  tan(2 ) 1  tan 2  1  tan 2   2 tan  1 1 tan 2       2  tan  tan  

 16sin 5   20sin 3   5sin 

50. We use the results from problems 44 and 46 to help solve this problem: cos(5 )  cos(4   )  cos  4  cos   sin  4  sin 

 8cos 4   8cos 2   1 cos 



 cos  4sin   8sin 3  sin   8cos   8cos   cos  5

3

 4 cos  sin 2   8cos  sin 4   8cos5   8cos3   cos   4 cos  (1  cos 2  )  8cos  (1  cos 2  ) 2  8cos5   8cos3   cos   4 cos   4 cos3   8cos  (1  2 cos 2   cos 4  )  8cos5   4 cos3   3cos   8cos   16 cos3   8cos5   16 cos5   20 cos3   5cos 

51. cos 4   sin 4   cos 2   sin 2 

 cos   sin   2

2

 1  cos  2   cos  2 

780

Copyright © 2020 Pearson Education, Inc.

1  cot   tan   2


Section 7.6: Double-angle and Half-angle Formulas

55. sec(2 ) 

56. csc  2  

1 1  cos(2 ) 2 cos 2   1 1  2 1 sec 2  1  2  sec2  sec2  sec2   2  sec2 

1 1  sin  2  2sin  cos  1 1 1    2 cos  sin  1  sec  csc  2

57. cos (2u )  sin (2u )  cos  2(2u )   cos(4u ) 2

2

58. (4sin u cos u )(1  2sin 2 u )  2(2sin u cos u )(1  2sin 2 u )  2sin 2u cos 2u  sin  2  2u   sin  4u 

59.

cos(2 ) cos 2   sin 2   1  sin(2 ) 1  2sin  cos  (cos   sin  )(cos   sin  )  cos 2   sin 2   2sin  cos  (cos   sin  )(cos   sin  )  (cos   sin  )(cos   sin  ) cos   sin   cos   sin  cos   sin  sin   cos   sin  sin  cos  sin    sin  sin  cos  sin   sin  sin  cot   1  cot   1

1 4sin 2  cos 2  4 1 2   2sin  cos   4 2 1  sin  2   4 1 2  sin  2  4

60. sin 2  cos 2  

1 1 2   61. sec2      1 cos   1  cos   2  cos 2      2 2 1 1 2   62. csc2       2  sin 2    1  cos  1  cos    2 2 1 1 v 63. cot 2      2  tan 2  v  1  cos v   1  cos v 2 1  cos v  1  cos v 1 1 sec v  1 1 sec v sec v  1  sec v sec v  1 sec v sec v  1 sec v   sec v sec v  1 sec v  1  sec v  1

781 Copyright © 2020 Pearson Education, Inc.


Chapter 7: Analytic Trigonometry

64. tan

v 1  cos v 1 cos v     csc v  cot v 2 sin v sin v sin v

1  cos  1 1  tan 1  cos  2  65. 1  cos   1  tan 2 1 2 1  cos  1  cos   (1  cos  ) 1  cos   1  cos   1  cos  1  cos  2 cos  1   cos  2 1  cos  2 cos  1  cos    1  cos  2  cos  2

sin   cos   sin   sin  cos   cos 2  1  sin 2   cos 2    2sin  cos   2 1  1  sin  2  2

sin(3 ) cos(3 ) sin  3  cos   cos  3  sin    sin  cos  sin  cos  sin(3   )  sin  cos  sin 2  sin  cos  2sin  cos   sin  cos  2

67.

cos   sin  cos   sin   cos   sin     cos   sin     cos   sin  cos   sin   cos   sin   cos   sin   

 sin   cos    sin 2   sin  cos   cos 2   2

2

68.

sin 3   cos3  sin   cos 

66.

2

cos 2   2 cos  sin   sin 2   cos 2   2 cos  sin   sin 2 

cos   sin  cos   2 cos  sin   sin 2   cos 2   2 cos  sin   sin 2   cos 2   sin 2  4 cos  sin   cos  2  2

2

2

 

2(2sin  cos  ) cos  2  2sin  2  cos  2 

 2 tan  2 

69. tan  3   tan(2   ) 2 tan  2 tan   tan   tan 3   tan  2 tan  2   tan  3 tan   tan 3  1  tan 2  3 tan   tan 3  1  tan 2    1  tan      1  tan  2  tan  1  2 tan   tan  1  tan 2   2 tan 2  1  tan 2  1  3 tan 2  1  3 tan 2  2 2 1  tan  1  tan 

782

Copyright © 2020 Pearson Education, Inc.


Section 7.6: Double-angle and Half-angle Formulas 70. tan   tan(  120º )  tan(  240º ) tan   tan120º tan   tan 240º  tan    1  tan  tan120º 1  tan  tan 240º tan   3 tan   3  tan    1  tan   3 1  tan  3

 tan   

tan   3 1  3 tan 

 

 

tan   3 1  3 tan 



 



tan  1  3 tan   tan   3 1  3 tan   tan   3 1  3 tan  2

1  3 tan  tan   3 tan   tan   3 tan   3  3 tan   tan   3 tan 2   3  3 tan   1  3 tan 2  3 tan 3   9 tan   1  3 tan 2  2

3

2

3 3 tan   tan 3 

1  3 tan   3 tan  3  (from Problem 69)

71.

2

1  ln 1  cos  2   ln 2 2 1 1  cos 2   ln 2 2

73.

1  2sin 2   6sin 2   4 4sin 2   3 3 sin 2   4

 1  cos  2  1/ 2    ln    2  

 ln sin 2 

1/ 2

3 2  2 4 5  , , , 3 3 3 3   2 4 5  , , The solution set is  , . 3 3  3 3 sin   

 ln sin 

72.

1  ln 1  cos  2   ln 2 2 1 1  cos 2   ln 2 2

 1  cos  2  1/ 2    ln    2  

 ln cos 2 

1/ 2

cos  2   6sin 2   4

 74.

cos  2   2  2sin 2  1  2sin 2   2  2sin 2  1  2 (not possible) The equation has no real solution.

 ln cos 

783 Copyright © 2020 Pearson Education, Inc.


Chapter 7: Analytic Trigonometry cos(2 )  cos 

75.

78.

cos(2 )  cos(4 )  0

2 cos   1  cos  2

 2 cos   1   2 cos (2 )  1  0 2

2 cos 2   cos   1  0 (2 cos   1)(cos   1)  0 2 cos   1  0

or

2 cos 2   1  2  cos(2 ) cos(2 )   1  0

cos   1  0 cos   1  0

77.

 2 cos   1  2 4 cos   4 cos   1  1  0 2

4

2

2 cos 2   1  8cos 4   8cos 2   2  1  0 8cos 4   6 cos 2   0 4 cos 4   3cos 2   0

cos 2  4 cos 2   3  0

sin(2 )  cos  2sin  cos   cos  2sin  cos   cos   0 (cos  )(2sin   1)  0 cos   0 or 2sin   1 cos   0 1 sin   2  3  ,  5 2 2  , 6 6    5 3  The solution set is  , , , . 2  6 2 6

cos ( )  0 or 4 cos   3  0 3 cos   0 or cos 2  4 3 cos    2  3  5 7  11 or   , , ,  , 2 2 6 6 6 6 2

2

On the interval 0    2 , the solution set is    5 7 3 11  , , ,  , , . 6 2 6  6 2 6

sin(2 )  sin(4 )  0 sin(2 )  2sin(2 ) cos(2 )  0 sin(2 ) 1  2 cos(2 )   0 sin(2 )  0



2 cos 2   2 2 cos 2 ( )  1 2 cos 2 ( )  1  2  0

1 cos    2 2 4  , 3 3  2 4  , The solution set is 0, . 3 3  

76.

2

3  sin   cos(2 )

79.

3  sin   1  2sin 2  2sin 2   sin   2  0 This equation is quadratic in sin  . The discriminant is b 2`  4ac  1  16  15  0 . The equation has no real solutions.

1  2 cos(2 )  0 1 cos(2 )   2 2  0  2k  or 2    2k  or    k    k 2 2 4 2   2k  or 2   2k  3 3 2   k    k  3 3 On the interval 0    2 , the solution set is 4 3 5     2 , , , , 0, , , . 3 2 3   3 2 3 or

80.

cos(2 )  5cos   3  0 2 cos 2   1  5cos   3  0 2 cos 2   5cos   2  0 (2 cos   1)(cos   2)  0 2 cos   1 or cos    2 1 (not possible) cos    2 2 4  , 3 3  2 4  The solution set is  , . 3   3

784

Copyright © 2020 Pearson Education, Inc.


Section 7.6: Double-angle and Half-angle Formulas tan(2 )  2sin   0

81.

1  3    83. sin  2sin 1   sin  2    sin  2 3 2   6

sin(2 )  2sin   0 cos(2 ) sin 2  2sin  cos 2 0 cos 2 2sin  cos   2sin  (2 cos 2   1)  0

 3 2 3    84. sin  2sin 1   sin  2    sin 2  3 2  3  3 3   85. cos  2sin 1   1  2sin 2  sin 1  5 5    

  2sin   2 cos   cos   1  0 2sin  cos   2 cos 2   1  0 2

2sin  (2 cos   1)(cos   1)  0 2 cos   1  0 or 2sin   0 1 sin   0 cos   2   0,   5  , 3 3

3  1 2  5 18  1 25 7  25

or

cos   1  0 cos   1  

4 4   86. cos  2 cos 1   2 cos 2  cos 1   1 5 5     2

4  2   1 5 32  1 25 7  25

5    The solution set is 0, ,  , . 3   3

82.

2

tan(2 )  2 cos   0 sin(2 )  2 cos   0 cos(2 ) sin  2   2 cos  cos 2 cos  2 

0

2sin  cos   2 cos  (1  2sin 2  )  0

   2 cos   2sin   sin   1  0 2 cos  sin   1  2sin 2   0 2

 2 cos  (2sin   1)(sin   1)  0 2 cos   0 or 2sin   1  0 or cos   0 1 sin    2  3  , 7 11  2 2  , 6 6 sin   1  0 sin   1   2   7 3 11  The solution set is  , , , . 2 6  2 6

  3  87. tan  2 cos 1      5    3 Let   cos 1    .  lies in quadrant II.  5 3    . Then cos    , 5 2 5 sec    3 tan    sec2   1 2

25 16 4  5      1   1    9 9 3  3

785 Copyright © 2020 Pearson Education, Inc.


Chapter 7: Analytic Trigonometry

 2 tan   3  tan  2 cos 1      tan 2  5 1  tan 2      4 2   3   2  4 1     3 8  3 9  16 9 1 9 24  9  16 24  7 24  7

sin   1  cos 2  2

16 4  1    1  25 5

9 3  25 5

4  sin  2 cos 1   sin 2 5  3 4 24  2sin  cos   2    5 5 25   4  90. cos  2 tan 1      3    4 Let   tan 1    .  is in quadrant IV.  3 4  Then tan    ,     0 . 3 2 sec   tan 2   1 2

16  4     1  1  9  3

3  2 tan  tan 1  4   1 3  88. tan  2 tan  4   1  tan 2  tan 1 3    4  3 2  4  2 3 1   4 3 16  2  9 16 1 16 24  16  9 24  7

cos  

25 5  9 3

3 5

  4  cos  2 tan 1      cos 2  2 cos 2   1  3   2 3  2   1 5 18  1 25 7  25

3 1 91. sin 2  cos 1   5 2

4  89. sin  2 cos 1  5   4 .  is in quadrant I. Let   cos 1 5 4  Then cos   , 0    . 5 2

3  1  cos  cos 1  1  3 5  5  2 2 2 5 2 1  5

3 1 92. cos 2  sin 1  5 2 3 Let   sin 1 .  is in quadrant I. Then 5 3  sin   , 0    . 5 2

786

Copyright © 2020 Pearson Education, Inc.


Section 7.6: Double-angle and Half-angle Formulas

cos   1  sin 2 

 3 cos   1  sin 2   1      5

2

9 16 4 3  1    1   25 25 5 5

 1

3 1 1  cos 2  sin 1   cos 2     5 2 2  1  cos    2

4 9 55 9 2 2 10

sec   tan 2   1 2

9 25 5 3    1  1   4 16 16 4   4 5

3 1  sec  2 tan 1   sec  2   4 cos  2   1  2 cos 2   1 1  2 4 2   1 5 1  32 1 25 1  7 25 25  7

  3  94. csc  2sin 1      5    3 Let   sin 1    .  is in quadrant IV.  5 3  Then sin    ,     0 . 5 2

4 5

 1  3  csc  2sin 1      csc  2   sin  2   5   1  2sin  cos  1   3  4  2      5  5  1  24  25 25  24

3  93. sec  2 tan 1  4  3 Let   tan 1   .  is in quadrant I. 4 3  Then tan   , 0    . 4 2

cos  

9 25

16 25

1

2

95.

f  x  0 sin  2 x   sin x  0 2sin x cos x  sin x  0 sin x  2 cos x  1  0

sin x  0 x  0, 

or 2 cos x  1  0 1 cos x  2 x

 5 , 3 3

The zeros on 0  x  2 are 0, 96.

 3

, ,

5 . 3

f  x  0 cos  2 x   cos x  0 2 cos 2 x  1  cos x  0 2 cos 2 x  cos x  1  0  2 cos x  1 cos x  1  0 2 cos x  1  0 1 cos x  2

x

 5

or cos x  1  0 cos x  1 x 

, 3 3

The zeros on 0  x  2 are

787 Copyright © 2020 Pearson Education, Inc.

 3

, ,

5 . 3


Chapter 7: Analytic Trigonometry

97.

f  x  0 cos  2 x   sin 2 x  0 cos 2 x  sin 2 x  sin 2 x  0 cos 2 x  0 cos x  0 x

  2 2  2  1    2   1152  2   1152    2  2       2   2 

 3 , 2 2

The zeros on 0  x  2 are 98.

101. a.

 3

, . 2 2

 2 2   2 2 2   1152     1152   2  2 2   

f  x  0 2sin x  sin 2 x  0 2sin 2 x  2sin x cos x  0 2sin x(sin x  cos x)  0

 2 2 2  2 2 2  1152     1152   2 2 2   

2

 1152

2sin x  0 sin x  x  0, 

or sin x  cos x  0 sin x  cos x  5 x , 4 4  5 The zeros on 0  x  2 are 0, ,  , . 4 4

99.

100.

   1  cos 4    A  8 12  tan    1152   8  sin   4   2

b.

f  x  0 sin 2 x  cos x  0 2sin x cos x  cos x  0 cos x (2sin x  1)  0 cos x  0 or 2sin x  1  0 sin x  1 sin x    3 2 x , 7 11 2 2 x , 6 6  7 3 11 , , . The zeros on 0  x  2 are , 2 6 2 6

 2  1 =1152 2  1152 in

2

        1 2    A  2  9  cot    162     8  sin  4    1  cos    4 

   1  cos 4   162    sin   4     2 2  2 1    2   162  2   162    2  2       2   2  2 2   2 2 2   162     162   2  2 2   

f  x  0 cos 2 x  5cos x  2  0 2  2 cos x  1  5cos x  2  0

2 2 2  2 2 2  162     162   2 2 2   

2 cos 2 x  5cos x  3  0 (2 cos x  1)(cos x  3)  0 2 cos x  1  0 or cos x  3  0 1 cos x  3 cos x   no sol 2 2 4 x , 3 3 2 4 The zeros on 0  x  2 are , . 3 3

 162

102. a.

 2  1 =162 2  162 cm

2

cos(2 )  cos   0 , 0º    90º 2 cos 2   1  cos   0 2 cos 2   cos   1  0 (2 cos   1)(cos   1)  0

788

Copyright © 2020 Pearson Education, Inc.


Section 7.6: Double-angle and Half-angle Formulas 2 cos   1  0

or cos   1  0

1 cos   1 cos   2   180º   60º , 300º On the interval 0º    90º , the solution is 60˚.

b.

A(60º )  16sin  60º  cos  60º   1  16 

31    1 2 2 

104.

 12 sin 2  I xy cos 2

 I x  I y  sin  cos    I xy cos   sin   Ix  I y 

105. a.

Ix  I y 2

2

2

sin 2  I xy cos 2

v02 2 cos  (sin   cos  ) 16 v2 2  0 (cos  sin   cos 2  ) 16 v2 2 1  0  (2 cos  sin   2 cos 2  ) 16 2 v2 2   1  cos 2    0 sin 2  2    32  2  

R ( ) 

 12 3 in 2  20.78 in 2

c.

I x sin  cos   I y sin  cos   I xy cos 2   sin 2 

Graph Y1  16sin x  cos x  1 and use the MAXIMUM feature: 

v02 2 sin  2   1  cos  2   32  v2 2  0 sin  2   cos  2   1 32  



The maximum area is approximately 20.78 in.2 when the angle is 60˚. b. 103. a.

D

1W 2

csc   cot  W  2 D  csc   cot   csc   cot  

1 cos  1  cos    sin  sin  sin 

 tan

2

Therefore, W  2 D tan

 2

.

b. Here we have D  15 and W  6.5 . 6.5  2 15  tan

2 13 tan  2 60  13  tan 1 2 60 1 13  24.45   2 tan 60

sin(2 )  cos(2 )  0

Divide each side by 2 : 1 1 sin(2 )  cos(2 )  0 2 2 Rewrite in the sum of two angles form using 1 1  cos   and sin   and   : 4 2 2 sin(2 ) cos   cos(2 ) sin   0 sin(2   )  0 2    0  k   2   0  k  4  2    k  4  k    8 2 3  67.5º  8

789 Copyright © 2020 Pearson Education, Inc.


Chapter 7: Analytic Trigonometry

c. R 

107. Let b represent the base of the triangle.  h  b/2 cos  sin  2 s 2 s

322 2  sin(2  67.5º )  cos(2  67.5º )  1 32

 32 2  sin 135º   cos 135º   1

h  s cos

 2  2   32 2       1  2  2   

 2  1  32  2  2  feet  18.75 feet

 s 2 sin

322 2 d. Graph Y1   sin(2 x)  cos(2 x)  1 and 32 use the MAXIMUM feature:

108. sin  



2

 2

cos

 2

y x  y; cos    x 1 1

a.

A  2 xy  2 cos  sin   2sin  cos 

b.

2sin  cos   sin(2 )

c.

The largest value of the sine function is 1. Solve: sin 2  1

The angle that maximizes the distance is 67.5˚, and the maximum distance is 18.75 feet.

2 

1 1 106. y  sin(2 x)  sin(4 x) 2 4 1 1  sin(2 x)  sin(2  2 x) 2 4 1 1  sin(2 x)   2sin(2 x) cos(2 x)  2 4 1 1  sin(2 x)  sin(2 x) cos(2 x)  2 2 1 1  sin(2 x)  sin(2 x)  2 cos 2 ( x)  1  2 2

1  s 2 sin  2



b  2 s sin

2

1 A  bh 2 1        2s sin  s cos  2  2  2

 32 2



 d.

 2

4

 45

 2  2 y  sin   4 2 4 2 The dimensions of the largest rectangle are 2 . 2 by 2 x  cos

2sin  cos 2   cos  1 sin  2 cos   1 cos 2  2 tan   sec 2  2 tan  4   1  tan 2  4 4(2 tan  )  4  (2 tan  ) 2 4x  4  x2

109. sin  2   2sin  cos  

1 1  sin(2 x)  sin(2 x) cos 2 ( x)  sin(2 x) 2 2 2  sin(2 x) cos ( x)

790

Copyright © 2020 Pearson Education, Inc.


Section 7.6: Double-angle and Half-angle Formulas

cos 2   sin 2  cos 2   sin 2  cos 2   sin 2  cos 2   2 cos   sin 2  cos 2  1  tan 2  4   1  tan 2  4 4  4 tan 2   4  4 tan 2 

110. cos  2   cos 2   sin 2  

 

111.

2

4   2 tan  

2

4  x2 4  x2

1 1  sin 2 x  C    cos  2 x  2 4 1 1 C    cos  2 x    sin 2 x 4 2 1    cos  2 x   2sin 2 x 4 1    1  2sin 2 x  2sin 2 x 4 1    (1) 4 1  4

112.

4   2 tan  

1 1  cos 2 x  C   cos  2 x  2 4 1 1 C   cos  2 x    cos 2 x 4 2 1 1 2   2 cos x  1  cos 2 x 4 2 1 1 1  cos 2 x   cos 2 x 2 4 2 1  4

  113. If z  tan   , then 2   2 tan   2z 2  1 z2 2   1  tan   2   2 tan   2  2   sec   2      2 tan   cos 2   2 2

  2sin    2   cos 2         2 cos   2      2sin   cos   2   2      sin  2      2   sin    114. If z  tan   , then 2   1  tan 2   1 z2 2  1 z2 2   1  tan   2 1  cos  1 1  cos   1  cos  1 1  cos  1  cos   (1  cos  ) 1  cos   1  cos   1  cos  1  cos  1  cos   (1  cos  )  1  cos   1  cos  2 cos   2  cos 

791 Copyright © 2020 Pearson Education, Inc.


Chapter 7: Analytic Trigonometry

115.

f ( x)  sin 2 x 

1  cos  2 x 

  1  cos 4  4 118. cos  cos    8 2 2

2 Starting with the graph of y  cos x , compress horizontally by a factor of 2, reflect across the xaxis, shift 1 unit up, and shrink vertically by a factor of 2.

1 2

2 2 

2 2 4

2 2 2   1  cos 8  8 sin  sin    16 2 2 

116. g ( x)  cos 2 x 

1  cos  2 x 

2 Starting with the graph of y  cos x , compress horizontally by a factor of 2, reflect across the xaxis, shift 1 unit up, and shrink vertically by a factor of 2.

 

1

2 2 2  2

2 2 2 4

2 2 2 2

  1  cos 8  8 cos  cos    16 2 2     1  cos  12   12  sin    117. sin 24  2  2

1 1  4  

82

 6 2    11 2 2 8

 6  2

 6  2   8  2 6  2  16

4

  6  2   2 4  6  2

2 4

4

4

    1  cos  12   12 cos  cos    24  2  2 1 1  4   

82

 6  2   2

1 1  2 8

 6  2

 6  2   8  2 6  2  16

2 4 6  2 4

4

  2 4 6  2 4

792

Copyright © 2020 Pearson Education, Inc.

1

2 2 2  2

2 2 2 2

2 2 2 4


Section 7.6: Double-angle and Half-angle Formulas

119. sin 3   sin 3 (  120º )  sin 3 (  240º )  sin 3    sin  cos 120º   cos  sin 120º     sin  cos  240º   cos  sin  240º   3

3

3

3

 1   1  3 3  sin      sin    cos       sin    cos   2 2  2   2  1  sin 3     sin 3   3 3 sin 2  cos   9sin  cos 2   3 3 cos3  8 1  sin 3   3 3 sin 2  cos   9sin  cos 2   3 3 cos3  8 3

1 3 3 9 3 3  sin 3    sin 3    sin 2  cos    sin  cos 2    cos3  8 8 8 8 1 3 3 9 3 3   sin 3    sin 2  cos    sin  cos 2    cos3  8 8 8 8 3 9 3 3   sin 3    sin  cos 2    sin 3   3sin  1  sin 2     sin 3   3sin   3sin 3  4 4 4 4 3 3   4sin 3   3sin     sin  3  (from Example 2) 4 4

  120. tan   tan  3    3 

3 tan

 3

a tan

 3

2sin 2 x  (2m  1) sin x  m  0

3

(from problem 69)

2sin 2 x  (2m  1) sin x  m  0 which is in quadratic form. For this equation to have exactly one real solution,

3

  tan  3  tan 2  3 3  1  3 tan 2

 (2m  1)2  4(2)(  m)  0

4m 2  4m  1  8m  0

3

4m 2  4m  1  0

   a tan  1  3 tan 2  3 3 3 3    3  tan 2  a 1  3 tan 2  3 3   tan 3

3  tan 3a tan 2

2

 3

2

 tan 2

 3a  1 tan 2 tan 2 tan

cos(2 x)  (2m  1) sin x  m  1  0 (1  2sin 2 x)  (2m  1) sin x  m  1  0

 tan 3

1  3 tan

3 tan

121.

 3

3

3

3

 3

 a  3a tan

2

(2m  1) 2  0

So m  

122. Answers will vary.

123. Since the line is perpendicular the slope would 1 be m  . 2 1 y  y1  ( x  x1 ) 2 1 y  ( 3)  ( x  2) 2 1 y  3  x 1 2 1 y  x4 2

3

 a3  a 3 

a 3 3a  1



1 . 2

a 3 3a  1

793

Copyright © 2020 Pearson Education, Inc.


Chapter 7: Analytic Trigonometry

124. Vertex: x  

b 6  3 2a 2( 1)

128.

f (3)  (3) 2  6(3)  7  16 ; (3,16)

x-intercepts: 0   x 2  6 x  7 0  x2  6 x  7 0  ( x  7)( x  1) x  7 or x  1 y-intercepts: y  (0) 2  6(0)  7 y7

129.

3 y 2y 5 x(2 y  5)  3  y 2 xy  5 x  3  y 2 xy  y  5 x  3 y (2 x  1)  5 x  3 5x  3  f 1 ( x) y 2x 1 x

2 x  7  3x  2 ln 2 x  7  ln 3x  2  x  7  ln 2   x  2  ln 3 x ln 2  7 ln 2  x ln 3  2 ln 3 x ln 2  x ln 3  2 ln 3  7 ln 2 x(ln 2  ln 3)  2 ln 3  7 ln 2 x

126. Amplitude: 2; Period:

2

ln 2  ln 3

ln 9  ln128 ln 2  ln 3

130. Vertex 1: 4 2 x 2 f (2)  5 (2, 5) Vertex 2: 6  3 x 2 f (3)  7 (3, 7)

3 1 2

4

2

d  (3  2) 2  (7  (5)) 2

 (5)2  (12) 2  25  144  169  13

127.

131.

f ( x)  a  x  (5)  ( x  (2))( x  2)

For a  1 :

f ( x)  ( x  5)( x  2)( x  2)  x 2  7 x  10 ( x  2) 3

 6.548

 2 ln 3  7 ln 2  The solution set is    6.548 .  ln 2  ln 3 

3  1  2   4  125. sin    cos       3  3 2  2 3 1    2 2

2 ln 3  7 ln 2

f (b)  f (a) log 2 16  log 2 4  ba 16  4 42 2 1    16  4 12 6

2

 x  5 x  4 x  20

794

Copyright © 2020 Pearson Education, Inc.


Section 7.7: Product-to-Sum and Sum-to-Product Formulas 132. 6 x  5 xD  5 y  4 yD  3  4 D  0 5 xD  4 yD  4 D  6 x  5 y  3 D  5 x  4 y  4   6 x  5 y  3 6 x  5 y  3 5 x  4 y  4 6x  5 y  3  5x  4 y  4

D

Section 7.7 1. sin(195) cos(75)  sin(150  45) cos(30  45) sin(150  45) cos(30  45)    sin150 cos 45  cos150 sin 45  cos 30 cos 45  sin 30 sin 45   1   2   3   2    3   2   1   2                           2   2   2   2    2   2   2   2    2 12 4 36 12 6  6 2            16 16 4  4 4  16 16  4 

2 3 2 6 2 3 3 1 3 3 2 3 4 3 1 1 3                1 16 16 16 16 8 8 8 8 8 8 4 2 2  2 

2. cos(285) cos(195)  cos(240  45) cos(240  45) cos(240  45) cos(240  45)    cos 240 cos 45  sin 240 sin 45  cos 240 cos 45  sin 240 sin 45    cos 240   cos 45    sin 240   sin 45  2

2

2

2

2

2

2

2 3   2   1  2   3  2   1  2                        2   2   2   2   4   4   4   4 

1 1 3   4 8 8

795

Copyright © 2020 Pearson Education, Inc.


Chapter 7: Analytic Trigonometry 3. sin(285) sin(75)  sin(240  45) sin(30  45) sin(240  45) sin(30  45)    sin 240 cos 45  cos 240 sin 45  sin 30 cos 45  cos 30 sin 45   3   2   1   2    1   2   3  2                           2   2   2   2    2   2   2  2    12 36 4 12 6 2  2 6              16 16 16 16 4  4 4   4 

2 3 6 2 2 3 3 3 1 3 2 3 4 3 1 1 3                 1 16 16 16 16 8 8 8 8 8 8 4 2 2 2 

4. sin(75)  sin(15)  sin(45  30)  sin(45  30)  sin(45) cos(30)  cos(45) sin(30)   sin(45) cos(30)  cos(45) sin(30)   2sin(45) cos(30)  2  3  6  2       2  2  2

5. cos(255)  cos(195)  cos(225  30)  cos(225  30)   cos(225) cos(30)  sin(225) sin(30)   cos(225) cos(30)  sin(225) sin(30)  2sin(225) sin(30)  2  1  2  2        2  2  2

6. sin(255)  sin(15)  sin(135  120)  sin(135  120)  sin(135) cos(120)  cos(135) sin(120)   sin(135) cos(120)  cos(135) sin(120)   sin(135) cos(120)  cos(135) sin(120)  sin(135) cos(120)  cos(135) sin(120)  2 cos(135) sin(120)  2  3  6  2        2  2  2 

1 cos(4  2 )  cos(4  2 ) 2 1  cos  2   cos  6   2

9. sin(4 ) cos(2 ) 

1 sin(4  2 )  sin(4  2 ) 2 1  sin  6   sin  2   2

1 cos(4  2 )  cos(4  2 ) 2 1  cos(2 )  cos  6   2

10. sin(3 ) sin(5 ) 

7. sin(4 ) sin(2 ) 

1 cos(3  5 )  cos(3  5 ) 2 1  cos( 2 )  cos  8   2 1  cos  2   cos  8   2

8. cos(4 ) cos(2 ) 

796

Copyright © 2020 Pearson Education, Inc.


Section 7.7: Product-to-Sum and Sum-to-Product Formulas  2  4   2  4  19. cos(2 )  cos(4 )  2 cos   cos   2    2   2 cos  3  cos( )

1 cos(3  5 )  cos(3  5 ) 2 1  cos( 2 )  cos  8   2 1  cos  2   cos  8   2

11. cos(3 ) cos(5 ) 

 2 cos  3  cos   5  3   5  3  20. cos(5 )  cos(3 )   2sin   sin    2   2    2sin  4  sin 

1 sin(4  6 )  sin(4  6 ) 2 1  sin 10   sin( 2 )  2 1  sin 10   sin  2   2

12. sin(4 ) cos(6 ) 

   3     3  21. sin   sin(3 )  2sin   cos   2    2   2sin  2  cos( )  2sin  2  cos 

1 13. sin  sin(2 )   cos(  2 )  cos(  2 )  2 1  cos( )  cos  3   2 1  cos   cos  3   2

   3     3  22. cos   cos(3 )  2 cos   cos    2   2   2 cos  2  cos( )  2 cos  2  cos 

1 cos(3  4 )  cos(3  4 ) 2 1  cos(  )  cos  7   2 1  cos   cos  7   2

  3    3        3 23. cos  cos   2sin  2 2  sin  2 2  2 2  2   2      2sin  sin     2     2sin    sin  2 

14. cos(3 ) cos(4 ) 

15. sin

3  1   3    3    cos  sin     sin     2 2 2  2 2  2 2  

 2sin  sin

1 sin  2   sin   2

 2

  3    3  2 2  2 2  3 24. sin  sin  2sin   cos   2 2  2   2     2sin    cos   2

 5 1    5    5    sin     sin     16. sin cos 2 2 2   2 2   2 2  1 sin  3   sin(  2 )  2 1  sin  3   sin  2   2 

  2sin cos  2    3     3  2sin  cos    sin   sin(3 )  2   2   25. 2sin(2 ) 2sin(2 ) 2sin(2 ) cos( )  2sin(2 )  cos( )

 4  2   4  2  17. sin(4 )  sin(2 )  2sin   cos    2   2   2sin  cos  3   4  2   4  2  18. sin(4 )  sin(2 )  2sin   cos    2   2   2sin  3  cos 

 cos 

797

Copyright © 2020 Pearson Education, Inc.


Chapter 7: Analytic Trigonometry    5     5  2sin   sin    2   2     5     5  2sin   cos    2   2   2sin(3 ) sin( 2 )  2sin(3 ) cos( 2 ) ( sin 2 )  cos  2 

   3     3  2 cos   cos   2    2  2 cos(2 ) 2 cos(2 ) cos( )  2 cos(2 )  cos( )  cos 

cos   cos(5 ) 30.  sin   sin(5 )

cos   cos(3 )  26. 2 cos(2 )

 4  2   4  2  2sin  cos    sin(4 )  sin(2 )  2   2   27. cos(4 )  cos(2 ) cos(4 )  cos(2 ) 2sin(3 ) cos   2 cos(3 ) cos  sin(3 )  cos(3 )  tan(3 )

 tan  2 

31. sin  sin   sin(3 )      3     3    sin   2sin   cos   2    2    sin   2sin(2 ) cos(  )   cos   2sin(2 ) sin    1   cos   2   cos   cos(3 )   2   cos   cos   cos(3 ) 

   3     3  2sin   sin   cos   cos(3 )  2   2   28. sin(3 )  sin   3     3    2sin   cos   2    2   2sin(2 ) sin( )  2sin  cos(2 ) ( sin  ) sin(2 )  sin  cos(2 )  tan(2 )

32. sin  sin  3   sin(5 )    3  5   3  5    sin   2sin   cos    2   2    sin   2sin(4 ) cos( )   cos   2sin(4 ) sin    1   cos   2   cos  3   cos(5 )    2   cos   cos  3   cos(5 ) 

   3     3  2sin   sin   cos   cos(3 )  2   2   29. sin   sin(3 )    3     3  2sin   cos   2    2   2sin(2 ) sin( )  2sin(2 ) cos( ) ( sin  )  cos   tan 

33.

sin(4 )  sin(8 ) cos(4 )  cos(8 )  4  8   4  8  2sin   cos    2   2    4  8   4  8  2 cos   cos   2    2  2sin(6 ) cos( 2 )  2 cos(6 ) cos( 2 ) sin(6 ) cos(6 )  tan(6 ) 

798

Copyright © 2020 Pearson Education, Inc.


Section 7.7: Product-to-Sum and Sum-to-Product Formulas

34.

sin(4 )  sin(8 ) cos(4 )  cos(8 )

        2sin   cos   2    2          2sin   cos    2   2          sin   cos   2    2           cos   sin   2    2           tan   cot    2   2 

sin   sin  37.  sin   sin 

 4  8   4  8  2sin   cos    2   2    4  8   4  8  2sin   sin    2   2  2sin( 2 ) cos(6 )   2sin(6 ) sin( 2 ) cos(6 )  sin(6 )   cot(6 ) 

35.

        2 cos   cos    2   2           2sin   sin    2   2          cos   cos    2   2           sin   sin   2    2            cot   cot    2   2 

cos   cos  38.  cos   cos 

sin(4 )  sin(8 ) sin(4 )  sin(8 )  4  8   4  8  2sin   cos    2   2    4  8   4  8  2sin   cos    2   2  2sin(6 ) cos( 2 )  2sin( 2 ) cos(6 ) sin(6 ) cos(2 )  sin(2 ) cos(6 )   tan(6 ) cot(2 ) 



36.

        2sin  cos    sin   sin   2   2  39.  cos   cos          2 cos   cos    2   2      sin    2       cos    2       tan    2 

tan(6 ) tan(2 )

cos(4 )  cos(8 ) cos(4 )  cos(8 )  4  8   4  8  2sin   sin    2   2    4  8   4  8  2 cos   cos   2    2  2sin(6 )sin(2 )  2 cos(6 ) cos(2 ) sin(6 ) sin( 2 )   cos(6 ) cos(2 )   tan(6 ) tan(2 )

        2sin   cos    2   2          2sin   sin    2   2      cos    2       sin    2        cot    2 

sin   sin  40.  cos   cos 

 tan(2 ) tan(6 )

799

Copyright © 2020 Pearson Education, Inc.


Chapter 7: Analytic Trigonometry 41. 1  cos(2 )  cos(4 )  cos(6 )  cos 0  cos(6 )  cos(2 )  cos(4 )  0  6   0  6   2  4   2  4   2 cos   cos    2 cos   cos    2   2   2   2   2 cos(3 ) cos(3 )  2 cos(3 ) cos( )  2 cos 2 (3 )  2 cos(3 ) cos   2 cos(3 )  cos(3 )  cos     3     3      2 cos(3 )  2 cos   cos   2    2    2 cos(3 )  2 cos(2 ) cos    4 cos  cos(2 ) cos(3 )

42. 1  cos(2 )  cos(4 )  cos(6 )   cos 0  cos(6 )    cos(4 )  cos(2 )   0  6   0  6   2  4   2  4   2sin   sin    2sin   sin   2 2      2   2   2sin(3 ) sin(3 )  2sin(3 ) sin( )  2sin 2 (3 )  2sin(3 ) sin   2sin(3 ) sin(3 )  sin     3     3      2sin(3 )  2sin   cos    2   2    2sin(3 )  2sin  cos(2 )   4sin  cos(2 ) sin(3 )

43. sin 4  cos 2   sin 2 

 cos  2

2

2

1  cos(2 )  1  cos(2 )    2 2   1 2  1  cos(2 )  1  cos(2 )  8

800

Copyright © 2020 Pearson Education, Inc.


Section 7.7: Product-to-Sum and Sum-to-Product Formulas

1 1  cos(2 ) 1  cos2 (2 )  8 1  1  cos(4 )   1  cos(2 )  1   8 2   1  1  cos(2 )   2  1  cos(4 )   16 1  1  cos(2 ) 1  cos(4 )  16 1  1  cos(2 )  cos(4 )  cos(4 ) cos(2 )  16 1  1   1  cos(2 )  cos(4 )  cos(2 )  cos(6 ) 16  2  1   2  2 cos(2 )  2 cos(4 )  cos(2 )  cos(6 )  32 1   2  cos(2 )  2 cos(4 )  cos(6 )  32 1 1 1 1   cos(2 )  cos(4 )  cos(6 ) 16 32 16 32 

44. sin 2  cos 4   sin 2  cos 2 

2

2

1  cos(2 ) 1  cos(2 )     2 2   1 2  1  cos(2 ) 1  cos(2 ) 8 1  1  cos 2 (2 )  1  cos(2 )  8 1  1  cos(4 )   1   1  cos(2 )  8 2  1   2  1  cos(4 )   1  cos(2 )  16 1  1  cos(4 ) 1  cos(2 )  16 1  1  cos(2 )  cos(4 )  cos(4 ) cos(2 )  16 1  1   1  cos(2 )  cos(4 )  cos(2 )  cos(6 ) 16  2  1   2  2 cos(2 )  2 cos(4 )  cos(2 )  cos(6 )  32 1   2  cos(2 )  2 cos(4 )  cos(6 )  32 1 1 1 1   cos(2 )  cos(4 )  cos(6 ) 16 32 16 32 

801

Copyright © 2020 Pearson Education, Inc.


Chapter 7: Analytic Trigonometry

45. sin 6   sin 2 

3

3

1  cos(2 )     2   1 3  1  cos(2 )  8 1  1  2 cos   cos 2 (2 )  1  cos(2 )  8 1 1  cos(4 )   1  2 cos  2    1  cos(2 )  8 2  1   2  4 cos(2 )  1  cos(4 ) 1  cos(2 )  16 1  3  4 cos(2 )  cos(4 ) 1  cos(2 )  16 1  3  3cos(2 )  4 cos(2 )  4 cos 2 (2 )  cos(4 )  cos(4 ) cos(2 )  16 1  cos(4 ) 1 1    cos(4 )  cos(2 )  cos(6 )  3  7 cos(2 )  4  2 2 16   1   6  14 cos(2 )  4  4 cos(4 )  2 cos(4 )  cos(2 )  cos(6 )  32 1  10  15cos(2 )  6 cos(4 )  cos(6 ) 32 5 15 3 1   cos(2 )  cos(4 )  cos(6 ) 16 32 16 32

46. cos6   cos 2 

3

3

1  cos(2 )     2   1 3  1  cos(2 )  8

802

Copyright © 2020 Pearson Education, Inc.


Section 7.7: Product-to-Sum and Sum-to-Product Formulas

1  1  2 cos   cos 2 (2 )  1  cos(2 )  8 1 1  cos(4 )   1  2 cos  2    1  cos(2 )  8 2  1   2  4 cos(2 )  1  cos(4 ) 1  cos(2 )  16 1  3  4 cos(2 )  cos(4 ) 1  cos(2 )  16 1  3  3cos(2 )  4 cos(2 )  4 cos 2 (2 )  cos(4 )  cos(4 ) cos(2 )  16 1  cos(4 ) 1 1    cos(4 )  cos(2 )  cos(6 )  3  7 cos(2 )  4  2 2 16   1   6  14 cos(2 )  4  4 cos(4 )  2 cos(4 )  cos(2 )  cos(6 )  32 1  10  15cos(2 )  6 cos(4 )  cos(6 )  32 5 15 3 1   cos(2 )  cos(4 )  cos(6 ) 16 32 16 32

47.

sin(2 )  sin(4 )  0 sin(2 )  2sin(2 ) cos(2 )  0 sin(2 ) 1  2 cos(2 )   0 sin(2 )  0

cos(2 )  cos(4 )  0

48.

 2  4   2  4  2 cos   cos  0  2   2  2 cos(3 ) cos(  )  0

1  2 cos(2 )  0 1 cos(2 )   2 2  0  2k  or 2    2k  or   k     k 2 2 4 2   2k  or 2   2k  3 3  2    k   k 3 3 On the interval 0    2 , the solution set is 4 3 5     2 , , , , 0, , , . 3 2 3 3 2 3   or

2 cos  3  cos   0 cos(3 )  0 or cos   0  3  2k  or 3   2k  or 2 2  2k   2k      6 3 2 3  3    2k  or    2k  2 2 On the interval 0    2 , the solution set is    5 7 3 11  , , ,  , , . 6 2 6  6 2 6 3 

803

Copyright © 2020 Pearson Education, Inc.


Chapter 7: Analytic Trigonometry cos(4 )  cos(6 )  0

49.

 4  6 

2sin  

 4  6 

 sin  0 2   2   2sin(5 ) sin(  )  0

2sin  

 4  6   0  cos   2   2  2sin(  ) cos(5 )  0

2sin  5  sin   0

 2sin  cos(5 )  0

sin(5 )  0 or sin   0

cos(5 )  0 or sin   0

5  0  2k  or

5    2k 

  0  2k  or     2k 

or

 5 5

5

5

5

5

5

or

 3 5   2k  or 5   2k  2 2  2k  3 2k      10 5 10 5 On the interval 0    2 , the solution set is 11 13 3 17 19    3  7 9 , , , , 0, , , , , ,  , .

2k   2k     5 5 5   0  2k  or     2k  On the interval 0    2 , the solution set is 6 7 8 9    2 3 4 0, , , , ,  , , , ,  .

51. a.

sin(4 )  sin(6 )  0

50.

 4  6 

5 

 10 10 2 10 10

10

10

2

10

10 

y  sin  2 (852)t   sin  2 (1209)t  2 (852)t  2 (1209)t   2 (852)t  2 (1209)t   2sin   cos   2 2      2sin(2061 t ) cos(357 t )

 2sin(2061 t ) cos(357 t )

b. Because sin   1 and cos   1 for all  , it follows that sin(2061 t )  1 and cos(357 t )  1 for all

values of t. Thus, y  2sin(2061 t ) cos(357 t )  2 1 1  2 . That is, the maximum value of y is 2. c.

Let Y1  2sin(2061 x) cos(357 x) .

52. a.

y  sin  2 (941)t   sin  2 (1477)t  2 (941)t  2 (1477)t   2 (941)t  2 (1477)t   2sin   cos   2 2      2sin(2418 t ) cos(536 t )

 2sin(2418 t ) cos(536 t )

b.

Because sin   1 and cos   1 for all  , it follows that sin(2418 t )  1 and cos(2418 t )  1 for all values of t. Thus, y  2sin(2418 t ) cos(536 t )  2 1 1  2 . That is, the maximum value of y is 2.

804

Copyright © 2020 Pearson Education, Inc.


Section 7.7: Product-to-Sum and Sum-to-Product Formulas

c.

Let Y1  2sin(2418 x) cos(536 x) .

2 2 53. I u  I x cos   I y sin   2 I xy sin  cos 

 cos 2  1   1  cos 2   Ix    Iy    I xy 2sin  cos  2 2     I cos 2 I x I y I y cos 2  x     I xy sin 2 2 2 2 2 Ix  I y Ix  I y cos 2  I xy sin 2   2 2 I v  I x sin 2   I y cos 2   2 I xy sin  cos   1  cos 2   cos 2  1   Ix    Iy    I xy 2sin  cos  2 2     I x I x cos 2 I y cos 2 I y      I xy sin 2 2 2 2 2 Ix  I y Ix  I y cos 2  I xy sin 2   2 2

54. a.

Since  and v0 are fixed, we need to maximize sin  cos     .

1 sin        sin         2  1  sin  2     sin   2 This quantity will be maximized when sin  2     1 . So, sin  cos     

1 2v02   1  sin   v 2 1  sin   v02 1  sin   v02 0 2    Rmax  g 1  sin  1  sin   g 1  sin   g cos 2  g 1  sin 2 

b.

Rmax 

 50 

2

9.8 1  sin 35 

 598.24

The maximum range is about 598 meters.

805

Copyright © 2020 Pearson Education, Inc.


Chapter 7: Analytic Trigonometry 55. Add the sum formulas for sin(   ) and sin(   ) and solve for sin  cos : sin(   )  sin  cos   cos  sin  sin(   )  sin  cos   cos  sin  sin(   )  sin(   )  2sin  cos  sin  cos  

1 sin(   )  sin(   ) 2

59. sin  2   sin  2    sin  2 

       56. 2sin   cos   2    2  1                2  sin     sin   2  2   2  2  2

 2  2    2  2   2sin   cos    sin  2  2 2      2sin(   ) cos(   )  2sin  cos 

 2   2    sin    sin    2   2   sin   sin    

 2sin(   ) cos(   )  2sin  cos 

 sin   sin 

              2sin   2 cos   cos   2 2         2   2     4sin  cos   cos   2    2 

 2sin  cos(   )  2sin  cos   2sin   cos(   )  cos  

        Thus, sin   sin   2sin   cos  . 2    2          57. 2 cos   cos    2   2  1                2   cos     cos   2  2   2  2  2  2   2   cos    cos    2   2   cos   cos 

     4sin  cos     cos     2 2    4sin  sin  sin   4sin  sin  sin 

        Thus, cos   cos   2 cos   cos  .  2   2          58. 2sin   sin    2   2  1                2   cos     cos   2  2 2  2    2   2   2      cos    cos   2    2    cos   cos          Thus, cos   cos    2sin   sin  .  2   2 

806

Copyright © 2020 Pearson Education, Inc.


Section 7.7: Product-to-Sum and Sum-to-Product Formulas sin  sin  sin    cos  cos  cos  sin  cos  cos   sin  cos  cos   sin  cos  cos   cos  cos  cos  cos  (sin  cos   cos  sin  )  sin  cos  cos   cos  cos  cos  cos  sin(   )  sin  cos  cos  cos  sin(   )  sin  cos  cos    cos  cos  cos  cos  cos  cos  cos  sin   sin  cos  cos  sin  (cos   cos  cos  )   cos  cos  cos  cos  cos  cos 

60. tan   tan   tan  

 

sin  cos    (   )   cos  cos   cos  cos  cos 

sin    cos(   )  cos  cos  

sin    cos  cos   sin  sin   cos  cos   cos  cos  cos 

cos  cos  cos  

sin  (sin  sin  )  tan  tan  tan  cos  cos  cos 

Note that        ,sin(   )  sin   cos   (   )    cos(   ) .

61.

x 1

f ( x )  3sin x  5 y  3sin x  5 x  3sin y  5 x  5  3sin y x5  sin y 3  x  5 sin 1  y  3   x  5 f 1 ( x )  sin 1   3 

x5

27  9 33( x 1)  32( x  5) 3( x  1)  2( x  5) 3 x  3  2 x  10 x  13 The solution set is 13 .

62. Amplitude: 5 2  Period:  4 2    Phase Shift:  4 4

The domain of sin 1 (u ) is  1,1 so  x  5 1   1  3  8  x  2 Range of f = Domain of f 1   8, 2

63. cos  csc 1   5 7

7      , let r  7 and y  5 . 5 2 2 Solve for x: x 2  25  49

Since csc  , 

   Range of f 1 =   ,   2 2

x 2  24

 3 65. tan     

x  2 6

 6

Since  is in quadrant I, x  2 6 . 7 x 2 6 . Thus, cos  csc 1   cos    

5

r

66.

7

1 f ( x)  x 2  2 x  2 3 1 2  x  6x  2 3 1 2  x  6x  9  2  3 3 2 1   x  3  5 3

64. We find the inverse function by switching the x and y variables and solving for y.

3

807

Copyright © 2020 Pearson Education, Inc.


Chapter 7: Analytic Trigonometry 67. The circumference of the large flywheel is C  2 r  2 (3)  6 in . The circumference of the small flywheel is C  2 (1.25)  2.5 in . The velocity of the large flywheel is 2000(6 in) v  12000 in/min . The velocity of

Chapter 7 Review Exercises 1. Domain:  x | 1  x  1    Range:  y |   y   2 2 

1 min

68.

the small flywheel is 12000 in 1 rev v   4800 rpm 1 min 2.5 in

2. Domain:  x | 1  x  1

1 A  bh 2 2 A  bh

3. Domain:  x |   x  

Range:  y | 0  y   

   Range:  y |   y   2 2 

2A h b

4. Domain:  x | x  1

69. Find the points of intersection.

  Range:  y | 0  y   , y   2 

2 x 2  3x  4 x  3 2x2  7 x  3  0

5. Domain:  x | x  1

(2 x  1)( x  3)  0 1 x  ,3 2

    Range:  y |   y  , y  0  2 2   6. Domain:  x |   x  

Range:  y | 0  y    7. sin 1 1

Find the angle  , 

1  f ( x)  g ( x) on the interval  ,3 2 

70.

equals 1. sin   1,

2 f ( x)  x  9 3



2 2  ( x  h)  9   x  9  f ( x  h)  f ( x ) 3 3   h h 2 2 2 x  h9 x9 3 3  3 h 2 h 2  3  3 h

 2

     , whose sine 2 2

    2 2

Thus, sin 1 1 

 . 2

8. cos 1 0 Find the angle  , 0    , whose cosine equals 0. cos   0, 0       2  Thus, cos 1  0   . 2

808 Copyright © 2020 Pearson Education, Inc.


Chapter 7 Review Exercises

9. tan 1 1

Find the angle  ,  equals 1. tan   1,



 4

     , whose tangent 2 2

 1 10. sin     2      , whose sine 2 2

1 equals  . 2 1   sin    ,     2 2 2    6   1 Thus, sin 1      . 6  2

0   

Thus, sec 1 2 

 . 4

Find the angle  , 0     , whose cotangent equals 1 . cot   1, 0     3  4 3 . Thus, cot 1  1  4   3   15. sin 1  sin    follows the form of the   8 

3    is in the interval   ,  , we can apply 8  2 2 the equation directly and get   3   3 . sin 1  sin       8  8

equals  3 .

equals 2 . sec   2,   4

equation f 1 f  x   sin 1 sin  x   x . Since

3 . 2 3 cos    , 0    2 5  6  3  5 Thus, cos 1   .    2  6

equals 

Find the angle  , 

 . 3

14. cot 1  1

 3 11. cos 1     2  Find the angle  , 0    , whose cosine

 3

13. sec 1 2 Find the angle  , 0    , whose secant

1

12. tan 1  3

    2 2

Thus, tan 1  3  

 . 4

Find the angle  , 

 

    2 2

Thus, tan 1 1 

tan    3,

     , whose tangent 2 2

3   16. cos 1  cos  follows the form of the equation 4   3 f 1 f  x   cos 1 cos  x   x . Since is 4 in the interval  0,   , we can apply the equation

3  3  . directly and get cos 1  cos   4  4 

809 Copyright © 2020 Pearson Education, Inc.


Chapter 7: Analytic Trigonometry

  2   17. tan 1  tan    follows the form of the  3   

  8   19. sin 1  sin     follows the form of the   9 

equation f 1 f  x   tan 1 tan  x   x but we cannot use the formula directly since

equation f 1 f  x   sin 1 sin  x   x , but we

2 is not 3

cannot use the formula directly since 

8 is not 9

   in the interval   ,  . We need to find an  2 2    angle  in the interval   ,  for which  2 2

   in the interval   ,  . We need to find an  2 2    angle  in the interval   ,  for which  2 2

2  2  is in quadrant tan    tan  . The angle 3  3  II so tangent is negative. The reference angle of 2  is and we want  to be in quadrant IV 3 3 so tangent will still be negative. Thus, we have   2    tan    tan    . Since  is in the 3 3 3    

8  8  is in sin     sin  . The angle  9  9  quadrant III so sine is negative. The reference 8  is and we want  to be in angle of  9 9 quadrant IV so sine will still be negative. Thus,   8    we have sin     sin    . Since  is 9 9 9    

   interval   ,  , we can apply the equation  2 2 above and get    2      1  tan 1  tan     tan  tan       . 3 3 3      

   in the interval   ,  , we can apply the  2 2 equation above and get   8        sin 1  sin      sin 1  sin       . 9 9 9      

  15   18. cos 1  cos    follows the form of the  7   

equation f

1

20. sin sin 1 0.9 follows the form of the equation

f f 1  x   sin sin 1  x   x . Since 0.9 is in

 f  x   cos  cos  x   x , but 1

the interval  1,1 , we can apply the equation

15 is we cannot use the formula directly since 7

directly and get sin sin 1 0.9  0.9 .

not in the interval 0,   . We need to find an

21. cos cos 1 0.6 follows the form of the equation

angle  in the interval 0,   for which

f f 1  x   cos cos 1  x   x . Since 0.6 is

15  15  is in cos    cos  . The angle 7  7  15  is . quadrant I so the reference angle of 7 7    15  is Thus, we have cos    cos . Since 7 7 7  

in the interval  1,1 , we can apply the equation

directly and get cos cos 1 0.6  0.6 .

22. tan tan 1 5 follows the form of the equation

in the interval 0,   , we can apply the equation

f f 1  x   tan tan 1  x   x . Since 5 is a

above and get     15   1  cos 1  cos     cos  cos   . 7 7 7    

real number, we can apply the equation directly

and get tan tan 1 5  5 . 810

Copyright © 2020 Pearson Education, Inc.


Chapter 7 Review Exercises 23. Since there is no angle  such that cos   1.6 , the quantity cos 1  1.6  is not defined. Thus,

28. sin  cot 1  4 3

 3 4

cos cos 1  1.6  is not defined.

Since cot   , 0     ,  is in quadrant I. Let x  3 and y  4 . Solve for r: 9  16  r 2

2   1  1  1  24. sin  cos   sin      3 2 6    

r 2  25 r 5 3 y 4 Thus, sin  cot 1   sin    . 4 5 r  

3  1  1 25. cos  tan   cos  1   4  

Find the angle  , 

 4   Since sin    ,     , let y   4 and 5 2 2 2 r  5 . Solve for x: x  16  25

     , whose sine 2 2

3 . equals  2 3   sin    ,    2 2 2    3   3 So, sin 1      . 2 3     3    Thus, tan sin 1      tan      3 .  3   2  

 3 27. sec  tan 1  3     Find the angle  ,     , whose tangent is 2 2 3 3

3   ,    3 2 2   6 3   . So, tan 1 3 6  1 3   2 3 . Thus, sec  tan   sec    3  3 6  tan  

4 

29. tan sin 1      5

  3  26. tan sin 1       2  

x2  9 x  3

Since  is in quadrant IV, x  3 .  4  y 4 4  Thus, tan sin 1      tan    

30.

 5 

x

3

3

f  x   2sin  3 x  y  2sin  3x  x  2sin  3 y  x  sin  3 y  2  x 3 y  sin 1   2

1 x y  sin 1    f 1  x  3 2

The domain of f  x  equals the range of f 1  x  and is 

 6

x

   , or   ,  in 6  6 6

interval notation. To find the domain of f 1  x  we note that the argument of the inverse sine x and that it must lie in the interval function is 2  1,1 . That is, x 1 2 2  x  2 The domain of f 1  x  is  x | 2  x  2 , or 1 

 2, 2  in interval notation. Recall that the 811 Copyright © 2020 Pearson Education, Inc.


Chapter 7: Analytic Trigonometry

domain of a function is the range of its inverse and the domain of the inverse is the range of the function. Therefore, the range of f  x  is

33. Let   csc 1 u so that csc   u , 

2

 

 2

and   0 , u  1 . Then,

 2, 2 . 31. f  x    cos x  3

tan csc1 u  tan   tan 2 

y   cos x  3

 sec 2   1 

x   cos y  3 x  3   cos y

3  x  cos y y  cos 1  3  x   f 1  x 

1 csc   1 2

u u u2 1 1  sin 2  tan   1  sin 2   cos 2 

The domain of f  x  equals the range of

34. tan  cot   sin 2   tan  

f 1  x  and is 0  x   , or 0,   in interval

notation. To find the domain of f 1  x  we note

35. sin 2  (1  cot 2  )  sin 2   csc 2  1  sin 2   2  1 sin 

that the argument of the inverse cosine function is 3  x and that it must lie in the interval  1,1 . That is,

36. 5cos 2   3sin 2   2 cos 2   3cos 2   3sin 2   2 cos 2   3 cos 2   sin 2 

1  3  x  1

4   x  2

 2 cos 2   3 1  3  2 cos 2 

4 x2 2 x4 The domain of f 1  x  is  x | 2  x  4 , or

37.

 2, 4  in interval notation. Recall that the domain of a function is the range of its inverse and the domain of the inverse is the range of the function. Therefore, the range of f  x  is

1  cos sin  (1  cos ) 2  sin 2    sin  1  cos sin  (1  cos ) 1  2cos  cos 2   sin 2   sin  (1  cos ) 1  2cos  1 sin  (1  cos ) 2  2cos  sin  (1  cos ) 2(1  cos )  sin  (1  cos ) 2   2csc sin 

 2, 4  .

32. Let   sin 1 u so that sin   u ,  1  u  1 . Then,

 2

 

 2

,

cos sin 1 u  cos   cos 2 

1 cos cos  cos 38.   1 cos  sin  cos  sin  cos 1 1   sin  1  tan  1 cos

 1  sin 2   1  u 2

812

Copyright © 2020 Pearson Education, Inc.


Chapter 7 Review Exercises

1 csc  sin  39.  sin   1  csc  1  1 sin  sin  1  sin   1 1 1  sin    1  sin  1  sin  1  sin   1  sin 2  1  sin   cos 2 

43.

44.

1  sin  sin  1  sin 2   sin  cos 2   sin  cos   cos   sin   cos  cot 

40. csc   sin  

41.

1  sin   cos  (1  sin  ) sec   cos  (1  sin  )   

cos  1  sin 2  1  sin  cos  cos 2 

cos(   ) cos  cos   sin  sin   cos  cos  cos  cos  cos  cos  sin  sin    cos  cos  cos  cos   1  tan  tan 

45. (1  cos  ) tan

 2

 (1  cos  ) 

46. 2 cot  cot  2   2  

cos  sin   sin  cos  cos 2   sin 2   sin  cos  1  sin 2   sin 2   sin  cos  1  2sin 2   sin  cos 

sin   sin  1  cos 

cos  cos  2   sin  sin  2 

2 cos  cos 2   sin 2  sin   2sin  cos  

cos 2   sin 2   sin 2  2 cos  sin 2    sin 2  sin 2  2  cot   1

1  sin  1  sin 

1  sin  cos3   1  sin 

42. cot   tan  

cos(   ) cos  cos   sin  sin   cos  sin  cos  sin  cos  cos  sin  sin    cos  sin  cos  sin  cos  sin    sin  cos   cot   tan 

47. 1  8sin 2  cos 2   1  2  2sin  cos    1  2sin 2  2   cos  2  2   cos  4  48.

sin  3  cos   sin  cos  3  sin  2 

 

2

sin  3   

sin  2  sin  2 

sin  2  1

813 Copyright © 2020 Pearson Education, Inc.


Chapter 7: Analytic Trigonometry

2  4   2  4  2sin   cos   sin  2   sin  4  2    2   49. cos  2   cos  4  2cos  2  4  cos  2  4       2   2  2sin  3  cos     2cos  3  cos    sin  3   cos  3   tan  3 

50.

53. cos

cos(2 )  cos(4 )  tan  tan(3 ) cos(2 )  cos(4 )  2sin(3 ) sin(  )   tan  tan(3 ) 2 cos(3 ) cos(  ) 2sin(3 )sin    tan  tan(3 ) 2 cos(3 ) cos   tan(3 ) tan   tan  tan(3 ) 0

   2 3  54. sin     sin    12    12 12       sin  cos  cos  sin 6 4 6 4 1 2 3 2     2 2 2 2 2 6   4 4 1  2 6 4

51. sin165º  sin 120º  45º   sin120º  cos 45º  cos120º  sin 45º  3  2   1  2                2   2   2  2  6 2   4 4 1 6 2  4

5  3 2   cos    12  12 12       cos  cos  sin  sin 4 6 4 6 2 3 2 1     2 2 2 2 6 2   4 4 1  6 2 4

55. cos80º  cos 20º  sin 80º  sin 20º  cos  80º  20º   cos 60º 1  2

56. sin 70º  cos 40º  cos 70º  sin 40º  sin  70º  40º   sin 30º 1  2

52. tan105º  tan  60º  45º  tan 60º  tan 45º  1  tan 60º tan 45º 3 1  1  3 1 3 1 1 3   1 3 1 3 1 2 3  3 1 3 42 3  2  2 3 

814

Copyright © 2020 Pearson Education, Inc.


Chapter 7 Review Exercises

 2  1  cos 1 4  4 2 57. tan  tan      8 2 2 1  cos 1 4 2  

sin(   )  sin  cos   cos  sin   4   12   3   5            5   13   5   13   48  15 63   65 65

d.

tan(   ) 

e.

4 3 24 sin(2 )  2sin  cos   2    5 5 25

f.

cos(2  )  cos 2   sin 2 

2 2 2 2

tan   tan  1  tan  tan  4  5   3  12   4  5  1       3   12  11 11 9 33 12     14 12 14 56 9

2 2 2 2  2 2 2 2

2  2  

2

4 2 2 2   2 2 2 2 2  2  2 1

 2 5  5  1     1  cos 2   5   4   sin  4   58. sin 8  2  2 2  

2 2 4 2 2 2

4  5  59. sin   , 0    ; sin   ,     5 2 13 2 3 4 12 5 cos   , tan   , cos    , tan    , 5 3 13 12      0  ,   2 4 4 2 2 a. sin(   )  sin  cos   cos  sin   4   12   3   5            5   13   5   13   48  15 33   65 65 b.

c.

cos(   )  cos  cos   sin  sin   3   12   4   5            5   13   5   13  36  20 56   65 65

2

2

 12   5  144 25 119          13   13  169 169 169

g.

sin

h.

cos

1  cos  2 2  12  1     13   2 25 25 5 5 26 13     2 26 26 26

 2

1  cos  2 3 8 1 5   5  2 2 

4 2 2 5   5 5 5

3 3 12 3 60. sin    ,     ; cos   ,    2 5 2 13 2 4 3 5 5 cos    , tan   , sin    , tan    , 5 4 13 12   3 3      , 2 2 4 4 2

815 Copyright © 2020 Pearson Education, Inc.


Chapter 7: Analytic Trigonometry

a.

sin(   )  sin  cos   cos  sin   3   12   4   5              5   13   5   13  36  20  65 16  65

b.

cos(   )  cos  cos   sin  sin   4   12   3   5              5   13   5   13   48  15  65 63  65

c.

sin(   )  sin  cos   cos  sin   3   12   4   5              5   13   5   13  36  20  65 56  65

d.

tan(   ) 

h.

f.

tan   tan  1  tan  tan 

sin(2 )  2sin  cos   3   4  24  2       5   5  25

cos(   )  cos  cos   sin  sin   4   5   3   12             5   13   5   13  20 36   65 65 16  65

c.

sin(   )  sin  cos   cos  sin   3   5   4   12             5   13   5   13  15 48   65 65 33  65

d.

tan(   ) 

2

 12   5        13   13  144 25 119    169 169 169

g.

sin

 2

1  cos  2 12 1 1 13  13   2 2

1  cos  2 2  4 1     5  2 1 1 1 10  5    2 10 10 10 

b.

cos(2  )  cos 2   sin 2  2

3 3 12  61. tan   ,     ; tan   , 0    4 2 5 2 3 4 12 5 sin    , cos    , sin   , cos   , 5 5 13 13   3     , 0  2 2 4 2 4 a. sin(   )  sin  cos   cos  sin   3   5   4   12             5   13   5   13  15 48   65 65 63  65

3  5 1   1 16 16 4  12    3    3  5  21 3 21 63 1    4  12  16

e.

cos

1 1 26   26 26 26

816

Copyright © 2020 Pearson Education, Inc.

tan   tan  1  tan  tan  3 12  4 5   3   12  1     4  5  63 63  5  63  20       4 20  4  16  5


Chapter 7 Review Exercises

e.

 3   4  24 sin(2 )  2sin  cos   2         5   5  25

f.

cos(2  )  cos 2   sin 2  2

d.

tan(   )  

2

25 144 119  5   12          169  13   13  169 169

g.

h.

sin

cos

1  cos  2 2  4 1     5  2 1 1 1 10  5    2 10 10 10 

 3    0; sec   3,    2 2 2 3 1 sin    , cos   , tan    3, 2 2 2 2 1 sin    , cos   , tan    2 2, 3 3 3       0,   4 2 4 2 a. sin(   )  sin  cos   cos  sin  3 1 1 2 2       2  3  2  3   32 2  6

9 3  8 2  23 8 2 9 3  23

e.

 3  1  3 sin(2 )  2sin  cos   2        2  2  2 

f.

cos(2  )  cos 2   sin 2  2

2 1 8 7 1  2 2             3  9 9 9 3 

g.

sin

h.

cos

 2

62. sec   2, 

b.

cos(   )  cos  cos   sin  sin  1 1  3  2 2          2 3  2   3  1 2 6  6

c.

sin(   )  sin  cos   cos  sin  3 1 1  2 2       2 3 2  3   32 2  6

  1    3   2 2   3  2 2

  3  2 2   1 2 6         1 2 6   1 2 6 

1  cos  2 2 5 8 1 13  13  4  2  2 13  2 2 13 13 13

tan   tan  1  tan  tan 

1  cos  2 1 2 1 3  3  1 1  3  2 2 3 3 3 

1  cos  2 2 1 3 1 2  2   2 2 

3 3  4 2

2 3 2 3 63. sin    ,     ; cos    ,     3 2 3 2 5 2 5 5 cos    , tan   , sin    , 3 5 3 5   3   3 tan   ,   ,   2 2 2 4 2 2 4 a. sin(   )  sin  cos   cos  sin  5  5  2  2                  3   3   3  3  4 5   9 9 1

817 Copyright © 2020 Pearson Education, Inc.


Chapter 7: Analytic Trigonometry

b.

c.

d.

cos(   )  cos  cos   sin  sin   5  2   2  5                 3  3   3  3  2 5 2 5   9 9 0

h.

3 5 3  2

sin(   )  sin  cos   cos  sin  5  5  2  2                  3   3   3   3  4 5   9 9 1  9 tan(   ) 

 

sin(2 )  2sin  cos  5 4 5  2   2       9  3   3 

f.

cos(2  )  cos 2   sin 2 

0 

 1  , and cos   , 0    . 2 2 2 2

9 16 4 3  1    1   25 25 5 5 sin   1  cos 2  2

1 3 3 1  1    1   4 4 2 2 3 1   cos  sin 1  cos 1   cos     5 2   cos  cos   sin  sin  4 1 3 3     5 2 5 2 4 3 3 43 3    10 10 10

2

1  cos  2  2 1     3   2

3 , 5

cos   1  sin 2 

2 5 4 5 1  2              9 9 9  3  3 

2

quadrant I;  is in quadrant I. Then sin  

e.

6 3 5

3 1  64. cos  sin 1  cos 1  5 2  3 1 Let   sin 1 and   cos 1 .  is in 2 5

tan   tan  1  tan  tan 

4 5 5 5 10  11 9 5  10 ; Undefined 0

sin

3 5 6

6 6 3 5  6

2 5 5  2  5 2 5 5 1  5 2

g.

 5 1     3   1  cos   cos    2 2 2

5 4  65. sin  cos 1  cos 1  13 5   4 1 5 and   cos 1 .  is in Let   cos 13 5

5 3  5  30 2 6 6

quadrant I;  is in quadrant I. Then cos   0 

 4  , and cos   , 0    . 2 5 2

818

Copyright © 2020 Pearson Education, Inc.

5 , 13


Chapter 7 Review Exercises

sin   1  cos 2  2

25 144 12 5  1    1   13 169 169 13   sin   1  cos 2 

  1  3  tan sin 1     tan 1     tan     2    4   tan   tan   1  tan  tan  3 3  3 4   3  3  1        3  4  

2

16 9 3 4  1    1   5 25 25 5   4  1 5 sin  cos  cos 1   sin     13 5   sin  cos   cos  sin  12 4 5 3     13 5 13 5 48 15 33    65 65 65

4 3 9 12  3 3 1 12 9  4 3 12  3 3   12  3 3 12  3 3

 3  1 66. tan sin 1     tan 1  2 4     1 3   Let   sin 1    and   tan 1 .  is in 4  2 quadrant IV;  is in quadrant I. Then, 1  3 sin    , 0    , and tan   , 2 4 2  0  . 2 cos   1  sin 2  2

1  1  1     1  2 4  

tan   

1 3



3 3

3 3  4 2

144  75 3 117

 48  25 3 39



48  25 3 39

  4  67. cos  tan 1 (1)  cos 1      5    4  

Let   tan 1 (1) and   cos 1    .  is in 5 quadrant IV;  is in quadrant II. Then tan   1, 

 2

4     0 , and cos    , 5 2

 .

sec   1  tan 2   1  (1) 2  2 cos  

1 2

2 2

sin    1  cos 2  2

 2 1 1 2   1       1    2 2 2 2   sin   1  cos 2  2

16 9 3  4  1     1   25 25 5  5

819 Copyright © 2020 Pearson Education, Inc.


Chapter 7: Analytic Trigonometry

  4  cos  tan 1 (1)  cos 1      cos      5    cos  cos   sin  sin   2  4   2  3               2  5   2  5  4 2 3 2   10 10 2  10

70. cos  

5  2k , k is any integer 3 3   5  On 0    2 , the solution set is  , . 3 3 



tan    3 2   k  , k is any integer 3 On the interval 0    2 , the solution set is  2 5   , . 3   3

72. sin(2 )  1  0 sin(2 )  1

sin   1  cos 2 

3  2k 2 3   k , k is any integer 4 On the interval 0    2 , the solution set is  3 7   ,  4   4

2

2 

9 16 4  3  1     1   5 25 25 5  

  3  sin  2cos 1      sin 2  5    2sin  cos  24  4  3   2       25  5  5 

73. tan  2   0

4  69. cos  2 tan 1  3  4 Let   tan 1 .  is in quadrant I. Then 3 4  tan   , 0    . 3 2

2  0  k 

k , where k is any integer 2 On the interval 0    2 , the solution set is 3    0, ,  , . 2 2  



sec   tan 2   1 2

 2k or  

71. tan   3  0

  3  68. sin  2 cos 1      5    3 Let   cos 1    .  is in quadrant II. Then  5 3  cos    ,     . 5 2

16 4    1  1  3 9   3 cos   5 4  cos  2 tan 1   cos  2  3   2 cos 2   1

1 2

74. sec 2   4 sec   2 1 cos    2

25 5  9 3



+k 

or



2 +k , 3

3 where k is any integer On the interval 0    2 , the solution set is   2 4 5  , , .  , 3 3 3 3 

2

7 3  9   2   1  2   1   25 5  25 

820

Copyright © 2020 Pearson Education, Inc.


Chapter 7 Review Exercises 75. 0.2sin   0.05 Find the intersection of Y1  0.2sin  and Y2  0.05 :

4sin 2   1  4 cos 

79.

4 1  cos 2   1  4 cos  4  4 cos   1  4 cos  2

4 cos   4 cos   3  0 2

 2 cos   1 2 cos   3  0

  0,  1 2 2 4   , 3 3 On 0    2 , the solution set is 4   2 , ,  . 0, 3 3   sin(2 )  cos   2sin   1  0

(2sin   1)(cos   1)  0

6

or cos   1

 0

6

  5  On 0    2 , the solution set is 0, ,  .  6 6 

78.

sin  2   2 cos  2sin  cos   2 cos   0

2sin 2   3sin   1  0

cos   0



or

, 2 2



 5 6

,

sin  



2 2

 3

, 4 4    3 3 

sin   1  0



,

81. sin   cos   1 Divide each side by 2 : 1 1 1 sin   cos   2 2 2 Rewrite in the difference of two angles form 1 1  , sin   , and   : where cos   4 2 2 1 sin  cos   cos  sin   2

sin   1

1 sin   2

or 2sin   2  0

 3

(2sin   1)(sin   1)  0 2sin   1  0

cos  2sin   2  0

4 2 4

cos  (2sin   1)  1(2sin   1)  0

,

3

On 0    2 , the solution set is  , ,

2sin  cos   cos   2sin   1  0

 5

,

2sin  cos   2 cos 

cos   



3

80.

or sin   0

1 2

 5

  5  . 3 3 

sin  (1  2 cos  )  0

sin  

3 2 (not possible) cos   

On 0    2 , the solution set is  ,

sin   2sin  cos   0

77.

1 2



sin   sin(2 )  0

1  2 cos   0

or 2 cos   3  0

cos  

On the interval 0    2 , x  0.25 or x  2.89 The solution set is 0.25, 2.89 . 76.

2 cos   1  0

 2

6    5  . 6 2 6 

On 0    2 , the solution set is  , ,

821 Copyright © 2020 Pearson Education, Inc.

sin(   ) 

2 2

. 2 


Chapter 7: Analytic Trigonometry  3 or     4 4    3    or    4 4 4 4  or     2   On 0    2 , the solution set is  ,   .

quadrant II. The calculator yields

  

2

 1 tan 1     0.24 , which is an angle in  4

quadrant IV. Since  lies in quadrant II,   0.24    2.90 . Therefore, cot 1  4   2.90 .

82. sin 1  0.7   0.78 87. 2 x  5cos x Find the intersection of Y1  2 x and Y2  5cos x : 

83. tan 1  2   1.11







x  1.11 The solution set is 1.11 .

84. cos 1  0.2   1.77

88. 2sin x  3cos x  4 x Find the intersection of Y1  2sin x  3cos x and Y2  4 x : 

1 85. sec1  3  cos 1   3 We seek the angle  , 0     , whose cosine





1 1 equals . Now cos   , so  lies in 3 3 1 quadrant I. The calculator yields cos 1  1.23 , 3 which is an angle in quadrant I, so sec1  3  1.23 .



x  0.87 . The solution set is 0.87 .

89. sin x  ln x Find the intersection of Y1  sin x and Y2  ln x :  



 1 86. cot 1  4   tan 1     4 We seek the angle  , 0     , whose tangent



x  2.22 The solution set is 2.22 .

1 1 equals  . Now tan    , so  lies in 4 4

822

Copyright © 2020 Pearson Education, Inc.


Chapter 7 Test 90. 3sin 1 x   sin 1 x  

Verifying equality: 1 6 2 6 2  4 4 2 3 2  4

3   x  sin     3 

3 2

 3  The solution set is  .  2 

91.

2 cos 1 x  

x  cos

4

2 cos 1 x    0

2

 3  1

 2 3 1       4  

2 cos 1 x    4 cos 1 x

cos 1 x 

2

0 2 The solution set is {0}.

92. Using a half-angle formula:  30  sin15  sin    2  1  cos 30  2 3 1 2  2 3  2 3  2 4 2 Note: since 15º lies in quadrant I, we have sin15  0 .

Using a difference formula: sin15  sin(45  30)  sin(45) cos(30)  cos(45) sin(30) 2 3 2 1    2 2 2 2 6 2 6 2 1     4 4 4 4

2

2 3  2 3 1 16

2 42 3

16

22 2  3

16

2 3 4

2 3 2

93. Given the value of cos  , the most efficient Double-angle Formula to use is cos  2   2 cos 2   1 .

Chapter 7 Test  2  1. Let   sec1   . We seek the angle  , such  3

 6  2

that 0     and  

 2

, whose secant equals

2 . The only value in the restricted range with 3  2   2  is . Thus, sec1  a secant of  . 6 3  3 6

823 Copyright © 2020 Pearson Education, Inc.


Chapter 7: Analytic Trigonometry 11 is in quadrant I. The reference angle of 5 11  11   is and sin  sin . Since is in 5 5 5 5 5    the interval   ,  , we can apply the equation  2 2

 2 2. Let   sin 1    . We seek the angle  , such 2   2     , whose sine equals  . The 2 2 2 only value in the restricted range with a sine of  2  2   is  . Thus, sin 1    .   4 4 2  2 

that 

 11   above and get sin 1  sin  . 5  5 

3. Let   tan 1  3 . We seek the angle  , such

that 

 

7  8. tan  tan 1  follows the form 3 

, whose tangent equals  3 . The

2 2 only value in the restricted range with a tangent of

 3 is 

3

. Thus, tan

1

 3   3 . 

Thus, cos 1 0 

 2

 2

.

9. cot csc1 10

.

is

. Thus, cot 1 1 

4

4

x 2  12 

is 

x3  is in quadrant I.

. Thus, csc 1  2   

6

x 3   3. y 1

 3 10. Let   cos 1    .  4

.

  3  sec cos 1      sec   4   1  cos 

 11  7. sin 1  sin  follows the form of the equation 5  

Thus, cot csc 1 10  cot  

6

2

x2  9

.

   , whose cosecant equals 2 . The only 2 2 value in the restricted range with a cosecant of 2

 10 

x 2  1  10

6. Let   csc 1  2  . We seek the angle  , such that 

r    10 ,     , let y 2 2

r  10 and y  1 . Solve for x:

   , whose cotangent equals 1 . The only 2 2 value in the restricted range with a cotangent of 1 

Since csc 1  

5. Let   cot 1 1 . We seek the angle  , such that

domain of the inverse tangent is all real numbers, we can directly apply this equation to get 7 7  tan  tan 1   . 3 3 

4. Let   cos 1 0 . We seek the angle  , such that     0 , whose cosine equals 0 . The only value

in the restricted range with a cosine of 0 is

f f 1  x   tan tan 1 x  x . Since the

1  1  3   cos  cos      4   1  3 4 4  3

f 1 f  x   sin 1 sin  x   x , but because

11    is not in the interval   ,  , we cannot 5  2 2 directly use the equation. We need to find an angle  in the interval 11      2 , 2  for which sin 5  sin  . The angle   824

Copyright © 2020 Pearson Education, Inc.


Chapter 7 Test 11. sin 1  0.382   0.39 radian

sin   cos  cos  sin 2  cos 2    cos  cos  sin 2   cos 2   cos  1  cos   sec 

16. sin  tan   cos   sin  

 1  12. sec1 1.4  cos 1    0.78 radian  1.4 

17. tan   cot  

sin  cos   cos  sin 

sin 2  cos 2   sin  cos  sin  cos  sin 2   cos 2   sin  cos  1  sin  cos  2  2sin  cos  2  sin  2  

13. tan 1 3  1.25 radians

1 14. cot 1 5  tan 1    0.20 radian 5

 2 csc  2 

18. 15.

csc   cot  sec   tan  csc   cot  csc   cot    sec   tan  csc   cot  csc2   cot 2    sec   tan   csc  cot   1    sec tan   csc  cot  

sec   tan   sec   tan   csc  cot   sec  tan 

 

sec   tan 

sec   tan    csc  cot   2

sin  cos   cos  sin  sin  sin   cos  cos  sin  cos   cos  sin   sin  cos  cos  sin   cos  cos  cos  cos  sin  cos   cos  sin   sin  cos   cos  sin  cos  cos  sin  cos   cos  sin  

1

sin     tan   tan 

1

 cos  cos 

2

sec   tan  csc   cot 

825 Copyright © 2020 Pearson Education, Inc.

cos  cos  sin  cos   cos  sin 


Chapter 7: Analytic Trigonometry

19.

22. tan 75  tan  45  30 

sin  3   sin   2   sin  cos  2   cos  sin  2 

tan 45  tan 30 1  tan 45 tan 30 3 1 3  3 1  1 3 3 3  3 3 3 3 3 3   3 3 3 3 96 3 3  32  3 12  6 3  6  2 3 

 sin  cos 2   sin 2   cos   2sin  cos   sin  cos   sin   2sin  cos 2   3sin  cos 2   sin 3   3sin  1  sin 2   sin 3  2

3

 3sin   3sin 3   sin 3   3sin   4sin 3 

sin  cos  tan   cot  cos   sin  20.  tan   cot  sin  cos   cos  sin  sin 2   cos 2   cos   sin sin 2   cos 2  sin  cos  sin 2   cos 2   sin 2   cos 2   cos  2   1   2 cos 2   1

3 1 23. sin  cos 1  2 5    1 3 Let   cos . Since 0    (from the 5 2

range of cos 1 x ),

1  cos  1  sin     2 2  3 1  cos  cos 1  1  53 5    2 2 1 5   5 5

 1  2 cos  2

21. cos15  cos  45  30   cos 45 cos 30  sin 45 sin 30 2 3 2 1     2 2 2 2 2  3 1 4 6 2 1  or 6 2 4 4

6  24. tan  2sin 1  11   6 6 and  lies in Let   sin 1 . Then sin   11 11 y 6 quadrant I. Since sin    , let y  6 and r 11 r  11 , and solve for x: x 2  62  112 x 2  85 x  85

826

Copyright © 2020 Pearson Education, Inc.


Chapter 7 Test

tan  

26. Let   75 ,   15 .

y 6 6 85   x 85 85

Since sin  cos  

 6 85  2  2 tan   85   tan  2   2 1  tan 2   6 85  1    85  12 85 12 85 85  85   36 85 49 1 85 12 85  49

1 sin  90   sin  60   2 1 3 1 2 3  1   2 3  2 2  4 4

sin 5 cos15 

27.

2 3  25. cos  sin 1  tan 1  3 2  2 3 Let   sin 1 and   tan 1 . Then 3 2 2 3 sin   and tan   , and both  and  3 2 y 2 lie in quadrant I. Since sin   1  , let r1 3 y1  2 and r1  3 . Solve for x1 : x12  22  32 x12  4  9 x12  5 x1  5

1 sin      sin      , 2

sin 75  sin15  75  15   75  15   2sin   cos   2 2      2  3  6  2sin  45  cos  30   2    2 2 2   

28.

cos 65 cos 20  sin 65 sin 20  cos  65  20   cos  45  

4sin 2   3 3 sin 2   4 3 sin    2 On the interval  0, 2  , the sine function takes

x1 5  . 3 r1

on a value of

Since tan  

y2 3  , let x2  2 and y2  3 . x2 2

sine takes on a value of 

y2 3  . r2 13 Therefore, cos      cos  cos   sin  sin 

Thus, sin  

5 2 2 3    3 13 3 13

2 5 6 3 13

2 13

 5  3 39

2 2

29. 4sin 2   3  0

Thus, cos  

Solve for x2 : 22  32  r2 2 4  9  r2 2 r2 2  13 r2  13

3  2 when   or   . The 3 3 2

3 4 when   and 3 2 5  2 4 5  . The solution set is . , , , 3 3 3 3 3

  30. 3cos      tan  2   3sin   tan  sin  0  3sin  cos   1  0  sin    3  cos  

sin   0 or

1 3  0 cos 

1 3 On the interval  0, 2  , the sine function takes cos   

on a value of 0 when   0 or    . The cosine 827 Copyright © 2020 Pearson Education, Inc.


Chapter 7: Analytic Trigonometry 4u  1  0 or u  2  0 4u  1 u  2 1 u 4 Substituting back in terms of  , we have 1 or sin   2 sin   4 The second equation has no solution since 1  sin   1 for all values of  . Therefore, we only need to find values of  1 between 0 and 2 such that sin   . These will 4 occur in the first and second quadrants. Thus, 1 1   sin 1  0.253 and     sin 1  2.889 . 4 4 The solution set is 0.253, 2.889 .

1 in the second and 3 1 third quadrants when     cos 1 and 3 1     cos 1 . That is   1.911 and   4.373 . 3 The solution set is 0,1.911,  , 4.373 .

function takes on a value of 

31.

cos 2   2sin  cos   sin 2   0

 cos   sin    2sin  cos  0 2

2

cos  2   sin  2   0 sin  2    cos  2  tan  2   1 The tangent function takes on the value 1 3  k . Thus, we need when its argument is 4 3  k 2  4  3  k 8 2

Chapter 7 Cumulative Review

 3  4k  8 On the interval  0, 2  , the solution set is 

     3 7 11 15 , , ,  8 8 8

1. 3x 2  x  1  0

.

1  12  4  3 1

32. sin   1  cos 

2  3

1  1  12 6 1  13  6

sin  cos1  cos  sin1  cos 

sin  cos1  cos  sin1 cos   cos  cos  tan  cos1  sin1  1

 1  13 1  13  , The solution set is  . 6 6  

tan  cos1  1  sin1 tan  

b  b 2  4ac 2a

x

1  sin1 cos1

2. Line containing points (2,5) and (4, 1) :

 1  sin1  Therefore,   tan 1    0.285 or  cos1  1  sin1      tan 1    3.427  cos1  The solution set is 0.285,3.427 .

m

y2  y1 1  5 6    1 x2  x1 4   2  6

Using y  y1  m( x  x1 ) with point (4, 1) , y  (1)  1 x  4  y  1  1 x  4 

33. 4sin 2   7 sin   2

y 1  x  4

4sin 2   7 sin   2  0 Let u  sin  . Then,

y   x  3 or x  y  3

4u 2  7u  2  0

 4u  1 u  2   0 828

Copyright © 2020 Pearson Education, Inc.


Chapter 7 Cumulative Review

Distance between points (2,5) and (4, 1) : d

 x2  x1    y2  y1 

 4   2     1  52

2

the right 3 units and vertically up 2 units.

2

2

 62   6   72  36  2  6 2 2

Midpoint of segment with endpoints (2,5) and (4, 1) :  x1  x2 y1  y2   2  4 5   1   2 , 2    2 , 2   1, 2     

3. 3x  y 2  9

x-intercept: 3x  02  9 ;  3, 0  3x  9 x3 y-intercepts: 3  0   y 2  9 ;  0, 3 ,  0,3

5. y  3e x  2

Using the graph of y  e x , stretch vertically by a factor of 3, and shift down 2 units.

y2  9 y  3

Tests for symmetry: x-axis: Replace y with  y : 3x    y   9 2

3x  y 2  9 Since we obtain the original equation, the graph is symmetric with respect to the x-axis.

y-axis: Replace x with  x : 3   x   y 2  9 3x  y 2  9 Since we do not obtain the original equation, the graph is not symmetric with respect to the y-axis.

  6. y  cos  x    1 2  Using the graph of y  cos x , horizontally shift to the right unit.

Origin: Replace x with  x and y with  y : 3 x     y   9 2

3x  y 2  9 Since we do not obtain the original equation, the graph is not symmetric with respect to the origin.

4. y  x  3  2

Using the graph of y  x , shift horizontally to

829 Copyright © 2020 Pearson Education, Inc.

 2

units, and vertically shift down 1


Chapter 7: Analytic Trigonometry

7. a.

y  x3 y   



x



Inverse function: y  3 x y 

c.

y  sin x , 



y





x

x

2





      2 , 1  

2

    2 , 1  

 

x



Inverse function: y  sin 1 x y 





b.

    1,  2   

y  ex y  e 

 1   1, e   



x



Inverse function: y  ln x y  e 





x

1    e , 1  

830

Copyright © 2020 Pearson Education, Inc.

    1, 2   



x


Chapter 7 Cumulative Review d.

y  cos x , 0  x  

 1  2 2  sin(2 )  2sin  cos   2       3   3 

c.

y 

     2 , 0  

  

2

 2 2   1 2 8 1 7        3   3  9 9 9 



Inverse function: y  cos 1 x

e.

y 

cos(2 )  cos 2   sin 2 

d. x

    0, 2   

 



4 2 9

3   3 , we have that   . 2 2 2 4 1 1  Thus,  lies in Quadrant II and sin     0 . 2 2 

Since    

 2 2 1   3  1  cos  1    sin     2 2 2 

x

f.

Since

3 2 2 3 2 2 3  2 6

1 1  lies in Quadrant II, cos     0 . 2 2 

 2 2 1   3  1  cos  1    cos      2 2 2  32 2 3 2 2 3   2 6

1 3 8. sin    ,     , so  lies in Quadrant III. 3 2 a. In Quadrant III, cos   0  1 cos    1  sin 2    1      3   1 

b.

1 8  9 9

2

9. cos tan 1 2

Let   tan 1 2 . Then tan  

y 2  , x 1

     . Let x  1 and y  2 . 2 2 Solve for r: r 2  x 2  y 2 

2 2 3

1  sin  3 tan    cos  2 2  3 1 3  1 2      3  2 2  2 2 4

r 2  12  22 r2  5 r 5  is in quadrant I.

cos tan 1 2  cos  

831 Copyright © 2020 Pearson Education, Inc.

x 1 1 5 5     r 5 5 5 5


Chapter 7: Analytic Trigonometry 1  1 3 10. sin   ,     ; cos    ,     3 2 3 2  a. Since     , we know that  lies in 2 Quadrant II and cos   0 .

11.

a.

2

1 8 1   1     1   9 9 3

Max 1, 0.5  1  1  2  0.5   Max 1, 5  5

3 , we know that  lies in 2 Quadrant III and sin   0 .

  

1  Max   0.5 , 1 , 1 , 2 , 0.5   1 2  3 The smaller of the two numbers is 3. Thus, every zero of f must lie between 3 and 3.

sin    1  cos  2

 1   1     3

2

Use synthetic division with –1:

1 8 2 2   1    9 9 3 cos(2 )  cos   sin  2

2

2

2

cos(   )  cos  cos   sin  sin 

3   3 Since     , we have that   . 2 2 2 4

2

lies in Quadrant II and sin

2

1 3

1

2  3 1 3 1

0

3

1 2  3 1 3

1

2 1  2

1

2 1  2 1

0

Since the remainder is 0, x  1 is a factor. The other factor is the quotient: 2 x3  x 2  2 x  1 .

0.

Factoring: 2 x3  x 2  2 x  1  x 2  2 x  1  1 2 x  1

1 1      1  cos   3  sin  2 2 2 4 3  2

2

Use synthetic division with 1 on the quotient:

2 2 2 2 4 2    9 9 9

Thus,

2 1

a factor. The other factor is the quotient: 2 x 4  3 x3  x 2  3x  1 .

2 2  1 1 2 2       3  3  3  3 

e.

1 2  1  4 2

Since the remainder is 0, x   1  x  1 is

 2 2  1 8 1 7         3 3 9 9 9    

d.

a4   0.5, a3  2, a2  1, a1  1, a0  0.5

2 2  3

c.

f ( x ) has at most 5 real zeros.

Possible rational zeros: p 1  1,  p  1; q  1,  2; q 2 Using the Bounds on Zeros Theorem: f ( x)  2 x5  0.5 x 4  2 x3  x 2  x  0.5

cos    1  sin 2 

b.

f ( x)  2 x5  x 4  4 x3  2 x 2  2 x  1

  2 x  1 x 2  1

  2 x  1 x  1 x  1

4 2 2 6 6    6 6 3 6

Therefore, f  x    2 x  1 x  1  x  1 2

2

2 2 1   2  x    x  1  x  1 2 

832

Copyright © 2020 Pearson Education, Inc.


Chapter 7 Cumulative Review

The real zeros are 1 and 1 (both with 1 multiplicity 2) and (multiplicity 1). 2 1 b. x-intercepts: 1, , 1 2 y-intercept: 1 1  The intercepts are (0, 1) , (1, 0) ,  , 0  , 2  and (1, 0) c.

g.

f resembles the graph of y  2 x5 for large

f is increasing on  , 1 ,  0.29, 0.69 ,

and 1,  . f is decreasing on  1, 0.29

x .

and  0.69,1 .

d. Let Y1  2 x 5  x 4  4 x 3  2 x 2  2 x  1 12.

f ( x)  2 x 2  3 x  1 ; g ( x)  x 2  3x  2

f ( x)  0

a.

2 x  3x  1  0 2

(2 x  1)( x  1)  0 1 x   or x  1 2

e.

f.

Four turning points exist. Use the MAXIMUM and MINIMUM features to locate local maxima at  1, 0  ,  0.69, 0.10 

 

The solution set is 1, 

1 . 2

f ( x)  g ( x)

b.

and local minima at 1, 0  ,  0.29, 1.33 .

2 x  3x  1  x 2  3x  2

To graph by hand, we determine some additional information about the intervals between the xintercepts:

x2  1  0 ( x  1)( x  1)  0 x  1 or x  1 The solution set is 1, 1 .

Interval Test number Value of f Location Point

 , 1  1, 0.5  0.5,1

1,  

2

2

45

0 1

Below Below x-axis x-axis   2, 45    0, 1

0.7  0.1

2

f ( x)  0

c.

2 x  3x  1  0 2

27

Above Above x-axis x-axis 0.7, 0.1    2, 27 

f is above the x-axis for  0.5,1 and

(2 x  1)( x  1)  0

f ( x)   2 x  1 x  1

The zeros of f are x  

1,  , and below the x-axis for  , 1 and  1,0.5  .

833 Copyright © 2020 Pearson Education, Inc.

1 and x  1 2


Chapter 7: Analytic Trigonometry

Interval

 , 1  1,  2    2 ,   1

1

 

Test number

2

0.75

0

Value of f

3

0.125

1

Conclusion

e. If x  1 , the resulting equation is y  0.00421sin(68.3  2.68t ) . To graph, let Y1  0.00421sin(68.3  2.68 x) . 

 1  The solution set is  , 1    ,   .  2 



f ( x)  g ( x)

d.

f. Note: (kx  t )  (kx  t   )  2kx  2t   and (kx  t )  (kx  t   )   .

2 x  3x  1  x2  3x  2 2

x2  1  0 ( x  1)( x  1)  0

y1  y2  ym sin(kx  t )  ym sin( kx  t   )  ym [sin(kx  t )  sin(kx  t   )]

p  x    x  1 x  1

  2kx  2 wt         ym  2sin   cos  2   2     

The zeros of p are x  1 and x  1 . Interval Test number

 , 1

 1,1

1,  

2

0

2

Value of p

3

1

3

Conclusion

 2kx  2 wt      cos    2 ym sin   2   2

g. ym  0.0045 ,   2.5 ,   0.09 , f  2.3 Let x  1 : 2    0.09  f  2.3  k 2 200   4.6  14.45 k  69.8 9

Positive Negative Positive

The solution set is  , 1  1,  .

y1  ym sin(kx  t )

Chapter 7 Projects

 0.0045sin(69.8 1  14.45t )  0.0045sin(69.8  14.45t )

Project I – Internet-based Project

y2  ym sin(kx  t   )

Project II

 0.0045sin(69.8 1  14.45t  2.5)

a. Amplitude = 0.00421 m

 0.0045sin(72.3  14.45t )

b.   2.68 radians/sec c.

f 

d.  



Positive Negative Positive

2

 2kx  2t      y1  y2  2 ym sin   cos  2  2      2  69.8  1  2  14.45t  2.5   2.5   2  0.0045sin   cos  2  2      142.1  28.9t   0.009sin   cos(1.25) 2    0.009sin  71.05  14.45t  cos(1.25)

2.68  0.4265 vibrations/sec 2

2 2   0.09199 m k 68.3

h. Let Y1  0.0045sin(69.8  14.45 x) , Y2  0.0045sin(72.3  14.45 x) , and

Y3  0.009sin  71.05  14.45 x  cos(1.25) .

834

Copyright © 2020 Pearson Education, Inc.


Chapter 7 Projects 

Project III

y1 y1  y2

y

a.





h

y2

     x



i. ym  0.0045 ,   0.4 ,   0.09 , f  2.3 Let x  1 : 2    0.09  f  2.3  k 2 200   4.6  14.45 k  69.8 9 y1  0.0045sin(69.8  14.45t ) y2  ym sin(kx  t   )  0.0045sin(69.8 1  14.45t  0.4)  0.0045sin(70.2  14.45t )

h

b. Let Y1  1  



Y3  0.009sin  70  14.45 x  cos(0.2) . y1  y2 y1





d. Let Y1  1   

4  sin x

  1

sin(3x ) sin(37 x)   ...  3 37 





y2

e. The best one is the one with the most terms.





sin(17 x)  4  sin x sin(3x )   ...   3 17   1

Let Y1  0.0045sin(69.8  14.45 x) , Y2  0.0045sin(70.2  14.45 x) , and 



c. Let Y1  1 

 2kx  2t      y1  y2  2 ym sin   cos  2  2      2  69.8  1  2  14.45t  0.4   0.4   2  0.0045sin   cos  2  2      140  28.9t   0.009sin   cos(0.2) 2    0.009sin  70  14.45t  cos(0.2)

4  sin x sin(3x ) sin(5 x ) sin(7 x)     3 5 7    1



j. The phase shift causes the amplitude of y1  y2 to increase from 0.009 cos(1.25)  0.003 to 0.009 cos(0.2)  0.009 .

835 Copyright © 2020 Pearson Education, Inc.


Chapter 7: Analytic Trigonometry

The shape looks like a sinusoidal graph.

Project IV a.

f ( x)  sin x (see table column 2)

x 0

f ( x) 0 1 2 2 2 3 2

 6

 4

 3

1

2 2 3 3 4 5 6

3 2 2 2 1 2 0 1  2 2  2 3  2

 7

g ( x) 0.954

h( x ) k ( x) 0.311 0.749

m( x ) 6.085

0.791

0.703

2.437

4.011

0.607

1.341 1.387

3.052

0.256

0.978

0.588

1.243

0.256 0.670 0.063

0.413

0.607 0.703

0.153

8.507

0.791 0.623

2.380

6.822

0.954

0.594

2.695

0

0.954

0.311 0.817 1.536

0.791 6 5 0.607 4 4 0.256 3 3 0.256 1 2 5 3 0.607  3 2 7 2 0.791  4 2 11 1 0.954  6 2 2 1

0.117 0.013 5.248

b. g ( x) 

1.341

1.387

0.978

0.588 1.243

0.670

0.063

0.703

0.306

Rounding a, b, c, and d to the nearest tenth, we have that y  sin( x  1.8) . Barring error due to rounding and approximation, this looks like y  cos x g  xi 1   g  xi  (see table column 4) xi 1  xi

d. h( x) 









The shape is sinusoidal. It looks like an upsidedown sine wave.

3.052

Rounding a, b, c, and d to the nearest tenth, we have that y  0.5sin(6.4 x ) . e. k ( x) 

0.705

h  xi 1   h  xi  (see table column 5) xi 1  xi

0.623

 

This curve is losing its sinusoidal features, although it still looks like one. It takes on the features of an upside-down cosine curve

f  xi 1   f  xi  (see table column 3) xi 1  xi



c. 

. Rounding a, b, c, and d to the nearest tenth, we have that y  0.8sin(1.1x)  0.3 . Note: The rounding error is getting greater and greater.





836

Copyright © 2020 Pearson Education, Inc.


Chapter 7 Projects

f. m( x) 

k  xi 1   k  xi  (see table column 6) xi 1  xi





 

The sinusoidal features are gone.

Rounding a, b, c, and d to the nearest tenth, we have that y  2.1sin(5.1x  1.5)  0.6 . g. It would seem that the curves would be less “involved”, but the rounding error has become incredibly great that the points are nowhere near accurate at this point in calculating the differences.

837 Copyright © 2020 Pearson Education, Inc.


Chapter 6 Trigonometric Functions 16.

Section 6.1 1. C  2 r ; A   r 2

17.

2. d  r  t 3. standard position 4. central angle

18.

5. d 6. r ;

1 2 r 2

19.

7. b 8.

s  ; t t

20.

9. True 10. False;   r 21.

11.

12.

22. 13.

14.

15.

_

23. 30  30 

  radian  radian 180 6

24. 120  120 

 2 radian  radians 180 3

25. 495  495 

 11 radian  radians 180 4

26. 330  330 

 11 radian  radians 180 6

583 Copyright © 2020 Pearson Education, Inc.


Chapter 6: Trigonometric Functions   radian   radian 180 3

44.    

  radian   radian 180 6

45. 

17  17 180 degrees  204   15 15 

29. 540  540 

 radian  3 radians 180

46. 

3 3 180   degrees   135 4 4 

30. 270  270 

 3 radian  radians 180 2

47. 17  17 

27.  60   60  28. 30  30 

31. 240  240 

 4 radian   radians 180 3

32.  225   225  33.  90   90 

 5 radian   radians 180 4

  radian   radians 180 2

34. 180  180 

 radian   radians 180

35.

  180   degrees  60 3 3 

36.

5 5 180   degrees  150 6 6 

37.  38. 

39.

2 2 180   degrees  120 3 3 

40. 4  4 

41.

42.

180 degrees  720 

3 3 180   degrees  27 20 20  5 5 180   degrees  75 12 12 

43. 

  180 degrees   90   2 2 

 17 radian  radian  0.30 radian 180 180

 radian 180 73 radians  180  1.27 radians

48. 73  73 

49.  40   40 

 radian 180

2 radian 9   0.70 radian 

 radian 180 17 radian  60   0.89 radian

50.  51   51 

13 13 180   degrees  390 6 6 

9 9 180   degrees  810 2 2 

180 degrees  180 

51. 125  125 

 radian 180

25 radians 36  2.18 radians 

52. 350  350 

 radian 180

35 radians 18  6.11 radians 

53. 3.14 radians  3.14 

54. 0.75 radian  0.75 

584 Copyright © 2020 Pearson Education, Inc.

180 degrees  179.91º 

180 degrees  42.97º 


Section 6.1: Angles, Arc Length, and Circular Motion

55. 7 radians  7 

56. 3 radians  3 

180 degrees  401.07º 

180 degrees  171.89º 

57. 9.28 radians  9.28 

58.

2 radians  2 

180 degrees  531.70º 

180 degrees  81.03º 

1 1 1 º  59. 40º10 ' 25"   40  10   25    60 60 60    (40  0.1667  0.00694)º  40.17º 1 1 1 º  60. 61º 42 ' 21"   61  42   21    60 60 60    (61  0.7000  0.00583)º  61.71º 1 1 1º  61. 50º14 '20"   50  14   20     60 60 60   (50  0.2333  0.00556)º  50.24º 1 1 1 º  62. 73º 40 ' 40"   73  40   40    60 60 60    (73  0.6667  0.0111)º  73.68º 1 1 1 º  63. 9º 9 '9"   9  9   9    60 60 60    (9  0.15  0.0025)º  9.15º 1 1 1 º  64. 98º 22 ' 45"   98  22   45    60 60 60    (98  0.3667  0.0125)º  98.38º

65. 40.32º  40º  0.32º  40º  0.32(60 ')  40º 19.2 '  40º 19 ' 0.2 '  40º 19 ' 0.2(60")  40º 19 ' 12"  40º19 '12" 66. 61.24º  61º  0.24º  61º  0.24(60 ')  61º 14.4 '  61º 14 ' 0.4 '  61º 14 ' 0.4(60")  61º 14 ' 24"  61º14 ' 24" 67. 18.255º  18º  0.255º  18º  0.255(60 ')  18º 15.3'  18º 15' 0.3'  18º 15' 0.3(60")  18º 15' 18"  18º15'18" 68. 29.411º  29º  0.411º  29º  0.411(60 ')  29º 24.66 '  29º 24 ' 0.66 '  29º 0.66(60")  29º 24 ' 39.6"  29º 24 ' 40" 69. 19.99º  19º  0.99º  19º  0.99(60 ')  19º 59.4 '  19º 59 ' 0.4 '  19º 59 ' 0.4(60")  19º 59 ' 24"  19º 59 ' 24"

585 Copyright © 2020 Pearson Education, Inc.


Chapter 6: Trigonometric Functions 70. 44.01º  44º  0.01º  44º  0.01(60 ')  44º 0.6 '  44º 0 ' 0.6 '  44º 0 ' 0.6(60")  44º 0 ' 36"  44º 0 '36" 71. r  10 meters;   s  r  10 

1 radian 2 1 1 100 21 A  r 2  10     =25 m 2 2 2 4 2

79. r  10 meters;  

80. r  6 feet;   2 radians A

1 radian; 2

1  5 meters 2

2 radian; s  8 feet; 3 s  r s 8 r   12 feet   2 / 3

73.  

r  12  2 3  3.464 feet 1 radian; A  6 cm 2 4 1 A  r 2 2 1 21 6 r   2 4 1 2 6 r 8 48  r 2

82.  

1 74.   radian; s  6 cm; 4 s  r

s

6  24 cm 1 / 4 

75. r  10 miles; s  9 miles; s  r s 9     0.9 radian r 10

r  48  4 3  6.928 cm

76. r  6 meters; s  8 meters; s  r s 8 4      1.333 radians r 6 3 77. r  2 inches;   30º  30  s  r  2 

   radian; 180 6

    1.047 inches 6 3

78. r  3 meters;   120º  120  s  r  3 

1 radian; A  2 ft 2 3 1 A  r 2 2 1 2 1 2 r   2 3 1 2 2 r 6 12  r 2

81.  

72. r  6 feet;   2 radian; s  r  6  2  12 feet

r

1 2 1 2 r    6   2  =36 ft 2 2 2

83. r  5 miles; A  3 mi 2 1 A  r 2 2 1 2 3  5  2 25 3  2 6   0.24 radian 25

 2  radians 180 3

2  2  6.283 meters 3 586 Copyright © 2020 Pearson Education, Inc.


Section 6.1: Angles, Arc Length, and Circular Motion 91. r  6 inches In 15 minutes, 15 1  rev   360º  90º  radians  60 4 2  s  r  6   3  9.42 inches 2

84. r  6 meters; A  8 m 2 1 A  r 2 2 1 2 8   6  2 8  18 8 4     0.444 radian 18 9 85. r  2 inches;   30º  30  A

   radian 180 6

1 2 1  2   r    2      1.047 in 2 2 2 6   3

86. r  3 meters;   120º  120  A

 2  radians 180 3

1 2 1 2  2  2 r    3   =3  9.425 m 2 2  3 

87. r  2 feet;  

radians 3  2 s  r  2    2.094 feet 3 3 1 1 2 2   A  r 2   2    =   2.094 ft 2 2 2 3 3

88. r  4 meters;  

 6

radian

 2   2.094 meters 6 3 1 1 4 2   A  r 2   4      4.189 m 2 2 2 6 3  

s  r  4 

89. r  12 yards;   70º  70 

 7  radians 180 18

7  14.661 yards 18 1 1 2  7  2 A  r 2  12     28  87.965 yd 2 2 18  

s  r  12 

90. r  9 cm;   50º  50 

 5  radian 180 18

5  7.854 cm 18 1 1 2  5  45 A  r 2   9    35.343 cm 2 = 2 2 4  18 

In 25 minutes, 25 5 5 rev   360º  150º  radians  60 12 6 5 s  r  6   5  15.71 inches 6 92. r  40 inches;   20º  s  r  40 

 radian 9

 40   13.96 inches 9 9

   radian 180 4 1 1 2   A  r 2   4     2  6.28 m 2 2 2 4

93. r  4 m;   45º  45 

   radians 180 3 1 2 1 2    3 A  r    3     4.71 cm 2 2 2 3 2

94. r  3 cm;   60º  60 

 3 radians  180 4 1 1 675 2  3  A  r 2   30      1060.29 ft 2 2 2 2  4 

95. r  30 feet;   135º  135 

96. r  15 yards; A  100 yd 2 1 A  r 2 2 1 2 100  15   2 100  112.5 100 8   0.89 radian  112.5 9 

or

8 180  160      50.93 9    

s  r  9 

587 Copyright © 2020 Pearson Education, Inc.


Chapter 6: Trigonometric Functions 1 2 1 2 r1   r2 2   120  2 2 3 1  2  1  2   (34) 2    (9) 2    3 2  3 2

102. r  6.5 m;   22 rev/min  44 rad/min v  r  (6.5)  44 m/min  286  898.5 m/min m 1km 60 min v  286    53.9 km/hr min 1000m 1hr

1  2  1  2  (1156)    (81)    3 2  3 2

103. r 

97. A 

137 m;   14 rev/min  28 rad/min 2 v  r  (68.5)  28 m/min  1918 m/min

   (1156)    (81)    3  3

m 1km 60 min   min 1000m 1hr  361.5 km/hr

v  1918

 1156   81     3   3  

1075  1125.74 in 2 3 1 2 1 25 r1   r2 2   125  2 2 36 1  25  1 2  25   (30) 2   (6)   36  2  36  2

98. A 

1  25  1  25  (900)   (36)    36  2  36  2

 25   25   (450)   (18)   36   36   11250   450     36   36  

10800  300  942.48 in 2 36

99. r  5 cm; t  20 seconds;  

1 / 3

1 radian 3

1 1 1 radian/sec      20 3 20 60 t 1 s r 5  1 / 3 5 1 cm/sec v      20 3 20 12 t t

100. r  30 feet 1 rev 2     0.09 radian/sec  70 sec 70 sec 35  rad 6 ft   2.69 feet/sec v  r  30 feet  35 sec 7 sec 101. r  25 feet;   13 rev/min  26 rad/min v  r  25  26 ft./min  650  2042.0 ft/min ft. 1mi 60 min v  650    23.2 mi/hr min 5280ft 1hr

104. r  4 m;   8000 rev/min  16000 rad/min v  r  (4) 16000 m/min  64000 cm/min cm 1m 1km 60 min v  64000    min 100cm 1000m 1hr  120.6 km/hr 105. d  26 inches; r  13 inches; v  35 mi/hr 35 mi 5280 ft 12 in. 1 hr v    hr mi ft 60 min  36,960 in./min v 36,960 in./min   r 13 in.  2843.08 radians/min 2843.08 rad 1 rev   min 2 rad  452.5 rev/min 106. r  15 inches;   3 rev/sec  6 rad/sec v  r  15  6 in./sec  90  282.7 in/sec in. 1ft 1mi 3600sec v  90     16.1 mi/hr sec 12in. 5280ft 1hr 107. r  860 feet;   4 

6  4.1; 60

   4.1   0.07156  180  0.07156(860)  61.54 feet

108. r  920 feet;   1 

42  1.7; 60

   1.7    0.02967  180  0.02967(920)  27.30 feet

588 Copyright © 2020 Pearson Education, Inc.


Section 6.1: Angles, Arc Length, and Circular Motion 109. r  3429.5 miles

  1 rev/day  2 radians/day  v  r  3429.5 

 radians/hr 12

  898 miles/hr 12

110. r  3033.5 miles

  1 rev/day  2 radians/day  v  r  3033.5 

 radians/hr 12

  794 miles/hr 12

111. r  2.39  105 miles   1 rev/27.3 days  2 radians/27.3 days  radians/hr  12  27.3  v  r   2.39  105    2292 miles/hr 327.6 112. r  9.29  107 miles   1 rev/365 days  2 radians/365 days   radians/hr 12  365 v  r   9.29  107  

  66, 633 miles/hr 4380

113. r1  2 inches; r2  8 inches; 1  3 rev/min  6 radians/min Find 2 : v1  v2 r11  r22

pulleys is the same, we have: v1  v2 r11  r22 r11 r22  r21 r21 r1 2  r2 1

115. r  4 feet;   10 rev/min  20 radians/min v  r  4  20 ft  80 min 80 ft 1 mi 60 min    min 5280 ft hr  2.86 mi/hr 116. d  26 inches; r  13 inches;   480 rev/min  960 radians/min v  r  13  960 in  12480 min 12480 in 1 ft 1 mi 60 min     min 12 in 5280 ft hr  37.13 mi/hr v  r 80 mi/hr 12 in 5280 ft 1 hr 1 rev      13 in 1 ft 1 mi 60 min 2 rad  1034.26 rev/min 117. d  8.5 feet;

2(6)  82

r  4.25 feet;

v  9.55 mi/hr

v 9.55 mi/hr  4.25 ft r 9.55 mi 1 5280 ft 1 hr 1 rev      hr 4.25 ft mi 60 min 2  31.47 rev/min



12 2  8  1.5 radians/min 1.5  rev/min 2 3  rev/min 4

114. r1 rotates at 1 rev/min , so v1  r11 . r2 rotates at 2 rev/min , so v2  r22 . Since the linear speed of the belt connecting the

118. Let t represent the time for the earth to rotate 90 miles. t 24  90 2(3559) 90(24)  0.0966 hours  5.8 minutes t 2(3559)

589 Copyright © 2020 Pearson Education, Inc.


Chapter 6: Trigonometric Functions 119. The earth makes one full rotation in 24 hours. The distance traveled in 24 hours is the circumference of the earth. At the equator the circumference is 2(3960) miles. Therefore, the linear velocity a person must travel to keep up with the sun is: s 2(3960) v   1037 miles/hr t 24 120. Find s, when r  3960 miles and   1'. 1 degree  radians   0.00029 radian   1' 60 min 180 degrees s  r  3960(0.00029)  1.15 miles Thus, 1 nautical mile is approximately 1.15 statute miles. 121. We know that the distance between Alexandria and Syene to be s  500 miles. Since the measure of the Sun’s rays in Alexandria is 7.2 , the central angle formed at the center of Earth between Alexandria and Syene must also be 7.2 . Converting to radians, we have 7.2  7.2  s  r

25

 25

radian . Therefore,

 25

 500 

12,500

C  2 r  2 

 3979 miles

12,500

 25, 000 miles.  The radius of Earth is approximately 3979 miles, and the circumference is approximately 25,000 miles.

122. a.

123. Large area: A   r 2   (9) 2  81 243  3 We need ¾ of this area.   81  .  4 4

A  r2

Small area:   (3) 2  9 9  1 We need ¼ of the small area.   9    4 4

The total area is:

243 9 252     63 4 4 4

square feet.

500  r  r

 180

1 2 1  R   r 2   R 2  r 2  2 2 2 96     2002  1902  2 180 4   3900   3267.3 15 The area of the warning track is about 3267.3 square feet. A

The length of the outfield fence is the arc length subtended by a central angle   96 with r  200 feet. s  r    200  96 

 335.10 feet 180 The outfield fence is approximately 335.1 feet long. b. The area of the warning track is the difference between the areas of two sectors with central angle   96 . One sector with r  200 feet and the other with r  190 feet.

  2 is one124. BAE is a right angle so arc BE fourth of the circumference C of the circle so C  8 . First we find the radius of the circle: C  2 r 8  2 r r4

The area of the circle is A   r 2   (4) 2  16 . The area of the sector of the circle is 4 . The area of the rectangle is lw  (4)(4  7)  44 . So the area of the rectangle that is outside the circle is 44  4 square units. 125. Since 50 feet = 600 inches, moving 600 inches equates to an are length of 600 inches for a circle with radius 15 inches (the radius of the wheel). 600  15( w ) so  w  40 radians . The wheel and rear cog have the same angle of rotation so sc  rc   w 1.8(40)  72 inches for the chain on the cog wheel. The chain needs to have the same arc length on the pedal drive wheel, so

590 Copyright © 2020 Pearson Education, Inc.


Section 6.1: Angles, Arc Length, and Circular Motion 72  (5.2) p or  p  13.84615 radians.

5 x 2  2  5  14 x

134.

Dividing by 2 (for 1 revolution) gives 13.84615 / (2 )  2.2 revolutions.

5 x 2  14 x  3  0 (5 x  1)( x  3)  0 x

126. Answers will vary. 127. If the radius of a circle is r and the length of the arc subtended by the central angle is also r, then the measure of the angle is 1 radian. Also, 180 1 radian  degrees .

1 

135. Shift to the left 3 units would give y  x  3 .

Reflecting about the x-axis would give y   x  3 . Shifting down 4 units would result in y   x  3  4 .

  radians  128. Note that 1  1     0.017 radian  180   180  and 1 radian     57.296 .   radians  Therefore, an angle whose measure is 1 radian is larger than an angle whose measure is 1 degree.

129. Linear speed measures the distance traveled per unit time, and angular speed measures the change in a central angle per unit time. In other words, linear speed describes distance traveled by a point located on the edge of a circle, and angular speed describes the turning rate of the circle itself. 130. This is a true statement. That is, since an angle measured in degrees can be converted to radian measure by using the formula 180 degrees   radians , the arc length formula

can be rewritten as follows: s  r 

133.

 1 So the solution set is  3,   5

1 revolution 360

131 – 132. Answers will vary. f ( x)  3x  7

0  3x  7 3 x  7  x  

7 3

1 or x  3 5

 180

r .

3 x 2  12 3( x  2)( x  2) 3( x  2)   x  5 x  14 ( x  2)( x  7) ( x  7) The vertical asymptote is: x  7 As f(x) go to  then the graph behaves like 3 x 2  12 3x 2   3 so the horizontal x 2  5 x  14 x 2 asymptote is y  3 . 137. 2 x  y  5

136.

2

y  2x  5 1 A perpendicular line would have slope  . So 2 the line containing the point (-1, 4) is: 1 y  4   ( x  1) 2 1 1 y4   x 2 2 1 7 y   x 2 2 The other point would be: 1 7 c   (2)  2 2 7 5  1   2 2

591 Copyright © 2020 Pearson Education, Inc.


Chapter 6: Trigonometric Functions

138. 2 x  3  5  8 2 x3  3 3 2 9 x3  4 21 x 4

x3 

 21  The solution set is   4

139. The denominator cannot be zero. x2  9  0 x 2  9  x  3 x 9  0 2

x 2  9  x  3 So the domain is. {x | x  3, x  3} .

140.

f ( x)  2 x3  5 f ( x  h)  f ( x ) h 2( x  h)3  5  ( x3  5)  h 

3

2

2

2 x  3 x h  3 xh  h

Section 6.2 3

  5  2x  5 3

h 3 2 2 2 x  6 x h  6 xh  2h3  5  2 x3  5  h 2 2 3 6 x h  6 xh  2h  h  6 x 2  6 xh  2h 2 3 141. (3x  2)  (3x  2)(3 x  2)(3 x  2)  (9 x 2  12 x  4)(3 x  2)

 27 x3  54 x 2  36 x  8

142.

The graph is decreasing on the following intervals:  , 0.99 ,  0.20, 0.79

1. c 2  a 2  b 2 2.

f  5   3  5   7  15  7  8

3. True 4. equal; proportional  1 3 5.   ,   2 2 

6. 

1 2

7. b 8.

 0,1

 2 2 , 9.    2 2 

10. False 11.

y x ; r r

12. a 592 Copyright © 2020 Pearson Education, Inc.


Section 6.2: Trigonometric Functions: Unit Circle Approach

 3 1 3 1 ,   x  , y 13. P   2 2  2 2 1 sin t  y  2 3 cos t  x  2 1   y 1 2 1 3 3 2    tan t       x  3 2 3 3 3 3    2  csc t 

1 1 2   1  2 y 1 1   2

 2 21  2 21 15. P    ,  x , y  5 5  5 5  21 5 2 cos t  x   5  21  21  5  21 y  5  tan t     =  x  2 5  2 2    5

sin t  y 

1 1 5 5 21 5 21   1    y  21  21 21 21 21    5  1 1 5  5  1     sec t    2 x  2 2    5  2  2 5 x  5  cot t     5 21 y  21     5  csc t 

1 1 2 2 3 2 3   1    x  3 3 3 3 3    2   3   x  2  3 2    3 cot t    y 2 1 1   2

sec t 



1 3 1 3 14. P   ,   x , y 2 2  2 2 sin t  y  

3 2

1 2  3  y  2  3 2   = 3 tan t   x 2 1 1   2

cos t  x 

1 1 2 2 3 2 3      y  3 3 3 3 3    2  1 1 2 sec t    1  2 x 1 1   2 1   x 1 2 1 3 3 cot t    2        y  2 3 3 3 3 3    2  csc t 

2 21

21 21



2 21 21

 1 2 6 1 2 6 16. P    ,  x , y  5 5  5 5  2 6 5 1 cos t  x   5 2 6  2 6 y   5 tan t    5    = 2 6 x 5  1  1    5

sin t  y 

csc t 

1 1 5 5 6 5 6   1    y 2 6 12 2 6 2 6 6    5 

593 Copyright © 2020 Pearson Education, Inc.


Chapter 6: Trigonometric Functions

1 1  5   1    5 x  1  1    5  1   1 5  x cot t    5     5  2 6  y 2 6    5 

sec t 



1 2 6

6 6



6 12

 2 2 2 2 17. P    , , y  x 2 2  2 2  sin t 

2 2

cos t  x  

2 2

1 1 2 2  2  sec t    1     2  x  2 2 2 2     2   2  x  2  cot t    1 y  2    2 

2 2 3

 1   y 1 3 tan t    3     x 2 2 3 2 2    3  = csc t 

sec t 

 2 2 2 2 , , y 18. P     x  2 2  2 2  2 2 2 cos t  x  2  2   y  2  tan t   1 x  2    2 

1 1 2 2 2   1    2 x  2 2 2 2    2   2   x  2  cot t    1 y  2  2   

sec t 

cos t  x 

1 1 2 2 2   1    2 y  2 2 2 2    2 

sin t  y 

1 1 2 2 2   1    2 y  2 2 2 2    2 

 2 2 1 2 2 1 19. P   ,  x , y 3 3 3  3 1 sin t  y   3

 2   y tan t    2   1 x  2    2  csc t 

csc t 

1 2 2

2 2

=

2 4

1 1  3   1    3 y  1  1    3 1 1 3 2 3 2  3    1    x 2 2 4 2 2 2 2 2    3 

2 2  2 2 x   3 cot t    3       2 2 y 3  1  1    3

 5 2 5 2 20. P    ,    x   , y 3 3 3 3   2 sin t  y   3 cos t  x  

594 Copyright © 2020 Pearson Education, Inc.

5 3


Section 6.2: Trigonometric Functions: Unit Circle Approach

 2   y 2 3  3    tan t     x  3 5 5     3  =

2

=

 3   csc   2  2   2   3   csc    2   1

2 5 5

5 1 1 3  3 csc t    1     y  2 2 2     3 sec t 

5

5

 11   3 8  25. csc    csc    2 2     2  3   csc   4   2 

1 1  3    1   x   5 5    3   



3

5



26. sec  8   sec  0  8   sec  0  4  2   sec  0   1

3 5 5

5 5  5    3  x 5  3 5 cot t        y 3  2 2  2    3  11   3 8  21. sin    sin    2 2     2  3   sin   4   2 

 3   3  27. cos     cos    2   2    4   cos    2 2     cos   (1)  2  2    cos   2 0

28. sin  3    sin  3    sin    2    sin     0

 3   sin   2  2  2    3   sin    2   1

29. sec     sec     1 30. tan  3    tan(3)   tan  0  3    tan  0   0

22. cos  7   cos    6 

 cos    3  2   cos     1 23. tan  6   tan(0  6)  tan  0   0  7    6  24. cot    cot     2  2 2      cot   3   cot    0 2   2

31. sin 45º  cos 60º 

2 1 1 2   2 2 2

32. sin 30º  cos 45º 

1 2 1 2   2 2 2

33. sin 90º  tan 45º  1  1  2 34. cos180º  sin180º  1  0  1 35. sin 45º cos 45º 

595 Copyright © 2020 Pearson Education, Inc.

2 2 2 1    2 2 4 2


Chapter 6: Trigonometric Functions

36. tan 45º cos 30º  1 

2 1  2   1    2 3  1  1    2  1  2  2  1 2 1 3 3       cot 3  3 2 3 3 3 3    2 

3 3  2 2

cos

37. csc 45º tan 60º  2  3  6 38. sec 30º cot 45º 

2 3 2 3 1  3 3

39. 4sin 90º  3 tan180º  4 1  3  0  4 40. 5cos 90º  8sin 270º  5  0  8(1)  8 41. 2sin

  3 3  3 tan  2   3  3 3 0 3 6 2 3

42. 2sin

  2  3 tan  2   3 1  2  3 4 4 2

43. 2sec

  3 4 3  4 cot  2  2  4  2 2 4 3 3 3

44. 3csc

  2 3  cot  3  1  2 3 1 3 4 3

45. csc

   cot  1  0  1 2 2

46. sec   csc

5 3  6 2 1   5 1  2  3 3   2      tan  6  3 3 3 3 2     2  5 1 2 csc   1  2 1 6   1   2 cos

sec

  1  1   2 2

47. The point on the unit circle that corresponds to  1 3 2  120º is   ,  . 3  2 2  2 3  3 2 2 1 cos  3 2

sin

 3 2  2  3  2 tan        3 3  1 2  1    2 csc

48. The point on the unit circle that corresponds to  3 1 5 , .  150º is     2 2 6 5 1  sin 6 2

2 1 2 3 2 3     3  3 3 3 3    2 

5 1  2  3 2 3   1     6  3 3 3 3     2 

 3   5  2  3 2 cot     3 6 2 1 1   2

49. The point on the unit circle that corresponds to  7 3 1 , .   210º  is   6  2 2 1 sin 210º   2 3 cos 210º   2  1   1  2  3 3 2      tan 210º    2 3   3 3 3     2    1  2 csc 210º   1      2  1  1   2  

596 Copyright © 2020 Pearson Education, Inc.


Section 6.2: Trigonometric Functions: Unit Circle Approach

 2  3 2 3  1     3  3 3 3      2   3    2  3  2  cot 210º       3 2  1  1     2

sec 210º 

1

50. The point on the unit circle that corresponds to  1 4 3   240º  is   ,  . 3  2 2  3 2 1 cos 240º   2  3   2     3   2   3 tan 240º    1 2  1      2

sin 240º  

 2  3 2 3  1     3  3 3 3     2  1  2 sec 240º   1      2 1    1    2  1   1  2  3 3  cot 240º   2        2  3  3 3 3    2  csc 240º 

1

51. The point on the unit circle that corresponds to  2 2 3  135º is   ,  .  2 2  4 3 2  4 2 3 2 cos  4 2  2   3 2  2  tan   2       1 4  2  2 2    2 

sin

csc

sec

3 1 2 2 2 2   1    2 4  2 2 2 2    2  3 1 2 2  2  2   1     2  4  2  2 2   2    2 

 2  3  2  2 2     1 cot 4 2  2 2    2 

52. The point on the unit circle that corresponds to  2 2 11  495º is   ,  .  2 2  4 11 2  4 2 11 2  cos 4 2  2   11 2  2    2     tan   1 4 2   2  2    2 

sin

csc

sec

11 1 2 2 2 2   1    2 4 2  2 2 2    2  11 1 2 2  2  2   1     2  4 2   2 2   2    2 

 2  11  2  2 2 cot     1 4 2  2 2    2 

53. The point on the unit circle that corresponds to  1 3 8  480º is   ,  . 3  2 2  8 3  3 2 8 1 cos  3 2

sin

597 Copyright © 2020 Pearson Education, Inc.


Chapter 6: Trigonometric Functions

 3 8  2  3  2 tan        3 3  1 2  1     2 8 1 2 3 2 3   1   csc 3  3 3 3 3    2  8 1  2 sec   1      2 3  1  1    2  1  8  2  1 2 3 3      cot 3  3 2 3 3 3    2 

55. The point on the unit circle that corresponds to  2 2 9 ,   405º  is  .  2 2  4 2 2 2 cos 405º  2  2   2 2 tan 405º   2    1 2  2 2    2 

sin 405º 

csc 405º 

sec 405º 

54. The point on the unit circle that corresponds to  3 1 13 , .  390º is    2 2 6 13 1 sin  6 2 13 3  6 2 1   13 1 2 3 3 2        tan 6 3  3 2 3 3  2    13 1 2 csc   1  2 6 1 1   2  

cos

13 1 2 3 2 3   1   6 3  3 3 3  2     3   13  2  3 2 cot     3 1 6 2 1     2

sec

1 2 2  1   2  2 2 2    2  1  2    2 

 1

2 2

2 2

 2

 2   cot 405º   2   1  2    2 

56. The point on the unit circle that corresponds to  3 1 13 , .   390º  is  6  2 2 1 sin 390º  2 3 cos 390º  2 1   1 2 3 3 tan 390º   2      3  3 2 3 3    2  1 2 csc 390º   1  2 1 1   2 sec 390º 

1  3    2 

 1

2 3

3 3

 3   3 2 cot 390º   2     3 2 1 1   2

598 Copyright © 2020 Pearson Education, Inc.

2 3 3


Section 6.2: Trigonometric Functions: Unit Circle Approach 57. The point on the unit circle that corresponds to  3 1     =  30º is  ,   .  2 2 6 1   sin      2  6 3   cos     6 2    1   1 2 3 3 2   tan          2 3 3 3  6  3    2  1   csc    = 2  6   1     2 1 2 3 2 3   sec        6 3   3 3   3    2   3    3    2 cot      2         3  6    1   2   1     2

58. The point on the unit circle that corresponds to 1  3      60º is  ,  . 3 2 2  3   sin      2  3   1 cos      3 2

59. The point on the unit circle that corresponds to  2 2 3   135º   is   , .  2 2  4 2 2 2 cos  135º    2  2   2  2    tan  135º    2     1 2   2 2    2 

sin  135º   

csc  135º  

1  2  2  1    2    2 2 2     2 

sec  135º  

 2  2  1    2   2 2 2     2  1

 2   2   1 cot  135º    2    2 

60. The point on the unit circle that corresponds to  1 3 4    240º   is   , . 3  2 2 

 3    3 2     3 tan      2    1 3 2 1       2

3 2 1 cos   240º    2  3   3  2      3 tan   240º    2   2  1  1    2

1  2  3 2 3   csc      1     3 3 3  3  3     2  1 2    1  2 sec     1  3 1   2 1    1  2  3 3 2    cot            3 3 3  3  3 2     2 

1  2  3 2 3  1    3  3  3 3    2  1  2  1      2 sec   240º    1  1    2  1   1  2  3 3  cot  240º    2       2  3 3 3  3    2 

sin  240º  

csc  240º  

599 Copyright © 2020 Pearson Education, Inc.


Chapter 6: Trigonometric Functions 61. The point on the unit circle that corresponds to 5   450º is  0, 1 . 2 5 5 1 1  1 sin csc 2 2 1 5 5 1 sec 0   undefined cos 2 0 2 5 1 5 0 tan   undefined cot  0 2 0 2 1 62. The point on the unit circle that corresponds to   5  900º is  1, 0  . sin 5  0 cos 5  1 tan 5 

0 0 1

1  undefined 0 1  1 sec 5  1 1 cot 5   undefined 0 csc 5 

63. The point on the unit circle that corresponds to  1 3 14    840 is   ,  . 2  3  2 3 1  14   14  sin   cos     2 2  3   3   3    3  2  14   2  tan         3  2  1  3   1     2 1  2  3 2 3  14  csc    1      3  3 3  3   3      2  1  14   2  1      2 sec     3   1   1   2   1     1  2  3 3  14   2  cot          2 3  3 3  3  3      2 

64. The point on the unit circle that corresponds to  3 1 13  390 is    ,   . 6 2  2

1 3  13   13  sin   cos     2  6   6  2  1   1 2 3 3  13   2      tan    2 3 3 3  6   3    2  1  13  csc   = 1  2  6       2 1 2 3 2 3  13  sec       3 3 3  6   3    2   3    13   2   3   2  cot         3   6    1   2   1     2

65. Set the calculator to degree mode: sin 28º  0.47 .

66. Set the calculator to degree mode: cos14º  0.97 .

67. Set the calculator to degree mode: 1 sec 21º   1.07 . cos 21

600 Copyright © 2020 Pearson Education, Inc.


Section 6.2: Trigonometric Functions: Unit Circle Approach 74. Set the calculator to radian mode: tan 1  1.56 .

68. Set the calculator to degree mode: 1 cot 70º   0.36 . tan 70º

75. Set the calculator to degree mode: sin1º  0.02 . 69. Set the calculator to radian mode: tan

  0.32 . 10 76. Set the calculator to degree mode: tan1º  0.02 .

70. Set the calculator to radian mode: sin

  0.38 . 8 77. For the point (3, 4) , x  3 , y  4 ,

r  x 2  y 2  9  16  25  5 sin  

71. Set the calculator to radian mode:  1 cot   3.73 . 12 tan  12

4 5

csc  

3 5 4 tan    3

5 4

5 3 3 cot    4

cos   

sec   

78. For the point (5, 12) , x  5 , y  12 ,

r  x 2  y 2  25  144  169  13 12 13 5 cos   13 12 tan    5

13 12 13 sec   5 5 cot    12

sin   

72. Set the calculator to radian mode: 5 1 csc   1.07 . 13 sin 5 13

csc   

79. For the point (2, 3) , x  2 , y  3 ,

r  x 2  y 2  4  9  13 73. Set the calculator to radian mode: sin 1  0.84 .

sin   cos  

3 13 2

13 3 tan    2

601 Copyright © 2020 Pearson Education, Inc.

 

13 13 13 13

3 13 13

csc   

2 13 13

sec  

 

13 3

13 2 2 cot    3


Chapter 6: Trigonometric Functions 80. For the point (1, 2) , x  1 , y   2 , r  x  y  1 4  5 2

2

sin  

5

cos  

5

1

5 5

5 5 2 tan   2 1



2 5 5

csc  

5 5  2 2



5 5

5  5 1 1 1 cot    2 2 sec  

81. For the point (2, 2) , x   2 , y   2 , 2

2 2

cos   tan  

2

2 2 2 2

2 2 2 2



2 2



2 2

csc   sec   cot  

1

2 2 2 2 2 2 2 2

 2  2

cos  

2 1 2

 

2 2 2 2

1 tan    1 1

2 2



csc   2 2

2  2 1

2  2 1 1 cot    1 1

sec  

1 1 1 1 83. For the point  ,  , x  , y  , 3 4 3 4   1 1 25 5    9 16 144 12 1 5 1 12 3 5 4 5 4 12       sin   csc   5 4 5 5 1 12 1 3 12 4 1 5 5 3 5 1 12 4 sec   12    cos   3    1 12 1 4 5 3 5 5 3 12 1 1 1 3 3 1 4 4 tan   4    cot   3    1 4 1 4 1 3 1 3 3 4 r  x2  y 2 

2 2  2  2          2 2  2   2 

0  3 86. tan 60º  tan150º  3      3  

3 3 3 2 3  3 3

87. sin 40º  sin130º  sin 220º  sin 310º  sin 40º  sin130º  sin  40º 180º  

r  x2  y 2  1  1  2 1

0.5 5  0.4 4 0.5 5 sec    0.3 3 0.3 3 cot    0.4 4 csc  

85. sin 45º  sin135º  sin 225º  sin 315º

1

82. For the point (1, 1) , x  1 , y  1 ,

sin  

0.4 4  0.5 5 0.3 3 cos    0.5 5 0.4 4 tan    0.3 3

sin  

r  x2  y 2  4  4  8  2 2 sin  

84. For the point (0.3, 0.4) , x  0.3 , y  0.4 , r  x 2  y 2  0.09  0.16  0.25  0.5

2

sin 130º 180º   sin 40º  sin130º  sin 40º  sin130º 0

88. tan 40º  tan140º  tan 40º  tan 180º 40º   tan 40º  tan 40º 0

89. If f    sin   0.1 , then f      sin(  )   0.1 .

90. If f    cos   0.3 , then f      cos(  )   0.3 .

91. If f    tan   3 , then f      tan(  )  3 .

92. If f    cot    2 , then f      cot(  )  2 .

602 Copyright © 2020 Pearson Education, Inc.


Section 6.2: Trigonometric Functions: Unit Circle Approach

93. If sin  

94. If cos  

1 1 5 , then csc    1  5 . 1 5 1   5

2 1 3 3  1  . , then sec   2 3 2 2     3

f  60º   sin  60º  

3 2

96. g  60º   cos  60º  

1 2

95.

97.

2

2

2



f  2  60º   sin  2  60º   sin 120º  

3 2

102. g  2  60º   cos  2  60º   cos 120º    103. 2 f  60º   2sin  60º   2 

3  3 2

104. 2 g  60º   2 cos  60º   2 

1 1 2

3 1 3 1   2 2 2

4 2 1   4 4 2

 4   4   4  110. ( f  g )   f   g    3   3   3   4   4   sin   cos    3   3 

2

1 1 100.  g  60º     cos 60º      2 4  

105.

108. ( f  g )(60)  f (60)  g (60)  sin 60  cos 60



 3 3 99.  f  60º     sin 60º      4  2 

101.

1 3 1 3   2 2 2

 3   3   3  109. ( f  g )    f    g    4   4   4   3   3   sin   cos    4   4  2  2      2  2 

3  60º   60º  98. g    cos    cos  30º   2  2   2 

2

1  60º   60º  f   sin    sin  30º   2  2   2 

2

107. ( f  g )(30)  f (30)  g (30)  sin 30  cos 30

1 2

3  1 3     2  2 4

      111. ( f  h)    f  h    6   6       sin  2      6  3    sin    3 2

112. ( g  p )(60)  g  p(60) 

f   60º   sin   60º   sin  300º   

106. g   60º   cos   60º   cos  300º  

3 2

1 2

603 Copyright © 2020 Pearson Education, Inc.

 60   cos    2   cos 30 

3 2


Chapter 6: Trigonometric Functions 113. ( p  g )(315)  p  g (315) 

116. a.

cos 315 2 1  cos 315 2 1 2 2    2 2 4 

 3  ,  is on the graph of g 1 . b. The point   2 6

c.

  5    5  114. (h  f )    h f    6    6    5   1  2  sin    2  1 6 2    

115. a.

2     f    sin    4 4 2  2 The point  ,  is on the graph of f. 4 2 

 2  ,  is on the graph of f 1 . b. The point   2 4

c.

3     g    cos    6 6 2  3 The point  ,  is on the graph of g. 6 2 

     f   3  f  3 4 4 2    sin    3 2  1 3  2    The point  ,  2  is on the graph of 4     y  f x  3 . 4 

   2 g     2 g (0) 6 6  2 cos(0)  2 1 2   Thus, the point  , 2  is on the graph of 6     y  2g  x   . 6 

117. Answers will vary. One set of possible answers 11 5  7 13 , , , , . is  3 3 3 3 3 118. Answers will vary. One ser of possible answers 13 5 3 11 19 is  , , , , 4 4 4 4 4 119.

sin 

sin 

0.5

0.4794

0.9589

0.4

0.3894

0.9735

0.2

0.1987

0.9933

0.1

0.0998

0.9983

0.01

0.0100

1.0000

0.001

0.0010

1.0000

0.0001

0.0001

1.0000

0.00001 0.00001 1.0000

f   

sin 

604 Copyright © 2020 Pearson Education, Inc.

approaches 1 as  approaches 0.


Section 6.2: Trigonometric Functions: Unit Circle Approach

120.

cos   1

Use the formula H   

cos   1

0.5

0.1224

0.4

0.0789

0.1973

0.2

0.0199

0.0997

0.1

0.0050

0.0050

0.01

0.00005

0.0050

0.001

0.0000

0.0005

0.0001

0.0000

0.00005

0.00001

0.0000

0.000005

g   

cos   1

 0.2448

121. Use the formula R   

H  25º  

v0 2 sin  2  g

Use the formula H   

R  50º  

with

with

2g

g  32.2ft/sec 2 ;   45º ; v0  100 ft/sec :

1002 (sin 45º ) 2 H  45º    77.64 feet 2(32.2) 122. Use the formula R   

g

g  9.8 m/sec ;   30º ; v0  150 m/sec : 1502 sin(2  30º )  1988.32 m 9.8

Use the formula H   

v0 2  sin  

2

with

2g

g  9.8 m/sec 2 ;   30º ; v0  150 m/sec :

H  30º  

1502 (sin 30º ) 2  286.99 m 2(9.8)

123. Use the formula R   

v0 2 sin  2  g

H  50º  

v0 2  sin  

2

2g

with

2002 (sin 50º ) 2  364.49 ft 2(32.2)

125. Use the formula t   

2a with g sin  cos 

g  32 ft/sec 2 and a  10 feet : a.

t  30  

b.

t  45  

c.

t  60  

2 10  32sin 30º  cos 30º 2 10  32sin 45º  cos 45º 2 10  32sin 60º  cos 60º

 1.20 seconds  1.12 seconds  1.20 seconds

126. Use the formula x    cos   16  0.5cos(2 ) . x  30   cos  30º   16  0.5cos(2  30º )  cos  30º   16  0.5cos  60º   4.90 cm x  45   cos  45º   16  0.5cos(2  45º )  cos  45º   16  0.5cos  90º 

with

 4.71 cm

g  9.8 m/sec 2 ;   25º ; v0  500 m/sec : R  25º  

with

g  32.2ft/sec2 ;   50º ; v0  200 ft/sec :

with

2

R  30º  

g

2002 sin(2  50º )  1223.36 ft 32.2

Use the formula H   

2

v0 2 sin  2 

v0 2 sin  2 

g  32.2ft/sec2 ;   50º ; v0  200 ft/sec :

(100) 2 sin(2  45º )  310.56 feet 32.2 v0 2  sin  

with

2g

5002 (sin 25º ) 2  2278.14 m 2(9.8)

124. Use the formula R   

g  32.2ft/sec 2 ;   45º ; v0  100 ft/sec : R  45º  

2

g  9.8 m/sec 2 ;   25º ; v0  500 m/sec :

approaches 0 as 

approaches 0.

v0 2  sin  

5002 sin(2  25º )  19, 541.95 m 9.8

605 Copyright © 2020 Pearson Education, Inc.


Chapter 6: Trigonometric Functions

distance on road rate on road 8  2x  8 x  1 4 1  1  tan  4 1  1 4 tan 

127. Note: time on road 

a.

2 1  3sin 30º 4 tan 30º 2 1  1  1 1 3 4 2 3

T (30º )  1 

 1

d.

128. When   30º :

1  sec 30º  1  251.42 cm3 V  30º    (2)3 2 3  tan 30º  3

When   45º :

4 3   1.9 hr 3 4

1  sec 45º  1 V  45º    (2)3  117.88 cm3 2 3  tan 45º  3

Sally is on the paved road for 1 1  0.57 hr . 4 tan 30º b.

2 1  3sin 45º 4 tan 45º 2 1  1  1 4 1 3 2

When   60º :

1  sec 60º  1 V  60º    (2)3  75.40 cm3 2 3  tan 60º  3

T (45º )  1 

129.

2 2 1   1.69 hr 3 4 Sally is on the paved road for 1 1  0.75 hr . 4 tan 45o  1

c.

2 1  o 3sin 60 4 tan 60o 2 1  1  3 4 3 3 2 4 1  1  3 3 4 3  1.63 hr

H  2 2D 22 6 tan  2 2D 2 D tan11  6 tan

D

3  15.4 tan11

Arletha is 15.4 feet from the car.

T (60º )  1 

Sally is on the paved road for 1 1  0.86 hr . 4 tan 60o

2 1 .  3sin 90º 4 tan 90º But tan 90º is undefined, so we cannot use the function formula for this path. However, the distance would be 2 miles in the sand and 8 miles on the road. The total 2 5 time would be:  1   1.67 hours. The 3 3 path would be to leave the first house walking 1 mile in the sand straight to the road. Then turn and walk 8 miles on the road. Finally, turn and walk 1 mile in the sand to the second house. T (90º )  1 

130.

H  2 2D 8 555 tan  2 2D 2 D tan 4  555 tan

D

555  3968 2 tan 4

The tourist is 3968 feet from the monument.

606 Copyright © 2020 Pearson Education, Inc.


Section 6.2: Trigonometric Functions: Unit Circle Approach

131.

b. Using the intersect function we find the two angles to be   0.678 (38.8) or   1.364 (78.2)

H 2 2D 20 H tan  2 2(200) H  400 tan10 tan

H  71

The tree is approximately 71 feet tall. 132.

tan

H 2D

2 0.52 H tan  2 2(384400) H  768800 tan 0.26 H  3488

c. Using the maximum function we the angle that results in the longest path to be   0.986 (56.5) ; this is larger than the angle needed to get the maximum range.

The moon has a radius of 1744 km. 133. a. 2      2  6         128     2      sin    cos     ln  tan  4 6     6  32   6   

L

1 3     ln .57735  2 4 

 512 

 466.9 ft

     2  4       128     2      sin    cos     ln  tan  4 4     4  32   4   

 134. L  (920) 2  2 cos( 30 )  96.30 ft

2

L

135. a.

R  60  

 2 1     ln .41421   2 2 

 512 

32

2

2

sin  2  60º   cos  2  60º   1

2

sin 120º   cos 120º   1

32 32

2

32

 3  1       1  2  2 

 587.7 ft

 32 2 

 16.56 ft 2      2  3         128     2      sin    cos     ln  tan  4 3     3  32   3   

L

b. Let Y1  

 3 1     ln .26795  2 4    

322 2 sin  2 x   cos  2 x   1 32 

 512 

 612.0 ft

45

607 Copyright © 2020 Pearson Education, Inc.

90


Chapter 6: Trigonometric Functions c.

Using the MAXIMUM feature, we find:

1  1.1 0.9 1 sec 2   2.5 cos 2  0.4 0.4 0.4 0.9  0.4 tan 2   2.3 cot 2  0.4 0.9 Set the calculator on RADIAN mode:

sin 2  0.9



45

90

R is largest when   67.5º .

sin   0 sin    tan  . cos   0 cos  Since L is parallel to M, the slope of L is equal to the slope of M. Thus, the slope of L  tan  .

csc 2 

136. Slope of M 

137. a.

When t  1 , the coordinate on the unit circle is approximately (0.5, 0.8) . Thus,

b. When t  4 , the coordinate on the unit circle is approximately (0.7, 0.8) . Thus,

1  1.3 0.8 1 sec 4   1.4 cos 4  0.7 0.7 0.8 0.7  1.1  0.9 tan 4  cot 4  0.7 0.8 Set the calculator on RADIAN mode:

1  1.3 0.8 1 sec1   2.0 cos1  0.5 0.5 0.8 0.5 tan1   1.6 cot1   0.6 0.5 0.8 Set the calculator on RADIAN mode: sin1  0.8

csc1 

b. When t  5.1 , the coordinate on the unit circle is approximately (0.4, 0.9) . Thus, 1  1.1 0.9 1 sec 5.1   2.5 cos 5.1  0.4 0.4 0.9 0.4 tan 5.1   2.3 cot 5.1   0.4 0.4 0.9

sin 5.1  0.9

csc 5.1 

Set the calculator on RADIAN mode:

41 ; cos 2   sin 2   1 49 Substitute x  cos  ; y  sin  and solve these simultaneous equations for y. 41 2 ; x  y2  1 x  y2  49 y 2  1  x2 41 x  (1  x 2 )  49 8 2 x x 0 49 Using the quadratic formula: 8 a  1, b  1, c   49

139. cos   sin 2  

x

138. a.

When t  2 , the coordinate on the unit circle is approximately (0.4, 0.9) . Thus,

csc 4 

sin 4  0.8

 ( 1)  ( 1) 2  4(1)(  498 ) 2

1 1 2

608 Copyright © 2020 Pearson Education, Inc.

32 49

1

81 49

2

1  97 8 1  or  2 7 7


Section 6.2: Trigonometric Functions: Unit Circle Approach

Since the point is in Quadrant III then x  

1 7

145.

2

1 48  1 and y 2  1      1    7 49 49 48 4 3  49 7

y

1 140. cos 2   sin    ;cos 2   sin 2   1 9 Substitute x  cos  ; y  sin  and solve these simultaneous equations for y. 1 x2  y   ; x2  y 2  1 9 x2  1  y 2 1 (1  y 2 )  y   9 10 2 y  y 0 9 2 9 y  9 y  10  0 Using the quadratic formula: a  9, b  9, c  10 (9)  (9) 2  4(9)( 10) y 18 9  81  360 9  441 9  21    18 18 18 Since the point is in Quadrant II then 3  21 12 2   and y 18 18 3 2 4 5  2 x2  1     1    3 9 9 5 5  9 3 141. The point (a, b)  (5n, 12n) is in quadrant IV x

b

sin   

a b 2

2

12n 25n  144n 2

2

12n (5n)  (12n) 169n

142 – 144. Answers will vary.

2

146. The argument for the ln function must be a positive number : 5x  2  0 5 x  2 2 x 5 2   2  So the domain is:  x | x    or   ,   5  5 

147. Since 4  3i is a zero, its conjugate 4  3i is also a zero of h . x  (4  3i ) and x  (4  3i ) are factors of h . Thus, ( x  (4  3i ))( x  (4  3i ))  (( x  4)  3i )(( x  4)  3i )

2

12n

Answers will vary.



2

12n 12  13n 13

 x 2  8 x  16  9i 2  x 2  8 x  25

is a factor of h . Using division to find the other factor:

609 Copyright © 2020 Pearson Education, Inc.


Chapter 6: Trigonometric Functions

x 2  3 x  10 x 2  8 x  25 x 4  5 x3  9 x 2  155 x  250 x 4  8 x3  25 x 2

3 x3  34 x 2  155 x 3 x3  24 x 2  75 x  10 x 2  80 x  250

g ( x)  f ( x) at  3, 2 .

10 x 2  80 x  250 x 2  3 x  10  ( x  2)( x  5) The remaining zeros are 2 and 5 . The zeros of h are 4  3i, 4  3i, 2,  5 .

148. Using the Remainder Theorem: P ( 2)  8( 2) 4  2( 2)3  ( 2)  8  8(16)  2( 8)  2  8  128  16  2  8  134 149. The outer circle would have area: A  r2

153. int( x  3)  2 int( x )  5

The interval is  5, 4  . 154. The x-value is moved to the right by 3 units and the y-value is shrunk by a value of ½. So the new point is (6, 2) . 155.

 x2 1   x2 1   2   2   4 x  4 x 

 g ( x)2  

  (15) 2  225 ft 2 The garden has area:

A  r2

x4 1 1 1 x4 1 1       16 4 4 x 4 16 2 x 4 x4 1 1   16 2 x 4  x2 1   x2 1     2   2   4 x  4 x 

1   g ( x)  2

  (12) 2  144 ft 2 So the sidewalk has area: 225  144  81 ft 2 .

2

 x2 1   x4  4    2   2   4 x   4x  x4  4 2 1   g ( x)   4 x2

(7)  (7) 2  4(3)(9) 150. x  2(3) 

151.

152.

7  157 6

1 since 2x 1 1 2x2  1   f ( g ( x))  2 2  1  2 2  x2  1  x 1

2

f ( x) 

x2  3   x  3

Section 6.3 1  1 1. All real numbers except  ;  x | x    2 2 

x2  x  6  0

2. even

( x  3)( x  2)  0

3. False

x  3, x  2 The graphs intersect at -3 and 2.

4. True 5. 2 , 

610 Copyright © 2020 Pearson Education, Inc.


Section 6.3: Properties of the Trigonometric Functions

6. All real number, except odd multiples of

 2

23. sec

7. b. 8. a 9. 1 10. False; sec  

24. cot

1 cos 

11. sin 405º  sin(360º  45º )  sin 45º 

2 2

1 12. cos 420º  cos(360º  60º )  cos 60º  2

25. tan

13. tan 405º  tan(180º  180º  45º )  tan 45º  1

26. sec

14. sin 390º  sin(360º  30º )  sin 30º 

1 2

17       sec   4   sec   2  2  4 4 4       sec 4  2 17       cot   4   cot   2  2  4 4  4    cot 4 1 19  3    tan   3   tan  6 6 3 6  25      sec   4   sec   2  2  6 6  6    sec 6 

15. csc 450º  csc(360º  90º )  csc 90º  1 16. sec 540º  sec(360º  180º )  sec180º  1 17. cot 390º  cot(180º  180º  30º )  cot 30º  3 18. sec 420º  sec(360º  60º )  sec 60º  2 19. cos

20. sin

33      cos   8   cos   4  2  4 4  4    cos 4 2  2 9  2    sin   2   sin  4 4 2 4 

21. tan  21   tan(0  21)  tan  0   0 22. csc

9      csc   4   csc   2  2  2 2  2    csc 2 1

2 3 3

27. Since sin   0 for points in quadrants I and II, and cos   0 for points in quadrants II and III, the angle  lies in quadrant II. 28. Since sin   0 for points in quadrants III and IV, and cos   0 for points in quadrants I and IV, the angle  lies in quadrant IV. 29. Since sin   0 for points in quadrants III and IV, and tan   0 for points in quadrants II and IV, the angle  lies in quadrant IV. 30. Since cos   0 for points in quadrants I and IV, and tan   0 for points in quadrants I and III, the angle  lies in quadrant I. 31. Since cos   0 for points in quadrants I and IV, and tan   0 for points in quadrants II and IV, the angle  lies in quadrant IV. 32. Since cos   0 for points in quadrants II and III, and tan   0 for points in quadrants I and III, the angle  lies in quadrant III. 33. Since sec   0 for points in quadrants II and III, and sin   0 for points in quadrants I and II, the angle  lies in quadrant II.

611 Copyright © 2020 Pearson Education, Inc.


Chapter 6: Trigonometric Functions 34. Since csc   0 for points in quadrants I and II, and cos   0 for points in quadrants II and III, the angle  lies in quadrant II. 3 4 35. sin    , cos   5 5  3  sin   5  3 5 3 tan       4 cos  5 4 4     5 1 1 5 csc     sin   3  3    5 1 1 5 sec     cos   4  4   5 1 4 cot    tan  3 4 3 36. sin   , cos    5 5 4   sin  4  5 4 5 tan            cos   3  5  3  3    5 1 1 5 csc     sin   4  4   5 1 1 5 sec     cos   3  3    5 1 3 cot    tan  4

2 5 5 , cos   5 5 2 5   sin   5  2 5 5 tan      2 cos  5  5 5    5 

37. sin  

csc  

1 1 5 5     5 cos   5  5 5    5  1 1 cot    tan  2

sec  

5 2 5 , cos    5 5  5   5   5  5  1 sin    tan        cos   2 5   5   2 5  2    5 

38. sin   

csc  

1 1  5  5   1    5  sin   5 5 5     5 

1 1  5  5 5      cos   2 5   2 5  5 2   5   1 1 2 cot     1  2 tan   1  1   2 sec  

1 3 39. sin   , cos   2 2 1   sin  1 2 3 3 2 tan          cos   3  2 3 3 3  2    csc  

1 1 2   1  2 sin   1  1   2  

sec  

1 1 2 3 2 3     cos   3  3 3 3  2   

cot  

1 1 3 3     3 tan   3  3 3    3 

1 1 5 5 5   1   sin   2 5  2 2 5 5    5 

612 Copyright © 2020 Pearson Education, Inc.


Section 6.3: Properties of the Trigonometric Functions

3 1 , cos   2 2  3   sin   2  3 2 tan       3 cos  2 1 1   2

40. sin  

1 1 2 3 2 3   1   sin   3  3 3 3  2    1 1 2 sec     1  2 cos   1  1   2   csc  

cot  

1 1 1 3 3     tan  3 3 3 3

1 2 2 41. sin    , cos   3 3  1   sin  1 3 2 2 3 tan         cos   2 2  3 2 2 2 4    3  1 1  3 csc     1      3 sin   1   1    3 sec  

1 1 3 2 3 2     cos   2 2  2 2 2 4    3 

cot  

1 1 4 2     2 2 tan    2 2 2   4   

2 2 1 , cos    3 3 2 2   sin   3  2 2 3 tan       2 2 cos  3 1  1    3

sec  

cot  

1 1  3   1      3 cos   1   1    3 1 1 1 2 2     tan   2 2 4 2 2 2

12 ,  in quadrant II 13 Solve for cos  : sin 2   cos 2   1

43. sin  

cos 2   1  sin 2  cos    1  sin 2  Since  is in quadrant II, cos   0 . cos    1  sin 2  2

144 25 5  12    1     1   169 169 13  13   12    12 sin  12 13  13  tan            cos   5  13  5  5    13  1 1 13 csc     sin   12  12    13  1 1 13 sec     cos   5  5   13   1 1 5 cot     tan   12  12    5 3 44. cos   ,  in quadrant IV 5 Solve for sin  : sin 2   cos 2   1 sin 2   1  cos 2 

42. sin  

csc  

1 1 3 2 3 2   1   sin   2 2  4 2 2 2    3 

sin    1  cos 2  Since  is in quadrant IV, sin   0 . 2

16 4 3 sin    1  cos 2    1       25 5 5  4  sin   5  4 5 4 tan       cos  5 3 3 3   5

613 Copyright © 2020 Pearson Education, Inc.


Chapter 6: Trigonometric Functions

1 1 5   sin   4  4    5 1 1 5 sec     cos   3  3   5 1 1 3 cot     tan   4  4    3 csc  

4 45. cos    ,  in quadrant III 5 Solve for sin  : sin 2   cos 2   1 sin 2   1  cos 2  sin    1  cos 2  Since  is in quadrant III, sin   0 .

 5  sin   13  5  13  5        tan   cos   12  13  12  12    13  1 1 13   csc   sin   5  5    13  1 1 13   sec   cos   12  12    13  1 1 12   cot   tan   5  5    12  5 , 90º    180º ,  in quadrant II 13 Solve for cos  : sin 2   cos 2   1

47. sin  

sin    1  cos 2 

cos 2   1  sin 2  2

16 9 3  4   1      1   5 25 25 5    3  sin   5  3  5 3        tan   cos   4  5  4 4    5 1 1 5   csc   sin   3  3    5 1 1 5   sec   cos   4  4    5 1 1 4   cot   tan   3  3   4 5 ,  in quadrant III 13 Solve for cos  : sin 2   cos 2   1

46. sin   

cos 2   1  sin 2 

cos    1  sin 2  Since  is in quadrant II, cos   0 . 5 cos    1  sin 2    1     13 

25 144 12   169 169 13 5     sin  5  13  5 13          tan   cos   12  13  12  12    13  1 1 13   csc   sin   5  5    13  1 1 13   sec   cos   12  12    13  1 1 12   cot   tan   5  5    12    1

cos    1  sin 2  Since  is in quadrant III, cos   0 .  5 cos    1  sin 2    1      13  

2

2

144 12  169 13

614 Copyright © 2020 Pearson Education, Inc.


Section 6.3: Properties of the Trigonometric Functions

4 , 270º    360º ;  in quadrant IV 5 Solve for sin  : sin 2   cos 2   1

48. cos  

sin    1  cos 2  Since  is in quadrant IV, sin   0 . 2

2 3 50. sin    ,     ,  in quadrant III 3 2 Solve for cos  : sin 2   cos 2   1 cos    1  sin 2  Since  is in quadrant III, cos   0 . 2

9 3 4 sin    1  cos 2    1       25 5 5

 2 cos    1  sin 2    1      3

 3  sin   5  3 5 3     tan   cos  5 4 4 4   5 1 1 5   csc   sin   3  3   5   1 1 5   sec   cos   4  4   5 1 1 4   cot   tan   3  3    4

5 5  9 3  2   sin  3   tan   cos   5     3 

sec  

1  49. cos    ,     ,  in quadrant II 3 2 Solve for sin  : sin 2   cos 2   1

1 1 3 5 3 5     5 cos   5 5 5     3 

cot  

1 1 5 5 5     tan   2 5  2 5 5 2    5 

sin 2   1  cos 2  sin    1  cos 2  Since  is in quadrant II, sin   0 . sin   1  cos 2  2

1 8 2 2  1  1     1   3 9 9 3   2 2   sin   3  2 2  3       2 2 tan   cos  3  1  1    3 1 1 3 2 3 2     sin   2 2  2 2 2 4  3    1 1   3 sec   cos   1      3 csc  

cot  



2  3  5 2 5       3  5 5 5 1 1 3 csc     2 sin   2     3

2 51. sin   , tan   0, so  is in quadrant II 3 Solve for cos  : sin 2   cos 2   1 cos 2   1  sin 2  cos    1  sin 2  Since  is in quadrant II, cos   0 . cos    1  sin 2  2

4 5 5 2   1     1    9 9 3 3

1 1 2 2    tan   2 2 2 4

615 Copyright © 2020 Pearson Education, Inc.


Chapter 6: Trigonometric Functions

2   sin  2  3  2 5 3       tan    cos   5 5 5 3      3  1 1 3   csc   sin   2  2   3

1 1 3 3 5    cos   5  5 5    3  1 1 5 cot      5 tan   2 5  2 2 5   5  

sec  

1 52. cos    , tan   0 4 sin  Since tan    0 and cos   0 , sin   0 . cos  Solve for sin  : sin 2   cos 2   1 sin    1  cos 2 

53. sec   2, sin   0, so  is in quadrant IV 1 1  sec  2 2 Solve for sin  : sin   cos 2   1

Solve for cos  : cos  

sin 2   1  cos 2  sin    1  cos 2  Since  is in quadrant IV, sin   0 . sin    1  cos 2  2

1 3 3 1   1     1    2 4 4 2  3  sin   2  3 2 tan       3 1 cos  2 1     2 1 1 2 2 3    csc   sin   3 3 3    2  1 1 3   cot   tan   3 3

sin    1  cos 2 

54. csc   3, cot   0, so  is in quadrant II

2

1  1   1      1 16  4

1 1  csc  3 Solve for cos  : sin 2   cos 2   1

Solve for sin  : sin  

15 15  16 4  15     4  sin  15  4        15 tan     1 cos  4    1    4 

1 1 4 15 4 15     sin   15  15 15 15    4  1 1 4    4 sec    1 cos   1     4 csc  

1 1 15 15 cot      tan  15 15 15

cos    1  sin 2  Since  is in quadrant II, cos   0 . cos    1  sin 2  2

1 8 2 2 1   1     1    9 9 3 3 1   sin  tan    3 cos   2 2    3   1  3  2 2      3  2 2  2 4

616 Copyright © 2020 Pearson Education, Inc.


Section 6.3: Properties of the Trigonometric Functions

sec  

cot  

1 1 3 3  2  2   cos   2 2  4 2 2 2    3   1 1 4 2     2 2 tan   2 2 2     4 

3 , sin   0, so  is in quadrant III 4 Solve for sec  : sec2   1  tan 2 

55. tan  

sin    1  cos 2  2

16 9 3  4   1      1   25 25 5  5 1 1 5   csc   sin   3  3    5 1 57. tan    , sin   0, so  is in quadrant II 3 Solve for sec  : sec2   1  tan 2 

sec    1  tan 2  Since  is in quadrant III, sec   0 .

sec    1  tan 2  Since  is in quadrant II, sec   0 .

sec    1  tan 2 

sec    1  tan 2 

2

9 25 5 3   1     1   16 16 4 4 1 4  cos   sec  5

2

1 10 10  1   1      1    9 9 3  3 cos  

sin    1  cos 2  2

16 9 3  4   1      1   25 25 5  5 1 1 5   csc   sin   3  3    5 1 1 4   cot   tan   3  3   4

4 , cos   0, so  is in quadrant III 3 1 1 3   tan   cot   4  4   3 Solve for sec  : sec2   1  tan 2 

56. cot  

sec    1  tan 2  Since  is in quadrant III, sec   0 . sec    1  tan 2  2

9 25 5 3   1     1   16 16 4 4 1 4 cos    sec  5

1 1 3 3 10    sec   10  10 10     3 

sin   1  cos 2  2

 3 10  90  1      1  100  10  10 10  100 10 1 1   10 csc   sin   10   10    1 1   3 cot   tan   1      3 

58. sec    2, tan   0, so  is in quadrant III

Solve for tan  : sec2   1  tan 2  tan    sec 2   1

tan   sec 2   1  ( 2) 2  1  4  1  3 cos  

1 1  sec  2

cot  

1 1 3 3    tan  3 3 3

617 Copyright © 2020 Pearson Education, Inc.


Chapter 6: Trigonometric Functions

sin    1  cos 2  2

1 3 3  1   1      1    4 4 2  2 1 1 2 3 2 3 csc       sin   3 3 3 3    2 

3 2

61. tan(30º )   tan 30º  

 2 3   76. csc      csc   3 3 3  

77. sin 2  40º   cos 2  40º   1 78. sec 2 18º   tan 2 18º   1

3 59. sin( 60º )   sin 60º   2

60. cos(30º )  cos 30º 

 2 3   75. sec     sec  6 3  6

3 3

79. sin  80º  csc  80º   sin  80º  

1 1 sin  80º 

80. tan 10º  cot 10º   tan 10º  

1 1 tan 10º 

81. tan  40º  

2 62. sin(135º )   sin135º   2

sin  40º 

cos  40º  cos  20º 

 tan  40º   tan  40º   0

63. sec( 60º )  sec 60º  2

82. cot  20º  

64. csc(30º )   csc 30º   2

83. cos  400º   sec  40º   cos  40º 360º   sec  40º 

 cot  20º   cot  20º   0

 cos  40º   sec  40º 

65. sin(90º )   sin 90º  1

 cos  40º  

66. cos( 270º )  cos 270º  0

1 1 cos  40º 

84. tan  200º   cot  20º   tan  20º 180º   cot  20º 

   67. tan      tan  1  4 4

 tan  20º   cot  20º   tan  20º  

68. sin()   sin   0  2   69. cos     cos  4 2  4  3   70. sin      sin   3 2  3

71. tan()   tan   0 3  3  72. sin      sin  (1)  1 2  2     73. csc      csc   2 4 4  

sin  20º 

1 1 tan  20º 

    25      25  85. sin    csc     sin   csc    12   12   12   12       24    sin   csc     12   12 12        sin   csc   2   12   12        sin   csc    12   12  1     sin     1  12    sin    12 

74. sec     sec   1 618 Copyright © 2020 Pearson Education, Inc.


Section 6.3: Properties of the Trigonometric Functions     37     37  86. sec    cos    sec   cos   18 18 18        18      36   sec   cos    18    18 18       sec   cos   2   18   18       sec   cos   18    18  1    sec    1  18  sec       18 

87.

sin  20º 

cos  380º   

 tan  200º 

 sin  20º 

cos  20º 360º   sin  20º  cos  20º 

 tan  20º 180º 

 tan  20º 

  tan  20º   tan  20º   0

88.

sin  70º 

cos  430º    

sin  70º 

 tan  70º 

cos  430º 

 tan  70º 

sin  70º 

cos  70º 360º  sin  70º 

cos  70º 

92. If cot    2 , then cot   cot      cot   2    2   2    2   6

93. sin1º  sin 2º  sin 3º ...  sin 357º  sin 358º  sin 359º  sin1º  sin 2º  sin 3º    sin(360º 3º )  sin(360º  2º )  sin(360º 1º )  sin1º  sin 2º  sin 3º    sin(3º )  sin(  2º )  sin( 1º )  sin1º  sin 2º  sin 3º    sin 3º  sin 2º  sin1º  sin 180º   0

94. cos1º  cos 2º  cos 3º    cos 357º  cos 358º  cos 359º  cos1º  cos 2º  cos 3º ...  cos(360º 3º )  cos(360º  2º )  cos(360º 1º )  cos1º  cos 2º  cos 3º ...  cos(3º )  cos( 2º )  cos(1º )  cos1º  cos 2º  cos 3º ...  cos 3º  cos 2º  cos1º  2 cos1º 2 cos 2º 2 cos 3º ...  2 cos178º  2 cos179º  cos180º  2 cos1º 2 cos 2º 2 cos 3º ...  2 cos(180º  2º )  2 cos(180º 1º )  cos 180º   2 cos1º 2 cos 2º 2 cos 3º ...  2 cos 2º

 tan  70º 

 2 cos1º  cos180º  cos180º  1

 tan  70º 

95. The domain of the sine function is the set of all real numbers.

 tan  70º   tan  70º   0

89. If sin   0.3 , then sin   sin   2   sin   4   0.3  0.3  0.3  0.9

96. The domain of the cosine function is the set of all real numbers. 97.

90. If cos   0.2 , then cos   cos   2   cos   4   0.2  0.2  0.2  0.6

91. If tan   3 , then tan   tan      tan   2   333  9

f ( )  tan  is not defined for numbers that are

odd multiples of

 . 2

98.

f ( )  cot  is not defined for numbers that are multiples of  .

99.

f ( )  sec  is not defined for numbers that are

odd multiples of

619 Copyright © 2020 Pearson Education, Inc.

 . 2


Chapter 6: Trigonometric Functions

100.

f ( )  csc  is not defined for numbers that are multiples of  .

101. The range of the sine function is the set of all real numbers between 1 and 1, inclusive.

114. a. b.

104. The range of the cotangent function is the set of all real numbers. 105. The range of the secant function is the set of all real numbers greater than or equal to 1 and all real numbers less than or equal to 1 . 106. The range of the cosecant function is the set of all real number greater than or equal to 1 and all real numbers less than or equal to 1 . 107. The sine function is odd because sin( )   sin  . Its graph is symmetric with respect to the origin. 108. The cosine function is even because cos( )  cos  . Its graph is symmetric with respect to the y-axis. 109. The tangent function is odd because tan( )   tan  . Its graph is symmetric with respect to the origin. 110. The cotangent function is odd because cot( )   cot  . Its graph is symmetric with respect to the origin.

f (a)  f (a  2)  f (a  2)

1 1 1   4 4 4 3  4 

115. a. b.

f (a )   f (a )   2 f ( a )  f ( a  )  f ( a  2 )  f (a)  f (a)  f (a)

 222  6

116. a.

f (a )   f (a )   (3)  3

b.

f ( a )  f ( a  )  f ( a  4 )  f (a)  f (a)  f (a)  3  (3)  (3)  9

117. a. b.

118. a. b.

f (a)  f (a)   4 f (a)  f (a  2)  f (a  4)  f (a )  f (a )  f (a)   4  ( 4)  ( 4)  12 f (a )   f (a )   2

f (a)  f (a  2)  f (a  4)  f (a )  f (a )  f (a)  222 6

111. The secant function is even because sec( )  sec  . Its graph is symmetric with respect to the y-axis.

119. Since tan  

112. The cosecant function is odd because csc( )   csc  . Its graph is symmetric with respect to the origin.

r  10

113. a. b.

f (a)   f (a)  

1 3

f (a)  f (a  2)  f (a  4)

 f (a )  f (a )  f (a ) 1 1 1    1 3 3 3

1 4

 f (a )  f (a )  f (a )

102. The range of the cosine function is the set of all real numbers between 1 and 1, inclusive. 103. The range of the tangent function is the set of all real numbers.

f (a)  f (a) 

500 1 y   , then 1500 3 x r 2  x 2  y 2  9  1  10

sin  

1

1

. 1 9 10 5 5 T  5   1  1  3     3   10   5  5  5 10  5 10  15.8 minutes

620 Copyright © 2020 Pearson Education, Inc.


Section 6.3: Properties of the Trigonometric Functions

120. a.

1 y   for 0    . 4 x 2 2 2 2 r  x  y  16  1  17

tan  

 2 (17  1.25)  V (17)  250sin    2650 5    250sin 19.7920   2650

r  17

 2852.25 mL

Thus, sin  

1

. 17 2 1 T ( )  1   1   1   3  4  17   4    1

2 17 2 17 1   2.75 hours 3 3

1 , x  4 . Sally heads 4 directly across the sand to the bridge, crosses the bridge, and heads directly across the sand to the other house.

b. Since tan  

c.

 must be larger than 14º , or the road will not be reached and she cannot get across the river.

  (10)  121. P (10)  40 cos    110  6   40 cos  5.2360   110

123. Let P  ( x, y ) be the point on the unit circle that corresponds to an angle t. Consider the equation y tan t   a . Then y  ax . Now x 2  y 2  1 , x 1 and so x 2  a 2 x 2  1 . Thus, x   1  a2 a . That is, for any real number a , y 1  a2 there is a point P  ( x, y ) on the unit circle for which tan t  a . In other words,   tan t   , and the range of the tangent function is the set of all real numbers. 124. Let P  ( x, y ) be the point on the unit circle that corresponds to an angle t. Consider the equation x cot t   a . Then x  ay . Now x 2  y 2  1 , y

so a 2 y 2  y 2  1 . Thus, y  

 130 x

1 1  a2

and

a

. That is, for any real number a , 1  a2 there is a point P  ( x, y ) on the unit circle for which cot t  a . In other words,   cot t   , and the range of the tangent function is the set of all real numbers.

  (20)  P (20)  40 cos    110  6   40 cos 10.4720   110  90   (30)  P (30)  40 cos    110  6   40 cos 15.7080   110

125. Suppose there is a number p, 0  p  2 for which sin(  p )  sin  for all  . If   0 ,

then sin  0  p   sin p  sin 0  0 ; so that

 70  2 (2.5  1.25)  122. V (2.5)  250sin    2650 5    250sin 1.5708   2650  2900 mL  2 (10  1.25)  V (10)  250sin    2650 5    250sin 10.9956   2650

   then sin   p   sin   . 2  2  3   But p   . Thus, sin    1  sin    1 , 2   2 or 1  1 . This is impossible. The smallest positive number p for which sin(  p )  sin  for all  must then be p  2 . p   . If  

 2400 mL

621 Copyright © 2020 Pearson Education, Inc.

2


Chapter 6: Trigonometric Functions 126. Suppose there is a number p, 0  p  2 , for  which cos(  p)  cos  for all  . If   , 2    then cos   p   cos    0 ; so that p   . 2  2 If   0 , then cos  0  p   cos  0  . But

132. Let P  (a, b) be the point on the unit circle corresponding to  . Then b sin  tan    a cos  a cos  cot    b sin 

p   . Thus cos     1  cos  0   1 , or

133. (sin  cos  ) 2  (sin  sin  ) 2  cos 2 

1  1 . This is impossible. The smallest positive number p for which cos(  p)  cos  for all  must then be p  2 .

1 : Since cos  has period 2 , so cos  does sec  .

 sin 2  cos 2   sin 2  sin 2   cos 2   sin 2  (cos 2   sin 2  )  cos 2   sin 2   cos 2  1

127. sec  

134.

1 : Since sin  has period 2 , so sin  does csc  .

128. csc  

129. If P  (a, b) is the point on the unit circle corresponding to  , then Q  (a, b) is the point on the unit circle corresponding to    . b b   tan  . If there Thus, tan(  )  a a exists a number p, 0  p   , for which tan(  p )  tan  for all  , then if   0 , tan  p   tan  0   0. But this means that p is a

multiple of  . Since no multiple of  exists in the interval  0,   , this is impossible. Therefore, the fundamental period of f    tan  is  . 1 : Since tan  has period  , so tan does cot  .

130. cot  =

131. Let P  (a, b) be the point on the unit circle

corresponding to  . Then csc   1 1  a cos  a 1 1 cot     b  b  tan    a

sec  

1 1  b sin 

2sin 2   3cos 2  3sin  cos   1  sin 2  sin 2  1  3cot 2   3cot   csc2  1  2 cot 2   3cot  2 cot 2   3cot   1  0 (2 cot   1)(cot   1)  0 1 cot   or cot   1 2

135.

 tan     3  sec   2

2

tan 2   9  6sec   sec2  6sec   9  sec2   tan 2  6sec   9  1 10 5 1   6 3 cos  3 cos   5 4 7 So, sin   and sin   cos   5 5 sec  

136. Since sin(4 )  cos(2 ) and 0  4 

know 4  2 

. So  

 2

we

. 12  2    sin(8 )  cos(4 )  2  sin    cot    2  3  3 2

3 3  2 2 3 5 3 5 3  12  2  6 6 

622 Copyright © 2020 Pearson Education, Inc.


Section 6.3: Properties of the Trigonometric Functions cos   7  8sin 

137.

cos 2   49  112 sin   64 sin 2  1  sin 2   49  112 sin   64 sin 2 

65sin 2   112sin   48  0 (13sin   12)(5sin   4)  0

12 5 (cos    ) or 13 13 4 3  sin    (cos   ) extraneous 5 5  sin   

sin   cos   

12  5  7     13  13  13

145.

ln e x  4  ln 6 ( x  4) ln e  ln 6 ( x  4)  ln 6 x  ln 6  4 So the solution set is:  ln 6  4 .

138 – 142. Answers will vary. 143.

( f  g )(x)  f ( x  7)

146.

( x  7)  3  x  14 x  49  3 2

ex4  6

2

f ( x)  x3  9 x 2  3x  27

 ( x  9)( x 2  3)

 x  14 x  46 144. We need to use completing the square to put the function in the form f ( x )  a ( x  h) 2  k 2

The factor ( x 2  3) has no real roots so the solution set is:  9 . 147.

x2  x5  2

f ( x)  2 x 2  12 x  13

x  2  x 5  2

 2( x 2  6 x)  13

x  2  x 5 4 x 5  4

  144    144   2  x 2  6 x    13  2  2   4( 2)    4( 2) 2  

2  4 x  5 1 3  4 x 5

 2( x 2  6 x  9)  13  18  2( x 2  6 x  9)  5  2( x  3)  5 2

So the vertex is (3,5) and the axis of symmetry is x  3. The graph would be shifted horizontally to the right 3 units, stretched by a factor of 2, reflected about the x-axis and then shifted vertically up by 5 units. So the graph would be:

3  x5 4 9  x5 16 89 x 16  89  The solution set is   16 

148. (x + 6) moves the graph 6 units to the left so the zeros are 8 and 3 .

623 Copyright © 2020 Pearson Education, Inc.


Chapter 6: Trigonometric Functions 149. log 4 ( x  5)  2

Section 6.4

4  x 5 16  x  5 x  21 The solution set is 21 2

1. y  3 x 2

Using the graph of y  x 2 , vertically stretch the graph by a factor of 3.

b 28 7   2a 12 3 7 when: The y-value is 3

150. The x-value is 

2

7 7 7  6    28    c 3 3   3 7  49   196   6    c 3  9   3  7 294 196   c 3 9 3 105 c  35 3

2. y  2 x

Using the graph of y  x , compress horizontally by a factor of

1 . 2

151. 3(0)  5 y  15 5 y  15 y3 3 x  5(0)  15 3 x  15 x  5

The intercepts are  0,3 ,  5, 0  . 152.

5. 3;

h 2 3  3 2   2  x  h   5  x  h   1   2 x  5 x  1     h 3 2 3 x  2 xh  h 2  5 x  5h  1  x 2  5 x  1 2  2 h 3 2 3 3 3 x  3 xh  h 2  5h  x 2 3 xh  h 2  5h 2 2 2 2   h h 3  3x  h  5 2

 2

4. 3; 

3 f  x   x2  5x  1 2 f  x  h  f  x

3. 1;

2   6 3

6. True 7. False; The period is

2

2

8. True 9. d 10. d 11. a.

The graph of y  sin x crosses the y-axis at the point (0, 0), so the y-intercept is 0.

624 Copyright © 2020 Pearson Education, Inc.


Section 6.4: Graphs of the Sine and Cosine Functions b. The graph of y  sin x is increasing for    x . 2 2

c. d. e.

f. g.

The largest value of y  sin x is 1. sin x  0 when x  0, , 2 . 3  , ; 2 2  3 sin x  1 when x   , . 2 2 sin x  1 when x  

sin x  

1 5  7 11 when x   , , , 2 6 6 6 6

The x-intercepts of sin x are  x | x  k , k an integer

The graph of y  cos x crosses the y-axis at the point (0, 1), so the y-intercept is 1. b. The graph of y  cos x is decreasing for 0 x. c. The smallest value of y  cos x is 1 .

12. a.

d. e.

 3 , 2 2 cos x  1 when x   2, 0, 2; cos x  1 when x  , . cos x  0 when x 

3 11   11 when x   , , , 2 6 6 6 6 g. The x-intercepts of cos x are    2k  1  , k an integer  x | x  2   13. y  5sin x This is in the form y  A sin( x) where A  5

f.

cos x 

and   1 . Thus, the amplitude is A  5  5 and the period is T 

2

2  2 . 1

14. y  3cos x This is in the form y  A cos( x) where A  3

and   1 . Thus, the amplitude is A  3  3 2

2   2 . and the period is T   1

15. y   3cos(4 x) This is in the form y  A cos( x) where A   3 and   4 . Thus, the amplitude is A   3  3 and the period is

T

2

2   . 4 2

1  16. y   sin  x  2  This is in the form y  A sin( x) where A  1 1 . Thus, the amplitude is A   1  1 2 2 2  1  4 . and the period is T 

and  

2

17. y  6sin( x) This is in the form y  A sin( x) where A  6

and    . Thus, the amplitude is A  6  6 and the period is T 

2

2 2. 

18. y   3cos(3x) This is in the form y  A cos( x) where A   3

and   3 . Thus, the amplitude is A   3  3 and the period is T 

2

2 . 3

1 7  19. y   cos  x  7 2  This is in the form y  A cos( x) where

1 7 and   . Thus, the amplitude is 7 2 1 1 A    and the period is 7 7 2 2 4 T .  7   7 2 A

4 2  20. y  sin  x  3 3 

This is in the form y  A sin( x) where A 

4 3

2 4 4 . Thus, the amplitude is A   3 3 3 2 2  2  3 . and the period is T 

and  

625 Copyright © 2020 Pearson Education, Inc.

3


Chapter 6: Trigonometric Functions 10  2  10  2  x    sin  x sin   9 5 9    5  This is in the form y  A sin( x) where

end at x  2 . We divide the interval  0, 2 

10 2 and   . Thus, the amplitude is 9 5 10 10 A   and the period is  9 9 2 2 T  5.

finding the following values:  3 , and 2 0, ,  , 2 2 These values of x determine the x-coordinates of the five key points on the graph. To obtain the ycoordinates of the five key points for y  4 cos x , we multiply the y-coordinates of the five key points for y  cos x by A  4 . The five key points are  3  0, 4  ,  , 0  ,  , 4  ,  , 0  ,  2 , 4  2    2  We plot these five points and fill in the graph of the curve. We then extend the graph in either direction to obtain the graph shown below.

21. y 

into four subintervals, each of length

A

2 5

9  3  9  3  22. y  cos   x   cos  x 5  2  5  2 

This is in the form y  A cos( x) where A 

9 5

3 . Thus, the amplitude is 2 9 9 A   and the period is 5 5 2 2 4 T   .  3 3

and  

2   by 4 2

2

23. F 24. E 25. A

From the graph we can determine that the domain is all real numbers,  ,   and the

26. I

range is  4, 4 .

27. H

34. Comparing y  3sin x to y  A sin  x  , we

28. B

find A  3 and   1 . Therefore, the amplitude 2  2 . Because is 3  3 and the period is 1 the amplitude is 3, the graph of y  3sin x will lie between 3 and 3 on the y-axis. Because the period is 2 , one cycle will begin at x  0 and end at x  2 . We divide the interval  0, 2 

29. C 30. G 31. J 32. D 33. Comparing y  4 cos x to y  A cos  x  , we

find A  4 and   1 . Therefore, the amplitude 2  2 . Because is 4  4 and the period is 1 the amplitude is 4, the graph of y  4 cos x will lie between 4 and 4 on the y-axis. Because the period is 2 , one cycle will begin at x  0 and

into four subintervals, each of length

2   by 4 2

finding the following values:  3 , and 2 0, ,  , 2 2 These values of x determine the x-coordinates of the five key points on the graph. To obtain the ycoordinates of the five key points for y  3sin x ,

626 Copyright © 2020 Pearson Education, Inc.


Section 6.4: Graphs of the Sine and Cosine Functions

we multiply the y-coordinates of the five key points for y  sin x by A  3 . The five key    3  points are  0, 0  ,  ,3  ,  , 0  ,  , 3  , 2   2   2 , 0 

We plot these five points and fill in the graph of the curve. We then extend the graph in either direction to obtain the graph shown below.

From the graph we can determine that the domain is all real numbers,  ,   and the range is  4, 4 . 36. Comparing y  3cos x to y  A cos  x  , we

From the graph we can determine that the domain is all real numbers,  ,   and the range is  3,3 . 35. Comparing y  4sin x to y  A sin  x  , we

find A  4 and   1 . Therefore, the amplitude 2  2 . Because is 4  4 and the period is 1 the amplitude is 4, the graph of y  4sin x will lie between 4 and 4 on the y-axis. Because the period is 2 , one cycle will begin at x  0 and end at x  2 . We divide the interval  0, 2  2   by 4 2  3 , 2 finding the following values: 0, ,  , 2 2 These values of x determine the x-coordinates of the five key points on the graph. To obtain the ycoordinates of the five key points for y  4sin x , we multiply the y-coordinates of the five key points for y  sin x by A  4 . The five key points are  3  0, 0  ,  , 4  ,  , 0  ,  , 4  ,  2 , 0  2    2  We plot these five points and fill in the graph of the curve. We then extend the graph in either direction to obtain the graph shown below.

into four subintervals, each of length

find A  3 and   1 . Therefore, the amplitude 2  2 . Because is 3  3 and the period is 1 the amplitude is 3, the graph of y  3cos x will lie between 3 and 3 on the y-axis. Because the period is 2 , one cycle will begin at x  0 and end at x  2 . We divide the interval  0, 2  into four subintervals, each of length

2   by 4 2

finding the following values:  3 , and 2 0, ,  , 2 2 These values of x determine the x-coordinates of the five key points on the graph. To obtain the ycoordinates of the five key points for y  3cos x , we multiply the y-coordinates of the five key points for y  cos x by A  3 . The five key points are  3  0, 3 ,  , 0  ,  ,3 ,  , 0  ,  2 , 3 2    2  We plot these five points and fill in the graph of the curve. We then extend the graph in either direction to obtain the graph shown below. y 5 ( , 3) ( , 3) 3 ( ––– , 0) 2 x 2 2 , 0) ( –– 2 (0, 3) (2 , 3) 5

627 Copyright © 2020 Pearson Education, Inc.


Chapter 6: Trigonometric Functions

From the graph we can determine that the domain is all real numbers,  ,   and the range is  3,3 . 37. Comparing y  cos  4 x  to y  A cos  x  , we

find A  1 and   4 . Therefore, the amplitude 2   . Because the is 1  1 and the period is 4 2 amplitude is 1, the graph of y  cos  4 x  will lie between 1 and 1 on the y-axis. Because the period is

2

, one cycle will begin at x  0 and

  . We divide the interval 0,  2  2  /2   into four subintervals, each of length 4 8 by finding the following values:   3  , and 0, , , 8 4 8 2 These values of x determine the x-coordinates of the five key points on the graph. The five key points are   3   0,1 ,  , 0  ,  , 1 ,  , 0  ,  ,1   8  2  8  4 We plot these five points and fill in the graph of the curve. We then extend the graph in either direction to obtain the graph shown below.

end at x 

between 1 and 1 on the y-axis. Because the 2 , one cycle will begin at x  0 and period is 3 2  2  end at x  . We divide the interval 0,  3  3  2 / 3  into four subintervals, each of length  4 6 by finding the following values:    2 0, , , , and 6 3 2 3 These values of x determine the x-coordinates of the five key points on the graph. The five key points are    2  0, 0  ,  ,1 ,  , 0  ,  , 1 ,  , 0    3  6  3  2 We plot these five points and fill in the graph of the curve. We then extend the graph in either direction to obtain the graph shown below.

From the graph we can determine that the domain is all real numbers,  ,   and the range is  1,1 . 39. Since sine is an odd function, we can plot the equivalent form y   sin  2 x  .

Comparing y   sin  2 x  to y  A sin  x  , we From the graph we can determine that the domain is all real numbers,  ,   and the range is  1,1 . 38. Comparing y  sin  3x  to y  A sin  x  , we

find A  1 and   3 . Therefore, the amplitude 2 is 1  1 and the period is . Because the 3 amplitude is 1, the graph of y  sin  3x  will lie

find A  1 and   2 . Therefore, the 2  . amplitude is 1  1 and the period is 2 Because the amplitude is 1, the graph of y   sin  2 x  will lie between 1 and 1 on the y-axis. Because the period is  , one cycle will begin at x  0 and end at x   . We divide the interval  0,   into four subintervals, each of length

 4

628 Copyright © 2020 Pearson Education, Inc.

by finding the following values:


Section 6.4: Graphs of the Sine and Cosine Functions 3 , and  4 2 4 These values of x determine the x-coordinates of the five key points on the graph. To obtain the ycoordinates of the five key points for y   sin  2 x  , we multiply the y-coordinates of

0,

,

,

five key points are   3  0,1 ,  , 0  ,  , 1 ,  , 0  ,  ,1 4  2   4  We plot these five points and fill in the graph of the curve. We then extend the graph in either direction to obtain the graph shown below.

the five key points for y  sin x by A  1 .The five key points are   3  0, 0  ,  , 1 ,  , 0  ,  ,1 ,  , 0  4 2      4  We plot these five points and fill in the graph of the curve. We then extend the graph in either direction to obtain the graph shown below. y 2 3 , 1) ( , 0) ––– , 1) ( ––– ( 4 4 2

From the graph we can determine that the domain is all real numbers,  ,   and the

2 x

(0, 0)

range is  1,1 .

, 0) (–– 2

, 1) 2 (–– 4

From the graph we can determine that the domain is all real numbers,  ,   and the range is  1,1 . 40. Since cosine is an even function, we can plot the equivalent form y  cos  2 x  .

Comparing y  cos  2 x  to y  A cos  x  , we find A  1 and   2 . Therefore, the amplitude 2   . Because the is 1  1 and the period is 2 amplitude is 1, the graph of y  cos  2 x  will lie between 1 and 1 on the y-axis. Because the period is  , one cycle will begin at x  0 and end at x   . We divide the interval  0,   into four subintervals, each of length

 4

by finding

the following values:   3 , and  0, , , 4 2 4 These values of x determine the x-coordinates of the five key points on the graph. To obtain the ycoordinates of the five key points for y  cos  2 x  , we multiply the y-coordinates of the five key points for y  cos x by A  1 .The

1  41. Comparing y  2sin  x  to y  A sin  x  , 2  1 we find A  2 and   . Therefore, the 2 2  4 . amplitude is 2  2 and the period is 1/ 2 Because the amplitude is 2, the graph of 1  y  2sin  x  will lie between 2 and 2 on the 2  y-axis. Because the period is 4 , one cycle will begin at x  0 and end at x  4 . We divide the interval  0, 4  into four subintervals, each

of length

4   by finding the following 4

values: 0,  , 2 , 3 , and 4 These values of x determine the x-coordinates of the five key points on the graph. To obtain the ycoordinates of the five key points for 1  y  2sin  x  , we multiply the y-coordinates of 2  the five key points for y  sin x by A  2 . The five key points are  0, 0  ,  , 2  ,  2 , 0  ,  3 , 2  ,  4 , 0  We plot these five points and fill in the graph of the curve. We then extend the graph in either

629 Copyright © 2020 Pearson Education, Inc.


Chapter 6: Trigonometric Functions

direction to obtain the graph shown below.

direction to obtain the graph shown below. y ( 2 , 0) (0, 2) (8 , 2) 2 ( 8 , 2) (2 , 0) (6 , 0) x 8 4 4 8 ( 4 , 2)

From the graph we can determine that the domain is all real numbers,  ,   and the range is  2, 2 . 1  42. Comparing y  2 cos  x  to y  A cos  x  , 4  1 we find A  2 and   . Therefore, the 4 2  8 . amplitude is 2  2 and the period is 1/ 4 Because the amplitude is 2, the graph of 1  y  2 cos  x  will lie between 2 and 2 on 4  the y-axis. Because the period is 8 , one cycle will begin at x  0 and end at x  8 . We divide the interval  0,8  into four subintervals,

each of length

8  2 by finding the following 4

values: 0, 2 , 4 , 6 , and 8 These values of x determine the x-coordinates of the five key points on the graph. To obtain the ycoordinates of the five key points for 1  y  2 cos  x  , we multiply the y-coordinates 4  of the five key points for y  cos x by A  2 .The five key points are  0, 2  ,  2 , 0  ,  4 , 2  ,  6 , 0  , 8 , 2  We plot these five points and fill in the graph of the curve. We then extend the graph in either

2

(4 , 2)

From the graph we can determine that the domain is all real numbers,  ,   and the range is  2, 2 . 1 43. Comparing y   cos  2 x  to y  A cos  x  , 2 1 we find A   and   2 . Therefore, the 2 1 1 2  . amplitude is   and the period is 2 2 2 1 Because the amplitude is , the graph of 2 1 1 1 y   cos  2 x  will lie between  and on 2 2 2 the y-axis. Because the period is  , one cycle will begin at x  0 and end at x   . We divide the interval  0,   into four subintervals, each of

length

4

by finding the following values:

 3 , , , and  4 2 4 These values of x determine the x-coordinates of the five key points on the graph. To obtain the ycoordinates of the five key points for 1 y   cos  2 x  , we multiply the y-coordinates 2 of the five key points for y  cos x by 0,

1 A   .The five key points are 2 1       1   3   1   0,   ,  , 0  ,  ,  ,  , 0  ,   ,   2  4   2 2  4   2  We plot these five points and fill in the graph of the curve. We then extend the graph in either

630 Copyright © 2020 Pearson Education, Inc.


Section 6.4: Graphs of the Sine and Cosine Functions

direction to obtain the graph shown below.

direction to obtain the graph shown below. y 5

(12 , 4) (0, 0)

16

x (16 , 0)

8

(8 , 0) 5

From the graph we can determine that the domain is all real numbers,  ,   and the  1 1 range is   ,  .  2 2

From the graph we can determine that the domain is all real numbers,  ,   and the range is  4, 4 . 45. We begin by considering y  2sin x . Comparing y  2sin x to y  A sin  x  , we find A  2

1  44. Comparing y  4sin  x  to y  A sin  x  , 8  1 we find A  4 and   . Therefore, the 8 amplitude is 4  4 and the period is

2  16 . Because the amplitude is 4, the 1/ 8 1  graph of y  4sin  x  will lie between 4 8  and 4 on the y-axis. Because the period is 16 , one cycle will begin at x  0 and end at x  16 . We divide the interval  0,16  into four subintervals, each of length

(4 , 4)

16  4 by 4

finding the following values: 0, 4 , 8 , 12 , and 16 These values of x determine the x-coordinates of the five key points on the graph. To obtain the ycoordinates of the five key points for 1  y  4sin  x  , we multiply the y-coordinates 8  of the five key points for y  sin x by A  4 . The five key points are  0, 0  ,  4 , 4  , 8 , 0  , 12 , 4  , 16 , 0 

and   1 . Therefore, the amplitude is 2  2 2  2 . Because the 1 amplitude is 2, the graph of y  2sin x will lie between 2 and 2 on the y-axis. Because the period is 2 , one cycle will begin at x  0 and end at x  2 . We divide the interval  0, 2 

and the period is

into four subintervals, each of length

2   by 4 2

finding the following values:  3 , and 2 0, ,  , 2 2 These values of x determine the x-coordinates of the five key points on the graph. To obtain the ycoordinates of the five key points for y  2sin x  3 , we multiply the y-coordinates of the five key points for y  sin x by A  2 and then add 3 units. Thus, the graph of y  2sin x  3 will lie between 1 and 5 on the yaxis. The five key points are  3  0, 3 ,  ,5  ,  ,3 ,  ,1 ,  2 ,3 2   2  We plot these five points and fill in the graph of the curve. We then extend the graph in either

We plot these five points and fill in the graph of the curve. We then extend the graph in either

631 Copyright © 2020 Pearson Education, Inc.


Chapter 6: Trigonometric Functions

direction to obtain the graph shown below.

From the graph we can determine that the domain is all real numbers,  ,   and the range is 1,5 .

direction to obtain the graph shown below.

From the graph we can determine that the domain is all real numbers,  ,   and the range is  1,5 .

46. We begin by considering y  3cos x . Comparing y  3cos x to y  A cos  x  , we find A  3

47. We begin by considering y  5cos  x  .

and   1 . Therefore, the amplitude is 3  3

Comparing y  5cos  x  to y  A cos  x  , we

2  2 . Because the 1 amplitude is 3, the graph of y  3cos x will lie between 3 and 3 on the y-axis. Because the period is 2 , one cycle will begin at x  0 and end at x  2 . We divide the interval  0, 2 

find A  5 and    . Therefore, the amplitude 2  2 . Because the is 5  5 and the period is

and the period is

into four subintervals, each of length

2   by 4 2

finding the following values:  3 , and 2 0, ,  , 2 2 These values of x determine the x-coordinates of the five key points on the graph. To obtain the ycoordinates of the five key points for y  3cos x  2 , we multiply the y-coordinates of the five key points for y  cos x by A  3 and then add 2 units. Thus, the graph of y  3cos x  2 will lie between 1 and 5 on the y-axis. The five key points are  3  0, 5 ,  , 2  ,  , 1 ,  , 2  ,  2 , 5 2   2  We plot these five points and fill in the graph of the curve. We then extend the graph in either

amplitude is 5, the graph of y  5cos  x  will lie between 5 and 5 on the y-axis. Because the period is 2 , one cycle will begin at x  0 and end at x  2 . We divide the interval  0, 2 into four subintervals, each of length

2 1  by 4 2

finding the following values: 1 3 0, , 1, , and 2 2 2 These values of x determine the x-coordinates of the five key points on the graph. To obtain the ycoordinates of the five key points for y  5cos  x   3 , we multiply the y-coordinates of the five key points for y  cos x by A  5 and then subtract 3 units. Thus, the graph of y  5cos  x   3 will lie between 8 and 2 on the y-axis. The five key points are 1 3  0, 2  ,  , 3  , 1, 8  ,  , 3  ,  2, 2  2   2  We plot these five points and fill in the graph of the curve. We then extend the graph in either

632 Copyright © 2020 Pearson Education, Inc.


Section 6.4: Graphs of the Sine and Cosine Functions

direction to obtain the graph shown below. y 3 (0, 2) 2

3 ( –– , 3) 2

direction to obtain the graph shown below.

(2, 2) 2 x 3 (–– , 3) 2 1 (–– , 3) 2

(1, 8)

9

From the graph we can determine that the domain is all real numbers,  ,   and the From the graph we can determine that the domain is all real numbers,  ,   and the

range is  8, 2 .   48. We begin by considering y  4sin  x  . 2    Comparing y  4sin  x  to y  A sin  x  , 2 

we find A  4 and  

 2

. Therefore, the

2  4.  /2 Because the amplitude is 4, the graph of   y  4sin  x  will lie between 4 and 4 on 2  the y-axis. Because the period is 4 , one cycle will begin at x  0 and end at x  4 . We divide the interval  0, 4 into four subintervals, each of amplitude is 4  4 and the period is

4  1 by finding the following values: 4 0, 1, 2, 3, and 4 These values of x determine the x-coordinates of the five key points on the graph. To obtain the ycoordinates of the five key points for   y  4sin  x   2 , we multiply the y2  coordinates of the five key points for y  sin x by A  4 and then subtract 2 units. Thus, the   graph of y  4sin  x   2 will lie between 6 2  and 2 on the y-axis. The five key points are  0, 2  , 1, 2  ,  2, 2  ,  3, 6  ,  4, 2 

length

We plot these five points and fill in the graph of the curve. We then extend the graph in either

range is  6, 2 .   49. We begin by considering y  6sin  x  . 3    Comparing y  6sin  x  to y  A sin  x  , 3 

we find A  6 and  

 3

. Therefore, the

2  6.  /3 Because the amplitude is 6, the graph of   y  6sin  x  will lie between 6 and 6 on the 3  y-axis. Because the period is 6, one cycle will begin at x  0 and end at x  6 . We divide the interval  0, 6 into four subintervals, each of

amplitude is 6  6 and the period is

6 3  by finding the following values: 4 2 3 9 0, , 3, , and 6 2 2 These values of x determine the x-coordinates of the five key points on the graph. To obtain the ycoordinates of the five key points for   y  6sin  x   4 , we multiply the y3  coordinates of the five key points for y  sin x by A  6 and then add 4 units. Thus, the graph   of y  6sin  x   4 will lie between 2 and 3  10 on the y-axis. The five key points are

length

633 Copyright © 2020 Pearson Education, Inc.


Chapter 6: Trigonometric Functions

 0, 4  ,  , 2  ,  3, 4  ,  ,10  ,  6, 4 

3 9 2   2  We plot these five points and fill in the graph of the curve. We then extend the graph in either direction to obtain the graph shown below.

From the graph we can determine that the domain is all real numbers,  ,   and the range is  2,10 .   50. We begin by considering y  3cos  x  . 4    Comparing y  3cos  x  to y  A cos  x  , 4 

we find A  3 and  

 4

. Therefore, the

2 8. amplitude is 3  3 and the period is  /4 Because the amplitude is 3, the graph of   y  3cos  x  will lie between 3 and 3 on 4  the y-axis. Because the period is 8, one cycle will begin at x  0 and end at x  8 . We divide the interval  0,8 into four subintervals, each of 8 length  2 by finding the following values: 4 0, 2, 4, 6, and 8 These values of x determine the x-coordinates of the five key points on the graph. To obtain the ycoordinates of the five key points for   y  3cos  x   2 , we multiply the y4  coordinates of the five key points for y  cos x by A  3 and then add 2 units. Thus, the graph

  of y  3cos  x   2 will lie between 1 and 4  5 on the y-axis. The five key points are  0, 1 ,  2, 2  ,  4,5 ,  6, 2  , 8, 1

We plot these five points and fill in the graph of the curve. We then extend the graph in either direction to obtain the graph shown below.

From the graph we can determine that the domain is all real numbers,  ,   and the range is  1,5 . 51. y  5  3sin  2 x   3sin  2 x   5

We begin by considering y  3sin  2 x  . Comparing y  3sin  2 x  to y  A sin  x  , we find A  3 and   2 . Therefore, the 2  . amplitude is 3  3 and the period is 2 Because the amplitude is 3, the graph of y  3sin  2 x  will lie between 3 and 3 on the y-axis. Because the period is  , one cycle will begin at x  0 and end at x   . We divide the interval  0,   into four subintervals, each of length

4

by finding the following values:

 3 , , , and  4 2 4 These values of x determine the x-coordinates of the five key points on the graph. To obtain the ycoordinates of the five key points for y  3sin  2 x   5 , we multiply the y-

0,

coordinates of the five key points for y  sin x by A  3 and then add 5 units. Thus, the graph of y  3sin  2 x   5 will lie between 2 and 8

634 Copyright © 2020 Pearson Education, Inc.


Section 6.4: Graphs of the Sine and Cosine Functions

on the y-axis. The five key points are   3  0,5 ,  , 2  ,  ,5  ,  ,8  ,  ,5 4  2   4  We plot these five points and fill in the graph of the curve. We then extend the graph in either direction to obtain the graph shown below. y 

0,5

 3   4 ,8   

coordinates of the five key points for y  cos x by A  4 and then adding 2 units. Thus, the graph of y  4 cos  3x   2 will lie between 2 and 6 on the y-axis. The five key points are    2  0, 2  ,  , 2  ,  , 6  ,  , 2  ,  , 2  6 3 2        3  We plot these five points and fill in the graph of the curve. We then extend the graph in either direction to obtain the graph shown below.

   ,5  2 

 ,5     ,2 4 



From the graph we can determine that the domain is all real numbers,  ,   and the range is  2,8 . 52. y  2  4 cos  3x   4 cos  3x   2

We begin by considering y  4 cos  3 x  . Comparing y  4 cos  3 x  to y  A cos  x  , we find A  4 and   3 . Therefore, the 2 amplitude is 4  4 and the period is . 3 Because the amplitude is 4, the graph of y  4 cos  3 x  will lie between 4 and 4 on 2 , one cycle 3 2 . We will begin at x  0 and end at x  3  2  divide the interval 0,  into four  3  2 / 3   by subintervals, each of length 4 6 finding the following values:    2 0, , , , and 6 3 2 3 These values of x determine the x-coordinates of the five key points on the graph. To obtain the ycoordinates of the five key points for y  4 cos  3x   2 , we multiply the ythe y-axis. Because the period is

From the graph we can determine that the domain is all real numbers,  ,   and the range is  2, 6 . 53. Since sine is an odd function, we can plot the 5  2  equivalent form y   sin  x . 3  3  5  2  x  to Comparing y   sin  3  3  5 2 y  A sin  x  , we find A   and   . 3 3 5 5 Therefore, the amplitude is   and the 3 3 2  3 . Because the amplitude is period is 2 / 3 5 5  2  , the graph of y   sin  x  will lie 3 3  3  5 5 and on the y-axis. Because the 3 3 period is 3 , one cycle will begin at x  0 and end at x  3 . We divide the interval  0,3 into

between 

four subintervals, each of length the following values:

635 Copyright © 2020 Pearson Education, Inc.

3 by finding 4


Chapter 6: Trigonometric Functions

3 3 9 , , , and 3 4 2 4 These values of x determine the x-coordinates of the five key points on the graph. To obtain the ycoordinates of the five key points for 5  2  y   sin  x  , we multiply the y3  3 

0,

coordinates of the five key points for y  sin x 5 by A   .The five key points are 3 3 5 3 9 5  0, 0  ,  ,   ,  , 0  ,  ,  ,  3, 0   4 3  2   4 3 We plot these five points and fill in the graph of the curve. We then extend the graph in either direction to obtain the graph shown below.

4 , one 3 4 cycle will begin at x  0 and end at x  . We 3  4 divide the interval 0,  into four subintervals,  3 4/3 1  by finding the following each of length 4 3 values: 1 2 4 0, , , 1 , and 3 3 3 These values of x determine the x-coordinates of the five key points on the graph. To obtain the ycoordinates of the five key points for 9  3  y  cos  x  , we multiply the y-coordinates 5  2 

on the y-axis. Because the period is

of the five key points for y  cos x by A 

From the graph we can determine that the domain is all real numbers,  ,   and the

9 . 5

9  3  x  will lie Thus, the graph of y  cos   5  2  9 9 between  and on the y-axis. The five key 5 5 points are  9 1  2 9 4 9  0,  ,  , 0  ,  ,   , 1, 0  ,  ,  5 3 3 5        3 5 We plot these five points and fill in the graph of the curve. We then extend the graph in either direction to obtain the graph shown below.

 5 5 range is   ,  .  3 3

54. Since cosine is an even function, we consider the 9  3  x  . Comparing equivalent form y  cos  5  2 

9  3  y  cos  x  to y  A cos  x  , we find 5  2  9 3 and   . Therefore, the amplitude is 5 2 2 4 9 9  . Because  and the period is 5 5 3 / 2 3 9 the amplitude is , the graph of 5 9 9 9  3  y  cos  x  will lie between  and 5 5 5  2  A

From the graph we can determine that the domain is all real numbers,  ,   and the  9 9 range is   ,  .  5 5

636 Copyright © 2020 Pearson Education, Inc.


Section 6.4: Graphs of the Sine and Cosine Functions

3   55. We begin by considering y   cos  x  . 2 4 

3   Comparing y   cos  x  to 2 4  3  y  A cos  x  , we find A   and   . 4 2 3 3 Therefore, the amplitude is   and the 2 2 2 3 period is  8 . Because the amplitude is ,  /4 2 3   the graph of y   cos  x  will lie between 2 4  3 3 and on the y-axis. Because the period is 2 2 8, one cycle will begin at x  0 and end at x  8 . We divide the interval  0,8 into four 

8  2 by finding the 4 following values: 0, 2, 4, 6, and 8 These values of x determine the x-coordinates of the five key points on the graph. To obtain the ycoordinates of the five key points for 3   1 y   cos  x   , we multiply the y2 4  2 coordinates of the five key points for y  cos x

subintervals, each of length

3 1 and then add unit. Thus, the 2 2 3   1 graph of y   cos  x   will lie between 2 4  2 1 and 2 on the y-axis. The five key points are 1 1  0, 1 ,  2,  ,  4, 2  ,  6,  , 8, 1 2    2 We plot these five points and fill in the graph of the curve. We then extend the graph in either direction to obtain the graph shown below.

by A  

y

( 4, 2)

2

8 4 ( 8, 1)

2

1 (2, –– ) 2 (4, 2) 1 (6, –– ) 2 x 4 8

From the graph we can determine that the domain is all real numbers,  ,   and the range is  1, 2 . 1   56. We begin by considering y   sin  x  . 2 8  1   Comparing y   sin  x  to y  A sin  x  , 2 8 

 1 and   . Therefore, the 8 2 1 1 amplitude is   and the period is 2 2 2 1  16 . Because the amplitude is , the  /8 2 1   1 graph of y   sin  x  will lie between  2 2 8  we find A  

1 on the y-axis. Because the period is 16, 2 one cycle will begin at x  0 and end at x  16 . We divide the interval  0,16 into four

and

subintervals, each of length

16  4 by finding 4

the following values: 0, 4, 8, 12, and 16 These values of x determine the x-coordinates of the five key points on the graph. To obtain the ycoordinates of the five key points for 1   3 y   sin  x   , we multiply the y2 8  2 coordinates of the five key points for y  sin x 1 3 and then add units. Thus, the 2 2 1   3 graph of y   sin  x   will lie between 2 8  2 1 and 2 on the y-axis. The five key points are  3  3  3  0,  ,  4,1 ,  8,  , 12, 2  , 16,   2  2  2 We plot these five points and fill in the graph of the curve. We then extend the graph in either direction to obtain the graph shown below.

by A  

(0, 1) (8, 1)

637 Copyright © 2020 Pearson Education, Inc.


Chapter 6: Trigonometric Functions

y 2.5

(12, 2)

( 4, 2) 3 (0, –– ) 2

3 (8, –– ) 2

(4, 1)

62. The graph is a sine graph with amplitude 4 and period 8π. 2 Find  : 8 

8  2 2 1   8 4

3 (16, –– ) 2

x 16 12 8 4 0.5

4

8 12 16

From the graph we can determine that the domain is all real numbers,  ,   and the range is 1, 2 .

1  The equation is: y  4sin  x  . 4 

63. The graph is a reflected cosine graph with amplitude 3 and period 4π. 2 Find  : 4 

2 2  2 57. A  3; T  ;   T  y  3sin(2 x) 58.

A  2; T  4;  

4  2 2 1   4 2

2 2 1   T 4 2

1  y  2sin  x  2 

59.

A  3; T  2;   y  3sin(x)

60.

y  4sin(2 x)

64. The graph is a reflected sine graph with amplitude 2 and period 4. 2 Find  : 4 

2 2   T 2

A  4; T  1;  

1  The equation is: y  3cos  x  . 2 

2 2   2 T 1

61. The graph is a cosine graph with amplitude 5 and period 8. 2 Find  : 8 

8  2 2    8 4   The equation is: y  5cos  x  . 4 

4  2 2    4 2   The equation is: y   2sin  x  . 2 

65. The graph is a sine graph with amplitude

period 1. Find  : 1 

2

   2

3 The equation is: y  sin  2 x  . 4

66. The graph is a reflected cosine graph with 5 amplitude and period 2. 2

638 Copyright © 2020 Pearson Education, Inc.

3 and 4


Section 6.4: Graphs of the Sine and Cosine Functions

Find  :

2

2

2  2 2   2 5 The equation is: y   cos  x  . 2

67. The graph is a reflected sine graph with 4 amplitude 1 and period . 3 4 2  Find  :  3 4  6 6 3   4 2 3  The equation is: y   sin  x  . 2  68. The graph is a reflected cosine graph with amplitude π and period 2π. 2 Find  : 2 

2  2 2 1  2 The equation is: y   cos x .

70. The graph is a reflected sine graph, shifted down 1 4 . 1 unit, with amplitude and period 2 3 4 2  Find  : 3  4  6 6 3   4 2 1 3  The equation is: y   sin  x   1 . 2 2  71. The graph is a sine graph with amplitude 3 and period 4. 2 Find  : 4 

4  2 2    4 2   The equation is: y  3sin  x  . 2 

72. The graph is a reflected cosine graph with amplitude 2 and period 2. 2 Find  : 2 

69. The graph is a reflected cosine graph, shifted up 3 1 unit, with amplitude 1 and period . 2 3 2  Find  : 2  3  4 4  3  4  x  1 . The equation is: y   cos   3 

2  2 2   2 The equation is: y   2 cos( x) .

73. The graph is a reflected cosine graph with 2 amplitude 4 and period . 3 2 2 Find  :   3 2  6 6 3  2 The equation is: y   4 cos  3 x  .

639 Copyright © 2020 Pearson Education, Inc.


Chapter 6: Trigonometric Functions 74. The graph is a sine graph with amplitude 4 and period π. 2 Find  :  

79.

 f  g  x   sin  4 x 

  2 2  2  The equation is: y  4sin  2 x  .

75.

f  / 2   f  0 

 /20

 /2

1 0 2    /2 

The average rate of change is

76.

f  / 2   f  0 

 /20

2

77.

 /20

cos  / 2   cos  0 

 /2 0 1 2    /2 

80.

2

2

1  x 2 

1 2

 g  f  x    cos x  

81.

 f  g  x   2  cos x   2 cos x

The average rate of change is 

4

1 cos x 2

.

  cos  2    cos(2  0) f  / 2   f (0)  2   /20  /2 cos( )  cos(0) 1  1    /2  /2 2 4  2   

 f  g  x   cos 

.

1   1  sin     sin   0  2 2 2    /2 sin  / 4   sin  0    /2 2 2 2 2 2      /2 2  

The average rate of change is

78.

.

The average rate of change is 

f  / 2   f  0 

 g  f  x   4  sin x   4sin x

sin  / 2   sin  0 

.

640 Copyright © 2020 Pearson Education, Inc.


Section 6.4: Graphs of the Sine and Cosine Functions

 g  f  x   cos  2 x 

82.

84.

 f  g  x   3  sin x   3sin x 85. y  sin x ,  2  x  2

 g  f  x   sin  3x 

86. y  cos x ,  2  x  2

83.

87. I  t   220sin(60 t ), t  0 2 1  second 60 30 Amplitude: A  220  220 amperes Period: T 

641 Copyright © 2020 Pearson Education, Inc.

2


Chapter 6: Trigonometric Functions 88. I (t )  120sin(30 t ), t  0 2 2 1 Period: T    second  30 15 Amplitude: A  120  120 amperes

curve that fits the opening is x  y  15sin  .  28  b. Since the shoulders are 7 feet wide and the road is 14 feet wide, the edges of the road correspond to x  7 and x  21 .  7     15 2  10.6 15sin    15sin    2  28  4

 21   3  15 2 15sin   10.6   15sin    28 2    4  The tunnel is approximately 10.6 feet high at the edge of the road.

V (t )

2

89. a.

P (t ) 

91. a.

R

V0 sin  2ft    R 2 2 V sin  2ft   0 R V0 2 sin 2  2ft   R

2

b. The magnitude is 20 and the vertical shift is 100 so the lowest the function will go is 20 + 100 = 80. This is the individual’s diastolic pressure.

b. The graph is the reflected cosine graph translated up a distance equivalent to the 1 , so   4 f . amplitude. The period is 2f

The amplitude is

90. a.

c.

Comparing the formulas: 1 sin 2  2ft   1  cos  4ft   2 Since the tunnel is in the shape of one-half a sine cycle, the width of the tunnel at its base is one-half the period. Thus, 2  T  2(28)  56 or   . 28  The tunnel has a maximum height of 15 feet so we have A  15 . Using the form y  A sin( x) , the equation for the sine

 2  6 The period is    . Therefore, the 7  3 7

heart beats once every 76 seconds. The heart rate in beats per minute would be 1 beat 60 sec   70 beats per min . 6 sec 1 min 7

1 V0 2 V0 2   . 2 R 2R

The equation is: V2 V2 P  t    0 cos  4ft   0 2R 2R 2 V  0 1  cos  4ft   2R c.

The magnitude is 20 and the vertical shift is 100 so the highest the function will go is 100 + 20 = 120. This is the individual’s systolic pressure.

92.

a.

The magnitude is 2.91 and the vertical shift is 2.97 so the highest the function will reach is 2.91+2.97 = 5.88. The height of the water at high tide is 5.88 ft.

b. The magnitude is 2.91 and the vertical shift is 2.97 so the lowest reaches will be 2.91 + 2.97 = 0.06. The height of the water at low tide is 0.06 ft. c.

The time between high and low tide would be half of the period. Thus the time between the tides would be: 2 2(149)   12.42 24 24 149 period 12.42   6.21 hrs. 2 2

period 

642 Copyright © 2020 Pearson Education, Inc.


Section 6.4: Graphs of the Sine and Cosine Functions 93. a.

The magnitude is 23.65 and the vertical shift is 51.75 so the highest the function reaches is 23.65 + 51.75 = 75.4. The highest average monthly temperature is 75.4 .

b. The magnitude is 23.65 and the vertical shift is 51.75 so the lowest the function reaches is 23.65 + 51.75 = 28.1. The lowest average monthly temperature is 28.1 . c.

2

The magnitude is 1.615 and the vertical shift is 12.135 so the highest the function reaches is 1.615 + 12.135 = 13.75. The longest day would have 13.75 hours of daylight.

c.

2

d.

97. a.

The amplitude is 100 and the vertical shift is 105 so the highest the wheel would go is 100 + 105 = 205 ft.

The period of the function is 2 period   100 sec . In 5 minutes (300  50 seconds) the wheel would make 3 revolutions.

39

1 rev 2 rad    rad/min 78 min 1 rad 39  rad 60 min   241.66 mph   r  50 mi  39 min 1 hr d  rt  (241.66 mph)(78 min) 

1 hr 60 min

1.8 mi 314.125 miles  1 gal x gal 1.8 x  314.125 x  174.53 gal

b. The lowest the seat would so is 100 + 105 = 5 ft. c.

 78 minutes

 314.125 miles

 365

365 period 365   182.5 days. 2 2

2



The time between the shortest and longest dayes would be half the period. Thus the time between the days would be: period 

The cosine function has a max and min or 1 and 1 respectively so the average of the cos function is 0. So the average of d (t )  50 cos( t 39) is 0. Adding 60 to the function will increase the average value by 60. So, d (t )  50 cos( t 39)  60 will have an average value of 60 miles.

b. The period is P 

b. The magnitude is 1.615 and the vertical shift is 12.135 so the highest the function reaches is 1.615 + 12.135 = 10.52. The shortest day would have 10.52 hours of daylight.

95. a.

96. a.

 12

6 period 12   6 mo. 2 2

c.

d 200 ft 1 mile 60sec 60 min     t 100sec 5280 ft 1min 1 hour  4.3 mph

v

The time between the high and low temperatures would be half the period. Thus the time between the temperatures would be: period 

94. a.

d. The radius of the wheel is 100 so d  s  r  100(2 )  200

2 ; 23 2   ; Emotional potential:   28 14 2 Intellectual potential:   33

Physical potential:  



b.

643 Copyright © 2020 Pearson Education, Inc.






Chapter 6: Trigonometric Functions

 2  #1: P  t   50sin  t   50  23    # 2 : P  t   50sin  t   50  14   2  #3 : P  t   50sin  t   50  33 

c.

No. 

d.









  Physical potential peaks at 15 days after the 20th birthday, with minimums at the 3rd and 26th days. Emotional potential is 50% at the 17th day, with a maximum at the 10th day and a minimum at the 24th day. Intellectual potential starts fairly high, drops to a minimum at the 13th day, and rises to a maximum at the 29th day.

98. The graph of y  A sin( Bx  C )  D oscillates

between  A  D and A  D . So to lie below the x-axis completely, A  D  0 or D   A . 99. The y-intercept: A cos( BC )  A x-intercepts: 0  A cos  B( x  C )   A 0  cos  B ( x  C )   1 1  cos  B ( x  C ) 

So, B( x  C )  (2k  1) , k an integer. (2k  1) x C  B (2k  1) x C B The intercepts are (0, A cos( BC )  A) and

100 – 104. Answers will vary.

f ( x  h)  f ( x ) h ( x  h) 2  5( x  h)  1  ( x 2  5 x  1)  h 2 2 ( x  2 xh  h )  (5 x  5h)  1  x 2  5 x  1  h 2 2 x  2 xh  h  5 x  5h  1  x 2  5 x  1  h 2 xh  h 2  5h h(2 x  h  5)    2x  h  5 h h

106. We need to use completing the square to put the function in the form f ( x )  a ( x  h) 2  k f ( x)  3 x 2  12 x  7

 3( x 2  4 x)  7   144    144   3  x 2  4 x    7  3    4( 3)    4( 3)   2

 3( x 2  4 x  4)  7  12  3( x 2  4 x  4)  5  3( x  2) 2  5 So the vertex is (2,5) .

107. The y-intercept is: y  3 0  2 1

y  6 1  5

 0,5 The x-interecpts are: 0  3 x  2 1 1  x2 3 1 1  x  2 or   x  2 3 3 5 7 x or x   3 3 5 7       , 0 ,   , 0 3 3 1 3 x2 

1  cos  B ( x  C ) 

 (2k  1)   C , 0  , k an integer.  B  

105.

108. 3x  2(5 x  16)  3 x  4(8  x) 3 x  10 x  32  3 x  32  4 x 8 x  64 x  8

The solution set is:  8 .

644 Copyright © 2020 Pearson Education, Inc.

2


Section 6.5: Graphs of the Tangent, Cotangent, Cosecant, and Secant Functions

 0.04  109. 2 P  P 1   4    0.04  2  1   4  

x  3  ( x  4)( x  3)

4t

x  3  x 2  x  12 0  x2  2 x  9 a  1, b  2, c  9

4t

4t

 0.08  ln 2  ln  1   12    0.04  ln 2  4t ln  1   4   ln 2 t  17.4  0.04  4 ln 1   4   It will take about 17.4 years to double.

110. e3 x  7 3x  ln 7 ln 7 x  0.649 3

(2)  (2) 2  4(1)(9) 2(1) 2  40 2  2 10   1  10 2 2

But 1  10 would result is taking a logarithm of a negative expression and thus cannot be used so the solution set is 1  10 .

Section 6.5

111. Dividing:

1. x  4

2x  7 2 x 2  4 x  3 4 x3 +6 x 2  3 x  1

 4 x3  8 x 2  6 x

2. True

14 x  9 x  1  14 x 2  28 x  21 2

G ( x)  2 x  7 

x

19 x  20 19 x  20

3. origin; x = odd multiples of

 2

4. y-axis; x = odd multiples of

 2

2 x2  4 x  3 Thus, the oblique asymptote is y  2 x  7 .

5. b

19 19   . Since the 2(6) 12 graph is concave up the graph is decreasing on  19    12 ,   .  

7. The y-intercept of y  tan x is 0.

112. The vertex occurs at 

6. True

8. y  cot x has no y-intercept. 9. The y-intercept of y  sec x is 1. 10. y  csc x has no y-intercept.

4  113.  , 2   ,   3 

114. log( x  3)  log( x  3)  log( x  4)  x3 log    log( x  4)  x3 x3  x4 x3 x  3  ( x  4)( x  3)

11. sec x  1 when x   2, 0, 2; sec x  1 when x  ,  3  , ; 2 2  3 csc x  1 when x   , 2 2

12. csc x  1 when x  

645 Copyright © 2020 Pearson Education, Inc.


Chapter 6: Trigonometric Functions 13. y  sec x has vertical asymptotes when x

3   3 , , , . 2 2 2 2

19. y  4 cot x ; The graph of y  cot x is stretched vertically by a factor of 4.

14. y  csc x has vertical asymptotes when x   2,  , 0, , 2 . 15. y  tan x has vertical asymptotes when x

3   3 , , , . 2 2 2 2

16. y  cot x has vertical asymptotes when x   2,  , 0, , 2 .

The domain is  x x  k , k is an integer . The range is the set of all real number or (, ) .

17. y  3 tan x ; The graph of y  tan x is stretched vertically by a factor of 3. 20. y  3cot x ; The graph of y  cot x is stretched vertically by a factor of 3 and reflected about the x-axis.

k   , k is an odd integer  . The domain is  x x  2   The range is the set of all real number or (, ) .

18. y  2 tan x ; The graph of y  tan x is stretched vertically by a factor of 2 and reflected about the x-axis.

The domain is  x x  k , k is an integer . The range is the set of all real number or (, ) .

  21. y  tan  x  ; The graph of y  tan x is 2  2 horizontally compressed by a factor of .

k   The domain is  x x  , k is an odd integer  . 2   The range is the set of all real number or (, ) .

The domain is  x x does not equal an odd integer . The range is the set of all real number or (, ) .

646 Copyright © 2020 Pearson Education, Inc.


Section 6.5: Graphs of the Tangent, Cotangent, Cosecant, and Secant Functions 25. y  2sec x ; The graph of y  sec x is stretched vertically by a factor of 2.

1  22. y  tan  x  ; The graph of y  tan x is 2  horizontally stretched by a factor of 2.

k   The domain is  x x  , k is an odd integer  . 2  

The domain is  x x  k , k is an odd integer .

The range is  y y  2 or y  2 .

The range is the set of all real number or (, ) .

1 csc x ; The graph of y  csc x is vertically 2 1 compressed by a factor of . 2

1  23. y  cot  x  ; The graph of y  cot x is 4  horizontally stretched by a factor of 4.

26. y 

The domain is  x x  4k , k is an integer . The

The domain is  x x  k , k is an integer . The

range is the set of all real number or (, ) .

 1 1 range is  y y   or y   . 2 2 

  24. y  cot  x  ; The graph of y  cot x is 4  4 horizontally stretched by a factor of .

27. y  3csc x ; The graph of y  csc x is vertically stretched by a factor of 3 and reflected about the x-axis.

The domain is  x x  4k , k is an integer . The

The domain is  x x  k , k is an integer . The

range is the set of all real number or (, ) .

range is  y y  3 or y  3 . 647

Copyright © 2020 Pearson Education, Inc.


Chapter 6: Trigonometric Functions 28. y  4sec x ; The graph of y  sec x is vertically stretched by a factor of 4 and reflected about the x-axis.

k   The domain is  x x  , k is an odd integer  . 2  

The range is  y y  4 or y  4 .

1  29. y  4sec  x  ; The graph of y  sec x is 2  horizontally stretched by a factor of 2 and vertically stretched by a factor of 4.

The domain is  x x  k , k is an odd integer . The range is  y y  4 or y  4 . 1 csc  2 x  ; The graph of y  csc x is 2 1 horizontally compressed by a factor of and 2 1 vertically compressed by a factor of . 2

30. y 

k   The domain is  x x  , k is an integer  . The 2    1 1 range is  y y   or y   . 2 2 

31. y  2 csc  x  ; The graph of y  csc x is

horizontally compressed by a factor of

1

,

vertically stretched by a factor of 2, and reflected about the x-axis.

The domain is  x x does not equal an integer . The range is  y y  2 or y  2 .   32. y  3sec  x  ; The graph of y  sec x is 2  2 horizontally compressed by a factor of ,

vertically stretched by a factor of 3, and reflected about the x-axis.

648 Copyright © 2020 Pearson Education, Inc.


Section 6.5: Graphs of the Tangent, Cotangent, Cosecant, and Secant Functions

The domain is  x x  k , k is an integer . The range is the set of all real number or (, ) .  2  35. y  sec  x   2 ; The graph of y  sec x is  3  3 horizontally compressed by a factor of and 2 shifted up 2 units. The domain is  x x does not equal an odd integer . The range is  y y  3 or y  3 . 1  33. y  tan  x   1 ; The graph of y  tan x is 4  horizontally stretched by a factor of 4 and shifted up 1 unit.

 3  The domain is  x x  k , k is an odd integer  . 4  

The range is  y y  1 or y  3 .

 3  36. y  csc  x  ; The graph of y  csc x is  2  2 horizontally compressed by a factor of . 3 The domain is  x x  2k , k is an odd integer . The range is the set of all real number or (, ) . 34. y  2 cot x  1 ; The graph of y  cot x is vertically stretched by a factor of 2 and shifted down 1 unit.

 2  The domain is  x x  k , k is an integer  . The 3  

range is  y y  1 or y  1 .

649

Copyright © 2020 Pearson Education, Inc.


Chapter 6: Trigonometric Functions

1 1  tan  x   2 ; The graph of y  tan x is 2 4  horizontally stretched by a factor of 4, vertically 1 compressed by a factor of , and shifted down 2 2 units.

37. y 

1  39. y  2 csc  x   1 ; The graph of y  csc x is 3  horizontally stretched by a factor of 3, vertically stretched by a factor of 2, and shifted down 1 unit.

The domain is  x x  3 k , k is an integer . The domain is  x x  2 k , k is an odd integer . The range is the set of all real number or (, ) . 1  38. y  3cot  x   2 ; The graph of y  cot x is 2  horizontally stretched by a factor of 2, vertically stretched by a factor of 3, and shifted down 2 units.

The range is  y y  3 or y  1 . 1  40. y  3sec  x   1 ; The graph of y  sec x is 4  horizontally stretched by a factor of 4, vertically stretched by a factor of 3, and shifted up 1 unit.

The domain is  x x  2 k , k is an odd integer . The range is  y y  2 or y  4 . The domain is  x x  2 k , k is an integer . The range is the set of all real number or (, ) .

650 Copyright © 2020 Pearson Education, Inc.


Section 6.5: Graphs of the Tangent, Cotangent, Cosecant, and Secant Functions   3 f    f  0 0  tan / 6 tan 0      6   41.   3   /6  /6 0 6 3 6 2 3     3  2 3 The average rate of change is .

45.

 f  g  x   tan  4 x 

42.

  2 3 f    f  0 1 sec  / 6   sec  0  6   3   /6  /6 0 6 2 3 3 6 2 3 2 3      3

The average rate of change is

2 3 2 3

.

 g  f  x   4  tan x   4 tan x

  f    f  0 tan  2   / 6   tan  2  0  6  43.   /6 0 6 3 0 6 3    /6  6 3 . The average rate of change is

46.

 f  g  x   2sec 

  f    f  0 sec  2   / 6   sec  2  0  6 44.    /6 0 6 2 1 6    /6  6 The average rate of change is .

651

Copyright © 2020 Pearson Education, Inc.

1  x 2 


Chapter 6: Trigonometric Functions

 g  f  x   2 csc 

1  x 2 

1 2

 g  f  x    2sec x   sec x

47.

 f  g  x   2  cot x   2 cot x 49.

 g  f  x   cot  2 x 

50.

48.

1 2

 f  g  x    2 csc x   csc x

51. a.

Consider the length of the line segment in two sections, x, the portion across the hall that is 3 feet wide and y, the portion across that hall that is 4 feet wide. Then, 3 4 and sin   cos   x y 3 4 x y cos  sin 

652 Copyright © 2020 Pearson Education, Inc.


Section 6.5: Graphs of the Tangent, Cotangent, Cosecant, and Secant Functions

of light being cast on the wall changes from one side of the beacon to the other.

Thus, L  x y  b. Let Y1  

c.

3 4   3sec   4 csc  . cos  sin 

c.

3 4  . cos x sin x



d.

2

Use MINIMUM to find the least value: 



e.

2

L is least when   0.83 .

d.

L

3 4   9.86 feet . cos  0.83 sin  0.83

Note that rounding up will result in a ladder that won’t fit around the corner. Answers will vary. 52. a.

b.

t

d  t   10 tan( t )

0 0.1 0.2 0.3 0.4

0 3.2492 7.2654 13.764 30.777

d (0.1)  d (0) 3.2492  0   32.492 0.1  0 0.1  0 d (0.2)  d (0.1) 7.2654  3.2492   40.162 0.2  0.1 0.2  0.1 d (0.3)  d (0.2) 13.764  7.2654   64.986 0.3  0.2 0.3  0.2 d (0.4)  d (0.3) 30.777  13.764   170.13 0.4  0.3 0.4  0.3

The first differences represent the average rate of change of the beam of light against the wall, measured in feet per second. For example, between t  0 seconds and t  0.1 seconds, the average rate of change of the beam of light against the wall is 32.492 feet per second.

53.

d  t   10 tan( t )

d  t   10 tan( t ) is undefined at t 

1 and 2

3 , or in general at 2  k  k is an odd integer  . At these t   2  instances, the length of the beam of light approaches infinity. It is at these instances in the rotation of the beacon when the beam t

Yes, the two functions are equivalent. 653

Copyright © 2020 Pearson Education, Inc.


Chapter 6: Trigonometric Functions 54. We need tan x  0 so the angle x needs to be in Quadrant I or Quadrant III. The domain is 2k  1    , k an integer  . The range  x | k  x  2   is the set of all real numbers. The graph of y  tan x has vertical asymptotes when cos x  0 , so f ( x)  log(tan x) will have these

asymptotes at every integer multiple of is, at x 

k , where k an integer . 2

 2

6 Time must be positive, so disregard t   . 5 Hazel takes 4 hours to complete the job alone. Gwyneth 4 + 2 = 6 hours to complete the job alone.

2

32( x 1)  3x  5

. That

2( x  1)  x 2  5 2 x  2  x2  5 x2  2 x  3  0

55. We need sin  0 or x  k , so the domain is  x | x  k , k an integer . Since 0  sin x  1 ,

( x  3)( x  1)  0

So x  3 or x  1 . The solution set is:  3, 1 .

we have ln sin x  0 so the range is

 y | y  0 or  , 0 . The function

2

9 x 1  3x  5

58.

59. The slope is

f ( x)  ln sin x will have vertical asymptotes at

1 and the y-intercept is (0, 3) . 4

where sin  0 . That is, at x  k , where k an integer . 56. We use the difference in cubes formula: 125 p 3  8q 6  (5 p)3  (2q 2 )3  (5 p  2q 2 )(25 p 2  10 pq 2  4q 4 )

57. Let t represent the time it takes Hazel to complete the paint job alone. Then t  2 represents the time it takes Gwyneth to complete the paint job alone. Time to do job Part of job done in one hour 1 Hazel t t 1 Gwyneth t2 t 2 1 Together 2.4 2.4 1 1 1   t t  2 2.4 24(t  2)  24t  10 t (t  2)

60. The log function must be positive so we need x4 0. x x4 f ( x)  x The zeros and values where f is undefined are x  0 and x  4 . Interval Number Chosen Value of f

(0, 4)

(4, )

2

1

5

3

3

0.2

Conclusion Positive Negative Positive

24t  48  24t  10t 2  20t

The domain is  x x  0 or x  4  or,

0  10t 2  28t  48 0  5t 2  14t  24 0  (t  4)(5t  6) t  4  0 or 5t  6  0 6 t  4 or t 5

(, 0)

using interval notation,  , 0    4,   . 61.

3 1 4 3 2 g (4)  3(4)  7  5 f (3) 

654 Copyright © 2020 Pearson Education, Inc.


Section 6.6: Phase Shift; Sinusoidal Curve Fitting

62.

 

x 2  3x  c 2  3c f ( x )  f (c )  xc xc

3. y  4sin(2 x  )

 x  c    3x  3c   2

2

63. The y-intercept occurs when x = 0:

Period:

T

2

2  2

 4 4 Key points:     3   5   3   , 0  ,  , 4  ,  , 0  ,  , 4  ,  , 0   4   2  2   4 

2(0) 2  0  6 6   2 03 3

The x-intercept occurs when y = 0: 2 x 2  x  6  (2 x  3)( x  2)  0 2 x  3  0 or x  2  0 x

A  4 4

   Phase Shift:   2 Interval defining one cycle:      3   ,   T    2 , 2      Subinterval width: T 

xc ( x  c)( x  c)  3( x  c)  xc ( x  c)[ x  c  3]   xc3 xc

y

Amplitude:

3 or x  2 2

3  The intercepts are:  0, 2  ,  ,0  ,  2, 0  . 2 

64.

x 2  2 x  26  ( x 2  2 x  1)  26  1  ( x  1) 2  25

65. The argument of 4 5 x  2  3 cannot be negative solve 5 x  2  0 to find the domain.

4. y  3sin(3 x  )

5x  2  0 5x  2 x

Amplitude:

A  3 3

Period:

T

2

2 3

   Phase Shift:   3 Interval defining one cycle:       ,   T    3 ,      Subinterval width: T 2 / 3    4 4 6

2 5

2  The domain is  ,   . 5 

Section 6.6 1. phase shift 2. False

655

Copyright © 2020 Pearson Education, Inc.


Chapter 6: Trigonometric Functions

Key points:        2   5  , 0  ,  , 3  ,  , 0   , 0  ,  ,3  ,  3 2 3 6        

  5. y  2 cos  3 x   2  Amplitude: A  2  2

2 3       2  Phase Shift:    3 6 Interval defining one cycle:        ,   T    6 , 2      Subinterval width: T 2 / 3    4 4 6 Key points:            , 2  ,  0, 0  ,  , 2  ,  , 0  ,  , 2   6  6  3  2  Period:

T

2

6. y  3cos  2 x    Amplitude:

A  3 3

2  2    Phase Shift:   2  2 Interval defining one cycle:        ,   T    2 , 2      Subinterval width: T   4 4 Key points:             ,3  ,   , 0  ,  0, 3 ,  , 0  ,  ,3   2   4  4  2  Period:

T

2

  7. y  3sin  2 x   2  Amplitude: A   3  3 Period:

T

2

 

2  2

  Phase Shift:  2  2 4 

Interval defining one cycle:      3    ,   T    4 , 4      Subinterval width: T   4 4 Key points:           3    , 0  ,  0, 3 ,  , 0  ,  ,3  ,  , 0   4  4  2   4 

656 Copyright © 2020 Pearson Education, Inc.


Section 6.6: Phase Shift; Sinusoidal Curve Fitting

T 2 1   4 4 2 Key points:  2  1 2   2    , 5  ,   , 1 , 1  , 5  , 2          2 3 2      , 9  ,  2  , 5   2    

  8. y   2 cos  2 x   2  Amplitude: A   2  2 Period:

T

2

2  2

 2  Phase Shift:    2 4 Interval defining one cycle:      5   ,   T    4 , 4      Subinterval width: T   4 4 Key points:       3   5   , 2  ,  , 0  ,  , 2  ,  , 0  ,  , 2  4  2   4   4 

10. y  2 cos(2x  4)  4 Amplitude:

2 1  2 2  4 Phase Shift:     2 Interval defining one cycle: 2     2   ,   T      ,1        T 1 Subinterval width:  4 4 Key points:  2  1 2  1 2  3 2    ,6 ,   , 4 ,   , 2 ,   , 4 ,    4   2   4   Period:

 2  1  , 6     9. y  4sin(x  2)  5 Amplitude:

A  4 4

2 2   2  2 Phase Shift:      Interval defining one cycle: 2     2   ,   T     , 2        Subinterval width: Period:

T

2

A  2 2

657

Copyright © 2020 Pearson Education, Inc.

T

2


Chapter 6: Trigonometric Functions 11. y  3cos(x  2)  5 Amplitude:

A  3 3

Period:

T

2

2  3 2     , 1 , 1  ,1 4      

2 2 

  2 Phase Shift:    Interval defining one cycle: 2    2  ,   T    , 2        Subinterval width:

T 2 1   4 4 2 Key points: 2  3 2   2  1 2    ,8  ,   ,5  , 1  , 2  ,   ,5  , 2          2  

2    2  ,8    

      13. y  3sin   2 x    3sin    2 x    2 2         3sin  2 x   2  Amplitude:

A  3 3

Period:

T

2

2  2

 2    Phase Shift:  2 4

12. y  2 cos(2x  4)  1 Amplitude:

A  2 2

2 1 2 4 2  Phase Shift:    2  Interval defining one cycle: 2    2   ,   T     ,1        Subinterval width: T 1  4 4 Key points:  2  1 2  1 2   ,1 ,   , 1 ,   , 3  , 4 2          Period:

T

2

Interval defining one cycle:      5   ,   T    4 , 4      Subinterval width: T   4 4 Key points:        3   5   , 0  ,  ,3  ,  , 0  ,  , 3 ,  , 0  4 4 2  4       

658 Copyright © 2020 Pearson Education, Inc.


Section 6.6: Phase Shift; Sinusoidal Curve Fitting

      14. y  3cos   2 x    3cos    2 x    2 2         3cos  2 x   2  Amplitude:

A  3  3

Period:

T

2

2  2

 2  Phase Shift:    2 4

1 cot  2 x    2 Begin with the graph of y  cot x and apply the following transformations:

16. y 

Interval defining one cycle:      5   ,   T    4 , 4      Subinterval width: T   4 4 Key points:       3   5   , 3  ,  , 0  ,  ,3  ,  , 0  ,  , 3  4 4 4 2        

1) Shift right  units  y  cot  x     2) Horizontally compress by a factor of  y  cot  2 x      

3) Vertically compress by a factor of

1 2

1 2

1    y  2 cot  2 x      

  17. y  3csc  2 x   4  Begin with the graph of y  csc x and apply the following transformations:

15. y  2 tan  4 x   

Begin with the graph of y  tan x and apply the following transformations: 1) Shift right  units  y  tan  x    

1) Shift right

1 2) Horizontally compress by a factor of 4  y  tan  4 x       3) Vertically stretch by a factor of 2  y  2 tan  4 x      

    units  y  csc  x    4   4  

2) Horizontally compress by a factor of      y  csc  2 x    4    

659

Copyright © 2020 Pearson Education, Inc.

1 2


Chapter 6: Trigonometric Functions

Assuming A is positive, we have that y  A sin( x   )  2sin(2 x  1)

3) Vertically stretch by a factor of 3      y  3csc  2 x    4    

  1   2sin  2  x    2   

20.

A  3; T 

  ; 2 2 

2 2    2  4  T  4 2  8 Assuming A is positive, we have that y  A sin( x   )  3sin(4 x  8)



 3sin  4  x  2  

21. 1 18. y  sec  3x    2 Begin with the graph of y  sec x and apply the following transformations: 1) Shift right  units  y  sec  x     1 2) Horizontally compress by a factor of 3  y  sec  3 x       1 3) Vertically compress by a factor of 2 1    y  2 sec  3 x      

 1   3   1 2 2 2       2 3 3 3 T A  3; T  3;

3 1 2 2 3 3 9 Assuming A is positive, we have that 2 2 y  A sin( x   )  3sin  x   9 3 2  1   3sin   x    3 3   

   

22.

  2  2 2    2    2  T  2   4 Assuming A is positive, we have that y  A sin( x   )  2sin(2 x  4) A  2; T  ;

 2sin  2  x  2  

19.

 1   2 2 2   1  2     T  2 2  1 A  2; T  ;

660 Copyright © 2020 Pearson Education, Inc.


Section 6.6: Phase Shift; Sinusoidal Curve Fitting   23. I  t   120sin  30 t   , t  0 3  2 2 1 Period: T   second  30 15 Amplitude: A  120  120 amperes

 2  16  8.5sin   6     24.5 5    12  8.5  8.5sin     5   12  1  sin    5    12    2 5 29  10 11   2 Thus, y  8.5sin  x   24.5 or 10   5

  1 Phase Shift: second  3   30 90

 2  11   y  8.5sin   x     24.5 . 5 4    c.   24. I  t   220sin  60 t   , t  0 6  2 2 1 Period: T   second  60 30 Amplitude: A  220  220 amperes

d.

 1  Phase Shift: second  6   60 360

y  9.46sin 1.247 x  2.906   24.088

e.

25. a.

b.

26. a.

33  16 17   8.5 2 2 33+16 49 Vertical Shift:   24.5 2 2 2 2   5 5 Phase shift (use y  16, x  6): Amplitude: A 

b.

79.8  36.0 43.8   21.9 2 2 79.8+36.0 115.8   57.9 Vertical Shift: 2 2 2    12 6 Amplitude: A 

661

Copyright © 2020 Pearson Education, Inc.


Chapter 6: Trigonometric Functions Phase shift (use y  36.0, x  1):   36.0  21.9sin  1     57.9 6 

b.

   21.9  21.9sin     6    1  sin     6  

75.4  28.1 47.3   23.65 2 2 75.4+28.1 103.5   51.75 Vertical Shift: 2 2 2    12 6 Phase shift (use y  28.1, x  1): Amplitude: A 

  28.1  23.65sin  1     51.75 6 

    2 6 2  3

   23.65  23.65sin     6 

2   Thus, y  21.9sin  x    57.9 or 6 3

  1  sin     6 

  y  21.9sin   x  4   57.9 . 6 

c.

    2 6 2  3

2   Thus, y  23.65sin  x    51.75 or 6 3   y  23.65sin   x  4   51.75 . 6 

d.

y  21.68sin  0.516 x  2.124  57.81

/

c.

/ d.



e.



y  24.25sin(0.493 x  1.927)  51.61



e.

27. a.

28. a.

662 Copyright © 2020 Pearson Education, Inc.


Section 6.6: Phase Shift; Sinusoidal Curve Fitting

b.

77.0  32.9 44.1   22.05 2 2 77.0+32.9 109.9   54.95 Vertical Shift: 2 2 2    12 6 Phase shift (use y  32.9, x  1): Amplitude: A 

b.

  32.9  22.05sin  1     54.95 6 

 24  5.88  2.91sin   0.42     2.97  149  1.44    2.91  2.91sin   0.42     149 

   22.05  22.05sin     6    1  sin     6  

 10.08  1  sin    149    10.08   2 149   1.360

    2 6 2  3

 24  Thus, y  2.91sin  x  1.360   2.97 or 149    24  y  2.91sin   x  2.688  2.97 .  149 

2   Thus, y  22.05sin  x    54.95 or 6 3   y  22.05sin   x  4   54.95 . 6 

c.

c.

30. a.

d.

29. a.

 24 y  2.91sin  17  2.688    2.97  149   1.48 feet

4.85 + 12.4167 = 17.2667 hours which is at 5:16 PM.



10.03  (0.46) 10.49   5.245 2 2 10.03  (0.46) 9.57 Vertical Shift:   4.785 2 2 2 24     12.4167 6.20835 149 Phase shift (use y  10.03, x  4.85):



 24  10.03  5.245sin   4.85     4.785  149   24  5.245  5.245sin   4.85    149  

b.

y  21.73sin(0.518 x  2.139)  54.82

e.

5.88   0.06 

5.82   2.91 2 2 5.88  (0.06) 5.94 Vertical Shift:   2.97 2 2 2 24     12.4167 6.20835 149 Phase shift (use y  5.88, x  0.42): Ampl: A 



Ampl: A 

 116.4  1  sin     149   116.4   2 149   0.884

0.45 + 12.4167 = 12.8367 hours which is at 12:50 PM.

663

Copyright © 2020 Pearson Education, Inc.


Chapter 6: Trigonometric Functions  24  x  0.884   4.785 Thus, y  5.245sin  149    24  or y  5.245sin   x  1.746   4.785 .  149 

c.

31. a.

32. a.

 24 y  5.245sin  15   0.884   4.785  149   6.94 feet

 2  15.27  3.1sin  172     12.17  365 

13.75  10.52  1.615 2 13.75  10.52 Vertical Shift:  12.135 2 2  365 Phase shift (use y  13.75, x  172): Amplitude: A 

 2  3.1  3.1sin  172     365   344  1  sin     365   344   2 365   1.39

 2  13.75  1.615sin  172     12.135  365 

 2  Thus, y  3.1sin  x  1.39  12.17 or  365 

 2  1.615  1.615sin  172     365   344  1  sin     365   344   2 365   1.3900

15.27  9.07  3.1 2 15.27  9.07 Vertical Shift:  12.17 2 2  365 Phase shift (use y  15.27, x  172): Amplitude: A 

 2 y  3.1sin   x  80.75  12.17 .  365 

b.

 2 y  3.1sin   91  1.39  12.17  365  12.71 hours

 2  Thus, y  1.615sin  x  1.39  12.135 or  365 

c.

 2 y  1.615sin   x  80.75   12.135 .  365 

b.

 2 y  1.615sin   91  80.75   12.135 365    12.42 hours

c.

d. The actual hours of sunlight on April 1, 2018 were 12.75 hours. This is very close to the predicted amount of 12.71 hours. 33. a.

d. The actual hours of sunlight on April 1, 2018 were 12.43 hours. This is very close to the predicted amount of 12.42 hours.

19.37  5.45  6.96 2 19.37  5.45 Vertical Shift:  12.41 2 2  365 Phase shift (use y  19.37, x  172): Amplitude: A 

664 Copyright © 2020 Pearson Education, Inc.


Section 6.6: Phase Shift; Sinusoidal Curve Fitting

 2  19.37  6.96sin  172     12.41  365 

 2  13.42  1.295sin  172     12.125  365 

 2  6.96  6.96sin  172     365 

 2  1.295  1.295sin  172     365 

 344  1  sin     365 

 344  1  sin     365 

 344   2 365   1.39

 344   2 365   1.39

 2  Thus, y  6.96sin  x  1.39  12.41 or  365 

 2  x  1.39  12.125 . Thus, y  1.295sin   365 

 2 y  6.96sin   x  80.75   12.41 .  365 

b.

b.

 2 y  1.295sin   91  1.39  12.125  365  12.35 hours

 2 y  6.96sin   91  1.39  12.41  365  13.63 hours

c.

c.

d. The actual hours of sunlight on April 1, 2018 were 12.38 hours. This is very close to the predicted amount of 12.35 hours.

d. The actual hours of sunlight on April 1, 2018 was 13.37 hours. This is close to the predicted amount of 13.63 hours. 34. a.

35. The coaster car travels from a high of 106 ft to a low of 4 ft, so the amplitude is A = 51 and the vertical shift is B = 55. The car moves from a high point to a low point (1/2 period) in 1.8 seconds, so the period T = 3.6 seconds. 2 2 5 T     3.6 9 Assuming the car starts at the top of a hill, there is a phase shift to the left of 0.9 seconds.  5 y  51sin   t  0.9    55  9   5 t    51sin     55 2  9

13.42  10.83 Amplitude: A   1.295 2 13.42  10.83 Vertical Shift:  12.125 2 2  365 Phase shift (use y  13.42, x  172):

36 – 37. Answers will vary.

665

Copyright © 2020 Pearson Education, Inc.


Chapter 6: Trigonometric Functions

38.

4x  9 2 4y  9 x 2 2x  4 y  9

f ( x) 

sin t 

44.

x opp  a hypo

adj 2  opp 2  hypo 2 adj 2  x 2  a 2 adj  a 2  x 2

2x  9  4 y 2x  9 y 4 2x  9  f 1 ( x) 4

cos t 

39. 0.25(0.4 x  0.8)  3.7  1.4 x 0.1x  0.2  3.7  1.4 x 1.5 x  3.5 35 7  x 15 3 7  The solution set is   3 40. (8 x  15 y ) 2  (8 x  15 y )(8 x  15 y )

adj  hypo

a2  x2 a

45. The amount of fencing can be represented by 2l  2 w  54 . The length can be represented by l  2w  3 . Thus, 2l  2 w  54 l  2w  3 2(2w  3)  2 w  54 4 w  6  2 w  54 6w  6  54 6 w  48 w  8 ft l  2(8)  3  19 ft

 64 x 2  120 xy  120 xy  225 y 2  64 x 2  240 xy  225 y 2

( x  5)( x  5) ( x  5)  . Since the (x + 3) ( x  5)( x  3) ( x  3) factor does not cancel, there is a vertical asymptote at x  3 .

46. R( x) 

41. d  ( x2  x1 ) 2  ( y2  y1 ) 2  (10  4) 2  (3  ( 1)) 2

47. log 2 (8 x 2 y 5 )  log 2 8  log 2 x 2  log 2 y 5

 (6) 2  (4) 2

 3  2 log 2 x  5log 2 y

 36  16  52  4(13)  2 13

42. 3x  4  5 x  7 or 3x  4  5 x  7 2 x  11 8x  3 11 3 x x 2 8  3 11  The solution set is  ,  . 8 2 

43. u  x  4 x u4

Chapter 6 Review Exercises 1. 135  135 

2. 18  18  1

y  (u  4) u  (u  4)u 2 3

1

 u 2  4u 2

3.

 3 radian  radians 180 4

  radian  radian 180 10

3 3 180   degrees  135 4 4 

4. 

5 5 180   degrees   450 2 2 

666 Copyright © 2020 Pearson Education, Inc.


Chapter 6 Review Exercises

5. tan

  1 1  sin  1   4 6 2 2

6. 3sin 45º  4 tan

7. 6 cos

3 . 5 sin  54 4 5 4 tan       cos  53 5 3 3

quadrant I. Thus, cos  

 2 3 3 2 4 3  3  4   6 2 3 2 3

 3 2    2 tan     6     2  3 4  3  2 

 3 2  2 3  5    5  8. sec     cot     sec  cot  2 1  3 3 4 3 4    

sin(40º )  sin 40º   1 sin 40º sin 40º

1 1 3 3  4  1  tan  3 4 4

169 13  25 5 Note that sec  must be negative since  lies in 13 quadrant III. Thus, sec    . 5 1 1 5   cos   sec   135 13 sec   

1  cos 50º  1 cos 50º

14.

cot  

2

1  sin 2 20º  cos 2 20º  1 sec 20º

cos(40º ) cos 40º  1 cos 40º cos 40º

1 1 5 5   1  cos  53 3 3

144 169  12  sec 2      1  1  25 25  5

2

13.

sec  

12 and sin   0 , so  lies in quadrant III. 5 Using the Pythagorean Identities: sec 2   tan 2   1

10. cos 540º  tan(  405º )  1  ( 1)  1  1  0

12. sec50º  cos 50º 

1 1 5 5  4  1  sin  5 4 4

17. tan  

9. tan   sin   0  0  0

11. sin 2 20º 

csc  

tan  

sin  , so cos 

12  5  12     5  13  13 1 1 13   csc   sin   12 12 13

sin    tan   cos   

15. sin 400º  sec  50º   sin 400º  sec 50º 1 cos 50º sin 40º sin 40º   cos 50º sin(90º 50º ) sin 40º  1 sin 40º  sin  40º 360º  

cot  

1 1 5  12  tan  12 5

5 and tan   0 , so  lies in quadrant II. 4 Using the Pythagorean Identities: tan 2   sec 2   1

18. sec   

4  and 0    , so  lies in quadrant I. 5 2 Using the Pythagorean Identities: cos 2   1  sin 2 

16. sin  

2

25 9  5 tan 2       1  1  16 16  4

2

16 9 4  cos 2   1     1  5 25 25  

tan   

9 3  25 5 Note that cos  must be positive since  lies in

9 3  16 4

3 Note that tan   0 , so tan    . 4

cos   

667

Copyright © 2020 Pearson Education, Inc.


Chapter 6: Trigonometric Functions

cos  

1 1 4   sec   54 5

tan  

tan  

sin  , so cos 

sin   135 5  13  5  12       cos  13 12 12   13

csc  

1 1 13  5  sin   13 5

sec  

1 1 13   cos  12 12 13

cot  

1 1 12  5  tan   12 5

3 4 3 sin    tan   cos         . 4 5 5 1 1 5   csc   sin  35 3 cot  

1 1 4   tan   34 3

12 and  lies in quadrant II. 13 Using the Pythagorean Identities: cos 2   1  sin 2 

19. sin  

1 and 180º    270º (quadrant III) 3 Using the Pythagorean Identities: sec 2   tan 2   1

21. tan  

2

144 25  12  cos   1     1   169 169  13 

1 10 1 sec 2      1   1  9 9 3

25 5  169 13 Note that cos  must be negative because  lies 5 in quadrant II. Thus, cos    . 13 12 sin  12  13  12  13       tan   cos   135 13  5  5

10 10  9 3 Note that sec  must be negative since  lies in

2

2

cos   

csc  

1 1 13  12  sin  13 12

sec  

1 1 13   cos   135 5

cot  

1 1 5  12   tan   5 12

quadrant III. Thus, sec    cos  

tan  

5 3 and    2 (quadrant IV) 13 2 Using the Pythagorean Identities: cos 2   1  sin 2 

20. sin   

2

25 144  5 cos   1      1   13 169 169   2

144 12  169 13 Note that cos  must be positive because  lies 12 in quadrant IV. Thus, cos   . 13 cos   

sec   

1  sec 

1 

10 3



3 10

10 . 3 

10 10



3 10 10

sin  , so cos 

1  3 10  10 sin    tan   cos         3  10  10 1 1 10     10 csc   sin  10 10  10 1 1  3 cot   tan  13 3    2 (quadrant IV) 2 Using the Pythagorean Identities: tan 2   sec 2   1

22. sec   3 and

tan 2   32  1  9  1  8 tan    8  2 2 Note that tan  must be negative since  lies in quadrant IV. Thus,. tan   2 2 .

668 Copyright © 2020 Pearson Education, Inc.


Chapter 6 Review Exercises

Domain:  ,  

1 1  sec  3 sin  tan   , so cos 

cos  

Range:  2, 2 25. y  3cos(2 x) The graph of y  cos x is stretched vertically by a factor of 3, reflected across the x-axis, and 1 compressed horizontally by a factor of . 2

2 2 1 . sin    tan   cos    2 2     3 3 csc  

1 1 3 2 3 2     sin   2 3 2 2 4 2 2

cot  

1 1 2 2    tan  2 2 2 4

    (quadrant II) 2 Using the Pythagorean Identities: csc 2   1  cot 2 

23. cot    2 and

csc 2   1   2   1  4  5 2

csc    5 Note that csc  must be positive because  lies in quadrant II. Thus, csc   5 .

Domain:  ,   Range:  3,3

1 1 5 5 sin      csc  5 5 5 cos  , so cot   sin   5 2 5 . cos    cot   sin    2     5  5  1 1 1   tan   cot  2 2 sec  

26. y  tan( x  ) The graph of y  tan x is shifted  units to the left.

1 1 5 5  2 5   cos   5 2 2 5

24. y  2sin(4 x) The graph of y  sin x is stretched vertically by a factor of 2 and compressed horizontally by a 1 factor of . 4

k   Domain:  x | x  , k is an odd integer  2   Range:  ,  

669

Copyright © 2020 Pearson Education, Inc.


Chapter 6: Trigonometric Functions 29. y  4sec  2 x 

27. y   2 tan(3x ) The graph of y  tan x is stretched vertically by a factor of 2, reflected across the x-axis, and 1 compressed horizontally by a factor of . 3

The graph of y  sec x is stretched vertically by a factor of 4 and compressed horizontally by a 1 factor of . 2 y 4 3 2 1

(⫺␲, 4)

3␲

⫺––– 4 ␲ , ⫺4 ⫺ –– 2

(     Domain:  x | x   k  , k is an integer  6 3   Range:  ,  

 4

⫺2 ⫺3 ⫺4 ⫺5

–– 4

3␲ ––– 4

x

(––␲2 , ⫺4)

k   Domain:  x | x  , k is an odd integer  4   Range:  y | y  4 or y  4

  28. y  cot  x   4 

The graph of y  cot x is shifted

)

⫺ –– 4

(␲, 4)

(0, 4)

  30. y  csc  x   4 

The graph of y  csc x is shifted

units to the

left.

 4

units to the

left.

   Domain:  x | x    k , k is an integer  4   Range:  ,  

   Domain:  x | x    k , k is an integer  4   Range:  y | y  1 or y  1

670 Copyright © 2020 Pearson Education, Inc.


Chapter 6 Review Exercises 31. y  4sin  2 x  4   2

35. y  4sin(3 x)

The graph of y  sin x is shifted left 4 units, 1 , 2 stretched vertically by a factor of 4, and shifted down 2 units.

compressed horizontally by a factor of

Amplitude:

A  4 4

Period:

T

2

2 3

  0 Phase Shift:  0  3

Domain:  ,  

 1 36. y   cos  x   2 2  Amplitude: A  1  1

Range:  6, 2 x  32. y  5cot    3 4 The graph of y  cot x is shifted right 4 units,

Period:

T

2

2  4 1 2

   Phase Shift:  2   1 

stretched horizontally by a factor of 3, and stretched vertically by a factor of 5.

2

3    k  3 , k is an integer  Domain:  x | x  4   Range:  ,  

1 3  37. y  sin  x    2 2  1 1  2 2 2 2 4 Period:   T 3 3  2   2 Phase Shift:    3 3 2 Amplitude:

33. y  sin(2 x) Amplitude = 1  1 ; Period =

2  2

34. y   2 cos(3 x) Amplitude = 2  2 ; Period =

2 2  3 3

671 Copyright © 2020 Pearson Education, Inc.

A 


Chapter 6: Trigonometric Functions

41. Set the calculator to radian mode: sin

 8

 0.38 .

42. Set the calculator to degree mode: 1 sec10o   1.02 . cos10o

2 38. y   cos  x  6  3 2 2  3 3 2 2 Period:  2 T    6 Phase Shift:    Amplitude:

A  

43. Terminal side of  in Quadrant III implies sin   0 csc   0 cos   0 sec   0 tan   0 cot   0 44. cos   0, tan   0 ;  lies in quadrant IV.  1 2 2 45. P    ,   3 3  2 2 1 3 2 3 2 ; csc t     3 4 2 2 2 2 2  3    1 1 cos t   ; sec t   3 3 1  3   2 2   2 2  3 tan t   3      2 2 ; 3  1  1  3  

sin t 

39. The graph is a cosine graph with amplitude 5 and period 8π. 2 Find  : 8 

8  2 2 1   8 4

cot t 

1 2 2   4 2 2 2

46. The point P  (2, 5) is on a circle of radius

40. The graph is a reflected sine graph with amplitude 7 and period 8. 2 Find  : 8 

r  (2) 2  52  4  25  29 with the center at the origin. So, we have x  2 , y  5 , and

8  2 2    8 4

r  29 . Thus, sin t  cos t 

  The equation is: y  7 sin  x  . 4 

y 5 5 29   ; r 29 29

y 5 x 2 2 29   ; tan t    . r 29 x 2 29

672 Copyright © 2020 Pearson Education, Inc.


Chapter 6 Review Exercises 47. The domain of y  sec x is

  53. I (t )  220sin  30t   , 6 

   x x  odd multiple of  . 2  The range of y  sec x is  y y  1 or y  1 .

a.

The period is 2 .

c.

20 35   32.34o 60 3600

The phase shift is: 

 6 1  1      30 6 30 180

63.18o 0.18o  (0.18)(60 ')  10.8' 0.8'  (0.8)(60")  48"

b.

2 1  30 15

b. The amplitude is 220.

32o 20 '35"  32 

48. a.

Period 

t0

d.

Thus, 63.18o  63o10 '48" 49. r  2 feet,   30º or  

 6

    1.047 feet 6 3  1 1 2  A   r 2    2     1.047 square feet 2 2 6 3

s  r  2 

54. a.

50. In 30 minutes: r  8 inches,   180º or    s  r  8    8  25.13 inches

In 20 minutes: r  8 inches,   120º or   s  r  8 

2 3

2 16   16.76 inches 3 3

51. v  180 mi/hr ;

b.

1 mile 2 1 r   0.25 mile 4

d

v 180 mi/hr  0.25 mi r  720 rad/hr 720 rad 1 rev   hr 2 rad 360 rev   hr  114.6 rev/hr



95  55 40   20 2 2 95+55 150 Vertical Shift:   75 2 2 2    12 6 Phase shift (use y  55, x  1): Amplitude: A 

  55  20sin  1     75 6    20  20sin     6    1  sin     6  

52. Since there are two lights on opposite sides and the light is seen every 5 seconds, the beacon makes 1 revolution every 10 seconds: 1 rev 2 radians    radians/second  10 sec 1 rev 5

    2 6 2  3

673

Copyright © 2020 Pearson Education, Inc.


Chapter 6: Trigonometric Functions

Chapter 6 Test

2   Thus, y  20sin  x    75 , or 6 3

1. 260  260 1 degree

  y  20sin   x  4   75 . 6  

 260  

c.

radian

180

260 13 radian  radian 180 9

2. 400  400 1 degree  400  

d.

y  19.81sin  0.543 x  2.296  75.66

radian

180

400 20 radian   radian 180 9

3. 13  13 1 degree  13  4. 

radian  

8



e. 5.

6.

55.

 8

 180

radian 

13 radian 180

1 radian

 180  degrees  22.5 8 

9 9 radian  1 radian 2 2 9 180 degrees  810   2  3 3 radian  1 radian 4 4 3 180 degrees  135   4 

7. sin

 6

1 2

5

3

5

3

8. cos     cos    cos    2   cos   4 4 4 4 

    3 3  cos    cos    0  4   4 

9. cos  120   cos 120   

1 2

10. tan 330  tan 150  180   tan 150    11. sin

 2

 tan

19   3   sin  tan   4  4 2  4   sin

674

Copyright © 2020 Pearson Education, Inc.

3 3

 2

 3   tan    1   1  2  4 


Chapter 6 Test

2

 3  2 12. 2sin 2 60  3cos 45  2    3   2   2   3  3 2 3 3 2 3 1 2  2      2 2 2 2 4

 in QI  in QII  in QIII  in QIV

13. Set the calculator to degree mode: sin17  0.292

sin  cos  tan  sec  csc  cot        +      +      +     

18. Because f ( x)  sin x is an odd function and

since f (a)  sin a 

14. Set the calculator to radian mode: cos

3 , then 5

3 f (a )  sin(a )   sin a   . 5

2  0.309 5

5 and  in quadrant II. 7 Using the Pythagorean Identities: 2 25 24 5 cos 2   1  sin 2   1     1   49 49 7

19. sin  

15. Set the calculator to degree mode: 1 sec 229   1.524 cos 229

24 2 6  49 7 Note that cos  must be negative because  lies cos   

in quadrant II. Thus, cos   

16. Set the calculator to radian mode: 28 1 cot   2.747 28 9 tan 9

17. To remember the sign of each trig function, we primarily need to remember that sin  is positive in quadrants I and II, while cos  is positive in quadrants I and IV. The sign of the other four trig functions can be determined directly from sine and cosine by knowing sin  1 1 tan   , sec   , csc   , and cos  cos  sin  cos  cot   . sin 

2 6 . 7

tan  

5 sin  5 7  6 5 6  27 6      cos   7 7 2 6  6 12

csc  

1 1 7   sin  75 5

sec  

1 1 7 6 7 6     cos   2 7 6 12 2 6 6

cot  

1 1 12 6 2 6  5 6    tan   12 5 5 6 6

2 3 and    2 (in quadrant IV). 2 3 Using the Pythagorean Identities: 2 4 5 2 2 2 sin   1  cos   1     1   9 9 3

20. cos  

5 5  9 3 Note that sin  must be negative because  lies sin   

in quadrant IV. Thus, sin    tan  

5 . 3

sin   35 5 3 5  2    cos  3 2 2 3

675

Copyright © 2020 Pearson Education, Inc.


Chapter 6: Trigonometric Functions

csc  

r  62   3  45  3 5 . So,

1 1 3 5 3 5  5    sin   3 5 5 5

2

tan  

1 1 3   sec   cos  23 2 cot  

x  25. Comparing y  2sin    to 3 6

1 1 2 5 2 5     tan   25 5 5 5

y  A sin  x    , we see that

12  21. tan    and     (in quadrant II) 2 5 Using the Pythagorean Identities: 2 144 169  12  sec 2   tan 2   1      1  1  25 25  5

1  , and   . The graph is a sine 6 3 curve with amplitude A  2 , period A2,  

T

169 13  25 5 Note that sec  must be negative since  lies in 13 quadrant II. Thus, sec    . 5 1 1 5 cos     sec   135 13

1 1 13  12  sin  13 12

cot  

1 1 5   tan   125 12

2  6 , and phase shift 1/ 3

2

12  5  12    5  13  13

csc  

sin  , so cos 

sin    tan   cos    

2

   x   6  . The graph of y  2sin     1/ 3 2 3 6 will lie between 2 and 2 on the y-axis. One   period will begin at x   and end at  2 2   13   6   . We divide the x   2 2   13  interval  ,  into four subintervals, each of

sec   

tan  

y 3 1   x 6 2

2 

6 3  . 4 2 7   7      13   2 , 2  ,  2 , 2  ,  2 ,5  , 5 , 2          The five key points on the graph are    7   13  , 0  ,  5 , 2  ,  ,0  , 0  ,  2 , 2  ,  2 2      2  We plot these five points and fill in the graph of the sine function. The graph can then be extended in both directions.

length

22. The point  2, 7  lies in quadrant I with x  2

and y  7 . Since x 2  y 2  r 2 , we have r  22  7 2  53 . So, y 7 7 53 7 53 sin       . 53 r 53 53 53

y (⫺4␲, 2)

23. The point  5,11 lies in quadrant II with 11␲ , (⫺ –––– 2 0(

x  5 and y  11 . Since x 2  y 2  r 2 , we

have r  cos  

 5 2  112  146 . So,

3 2 1

5␲ , (⫺ ––– 2 0(

(⫺␲, ⫺2)

5 5 146 5 146 x .     146 r 146 146 146

24. The point  6, 3 lies in quadrant IV with x  6

and y  3 . Since x 2  y 2  r 2 , we have 676

Copyright © 2020 Pearson Education, Inc.

(2␲, 2) x

( ––␲2 , 0( (5␲, ⫺2) 7␲ , ( ––– 2 0(


Chapter 6 Test

  26. y  tan   x    2  4 Begin with the graph of y  tan x , and shift it 

where R is the radius of the larger sector and r is the radius of the smaller sector. The larger radius is 3 feet longer than the smaller radius because the walk is to be 3 feet wide. Therefore, R  r  3 , and

units to the left to obtain the graph of

4

A

  y  tan  x   . Next, reflect this graph about  4   the y-axis to obtain the graph of y  tan   x   .  4 Finally, shift the graph up 2 units to obtain the   graph of y  tan   x    2 .  4   y  tan   x    2 4 

y



x

2

, and the phase

 . Therefore, we have A  3 ,   3   3 , and   3      . The equation 4

3   . for the graph is y  3sin  3 x  4  

28. The area of the walk is the difference between the area of the larger sector and the area of the smaller shaded sector.

l

k

50

 r  6r  9  r  2

3 ft

2

R  r  2

2

The area of the walk is given by 1 1 A  R 2  r 2 , 2 2 

2

18

29. To throw the hammer 83.19 meters, we need v2 s 0 g v0 2 83.19 m  9.8 m/s 2 2 v0  815.262 m 2 / s 2 v0  28.553 m/s Linear speed and angular speed are related according to the formula v  r   . The radius is r  190 cm  1.9 m . Thus, we have 28.553  r   28.553  1.9     15.028 radians per second radians 60 sec 1 revolution     15.028 sec 1 min 2 radians  143.5 revolutions per minute (rpm) To throw the hammer 83.19 meters, Adrian must have been swinging it at a rate of 143.5 rpm upon release.

shift is given by

W a

2

2

Thus, the area of the walk is given by 5   90   5  540   9 A  18  6    9    2      36    5 2  75  ft  78.93 ft 2 4

27. For a sinusoidal graph of the form y  A sin  x    , the amplitude is given by

 4

  r  3  r 

2

A , the period is given by

2

 6r  9  2 The shaded sector has an arc length of 25 feet 5 and a central angle of 50  radians . The 18 s 25 90 radius of this sector is r   5  feet . 

4

2

2

677

Copyright © 2020 Pearson Education, Inc.


Chapter 6: Trigonometric Functions

Chapter 6 Cumulative Review

5. x 2  y 2  2 x  4 y  4  0 x2  2 x  1  y 2  4 y  4  4  1  4

2 x2  x  1  0

1.

 x  1   y  2   9 2 2  x  1   y  2   32 2

 2 x  1 x  1  0 x

1 or x  1 2

2

This equation yields a circle with radius 3 and center (1,–2).

 1 The solution set is 1,  .  2

2. Slope  3 , containing (–2,5) Using y  y1  m( x  x1 ) y  5  3  x  (2)  y  5  3( x  2) y  5  3 x  6 y  3 x  1

6. y  ( x  3) 2  2

3. radius = 4, center (0,–2)

Using the graph of y  x 2 , horizontally shift to the right 3 units, and vertically shift up 2 units.

Using  x  h    y  k   r 2 2

2

 x  0    y   2    42 2

2

x 2   y  2   16 2

4. 2 x  3 y  12 This equation yields a line. 2 x  3 y  12 3 y  2 x  12 2 y  x4 3 2 The slope is m  and the y-intercept is 4 . 3 Let y  0 : 2 x  3(0)  12 2 x  12 x6 The x-intercept is 6.

7. a.

y  x2

678

Copyright © 2020 Pearson Education, Inc.


Chapter 6 Cumulative Review

b.

y  x3

c.

y  ex

f.

8.

y  tan x

f ( x)  3x  2 y  3x  2

x  3y  2

Inverse

x  2  3y x2 y 3 x2 1   x  2 f 1 ( x)  3 3

9. Since  sin     cos    1 , then 2

d.

y  ln x

2

 sin14    cos14   3  1  3  2 o

2

o

2

10. y  3sin(2 x) Amplitude:

A  3 3

2  2  0 Phase Shift:  0  2 Period:

e.

y  sin x

679

Copyright © 2020 Pearson Education, Inc.

T


Chapter 6: Trigonometric Functions

11. tan

 4

 3cos

 6

 csc

Intercepts:  1, 0  ,  0, 3

 3  1  3    2 6  2 

3 3 2 63 3  2  3

12. We need a function of the form y  A  b x , with b  0, b  1 . The graph contains the points

 0, 2  and 1, 6  . Therefore, 2  A  b0 .

b. Given that the graph of f  x   ax 2  bx  c

2  A 1

has vertex (1, –6) and passes through the b  1, point (–2,3), we can conclude  2a f  2   3 , and f 1  6 .

A2

And y  2b x 6  2b1

b 1 2a b  2a Also note that f  2   3

b3

Notice that 

x

So we have the function y  2  3 . 13. The graph is a cosine graph with amplitude 3 and period 12. 2 Find  : 12 

a  2   b  2   c  3 4a  2b  c  3 f 1  6 2

12  2



2   12 6

a 1  b 1  c  6 a  b  c  6 Replacing b with 2a in these equations yields: 4a  2  2a   c  3 c  3  8a and a  2a  c  6 c  6  a So 3  8a  6  a 9  9a  a  1 Thus, b  2a  2 1  2 2

  The equation is: y  3cos  x  . 6 

14. a.

Given points (2, 3) and (1, 6) , we compute the slope as follows: y y 6  3 9 slope  2 1    3 x2  x1 1   2  3 Using y  y1  m( x  x1 ) :

y  3  3  x   2  

and c  3  8a  3  8 1  5

y  3  3  x  2  y  3 x  6  3 y  3 x  3

Therefore, we have the function f  x   x 2  2 x  5   x  1  6 . 2

y-intercept: f  0   02  2  0   5  5

The linear function is f  x   3 x  3 .

x-intercepts: 0  x 2  2 x  5

Slope: m  3 ; y-intercept: f  0   3  0   3  3

x

x-intercept: 0  3 x  3 3x  3 x  1

  2  

 2 2  4 1 5  2 1

2  4  20 2  24 2  2 6   2 2 2  1  6  1.45 or 3.45 

680

Copyright © 2020 Pearson Education, Inc.


Chapter 6 Cumulative Review

 

Intercepts:  0, 5  , 1  6, 0 , 1  6, 0

c.

b. A rational function whose x-intercepts are 2 , 3, and 5 and that has the line x  2 as a vertical asymptote will have the form a ( x  2)( x  3)( x  5) , since the xf ( x)  x2 intercepts correspond to the zeros of the numerator, and the vertical asymptote corresponds to the zero of the denominator. Given a y-intercept of 5, we have f (0)  5 a(0  2)(0  3)(0  5) 5 02 1 30a  10  a   3 Therefore, we have the function 1  ( x  2)( x  3)( x  5) f ( x)  3 x2 2 ( x  2)( x  8 x  15)  3( x  2) 3 ( x  6 x 2  x  30)  3( x  2) 3 x  6 x 2  x  30 x3  6 x 2  x  30   6  3x 3 x  6

If f  x   ae x contains the points (–2,3) and (1,–6), we would have the equations f  2   ae 2  3 and f 1  ae1  6 . Note that ae 2  3 3 a  2  3e 2 e 6 But ae1  6  a   e 6 Since 3e2   , there is no exponential e function of the form f  x   ae x that contains the points (–2,3) and (1,–6).

15. a. A polynomial function of degree 3 whose x-intercepts are –2, 3, and 5 will have the form f ( x)  a( x  2)( x  3)( x  5) , since the x-intercepts correspond to the zeros of the function. Given a y-intercept of 5, we have f (0)  5 a(0  2)(0  3)(0  5)  5

5 1  30 6 Therefore, we have the function 1 f ( x)  ( x  2)( x  3)( x  5) . 6 30a  5  a 

681

Copyright © 2020 Pearson Education, Inc.


Chapter 6: Trigonometric Functions

Chapter 6 Projects Project I – Internet-based Project Project II 1. November 15: High tide: 11:18 am and 11:15 pm November 19: low tide: 7:17 am and 8:38 pm 2. The low tide was below sea level. It is measured against calm water at sea level. 3.

Nov

14 0-24 15 24-48 16 48-72 17 72-96 18 96-120 19 120-144 20 144-168

Low Tide

Low Tide

High Tide

Time

Ht (ft) t

Time

Ht (ft) t

Time

Ht (ft)

t

Time

6:26a

2.0

6.43

4:38p

1.4 16.63

9:29a

2.2

9.48

11:14p 2.8

23.23

6:22a

1.6

30.37

5:34p

1.8 41.57

11:18a 2.4

35.3

11:15p 2.6

47.25

6:28a

1.2

54.47

6:25p

2.0 66.42

12:37p 2.6

60.62

11:16p 2.6

71.27

6:40a

0.8

78.67

7:12p

2.4 91.2

1:38p

2.8

85.63

11:16p 2.6

95.27

6:56a

0.4

102.93

7:57p

2.6 115.95

2:27p

3.0

110.45

11:14p 2.8

119.23

7:17a

0.0

127.28

8:38p

2.6 140.63

3:10p

3.2

135.17

11:05p 2.8

143.08

7:43a -0.2

151.72

3:52p

3.4

159.87

A  0.66

High Tide

12  B

2 B

Ht (ft) t

D  2.15

 0.52 6 Thus, y  0.66sin  0.52 x   2.15

4. The data seems to take on a sinusoidal shape (oscillates). The period is approximately 12 hours. The amplitude varies each day: Nov 14: 0.1, 0.7 Nov 15: 0.4, 0.4 Nov 16: 0.7, 0.3 Nov 17: 1.0, 0.1 Nov 18: 1.3, 0.1 Nov 19: 1.6, 0.1 Nov 20: 1.8

(Answers may vary) 6. y  0.848sin  0.52 x  1.25   2.23

The two functions are not the same, but they are similar.

5. Average of the amplitudes: 0.66 Period : 12 Average of vertical shifts: 2.15 (approximately) There is no phase shift. However, keeping in mind the vertical shift, the amplitude y  A sin  Bx   D

682

Copyright © 2020 Pearson Education, Inc.


Chapter 6 Projects 7. Find the high and low tides on November 21 which are the min and max that lie between t  168 and t  192 . Looking at the graph of the equation for part (5) and using MAX/MIN for values between t  168 and t  192 :

8. The low and high tides vary because of the moon phase. The moon has a gravitational pull on the water on Earth.

Project III 1. s (t )  1sin  2 f 0 t  2. T0 

Low tides of 1.49 feet when t = 178.2 and t = 190.3.

t

3.

2 1  f0 2 f 0

0

1 4 f0

s (t ) 0 1

1 2 f0

3 4 f0

1 f0

0

1

0

4. Let f 0  1 =1. Let 0  x  12 , with x  0.5 . Label the graph as 0  x  12T0 , and each tick

High tides of 2.81 feet occur when t = 172.2 and t = 184.3.

mark is at x  

Looking at the graph for the equation in part (6) and using MAX/MIN for values between t = 168 and t = 192: A low tide of 1.38 feet occurs when t = 175.7 and t  187.8 .

1 . 2 f0





12 12T0  __ f0

5. t 

1 5 9 45 , t , t ,…, t 4 f0 4 f0 4 f0 4 f0

6. M = 0 1 0  P = 0 π 0 7. S0 (t )  1sin(2 f 0 t  0) , S1 (t )  1sin(2 f 0 t   )

A high tide of 3.08 feet occurs when t = 169.8 and t  181.9 .

683

Copyright © 2020 Pearson Education, Inc.


Chapter 6: Trigonometric Functions

8. [0, 4 T0 ] S0 [4 T0 , 8 T0 ] S1 [ 8 T0 , 12 T0 ] S0 

s 110   0.0278 r 3960 3960  cos(0.278) 3960  h 3960  0.9996(3960  h) h  1.584 miles h  1.584  5280  8364 feet





Hawaii:



s

39 60

mi

Hawaii

Oahu

s

3,370 ft

 396

i 0m

Lanai

2. s  r s 65  0.0164   r 3960

Hawaii

}

i

Peak of Kamakou

mi

Molokai

39 60 m

39 60 m i

s

4,961 ft

396

i 0m

Molokai

s 40   0.0101 r 3960 3960  cos(0.0101) 3960  h 3960  0.9999(3960  h)



Oahu

Peak of Haleakala

i

39 60 m i

h  0.346 miles h  0.346 x5280  2090 feet }

0m 11 s

s

Oahu

0 s

Oahu

39 60 m i

0

s 190   0.0480 r 3960 3960  cos(0.480) 3960  h 3960  0.9988(3960  h) h  4.752 miles h  4.752  5280  25, 091 feet Oahu

4. Maui:

Maui

396

Molokai:

3960  cos(0.164) 3. 3960  h 3960  0.9999(3960  h) h  0.396 miles 0.396  5280  2090 feet

13,796 ft

mi

 }

i

39 60

mi

Lanai

m 65

Peak of Lanaihale

s=

39 60 m i

Oahu

}

1. Lanai:

Peak of Mauna Kea i 0m 19

Project IV

Oahu

s

39 60 m i

Oahu

10,023 ft

0 396

mi

5. Kamakou, Haleakala, and Lanaihale are all visible from Oahu.

Maui

Project V

Answers will vary.

684

Copyright © 2020 Pearson Education, Inc.


Chapter 5 Exponential and Logarithmic Functions Section 5.1 1.

10. a.

f  3  4  3  5  3 2

b.

 f  g  2   f  g  2    f  3  11

c.

 g  f  2   g  f  2    g 1  0

d.

 g  f  3  g  f  3   g  1  0

e.

 g  g 1  g  g 1   g  0   1

f.

 f  f  3  f  f  3   f  1  7

11. a.

 g  f  1  g  f (1)   g 1  4

 4  9   15  36  15  21

2.

f  3x   4  2  3x 

2

 4  2 9 x2   4  18 x 2

3.

f ( x) 

x2  1 2

x  25 x 2  25  0  x  5 x  5   0 x  5, x  5

b.

 g  f  0   g  f (0)   g  0   5

c.

 f  g  1  f  g (1)   f  3  1

d.

 f  g  4   f  g (4)   f  2   2

12. a.

 g  f 1  g  f (1)   g  1  3

b.

 g  f  5   g  f (5)   g 1  4

c.

 f  g  0   f  g (0)   f  5   1

d.

 f  g  2   f  g (2)   f  2   2

Domain:  x x  5, x  5 4. composite function; f  g ( x)  5. False: ( f  g )( x)  f ( g (4))  f ( 4  9)  f ( 13) 2

 ( 13)  13

6. c 13.

7. a

f ( x)  2 x

a.

8. False. The domain of  f  g  ( x) is a subset of

 f  g 1  f  g 1   f  0   5

( f  g )(4)  f ( g (4))

 f (49)  2(49)  98

 f  g 1  f  g 1   f  0   1

b.

 f  g  1  f  g  1   f  0   1

c.

 g  f  1  g  f  1   g  3  8

d.

 g  f  0   g  f  0    g  1  0

e.

 g  g  2   g  g  2    g  3  8

f.

 f  f  1  f  f  1   f  3  7

 f 3(4) 2  1

the domain of g ( x). 9. a.

g ( x)  3x 2  1

b.

( g  f )(2)  g ( f (2))  g (2  2)  g (4)  3(4) 2  1  48  1  49

426 Copyright © 2020 Pearson Education, Inc.


Section 5.1: Composite Functions

c.

d.

( f  f )(1)  f ( f (1))  f (2(1))  f (2)  2(2) 4 ( g  g )(0)  g ( g (0))

b.

( g  f )(2)  g ( f (2))  g (8(2)2  3)  g (29) 1  3  (29) 2 2 841  3 2 835  2

 g 3(0) 2  1  g (1)  3(1) 2  1 4

14.

f ( x)  3x  2

a.

c.

( f  f )(1)  f ( f (1))  f (8(1) 2  3)  f (5)

g ( x)  2 x 2  1

( f  g )(4)  f ( g (4))

 8(5) 2  3  197

 f 2(4) 2  1

d.

 f (31)  3(31)  2  95

b.

( g  g )(0)  g ( g (0))

1    g  3  (0) 2  2    g (3) 1  3  (3) 2 2 9  3 2 3  2

( g  f )(2)  g ( f (2))  g (3(2)  2)  g (8)  2(8) 2  1  128  1  127

c.

( f  f )(1)  f ( f (1))  f  3(1)  2 

16.

 f (5)  3(5)  2  17

d.

( g  g )(0)  g ( g (0))

f ( x)  2 x 2 g ( x)  1  3 x 2 a. ( f  g )(4)  f ( g (4))

 f 1  3(4) 2  f ( 47)  2( 47) 2  4418

 g 2(0) 2  1

b.

 g (1)

( g  f )(2)  g ( f (2))  g (2(2) 2 )  g (8)

 2(1) 2  1 1

 1  3(8) 2  1  192  191

1 15. f ( x)  8 x 2  3 g ( x)  3  x 2 2 a. ( f  g )(4)  f ( g (4)) 1    f  3  (4) 2  2    f (5)

c.

( f  f )(1)  f ( f (1))

 f 2(1) 2  f (2)

2

 2(2) 2 8

 8(5)  3  197

427

Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions

d.

( g  g )(0)  g ( g (0))

 g 1  3(0)

2

c.

( f  f )(1)  f ( f (1))

 1  1  f  2  f

 g (1)  1  3(1) 2  1 3  2

17.

f ( x)  x

a.

d.

g ( x)  5 x

( f  g )(4)  f ( g (4))  f  5(4)   f (20)  20

19.

2 5

b.

( g  f )(2)  g ( f (2)) g

 2

5 2

c.

( f  f )(1)  f ( f (1))  f

 1

 f (1)  1 1

d.

( g  g )(0)  g ( g (0))  g  3(0)   g (0)  3(0) 0

f ( x)  x

a.

b.

1 2

( g  f )(2)  g ( f (2))  g 2 

( g  g )(0)  g ( g (0))  g  5(0) 

 g (2) 1  2 2 9 1  13

f ( x)  x  1 g ( x)  3 x a. ( f  g )(4)  f ( g (4))  f  3(4)   f (12)

c.

( f  f )(1)  f ( f (1))  f1  f (1)  1

 12  1

1

 13

b.

g ( x) 

x 9 ( f  g )(4)  f ( g (4))  1   f 2   4 9  1   f   25  1  25 1  25

 g (0)  5(0) 0

18.

2 1

d.

( g  f )(2)  g ( f (2))

 2  1  g  3 g

( g  g )(0)  g ( g (0))  1   g 2  0 9  g  19  

3 3

1

 

1 2 9 9

1 81  730  730 81

428

Copyright © 2020 Pearson Education, Inc.


Section 5.1: Composite Functions

20.

f ( x)  x  2

a.

g ( x) 

3

21.

x2  2

( f  g )(4)  f ( g (4))

a.

   f 2  4 2  3  f   18  1  f  6 1  2 6 11   6 11  6

3 g ( x)  3 x x 1 ( f  g )(4)  f ( g (4))

f ( x) 

3

b.

 f 3

b.

3 4 1

 31 1

( g  f )(2)  g ( f (2))

c.

( f  f )(1)  f ( f (1))

 g 22 

 3   f   11 3  f  2 3  3 1 2 3  5 2 6  5

( f  f )(1)  f ( f (1))

 f  1 2   f (1)  1 2 1

d.

3

( g  f )(2)  g ( f (2))  3   g   2 1 3  g  3  g 1

 g (0) 3  2 0 2 3  2

c.

 4

d.

( g  g )(0)  g ( g (0))

( g  g )(0)  g ( g (0))

 

g 30

 3   g 2  0 2 3  g  2 3  2 3   2 2 3  17 4 12  17

 g (0) 30 0

429

Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions

22.

a.

23.

2 x 1 ( f  g )(4)  f ( g (4))

f ( x)  x3/ 2

g ( x) 

The domain of g is  x x is any real number . a.

( f  g )( x)  f ( g ( x))  f (4 x)  2(4 x)  3  8x  3 Domain:  x x is any real number .

b.

( g  f )( x)  g ( f ( x))  g (2 x  3)  4(2 x  3)  8 x  12 Domain:  x x is any real number .

c.

( f  f )( x)  f ( f ( x))  f (2 x  3)  2(2 x  3)  3  4x  6  3  4x  9

3/ 2

2    5

3

8 125 2 2 5   5 5 5 2 10  25 

b.

( g  f )(2)  g ( f (2))

 g 23/ 2 g

3

c.

Domain:  x x is any real number .

 2

g 2 2

d.

2 2 2 1

or

4 2 2 7

( f  f )(1)  f ( f (1))

 

 f 13/ 2

24.

 f 1

( g  g )( x)  g ( g ( x))  g (4 x)  4(4 x)  16 x Domain:  x x is any real number .

f ( x)   x

g ( x)  2 x  4

The domain of f is  x x is any real number .

 13/ 2 1

d.

g ( x)  4 x

The domain of f is  x x is any real number .

 2   f   4 1 2  f  5 2   5

f ( x)  2 x  3

The domain of g is  x x is any real number . a.

( g  g )(0)  g ( g (0))  2   g   0 1  g (2) 2  2 1 2  3

( f  g )( x)  f ( g ( x))  f (2 x  4)  (2 x  4)   2x  4

Domain:  x x is any real number . b.

( g  f )( x)  g ( f ( x))  g ( x)  2( x)  4  2 x  4 Domain:  x x is any real number .

430

Copyright © 2020 Pearson Education, Inc.


Section 5.1: Composite Functions

c.

d.

25.

( f  f )( x)  f ( f ( x))  f ( x)  (  x ) x Domain:  x x is any real number .

a.

 x  4 1  x2  5 Domain:  x x is any real number .

b.

 x2  2 x  1  4  x2  2 x  5 Domain:  x x is any real number .

g ( x)  x 2

c.

( f  g )( x)  f ( g ( x))

d.

 3x 2  1 Domain:  x x is any real number .

 x2  4

 4

( g  f )( x)  g ( f ( x))  g (3 x  1)

2

4

 x  8 x 2  16  4  x 4  8 x 2  20 Domain:  x x is any real number .

2

 9x  6x  1 Domain:  x x is any real number .

27.

( f  f )( x)  f ( f ( x))  f (3 x  1)  3(3x  1)  1  9x  3 1  9x  4

f ( x)  x 2

g ( x)  x 2  4

The domain of f is  x x is any real number . The domain of g is  x x is any real number . a.

( f  g )( x)  f ( g ( x))

Domain:  x x is any real number .

 f x2  4

( g  g )( x)  g ( g ( x))

 x2  4

   x  2 2

b.

 x4 Domain:  x x is any real number . f ( x)  x  1

2

 x 4  8 x 2  16 Domain:  x x is any real number .

 g x2

26.

( g  g )( x)  g ( g ( x))  g x2  4

 (3 x  1) 2

d.

( f  f )( x)  f ( f ( x))  f ( x  1)  ( x  1)  1  x2

Domain:  x x is any real number .

 

 f x2

c.

( g  f )( x)  g ( f ( x))  g ( x  1)  ( x  1) 2  4

The domain of g is  x x is any real number .

b.

2

The domain of f is  x x is any real number . a.

 f x2  4

( g  g )( x)  g ( g ( x))  g (2 x  4)  2(2 x  4)  4  4x  8  4  4 x  12 Domain:  x x is any real number .

f ( x)  3 x  1

( f  g )( x)  f ( g ( x))

( g  f )( x)  g ( f ( x))

   x   4  g x2

2 2

g ( x)  x 2  4

 x4  4 Domain:  x x is any real number .

The domain of f is  x x is any real number . The domain of g is  x x is any real number . 431

Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions

c.

( f  f )( x)  f ( f ( x))

d.

   x   f x

( g  g )( x)  g ( g ( x))

   2  2 x  3  3  2  4 x  12 x  9   3  g 2x2  3

2

2 2

 x4 Domain:  x x is any real number .

d.

( g  g )( x)  g ( g ( x))

4

 8 x 4  24 x 2  18  3

 x2  4

 4 2

29.

 x 4  8 x 2  16  4

f ( x)  x 2  1

f ( x) 

a.

g ( x)  2 x 2  3

 2x2  3

 1

 f 2x2  3

2

 4 x 4  12 x 2  9  1  4 x 4  12 x 2  10 Domain:  x x is any real number .

b.

( g  f )( x)  g ( f ( x))

b.

   2  x  1  3  2  x  2 x  1  3 2

 g x 1 2

2

4

2

 2 x4  4 x2  2  3  2 x4  4 x2  5 Domain:  x x is any real number .

c.

( f  f )( x)  f ( f ( x))

( f  g )( x)  f ( g ( x))

( g  f )( x)  g ( f ( x))  3   g   x 1  2  3 x 1 2( x  1)  3 Domain  x x  1

 f x2  1

2 x

2  f  x 3  2 1 x 3  2 x x 3x  2 x Domain  x x  0, x  2 .

The domain of g is  x x is any real number . ( f  g )( x)  f ( g ( x))

g ( x) 

 x x  0 .

The domain of f is  x x is any real number . a.

3 x 1

The domain of f is  x x  1 . The domain of g is

 x 4  8 x 2  20 Domain:  x x is any real number .

28.

2

 8 x 4  24 x 2  21 Domain:  x x is any real number .

 g x2  4

2

2

2

 x2  1  1  x4  2x2  1  1  x4  2x2  2 Domain:  x x is any real number .

432

Copyright © 2020 Pearson Education, Inc.


Section 5.1: Composite Functions

c.

( f  f )( x)  f ( f ( x))

c.

d.

30.

 2  2 2x x ( g  g )( x)  g ( g ( x))  g     2  x 2 x Domain  x x  0 .

f ( x) 

1 x3

g ( x)  

d.

2 x

The domain of f is  x x  3 . The domain of g is  x x  0 . a.

( f  g )( x)  f ( g ( x))

31.

 2  f    x 1 1    2  3x 2  3 x x x x  or 2  3x 3x  2  2 Domain  x x  0, x   . 3 

b.

( f  f )( x)  f ( f ( x))  1   f   x3 1 1   1 1  3x  9 3 x3 x3 x3  3x  10  10  Domain  x x   , x  3 . 3  

 3   f   x 1  3 3   3 3  ( x  1) 1 x 1 x 1 3( x  1)  4 x Domain  x x  1, x  4 .

( g  g )( x)  g ( g ( x))  2  g   x 2 2x   2 2  x x Domain  x x  0 .

f ( x) 

x x 1

g ( x)  

4 x

The domain of f is  x x  1 . The domain of g is  x x  0 . a.

( f  g )( x)  f ( g ( x))  4  f    x 4 4   4 x x    4 x 4 x 4  1 x x 4  4 x Domain  x x   4, x  0 .

( g  f )( x)  g ( f ( x))  1   g   x3  2( x  3) 2   1 1 x3   2( x  3)

b.

Domain  x x  3 .

( g  f )( x)  g ( f ( x))  x   g   x 1  4  x x 1  4( x  1)  x Domain  x x  0, x  1 .

433

Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions

c.

( f  f )( x)  f ( f ( x))

c.

 x   f   x 1  x x x  x 1  x 1  x 1 x x  ( x  1) 1 1 x 1 x 1 x 1 x Domain  x x  1 .

d.

32.

 x   f   x3 x x  x3  x3 4x  9 x 3 x3 x3 x  4x  9  9 Domain  x x  3, x    . 4 

( g  g )( x)  g ( g ( x))  4  g   x   4x 4   4 4  x x Domain  x x  0 .

f ( x) 

x x3

g ( x) 

d.

33.

 2  2 2x x ( g  g )( x)  g ( g ( x))  g     2  x 2 x Domain  x x  0 .

f ( x)  x

is  x x is any real number . a.

g is  x x  0 .

( f  g )( x)  f ( g ( x))  f  2 x  5   2 x  5  5 Domain  x x    . 2 

( f  g )( x)  f ( g ( x)) 2  f   x 2 2  x  x 2 2  3x 3 x x 2  2  3x

b.

( g  f )( x)  g ( f ( x))  g

Domain c.

 x  2 x 5

 x x  0 .

( f  f )( x)  f ( f ( x))  f

 x

x

 

 x1/ 2

 2  Domain  x x   , x  0  . 3   b.

g ( x)  2 x  5

The domain of f is  x x  0 . The domain of g

2 x

The domain of f is  x x  3 . The domain of a.

( f  f )( x)  f ( f ( x))

1/ 2

 x1/ 4  4x

( g  f )( x)  g ( f ( x))  x   g   x3 2  x x3 2( x  3)  x Domain  x x  3, x  0 .

Domain  x x  0 . d.

( g  g )( x)  g ( g ( x))  g  2 x  5  2(2 x  5)  5  4 x  10  5  4 x  15 Domain  x x is any real number .

434

Copyright © 2020 Pearson Education, Inc.


Section 5.1: Composite Functions

34.

f ( x)  x  2

b.

g ( x)  1  2 x

The domain of f is  x x  2 . The domain of g

 g x2  7

is  x x is any real number .

 x2  7  7

a.

( f  g )( x)  f ( g ( x))  f 1  2 x 

 x2  x

Domain  x x is any real number .

 1  2x  2  2 x  1

c.

1  Domain  x x    . 2 

b.

 x  2 d.

 f

 x  2

x2 2

Now,

36.

a.

x7

( f  g )( x)  f ( g ( x))

 x  2   x  2  4  f

2

 x24  x2 Domain  x x  2 .

The domain of g is  x x  7 . ( f  g )( x)  f ( g ( x))

g ( x)  x  2

The domain of g is  x x  2 .

The domain of f is  x x is any real number .

x7 7  0

f ( x)  x 2  4

g ( x)  x  7

x7 7

The domain of f is  x x is any real number .

( g  g )( x)  g ( g ( x))  g 1  2 x 

 f

 x7 

x7  7 x  7  49 x  56 Domain  x x  56 .

 1  2(1  2 x)  1 2  4x  4x 1 Domain  x x is any real number .

a.

( g  g )( x)  g ( g ( x)) g

x2 2 0

f ( x)  x 2  7

 7

 x 4  14 x 2  56 Domain  x x is any real number .

x2  2 x2 4 x6 Domain  x x  6 .

d.

 x2  7

2

 x 4  14 x 2  49  7

( f  f )( x)  f ( f ( x))

Now,

 x x  2 .

Domain

 f x2  7

 1 2 x  2

c.

( f  f )( x)  f ( f ( x))

( g  f )( x)  g ( f ( x)) g

35.

( g  f )( x)  g ( f ( x))

b.

( g  f )( x)  g ( f ( x))

 g x2  4

 x2  4  2

 x7 7 2

 x2  2

 x77 x Domain  x x  7 .

Domain  x x is any real number .

435

Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions

c.

( f  f )( x)  f ( f ( x))

2

 f x 4

 x2  4

b.

 4 2

 x 4  8 x 2  16  4  x 4  8 x 2  20 Domain  x x is any real number .

d.

x  5  2( x  1) x  5  2 x  2  x  5  3( x  1) x  5  3 x  3 3x  3 3x  3  or  2 x  8 2x  8 

( g  g )( x)  g ( g ( x)) g

Now,

 x  2 

x2 2

Now, 2 x  8  0, so x  4. Also, from the domain of f, we know x  1 . Domain of g  f :  x x  4, x  1  .

x2 2 0

x2  2 x2 4 x6 Domain  x x  6 .

37.

 x5 ( g  f )( x)  g ( f ( x))  g    x 1  x5  x  5  2  ( x  1) 2    x 1   x 1  x 5  x  5  3  ( x  1) 3   x 1  x 1 

f ( x) 

x5 x 1

g ( x) 

c.

 x5 ( f  f )( x)  f ( f ( x))  f    x 1   x 5  x5  5  ( x  1) 5   x 1    x 1  x 5 x5   1   1 ( x  1) x 1  x 1  x  5  5( x  1) x  5  5 x  5   x  5  1( x  1) x  5  x 1 4 x  10 2(2 x  5) 2x  5    x2 2x  4 2( x  2)

x2 x3

The domain of f is  x x  1 . The domain of g is

 x x  3 . a.

 x2 ( f  g )( x)  f ( g ( x))  f    x3  x  2  5  ( x  3) x2 5    x3   x3  x2  x  2  1  ( x  3) 1   x3  x3  x  2  5( x  3) x  2  5 x  15   x2 x3 x  2  1( x  3) 4 x  17 4 x  17 or   2x 1 2x 1 1 Now, 2 x  1  0, so x  . Also, from the 2 domain of g, we know x  3 .  1  Domain of f  g :  x x  , x  3  . 2  

Now, x  2  0, so x  2. Also, from the domain of f, we know x  1 . Domain of f  f :  x x  1, x  2 . d.

 x2 ( g  g )( x)  g ( g ( x))  g    x 3   x2  x2  2  ( x  3) 2   x 3   x3  x2 x2   3   3  ( x  3) x3  x3  x  2  2( x  3) x  2  2 x  6   x  2  3( x  3) x  2  3 x  9 3x  4 3x  4  or  2 x  11 2 x  11 11 Now, 2 x  11  0, so x  . Also, from the 2 domain of g, we know x  3 .  11  Domain of g  g :  x x  , x  3  . 2  

436

Copyright © 2020 Pearson Education, Inc.


Section 5.1: Composite Functions

38.

f ( x) 

2x 1 x2

g ( x) 

Now,  x  8  0, so x  8. Also, from the domain of f, we know x  2 . Domain of f  g :  x x  2, x  8 .

x4 2x  5

The domain of f is  x x  2  . The domain of g  5 is  x x   . 2 

a.

c.

 x4  ( f  g )( x)  f ( g ( x))  f    2x  5   x4  2  1 2x  5    x4 2 2x  5   x4     1 (2 x  5)  2  2x  5     x4   2  (2 x  5)   2x  5  2( x  4)  1(2 x  5)  x  4  2(2 x  5) 2x  8  2x  5  x  4  4 x  10 13 13  or  3x  14 3 x  14

Domain of f  f :  x x  2 .

14 . Also, from the 3 5 domain of g, we know x  . 2  5 14  Domain of f  g :  x x  , x  . 2 3  

Now, 3x  14  0, so x 

b.

 2x  1  ( f  f )( x)  f ( f ( x))  f    x2   2x 1  2  1 x2    2x 1 2 x2   2x 1    2  x  2   1 ( x  2)      2x 1   2  ( x  2)   x2  2(2 x  1)  1( x  2)  2 x  1  2( x  2) 4 x  2  x  2 3x   x 2x 1 2x  4 3 From the domain of f, we know x  2 .

d.

 x4  ( g  g )( x)  g ( g ( x))  g    2x  5  x4 4 2 x5   x4  2 5  2x  5   x4   4  (2 x  5)  2x  5      x4     5  (2 x  5)  2   2x  5   x  4  4(2 x  5)  2( x  4)  5(2 x  5) x  4  8 x  20  2 x  8  10 x  25 9 x  16 9 x  16  or  8 x  33 8 x  33

 2x 1  ( g  f )( x)  g ( f ( x))  g    x2  2x 1 4  x2  2x 1  2 5  x2   2x 1   4  ( x  2)  x2      2x 1    2  x  2   5  ( x  2)     2 x  1  4( x  2)  2(2 x  1)  5( x  2) 2x 1 4x  8  4 x  2  5 x  10 6x  9 6x  9  or  x  8 x 8

33 . Also, from the 8 5 domain of g, we know x  . 2  5 33  Domain of f  g :  x x  , x  . 2 8  

Now, 8 x  33  0, so x 

437

Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions 45. ( f  g )( x)  f ( g ( x)) 1   f  ( x  b)  a  1    a  ( x  b)   b a   xbb x ( g  f )( x)  g ( f ( x))  g  ax  b  1   (ax  b)  b  a 1  (ax) a x

1  1  39. ( f  g )( x)  f ( g ( x))  f  x   2  x   x 2   2  1 ( g  f )( x)  g ( f ( x))  g (2 x)  (2 x)  x 2 1  1  40. ( f  g )( x)  f ( g ( x))  f  x   4  x   x 4  4  1 ( g  f )( x)  g ( f ( x))  g (4 x)  (4 x)  x 4

 x   x  x ( g  f )( x)  g ( f ( x))  g  x   x  x

41. ( f  g )( x)  f ( g ( x))  f

3

3

3

3

3

3

42. ( f  g )( x)  f ( g ( x))  f  x  5   x  5  5  x ( g  f )( x)  g ( f ( x))  g  x  5   x  5  5  x

x 1 1 46. ( f  g )( x)  f ( g ( x))  f     1   x 1 x 1 x x 1 1 ( g  f )( x)  g ( f ( x))  g     1   x 1  x 1 x

43. ( f  g )( x)  f ( g ( x)) 1   f  ( x  6)  9   1   9  ( x  6)   6 9   x66 x ( g  f )( x)  g ( f ( x))  g 9x  6

47. H ( x)  (2 x  3) 4 Answers may vary. One possibility is f ( x)  x 4 , g ( x)  2 x  3

48. H ( x)  1  x 2

1   (9 x  6)  6  9 1  (9 x) 9 x

3

Answers may vary. One possibility is f ( x)  x3 , g ( x)  1  x 2 49. H ( x)  x 2  1 Answers may vary. One possibility is f ( x)  x , g ( x)  x 2  1

44. ( f  g )( x)  f ( g ( x)) 1   f  (4  x)  3   1   4  3  (4  x)  3    44 x x ( g  f )( x)  g ( f ( x))  g  4  3x  1   4  (4  3 x)  3 1  (3x ) 3 x

50. H ( x)  1  x 2 Answers may vary. One possibility is f ( x)  x , g ( x)  1  x 2 51. H ( x)  2 x  1

Answers may vary. One possibility is f ( x)  x , g ( x)  2 x  1

438

Copyright © 2020 Pearson Education, Inc.


Section 5.1: Composite Functions

When x  0 , ( f  g )(0)  68 .

52. H ( x)  2 x 2  3

Solving: 3(2  0  a) 2  7  68

Answer may vary. One possibility is f ( x)  x , g ( x)  2 x 2  3 53.

3

2

f ( x)  2 x  3x  4 x  1

3a 2  7  68 3a 2  75  0 3(a  5)(a  5)  0 a  5 or a  5

g ( x)  2

( f  g )( x)  f ( g ( x))  f (2)  2(2)3  3(2) 2  4(2)  1  16  12  8  1  11

( g  f )( x)  g ( f ( x))  g 2 x3  3 x 2  4 x  1  2

54.

55.

x 1 , x 1 x 1 ( f  f )( x)  f ( f ( x))  x 1  f   x 1  x 1 1  x 1 x 1 1 x 1 x 1 x 1 x 1  x  1  ( x  1) x 1 2x  x 1 2 x 1 2x x 1   x 1 2  x, x  1

57. a.

( f  g )( x)  f ( g ( x))  f (cx  d )  a (cx  d )  b  acx  ad  b

b.

( g  f )( x)  g ( f ( x))  g (ax  b)  c(ax  b)  d  acx  bc  d

c.

Since the domain of f is the set of all real numbers and the domain of g is the set of all real numbers, the domains of both f  g and g  f are all real numbers.

d.

( f  g )( x)  ( g  f )( x) acx  ad  b  acx  bc  d ad  b  bc  d Thus, f  g  g  f when ad  b  bc  d .

f ( x) 

f ( x)  2 x 2  5

58. a.

( f  g )( x)  f ( g ( x))  f (mx) a (mx)  b  c(mx )  d amx  b  cmx  d

b.

( g  f )( x)  g ( f ( x))  ax  b   g   cx  d   ax  b   m   cx  d  m(ax  b)  cx  d

c.

To find the domain of f  g , we first recognize that the domain of g is the set of all real numbers. This means that the only restrictions are those that cause zero in the denominator of the final result in part (a).

g ( x)  3 x  a

( f  g )( x)  f ( g ( x))  f (3 x  a )  2(3 x  a ) 2  5

When x  0 , ( f  g )(0)  23 . Solving: 2(3  0  a ) 2  5  23 2a 2  5  23 2a 2  18  0 2(a  3)(a  3)  0 a  3 or a  3

56.

f ( x)  3x 2  7

g ( x)  2 x  a

( f  g )( x)  f ( g ( x))  f (2 x  a )  3(2 x  a ) 2  7

439

Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions cmx  d  0 cmx  d d x cm

4 3 2 r r (t )  t 3 , t  0 3 3 2  V (r (t ))  V  t 3  3 

60. V (r ) 

 d  Thus the domain of f  g is  x x    . cm  

3

4 2 3  t  3 3  4  8     t9  3  27  32 9  t 81 32 Thus, V (t )  t 9 . 81 

To find the domain of g  f , we first recognize that the domain of f is  d  x x    and the domain of g is the set c  of all real numbers. Thus, the domain of  d g  f is also  x x    . c  d.

61.

( f  g )( x)  ( g  f )( x) amx  b m(ax  b)  cmx  d cx  d amx  b amx  bm  cmx  d cx  d (amx  bm)(cmx  d )  (amx  b)(cx  d ) Now, this equation will only be true if m  1 . Thus, f  g  g  f when m  1.

59. S (r )  4r 2

r (t ) 

N (t )  100t  5t 2 , 0  t  10 C ( N )  15, 000  8000 N

C ( N (t ))  C 100t  5t 2

 15, 000  8000 100t  5t 2

 15, 000  800, 000t  40, 000t 2

Thus, C (t )  15, 000  800, 000t  40, 000t 2 . 62. A(r )  r 2

r (t )  200 t

2 3 t , t0 3

 

A  r (t )   A 200 t   200 t

  40, 000t 2

Thus, A(t )  40, 000t .

2  S (r (t ))  S  t 3  3 

63.

2

2   4  t 3  3  4   4  t 6  9  16 6  t 9 16 Thus, S (t )  t 6 . 9

1 p   x  100, 0  x  400 4 1 x  100  p 4 x  4(100  p ) x  600 25 4(100  p)   600 25 2 100  p   600, 0  p  100 25 2 100  p  600, 0  p  100 . Thus, C ( p)  25 C

440

Copyright © 2020 Pearson Education, Inc.


Section 5.1: Composite Functions K C  F  .

1 p   x  200, 0  x  1000 5

64.

5  K  C  F      F  32    273 9  5   F  32   273 9 5 160  F  273 9 9 5 2297 5 F  2297  F or 9 9 9

1 x  200  p 5 x  5(200  p ) x  400 10 5(200  p )   400 10 1000  5 p   400, 0  p  200 10 1000  5 p  400, 0  p  200 . Thus, C ( p)  10 C

2

65. V  r h

b. 69. a.

h  2r 2

V (r )  r (2r )  2r

3

5  80   2297 9

 299.7 kelvins

f  p   p  200

b.

g  p   0.80 p

c.

 f  g  p   f  g  p     0.80 p   200  0.80 p  200 This represents the final price when the rebate is issued on the sale price.

1 66. V  r 2 h h  2r 3 1 2 V (r )  r 2 (2r )  r 3 3 3

67.

K  C  80   

 g  f  p   g  f  p    0.80  p  200 

f  x  = the number of Euros bought for x dollars;

a.

f  x   0.8101x

 0.80 p  160 This represents the final price when the sale price is calculated after the rebate is given.

b.

g  x   132.317 x

Appling the 20% first is a better deal since a larger portion will be removed up front.

c.

 g  f  x   g  f  x    g  0.8101x   132.317  0.8101x 

g  x  = the number of yen bought for x Euros

70. G (h)  15h ; N (G (h))  0.8G (h) ( N  G )(h)  (0.8)(15h)  12h

The net salary for working h hours is given by ( N  G )(h)  12h

 107.1900017 x

d.

 g  f 1000   107.190 1000 

71.

 107,190.0017 yen

68. a.

 f  g  ( x)  ( x 2  4)3  ( x 2  4)2  16( x 2  4)  16  x 6  11x 4  24 x  x 2 ( x 4  11x 2  24)

5 Given C  F    F  32  and 9 K  C   C  273 , we need to find

 x 2 ( x 2  3)( x 2  8) x 2  0 or ( x 2  3)  0 or ( x 2  8)  0 x0

x 3

x   8  2 2

The zeros are 0,  3, 3,  2 2, 2 2 .

441

Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions

72.

( g  f )( x)  g  f   x  

 f  g  ( x)  2( x  5)3  3( x  5)2  8( x  5)  12 3

 g   f  x   since f is odd

2

 2 x  27 x  112 x  147

 g  f  x 

 ( x  7)( x  3)(2 x  7) x  7  0 or x  3  0 or 2 x  7  0 x  7

 ( g  f )( x) So, g  f is even.

7 x 3

x  3

( f  g )( x)  f  g   x  

7 The zeros are 7,  , 3 . 2

73.

since g is even

 f  g  x   since g is even

f  x   ax  b; g ( x )  bx  a

 f  g  x   since f is odd

f (1)  8; f ( g (20))  g ( f (20))  14

 ( f  g )( x)

We will solve as a system of equations. The first equation is f 1  a (1)  b  a  b  8 . The

So, f  g is even. 76. ( f  g )( x)  f ( g ( x))  f (ax  b)

second is:

 f (20b  a)   g (20a  b)  14

 (ax  b) 2  5(ax  b)  c

a(20b  a )  b  b(20a  b)  a  14 2

 a 2 x 2  2abx  b 2  5ax  5b  c

2

20ab  a  b  20ab  b  a  14

 a 2 x 2   2ab  5a  x  b 2  5b  c

a 2  b  b 2  a  14

We know ( f  g )( x)  4 x 2  22 x  31 , so

Now we substitute from the first equation, a  8b.

a 2  4, 2ab  5a  22, b 2  5b  c  31 . Now,

(8  b) 2  b  b 2  (8  b)  14 2

a 2  4  a  2 or a  2. If a = 2, then 2(2)b  5(2)  22 4b  10  22 4b  12 b3

2

64  16b  b  b  b  8  b  14 14b  70 b5

Substituting back into the first equation to solve for a gives a  3 . So the product is:

(3) 2  5(3)  c  31 9  15  c  31 c7 If a  2 : 2(2)b  5(2)  22 4b  10  22 4b  32 b  8 (8) 2  5(8)  c  31 64  40  c  31 c7 So a  2, b  3, c  7 or a  2, b  8, c  7

ab  (3)(5)  15

74. Since f and g are odd functions, f   x    f  x 

and g   x    g  x  Then ( f  g )( x)  f  g   x    f   g  x   f  g  x 

since g is odd since f is odd

 ( f  g )( x) So, f  g is odd.

75. Since f is an odd function, we know that f   x    f  x  . Since g is an even function, g   x   g  x  . Also,

442

Copyright © 2020 Pearson Education, Inc.


Section 5.1: Composite Functions ( f  g )( x)  3 x  8  x  5  2 x  13

77. h(2)  2  7  9  3 1 f (h(2))  g (3)  3 1 f ( g (h(2))  f   3 1  6    7  2  7  5 3 ( f  g  h)(2)  5

78. From

Domain: all real numbers ( f  g )( x)  (3 x  8)( x  5)  3 x 2  7 x  40

Domain: all real numbers  f 3x  8  g  ( x)  x  5

x  3, x  3 .

From ( g  h)( x) 

Domain:  x | x  5

x3 x3 2

,

80. 2 x  5 x  2  0 (2 x  1)( x  2)  0

x3 2  0

2 x  1  0 or 1 x 2 1 x 4

x3  2 x3  4 x 1

From ( f  g  h)( x) 

x3 x3 2

x3 4

1 x3 4 x32

,

x2 x4

1  The real zeros are  , 4 4 

4 0

x 2  6 x  5 ( x  5)( x  1)  x3 x3 where the domain is  x | x  3

 x  3  2  0

81. R ( x) 

5 x3  8 25( x  3)  64 25 x  75  64 25 x  11 11 x 25 So the domain of ( f  g  h)( x) is

The degree of the numerator in lowest terms is n  2 . The degree of the denominator in lowest terms is m  1 . Since n  m , There is no horizontal asymptote. The denominator in lowest terms is zero at x  3 , so x  3 is a vertical asymptote. x9 x  3 x  6x  5

11    x | x  3, x   , x  1 or 25   11   11    3,  25     25 ,1  1,   .    

79.

x 2 0

2

 x 2  3x

9x  5   9 x  27 

f  x   3 x  8; g ( x)  x  5

32 32 R ( x)  x  9  , x3 x3 Thus, the oblique asymptote is y  x  9 .

( f  g )( x)  3 x  8  x  5  4x  3

Domain: all real numbers

443

Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions

82.

b 2  3 2 2a  3 1 f (3)   (3) 2  2(3)  5  8 3 The vertex is (3,8) . The axis of symmetry is x  3 and since a is negative the graph is concave down.

86.

x

 52  (15) 2  250  25 10  5 10

87.

83. x 2  6 x  7  0 We graph the function f ( x)  x 2  6 x  7 . The intercepts are y-intercept: f (0)  7

x-intercepts:

(2  (3)) 2  (7  8) 2

x2  6x  7  0 ( x  7)( x  1)  0 x  7, x  1

88.

3(c  1) 3( x  1) 3 3   x  c  x  1)(c  1) ( 1)( 1) ( x 1 c 1  xc xc 3(c  1)  3( x  1) 3c  3 x ( x  1)(c  1) ( x  1)(c  1)   xc xc 1 3(c  x) 3    x  c ( x  1)(c  1) ( x  1)(c  1)

 x3 (9  x 2 )  x(9  x 2 )

1

1

1 2  2 x (9  x 2 ) 2  0

2 ( x 2  2 x (9  x 2 ))  0

 x(9  x 2 )

1

 x 2 (9  x 2 )

2 (3 x 2  18 x )  0 1

 x 2  0 or (9  x 2 ) x0

2 (  x  18)  0

1

2  0 or ( 3 x 2  18)  0

x  3

3 x 2  18  x   6

But substituting x  3 into the original equation gives an undefined situation so the solution set is

0,  6, 6

The graph is below the x-axis for 1  x  7 . Since the inequality is inclusive, the solution set is  x  1  x  7 or, using interval notation,

 1, 7  . 84.

Section 5.2

a 2  b2  c2 (1) 2  b 2  22

1.

2

1 b  4 b2  3

2. The function f ( x)  x 2 is increasing on the

b 3

85.

 x2  x2 f   4 2  x22  x . 4    4 

interval  0,   . It is decreasing on the interval

 , 0 .

x 2  3 x  7  2 x  3 x2  5x  4  0

3. The function is not defined when x 2  3 x  18  0 . Solve: x 2  3x  18  0 ( x  6)( x  3)  0 x  6 or x  3 The domain is {x | x  6, x  3} .

( x  4)( x  1)  0 x  4, x  1 g (4)  2(4)  3  11 g (1)  2(1)  3  5

The points of intersection are: (4,11), (1,5) . 444

Copyright © 2020 Pearson Education, Inc.


Section 5.2: One-to-One Functions; Inverse Functions

4.

1 1 x 1 x 1  x  x x2  x 2 1 1 x 1 1  x 2 2 x2 x x x2

19. The function is one-to-one because there are no two distinct inputs that correspond to the same output. 20. The function is one-to-one because there are no two distinct inputs that correspond to the same output.

2  1 x  x       x   1  x 2 

 x2  1 x        x   (1  x)(1  x)  x  ; x  0,1, 1 (1  x)

5.

21. The function f is one-to-one because every horizontal line intersects the graph at exactly one point. 22. The function f is one-to-one because every horizontal line intersects the graph through at most one point.

f  x1   f  x2 

23. The function f is not one-to-one because there are horizontal lines (for example, y  1 ) that intersect the graph at more than one point.

6. one-to-one 7. 3 8. y  x 9.

24. The function f is not one-to-one because there are horizontal lines (for example, y  1 ) that intersect the graph at more than one point.

 4,  

25. The function f is one-to-one because every horizontal line intersects the graph through at most one point.

10. True 11. a

26. The function f is not one-to-one because the horizontal line y  2 intersects the graph at more than one point.

12. d 13. The function is one-to-one because there are no two distinct inputs that correspond to the same output.

27. Graphing the inverse:

14. The function is one-to-one because there are no two distinct inputs that correspond to the same output. 15. The function is not one-to-one because there are two different inputs, 20 Hours and 50 Hours, that correspond to the same output, $200. 16. The function is not one-to-one because there are two different inputs, John and Chuck, that correspond to the same output, Phoebe. 17. The function is not one-to-one because there are two distinct inputs, 2 and 3 , that correspond to the same output. 18. The function is one-to-one because there are no two distinct inputs that correspond to the same output.

445

Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions 28. Graphing the inverse:

32. Graphing the inverse:

29. Graphing the inverse:

33.

f ( x)  3x  4;

y=x

1 g ( x)  ( x  4) 3

1  f  g ( x)   f  ( x  4)  3  1    3  ( x  4)   4 3   ( x  4)  4 x g  f ( x)   g (3 x  4) 1   (3 x  4)  4 3 1  (3 x)  x 3

30. Graphing the inverse:

Thus, f and g are inverses of each other. 34.

f ( x)  3  2 x;

1 g ( x)   ( x  3) 2

 1  f  g ( x)   f   ( x  3)   2   1   3  2   ( x  3)   2  x  3  (  3) x

31. Graphing the inverse:

g  f ( x)   g (3  2 x) 1  (3  2 x)  3 2 1   ( 2 x) 2 x 

Thus, f and g are inverses of each other.

446

Copyright © 2020 Pearson Education, Inc.


Section 5.2: One-to-One Functions; Inverse Functions

35.

f ( x)  4 x  8;

g ( x) 

x 2 4

38.

f  g ( x)   f

x  f  g ( x)   f   2  4   x   4  2  8 4   x 88 x

x

 ( x  2)  2  x22 x Thus, f and g are inverses of each other.

39.

1 f ( x)  ; x

1 x

x 1 1 g  f ( x)   g     1   x 1 1 x   x Thus, f and g are inverses of each other. 40.

f ( x)  x;

g ( x)  x

f  g ( x)   f  x   x

1 (2 x  6)  3  x  3  3 2 x

g  f ( x)   g  x   x

Thus, f and g are inverses of each other.

Thus, f and g are inverses of each other. g ( x)  3 x  8

 x  8   x  8 8 3

3

g ( x) 

x 1 1 f  g ( x)   f     1   x 1 1 x x

1 x 3 2

f  g ( x)   f

2

g  f ( x)   g (2 x  6)

f ( x)  x3  8;

g  f ( x)   g ( x  2) 2

1  f  g ( x)   f  x  3  2  1   2  x  3  6  x  6  6 2  x

37.

2

2

Thus, f and g are inverses of each other. g ( x) 

 x  2

 x  2  2   x

x

f ( x)  2 x  6;

g ( x)  x  2

g  f ( x)   g (4 x  8) 4x  8  2 4  x22

36.

f ( x)  ( x  2) 2 , x  2;

3

 x 88 x g  f ( x)   g ( x3  8)  3 ( x3  8)  8  3 x3 x

Thus, f and g are inverses of each other.

447

Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions

41. f ( x) 

2x  3 4x  3 ; g ( x)  x4 2 x

42.

f ( x) 

x 5 ; 2x  3

g ( x) 

3x  5 1 2x

 4x  3  f  g ( x)   f  , x  2  2 x   4x  3  2 3 2 x    4x  3 4 2 x   4x  3    2  2  x   3  (2  x)      4x  3   4  (2  x )   2 x  2(4 x  3)  3(2  x)  4 x  3  4(2  x) 8 x  6  6  3x  4x  3  8  4x 5x  5 x

1  3x  5  f  g ( x)   f  , x  2  1 2x  3x  5 5  1 2x  3x  5  2 3  1 2x   3x  5   5  (1  2 x)   x 1 2      3x  5    2  1  2 x   3  (1  2 x)     3 x  5  5(1  2 x)  2(3 x  5)  3(1  2 x ) 3 x  5  5  10 x  6 x  10  3  6 x 13 x  13 x

 2x  3  g  f ( x)   g   , x  4  x4   2x  3  4 3 x4    2x  3 2 x4   2x  3    4  x  4   3  ( x  4)     2x  3   2  ( x  4) x4   4(2 x  3)  3( x  4)  2( x  4)  (2 x  3) 8 x  12  3 x  12  2x  8  2x  3 5x  5 x Thus, f and g are inverses of each other.

3  x5  g  f ( x)   g  , x   2  2x  3   x5  3 5 2x  3     x5  1 2   2x  3    x5    3  2 x  3   5  (2 x  3)       x  5  1  2  2 x  3   (2 x  3)    3( x  5)  5(2 x  3)  1(2 x  3)  2( x  5) 3x  15  10 x  15  2 x  3  2 x  10 13 x  13 x Thus, f and g are inverses of each other.

43. a.

f ( x)  3 x y  3x x  3 y Inverse x y 3 1 f 1 ( x)  x 3

448

Copyright © 2020 Pearson Education, Inc.


Section 5.2: One-to-One Functions; Inverse Functions

f ( x)  4 x  2 y  4x  2 x  4y  2 4y  x  2 x2 y 4 x 1 y  4 2 x 1 1 f ( x)   4 2

45. a.

1  1  Verifying: f f 1 ( x)  f  x   3  x   x 3   3  1 f 1  f ( x)   f 1 (3x)  (3x)  x 3

b. domain of f  range of f 1  all real numbers c/ range of f  domain of f 1  all real numbers c.

Inverse

Verifying:

 x 1  x 1 f f 1 ( x)  f     4     2 4 2 4 2  x22  x 4x  2 1 f 1  f ( x)   f 1  4 x  2    4 2 1 1  x   x 2 2 b. domain of f  range of f 1  all real numbers range of f  domain of f 1  all real numbers

f ( x)   4 x y   4x x   4 y Inverse x y 4 1 1 f ( x)   x 4 Verifying:  1   1  f f 1 ( x)  f   x    4   x   x 4    4  1 f 1  f ( x)   f 1 ( 4 x)   ( 4 x)  x 4 b. domain of f  range of f 1  all real numbers

44. a.

c.

f ( x)  1  3x y  1  3x x  1 3y 3y  1 x 1 x y 3 1 x 1 f ( x)  3

46. a.

range of f  domain of f 1  all real numbers

c.

Inverse

Verifying: 1 x  1 x  f f 1 ( x )  f    1  3  3    3   1  (1  x)  x

f 1  f ( x)   f 1 (1  3x) 

449

Copyright © 2020 Pearson Education, Inc.

1  (1  3 x) 3 x  x 3 3


Chapter 5: Exponential and Logarithmic Functions

f ( x)  x3  1

48. a.

y  x3  1

b. domain of f  range of f 1  all real numbers

x  y3  1

range of f  domain of f 1  all real numbers

Inverse

3

y  x 1

c.

y  3 x 1 f 1 ( x )  3 x  1

Verifying:

f f 1 ( x )  f

 x  1   x 1  1 3

3

3

 x 1 1  x

f

1

 f ( x)   f 1  x3  1  3  x3  1  1  3 x3  x

b. domain of f  range of f 1  all real numbers

f ( x)  x3  1

47. a.

range of f  domain of f 1  all real numbers

3

y  x 1 x  y3  1

c.

Inverse

y3  x  1 y  3 x 1 f

1

( x)  3 x  1

Verifying: f f 1 ( x)  f

 x  1   x  1 1 3

3

 x 1 1  x

 

3

f 1  f ( x)   f 1 x3  1  3 x3  1  1  3 x3  x f ( x )  x 2  4, x  0

49. a.

b. domain of f  range of f 1  all real numbers

y  x 2  4, x  0

range of f  domain of f 1  all real numbers

x  y 2  4, y  0

c.

Inverse

2

y  x  4, x  4 y  x  4, x  4 f

1

( x)  x  4, x  4

 x 4   x 4  4

Verifying: f f 1 ( x)  f

2

 x44  x

f 1  f ( x)   f 1 x 2  4 

 x  4  4 2

 x2  x  x, x  0

450

Copyright © 2020 Pearson Education, Inc.


Section 5.2: One-to-One Functions; Inverse Functions

b. domain of f  range of f 1   x | x  0

c.

range of f  domain of f 1   x | x  4

c.

f ( x) 

51. a.

4 x 4 x y xy  4 4 y x 4 f 1 ( x )  x Verifying: y

f ( x )  x 2  9, x  0

50. a.

y  x 2  9, x  0 x  y 2  9, y  0

Inverse

y 2  x  9, x  9 y  x  9, x  9 f

1

( x)  x  9, x  9

 x 9   x 9 9

Verifying: f f 1 ( x)  f

2

f 1  f ( x)   f 1 x 2  9

Inverse

4 4 x f f 1 ( x)  f     4     x  x 4 4 x 4 4  x f 1  f ( x)   f 1     4     x x 4 4 x b. domain of f  range of f 1   x | x  0

 x 99 x

4 x

 x  9  9 2

range of f  domain of f 1   x | x  0

 x2  x

c.

 x, x  0

1 b. domain of f  range of f   x | x  0 range of f  domain of f 1   x | x  9

451

Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions

a. f ( x)  

52.

3 x 3 x y xy  3 3 y x 3 f 1 ( x)   x Verifying:

Verifying:

3 x

1  2x  1  f f 1 ( x)  f    x  2x 1  2 x 1 x x   2x 1 2x  2x  1   2 x   x  x  x 1  1  2  1  1   x2 f 1  f ( x)   f 1    1  x2 x2   1    2  x  2   1 ( x  2)      1    ( x  2)  x2 2  ( x  2) x   x 1 1 domain of f  range of f 1   x | x  2 b. range of f  domain of f 1   x | x  0

y

Inverse

3  3  x f f 1 ( x)  f       3      x 3  x  3  x 3  3  x f 1  f ( x)   f 1       3      x 3  x  3  x b. domain of f  range of f 1   x | x  0 range of f  domain of f 1   x | x  0

c.

c.

53.

a. f ( x) 

1 x2

54.

1 x2 1 x Inverse y2 xy  2 x  1 xy  2 x  1 2x 1 y x x 1 2 f 1 ( x)  x y

4 x2 4 y x2 4 x Inverse y2 x( y  2)  4 xy  2 x  4 xy  4  2 x 4  2x y x 4  2x 4 1 or f 1  x    2 f ( x)  x x

a.

f ( x) 

452

Copyright © 2020 Pearson Education, Inc.


Section 5.2: One-to-One Functions; Inverse Functions

Verifying:

Verifying:

4  4  2x  f f 1 ( x)  f    x  4  2x  2 x 4 x 4x 4x    x 4  2x  2x 4  4  2x   x 2    x   4  4  2  4    x2  f 1  f ( x)   f 1   4  x2 x2   4   4  2  x  2   ( x  2) 4( x  2)  2(4)     4 4     ( x  2)  x2 4x  8  8 4x   x 4 4 b. domain of f  range of f 1   x | x  2

2  2  3x  f f 1 ( x)  f    x  3  2  3x x 2 x 2x   2  3x  3x  2  3x  3 x x   2x  x 2

f

range of f  domain of f 1   x | x  0

c.

1

 2  2  3   3 x   f ( x)   f 2 3 x   2   2  3  3  x   (3  x)     2    (3  x)  3 x  2(3  x )  3(2) 6  2 x  6   2 2 2x  x 2 1 

2     3 x 

b. domain of f  range of f 1   x | x  3 range of f  domain of f 1   x | x  0

56.

2 3 x 2 y 3 x 2 x Inverse 3 y x(3  y )  2 3 x  xy  2 xy  2  3 x 2  3x y x 2  3x 1 f ( x)  x

55. a.

f ( x) 

4 2 x 4 y 2 x 4 x Inverse 2 y x(2  y )  4 2 x  xy  4 xy  2 x  4

a. f ( x ) 

2x  4 x 4 y  2 x 4 f 1 ( x)  2  x y

453

Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions

Verifying:

f f

1

 3x  f 1  f ( x)   f 1    x2  3x   2  3 x   ( x  2) 2      x  2    x  2     3x  3x  3  3  ( x  2)  x2  x2  6 x 6 x   x 3 x  3 x  6 6

4 4  ( x)  f  2    4 x   22  x  x 4 4    4  x 4 4 4 22 x x

4  4  f 1  f ( x)   f 1    2 4    2 x    2 x  2 x  2  4   2  2  x  4   22 x  x

b. domain of f  range of f 1   x | x  2 range of f  domain of f 1   x | x  3 2x x 1 2x y x 1 2y x y 1 x  y  1  2 y

b. domain of f  range of f 1   x | x  2

range of f  domain of f 1   x | x  0 3x x2 3x y x2 3y x y2 x  y  2  3 y

57. a. f ( x) 

Inverse

xy   x  2 y xy  2 y  x y  x  2  x

Inverse

x x2 x 1 f  x  x2 y

xy  2 x  3 y xy  3 y  2 x y  x  3  2 x

Verifying:

2 x x 3 2 x 1 f  x  x 3 y

 x  2   x   x2   f f 1 ( x)  f   x  x2 1 x2   x   2  x  2   ( x  2)      x   1 ( x  2)   x2  2 x  x  ( x  2) 2 x  2 x

Verifying:  2 x  f f 1 ( x)  f    x 3  2 x   3  2 x   ( x  3) 3     x 3    x 3     2 x 2 x   2   2  ( x  3) x 3  x3  6 x 6 x   x 2 x  2 x  6 6

f ( x)  

58. a.

454

Copyright © 2020 Pearson Education, Inc.


Section 5.2: One-to-One Functions; Inverse Functions

f

1

2x x 1  f ( x)   f    x 1   2x  2 x 1  2x    ( x  1) x 1     2x   2  ( x  1)   x 1  2 x  2 x  2 x  2 2 x  2 x 1  2 x 

f

range of f  domain of f 1   x | x  2 2x 3x  1 2x y 3x  1 2y Inverse x 3 y 1 3xy  x  2 y 3xy  2 y  x y (3x  2)  x x y 3x  2 x 1 f ( x)  3x  2 f ( x) 

3x  1 x 3x  1 y x 3y 1 x Inverse y xy  (3 y  1) xy  3 y  1 xy  3 y  1 y ( x  3)  1 1 y x3 1 1 f ( x)  x3 f ( x)  

60. a.

Verifying:  x  2  x    3x  2  f f 1 ( x)  f    3x  2  3  x   1    3x  2    x   2  3 x  2   (3x  2)       x    3  3 x  2   1 (3 x  2)     2x 2x   x 3x  (3 x  2) 2

2x  2x  1 3 x  f ( x)   f    3x  1  3  2 x   2    3x  1   2x    (3 x  1)  3x  1     2x    3  3x  1   2  (3 x  1)     2x  3(2 x)  2(3x  1) 2x 2x   x 6x  6x  2 2

1  b. domain of f  range of f 1   x | x   3  2  range of f  domain of f 1   x | x   3 

b. domain of f  range of f 1   x | x  1

59. a.

1

Verifying:  1  f f 1 ( x)  f    x3 1   3 3  1  1 x 3      x3 1 1     x 3 x 3     3  x3   1  x 3    1  3  ( x  3) x

455

Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions

 3x  4  3 4 x 3  4 2x  3     1 1 f  f ( x)   f    2 x  3  2  3x  4   3    2x  3    3x  4    3  2 x  3   4  (2 x  3)       3x  4    2  2 x  3   3  (2 x  3)     3(3 x  4)  4(2 x  3)  2(3 x  4)  3(2 x  3) 9 x  12  8 x  12 17 x   x 6x  8  6x  9 17

 3x  1  f 1  f ( x)   f 1    x  1 1   3x  1  3x  1  3  3 x  x  1 x x   3x  1  3x  3x  1   3 x   x  x  x 1

b. domain of f  range of f 1   x | x  0 range of f  domain of f 1   x | x  3 3x  4 61. a. f ( x)  2x  3 3x  4 y 2x  3 3y  4 x 2y  3 x(2 y  3)  3 y  4 2 xy  3 x  3 y  4 2 xy  3 y  3x  4 y (2 x  3)  3x  4 3x  4 y 2x  3 x4 3 f 1 ( x)  2x  3 Verifying:

3  b. domain of f  range of f 1   x | x   2  3  range of f  domain of f 1   x | x   2 

Inverse

 3x  4  3 4  3x  4   2x  3  f f 1 ( x)  f     2 x  3  2  3x  4   3    2x  3    3x  4    3  2 x  3   4  (2 x  3)       3x  4     3  (2 x  3)  2   2x  3   3(3 x  4)  4(2 x  3)  2(3 x  4)  3(2 x  3) 9 x  12  8 x  12 17 x   x 6x  8  6x  9 17

2x  3 x4 2x  3 y x4 2y 3 x Inverse y4 x( y  4)  2 y  3 xy  4 x  2 y  3 xy  2 y   4 x  3 y ( x  2)   (4 x  3)  (4 x  3) 4 x  3 y  2 x x2 4  3 x f 1 ( x)  2 x

a.

62.

f ( x) 

Verifying:  4x  3  2 3 4 3 x  2 x     1 f f ( x)  f    4x  3  2 x  4 2 x 2(4 x  3)  3(2  x)  4 x  3  4(2  x) 8 x  6  6  3x  4x  3  8  4x 11x  11 x

456

Copyright © 2020 Pearson Education, Inc.


Section 5.2: One-to-One Functions; Inverse Functions  2x  3  f 1  f ( x)   f 1    x4   2x  3  4 3 x4    2x  3 2 x4 4  2 x  3  3  x  4   2  x  4    2 x  3

 2x  3  2  3  x2  2x  3 2 x2   2x  3     2  x  2   3  ( x  2)      2x  3   2  ( x  2)   x2  2(2 x  3)  3( x  2)  2 x  3  2( x  2) 4 x  6  3 x  6  x   x 1 2x  3  2x  4

 2x  3  f 1  f ( x)   f 1    x2 

8 x  12  3 x  12 2x  8  2x  3 11x  11 x 

b. domain of f  range of f

1

  x | x  4

range of f  domain of f

1

  x | x  2

b. domain of f  range of f 1   x | x  2 range of f  domain of f 1   x | x  2 3 x  4 x2 3 x  4 y x2 3 y  4 x y2 x( y  2)  3 y  4 xy  2 x  3 y  4 xy  3 y  2 x  4 y ( x  3)  2 x  4 2x  4 y x3 2x  4 1 f ( x)  x3

Verifying:

Inverse

Verifying:

  2x  3  2 3   2x  3   x2  f f 1 ( x)  f     2x  3  x2  2 x2    2x  3    2  x  2   3  ( x  2)        2x  3   2  ( x  2)   2 x   2(2 x  3)  3( x  2)  2 x  3  2( x  2) 4 x  6  3x  6  x   x  2 x  3  2 x  4 1

f ( x) 

64. a.

2x  3 63. a. f ( x)  x2 2x  3 y x2 2y  3 x Inverse y2 xy  2 x  2 y  3 xy  2 y   2 x  3 y ( x  2)   2 x  3  2x  3 y x2  2x  3 f 1 ( x)  x2

 2x  4  f f 1 ( x)  f    x3   2x  4  3  4 x3    2x  4 2 x3 3(2 x  4)  4( x  3)  2 x  4  2( x  3)  6 x  12  4 x  12  2x  4  2x  6 10 x  10 x

457

Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions

Verifying:

 3 x  4  f 1  f ( x)   f 1    x2   3x  4  2 4 x2    3 x  4 3 x2 2(3 x  4)  4( x  2)  3 x  4  3( x  2)  6x  8  4x  8  3 x  4  3 x  6 10 x  10 x

b. domain of f  range of f

1

2

 2    4  2   1 2x  1 f f ( x)  f   2  1  2x   2  2   1  2x   4  4  4  (1  2 x) 4  1  2x   x 1  2   4     4  2   2   (1  2 x)  1 2x    1 2x   4  4(1  2 x) 4  4  8 x 8 x    x 2(4) 8 8

 x2  4  f 1  f ( x)   f 1   2   2x 

  x | x  2

range of f  domain of f 1   x | x  3

65.

a.

f ( x)  y x

x2  4 2

2x x 4 2

2 x2 y2  4

, y0

Inverse

 x  x, x  0

1 2 1 2 2 x 2 xy  y  4, 2 1 2 y  2 x  1  4, x 2 1 2 y 1  2 x   4, x 2 4 1 y2  x , 1 2x 2 4 1 y , x 1 2x 2 2 1 y , x 2 1 2x 2 1 f 1  x   , x 2 1 2x 2 xy 2  y 2  4,

 x2  4  1 2 2   2x  2

 4 x2  4 11 2 1 2 x x 2 2 |x|    2 2 2 4 2 |x| x

, x0

, x0

2 y2

2

2

x

b. domain of f  range of f 1   x | x  0 1  range of f  domain of f 1   x | x   2 

66. a.

f ( x)  y x

x2  3 3x 2 x2  3 3x 2 y2  3

,

x0

,

x0

,

y0

3 y2

1 3 1 2 2 3xy  y  3, x 3 1 y 2  3 x  1  3, x 3 3 1 2 y  , x 3x  1 3 3 1 y , x 3x  1 3 3 1 f 1  x   , x 3x  1 3 3 xy 2  y 2  3,

458

Copyright © 2020 Pearson Education, Inc.

x

Inverse


Section 5.2: One-to-One Functions; Inverse Functions

Verifying:

f 1  f ( x)   f 1 x 3  4

2

 3    3 3 x  1    3  1 f f ( x)  f    2   3x  1  3  3    3x  1   3  3  3  (3 x  1) 3  3 1 x    3x  1    3    3  3   3   (3x  1)  3x  1    3x  1   3  3(3x  1)  3(3) 3  9x  3  9 9x  9 x

3 x2  3 1 x2

b. domain of f  range of f 1   x | x  0 range of f  domain of f 1   x | x  4

68. a.

3

f ( x)  x 2  5 3

y  x2  5 3

x  y2  5 y  x5 2

y  ( x  5) 3 , x  5 f 1 ( x)  ( x  5) 3 , x  5 2

Verifying: f f 1 ( x)  f ( x  5) 3 2

 ( x  5)

2 3

 5 3 2

 x  5  5  x,since x  5

3 3 1  2 1 x

f

1

 x  5    x  5  5   x   x,since x  0

 f ( x)   f

1

3 2

2 3

3 2

3 2

2 3

b. domain of f  range of f 1   x | x  0 range of f  domain of f 1   x | x  5

69. a.

1  range of f  domain of f 1   x | x   3 

f ( x)  3 x5  2 y  3 x5  2 x  3 y5  2

2

f ( x)  x 3  4

5

Inverse

3

y  x 2

2 3

y  x 4 2 3

x  y 4

y  5 x3  2

Inverse

f 1 ( x)  5 x3  2

2

y3  x  4 3

y  ( x  4) 2 , x  4

3 2

( x)  ( x  4) , x  4

Inverse

3 2

b. domain of f  range of f 1   x | x  0

f

3 2

3 2

2

 x2  3   3    x 2 3  3  2 x  x  x, x  0

1

2 3

   x,since x  0

67. a.

 x  4  4

 x3

 x2  3  3 f 1  f ( x)   f 1   2   2  x 3  3x  1 3 2   3x  

2

Verifying: f f 1 ( x)  f ( x  4) 2

3

3

 ( x  4) 2

 x  2   x  2  2

Verifying: f f 1 ( x)  f

5

3

3

5

3

 4

5

 3 x3  2  2  3 x3  x

2 3

 x44  x

459

Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions

f 1  f ( x)   f 1 3 x5  2 5

2

 x  2  2 3

 19  (3 x  2  1)  1  2

3

5

5

2

5

 19  (3 x  2   2

5

 5 x 2 2  x  x

b. domain of f  range of f

1

 all real numbers

range of f  domain of f

1

 all real numbers

70. a.

Verifying: f f 1 ( x)  f 3 x  2  1

 19  (9( x  2)   2  ( x  2)  2  x f

1

 f ( x) 

 f 1 19 ( x  1) 2  2

f ( x )  5 x3  13

3

 ( x  1)  2   2  1

y  5 x3  13

3

1 ( x  1) 2  1  3 13 9

x

3

y  13

5

1 9

2

  ( x  1)  1

 ( x  1)  1  x,since x  1

Inverse

y  x  13

b. domain of f  range of f 1   x | x  1

y  3 x5  13

range of f  domain of f 1   x | x  2

3

5

f 1 ( x)  3 x5  13

Verifying: f f

1

5

5

3

5

y  2 x3 5 x  2 y 3 5

3

f 1  f ( x)   f 1 5 x3  13 3

2

 x5    y3  2  2

 x5 y   3, x  5  2 

 x  13   2 5

5

3

f

3

 3 x 3  13  13  x3  x

b. domain of f  range of f 1  all real numbers range of f  domain of f

1

1

  x  5 2  f f 1 ( x)  f    3   2    

 all real numbers

f ( x )  19 ( x  1)  2 Inverse

2

 x5 2   5  2   x5  2 5  2   ( x  5)  5  x,since x  5

x  2  19 ( y  1) 2 9( x  2)  1  y y  3 x  2  1, x  2 f

1

  x  5 2   2   3  3  5   2    

y  19 ( x  1) 2  2 x  19 ( y  1) 2  2

2

 x5 ( x)     3, x  5  2 

Verifying:

2

71. a.

Inverse

x5  2 y3

 5 x5  13  13  5 x5  x

f ( x)  2 x  3  5

72. a.

 x  13    x  13   13

( x)  f

3

( x )  3 x  2  1, x  2

460

Copyright © 2020 Pearson Education, Inc.


Section 5.2: One-to-One Functions; Inverse Functions

f 1  f ( x)   f 1 2 x  3  5

78. Since the domain of a function is the range of the inverse, and the range of the function is the domain of the inverse, we get the following for f 1 :

2

 2 x 3 5 5  3    2  

Domain: 5,  

2

79. Since the domain of a function is the range of the inverse, and the range of the function is the domain of the inverse, we get the following for g 1 :

 2 x3     3 2    ( x  3)  3  x

Domain:  0,  

b. domain of f  range of f 1   x | x  3 range of f  domain of f 1   x | x  5

73. a.

Because the ordered pair (1, 0) is on the graph, f (1)  0 .

81. Since f  x  is increasing on the interval  0,5  , it is

one-to-one on the interval and has an inverse, f 1  x  . In addition, we can say that f 1  x  is

Because the ordered pair (0,1) is on the graph,

increasing on the interval  f  0  , f  5   .

d. Because the ordered pair (1, 2) is on the graph,

82. Since f  x  is decreasing on the interval  0,5  , it is

f 1 (2)  1 .

one-to-one on the interval and has an inverse, f 1  x  . In addition, we can say that f 1  x  is

 1 Because the ordered pair  2,  is on the  2 1 graph, f (2)  . 2

decreasing on the interval  f (5), f (0) . 83.

b. Because the ordered pair (1, 0) is on the graph, f (1)  0 . c.

Range:  0,15

Domain:  0,8 

f 1 (1)  0 .

74. a.

Because the ordered pair (1, 0) is on the graph, f 1 (0)  1 .

d. Because the ordered pair (0, 1) is on the

graph, f 1 (1)  0 . 75. Since f  7   13 , we have f 1 13  7 ; the input

84.

of the function is the output of the inverse when the output of the function is the input of the inverse.

f ( x )  mx  b, m  0 y  mx  b x  my  b Inverse x  b  my 1 y   x  b m 1 1 f ( x)   x  b  , m  0 m f ( x)  r 2  x 2 , 0  x  r y  r 2  x2 x  r2  y2

 3  5 ; the input

x r y

of the function is the output of the inverse when the output of the function is the input of the inverse.

y 2  r 2  x2

76. Since g  5   3 , we have g

1

2

2

Inverse

2

y  r 2  x2

77. Since the domain of a function is the range of the inverse, and the range of the function is the domain of the inverse, we get the following for f 1 :

Domain:  2,  

Range:  , 0

80. Since the domain of a function is the range of the inverse, and the range of the function is the domain of the inverse, we get the following for g 1 :

b. Because the ordered pair (1, 2) is on the graph, f (1)  2 . c.

Range:  0,  

f 1 ( x)  r 2  x 2 , 0  x  r

Range: 5,   461

Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions 85. If  a, b  is on the graph of f, then  b, a  is on the

graph of f

1

. Since the graph of f

1

c.

lies in

quadrant I, both coordinates of (a, b) are positive, which means that both coordinates of (b, a) are positive. Thus, the graph of f 1 must lie in quadrant I.

H  C   2.15C  10.53

90. a.

H  2.15C  10.53 H  10.53  2.15C H  10.53 C 2.15 H  10.53 C H   2.15

86. If  a, b  is on the graph of f, then  b, a  is on the

graph of f 1 . Since the graph of f lies in quadrant II, a must be negative and b must be positive. Thus, (b, a) must be a point in quadrant IV, which means the graph of f 1 lies in quadrant IV. b.

87. Answers may vary. One possibility follows: f ( x)  x , x  0 is one-to-one. f ( x )  x, x  0 y  x, x  0

Thus,

300  90.39  56.01 6.97 If the distance required to stop was 300 feet, the speed of the car was roughly 56 miles per hour. r  300  

 H  10.53  H  C  H    2.15    10.53  2.15   H  10.53  10.53 H C  H C  

f 1 ( x)  x, x  0

2.15 2.15C  10.53  10.53  2.15 2.15C  C 2.15

88. Answers may vary. One possibility follows: f ( x)  x 4 , x  0 is one-to-one. f ( x)  x 4 , x  0

Thus,

y  x4 , x  0 x  y4

c.

Inverse

y  4 x, x  0 f

89. a.

b.

1

( x)  4 x , x  0

91. a.

d  6.97r  90.39 d  90.39  6.97r d  90.39 r 6.97 Therefore, we would write d  90.39 r d   6.97 r  d  r  

 2.15C  10.53  10.53

26  10.53  16.99 2.15 The head circumference of a child who is 26 inches tall is about 17 inches. C  26  

6 feet = 72 inches W  72   50  2.3  72  60 

 50  2.3 12   50  27.6  77.6

The ideal weight of a 6-foot male is 77.6 kilograms. W  50  2.3  h  60 

b.

W  50  2.3h  138 W  88  2.3h W  88 h 2.3 Therefore, we would write W  88 h W   2.3

 6.97r  90.39   90.39

6.97 6.97r  90.39  90.39 6.97 r   6.97 6.97 r

 d  90.39  d  r  d    6.97    90.39  6.97   d  90.39  90.39 d

462

Copyright © 2020 Pearson Education, Inc.


Section 5.2: One-to-One Functions; Inverse Functions

c.

d.

92. a.

h W  h   

 50  2.3  h  60    88

c.

T  4453.50  0.22  g  38, 700 

2.3 50  2.3h  138  88 2.3h   h 2.3 2.3  W  88   60  W  h W    50  2.3   2.3   50  W  88  138  W

T  4453.50  g  38, 700 0.22 T  4453.50  38, 700  g 0.22 Therefore, we would write T  4453.50 g T    38, 700 0.22 Domain: T | 4453.50  T  14, 089.50

80  88 168   73.04 2.3 2.3 The height of a male who is at his ideal weight of 80 kg is roughly 73 inches. h  80  

Range:  g | 38, 700  g  82,500

9 F  C  32 5 9 F  32  C 5

94. a.

b.

5  F  32   C 9 Therefore, we would write 5 C  F    F  32  9

b.

93. a.

b.

T 19, 050   1905  0.12 19, 050  19, 050 

 8907 Since T is linear and increasing, we have that the range is T | 1905  T  8907 or

 5  9  C  F  C      C  32   32  9  5   5 9   C C 9 5

C  70  

From the restriction given in the problem statement, the domain is  g | 19, 050  g  77, 400 or 19050, 77400 .  1905 T  77, 400   1905  0.12  77, 400  19, 050 

1905, 8907 . c.

T  1905  0.12  g  19, 050 

T  1905  0.12  g  19, 050  T  1905  g  19, 050 0.12 T  1905  19, 050  g 0.12 T  1905  19, 050 . We would write g T   0.12 Domain: T | 1905  T  8907

95  F  C  F      F  32    32 59   F  32  32  F

c.

T  4453.50  0.22  g  38, 700 

5 5  70  32    38  21.1C 9 9

From the restriction given in the problem statement, the domain is  g | 38, 700  g  82,500 or 38700,82500 .

Range:  g |19, 050  g  77, 400 95. a.

T  38,700   4453.50  0.22  38, 700  38, 700   4453.50 T  82,500   4453.50  0.22  82,500  38, 700 

 14, 089.50

The graph of H is symmetric about the y-axis. Since t represents the number of seconds after the rock begins to fall, we know that t  0 . The graph is strictly decreasing over its domain, so it is one-to-one.

Since T is linear and increasing, we have that the range is T | 4453.50  T  14, 089.50 or

 4453.50,14089.50 .

463

Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions

H  100  4.9t 2

b.

97.

2

H  4.9t  100 4.9t 2  100  H 100  H t2  4.9 100  H t 4.9 100  H . 4.9 (Note: we only need the principal square root since we know t  0 )

Therefore, we would write t  H  

 100  H  H  t  H    100  4.9   4.9    100  H   100  4.9    4.9   100  100  H H t  H t   

c.

96. a.

100  100  4.9t 2

2

ax  b dx  b  cx  d cx  a  ax  b  cx  a    dx  b  cx  d 

acx 2  a 2 x  bcx  ab  cdx 2  d 2 x  bcx  bd

4.9t  t2  t 4.9

2

100  80  2.02 4.9 It will take the rock about 2.02 seconds to fall 80 meters. l T (l )  2 32.2

98. h( x)  ( f  g )( x)  f ( g ( x)) . y  f ( g ( x)) Interchange x and y, and then solve for y: x  f ( g ( y )) f 1 ( x )  g ( y )  g 1 ( f 1 ( x))  y

l 32.2

So, h 1 ( x)  g 1 ( f 1 ( x))  ( g 1  f 1 )( x) 99. a. The domain of f is  ,   . From y  2 x  3 ,

T l  2 32.2

x < 0, then y < 3, From y  3x  4 , x  0, then y  4. The range of f is

2

l T     32.2  2  T  l  32.2     2 

 ,3   4,   .

2

b. Consider the piece f ( x)  2 x  3, x  0  y  2 x  3, x  0 Interchange x and y: x  2 y  3, y  0  Note : If y  0 then x  3 so x3  y, x  3 x  3  2 y, x  3  2 x3 f 1 ( x)  ,x 3 2 Now consider the piece

2

T  l (T )  32.2    , T  0  2  2

b.

2

So ac  cd ;  a  bc  d  bc; ab  bd , which means a   d .

(since t  0)

t  80  

T  2

acx 2  a 2  bc x  ab  cdx 2  d 2  bc x  bd

4.9 2

ax  b ax  b y cx  d cx  d Interchange x and y, and then solve for y: ay  b x cy  d x(cy  d )  ay  b cxy  dx  ay  b cxy  ay  b  dx y (cx  a)  b  dx b  dx y cx  a  dx  b So f 1 ( x)  cx  a Now, f  f 1  f ( x) 

 3  l  3  32.2     7.34  2  A pendulum whose period is 3 seconds will be about 7.34 feet long.

464

Copyright © 2020 Pearson Education, Inc.


Section 5.2: One-to-One Functions; Inverse Functions f ( x)  3x  4, x  0  y  3 x  4, x  0. Interchange x and y: x  3 y  4, y  0  Note : If y  0, then x  4 so x4  y, x  4 x  4  3 y, x  4  3 x4 f 1 ( x)  ,x  4 3 Putting the pieces together we have  x3  2 , x  3 f 1 ( x )   x4,x  4  3

104. C 1 (800, 000) represents the number of cars manufactured for $800,000. 105. If a horizontal line passes through two points on a graph of a function, then the y value associated with that horizontal line will be assigned to two different x values which violates the definition of one-to-one. 106. Answers may vary. 107.

 3( x  h) 2  7( x  h)  (3x 2  7 x)  3( x 2  2 xh  h 2 )  7 x  7 h  3x 2  7 x

c. The domain of f 1 is  ,3   4,   , the

 3 x 2  6 xh  3h 2  7 x  7 h  3x 2  7 x

range of f. The range is f 1 is  ,   , the domain of f.

 6 xh  3h 2  7h

100. Yes. In order for a one-to-one function and its inverse to be equal, its graph must be symmetric about the line y  x . One such example is the

function f  x  

f ( x  h)  f ( x )

108. x  

1 . x

b  b 2  4ac 2a  (5)  (5) 2  4(3)(1) 2(3)

5  25  12 5  13  6 6 So the zeros and the x-intercepts are: 5  13 5  13 , 6 6 5 5 The x value of the vertex is    . The y 2(3) 6 value of the vertex is 

101. Answers will vary. 102. Answers will vary. One example is 1  , if x  0 f  x   x  x, if x  0

2

13  5  5  5 f     3     5     1   . The 6 6 6 12        5 13  vertex is   ,   . Since the first term is  6 12  positive the graph is concave up and thus the vertex represents a minimum. 109. We start with the graph of y  x . The graph will

be shifted horizontally to the left by 2 units. The graph will be reflected on the x-axis. Then the graph will be shifted vertically by 3 units upward.

This function is one-to-one since the graph passes the Horizontal Line Test. However, the function is neither increasing nor decreasing on its domain.

103. No, not every odd function is one-to-one. For example, f ( x)  x3  x is an odd function, but it is not one-to-one.

465

Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions 115.

6 x 2  11x  2 ( x  2)(6 x  1)  2 x2  x  6 ( x  2)(2 x  3) 6x  1 3  , where x   , 2 2x  3 2

110. R ( x ) 

f (4)  f (2) (3(4) 2  2(4)  1)  (3(2) 2  2(2)  1)  42 2 (39)  (7) 32    16 2 2

3   Domain:  x | x   , 2 2   The degree of the numerator in lowest terms is n  1 . The degree of the denominator in lowest 6 terms is m  1 . Since n  m , the line y   3 is 2 a horizontal asymptote. The denominator in lowest 3 3 terms is zero at x   , so x   is a vertical 2 2 asymptote.

116.

f  x  h  f  x h

112. 3x  6 y  5 6 y  3x  5 1 5 y  x 2 6 The slope of a perpendicular line would be 2 . y  1  2( x  4) y  1  2 x  8 y  2 x  7

 

 

h

 2 x  2h  3  2 x  3  2h

h

 2 x  2h  3  2 x  3  2 2 x  2h  3  2 x  3

Section 5.3

3( x) 3

5( x)  7( x) 3x

1. 43  64 ; 82 / 3  3 8

5 x 3  7 x 3 x

2.

   2  4 ; 3  31  19

3

(5 x  7 x) 3x  3  f ( x) 5x  7 x The function is even.

114.

2 x  2h  3  2 x  3 2 x  2h  3  2 x  3  h 2 x  2h  3  2 x  3 2 x  2h  3  (2 x  3)

( x  3) 2  ( y  5) 2  49

f ( x) 

2 x  2h  3  2 x  3 h

111. ( x  (3)) 2  ( y  5) 2  7 2

113.

f ( x)  2 x  3

2

2

2

2

x 2  3x  4  0 ( x  4)( x  1)  0 x  4  0 or x  1  0 The solution set is 4,1 .

3. False. To obtain the graph of y  ( x  2)3 , we

2 x  2 yD  xD  y 2 yD  xD  y  2 x D(2 y  x)  y  2 x y  2x D 2y  x

would shift the graph of y  x3 to the right 2 units.

466

Copyright © 2020 Pearson Education, Inc.


Section 5.3: Exponential Functions f (4)  f (0) 3(4)  5  3(0)  5  40 4 (12  5)  (0  5)  4 7  (5)  4 12  4 3

17. a.

23.14  8.815

b.

23.141  8.821

c.

23.1415  8.824

d.

2  8.825

18. a.

22.7  6.498

b.

22.71  6.543

5. True

c.

22.718  6.580

6. line; 3 ; 10

d.

2e  6.581

4.

x

3.12.7  21.217

19. a.

7. x 2  4 x  3  0 b 4  2 2a 2(1) 2

f (2)  (2)  4(2)  3  1

The vertex is  2, 1 . Graphing the function shows that the graph is increasing on  2,   and

b.

3.142.71  22.217

c.

3.1412.718  22.440

d.

e  22.459 2.73.1  21.738

20. a.

decreasing on  , 2

b.

2.713.14  22.884

c.

2.7183.141  23.119

d.

e   23.141

21. (1  0.04)6  1.265  0.09  22.  1    12 

8. exponential function; growth factor; initial value  1 23. 8.4    3

9. a

12.

 5 24. 158    6

1   1,  ,  0,1 , 1, a  a 

 1.196

2.9

10. True 11. True

24

 0.347 8.63

 32.758

25. e1.2  3.320

13. 4

26. e 1.3  0.273

14. False; for example, the point 1,3 is on the first

27. 125e0.025(7)  149.952

graph and 1, 13  is on the other.

28. 83.6e 0.157(9.5)  18.813

15. b 29.

16. c

x

467

Copyright © 2020 Pearson Education, Inc.

y  f  x

y x

f  x  1 f  x


Chapter 5: Exponential and Logarithmic Functions

6 2 3

–1

3

0

6

63 3 0   1

12 2 6

1

12

12  6 6 1 0

18 3  12 2

2

16

3

64

64 4 16

Not a linear function since the average rate of change is not constant. The ratio of consecutive outputs is a constant, 4. This is an exponential function with growth factor a  4 . The initial value of the exponential function is C  1 . Therefore, the exponential function that

2 18 3 30 Not a linear function since the average rate of change is not constant.

models the data is H  x   Ca x  1   4   4 x . x

Not an exponential function since the ratio of consecutive terms is not constant. 30.

x

y  g  x

–1

2

0

5

1

8

2

11

3

14

g  x  1

y x

32.

g  x

52 3 0   1

5 2 8 5

85 3 1 0 11  8 3 2 1 14  11 3 3 2

Not an exponential function since the ratio of consecutive terms is not constant.

x

y  H  x

–1

1 4

0 1

–1

2 3

0

1

0   1

1

3 2

3 1 2

2

9 4

3

27 8

1

4 4 1

4

4 1 3 1 0

16 4 4

1  23

1 0

 1 2

1 3

3 / 2 1

3 2

9 / 4 3  3 / 2 2  27 / 8 3  9 / 4 2

function is C  1 . Therefore, the exponential function that models the data is

    32  .

F  x   Ca x  1  32

1 4 1/ 4  3  0   1 4

1 3  2 / 3   2

This is an exponential function with growth factor a  32 . The initial value of the exponential

H  x

1  14

F  x

The ratio of consecutive outputs is a constant, 32 .

H  x  1

y x

y  F  x

Not a linear function since the average rate of change is not constant.

The average rate of change is a constant, 3. Therefore, this is a linear function. In a linear function the average rate of change is the slope m. So, m  3 . When x  0 we have y  5 so the yintercept is b  5 . The linear function that models this data is g  x   mx  b  3x  5 . 31.

F  x  1

y x

x

33.

x

y  f  x

–1

3 2

468

Copyright © 2020 Pearson Education, Inc.

x

x

y x

f  x  1 f  x

3

3 / 2

2


Section 5.3: Exponential Functions

0

3

1

6

2

12

3

24

3  32

0   1

3 2

Not an exponential function since the ratio of consecutive terms is not constant.

6 2 3

63 3 1 0

The average rate of change is a constant, 2. Therefore, this is a linear function. In a linear function the average rate of change is the slope m. So, m  2 . When x  0 we have y  4 so the yintercept is b  4 . The linear function that models this data is H  x   mx  b  2 x  4 .

12 2 6 24 2 12

Not a linear function since the average rate of change is not constant. The ratio of consecutive outputs is a constant, 2. This is an exponential function with growth factor a  2 . The initial value of the exponential function is C  3 . Therefore, the exponential function that models the data is f  x   Ca x  3   2   3  2 x . x

34.

x –1

y  g  x

g  x  1

y x

1

1

0

1 6 1 6  5 0   1

y  H  x

–1

2

0

4

1

6

2

8

3

10

1 2

0

1 4

1

1 8

2

1 16

0 1  1 1 0

1/ 4  1  1/ 2  2 1  12 4

0   1 1  14 8

1 0



1 8

1 4

1/ 8  1  1/ 4  2

1/16  1  1/ 8  2 1/ 32  1  1/16  2

The ratio of consecutive outputs is a constant, 12 .

H  x

This is an exponential function with growth factor a  12 . The initial value of the exponential function

4 2 2

42 2 0   1

F  x

1 32 Not a linear function since the average rate of change is not constant.

H  x  1

y x

F  x  1

y x

3

Not an exponential function since the ratio of consecutive terms is not constant. x

–1

0 0 1

2 3 3 10 Not a linear function since the average rate of change is not constant.

35.

y  F  x

g  x

6

0

x

36.

is C  14 . Therefore, the exponential function that models the data is F  x   Ca x  14  12  . x

6 3  4 2

37. B

64 2 1 0 86 2 2 1 10  8 2 3 2

38. F 39. D 40. H 41. A 469

Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions 42. C

Range:  y | y  0 or  0,  

43. E

Horizontal Asymptote: y  0

44. G

y-intercept: 13

45.

f ( x)  2 x  1

Using the graph of y  2 x , shift the graph up 1 unit. Domain: All real numbers Range: { y | y  1} or (1, ) Horizontal Asymptote: y  1 y-interecpt: 2

48.

f ( x)  2 x  2

Using the graph of y  2 x , shift the graph left 2 units. Domain: All real numbers Range: { y | y  0} or (0, ) Horizontal Asymptote: y  0 y-intercept: 4 46.

f  x   3x  2

Using the graph of y  3x , shift the graph down 2 units. Domain: All real numbers Range:  y | y  2 or  2,   Horizontal Asymptote: y  2 y-intercept: 1

49.

1 f  x  3  2

x

x

1 Using the graph of y    , vertically stretch the 2 graph by a factor of 3. That is, for each point on the graph, multiply the y-coordinate by 3. Domain: All real numbers Range:  y | y  0 or  0,  

47.

f  x   3x 1

Horizontal Asymptote: y  0

Using the graph of y  3x , shift the graph right 1 unit. Domain: All real numbers 470

Copyright © 2020 Pearson Education, Inc.


Section 5.3: Exponential Functions

y-intercept: 3

52. 50.

1 f  x  4   3

x

f ( x)  3x  1

Using the graph of y  3x , reflect the graph about the x-axis, and shift up 1 unit. Domain: All real numbers Range: { y | y  1} or ( , 1) Horizontal Asymptote: y  1 y-intercept: 0

x

1 Using the graph of y    , vertically stretch the 3 graph by a factor of 4. That is, for each point on the graph, multiply the y-coordinate by 4. Domain: All real numbers Range:  y | y  0 or  0,  

Horizontal Asymptote: y  0 y-intercept: 4

53.

51.

f ( x)  2  4 x 1

Using the graph of y  4 x , shift the graph to the right one unit and up 2 units. Domain: All real numbers Range: { y | y  2} or (2, ) Horizontal Asymptote: y  2

f ( x)  3 x  2

Using the graph of y  3x , reflect the graph about the y-axis, and shift down 2 units. Domain: All real numbers Range: { y | y  2} or ( 2, ) Horizontal Asymptote: y   2 y-intercept: 1

y-intercept: 94

471

Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions

54.

f ( x)  1  2 x  3

Using the graph of y  2 x , shift the graph to the left 3 units, reflect about the x-axis, and shift up 1 unit. Domain: All real numbers Range: { y | y  1} or (, 1) Horizontal Asymptote: y  1 y-intercept: 7

57.

f ( x)  e  x

Using the graph of y  e x , reflect the graph about the y-axis. Domain: All real numbers Range: { y | y  0} or (0, ) Horizontal Asymptote: y  0 y-intercept: 1 55.

f ( x )  2  3x / 2

Using the graph of y  3x , stretch the graph horizontally by a factor of 2, and shift up 2 units. Domain: All real numbers Range: { y | y  2} or (2, ) Horizontal Asymptote: y  2 y-intercept: 3

58.

f ( x )  e x

Using the graph of y  e x , reflect the graph about the x-axis. Domain: All real numbers Range: { y | y  0} or (, 0) Horizontal Asymptote: y  0 y-intercept: 1 56.

f ( x)  1  2 x / 3

Using the graph of y  2 x , stretch the graph horizontally by a factor of 3, reflect about the yaxis, reflect about the x-axis, and shift up 1 unit. Domain: All real numbers Range: { y | y  1} or (, 1) Horizontal Asymptote: y  1 y-intercept: 0 472

Copyright © 2020 Pearson Education, Inc.


Section 5.3: Exponential Functions

59.

f ( x)  e x  2

Using the graph of y  e x , shift the graph 2 units to the left. Domain: All real numbers Range: { y | y  0} or (0, ) Horizontal Asymptote: y  0 y-intercept: 7.39

62.

60.

f ( x)  9  3e  x

Using the graph of y  e x , reflect the graph about the y-axis, stretch vertically by a factor of 3, reflect about the x-axis, and shift up 9 units. Domain: All real numbers Range: { y | y  9} or (, 9) Horizontal Asymptote: y  9 y-intercept: 6

f ( x)  e x  1

Using the graph of y  e x , shift the graph down 1 unit. Domain: All real numbers Range: { y | y  1} or (1, ) Horizontal Asymptote: y  1 y-intercept: 0

63.

61.

f ( x)  2  e x / 2

Using the graph of y  e x , reflect the graph about the y-axis, stretch horizontally by a factor of 2, reflect about the x-axis, and shift up 2 units. Domain: All real numbers Range: { y | y  2} or (, 2) Horizontal Asymptote: y  2 y-intercept: 1

f ( x)  5  e x

Using the graph of y  e x , reflect the graph about the y-axis, reflect about the x-axis, and shift up 5 units. Domain: All real numbers Range: { y | y  5} or (, 5) Horizontal Asymptote: y  5 y-intercept: 4

473

Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions

64.

f ( x)  7  3e 2 x

x

1 1 69.    25 5

Using the graph of y  e x , reflect the graph about

x

1 1    2 5 5

1 , 2 stretch vertically by a factor of 3, reflect about the x-axis, and shift up 7 units. Domain: All real numbers Range: { y | y  7} or (, 7) Horizontal Asymptote: y  7

the y-axis, shrink horizontally by a factor of

x

2

1 1     5 5 x2 The solution set is 2 . x

1 1 70.    4 64   x

1 1    3 4 4 x

3

1 1     4 4 x3 The solution set is 3 .

65. 6 x  65 We have a single term with the same base on both sides of the equation. Therefore, we can set the exponents equal to each other: x  5 . The solution set is 5 .

71.

32 x 5  9 32 x 5  32 2x  5  2 2x  7 7 x 2

66. 5 x  56 We have a single term with the same base on both sides of the equation. Therefore, we can set the exponents equal to each other: x  6 . The solution set is 6 .

7  The solution set is   . 2 1 5 x 3 5  51 x  3  1 x  4 The solution set is 4 .

72. 5 x 3 

67. 2 x  16 2 x  24 x  4 x  4 The solution set is 4 .

68. 3 x  81 3 x  34 x  4 x  4 The solution set is 4 .

474

Copyright © 2020 Pearson Education, Inc.


Section 5.3: Exponential Functions

3

3x  9 x

73.

3

77.

 

3x  32

x

 

2

3x  7  33

3

2

3x  7  27 2 x

2

3x  32 x

3x  7  36 x

x3  2 x

x2  7  6 x

x3  2 x  0

x2  6 x  7  0  x  7  x  1  0

x x2  2  0

x  7  0 or x  1  0 x7 x  1 The solution set is 1, 7 .

x  0 or x 2  2  0 x2  2 x 2

The solution set is  2, 0, 2 .

78.

2

5 x 8  1252 x

 

2

5 x 8  53

2

4x  2x

74.

2 2 x

2   2

2

x2  8  6 x

2

x2  6 x  8  0  x  4  x  2   0

2 x2  x

x  4  0 or x  2  0 x4 x2 The solution set is 2, 4 .

2 x2  x  0 x  2 x  1  0 x  0 or 2 x  1  0 2x  1 1 x 2  1 The solution set is 0,  .  2

79.

2 

2 x

2

22 x  x  28 x2  2 x  8

4 2x

x2  2 x  8  0  x  4  x  2   0 x  4  0 or x  2  0 x  4 x2 The solution set is 4, 2 .

9 x 15  27 x

3 

2  x 15

 

 33

4 2

2

23 x  33  28 x 3x  33  8 x 33  11x 3 x The solution set is 3 .

76.

x2

22 x  2 x  28

 

 2

2

4 x  2 x  162

2   2  2 

8 x 11  162 x 3  x 11

2x

5 x 8  56 x

x

22 x  2 x

75.

2x

x

32 x 30  33 x 2 x  30  3x 30  5 x 6x The solution set is 6 .

475

Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions

2

92 x  27 x  31

80.

2

84.

3   3   3 2 2x

3 x

4 x

x2

12

2

1

e 4 x  e x  e12

34 x  33 x  31

2

e 4 x  x  e12

2

x 2  4 x  12

2

34 x  3 x  31

x 2  4 x  12  0  x  6  x  2   0

3x 2  4 x  1 3x2  4 x  1  0  3x  1 x  1  0

81.

e   e  e

x  6  0 or x  2  0 x  6 x2 The solution set is 6, 2 .

3x  1  0 or x  1  0 3 x  1 x  1 1 x 3 1  The solution set is 1,   . 3 

85. If 4 x  7 , then 4 x

e 2 x  e5 x 12 2 x  5 x  12 3x  12 x  4 The solution set is 4 .

86. If 2 x  3 , then 2 x

  7 2

42 x 

1

72 1 42 x  49

  3 2

2

22 x 

1

32 x 1  22 9 1 x 4  9

 

82. e3 x  e 2  x 3x  2  x 4x  2 1 x 2

  2 2

87. If 3 x  2 , then 3 x

1  The solution set is   . 2

32 x 

2

1

22 1 32 x  4

2 1 e x  e3 x  2 e

83.

2

  3

2

e x  e3 x  e 2

88. If 5 x  3 , then 5 x

2

e x  e3 x  2

3

3

1

53 x 

2

33 1 53 x  27

x  3x  2 2

x  3x  2  0

 x  2  x  1  0 x  2  0 or x  1  0 x2 x 1 The solution set is 1, 2 .

  5 3   5 x

2

x 2

2

89. If 9 x  25 , then 32

3x  5

476

Copyright © 2020 Pearson Education, Inc.


Section 5.3: Exponential Functions

90. If 23 x 

93. We need a function of the form f  x   k  a p x ,

   

x 1 , then 2 3  103 1000 3 2x  103

with a  0, a  1 . The graph contains the points 1   1,   ,  0, 1 , 1,  6  , and  2, 36  . In other 6  1 words, f  1   , f  0   1 , f 1 =  6 , and 6 f  2   36 .

2 x  10

91. We need a function of the form f  x   k  a p x ,

with a  0, a  1 . The graph contains the points  1  1,  ,  0,1 , 1,3 , and  2,9  . In other words, 3  1 f  1  , f  0   1 , f 1 =3 , and f  2   9 . 3

Therefore, f  0   k  a   and f 1  a   . 6  a p 1  k  a 0 1  k 1 6  ap 1  k Let’s use a  6, p  1. Then f  x   6 x .

Therefore, f  0   k  a   p 0

1  k  a0 1  k 1 1 k

Now we need to verify that this function yields the other known points on the graph. 1 f  1  61   ; f  2   62  36 6

and f 1  a   p 1

So we have the function f  x   6 x .

3  ap Let’s use a  3, p  1. Then f  x   3x . Now we

94. We need a function of the form f  x   k  a p x ,

need to verify that this function yields the other 1 known points on the graph. f  1  31  ; 3

with a  0, a  1 . The graph contains the points 1  2  1,   ,  0, 1 , 1,  e  , and 2, e . In other e  1 words, f  1   , f  0   1 , f 1 =  e , and e

f  2   32  9

So we have the function f  x   3x .

f  2   e 2 .

92. We need a function of the form f  x   k  a p x ,

Therefore, f  0   k  a   p 0

with a  0, a  1 . The graph contains the points 1   1,  ,  0,1 , and 1,5  . In other words, 5  1 f  1  , f  0   1 , and f 1  5 . Therefore, 5 f 0  k  a

p 1

p 0

1  k  a 0 1  k 1 1  k

and f 1  a   p 1

p  0 

e   a p

1  k  a0 1  k 1 1 k

e  ap Let’s use a  e, p  1 . Then f  x   e x . Now

we need to verify that this function yields the other known points on the graph. 1 f  1  e1   e

and f 1  a   p 1

5  ap Let’s use a  5, p  1. Then f  x   5x . Now we

f  2   e 2

need to verify that this function yields the other known point on the graph. 1 f  1  51  5

So we have the function f  x   e x . 95. We need a function of the form f  x   k  a p x  b ,

So we have the function f  x   5 . x

with a  0, a  1 and b is the vertical shift of 2 477

Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions

units upward. The graph contains the points  0,3 , and 1,5  . In other words, f  0   1 and

f  2  

f 1  3 . We can assume the graph has the same

x

1 So we have the function f  x      3 . 2

shape as the graph of f  x   k  a p x . The reference (unshifted) graph would contain the points  0,1 , and 1,3 .

97. a.

p 1

3  ap 1  k  a0 1  k 1 1 k Let’s use a  3, p  1 . Then f  x   3x . To shift

b.

the graph up by 2 units we would have f  x   3x  2 . Now we need to verify that this function yields the other known points on the graph. f  0   30  2  3 f 1  31  2  5

So we have the function f  x   3x  2 .

98. a.

1 16 1 2x  16 1 x 2  4 2 2 x  24 x  4 1  The point  4,  is on the graph of f. 16   f  x 

f  4   34  81

The point  4,81 is on the graph of f.

96. We need a function of the form f  x   k  a p x  b ,

with a  0, a  1 and b is the vertical shift of 3 units downward. The graph contains the points  0, 2  , and  2,1 . In other words, f  0   2

b.

and f  2   1 . We can assume the graph has the same shape as the graph of f  x   k  a p x . The reference (unshifted) graph would contain the points  0,1 , and  2, 4  . Therefore, f  0   k  a   and f  2   a p 2  p 0

1  k  a0 1  k 1 1 k

f  4   24  16

The point  4,16  is on the graph of f.

Therefore, f  0   k  a   and f 1  a   p 0

1 2 3  43 1 2

1  a2 p 4 1  ap 2

99. a.

1 9 1 3x  9 1 x 3  2 3 3x  32 x  2 1  The point  2,  is on the graph of f. 9  f  x 

g  1  41  2 

1 9 2 4 4

9  The point  1,  is on the graph of g. 4 

1 1x Let’s use a  , p  1 . Then f  x   . To shift 2 2 the graph down by 3 units we would have 1x f  x   3 . Now we need to verify that this 2 function yields the other known points on the graph. 10 f  0   3  2 2

b.

g  x   66 4 x  2  66 4 x  64 4 x  43 x3 The point  3, 66  is on the graph of g.

478

Copyright © 2020 Pearson Education, Inc.


Section 5.3: Exponential Functions

100. a.

b.

5

1 14 3   5 5 14   The point  1,   is on the graph of g. 15   g  1  51  3 

102. a.

x

1    3  24 3

5 x  125

x

1    27 3 3 x  33 x  3 x  3 The point  3, 24  is on the graph of F.

5 x  53 x3 The point  3,122  is on the graph of g. 6

b.

F  x   24

b.

g  x   122 5 x  3  122

101. a.

5 1 F  5      3   3  3  240 3 The point  5, 240  is on the graph of F.

6 1 H  6      4   2   4  60 2 The point  6, 60  is on the graph of H.

x

c.

H  x   12

1   3  0 3 x

1   3 3

x

1    4  12 2

3   3 1 x

x

1    16 2

 2

x

3 x  31 x  1 x  1 The zero of F is x  1 .

 24

x  4 x  4 The point  4,12  is on the graph of H.

103. x

c.

1

1   4  0 2

e x f  x   x  e

if x  0 if x  0

x

1   4 2

2   2 1 x

2

2 x  22 x  2 x  2 The zero of H is x  2 .

Domain:  ,   Range:  y | y  1 or 1,   Intercept:  0,1

479

Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions

104.

 e x f  x   x e

107. p(n)  100(0.97) n

if x  0 if x  0

a.

p (10)  100(0.97)10  74% of light

b.

p(25)  100(0.97) 25  47% of light

c.

Each pane allows only 97% of light to pass through.

108. p(h)  760e 0.145 h a.

p(2)  760e0.145(2)  760e0.290  568.68 mm of Hg

Domain:  ,   Range:  y | 0  y  1 or  0,1

b.

p(10)  760e0.145(10)

Intercept:  0,1 105.

x  e f  x   x e

 760e1.45  178.27 mm of Hg

if x  0

109. p ( x)  22, 265(0.90) x

if x  0

a.

p(3)  22, 265(0.90)3  $16, 231

b. p(9)  22, 265(0.90)9  $8, 626 c. As each year passes, the sedan is worth 90% of its value the previous year. 110. A(n)  A0 e 0.35 n a.

A(3)  100e 0.35(3)  100e 1.05  34.99 square millimeters

Domain:  ,   Range:  y | 1  y  0 or  1, 0 

b.

Intercept:  0, 1 e f  x   x  e

x

106.

A(10)  100e0.35(10)  100e3.5  3.02 square millimeters

if x  0 if x  0

111. P (t )  100(0.3)t a. 0.3 = 30% b. P (2)  100(0.3) 2  9% c. As each year passes, only 30% of the previous survivors survive again. 112. P (t )  30(1.149)t a. 30 b. P (5)  30(1.149)5  60

Domain:  ,  

c.

Range:  y | y  1 or  , 1

P (10)  30(1.149)10  120

d. P (15)  30(1.149)15  241 e. The population appears to be doubling every 5 years.

Intercept:  0, 1 480

Copyright © 2020 Pearson Education, Inc.


Section 5.3: Exponential Functions

b. 113. D  h   5e

F  30   1  e 0.15(30)  1  e4.5  0.989

The probability that a car will arrive within 30 minutes of 5:00 PM is 0.989.

0.4 h

As t  , F  t   1  e0.15 t  1  0  1

D 1  5e0.4(1)  5e0.4  3.35

c.

After 1 hours, 3.35 milligrams will be present.

d. Graphing the function: 

D  6   5e

0.4(6)

 5e

2.4

 0.45 milligrams

After 6 hours, 0.45 milligrams will be present.

114. N  P 1  e0.15 d

   1000 1  e   362

N  3  1000 1  e0.15(3) 0.45

e.



F  6   0.60 , so 6 minutes are needed for the

probability to reach 60%.

After 3 days, 362 students will have heard the rumor. 115. F  t   1  e0.1t a.

F 10   1  e0.1(10)  1  e 1  0.632

The probability that a car will arrive within 10 minutes of 12:00 PM is 0.632. b.

F  40   1  e0.1(40)  1  e4  0.982

The probability that a car will arrive within 40 minutes of 12:00 PM is 0.982. c.

117. P ( x) 

As t  , F  t   1  e0.1t  1  0  1

a.

d. Graphing the function:  b. 

e.



F  7   0.50 , so about 7 minutes are needed

a.

b. 116. F  t   1  e0.15 t a.

2015 e20  0.0516 or 5.16% 15! The probability that 15 cars will arrive between 5:00 PM and 6:00 PM is 5.16%. P (15) 

2020 e20  0.0888 or 8.88% 20! The probability that 20 cars will arrive between 5:00 PM and 6:00 PM is 8.88%. P (20) 

118. P ( x) 

for the probability to reach 50%.

20 x e20 x!

4 x e4 x!

45 e4  0.1563 or 15.63% 5! The probability that 5 people will arrive within the next minute is 15.63%. P  5 

48 e4  0.0298 or 2.98% 8! The probability that 8 people will arrive within the next minute is 2.98%. P 8 

F 15   1  e0.15(15)  1  e2.25  0.895

The probability that a car will arrive within 15 minutes of 5:00 PM is 0.895. 481

Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions

 

4221

4221

119. R  10 T  459.4 D  459.4  

4221

4221

 2    70.95%

a.

R  10 50  459.4 41 459.4

b.

4221  4221   2  R  10 68 459.4 59  459.4   72.62%

c.

b.

  500 1  e

0.183

  500 1  e

L  60   500 1  e 0.0061(60) 0.366

c.

See the graph at the end of the solution.

d.

I2 

  0.5  120  1  e  10    24 1  e0.25    5      5.31 amperes after 0.5 second 5

I2 

 153 The student will learn about 153 words after 60 minutes.

121. I 

a.

  0.3  120  1  e  10    24 1  e 0.15    5      3.34 amperes after 0.3 second 5

 84 The student will learn about 84 words after 30 minutes.

b.

Therefore, as,

 10   t  5 

t  , I1 

L  30   500 1  e0.0061(30)

 10   t As t  , e  5   0 .

120  1  e  12 1  0  12 , 10     which means the maximum current is 12 amperes.

4221  4221   2  R  10 T  459.4 T  459.4   102  100%

120. L  t   500 1  e0.0061 t a.

 10   1  120   I1  1  e  5    12 1  e2   10.38 10     amperes after 1 second

 2 

5  1  120   I2  1  e  10    24 1  e0.5  5      9.44 amperes after 1 second

R  t  E 1  e  L   R     10    0.3  120  1  e  5    12 1  e0.6   5.41 I1    10     amperes after 0.3 second

e.

5  t As t  , e  10   0 .

t  , I1

Therefore, as,

 10   t  120   1   e  5    24 1  0

  24 ,

5     which means the maximum current is 24 amperes.

  0.5  120  1  e  5    12 1  e1   7.59 I1    10     amperes after 0.5 second  10 

f.

See the graph that follows.

482

Copyright © 2020 Pearson Education, Inc.


Section 5.3: Exponential Functions

 t 

122. I 

E  RC  e R 

a.

0

120  2000 1  120 0 I1  e  0.06 e  2000 2000 amperes initially.  1000 

120  2000 1  120 1/ 2 e   0.0364 e 2000 2000 amperes after 1000 microseconds I1 

t

 3000 

120  2000 1  120 1.5 e   0.0134 I1  e 2000 2000 amperes after 3000 microseconds

123. Since the growth rate is 3 then a  3 . So we have

b. The maximum current occurs at t  0 . Therefore, the maximum current is 0.06 amperes. c.

f ( x)  C  3x

So

f (6)  C  36 12  C  36 12 C 36

Graphing the function:

12

 37 36  12  3  36

f (7) 

So f (7)  36 1 1 1 1    ...  2! 3! 4! n! 1 1 1 n  4; 2     2.7083 2! 3! 4! 1 1 1 1 1 n  6; 2       2.7181 2! 3! 4! 5! 6! 1 1 1 1 1 1 1 n  8; 2        2! 3! 4! 5! 6! 7! 8!  2.7182788 1 1 1 1 1 1 1 1 1 n  10; 2          2! 3! 4! 5! 6! 7! 8! 9! 10!  2.7182818

124. 2 

t

0

120  1000 2  120 0 e  0.12 e  d. I 2  1000 1000 amperes initially.  1000 

120  1000 2  120 1/ 2 e   0.0728 e 1000 1000 amperes after 1000 microseconds I2 

e  2.7182818

 3000 

125. 2  1  3

120  1000 2  120 1.5 I2  e e   0.0268 1000 1000 amperes after 3000 microseconds e.

The maximum current occurs at t  0 . Therefore, the maximum current is 0.12 amperes.

f.

Graphing the functions:

2 1  2.5  e 11 2 1  2.8  e 1 1 22

483

Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions 2 1

 2.7  e

128.

1 1

f ( x)  a x f ( x)  a  x 

2 2 33

129.

2 1

1 f ( x)

f ( x)  a x f ( x)  a x  a x

1 1 2 2

1 x x e e 2 f ( x)  sinh( x) 1  e x  e x 2 1   e x  e x 2   sinh x   f ( x) Therefore, f ( x)  sinh x is an odd function.

130. sinh x 

3 3

a.

44

 2.717770035  e

1 1 2 2 3 3 4 4 55

b. Let Y1 

2 1

a

x

    f ( x)

 2.721649485  e

2 1

1

 2.718348855  e

1 x x e e . 2 

1 1 2 2



3 3 4 4



5 5 66 e  2.718281828

126.

a.

f ( x)  a x f ( x  h)  f ( x ) a x  h  a x  h h a x ah  a x  h x a ah  1  h h  1  a  a x    h 

127.

b. Let Y1 

f ( x)  a x

1 x e  e x 2 f ( x)  cosh( x) 1  e x  e x 2 1 x  e  e x 2  cosh x  f ( x) Thus, f ( x)  cosh x is an even function.

131. cosh x 

 

 

1 x e  e x . 2 



f ( A  B )  a A B  a A  a B  f ( A)  f ( B ) 

484

Copyright © 2020 Pearson Education, Inc.


Section 5.3: Exponential Functions

(cosh x) 2  (sinh x) 2

c.

2

 e x  e x   e x  e x        2 2    

2u 2  3u  20  0 (2u  5)(u  4)  0

2

5 or u  4 2 1x 1x 5 2 3   or 2 3  4 2 u

e2 x  2  e2 x e2 x  2  e2 x  4 4 e2 x  2  e2 x  e2 x  2  e2 x  4 4  4 1 

132.

1x

 2x   1

The solution set is 6

f ( x)  2 f (1)  2

 2   1  22  1  4  1  5

135. Since the number of bacteria doubles every minute, half of the container is full one minute before it is full. Thus, it takes 59 minutes to fill the container.

 23   1  28  1  256  1  257

f (3)  2

f (4)  2

 24   1  216  1  65,536  1  65,537

136 - 137. Answers will vary. 138. Given the function f  x   a x , with a  1 ,

 25   1  232  1  4, 294,967, 296  1 f (5)  2

If x  0 , the graph becomes steeper as a increases. If x  0 , the graph becomes less steep as a increases.

 4, 294,967, 297  641 6, 700, 417 x

32 1  4  3x  9  0

139. Using the laws of exponents, we have:

x

3(32 1  4  3x  9)  3  0

a x 

x

32  12  3x  27  0 Let u  3x. u 2  12u  27  0 (u  3)(u  9)  0 u  3 or u  9

2 x 1

23

x

x3  5 x 2  4 x  20

140.

x 3  5 x 2  4 x  20  0

( x  2)( x  2)( x  5)  0 We graph the function f ( x)  x 3  5 x 2  4 x  20 . The intercepts are y-intercept: f (0)  20

1

 3  2 3  20  0

2x

x

1    . So y  a  x and x a a 1

1 y    will have the same graph. a

Then, 3x  3 or 3x  9 x  1 or x  2 The solution set is 1, 2

134.

2 3  22 1 x2 3 x6

1

 22   1  24  1  16  1  17 f (2)  2

133.

1x

or 2 3  4

not possible

x 3  5 x 2  4 x  20  0 ( x  2)( x  2)( x  5)  0 x  2, x  2, x  5 The graph is below the x-axis when x  5 or 2  x  2 . So the solution set is  , 5   2, 2 .

1

x-intercepts:

2  2 3  3  2 3  20  0 1x

Let u  2 3 .

485

Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions

141.

x 1 1 x2 x 1 1  0 x2 x 1 x  2 0 x2 3 0 x2 3 f ( x)  x2 The value where f is undefined is x  2 .

( , 2)

Interval

2

graph has two x-intercepts. The x-intercepts are found by solving: x2  2 x  3  0

 x  3 x  1  0 x  3 or x  1

(2, )

Number Chosen

0

5

Value of f

1.5

1

Conclusion

b 2  4ac   2   4 1 3  16  0 , so the

Negative Positive

The solution set is  x x  2  or,  2,   .

b.

Domain: (, ) . Range: [4, ) .

c.

Decreasing on  , 1 ; increasing on

 1,   .

142. Use the form f ( x)  a ( x  h) 2  k . The vertex is (3, 5) , so h  3 and k  5 .

144. 13x  (5 x  6)  2 x  (8 x  27) 8 x  6  6 x  27 14 x  21 21 3 x  14 2

f ( x)  a ( x  3) 2  5 .

Since the graph passes through (2, 3) , f (2)  3 .

3  a(2  3) 2  5 3  a( 1) 2  5

3 The solution is   2

3 a5 2  a f ( x)  2( x  3) 2  5

145. ( x  0)2  ( y  0) 2  12

 2( x 2  6 x  9)  5

x2  y2  1

 2 x  12 x  18  5 2

146.

 2 x 2  12 x  13

143. a.

x  16 x  48  0

( x  12)( x  4)  0 x  12  0

f  x  x2  2 x  3

a  1, b  2, c  3. Since a  1  0, the graph is concave up. The x-coordinate of the vertex is b 2   1 . x 2a 2(1) The y-coordinate of the vertex is  b  f     f (1)  (1) 2  2  1  3  4 .  2a  Thus, the vertex is (–1, –4). The axis of symmetry is the line x  1 . The discriminant is:

or

x  12

x 4

x  144

x  16

The solution set is 144,16 147. I  prt  12000(0.035)(2.5)  $1050 148.

x 4  5 x 2  6  2 x 2  12 x 4  7 x 2  18  0

486

Copyright © 2020 Pearson Education, Inc.

x 4  0


Section 5.4: Logarithmic Functions The x-intercepts are (3, 0) and (3, 0).

The intercepts are y-intercept: f (0)  6

x2  x  6  0

x-intercepts:

 x  2  x  3  0 x  2, x  3 b (1) 1 The vertex is at x    . Since 2a 2(1) 2

25 1  1 25  f     , the vertex is  ,   . 4  4 2 2 



 The graph is above the x-axis when x  2 or x  3 . Since the inequality is strict, the solution set is  x x  2 or x  3 or, using interval notation,  , 2    3,   .

We see that the graph is less than or equal to zero at {x | 3  x  3} or  3,3 149.

f ( x)  2 x 2  7 x

2.

f ( x  h)  f ( x ) h 2( x  h) 2  7( x  h)  (2 x 2  7 x)  h 2 2 2 x  4 xh  2h  7 x  7 h  2 x 2  7 x  h 2 4 xh  2h  7h  h  4 x  2h  7

x 1 0 x4 x 1 f  x  x4 f is zero or undefined when x  1 or x  4 . Interval

(, 4)

(4,1)

(1, )

Test Value

5

0

2

Value of f

6

Conclusion

positive

1 1 4 6 negative positive 

The solution set is  x x  4 or x  1 or, using interval notation,  , 4   1,   . 3.

Section 5.4 1. a.

b.

3x  7  8  2 x 5 x  15 x3 The solution set is  x x  3 . x2  x  6  0 We graph the function f ( x)  x 2  x  6 .

 x x  0 or (0, )

1  4.  , 1 , 1, 0  ,  a,1 a 

5. 1 6. False. If y  log a x , then x  a y . 7. True

487 Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions 8. a

1 31. log1/5 125   3 since   5

9. c 10. b

1 32. log1/ 3 9   2 since    3

11. 9  32 is equivalent to 2  log 3 9 .

33. log 10 

12. 16  42 is equivalent to 2  log 4 16 . 13. a 2  1.6 is equivalent to 2  log a 1.6 .

x

15. 2  7.2 is equivalent to x  log 2 7.2 . 16. 3x  4.6 is equivalent to x  log3 4.6 . 17. e x  8 is equivalent to x  ln 8 .

2

 32  9 .

2 since 102/3  1001/3  3 100 . 3

35. log 2 4  4 since

 2  4 .

36. log 3 9  4 since

 3  9 .

37. ln e 

18. e2.2  M is equivalent to 2.2  ln M .

 53  125 .

1 since 101/ 2  10 . 2

34. log 3 100 

14. a3  2.1 is equivalent to 3  log a 2.1 .

3

4

4

1 since e1/ 2  e . 2

38. ln e3  3 since e3  e3 .

3

19. log 2 8  3 is equivalent to 2  8 .

39.

1 1 20. log3     2 is equivalent to 32  . 9 9

f ( x)  ln( x  3) requires x  3  0 . x3  0 x3

The domain of f is  x x  3 or  3,   .

6

21. log a 3  6 is equivalent to a  3 .

40. g ( x)  ln( x  1) requires x  1  0 . x 1  0 x 1

22. logb 4  2 is equivalent to b 2  4 . 23. log3 2  x is equivalent to 3x  2 .

The domain of g is  x x  1 or 1,   .

24. log 2 6  x is equivalent to 2 x  6 .

41. F ( x )  log 2 x 2 requires x 2  0 . x 2  0 for all x  0 .

25. ln 4  x is equivalent to e x  4 .

The domain of F is  x x  0 .

4

26. ln x  4 is equivalent to e  x . 42. H ( x)  log 5 x3 requires x3  0 .

0

27. log 2 1  0 since 2  1 .

x3  0 for all x  0 .

The domain of H is  x x  0 or  0,   .

28. log8 8  1 since 81  8 . 29. log 7 49  2 since 7 2  49 . 1 1 30. log3     2 since 32  . 9 9

488

Copyright © 2020 Pearson Education, Inc.


Section 5.4: Logarithmic Functions

43.

x x  f  x   3  2 log 4   5 requires  5  0 . 2 2   x 5  0 2 x 5 2 x  10 The domain of f is  x x  10 or 10,   .

44. g  x   8  5ln  2 x  3 requires 2 x  3  0 . 2x  3  0 2 x  3 3 x 2  3  3  The domain of g is  x x    or   ,   . 2  2   45.

(, 1)

(1, )

Test Value

2

0

Value of p

1

1

(, 1)

(1, 0)

(0, )

Test Value

2

1 2

1

1

2

Value of p Conclusion

1 2 positive

negative positive

The domain of g is  x x  1 or x  0 ;

 , 1   0,   . x  x  0. 48. h( x)  log 3   requires x  1 x 1   x p  x  is zero or undefined when x 1 x  0 or x  1 .

1  1  f ( x)  ln  0.  requires  x 1 x 1   1 p  x  is undefined when x  1 . x 1 Interval

Interval

Interval

(, 0)

(0,1)

(1, )

Test Value

1

1 2

2

1 1 2 2 Conclusion positive negative positive Value of p

The domain of h is  x x  0 or x  1 ;

 , 0   1,   .

Conclusion negative positive

The domain of f is  x x  1 or  1,   .

49.

ln x  0 x  e0 x 1 The domain of h is  x x  1 or 1,   .

1  1  0. 46. g ( x)  ln   requires x 5 x 5    1 p  x  is undefined when x  5 . x5 Interval Test Value

(,5) 4

(5, ) 6

Value of p

1

1

50. g ( x) 

1 requires ln x  0 and x  0 ln x ln x  0

x  e0 x 1 The domain of h is  x x  0 and x  1 ;

Conclusion negative positive

The domain of g is  x x  5 or  5,   . x 1  x 1 0. 47. g ( x)  log5   requires x  x  x 1 p  x  is zero or undefined when x x  1 or x  0 .

f ( x)  ln x requires ln x  0 and x  0

 0,1  1,   . 5 51. ln    0.511 3

52.

ln 5  0.536 3

489 Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions 61.

10 3  30.099 0.04

ln

53.

2 3  4.055 54.  0.1 ln

55.

ln 4  ln 2  2.303 log 4  log 2

56.

log15  log 20  0.434 ln15  ln 20

57.

2 ln 5  log 50  53.991 log 4  ln 2

58.

3log 80  ln 5  1.110 log 5  ln 20

62.

59. If the graph of f ( x)  log a x contains the point (2, 2) , then f (2)  log a 2  2 . Thus, log a 2  2

63.

a2  2 a 2 Since the base a must be positive by definition, we have that a  2 .

60. If the graph of f ( x)  log a x contains the point 1 1 1   , 4  , then f    log a     4 . Thus, 2 2 2  1   log a     4 2 1 a 4  2 1 1  a4 2 a4  2

64.

a  21/ 4  1.189

65. B 66. F 490

Copyright © 2020 Pearson Education, Inc.


Section 5.4: Logarithmic Functions 67. D

f.

Shift the graph of y  e x down 4 units.

68. H 69. A 70. C 71. E 72. G 73.

f ( x)  ln( x  4)

a.

Domain: ( 4, )

b. Using the graph of y  ln x , shift the graph 4 units to the left.

74.

f ( x)  ln( x  3)

a.

Domain: (3, )

b. Using the graph of y  ln x , shift the graph 3 units to the right.

c.

Range: (, ) Vertical Asymptote: x   4 f ( x)  ln( x  4) y  ln( x  4) x  ln( y  4)

d.

y4e

c. Inverse

x

d.

x

y  e 4 f

e.

1

( x)  e x  4

f ( x)  ln( x  3) y  ln( x  3) x  ln( y  3) y 3  e

The domain of the inverse found in part (d) is all real numbers. Since the domain of f is the range of f 1 , we can use the result from part (a) to say that the range of f 1 is  4,   .

Range: (, ) Vertical Asymptote: x  3

Inverse

x

y  ex  3 f 1 ( x)  e x  3

e.

The domain of the inverse found in part (d) is all real numbers. Since the domain of f is the range of f 1 , we can use the result from part (a) to say that the range of f 1 is  3,   .

491 Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions

f.

75.

Using the graph of y  e x , shift the graph 3 units up.

f.

f ( x)  2  ln x

a.

76.

Domain: (0, )

d.

c. d.

Inverse

y  e x2

Range: (, ) Vertical Asymptote: x  0 f ( x)   ln( x) y   ln( x) x   ln( y )  x  ln( y )

Inverse

 y  e x

f 1 ( x)  e x  2

e.

Domain: ( , 0)

b. Using the graph of y  ln x , reflect the graph about the y-axis, and reflect about the x-axis.

Range: (, ) Vertical Asymptote: x  0 f ( x)  2  ln x y  2  ln x x  2  ln y x  2  ln y

f ( x)   ln( x)

a.

b. Using the graph of y  ln x, shift up 2 units.

c.

Using the graph of y  e x , shift the graph 2 units to the right.

y  e  x f 1 ( x)  e x

The domain of the inverse found in part (d) is all real numbers.

e.

Since the domain of f is the range of f 1 , we can use the result from part (a) to say that the range of f 1 is  0,   .

The domain of the inverse found in part (d) is all real numbers. Since the domain of f is the range of f 1 , we can use the result from part (a) to say that the range of f 1 is  , 0  .

492

Copyright © 2020 Pearson Education, Inc.


Section 5.4: Logarithmic Functions

f.

e.

Using the graph of y  e x , reflect the graph about the y-axis, and reflect about the x-axis.

Since the domain of f is the range of f 1 , we can use the result from part (a) to say that the range of f 1 is  0,   . f.

77.

The domain of the inverse found in part (d) is all real numbers.

Using the graph of y  e x , reflect the graph about the y-axis, and reflect about the x-axis.

f ( x)  ln(2 x)  3

a.

Domain: (0, )

b. Using the graph of y  ln x , compress the

graph horizontally by a factor of shift down 3 units.

1 , and 2

78.

f ( x)  2 ln( x  1)

a.

Domain: (1, )

b. Using the graph of y  ln x , shift the graph to the left 1 unit, reflect about the x-axis and stretch vertically by a factor of 2.

c. d.

Range: (, ) Vertical Asymptote: x  0 f ( x)  ln(2 x)  3 y  ln(2 x)  3 x  ln(2 y )  3 x  3  ln(2 y )

c. Inverse

d.

x 3

2y  e 1 y  e x 3 2 1 x 3 1 f ( x)  e 2

Range: (, ) Vertical Asymptote: x  1 f ( x)  2 ln( x  1) y  2 ln( x  1) x  2 ln( y  1) x   ln( y  1) 2 y  1  e x / 2

Inverse

y  e x / 2  1 f 1 ( x)  e x / 2  1

e.

The domain of the inverse found in part (d) is all real numbers.

493 Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions

Since the domain of f is the range of f 1 , we can use the result from part (a) to say that the range of f 1 is  1,   . f.

79.

Since the domain of f is the range of f 1 , we can use the result from part (a) to say that the range of f 1 is  4,   .

Using the graph of y  e x , reflect the graph about the y-axis, stretch horizontally by a factor of 2, and shift down 1 unit.

f.

f ( x)  log  x  4   2

a.

80.

Domain: (4, )

f ( x) 

a.

b. Using the graph of y  log x , shift the graph 4 units to the right and 2 units up.

Using the graph of y  10 x , shift the graph 2 units to the right and 4 units up.

1 log x  5 2

Domain: (0, )

b. Using the graph of y  log x , compress the

graph vertically by a factor of 5 units down.

c.

Range: (, ) Vertical Asymptote: x  4

d.

f ( x)  log  x  4   2

c.

y  log  x  4   2

x  log  y  4   2

Range: (, ) Vertical Asymptote: x  0

Inverse

x  2  log  y  4  y  4  10 x  2 y  10 x  2  4 f 1 ( x)  10 x  2  4

e.

The domain of the inverse found in part (d) is all real numbers.

494

Copyright © 2020 Pearson Education, Inc.

1 , and shift it 2


Section 5.4: Logarithmic Functions

d.

1 log x  5 2 1 y  log x  5 2 1 x  log y  5 2 1 x  5  log y 2 2( x  5)  log y f ( x) 

Inverse

y  102( x 5) f

e.

1

( x)  10

c.

2( x  5)

The domain of the inverse found in part (d) is all real numbers.

d.

Since the domain of f is the range of f 1 , we can use the result from part (a) to say that the range of f 1 is  0,   . f.

Using the graph of y  10 x , shift the graph 5 units to the left, and compress horizontally 1 by a factor of . 2 e.

Range: (, ) Vertical Asymptote: x  0 1 log  2 x  2 1 y  log  2 x  2 1 x  log  2 y  2 2 x  log  2 y 

f ( x) 

Inverse

2 y  102 x 1 y  102 x 2 1 f 1 ( x )  102 x 2 The domain of the inverse found in part (d) is all real numbers.

Since the domain of f is the range of f 1 , we can use the result from part (a) to say that the range of f 1 is  0,   . f. 81.

1 , and 2 1 compress vertically by a factor of . 2

graph horizontally by a factor of

1 log  2 x  2 Domain: (0, )

f ( x) 

a.

Using the graph of y  10 x , compress the

b. Using the graph of y  log x , compress the 1 , and 2 1 compress vertically by a factor of . 2

graph horizontally by a factor of

495 Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions

82.

f ( x)  log(2 x)

a.

83.

Domain: (, 0)

a.

b. Using the graph of y  log x , reflect the graph across the y-axis and compress horizontally by a factor of 12 .

c. d.

c.

Range: (, ) Vertical Asymptote: x  2

d.

f ( x )  3  log 3  x  2  y  3  log 3  x  2 

x  3  log 3  y  2 

Inverse

y  2  3x  3 y  3x  3  2 f 1 ( x)  3x 3  2

The domain of the inverse found in part (d) is all real numbers.

e.

1

Since the domain of f is the range of f , we can use the result from part (a) to say that the range of f 1 is  , 0  . f.

Inverse

x  3  log3  y  2 

2 y  10 x 1 f 1 ( x)   10 x 2

e.

Domain: (2, )

b. Using the graph of y  log3 x , shift 2 units to the left, and shift up 3 units.

Range: (, ) Vertical Asymptote: x  0 f ( x)  log(2 x) y  log(2 x) x  log(2 y )

f ( x)  3  log 3  x  2 

The domain of the inverse found in part (d) is all real numbers. Since the domain of f is the range of f 1 , we can use the result from part (a) to say that the range of f 1 is  2,   .

Using the graph of y  10 x , reflect the graph across the x-axis and compress vertically by a factor of 12 .

f.

Using the graph of y  3x , shift 3 units to the right, and shift down 2 units.

496

Copyright © 2020 Pearson Education, Inc.


Section 5.4: Logarithmic Functions

84.

f ( x)  2  log 3  x  1

a.

85.

Domain: (1, )

f ( x)  e x  2  3

a.

b. Using the graph of y  log3 x , shift 1 unit to the left, reflect the graph about the x-axis, and shift 2 units up.

b. Using the graph of y  e x , shift the graph two units to the left, and shift 3 units down.

c. c. d.

Range: (, ) Vertical Asymptote: x  1

Domain: (, )

Range: (3, ) Horizontal Asymptote: y  3 f ( x)  e x  2  3

d.

f ( x )  2  log3  x  1

y  ex2  3

y  2  log3  x  1

x  2  log3  y  1

x  e y2  3

Inverse

x  2   log 3  y  1

x3 e y  2  ln  x  3

y  1  32  x

1

2  x  log3  y  1

y  ln  x  3  2

f

y  32  x  1

e.

f 1 ( x )  32  x  1

e.

The domain of the inverse found in part (d) is all real numbers. Since the domain of f is the range of f 1 , we can use the result from part (a) to say that the range of f 1 is  1,   .

f.

Inverse

y2

Using the graph of y  3x , reflect the graph about the y-axis, shift 2 units to the right, and shift down 1 unit.

( x)  ln  x  3  2

For the domain of f 1 we need x3 0 x  3 So the domain of the inverse found in part (d) is  3,   . Since the domain of f is the range of f 1 , we can use the result from part (a) to say that the range of f 1 is  ,   .

497 Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions

f.

Using the graph of y  ln x , shift 3 units to the left, and shift down 2 units.

e.

For the domain of f 1 we need x2 0 3 x2  0 x2 The domain of the inverse found in part (d) is  2,   .

Since the domain of f is the range of f 1 , we can use the result from part (a) to say that the range of f 1 is  ,   . f. 86.

f ( x)  3e x  2

a.

Using the graph of y  ln x , shift 3 units to the left, and shift down 2 units.

Domain: (, )

b. Using the graph of y  e x , stretch the graph vertically by a factor of 3, and shift 2 units up.

87.

f ( x)  2 x / 3  4

a. c.

d.

Range: (2, ) Horizontal Asymptote: y  2

Domain: (, )

b. Using the graph of y  2 x , stretch the graph horizontally by a factor of 3, and shift 4 units up.

f ( x)  3e x  2

y  3e x  2 x  3e y  2 x  2  3e x2  ey 3

Inverse

y

 x2 y  ln    3   x2 f 1 ( x)  ln    3 

c.

Range: (4, ) Horizontal Asymptote: y  4

498

Copyright © 2020 Pearson Education, Inc.


Section 5.4: Logarithmic Functions

d.

c.

f ( x)  2 x / 3  4 y2

x/3

4

x2

y/3

4

Inverse

Range: (, 0) Horizontal Asymptote: y  0 f ( x)  3x 1

d.

x  4  2y/3 y  log 2  x  4  3 y  3log 2  x  4 

y  3x 1 x  3 y 1

x  3 y  1  log3   x 

f 1 ( x)  3log 2  x  4 

e.

y  log3   x   1

1

For the domain of f we need x4  0 x4 The domain of the inverse found in part (d) is  4,   .

f

e.

Since the domain of f is the range of f 1 , we can use the result from part (a) to say that the range of f 1 is  ,   . f.

88.

Using the graph of y  log 2 x , shift 4 units to the right, and stretch vertically by a factor of 3.

f ( x)  3x 1

a.

Inverse

y 1

1

( x)  log3   x   1

For the domain of f 1 we need x  0 x0 The domain of the inverse found in part (d) is  , 0  . Since the domain of f is the range of f 1 , we can use the result from part (a) to say that the range of f 1 is  ,   .

f.

Using the graph of y  log3 x , reflect the graph across the y-axis, and shift down 1 unit.

89. log3 x  2

Domain: (, ) x

b. Using the graph of y  3 , shift the graph to the left 1 unit, and reflect about the x-axis.

x  32 x9 The solution set is 9 .

90. log5 x  3 x  53 x  125 The solution set is 125 .

499 Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions 91. log 2 (3 x  4)  5

97. log 4 64  x 5

4 x  64

3x  4  2 3 x  4  32 3 x  28 28 x 3

4 x  43 x3 The solution set is 3 .

98. log5 625  x

 28  The solution set is   . 3

5 x  625 5 x  54 x4 The solution set is 4 .

92. log3 (3x  2)  2 3 x  2  32 3x  2  9 3 x  11 11 x 3

99. log3 243  2 x  1 32 x 1  243 32 x 1  35 2x  1  5 2x  4 x2 The solution set is 2 .

11  The solution set is   . 3

93. log x 16  2 x 2  16 x  4 ( x  4, base is positive)

100. log 6 36  5 x  3

The solution set is 4 .

65 x  3  36

1 94. log x    3 8 1 x3  8 1 x 2

65 x  3  6 2 5x  3  2 5 x  1 1 x 5  1 The solution set is   .  5

1  The solution set is   . 2

101. e3 x  10 3 x  ln10 ln10 x 3

95. ln e x  5 e x  e5 x5 The solution set is 5 .

 ln10  The solution set is  .  3 

96. ln e 2 x  8 e 2 x  e8  2x  8 x  4

The solution set is 4 .

500

Copyright © 2020 Pearson Education, Inc.


Section 5.4: Logarithmic Functions

102. e 2 x 

107. log 2 8 x  6

1 3

8 x  26

1  2 x  ln   3

2   2 3 x

 

23 x  26 3x  6 x  2 The solution set is 2 .

2 x  ln 31 2 x   ln 3 2 x  ln 3 ln 3 x 2

108. log3 3x  1

 ln 3  The solution set is   .  2 

103.

3x  31 x  1 The solution set is 1 .

e2 x 5  8 2 x  5  ln 8 2 x  5  ln 8 5  ln 8 x 2

109.

 5  ln 8  . 2  

 

1  ln13  .  2 

110. 8 102 x 7  3 3 102 x 7  8

105. log 7 x 2  4  2 x2  4  72

2 x  7  log

x 2  4  49 x   45  3 5

The solution set is 3 5, 3 5 .

1 3 x   7  log  2 8

x 2  x  4  52 x 2  x  4  25 x 2  x  21  0 12  4 1 21 2 1

3 8

1 

3 

 



The solution set is   7  log   . 2 8

106. log5 x 2  x  4  2

1 

3 8

2 x  7  log

x 2  45

x

7 5

The solution set is 5ln  .

The solution set is 

7 5

 7 5  0.2 x   5  ln   5 7 x  5ln 5

e 2 x 1  13 2 x  1  ln13 2 x  1  ln13 1  ln13 1  ln13 x  2 2

5e0.2 x  7 7 e0.2 x  5 0.2 x  ln

The solution set is  104.

6

1  85 2

 1  85 1  85  , . 2 2  

The solution set is 

501 Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions 111. 2 102  x  5 5 102  x  2

log3  2 x  1  2  0 log3  2 x  1  2

5 2  x  log 2

2 x  1  32 2x 1  9

5 2

 x  2  log

2x  8 x4 The zero of G is x  4 .

5 x  2  log 2  

5 2

The solution set is 2  log  .

114. a.

5 4

x  1  ln

b.

 

5 4

G  x   log3  2 x  1  2

log 2  x  1  3  1 log 2  x  1  2

x  1  22 x 1  4 x3 The point  3, 1 is on the graph of F.

G  40   log3  2  40  1  2

F  x  0

d.

log 2  x  1  3  0

 log3 81  2  42 2 The point  40, 2  is on the graph of G.

c.

F  x   1

c.

We require that 2 x  1 be positive. 2x  1  0 2 x  1 1 x 2 1  1   Domain:  x | x    or   ,   2  2    b.

F  7   log 2  7  1  3

 log 2  8   3  33 0 The point  7, 0  is on the graph of F.

5 4

The solution set is 1  ln  . 113. a.

F  x   log 2  x  1  3

We require that x  1 be positive. x 1  0 x  1 Domain:  x | x  1 or  1,  

112. 4e x 1  5 5 e x 1  4 x  1  ln

G  x  0

d.

log 2  x  1  3 x  1  23 x 1  8 x7 The zero of G is x  7 .

G  x  3

log3  2 x  1  2  3 log3  2 x  1  5

2 x  1  35 2 x  1  243 2 x  242 x  121 The point 121,3 is on the graph of G.

502

Copyright © 2020 Pearson Education, Inc.


Section 5.4: Logarithmic Functions

115.

ln   x  if x  0 f  x   if x  0  ln x

118.

Domain:  x | x  0 ;  0,  

Domain:  x | x  0

Range:  y | y  0 ;  , 0

Range:  ,  

Intercept: 1, 0 

Intercepts:  1, 0  , 1, 0  116.

 ln x if 0  x  1 f  x   if x  1  ln x

if x  1  ln   x  f  x     1  x  0 x ln if   

119. pH   log10  H   a.

pH   log10  0.1  (1)  1

b.

pH   log10  0.01  (2)  2

c.

pH   log10  0.001  (3)  3

d.

As the H  decreases, the pH increases.

e.

3.5   log10  H   3.5  log10  H    H    10 3.5    3.16  104  0.000316

Domain:  x | x  0 ;  , 0  Range:  y | y  0 ;  0,   Intercept:  1, 0  117.

 ln x if 0  x  1 f  x   if x  1  ln x

f.

7.4   log10  H   7.4  log10  H    H    10 7.4    3.981 108  0.00000003981

120. H    p1 log p1  p2 log p2    pn log pn    p1 log p1  p2 log p2    pn log pn

a.

H  0.617 log  0.617   0.124 log  0.124 

 0.007 log  0.007   0.053log  0.053

Domain:  x | x  0 ;  0,  

 0.002 log  0.002   0.177 log  0.177 

Range:  y | y  0 ;  0,   Intercept: 1, 0 

 0.020 log  0.020   0.4970

503 Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions

b.

H max  log  7   0.8451

c.

E

122. A  A0 e 0.35 n a.

H 0.4970   0.5881 H max 0.8451

0.5  e 0.35n ln  0.5   0.35n

d. (answers may vary)

t

Race

Proportion

White Black or African American

0.720

American Indian/ Native Alaskan

0.009

Asian

0.050

Native Hawaiian/Pacific

0.002

b.

0.130

Some other race

0.060

Two or More Races

0.029

10  100e 0.35 n 0.1  e 0.35n ln  0.1  0.35n t

ln  0.1

 6.58 0.35 About 6.58 days, or 6 days and 14 hours.

123. F (t )  1  e  0.1t a.

0.5  1  e  0.1t  0.5  e 0.1t

H  0.720 log  0.720   0.130 log  0.130 

0.5  e 0.1t ln  0.5    0.1t

 0.009 log  0.009   0.050 log  0.050   0.002 log  0.002   0.060 log  0.060 

0.029 log  0.029   0.4247 The United States appears to be growing more diverse.

t

ln  0.5 

 6.93  0.1 Approximately 6.93 minutes.

b.

0.8  1  e 0.1t  0.2  e 0.1t

121. p  760e 0.145 h

b.

ln  0.5 

 1.98 0.35 Approximately 2 days.

Islander

a.

50  100e 0.35 n

0.2  e 0.1t ln  0.2    0.1t

320  760e 0.145 h 320  e 0.145h 760  320  ln    0.145h  760   320  ln   760   5.97 h  0.145 Approximately 5.97 kilometers.

t

ln  0.2 

 16.09  0.1 Approximately 16.09 minutes.

c.

It is impossible for the probability to reach 100% because e 0.1t will never equal zero; thus, F (t )  1  e  0.1t will never equal 1.

667  760e 0.145 h 667  e 0.145h 760  667  ln    0.145h  760   667  ln   760   0.90 h  0.145 Approximately 0.90 kilometers.

504

Copyright © 2020 Pearson Education, Inc.


Section 5.4: Logarithmic Functions 124. F (t )  1  e  0.15 t a.

0.50  1  e

127. I 

 0.15 t

0.5  e 

 R / L t

0.5  e0.15t ln  0.5   0.15t t

ln  0.5 

 4.62 0.15 Approximately 4.62 minutes, or 4 minutes and 37 seconds.

b.

0.80  1  e 0.15 t 0.2  e0.15t

ln  0.2 

 10.73 0.15 Approximately 10.73 minutes, or 10 minutes and 44 seconds. D  5e 0.4 h 2  5e0.4 h 0.4  e0.4 h ln  0.4    0.4h h

ln  0.4 

 2.29

 0.4 Approximately 2.29 hours, or 2 hours and 17 minutes.

126.

N  P 1  e0.15 d

450  1000 1  e 0.45  1  e

0.15 d

Substituting E  12 , R  10 , L  5 , and I  1.0 , we obtain: 12  10 / 5 t 1.0  1  e     10  10  1  e 2t 12 1 e 2 t  6 2t  ln 1/ 6  t

ln 1/ 6 

 0.8959 2 It takes approximately 0.8959 second to obtain a current of 1.0 ampere.

Graphing:

0.15 d

 0.55  e0.15 d 0.55  e0.15 d ln  0.55    0.15 d d

ln  7 /12 

 0.2695 2 It takes approximately 0.2695 second to obtain a current of 0.5 ampere.

0.2  e ln  0.2   0.15t

125.

Substituting E  12 , R  10 , L  5 , and I  0.5 , we obtain: 12  10 / 5 t 0.5  1  e     10  5  1  e2t 12 7 e 2 t  12 2t  ln  7 /12  t

0.15t

t

E  R/L t 1 e     R

ln  0.55 

 3.99  0.15 Approximately 4 days.

505 Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions

128. L(t )  A 1  e k t

20  200 1  e k (5)

a.

0.1  1  e

132. Intensity of car:  x  70  10 log  12   10   x  7  log  12   10  x 107  12 10 x  105

5 k

5 k

e  0.9 5 k  ln 0.9 ln 0.9 k   0.0211 5   ln 0.9  (10)   5 L(10)  200 1  e   

b.

 200 1  e2ln 0.9

Intensity of truck is 10 105  104 .  104  L 104  10 log  12   10 

 

 38 words   L(15)  200 1  e 

  ln 0.9 (15) 5

c.

 200 1  e3ln 0.9

 10 log 108

  

 10  8  80 decibels  125,892  133. M (125,892)  log    8.1  103 

 54 words   ln 0.9  t   5 180  200 1  e   

d.

0.9  1  e e

ln 0.9 t 5

 50,119  134. M (50,119)  log    7.7  103 

ln 0.9 t 5

 0.1

135. R  ekx a. 1.4  e k (0.03)

ln 0.9 t  ln 0.1 5

ln 0.1 t  ln 0.9  109.27 minutes

1.4  e0.03 k ln 1.4   0.03 k

5

 107  129. L 107  10 log  12   10 

k

 10 log 105

 

b.

 10  5  50 decibels

c.

 10 log 1011

0.03

 11.216

R  e11.216(0.17)  e1.90672  6.73 100  e11.216 x

x

 10 11  110 decibels

 0.41 percent

e.

Answers will vary.

 10 log 109

 10  9  90 decibels

11.216

5  e11.216 x ln 5  11.216 x ln 5 x  0.14 percent 11.216 At a percent concentration of 0.14 or higher, the driver should be charged with a DUI.

 

ln 100 

d.

 103  131. L 103  10 log  12   10 

ln 1.4 

100  e11.216 x ln 100   11.216 x

 101  130. L 101  10 log  12   10 

506

Copyright © 2020 Pearson Education, Inc.


Section 5.4: Logarithmic Functions 136. L( x)   x ln x

139.

log 3 92 x 3  x 2  1 2

a.

b.

c.

L(0.1)  (0.1) ln(0.1)  0.230 If you reject 10% of the first individuals you date, the probability of finding the ideal mate is 0.230. L(0.6)  (0.6) ln(0.6)  0.306 If you reject 60% of the first individuals you date, the probability of finding the ideal mate is 0.306. Since you can only reject between 0 and 100 percent of the individuals (not 100 since you would not find a mate), then the implied domain is (0, 1].

d.

3x 1  92 x 3 2

 

3x 1  32

2 x 3

x 2  1  2(2 x  3) x2  1  4x  6 x2  4 x  5  0 ( x  5)( x  1)  0 x  5 or x  1 The solution set is 1,5 .

140. No. Explanations will vary. 141. If the base of a logarithmic function equals 1, we would have the following: f  x   log 1  x 

f 1  x   1x  1 for every real number x. In other words, f 1 would be a constant function and, therefore, f 1 would not be oneto-one.

e.

L is maximized at x = 0.368 and the highest probability is 0.368.

137. log 6 (log 2 x)  1 61  log 2 x 26  x x  64 The solution set is 64 .

138. log 2 (log 4 (log3 x))  0 20  log 4 (log 3 x) 1  log 4 (log 3 x) 41  log 3 x 34  x x  81

The solution set is 81 .

507 Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions

 

142. New  Old e R t

Age Depriciation rate 5 38, 000  21, 200e R  5 38, 000  e5 R 21, 200

Age Depriciation rate R 1 1 38, 000  36, 600e   38, 000  eR 36, 600

 38, 000  ln    5R  21, 200   38, 000  ln  21, 200  R   0.1167  11.7% 5

 38, 000  R  ln    0.03754  3.8%  36, 600  2

R 2 38, 000  32, 400e   38, 000  e2 R 32, 400  38, 000  ln    2R  32, 400 

Answers will vary. 143. g ( x)  4 x 4  37 x 2  9  (4 x 2  1)( x 2  9)

 38, 000  ln  32, 400  R   0.07971  8% 2 3

 (2 x  1)(2 x  1)( x  3)( x  3) 0  (2 x  1)(2 x  1)( x  3)( x  3) Setting each factor to 0, we get: 1 1 x  , x   , x  3, x  3 2 2 So the zeros of the function and the x-intercepts 1 1  are:  ,  ,3, 3 2 2   1 1 f (1)  f    2  91  9 2 144.  1 1 1 1 2 2 93 6    12 1 1 2 2

R 3 38, 000  28, 750e   38, 000  e3 R 28, 750  38, 000  ln    3R  28, 750 

 38, 000  ln  28, 750  R   0.0930  9.3% 3 4

R 4 38, 000  25, 400e   38, 000  e4 R 25, 400  38, 000  ln    4R  25, 400 

145.

f (1)  4(1)3  2(1) 2  7  427

 38, 000  ln  24,500  R   0.1007  10.1% 4

 5 f (2)  4(2)3  2(2) 2  7  4(8)  2(4)  7  32  8  7  17 Since f(b) and f(a) are of opposite signs there is at least one real zero of f between a and b.

146. The remaining root must be the conjugate of (3  i ) which is (3  i ) . A polynomial could be (a = 1): f ( x)  ( x  1)( x  2)( x  (3  i ))( x  (3  i ))  x 4  7 x 3  14 x 2  2 x  20

508

Copyright © 2020 Pearson Education, Inc.


Section 5.5: Properties of Logarithms 147. a  2, b  7, c  1 x

3. r

(7)  (7) 2  4(2)(1) 2(2)

4. log a M ; log a N 5. log a M ; log a N

7  49  8 4 7  57  4 

6. r log a M

 7  57 7  57  The solution set is  ,  4   4

148.

5 4  1 5   80 8 8 5 y  1   ( x  0) 8 5 y   x 1 8 8 y  5 x  8 5x  8 y  8

 x3 8. False: ln( x  3)  ln(2 x)  ln    2x 

9. False: log 2  3 x 4   log 2 3  4 log 2 x

m

10. False 11. b 12. b 13. log 7 7 29  29

149. 2 x  17  45 or 2 x  17  45 2 x  62 2 x  28 x  31 x  14 The solution set is 31,14

14. log 2 213  13 15. ln e 4  4 16. ln e 2  2

150. H (30.9)  2.90(30.9)  61.53

151.

7. 7

 89.61  61.53  151.1 cm

17. 9log9 13  13

f ( x)  f  2 

18. eln 8  8

x2

x3  8 x2 ( x  2)( x 2  2 x  4)  x2  x2  2x  4 

19. log8 2  log8 4  log8  4  2   log8 8  1 20. log 6 9  log 6 4  log 6  9  4   log 6 36

152. ( x  5) 4  7( x  3)6  ( x  3)7  4( x  5)3

 log 6 62

 ( x  5) ( x  3)  ( x  5)  7  ( x  3)  4 3

6

 ( x  5) ( x  3)  7 x  35  4 x  12 3

2

6

 ( x  5)3 ( x  3)6 11x  23

21. log 5 35  log 5 7  log 5

35  log 5 5  1 7

22. log8 16  log8 2  log8

16  log8 8  1 2

Section 5.5 1. 0 2. M 509 Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions

23. log 2 6  log 6 8  log 6 8log2 6

30. ln

 log 6  2 

3 log 2 6

 log 6 23log2 6 3

2  ln 2  ln 3  a  b 3

31. ln1.5  ln

3  ln 3  ln 2  b  a 2

32. ln 0.5  ln

1  ln1  ln 2  0  a   a 2

 log 6 2log2 6  log 6 63 3

24. log 3 8  log8 9  log8 9log3 8

33. ln 8  ln 23  3  ln 2  3a

 log8  32 

34. ln 27  ln 33  3  ln 3  3b

log3 8

 log8 32 log3 8

35. ln 5 6  ln 61/ 5 1  ln 6 5 1  ln  2  3 5 1   ln 2  ln 3 5 1  a  b 5

log3 82

 log8 3

 log8 82 2

25. 4log4 6  log4 5  4

log 4

6 5

6 5

26. 5log5 6  log5 7  5log5 (67)  5log5 42  42 27. e

log 2 16

1/ 4

e

36. ln 4

Let a  log e2 16, then  e 2   16. a

e 2 a  16 e2 a  42

e 

2 a 1/ 2

  42 

1/ 2

ea  4 a  ln 4

Thus, e 28. e

log 2 16 e

37. log 6  36 x   log 6 36  log 6 x  2  log 6 x

 eln 4  4 .

log 2 9 e

38. log 3

Let a  log e2 9, then  e   9. 2 a

e2a  9 1/ 2

40. log 7 x 5  5log 7 x

  32 

1/ 2

41. ln  ex   ln e  ln x  1  ln x

ea  3 a  ln 3

Thus, e

log 2 9 e

x x  log 3 2  log 3 x  log 3 32  log 3 x  2 9 3

39. log 5 y 6  6 log 5 y

e 2 a  32

 e2 a 

2 2  ln   3 3 1 2  ln 4 3 1   ln 2  ln 3 4 1  a  b 4

 eln 3  3 .

42. ln

29. ln 6  ln(2  3)  ln 2  ln 3  a  b

e  ln e  ln x  1  ln x x

 x 43. ln  x   ln x  ln e x  ln x  x e 

510

Copyright © 2020 Pearson Education, Inc.


Section 5.5: Properties of Logarithms 44. ln  xe x   ln x  ln e x  ln x  x

1/ 3

53.

45. log a  u 2 v3   log a u 2  log a v3  2 log a u  3log a v  a  46. log 2  2   log 2 a  log 2 b 2  log 2 a  2 log 2 b b 

47. ln x 2 1  x  ln x 2  ln 1  x  ln x 2  ln(1  x)1/ 2 1  2 ln x  ln(1  x) 2

48. ln x 1  x 2  ln x  ln 1  x 2  ln x  ln 1  x 2 

1/ 2

1  ln x  ln 1  x 2  2  x3  3 49. log 2    log 2 x  log 2 ( x  3)  x 3  3log 2 x  log 2 ( x  3)  3 x2  1   50. log 5  2  x 1     log 5  x 2  1

1/ 3

 x( x  2)   log  x( x  2)   log( x  3) 2 51. log  2   x ( 3)    log x  log( x  2)  2 log( x  3)  x x 1  52. log   log x3 x  1  log( x  2) 2 2  ( x  2)    log x3  log( x  1)1/ 2  2 log( x  2) 1  3log x  log( x  1)  2 log( x  2) 2

1  ( x  2)( x  1)   ln   3  ( x  4) 2  1   ln( x  2)( x  1)  ln( x  4) 2  3 1   ln( x  2)  ln( x  1)  2 ln( x  4)  3 1 1 2  ln( x  2)  ln( x  1)  ln( x  4) 3 3 3 2/3

  x  4 2  54. ln  2   x  1  2 2   x  4   ln  2  3  x  1 

2 2 ln  x  4   ln  x 2  1   3 2   2 ln  x  4   ln   x  1 x  1   3 2   2 ln  x  4   ln  x  1  ln  x  1  3 4 2 2  ln  x  4   ln  x  1  ln  x  1 3 3 3 

55. ln

 log 5 ( x 2  1)

1  log 5  x 2  1  log 5  x 2  1 3 1  log 5  x 2  1  log 5   x  1 x  1  3 1  log 5  x 2  1  log 5  x  1  log 5  x  1 3

3

 x2  x  2  ln  2   ( x  4) 

5 x 1  3x ( x  4)3

 ln 5 x 1  3 x  ln( x  4)3  ln 5  ln x  ln 1  3 x  3ln  x  4   ln 5  ln x  ln 1  3x 

1/ 2

 3ln  x  4 

1  ln 5  ln x  ln 1  3x   3ln  x  4  2  5x2 3 1  x  56. ln  2   4( x  1) 

 ln 5 x 2 3 1  x  ln  4( x  1) 2   ln 5  ln x 2  ln 1  x 

1/ 3

  ln 4  ln  x  1    2

1  ln 5  2 ln x  ln 1  x   ln 4  2 ln  x  1 3

57. 3log 5 u  4 log 5 v  log 5 u 3  log 5 v 4

511 Copyright © 2020 Pearson Education, Inc.

 log 5  u 3 v 4 


Chapter 5: Exponential and Logarithmic Functions  x   x 1 2 63. ln    ln    ln  x  1 1 x  x      x x  1 2  ln     ln  x  1  x 1 x 

58. 2 log 3 u  log 3 v  log 3 u 2  log 3 v u   log 3    v  2

 x 59. log 3 x  log 3 x3  log 3  3   x   x1/ 2   log 3  3   x 

 x 1   ln    x 2  1   x 1    x 1   ln    x  1  x 2  1    x 1  ln   x x x ( 1)( 1)( 1)     

 log 3 x 5 / 2  1   log 3  5 / 2  x 

 1   ln  2   ( x  1)   ln( x  1) 2   2 ln( x  1)

1  1  1 1  60. log 2    log 2  2   log 2   2  x x     x x   1   log 2  3  x 

 x2  2 x  3   x2  7 x  6   log 64. log     2  x 4   x2 

61. log 4  x 2  1  5log 4  x  1  log 4  x 2  1  log 4  x  1

  x2  2x  3     x2  4    log   2  x  7x  6       x  2  

5

 x2 1   log 4   5   x  1    x  1 x  1   log 4   5   x  1 

 ( x  3)( x  1)  x2  log     ( x  2)( x  2) ( x  6)( x  1)   ( x  3)( x  1)   log    ( x  2)( x  6)( x  1) 

 x 1   log 4   4   x  1 

4 65. 8log 2 3x  2  log 2    log 2 4  x

62. log  x 2  3x  2   2 log 2  x  1  log  x 2  3 x  2   log 2  x  1

2

 log 2

 x 2  3x  2    log    x  12   

 3x  2    log 4  log x   log 4 8

2

2

2

 log 2 (3 x  2)  log 2 4  log 2 x  log 2 4 4

 log 2 (3 x  2) 4  log 2 x

  x  2  x  1    log    x  12    2 x     log    x 1 

 log 2  x(3 x  2) 4 

66. 21log 3 3 x  log 3  9 x 2   log 3 9  log 3  x1/ 3   log 3  9   log 3  x 2   log 3 9 21

 log 3 x 7  log 3 x 2  log 3  x 7  x 2   log 3  x 9 

512

Copyright © 2020 Pearson Education, Inc.


Section 5.5: Properties of Logarithms

1 67. 2 log a  5 x 3   log a (2 x  3) 2

76. log 5 8 

 log a  5 x 3   log a (2 x  3)1/ 2

log 8 log 5

 2.584

2

68.

ln e  0.874 ln 

 log a  25 x 6   log a 2 x  3

77. log  e 

 25 x 6   log a    2x  3 

78. log  2 

1 1 log  x 3  1  log  x 2  1 3 2

79. y  log 4 x 

 log  x3  1

1/ 3

 log  x 2  1

1/ 2

3

ln x log x or y  ln 4 log 4

 log  x  1  x  1    3

ln 2  0.303 ln 

2



69. 2 log 2  x  1  log 2  x  3  log 2  x  1  log 2  x  1  log 2  x  3  log 2  x  1 2

 x  1  log 2  x  1  x  3   x  12   log 2     x  3 x  1 



2

 log 2

80. y  log 5 x 

ln x log x or y  ln 5 log 5

 

70. 3log 5  3x  1  2 log 5  2 x  1  log 5 x  log 5  3 x  1  log 5  2 x  1  log 5 x 3

2

 3x  1  log 5  log 5 x 2  2 x  1   3x  13   log 5   2  x  2 x  1  3

71. log 3 21 



81. y  log 2 ( x  2)  



log 21  2.771 log 3

82. y  log 4 ( x  3) 

log 71 log 71   3.880 log 1/ 3  log 3

74. log1/ 2 15 

log15 log15   3.907 log 1/ 2   log 2



log 2

ln( x  3) log( x  3) or y  ln 4 log 4

73. log1/ 3 71 

log 7

 

log18 72. log 5 18   1.796 log 5

75. log 2 7 

ln( x  2) log( x  2) or y  ln 2 log 2

 5.615

513 Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions

83. y  log x 1 ( x  1) 

ln( x  1) log( x  1) or y  ln( x  1) log( x  1)

b.

(Note: the restriction on the domain is due to the domain of log 2 x )

 g  f  x   g  f  x    2log2 x  x Domain:  x | x  0 or  0,  



c.

 f  g  3  3

d.

 f  h  x   f  h  x    log 2  4 x  or  log 2 4  log 2 x  2  log 2 x

ln( x  2) log( x  2) 84. y  log x  2 ( x  2)  or y  ln( x  2) log( x  2)

Domain:  x | x  0 or  0,  

e.

 f  h 8  log 2  4  8   log 2 32  5 or  2  log 2 8  2  3  5

[from part (a)]



87. ln y  ln x  ln C ln y  ln  xC  y  Cx

88. ln y  ln  x  C  85.

f  x   ln x ; g  x   e ; h  x   x x

a.

b.

y  xC

2

 f  g  x   f  g  x    ln  e x   x Domain:  x | x is any real number or  ,  

89. ln y  ln x  ln( x  1)  ln C ln y  ln  x  x  1 C  y  Cx  x  1

 g  f  x   g  f  x    eln x  x Domain:  x | x  0 or  0,  

90. ln y  2 ln x  ln  x  1  ln C  x 2C  ln y  ln    x 1  Cx 2 y x 1

(Note: the restriction on the domain is due to the domain of ln x ) c. d.

e. 86.

 f  g  5   5

[from part (a)]

 f  h  x   f  h  x    ln  x 2  Domain:  x | x  0 or  , 0    0,  

91. ln y  3x  ln C ln y  ln e3 x  ln C ln y  ln  Ce3 x 

 f  h  e   ln  e2   2 ln e  2 1  2

y  Ce3 x

f  x   log 2 x ; g  x   2 ; h  x   4 x x

a.

92. ln y   2 x  ln C

 f  g  x   f  g  x    log 2  2 x   x Domain:  x | x is any real number or  ,  

ln y  ln e 2 x  ln C ln y  ln  Ce 2 x  y  Ce 2 x

514

Copyright © 2020 Pearson Education, Inc.


Section 5.5: Properties of Logarithms 93. ln  y  3   4 x  ln C ln  y  3  ln e

4 x

97. log 2 3  log 3 4  log 4 5  log 5 6  log 6 7  log 7 8

 ln C

ln  y  3  ln  Ce4 x 

log 3 log 4 log 5 log 6 log 7 log 8      log 2 log 3 log 4 log 5 log 6 log 7

log 8 log 23  log 2 log 2 3log 2  log 2 3 

y  3  Ce4 x y  Ce4 x  3

94. ln  y  4   5 x  ln C ln  y  4   ln e5 x  ln C ln  y  4   ln  Ce5 x 

log 4 log 6 log 8   log 2 log 4 log 6 log 8  log 2

98. log 2 4  log 4 6  log 6 8 

y  4  Ce5 x y  Ce5 x  4

log 23 log 2 3log 2  log 2 3 

1 1 95. 3ln y  ln  2 x  1  ln  x  4   ln C 2 3 ln y 3  ln  2 x  1

 ln  x  4 

1/ 2

1/ 3

 ln C

 C  2 x  11/ 2  ln y 3  ln   1/ 3   x  4  

99. log 2 3  log 3 4   log n  n  1  log n 1 2

C  2 x  1

1/ 2

y3 

 x  4

1/ 3 1/ 3

 C  2 x  11/ 2  y  1/ 3   x  4   3

y

log 2 log 2 1 

C  2 x  1

1/ 6

 x  4

1/ 9

100. log 2 2  log 2 4  . . .  log 2 2n

1 1 96. 2 ln y   ln x  ln  x 2  1  ln C 2 3 ln y 2   ln x1/ 2  ln  x 2  1

1/ 3

 C  x 2  1 ln y 2  ln   x1/ 2 

1/ 3

   

C  x 2  1

1/ 3

y  2

log 3 log 4 log  n  1 log 2     log 2 log 3 log n log  n  1

x1/ 2 1/ 2

 C  x 2  11/ 3   y   x1/ 2  

 log 2 2  log 2 22   log 2 2n  1  2  3   n  n!

 ln C



 log a  x  x 2  1 x  x 2  1     log a  x 2   x 2  1   log a  x 2  x 2  1  log a 1 0

C  x 2  1

1/ 6

y

101. log a x  x 2  1  log a x  x 2  1

x1/ 4

515 Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions

 x  x  1  log  x  x  1  log  x  x  1  x  x  1    

102. log a

107.

a

1 1 f    log a   x  x  log a 1  log a x

a

 log a  x   x  1 

  log a x

 log a  x  x  1

  f ( x)

 log a 1 0

108.

103. 2 x  ln 1  e

2 x

2x

2 x

0

109. If A  log a M and B  log a N , then a A  M

2x

and a B  N .  aA  M  log a    log a  B  N a 

f ( x  h)  f ( x) log a ( x  h)  log a x  h h x h   log a    x   h 1  h   log a 1   h  x

 log a a A  B  A B  log a M  log a N 1 110. log a    log a N 1 N  1  log a N

1

 h h  log a 1   , h  0  x

105.

  log a N ,

f ( x)  log a x means that x  a f ( x ) . Now, raising both sides to the 1 power, we f ( x) f ( x) 1 1   . obtain x 1   a f ( x )    a 1  a f ( x)

1 x 1    means that log1/ a x 1  f ( x) . a   Thus, log1/ a x 1  f ( x)

111. log a b 

log b b log b a

1 log b a

112. log a m 

log a m log a a

a 1

log a m 1

log a a 2

log m log a m  1 a  1 2 log a a 2

 log1/ a x  f ( x)  f ( x)  log1/ a x

106.

f  x   log a x

f  x   log a x   log a x   f ( x)

  ln e  ln 1  e   ln  e 1  e    ln  e  e   ln  e  1 2 x

2x

2x

104.

f ( x)  log a x

 2 log a m  log a m 2

f ( AB)  log a ( AB)  log a A  log a B  f ( A)  f ( B)

113. log an b m 

log a b m m log a b  log a a n n log a a

m log a b m  log a b n n

516

Copyright © 2020 Pearson Education, Inc.


Section 5.5: Properties of Logarithms

The zeros are:  1.78,1.29,3.49 .

114. log 2 3  log 3 4  log 4 5   log n (n  1)  10 ln(n  1) ln 3 ln 4 ln 5  10     ln 2 ln 3 ln 4 ln n ln(n  1)  10 ln 2 log 2 (n  1)  10

120. The discriminant is b 2  4ac . So b 2  4ac  ( 28) 2  4(4)(49)  784  784  0 Since the discriminant is zero then there is a repeated real solution (double root).

n  1  210 n  1023

115. Y1  log x 2

Y2  2 log x





121.

y  log x 2

y  2 log x





The domain of Y1  log a x is  x x  0 . The 2

domain of Y2  2 log a x is  x x  0 . These two domains are different because the logarithm property log a x n  n  log a x holds only when log a x exists. 116. Answers may vary. One possibility follows: Let a  2 , x  8 , and r  3 . Then

f ( x)  5 x5  44 x 4  116 x3  95 x 2  4 x  4 . Possible rational zeros: p  1,  2,  4; q  1, 5;

p 1 2 4  1,  2,  4,  ,  ,  q 5 5 5 Using synthetic division: We try 2 : 2 5 44 116 95  4  4  10  68  96  2 4 5 34 48  1  2 0 2 is a zero and we try it again: 2 5

5 24

 log 2 8  3log 2 8 and, in general, r  log a x   r log a x . 3

117. Answers may vary. One possibility follows: Let x  4 and y  4 . Then log 2 ( x  y )  log 2 (4  4)  log 2 8  3 . But log 2 x  log 2 y  log 2 4  log 2 4  2  2  4 . Thus, log 2 (4  4)  log 2 4  log 2 4 and, in general, log 2 ( x  y )  log 2 x  log 2 y . 118. No. log 3 (5) does not exist. The argument of a logarithm must be nonnegative. 119. Using a graphing utility set Y 1  x3  3 x 2  4 x  8 and Y 2  0 . Graph both and use the graphing utility to find the intersection points. You can also use the SOLVE function on the graphing utility to find the zeros.

0

0

2

1

0

So 2 is a repeated root. We now try 1 5 5

3

r log a x  3log 2 8  3  3  9 . Thus,

48  1  2

 10  48

 log a x    log 2 8  33  27 . But r

34

24

1 5

0 1

1 5 1 5 25 5 0 We can use the quadratic formula on 5 x 2  25 x  5  0 . x2  5x  1  0

x 

b  b 2  4ac 2a

5  52  4(1)(1) 2(1)

5  25  4 2 5  21  2 

The zeros are 2 , of multiplicity 2, 5  21 , each of multiplicity 1. 2

517 Copyright © 2020 Pearson Education, Inc.

1 , 5


Chapter 5: Exponential and Logarithmic Functions

122.

f ( x)  2  x   ( x  2) . Use the graph of

127.

f ( x)  x . The graph would be reflected about the y-axis and shifted horizontally by 2 units to the right.

128.

f (3)  f (1) 33  (1)3  3  (1) 3  (1) 27  1  4 28  7 4 f ( x) 

Domain:  , 2

Range:  0,  

3 x 5 x 2  3x 4 3

x

  f ( x)

Section 5.6 1.

4 x  1  32

x 1  8

x 2  7 x  30  0 ( x  3)( x  10)  0 x  3  0 or x  10  0 x  3 or x  10 The solution set is {3, 10} .

8  x  1  8 9  x  1  7 The solution set is  x | 9  x  1  7 or  9, 7  .

2. Let u  x  3 . Then ( x  3) 2  4( x  3)  3  0

b 4  4 2a 2( 12 )

u 2  4u  3  0 (u  1)(u  3)  0

1 f (4)   (4) 2  4(4)  5  13 2

u  1  0 or u  3  0 u  1 or u 3 Back substituting u  x  3 , we obtain x 3 1 or x  3  3 x  2 or x0 The solution set is {2, 0} .

The vertex is (4,13) and the graph is concave down since a is negative. 126.

5 x 2  3x4

The function is odd.

124. 4 x  1  9  23

x

3 ( x)



123. The radicand must be non-negative: 3  5x  0 5 x  3 3 x 5 3  The solution set is  ,  5  

125.

5( x) 2  3( x) 4

x 2  10 x  y 2  4 y  35 ( x 2  10 x  25)  ( y 2  4 y  4)  35  25  4 ( x  5) 2  ( y  2) 2  64

3. x3  x 2  5 Using INTERSECT to solve: y1  x3 ; y2  x 2  5

The center is  5, 2  and the radius is 8.

518

Copyright © 2020 Pearson Education, Inc.


Section 5.6: Logarithmic and Exponential Equations



8. log3 (3x  1)  2



 Thus, x  1.43 , so the solution set is {1.43} . 4. x3  2 x  2  0 Using ZERO to solve: y1  x3  2 x  2

 

 Thus, x  1.77 , so the solution set is {1.77} . 5. log 4 x  2 x  42 x  16 The solution set is 16 .

3 x  1  32 3x  1  9 3 x  10 10 x 3 10  3

The solution set is   . 9. log 4 ( x  4)  log 4 15 x  4  15 x  11 The solution set is 11 . 10. log5 (2 x  3)  log 5 3 2x  3  3 2x  0 x0 The solution set is 0 . 11. log 4 x  3 x  43 x  64 or x  64 The solution set is 64, 64 .

6. log ( x  6)  1 x  6  101 x  6  10 x4 The solution set is 4 .

7. log 2 (5 x)  4 5 x  24 5 x  16 16 x 5

12. log 2 x  7  4 x  7  24 x  7  16 or x  7  16 x  23 x  9 The solution set is 9, 23 .

13. log5 2 x  1  log5 13 x  7  13

16  5

The solution set is   .

2 x  1  13 or 2x  1  13 x7 x  6 The solution set is 6, 7 .

14. log9 3x  4  log 9 5 x  12 3x  4  5 x  12 or  3x  4  5 x  12 2 x  16  8 x  8 x8 x 1 The solution set is 1,8 .

519 Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions

15.

19. 2 log 6 ( x  5)  log 6 9  2 2 log 6 ( x  5)  log 6 9  2

1 log 7 x  3log 7 2 2 log 7 x1/ 2  log 7 23

log 6 ( x  5) 2  log 6 9  2

x1/ 2  8 x  64 The solution set is 64 .

log 6 9( x  5) 2  2 2

9( x  5)  62 36 ( x  5) 2  9 2 ( x  5)  4 x5  2 x7 The solution set is 7 .

16.  2 log 4 x  log 4 9 log 4 x 2  log 4 9 x 2  9 1 9 x2 1 x2  9

20. 2 log3 ( x  4)  log 3 9  2 log3 ( x  4) 2  log3 32  2

1 x 3  1 Since log 4    is undefined, the solution set is  3 1   . 3

log 3 ( x  4) 2  2  2 log 3 ( x  4)2  4 ( x  4)2  34 ( x  4)2  81 x  4  9 x  49 x  5 or x  13 Since log3  13  4   log3   9  is undefined,

17. 3log 2 x   log 2 27 log 2 x3  log 2 27 1 x3  27 1 1 x3  27 1 x 3

the solution set is 5 . 21. log x  log( x  15)  2 log  x( x  15)   2 x( x  15)  102

1  The solution set is   . 3

x 2  15 x  100  0 ( x  20)( x  5)  0 x   20 or x  5

18. 2 log 5 x  3log5 4 log5 x 2  log5 43

Since log  20  is undefined, the solution set is

2

x  64 x  8 Since log 5   8  is undefined, the solution set is

5 . 22. log x  log( x  21)  2 log  x( x  21)   2

8 .

x( x  21)  102 x 2  21x  100  0 ( x  4)( x  25)  0 x  4 or x  25 Since log  4  is undefined, the solution set is

25 . 520

Copyright © 2020 Pearson Education, Inc.


Section 5.6: Logarithmic and Exponential Equations

23.

Since log 6   6  4   log 6   2  is undefined,

log(7 x  6)  1  log( x  1) log(7 x  6)  log( x  1)  1  7x  6  log   1  x 1  7x  6  101 x 1 7 x  6  10( x  1) 7 x  6  10 x  10 3 x  16 16 16 x  3 3

the solution set is 1 . 27.

log8 ( x  6)  1  log8 ( x  4) log8 ( x  6)  log8 ( x  4)  1 log8  ( x  6)( x  4)   1

( x  6)( x  4)  81 x 2  4 x  6 x  24  8 x 2  10 x  16  0 ( x  8)( x  2)  0 x  8 or x  2 Since log8   8  6   log8   2  is undefined, the

16  3

The solution set is   .

solution set is 2 .

24. log(2 x)  log( x  3)  1  2x  log   1  x 3 2x  101 x 3 2 x  10( x  3) 2 x  10 x  30 8 x  30 30 15 x  4 8

28.

log 5 ( x  3)  1  log5 ( x  1) log5 ( x  3)  log5 ( x  1)  1 log 5  ( x  3)( x  1)  1

( x  3)( x  1)  51 x 2  x  3x  3  5 x2  2 x  8  0 ( x  4)( x  2)  0 x  4 or x  2 Since log 5   4  3  log 5   1 is undefined, the

15  4

The solution set is   .

solution set is {2}.

25. log 2 ( x  7)  log 2 ( x  8)  1 log 2  ( x  7)( x  8)   1

29. ln x  ln( x  2)  4 ln  x( x  2)   4

( x  7)( x  8)  21

x( x  2)  e 4

x 2  8 x  7 x  56  2

x 2  2 x  e4  0

x 2  15 x  54  0 ( x  9)( x  6)  0 x  9 or x  6 Since log 2   9  7   log 2   2  is undefined,

the solution set is 6 . 26. log 6 ( x  4)  log 6 ( x  3)  1 log 6  ( x  4)( x  3)   1

( x  4)( x  3)  61 x 2  3 x  4 x  12  6 x2  7 x  6  0 ( x  6)( x  1)  0 x  6 or x  1

x

 2  22  4(1)( e 4 ) 2(1)

 2  4  4e 4 2

 2  2 1  e4 2

 1  1  e 4 x  1  1  e 4 or x  1  1  e4  8.456  6.456 Since ln  8.456  is undefined, the solution set

is 1  1  e4  6.456 .

521 Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions 32. log 2  x  1  log 2  x  7   3

30. ln( x  1)  ln x  2

log 2  x  1 x  7    3

 x 1 ln  2  x  x 1 2 e x x  1  e2 x

 x  1 x  7   23

x2  7 x  x  7  8 x2  8x  1  0

e2 x  x  1

x

x e2  1  1 x

1

 8  82  4(1)(1) 2(1)

8  68 2  8  2 17  2   4  17 

 0.157

e2  1  1  The solution set is  2   0.157 .  e  1

31. log9  x  8   log9  x  7   2

x   4  17 or x   4  17  8.123  0.123 Since log 2  8.123  1  log 2  7.123 is

log9  x  8  x  7    2

 x  8 x  7   92

undefined, the solution set is

x 2  8 x  7 x  56  81

 4  17   0.123.

x 2  15 x  25  0

15  (15)2  4(1)(25) 2 15  325  2 15  5 13  2

x

Since log3  16.514  8   log 3  8.514  is undefined, the solution set is  15  5 13     0.854 . 2  

522

Copyright © 2020 Pearson Education, Inc.


Section 5.6: Logarithmic and Exponential Equations 36. log a x  log a ( x  2)  log a ( x  4)

33. log1/ 3 ( x 2  x)  log1/ 3 ( x 2  x)  1

log a  x( x  2)   log a ( x  4) x( x  2)  x  4

x x log1/ 3  2   1 x x 2

x2  x

1   x2  x  3 

x2  2x  x  4

1

x2  x

3 x2  x x2  x  3 x2  x

2

2

x  x  3x  3x 2

2 x  4 x  0 2 x  x  2   0

x 2  3x  4  0 ( x  4)( x  1)  0 x  4 or x  1 Since log a (1) is undefined, the solution set is

4 .

37. 2 log5 ( x  3)  log 5 8  log 5 2 log5 ( x  3) 2  log 5 8  log 5 2

 2 x  0 or x  2  0 x  0 or x2 Since each of the original logarithms are not defined for x  0 , but are defined for x  2 , the solution set is 2 .

log 5

( x  3)2  log 5 2 8 ( x  3)2 2 8 ( x  3)2  16

x 2  6 x  9  16

2

34. log 4 ( x  9)  log 4 ( x  3)  3  x 9 log 4    3  x3  ( x  3)( x  3)  43 x3 x  3  64 x  67 Since each of the original logarithms is defined for x  67 , the solution set is 67 . 2

35. log a ( x  1)  log a ( x  6)  log a ( x  2)  log a ( x  3)  x 1   x2 log a    log a    x6  x3 x 1 x  2  x6 x3  x  1 x  3   x  2  x  6  x 2  2 x  3  x 2  4 x  12 2 x  3  4 x  12 9  2x 9 x 2 Since each of the original logarithms is defined for 9 9  x  , the solution set is   . 2 2

x2  6x  7  0 ( x  7)( x  1)  0 x  7 or x  1 Since log5 ( 4) is undefined, the solution set is

 7 .

38. log3 x  2 log 3 5  log 3 ( x  1)  2 log 3 10 log3 x  log3 52  log 3 ( x  1)  log3 102 x  ( x  1)   log 3  25  100  x x 1  25 100 4x  x  1 3x  1 1 x 3 1  The solution set is   .  3 log3

523 Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions 39. 2 log 6 ( x  2)  3log 6 2  log 6 4 2

1 42. log( x  1)  log 2 3

3

log 6 ( x  2)  log 6 2  log 6 4

1

log 6 ( x  2) 2  log 6  (8)(4) 

log( x  1)  log 2 3

( x  2) 2  32

1

x  1  23

2

x  4 x  4  32

1 x  2 3  1  3 2  1  2.260

x 2  4 x  28  0 x

 4  42  4(1)( 28) 2(1)

The solution set is

4  128 2 48 2  2  2 4 2 

43.

3

(log3 x) 2  3(log3 x)  10 (log 3 x) 2  3(log 3 x)  10  0 (log 3 x  5)(log3 x  2)  0 log3 x  5 or log3 x  2

x   2  4 2 or x   2  4 2

The solution set is 0.123 .

x  243

40. 3(log 7 x  log 7 2)  2 log 7 4 3log 7 x  3log 7 2  2 log 7 4

1  The solution set is  , 243 . 9  

log 7 x3  log 7 23  log 7 42 x3  log 7 42 8 x3  16 8 x3  128

44.

ln x  3 ln x  2  0 ( ln x  2)( ln x  1)  0 ln x  2 ln x =4

x  4 3 2  5.040

or

x  e4  54.600

 

ln x  1 ln x  1 x  e  2.718

 

The solution set is 4 3 2 .

The solution set is e, e4 .

41. 2 log13 ( x  2)  log13 (4 x  7)

45. 2 x 5  8

2

log13 ( x  2)  log13 (4 x  7)

2 x 5  23 x 5  3 x 8 The solution set is 8 .

( x  2) 2  (4 x  7) x2  4 x  4  4 x  7 x2  3  0 x2  3

46. 5 x  25

x   3  1.732

x  32 1 x 9

x  35

 0.123

 8.123

log 7

 2  1 .

5 x  5 2 x  2 x  2 The solution set is 2 .

The solution set is  3, 3 .

524

Copyright © 2020 Pearson Education, Inc.


Section 5.6: Logarithmic and Exponential Equations

47. 2 x  10 log10 x  log 2 10   3.322 log 2 The solution set is  1  log 2 10     3.322 .  log 2 

40.2 x 

ln14  2.402 ln 3 The solution set is ln14  log3 14     2.402 .  ln 3  x  log3 14 

53.

ln 1.2  ln 8

  0.088

50. 2 x  1.5  x  log 2 1.5

54. log1.5   0.585 log 2

The solution set is ln1.5   log 2 1.5      0.585 .  ln 2 

2

 

2 x 1  51 2 x

ln 2 x 1  ln 51 2 x

( x  1) ln 2  (1  2 x) ln 5 x ln 2  ln 2  ln 5  2 x ln 5 x ln 2  2 x ln 5  ln 5  ln 2 x(ln 2  2 ln 5)  ln 5  ln 2 x  ln 2  ln 25   ln 52

 

51. 5 23 x  8 3x

(1  2 x) ln 3  x ln 4 ln 3  2 x ln 3  x ln 4 ln 3  2 x ln 3  x ln 4 ln 3  x(2 ln 3  ln 4) ln 3 x  0.307 2 ln 3  ln 4 ln 3   The solution set is    0.307 . 2 ln 3 ln 4   

The solution set is  ln 1.2    log8 1.2      0.088 .   ln 8 

x   log 2 1.5  

31 2 x  4 x

ln 31 2 x  ln 4 x

x

x   log8 1.2  

2 3

2 0.2 x  log 4   3 log 4 (2 / 3) ln  2 / 3 x   1.462 0.2 0.2 ln 4 The solution set  log (2 / 3)   ln  2 / 3  is  4    1.462 .  0.2   0.2 ln 4 

48. 3x  14

49. 8  1.2  x  log8 1.2

52. 0.3 40.2 x  0.2

x  ln 50   ln 52

8  5

8 3 x  log 2   5 1  8  ln  8 / 5  x  log 2     0.226 3 3ln 2 5 The solution set is 1  8    ln  8 / 5    log 2        0.226 . 3  5    3ln 2  

ln 52

 0.234 ln 50  ln 5  The solution set is  2   0.234 .  ln 50 

525 Copyright © 2020 Pearson Education, Inc.

x


Chapter 5: Exponential and Logarithmic Functions x ln  0.3  2 x ln 1.7    ln 1.7   ln  0.3

x

3 1 x   7 5

55.

x

x  ln  0.3  2 ln 1.7     ln 1.7   ln  0.3

3 ln    ln 71 x 5 x ln  3 / 5   (1  x) ln 7

x

x ln  3 / 5   x ln 7  ln 7

x  ln  3 / 5   ln 7   ln 7

ln 1 x  ln e x (1  x) ln   x ln   x ln   x ln   x  x ln  ln   x(1  ln ) ln  x  0.534 1  ln   ln   The solution set is    0.534 . 1  ln  

ln 7  1.356 ln  3 / 5   ln 7

1 x

4   3

 5x 1 x

 

4 ln    ln 5 x 3 (1  x) ln  4 / 3  x ln 5

60.

ln  4 / 3  x ln  4 / 3  x ln 5

ln  4 / 3  x  ln 5  ln  4 / 3 

ln 43 x  0.152 ln 20 3  ln 4  The solution set is  3   0.152 . 20  ln 3  x

1.2  (0.5)

57.

22 x  2 x  12  0

61.

 2   2  12  0  2  3 2  4  0 x 2

x

x

ln1.2 x  ln(0.5)  x x ln 1.2    x ln  0.5 

x ln 1.2   x ln  0.5   0

58.

e x 3   x ln e x 3  ln  x x  3  x ln  3  x ln   x 3  x(ln   1) 3 x  20.728 ln   1  3  The solution set is    20.728 .  ln   1 

ln  4 / 3  x ln 5  x ln  4 / 3 ln  4 / 3  x ln 20 3

ln 0.51   0.297 ln(2.89 / 3)

1 x  e x

59.

ln 7   The solution set is    1.356 . ln 3 / 5  ln 7    

56.

ln  0.3  2 ln 1.7 

 ln 0.51  The solution set is     0.297 .  ln(2.89 / 3) 

x ln  3 / 5   ln 7  x ln 7

x

 ln 1.7   ln  0.3

x

x

2x  3  0

or

2x  3

or

 

2x  4  0 2x   4

x  ln 1.2   ln  0.5    0

ln 2 x  ln 3

x0 The solution set is 0 .

x ln 2  ln 3 ln 3 x  1.585 ln 2  ln 3  The solution set is    1.585 .  ln 2 

0.31 x  1.7 2 x 1

ln 0.31 x  ln 1.7 2 x 1

(1  x) ln  0.3  (2 x  1) ln 1.7 

ln  0.3  x ln  0.3  2 x ln 1.7   ln 1.7 

526

Copyright © 2020 Pearson Education, Inc.

No solution


Section 5.6: Logarithmic and Exponential Equations

(we ignore the first solution since 4 x is never negative)

32 x  3x  2  0

62.

3   3  2  0 3  13  2  0 x 2

x

x

 

The solution set is log 4 2  7

x

3x  1  0 or 3x  2  0 3x  1 or x0

63.

3

3   3  3  1  0 3   3  3  1  0

3x   2 No solution

3

4  0

x

x 2

x

u 2  3u  1  0 a  1, b  3, c  1

3   3  3  4  0 3  13  4   0 x

x

2 x

Let u  3x .

x 1

x 2

9 x  3x 1  1  0

66.

The solution set is 0 . 2x

x

u

3x  1  0

or

3x  4  0

3x  1 x0

or

3x   4 No solution

3

 32  4 11 3  5  2 1 2

 2   2  2  12  0  2  2  2  6   0 x

x

Therefore, we get 3 5 3x  2  3 5  x  log3    2  The solution set is   3 5   3  5    , log 3    log3   2   2   

2x  2  0

or

2x  6  0

 0.876, 0.876 .

or

x

The solution set is 0 . 22 x  2 x  2  12  0

64.

x 2

x

2

2 2 x 1

x

2  6 No solution

67.

65. 16 x  4 x 1  3  0

4   4  4  3  0 4   4  4  3  0 2 x

x

x 2

x

25 x  8  5 x  16

5   8  5  16 5   8  5  16

The solution set is 1 .

2 x

x

x 2

x

Let u  5 x . u 2  8u  16 u 2  8u  16  0

Let u  4 x . u 2  4u  3  0 a  1, b  4, c  3 u

  0.315 .

 u  4 2  0

4  42  4 1 3 2 1

u4 Therefore, we get 5x  4 x  log 5 4

4  28 2

The solution set is log5 4  0.861 .

4  2 7   2  7 2 Therefore, we get

4 x  2  7 or 4 x  2  7

x  log 4 2  7

527 Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions 71. 4 x  10  4 x  3 Multiply both sides of the equation by 4 x .

36 x  6  6 x  9

68.

6   6  6  9  0 6   6  6  9  0  6  3  0 2 x

x

x 2

x

 4   10  4  4  3  4  4   10  3  4  4   3  4  10  0  4  5 4  2   0 x 2

x

6 3 x  log 6 3

The solution set is log 6 3  0.613 .

x

x 2

x

x 2

4  80  not real 6 The equation has no real solution. 

   11 7  5  0 2   7   11  7  5  0 x

x

x

x

3x  7 x  log3 7

70. 2  49  11  7  5  0

x 2

x 2

3x  7  0

x

x

x

x 2

2  3

x

or 4 x  2  0 4 x  2

3   14  3  3  5  3 3   14  5  3  3   5  3  14  0  3  7 3  2  0

4  42  4  3 8 

2  72

x

x

72. 3x  14  3 x  5 Multiply both sides of the equation by 3x .

Let u  2 . 3u 2  4u  8  0 a  3, b  4, c  8

x

x

x

The solution set is log 4 5  1.161 .

x

u

x

4x  5 x  log 4 5

   42 8  0 32   4  2  8  0 x

x 2

4x  5  0

69. 3  4 x  4  2 x  8  0 3  22

x

x 2

2

x

x

x

x x

or 3x  2  0 3x  2

The solution set is log3 7  1.771 . 73. log5 ( x  1)  log 4 ( x  2)  1 Using INTERSECT to solve: y1  ln( x  1) / ln(5)  ln( x  2) / ln(4) y2  1

x

Let u  7 . 2u 2  11u  5  0  2u  1 u  5  0

4

2u  1  0 or u  5  0 2u  1 u  5 1 u 2 Therefore, we get 1 7x   or 7 x  5 2 Since 7 x  0 for all x, the equation has no real solution.

0

5

–4

Thus, x  2.79 , so the solution set is {2.79} .

528

Copyright © 2020 Pearson Education, Inc.


Section 5.6: Logarithmic and Exponential Equations 74. log 2 ( x  1)  log 6 ( x  2)  2 Using INTERSECT to solve: y1  ln( x  1) / ln(2)  ln( x  2) / ln(6) y2  2

78. e x  x3 Using INTERSECT to solve: y1  e x ; y2  x3 12

120

4

15

0

–3

3 -3

–4

–4

6 -4

Thus, x  1.86 or x  4.54 , so the solution set is {1.86, 4.54} .

Thus, x  12.15 , so the solution set is {12.15} . 75. e x   x

79. ln x   x Using INTERSECT to solve: y1  ln x; y2   x

x

Using INTERSECT to solve: y1  e ; y2   x 2

2 3

–3

–2

4

–2

–2

Thus, x  0.57 , so the solution set is {0.57} .

Thus, x  0.57 , so the solution set is {0.57} .

2x

76. e  x  2 Using INTERSECT to solve: y1  e 2 x ; y2  x  2 3

80. ln(2 x)   x  2 Using INTERSECT to solve: y1  ln(2 x); y2   x  2

3

4

–3

2

–3

–1

2

0

4

–1

Thus, x  1.98 or x  0.45 , so the solution set is {1.98, 0.45} .

–4

Thus, x  1.16 , so the solution set is {1.16} .

77. e x  x 2 Using INTERSECT to solve: y1  e x ; y2  x 2 3

–3

3 –1

Thus, x  0.70 , so the solution set is {0.70} . 529 Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions 85. e  x  ln x Using INTERSECT to solve: y1  e  x ; y2  ln x

81. ln x  x3  1 Using INTERSECT to solve: y1  ln x; y2  x3  1 2

2

2

–2

4

–2

–2

–2

4

4

–2

–2

Thus, x  1.31 , so the solution set is {1.31} .

Thus, x  0.39 or x  1 , so the solution set is {0.39, 1} .

86. e  x   ln x Using INTERSECT to solve: y1  e  x ; y2   ln x

82. ln x   x 2 Using INTERSECT to solve: y1  ln x; y2   x 2

2

2 –2

–1

2

2

–2

Thus, x  0.57 , so the solution set is {0.57}

–6

Thus, x  0.65 , so the solution set is {0.65} .

f  x  3

87. a.

log 2  x  3  3

83. e x  ln x  4 Using INTERSECT to solve: y1  e x  ln x; y2  4

x  3  23 x38 x5 The solution set is {5}. The point  5, 3 is

5

on the graph of f. –2

g  x  4

b.

4

log 2  3x  1  4

–2

3 x  1  24 3 x  1  16 3 x  15 x5 The solution set is {5}. The point  5, 4  is

Thus, x  1.32 , so the solution set is {1.32} . 84. e x  ln x  4 Using INTERSECT to solve: y1  e x  ln x; y2  4

on the graph of g.

6

6

f  x  g  x

c.

log 2  x  3  log 2  3x  1 –1

2 –1

–1

x  3  3x  1 2  2x 1 x The solution set is {1}, so the graphs

2 –1

Thus, x  0.05 or x  1.48 , so the solution set is {0.05, 1.48} . 530

Copyright © 2020 Pearson Education, Inc.


Section 5.6: Logarithmic and Exponential Equations

intersect when x  1 . That is, at the point 1, 2  . d.

g  x  3

b.

log3  x  1  3 x  1  33 x  1  27 x  28 The solution set is {28}. The point  28,3

 f  g  x   7 log 2  x  3  log 2  3 x  1  7 log 2  x  3 3x  1   7  x  3 3x  1  27

is on the graph of g.

2

3 x  10 x  3  128 3x 2  10 x  125  0  3x  25  x  5  0 3x  25  0 or x  5  0 3 x  25 x5 25 x 3

The solution set is 5 . e.

log3  x  5   log 3  x  1 x  5  x 1 5  1 False This is a contradiction, so the equation has no solution. The graphs do not intersect.

d.

 f  g  x   2 log 2  x  3  log 2  3x  1  2

88. a.

 f  g  x   3 log3  x  5   log3  x  1  3 log 3  x  5  x  1   3  x  5 x  1  33 x 2  4 x  5  27

x3 log 2 2 3x  1 x3  22 3x  1 x  3  4  3x  1 x  3  12 x  4 1  11x 1  x 11  1 The solution set is   .  11 

f  x  g  x

c.

x 2  4 x  32  0  x  8  x  4   0 x  8  0 or x  4  0 x  8 x4

The solution set is 4 . e.

 f  g  x   2 log3  x  5   log3  x  1  2 log3

f  x  2

log3  x  5   2 x  5  32 x5  9 x4 The solution set is {4}. The point  4, 2  is

on the graph of f.

x5 2 x 1 x5  32 x 1 x  5  9  x  1

x  5  9x  9 14  8 x 7 x 4 7  The solution set is   . 4

531 Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions 89. a.

f  x  g  x

b. y

f  x   3 x 1 g x   2

5 x 1  2 x 1

 

x 2

8

x ln 5  ln 5  x ln 2  ln 2 x ln 5  x ln 2  ln 5  ln 2 x  ln 5  ln 2   ln 5  ln 2

4

b.

x

x

2

 

ln 3x 1  ln 2 x  2

ln 5  ln 2  2.513 ln 5  ln 2

 ln 5  ln 2  f   11.416  ln 5  ln 2  The intersection point is roughly  2.513,11.416  .

f  x  g  x 3x 1  2 x  2

 x  1 ln 5   x  1 ln 2

(0.710, 6.541)

2

ln 5 x 1  ln 2 x 1

 x  1 ln 3   x  2  ln 2

c.

Based on the graph, f  x   g  x  for x  2.513 . The solution set is  x | x  2.513 or  2.513,   .

x ln 3  ln 3  x ln 2  2 ln 2 x ln 3  x ln 2  2 ln 2  ln 3 x  ln 3  ln 2   2 ln 2  ln 3

91. a., b.

2 ln 2  ln 3  0.710 ln 3  ln 2  2 ln 2  ln 3  f   6.541  ln 3  ln 2  The intersection point is roughly  0.710, 6.541 . x

c.

Based on the graph, f  x   g  x  for x  0.710 . The solution set is  x | x  0.710 or  0.710,   .

90. a. c.

f  x  g  x 3x  10 x  log3 10

The intersection point is  log 3 10,10  .

532

Copyright © 2020 Pearson Education, Inc.


Section 5.6: Logarithmic and Exponential Equations 92. a., b.

94. a., b.

c.

f  x  g  x

c.

3 x 1  3x  2 x 1  x  2 2 x  3 3 x 2

x

2  12 x  log 2 12

The intersection point is  log 2 12,12  . 93. a., b. y

f x   2

1 3 3  f    33/ 2 1  31/ 2  3 3 2 3 3 The intersection point is  ,  . 2 3 

x 1

4 1   ,2 2   2

95. a.

2

g x   2 x 2 2

c.

2

f  x  g  x

f  x   2x  4

Using the graph of y  2 x , shift the graph down 4 units.

x

f  x  g  x 2 x 1  2 x  2 x 1  x  2 2x  1 1 x 2  1  1/ 2 1  23/ 2  2 2 f  2 2   1  The intersection point is  , 2 2  . 2 

b.

f  x  0 2x  4  0 2x  4 2 x  22 x2 The zero of f is x  2 .

c.

Based on the graph, f  x   0 when x  2 . The solution set is  x | x  2 or  , 2  .

533 Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions

96. a.

g  x   3x  9

b. x

t  2018

327 1.007 

 470

470 327 t  2018  470  ln 1.007   ln    327   470  (t  2018) ln 1.007   ln    327  ln  470 / 327  t  2018  ln 1.007 

Using the graph of y  3 , shift the graph down nine units.

1.007 t  2018 

t

b.

 2018 ln 1.007   2070 According to the model, the population of the U.S. will reach 470 million people in the beginning of the year 2070.

g  x  0 3x  9  0 3x  9 3x  32

98. a.

x2 The zero of g is x  2 .

c.

t  2018

9

9 7.63 t  2018  9  ln 1.011  ln    7.63  (t  2018) ln 1.011  ln  9 / 7.63

Based on the graph, g  x   0 when x  2 .

327 1.007 

t  2018

7.63 1.011

1.011t  2018 

The solution set is  x | x  2 or  2,   . 97. a.

ln  470 / 327 

 415

t  2018 

415 327 t  2018  415  ln 1.007   ln    327   415  (t  2018) ln 1.007   ln    327  ln  415 / 327  t  2018  ln 1.007 

1.007 t  2018 

t

t

ln  9 / 7.63 ln 1.011

ln  9 / 7.63 ln 1.011

 2018  2033

According to the model, the population of the

world will reach 9 billion people at the beginning of the year 2033. b.

ln  415 / 327 

7.63 1.011

t  2018

 12.5

12.5 7.63 t  2018  12.5  ln 1.011  ln    7.63  (t  2018) ln 1.011  ln 12.5 / 7.63

1.011t  2018 

 2018 ln 1.007   2052 According to the model, the population of the U.S. will reach 415 million people around the beginning of the year 2052.

t  2018  t

ln 12.5 / 7.63 ln 1.011

ln 12.5 / 7.63 ln 1.011

 2018

 2063 According to the model, the population of the

world will reach 12.5 billion people at the beginning of the year 2063. 534

Copyright © 2020 Pearson Education, Inc.


Section 5.6: Logarithmic and Exponential Equations

99. a.

19, 200  0.82   12, 000 t

100. a.

14, 000 19, 705  14, 000  t log  0.848   log    18, 705 

 12, 000  t log  0.82   log    19, 200  log 12, 000 / 19, 200  t log  0.82 

 14, 000  t log  0.848   log    18, 705  log 14, 000 / 18, 705  t  2.1 log  0.848 

 0.848t 

 2.4

According to the model, the car will be worth

$14,000 after about 2.1 years.

According to the model, the car will be worth

$12,000 after about 2.4 years. 19, 200  0.82   9, 000 t

b.

19, 705  0.848   10, 000 t

10, 000 19, 705  10, 000  t log  0.848   log    19,507 

 0.848t 

9, 000  0.82   19, 200  9, 000  t log  0.82   log    19, 200  t

 10, 000  t log  0.848   log    19, 705  log 10, 000 / 19, 705  t  4.1 log  0.848 

 9, 000  t log  0.82   log    19, 200  log  9, 000 / 19, 200  t log  0.82 

According to the model, the car will be worth

 3.8

$10,000 after about 4.1 years.

According to the model, the car will be worth

$9,000 after about 3.8 years. c.

t

12, 000 19, 200  12, 000  t log  0.82   log    19, 200 

 0.82 t 

b.

19, 705  0.848   14, 000

c.

19, 705  0.848   7,500 t

7,500 19, 705  7,500  t log  0.848   log    19, 705 

 0.848t 

19, 200  0.82   3, 000 t

3, 000 19, 200  3, 000  t log  0.82   log    19, 200 

 0.82 t 

 3, 000  t log  0.82   log    19, 200  log  3, 000 / 19, 200  t log  0.82   9.4 According to the model, the car will be worth

$3,000 after about 9.4 years.

 7,500  t log  0.848   log    19, 705  log  7,500 / 19, 705  t  5.9 log  0.848  According to the model, the car will be worth

$7,500 after about 5.9 years. 101. The domain of the variable is x > 0.

535 Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions log 2 ( x  1)  log 4 x  1

for both x 

log 2 x 1 log 2 ( x  1)  log 2 4 log 2 x 1 log 2 ( x  1)  2 2 log 2 ( x  1)  log 2 x  2

1   , 4 . 4 

104. The domain of the variable is x > 0. ln x 2  (ln x) 2

log 2 ( x  1) 2  log 2 x  2

2 ln x  (ln x) 2  0 ln x(2  ln x)  0 ln x  0 or 2  ln x  0

 ( x  1) 2  log 2    2  x  ( x  1) 2  22 x x2  2 x  1  4 x

2 x

ln x  2

1 x

e2  x

 

105. The domain of the variable is x > 0.

( x  1) 2  0 x 1  0 x 1 Since each of the original logarithms is defined for x  1 , the solution set is 1 .

log x  2 log 3 log x  log 3 log x  (log 3) 2 x  10

2

 2   2x 2 x 2 2   2x 3

e0  x

The solution set is 1, e 2 .

x2  2x  1  0

102.

1 and x  4 , the solution set is 4

log 3

2

 10    3log 3 Since we squared both sides of the equation, we must check. Since log 3 log 3

1/ 3

1 (2 x) 2 23  2x

log 3

log 3

log 3 log 3  log 3  log

1 (2  x)  x 2 3 2  x  3x 2

 3   2 log 3 2

, the solution set is 3log 3 . 106. Solution A: change to exponential expression; square root method; meaning of  ; solve.

3x 2  x  2  0 (3x  2)( x  1)  0 2 x or x  1 3  2 The solution set is 1,  .  3

Solution B: log a M r  r log a M ; divide by 2; change to exponential expression; solve. The power rule log a M r  r log a M only applies when M  0 . In this equation, M  x  1 . Now, x  2 causes M  2  1  3 . Thus, if we use the power rule, we lose the valid solution x  2 .

103. The domain of the variable is x > 0. log x log 2 x 2  4 log 2 x  log 2 x  4

107.

 log 2 x 2  4

f ( x)  4 x3  3x 2  25 x  6 p  1,  2, 3, 6

q  1,  2,  4

log 2 x   2 or log 2 x  2

The possible rational zeros are: p 1 1 3 3  1,  2,  ,  , 3,  ,  , 6 q 2 4 2 4

x  22 or x  22 1 x or x  4 4 Since each of the original logarithms is defined

536

Copyright © 2020 Pearson Education, Inc.


Section 5.6: Logarithmic and Exponential Equations

Using synthetic division: We try 2 : 2 4 3  25 6 8 22  6 4 11  3 0

112.

f ( x)  ( x  2)(4 x 2  11x  3)  0  ( x  2)(4 x  1)( x  3)  0 1  So the solution set is: 3, 2,  . 4  108. Since the x elements are not repeated and the y elements are not repeated the ordered pairs represent a function that is one-to-one. x5 x5 x3 109. ( f  g )( x)  x  3  x5 x  5 2( x  3) 2  x3 x3 x3 x5 x5 x3   x3 x  5  2 x  6  x  11 x3 x3 x5  x  5  x  3     x  3    x  11  x  11 The domain would be any x that works in g(x) or ( f  g )( x) so the domain is:  x | x  3, x  11

110.

The zero is {6} . x 5  x2 x2 x( x  2)  5( x  2)  ( x  2)( x  2)

113. ( f  g )( x) 

the function would be the most restrictive of these so the domain of f ( x) is  x | x  1 . x x7 5

111.

x 2  7 x  10 ( x  2)( x  2)

 (4) 2  (12) 2  16  144  160  4 10

115.

f (b)  f (a ) log 2 16  log 2 4  ba 16  4 42 2 1    16  4 12 6 x6  x x6  x   6 x6  x

116.

 x  6  x  x  6  x   6 x  6  x 

x 5  x 7

x6 x

2

( x  5)  x  7

6

x 2  10 x  25  x  7

6

2

x 2  2 x  5 x  10 ( x  2)( x  2)

d  (6  2) 2  (9  (3)) 2

x  3 is  x | x  3 and the

x  1 is  x | x  1 . The domain of

domain of

114. Center: (2, 3) vertex: (6,9)

f ( x)  x  3  x  1

The domain of

f ( x)  5 x  30 0  5 x  30 5 x  30 x6

x  11x  18  0  ( x  9)( x  2)  0 x  9, x  2 Check: 9  4  5 correct 2  2  0 false The solution set is 9

6

 x6  x 

 1

 x6  x  x6  x

537 Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions 13. P  $1000, r  0.11, t  2

Section 5.7

A  Pe r t  1000e(0.11)(2)  $1246.08

1. P  $500, r  0.06, t  6 months  0.5 year I  Prt  (500)(0.06)(0.5)  $15.00

14. P  $400, r  0.07, t  3 A  Per t  400e(0.07)(3)  $493.47

2. P  $5000, t  9 months  0.75 year, I  $500 500  5000r (0.75) 500 r (5000)(0.75) 2 2 40 1 %  13 %   100%  15 15 3 3 1 The per annum interest rate was 13 % . 3

15. A  $100, r  0.06, n  12, t  2  r P  A 1    n

 r P  A 1    n

 r P  A 1    n

5. effective rate of interest 6. a

 0.04   100 1   4  

 0.06   50 1   12  

 $108.29

 r A  P 1    n

 r P  A 1    n

(12)(3)

nt

nt

 $59.14

( 365)(2.5)

 $1444.79

 0.03   900 1   2  

 r P  A 1    n

 $969.56

 0.12   300 1   12  

( 12)(3.5)

 $626.61

 nt

 0.025   750  1   4  

( 4)(2)

 $713.53

20. A  $300, r  0.03, n  365, t  4

(12)(1.5)

 r P  A 1    n

 $358.84

 0.05   1200 1   365  

 nt

19. A  $750, r  0.025, n  4, t  2

(2)(2.5)

 nt

 0.03   300 1   365  

11. P  $1200, r  0.05, n  365, t  3  r A  P 1    n

( 4)(3)

 nt

 0.07   800  1   12  

 $59.83

10. P  $300, r  0.12, n  12, t  1.5  r A  P 1    n

 0.08   75 1   4  

18. A  $800, r  0.07, n  12, t  3.5

9. P  $900, r  0.03, n  2, t  2.5 nt

 $88.72

(4)(2)

8. P  $50, r  0.06, n  12, t  3 nt

 nt

 0.015   1500 1   365  

7. P  $100, r  0.04, n  4, t  2

 r A  P 1    n

( 12)(2)

17. A  $1700, r  0.015, n  365, t  2.5

4. I; Prt; simple interest

nt

 0.06   100  1   12  

16. A  $75, r  0.08, n  4, t  3

3. principal

 r A  P 1    n

 nt

(365)(3)

 $1394.13

( 365)(4)

 $266.08

21. A  $120, r  0.05, t  3.25 P  Ae  r t  120e( 0.05)(3.25)  $102.00

12. P  $700, r  0.06, n  365, t  2  r A  P 1    n

nt

 0.06   700 1   365  

22. A  $800, r  0.08, t  2.5

(365)(2)

P  Ae  r t  800e( 0.08)(2.5)  $654.98

 $789.24

23. Suppose P dollars are invested for 1 year at 5%. 538

Copyright © 2020 Pearson Education, Inc.


Section 5.7: Financial Models

Compounded quarterly yields:  4 1

 0.05  A  P 1   1.05095 P .  4   The interest earned is I  1.05095 P  P  0.05095 P I  Prt Thus, 0.05095 P  P  r 1 0.05095  r The effective interest rate is 5.095%.

24. Suppose P dollars are invested for 1 year at 6%.

28. 9% compounded quarterly:  0.09  A  10, 000  1   4  

(4)(1)

 $10,930.83

9 14 % compounded annually:

A  10, 000 1  0.0925   $10,925 1

9% compounded quarterly is the better deal. 29. 9% compounded monthly: (12)(1)

Compounded monthly yields: 12 1

 0.06   1.06168 P . A  P 1   12   The interest earned is I  1.06168 P  P  0.06168 P I  Prt Thus, 0.06168 P  P  r 1 0.06168  r The effective interest rate is 6.168%.

25. Suppose P dollars are invested for 1 year at 4%.

Compounded continuously yields: A  Pe(0.04)(1)  1.04081P The interest earned is I  1.04081P  P  0.04081P I  Prt Thus, 0.04081  P  r 1 .04081  r The effective interest rate is 4.081%. 26. Suppose P dollars are invested for 1 year at 6%.

Compounded continuously yields: A  Pe(0.06)(1)  1.06184 P The interest earned is I  1.06184 P  P  0.06184 P I  Prt Thus, 0.06184 P  P  r 1 0.06184  r The effective interest rate is 6.184%.

 0.09  A  10, 000 1   12   8.8% compounded daily:

 $10,938.07

365

 0.088  A  10, 000  1    $10,919.77 365   9% compounded monthly is the better deal.

30. 8% compounded semiannually: (2)(1)

 0.08  A  10, 000 1   $10,816  2   7.9% compounded daily: 365

 0.079  A  10, 000 1    $10,821.95 365   7.9% compounded daily is the better deal.

31. 2 P  P 1  1r

3(1)

2 P  P 1  r 

3

2  (1  r )3 3

2  1 r

r  3 2  1  0.25992 The required rate is 25.992%.

32. 2 P  P 1  1r

2 P  P 1  r 

6(1)

6

2  (1  r )6 6

2  1 r

r  6 2  1  0.12246 The required rate is 12.246%.

27. 6% compounded quarterly:  0.06  A  10, 000  1   4  

6 14 % compounded annually is the better deal.

(4)(1)

 $10, 613.64

6 14 % compounded annually: A  10, 000 1  0.0625   $10, 625 1

539 Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions

33. 3P  P 1  1r

3P  P 1  r 

5(1)

b.

3  e0.06t ln 3  0.06t ln 3  18.31 t 0.06 It will take about 18.31 years to triple.

5

3  (1  r )5 5

3  1 r

r  5 3  1  0.24573 The required rate is 24.573%.

34.

3P  P 1  1r

37. Since the effective interest rate is 7%, we have: I  Prt I  P  0.07 1 I  0.07 P Thus, the amount in the account is A  P  0.07 P  1.07 P

10(1)

3P  P 1  r 

10

3  (1  r )10 10

3  1 r

Let x be the required interest rate. Then,

r  10 3  1  0.11612 The required rate is 11.612%.

 r 1.07 P  P 1    4 4

 0.08  2 P  P 1   12  

12t

 0.08  2  1   12  

12t

 0.08  ln 2  ln  1   12    0.08  ln 2  12t ln 1   12   ln 2 t  8.69  0.08  12 ln  1   12   It will take about 8.69 years to double.

b.

38. Since the effective interest rate is 6%, we have: I  Prt I  P  0.06 1 I  0.06 P Thus, the amount in the account is A  P  0.06 P  1.06 P

2 P  Pe0.08t

Let x be the required interest rate. Then, 1.06 P  Pe( r )(1) 1.06  er r  ln(1.06)  0.05827 Thus, an interest rate of 5.827% compounded continuously has an effective interest rate of 6%.

12t

 0.06  3P  P  1   12   3  1.005 

12t

39.

ln 3  ln 1.005 

12t

 0.04  150  100 1    12 

12 t

1.5  1.003333 ln1.5  12t ln 1.003333 ln1.5 t  10.15 12 ln 1.003333 12 t

ln 3  12t ln 1.005  t

Thus, an interest rate of 6.823% compounded quarterly has an effective interest rate of 7%.

2  e0.08t ln 2  0.08t ln 2  8.66 t 0.08 It will take about 8.66 years to double.

36. a.

 4 1

 r 1.07  1    4 r 4 1.07  1  4 r 4 1.07  1  4 r  4 4 1.07  1  0.06823

12t

35. a.

3P  Pe0.06t

ln 3  18.36 12 ln 1.005 

It will take about 18.36 years to triple.

Compounded monthly, it will take about 10.15 years (or 121.85 months). 540

Copyright © 2020 Pearson Education, Inc.


Section 5.7: Financial Models

150  100e0.04 t 1.5  e0.04 t ln1.5  0.04 t ln1.5 t  10.14 0.04 Compounded continuously, it will take about 10.14 years (or 121.64 months).

40.

 0.025  175  100 1    12 

12 t

45. P  15, 000e( 0.05)(3)  $12,910.62 Jerome should ask for $12,910.62. ( 12)(0.5)

 0.03   $2955.39 46. P  3, 000 1   12   John should save $2955.39.

47. A  15(1  0.15)5  15(1.15)5  $30.17 per share for a total of about $3017. 48. 850, 000  650, 000 1  r  85 3  1  r  65 85 3  1 r 65 r  3 1.3077  1  0.0935 The annual return is approximately 9.35%. 3

1.75  1.002083

12 t

ln1.75  12t ln 1.002083 ln1.75  22.41 t 12 ln 1.002083

Compounded monthly, it will take about 22.41 years (or 268.94 months). 175  100e0.025 t 1.75  e0.025 t ln1.75  0.025 t ln1.75 t  22.38 0.025 Compounded continuously, it will take about 22.38 years (or 268.62 months).

41. 25, 000  10, 000e0.06 t 2.5  e0.06 t ln 2.5  0.06 t ln 2.5 t  15.27 0.06 It will take about 15.27 years (or 15 years, 3 months).

42. 80, 000  25, 000e0.07 t 3.2  e0.07 t ln 3.2  0.07 t ln 3.2 t  16.62 0.07 It will take about 16.62 years (or 16 years, 7 months).

43. A  90, 000(1  0.03)5  $104,335 The house will cost $104,335 in five years. 44. A  200 1  0.0125   $215.48 6

Her bill will be $215.48 after 6 months.

49. 5.6% compounded continuously: A  1000e(0.056)(1)  $1057.60 Jim will not have enough money to buy the computer. 5.9% compounded monthly: 12

 0.059  A  1000 1    $1060.62 12   The second bank offers the better deal.

50. 6.8% compounded continuously for 3 months: Amount on April 1: A  1000e(0.068)(0.25)  $1017.15

5.25% compounded monthly for 1 month: Amount on May 1  0.0525  A  1017.15 1   12  

(12)(1/12)

 $1021.60

51. Will: 9% compounded semiannually:  0.09  A  2000  1   2  

(2)(20)

 $11, 632.73

Henry: 8.5% compounded continuously: A  2000e(0.085)(20)  $10,947.89 Will has more money after 20 years. 52. Value of $1000 compounded continuously at 10% for 3 years: A  1000e(0.10)(3)  $1349.86

April will have more money if she takes the $1000 now and invests it.

541 Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions 53. a.

Let x = the year, then the average annual cost C of a 4-year private college is by the function C ( x)  34, 740(1.036) x  2017 .

56. From 2018 to 2030 would be 12 years, so t = 12. The federal debt (in millions) would be: F  21000 1  0.055   21000 1.055  . For t = t

C (2037)  34, 740(1.036) 2037  2017

12: F  21000 1.055   39925.3572 million. 12

 34, 740(1.036) 20  70, 473 In 2037, the average annual cost at a 4-year private college will be about $70,473.

b.

The U.S. population (in millions) would be: P  327 1  0.007   327 1.007  . For t = 12: t

12

The per capita debt in 2020 will be 39925357  $112, 292 . 355.55

70, 473  Pe0.02(18) 70, 473 P  0.02(18)  $49,167 e An investment of $49,167 in 2019 would pay for the cost of college at a 4-year private college in 2037.

57. P  1000, r  0.03, n  2 A  1000(1  0.03) 2  $940.90

58. P  1000, r  0.02, n  3

54. P  100, 000; t  5 a. Simple interest at 6% per annum: A  100, 000  100, 000(0.06)(5)  $130, 000 I  $130, 000  $100, 000  $30, 000

A  1000(1  0.02)3  $941.19

59. P  1000, A  950, n  2 950  1000(1  r ) 2 0.95  (1  r ) 2

b. 5.5% compounded monthly: (12)(5)

 0.95  1  r

 $131,570

r  1  0.95 r  0.0253 or r  1.9747 Disregard r  1.9747 . The inflation rate was 2.53%.

I  $131,570  $100, 000  $31,570

5.25% compounded continuously: A  100, 000e(0.0525)(5)  $130, 018 I  $130, 018  $100, 000  $30, 018 Thus, simple interest at 6% is the best option since it results in the least interest.

60. P  1000, A  930, n  2

55. Graph the following two functions and find the intersection.

 0.93  1  r

c.

 0.05  A  1000 1   12  

t

P  325 1.007   355.55 .

A  Pe rt

 0.055  A  100, 000  1    12 

t

930  1000(1  r ) 2 0.93  (1  r ) 2 r  1  0.93 r  0.0356 or r  1.9644 Disregard r  1.9644 . The inflation rate was 3.56%.

(12) t

; $1000 invested at 5%

A  2000 1  0.04  ; $2000 invested at 4% t

61. r  0.02 1 P  P(1  0.02)t 2 0.5 P  P(0.98)t 0.5  (0.98)t t  log 0.98 (0.5) ln 0.5   34.31 ln 0.98 The purchasing power will be half in 34.31 years.

The two account balances will be approximately equal after 64.9 years. 542

Copyright © 2020 Pearson Education, Inc.


Section 5.7: Financial Models 62. r  0.04 1 P  P(1  0.04)t 2 0.5 P  P(0.96)t 0.5  (0.96)t t  log 0.96 (0.5) ln 0.5   16.98 ln 0.96 The purchasing power will be half in 16.98 years.

63. a.

b.

t

c.

 r mP  P 1    n nt

( 12)(20)

 $3686.45

A  $10, 000, r  0.05, t  20 P  10, 000e( 0.05)(20)  $3678.79

64. A  $80, 000, r  0.06, n  1, t  17  0.06  P  80, 000  1    1 

t

b.

35 

c.

A  Pe r t A  er t P  A ln    r t P ln A  ln P  r t ln A  ln P t r

65. A  $10, 000, r  0.045, n  1, t  10  0.045  P  10, 000 1    1 

( 1)(10)

 $6439.28

66. A  $25, 000, P  15,334.65, n  1, t  8

25, 000  15,334.65 1  r 8

25, 000 8  1  r  15,334.65 8

25, 000  1 r 15,334.65

25, 000 1 15,334.65 r  0.063 The annual rate of return is about 6.3%. r8

67. a.

ln 4500  ln1000  26.16 years 0.0575

68. a.

17

 $29, 709.15

nt

 r m  1    n  r ln m  n t  ln 1    n ln m t  r n  ln 1    n

A  $10, 000, r  0.05, n  12, t  20

 0.05  P  10, 000 1    12 

ln 3  0.05  4  ln 1    4  ln 3   22.11 years 4 ln 1.0125

b.

ln 30, 000  ln 2000 r ln 30, 000  ln 2000 r 35  0.0774 r  7.74%

ln 2  0.06  1 ln 1    1  ln 2   11.90 years ln 1.06

t

543 Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions 69. a. CPI 0  229.39, CPI  243.80, n  2017  2012  5 r   243.80  229.39 1    100  r  243.80   1   229.39  100 

b.

72. CPI 0  100, CPI  456.5, r  5.57  5.57  456.5  100 1    100 

5

456.5  100 1.0557 

5

4.565  1.0557 

n  log1.0558  4.565  ln 4.565   28.0 years ln1.0558 The yeas that was used as the base period for the CPI was about 28 years before 1995, or the year 1967.

73. Answers will vary.

CPI 0  229.39, CPI  300, r  1.23

74. Answers will vary.

300  1.23   1   229.39  100 

n

75. Answers will vary.

n

76.

 300   1.23  ln    ln 1    229.39   100   300   1.23  ln    n ln 1    229.39   100   300  ln   229.39  n   22.0 years  1.23  ln 1    100  The CPI will reach 300 about 22 years after 2012, or in the year 2034.

 6  3  2  11  0 Thus, 1 is a zero of f and x  1 is a factor of f .

77.

x x2 y x y2 x( y  2)  y xy  2 x  y f ( x) 

xy  y  2 x y ( x  1)  2 x

70. CPI 0  234.2, r  2.8%, n  5

2x x 1 2x 1 f ( x)  x 1 78. x5  x 4  15 x3  21x 2  16 x  20  0 Step 1: f (x) has at most 5 real zeros. y

5

2.8   CPI  234.2  1    268.9  100  In 5 years, the CPI index will be about 268.9.

71. r  3.1%

2  1.031

f ( x)  6 x3  3 x 2  2 x  11; c  1

f (1)  6(1)3  3(1) 2  2(1)  11

n

3.1   2  CPI 0  CPI 0 1    100 

n

n

243.80 r 1 5 100 229.39 r 243.80 5 1 100 229.39  243.80  r  100  5  1  1.23%  229.39   1.23  300  229.39 1    100 

n

n

Step 2: Possible rational zeros: p  1,  2,  4,  5, 10, 20; q  1; p  1,  2,  4,  5, 10, 20 q

n

ln 2  22.7 ln1.031 It will take about 22.7 years for the CPI index to double. n  log1.031 2 

Step 3: Using synthetic division: We try x  2 :

544

Copyright © 2020 Pearson Education, Inc.


Section 5.7: Financial Models 82. Domain  ,  

2 1  1  15  21  16  20 2 6 18 6 20

Vertex:

1  3  9  3  10 0 x  2 is a factor and the quotient is x 4  3 x3  9 x 2  3 x  10 . We try x  2 again on x 4  3 x3  9 x 2  3 x  10 2 1  3  9  3  10

 2 10  2

1 5 1 5 0 x  2 is again a factor and the quotient is x3  5 x 2  x  5 . 3

0 1

0

 2 x 2  14 x

2

x  5 is a factor and the quotient is x  1 . So the real zeros of f ( x) are 2,5.

79. log 2 ( x  3)  2 log 2 ( x  3) log 2 ( x  3)  log 2 ( x  3) 2 ( x  3)  ( x  3) 2 x  3  x2  6 x  9 x2  7 x  6  0 ( x  6)( x  1)  0 x  6 or x  1 But x = 1 will not work since we cannot take the log of a negative number so the solution set is  6 .

9x  4   9 x  63 59 59 G ( x)  2 x  9  , x7 x7 Thus, the oblique asymptote is y  2 x  9 . The denominator is zero at x  7 , so x  7 is a vertical asymptotes. There are no horizontal asymptotes.

Thus, f ( x)   x  2  x  5 x 2  1 . 2

2 x2  5x  4 x7 The degree of the numerator, p ( x)  2 x 2  5 x  4, is n  2 . The degree of the f ( x) 

denominator, q( x)  x  7, is m  1 . Since n  m  1 , there is an oblique asymptote. Dividing: 2x  9 x  7 2 x2  5x  4

2

We try x  5 again on x  5 x  x  5 5 1 5 1 5 5 0 5 1

8 2 2(2)

f (2)  9 The graph is concave down so this is a maximum so the range is  ,9

83.

10

x

84. The points on the line are: (3, 6) and (5, 2) . 2  (6) 8  4 53 2 y  2  4( x  5) y  2  4 x  20 y  4 x  18 m

80. 2 x 4  6 x3  50 x 2  150 x  2 x( x3  6 x 2  25 x  75)  2 x[ x 2 ( x  3)  25( x  3)]

85.

 2 x( x  3)( x 2  25)  2 x( x  3)( x  5)( x  5)

81.

f ( x  h)  f ( x) 3( x  h)  5  (3x  5)  h h 3x  3h  5  3 x  5 3h   3 h h

f ( g ( x))  5(3x  1) 2  4(3 x  1)  8  5(9 x 2  6 x  1)  12 x  4  8  45 x 2  30 x  5  12 x  4  8  45 x 2  18 x  7

545 Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions

Section 5.8 1. P (t )  500e a.

c.

400  500e0.0244 t

0.02 t

P (0)  500e

 0.02   0 

0.8  e0.0244 t ln 0.8  0.0244 t ln 0.8 t  9.1 years 0.0244

 500 insects

b. growth rate: k = 0.02 = 2 % c.

P (10)  500e

0.02  10 

 611 insects

d. Find t when A  250 :

d. Find t when P  800 : 800  500e

250  500e0.0244 t

0.02 t

0.5  e0.0244 t ln 0.5   0.0244 t ln 0.5 t  28.4 years  0.0244

0.02 t

1.6  e ln1.6  0.02 t ln1.6 t  23.5 days 0.02

e.

4. A(t )  A0 e0.087 t  100e0.087 t

Find t when P  1000 : 1000  500e0.02 t 0.02 t

2e ln 2  0.02 t ln 2 t  34.7 days 0.02

2. N (t )  1000e a.

a.

decay rate: k  0.087  8.7%

b.

A(9)  100e

c.

Find t when A  70 :

0.01  0 

N (4)  1000e

0.01  4 

 1000 bacteria

d. Find t when A  50 :

 1041 bacteria

50  100e0.087 t

d. Find t when N  1700 :

0.5  e0.087 t ln 0.5   0.087 t ln 0.5 t  7.97 days  0.087

1700  1000e0.01t 1.7  e0.01t ln1.7  0.01t ln1.7  53.1 hours t 0.01

e.

5. a.

N (t )  N 0 ek t

b. If N (t )  1800, N 0  1000, and t  1 , then

Find t when N  2000 : 2000  1000e

1800  1000ek (1)

0.01t

1.8  ek k  ln1.8

2  e0.01t ln 2  0.01t ln 2  69.3 hours t 0.01

If t  3 , then N (3)  1000e mosquitoes.

3. A(t )  A0 e0.0244 t  500e0.0244 t a. decay rate: k = 0.0244  2.44% b.

A(10)  500e

0.0244 10 

 45.7 grams

0.7  e0.087 t ln 0.7  0.087 t ln 0.7 t  4.1 days 0.087

0.01t

N (0)  1000e

0.087  9 

70  100e0.087 t

b. growth rate: k = 0.01 = 1 % c.

Find t when A  400 :

 391.7 grams

546

Copyright © 2020 Pearson Education, Inc.

ln1.8 3

 5832


Section 5.8: Exponential Growth and Decay Models; Newton’s Law; Logistic Growth and Decay Models

c.

Find t when N (t )  10, 000 : 10, 000  1000e

800, 000  900, 000ek (2) 8  e2k 9 8 ln    2k 9 ln  8 / 9  k 2 If t  2020  2016  4 , then

ln1.8 t

10  e  ln10   ln1.8  t ln1.8 t

t

6. a.

ln10  3.9 days ln1.8

N (t )  N 0 e k t

 ln  8 / 9      4 2  P (4)  900, 000e  711,111

b. If N (t )  800, N 0  500, and t  1 , then 800  500e k (1)

The population in 2020 will be 711,111.

1.6  e k k  ln1.6

9. Use A  A0 e k t and solve for k :

If t  5 , then N (5)  500e bacteria c.

ln1.6  5 

0.5 A0  A0 ek (1690)

 5243

0.5  e1690 k ln 0.5  1690k ln 0.5 k 1690 When A0  10 and t  50 :

Find t when N (t )  20, 000 : 20, 000  500e

ln1.6  t

40  e  ln 40   ln1.6  t ln1.6 t

 ln 0.5     50 

ln 40 t  7.85 hours ln1.6

7. a.

N (t )  N 0 e

A  10e 1690 

10. Use A  A0 e k t and solve for k :

kt

0.5 A0  A0 e

b. Note that 18 months = 1.5 years, so t = 1.5. 2 N 0  N 0 ek (1.5)

0.5  e

k 1.3109

1.3109 k

ln 0.5  1.3  109 k ln 0.5 k 1.3  109

2  e1.5k ln 2  1.5k ln 2 k 1.5 If N 0  10, 000 and t  2 , then

When A0  10 and t  100 :  ln 0.5  100   9

 ln 2     2 P (2)  10, 000e 1.5   25,198

A  10e 1.310 

 9.999999467 grams

When A0  10 and t  1000 :

The population 2 years from now will be 25,198. 8. a.

 9.797 grams

 ln 0.5  1000   9

A  10e 1.310 

N (t )  N 0 e k t , k  0

 9.999994668 grams

11. Use A  A0 ekt and solve for k : half-life = 5730 years

b. If N (t )  800, 000, N 0  900, 000, and t  2018  2016  2 , then

0.5 A0  A0 ek (5730) 0.5  e5730 k ln 0.5  5730k ln 0.5 k 5730

547 Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions

Solve for t when A  0.3 A0 : 0.3 A0  A0 e 0.3  e

T  70, u0  450, u  135 :

 ln 0.5   t 5730 

135  70  (450  70)e ln  23/ 38 

 ln 0.5  t  5730 

65  380e

 ln 0.5  ln 0.3   t  5730  5730 t  ln 0.3  9953 ln 0.5 The tree died approximately 9953 years ago.

65 e 380

ln  23/ 38  5

5

t

t

b.

T  70, u0  450, u  160 :  ln  23/ 38   t 5 

5730 k

0.5  e ln 0.5  5730k ln 0.5 k 5730

160  70  (450  70)e  ln  23/ 38    t 5 

90  380e

 ln  23/ 38   t 5 

Solve for t when A  0.7 A0 :

 90  e 380

 ln 0.5  t  5730 

 90  ln  23 / 38  ln  t  5  380  5  90  t  ln    14.3 minutes ln  23 / 38   380 

 ln 0.5   t 5730 

 ln 0.5  ln 0.7   t  5730  5730 t  ln 0.7  2949 ln 0.5 The fossil is about 2949 years old.

13. a.

t

The temperature of the pan will be 135˚F at about 5:18 PM.

0.5 A0  A0 ek (5730)

0.7  e

5

 65  ln  23 / 38  ln  t  5  380  5  65  t  ln    18 minutes ln  23 / 38   380 

12. Use A  A0 ekt and solve for k : half-life = 5730 years 0.5 A0  A0 ek (5730)

0.7 A0  A0 e

ln  23/ 38 

Using u  T  (u0  T )e k t with t  5 , T  70 , u0  450 , and u  300 : 300  70  (450  70)e k (5) 230  380e5k 230  e5 k 380  23  ln    5k  38  1  23  k  ln     0.1004 5  38 

c. 14. a.

The pan will be 160˚F after about 14.3 minutes. As time passes, the temperature of the pan approaches 70˚F. Using u  T  (u0  T )e kt with t  2 , T  38, u0  72 , and u  60 : 60  38  (72  38)e k (2) 22  34e 2 k 22  e2k 34  22  ln    2k  34  ln  22 / 34  k 2

548 Copyright © 2020 Pearson Education, Inc.


Section 5.8: Exponential Growth and Decay Models; Newton’s Law; Logistic Growth and Decay Models T  38, u0  72, t  7

15. Using u  T  (u0  T )e kt with t  3 , T  35 , u0  8 , and u  15 :

 ln  22 / 34     7  2  u  38  (72  38)e

15  35  (8  35)ek (3)

 ln  22 / 34     7  2  u  38  34e  45.41º F

20   27e3k 20  e3k 27  20  ln    3k  27  ln  20 / 27  k 3

After 7 minutes the thermometer will read about 45.41˚F. b. Find t when u  39º F  ln  22 / 34    t 2  39  38  (72  38)e  ln  22 / 34    t 2  1  34e

At t  5 :

 ln  22 / 34    t 2   e

 ln  20 / 27      5 3  u  35  (8  35)e  18.63C

1 34  1   ln  22 / 34   ln     t 2  34    2  1  t  ln    16.2 ln  22 / 34   34 

After 5 minutes, the thermometer will read approximately 18.63C . At t  10 :  ln  20 / 27     10  3  u  35  (8  35)e  25.1C

The thermometer will read 39 degrees after about 16.2 minutes. c.

After 10 minutes, the thermometer will read approximately 25.1C

T  38, u0  72, u  45 : ln  22 / 34 

45  38  (72  38)e ln  22 / 34 

7  34e 7 e 34

2

ln  22 / 34  2

2

16. Using u  T  (u0  T )e kt with t  10 , T  70 ,

t

u0  28 , and u  35 : 35  70  (28  70)e k (10)

t

 35   42e10 k 35  e10 k 42  35  ln    10k  42  ln  35 / 42  k 10

t

 7  ln  22 / 34  t ln    2  34  2  7  t  ln    7.26 minutes ln  22 / 34   34 

At t  30 :

The thermometer will read 45 F after about 7.26 minutes. d. As time passes, the temperature gets closer to 38˚F.

 ln  35 / 42      30  10  u  70  (28  70)e  45.69F

After 30 minutes, the temperature of the stein will be approximately 45.69 F . Find the value of t so that the u = 45˚F:  ln  35 / 42    t 10  45  70  (28  70)e  ln  35/ 42    t 10   25   42e  ln  35 / 42   t 10 

 25  e 42

549

Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions  25   ln  35 / 42   ln     t 10  42    10  25  t  ln    28.46 ln  35 / 42   42 

The temperature of the stein will be 45 F after about 28.46 minutes. 17. Use A  A0 e kt and solve for k: 2.2  2.5e k (24) 0.88  e 24 k ln 0.88  24k ln 0.88 k 24

Find t when A  0.01 :  ln 0.6   t 0.01  0.25 e 17   ln 0.6   t

0.04  e 17   ln 0.6  ln 0.04   t  17  17  ln 0.04  107 t ln 0.6 It will take approximately 107 minutes until 0.01 M of dinitrogen pentoxide remains.

19. Use A  A0 e kt and solve for k: 0.36  0.40e k (30)

When A 0  2.5 and t  72 :  ln 0.88     72 

A  2.5e 24   1.70 After 3 days (72 hours), the amount of free chlorine will be 1.70 parts per million.

Find t when A  1 :  ln 0.88   t

0.9  e30 k ln 0.9  30k ln 0.9 k 30

Note that 2 hours = 120 minutes. When A 0  0.40 and t  120 :  ln 0.9    120 

1  2.5 e 24   ln 0.88   t

0.4  e 24   ln 0.88  ln 0.4   t  24  24  ln 0.4  172 t ln 0.88 Ben will have to shock his pool again after 172 hours (or 7.17 days) when the level of free chlorine reaches 1.0 parts per million.

18. Use A  A0 e kt and solve for k: 0.15  0.25e k (17) 0.6  e17 k ln 0.6  17k ln 0.6 k 17

A  0.40e 30   0.26 After 2 hours, approximately 0.26 M of sucrose will remain.

Find t when A  0.10 :  ln 0.9   t 0.10  0.40e 30   ln 0.9   t

0.25  e 30   ln 0.9  ln 0.25   t  30  30  ln 0.25  395 t ln 0.9 It will take approximately 395 minutes (or 6.58 hours) until 0.10 M of sucrose remains.

20. Use A  A0 e kt and solve for k : 15  25e k (10)

When A 0  0.25 and t  30 :  ln 0.6     30  A  0.25e 17   0.10

After 30 minutes, approximately 0.10 M of dinitrogen pentoxide will remain.

0.6  e10 k ln 0.6  10k ln 0.6 k 10

When A0  25 and t  24 :  ln 0.6     24 

A  25e 10 

550 Copyright © 2020 Pearson Education, Inc.

 7.34


Section 5.8: Exponential Growth and Decay Models; Newton’s Law; Logistic Growth and Decay Models

There will be about 7.34 kilograms of salt left after 1 day.

d. We need to find t such that P = 90 99.744 Y1  ; Y2  90 1  3.014e 0.799 x

Find t when A  0.5 A0 :



 ln 0.6   t

0.5  25 e 10   ln 0.6   t 0.02  e 10 

 ln 0.6  ln 0.02   t  10  10  ln 0.02  76.6 t ln 0.6 It will take about 76.6 hours (about 3.19 days) until ½ kilogram of salt is left.



Thus, t  4.2 . Now, 1984  4.2  1988.2 . The percentage of Microsoft Word users reached 90% early in 1988. e.

21. Use A  A0 e kt and solve for k : 0.5 A0  A0 e k (8)

23. a.

0.5  e8 k ln 0.5  8k ln 0.5 k 8

b.

Find t when A  0.1A0 :

Answers will vary. The maximum possible percentage of Microsoft Word users is 99.744%. 95.4993 95.4993   91.8 0.1968 (0) 1  0.0405e 1.0405 In 1984, about 91.8% of households did not own a personal computer. P (0) 

Y1 

95.4993 1  0.0405e0.1968 x



 ln 0.5   t 0.1A0  A0 e 8   ln 0.5   t  8 

0.1  e

 ln 0.5  ln 0.1   t  8  8  ln 0.1  26.6 t ln 0.5 The farmers need to wait about 26.6 days before using the hay.

22. a. b.

c.

Growth rate = 0.799 = 79.9%.



c.



t  1995  1984  11 95.4993 P(11)   70.6 1  0.0405e0.1968(11) In 1995, about 70.6% of households did not own a personal computer.

d. We need to find t such that P = 10 95.4993 Y1  ; Y2  10 1  0.0405e0.1968 x

99.744 Y1  1  3.014e 0.799 x

100





10

t  1990  1984  6 99.744 P (6)   97.3 1  3.014e 0.799 (6) In 1990, about 97.3% of companies reported using Microsoft Word.

Thus, t  27.2 . Now, 1984  27.2  2011.2 . The percentage of households that do not own a personal computer reached 10% during 2011.

551

Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions

24. a.

b.

14, 656, 248  13,839, 705 1  0.059e0.057 (0) In 1910, there were about 13,839,705 farm workers. W (0) 

Y1 

c.

We need to find n such that P = 10. 113.3198 Y1  ; Y2  10 1  0.115e0.0912 x 

14, 656.248 1  0.059e0.057 x 

t  2010  1910  100 14, 656, 248 W (100)   786,567 1  0.059e0.057(100) In 2010, there were about 787.56 farm workers. d. We need to find t such that W = 10,000,000. 14, 656, 248 Y1  ; Y2  10, 000, 000 1  0.059e0.057 x

c.

Thus, t  36.2 . Now, 1910  36.2  1946.2 . There were 10,000 farm workers in 1946. e.

25. a.

As t   , 1  0.059e0.057 t   . Thus, W (t )  0 . No, it is not reasonable to use this model to predict the number of farm workers in 2060 because the number of farm workers left in the United States would be approaching 0. Y1 

Thus, t  49.3 . The probability falls below 10% when 50 people are in the room. d. As n   , 1  0.115e0.0912 n   . Thus, P (n)  0 . This means that as the number of people in the room increases, the more likely it will be that two will share the same birthday. 26. a.

As t  , e 0.162 t  0. Thus, P(t )  500 . The carrying capacity is 500 bald eagles.

b. Growth rate = 0.162 = 16.2%. c.

500  9.68 1  82.33e 0.162 (3) After 3 years, the population is almost 10 bald eagles. P (3) 

d. We need to find t such that P = 300: 500 300  1  82.33e 0.162t 300 1  82.33e 0.162 t   500 5 3 5 0.162 t 82.33e  1 3 2 e 0.162 t  3 82.33  2  0.162 t  ln  3   82.33    t  29.7

1  82.33e 0.162t 

113.3198 1  0.115e0.0912 x



b.



Thus, t  29.7 . The bald eagle population will be 300 in approximately 29.7 years.



113.3198  78 1  0.115e0.0912 (15) In a room of 15 people, the probability that no two people share the same birthday is about 78% or 0.78. P(15) 

552 Copyright © 2020 Pearson Education, Inc.


Section 5.8: Exponential Growth and Decay Models; Newton’s Law; Logistic Growth and Decay Models e.

We need to find t such that 1 P   500   250 : 2

28. a.

500 1  82.33e 0.162t 0.162 t 250 1  82.33e   500 250 

86.1  27.6 1  2.12e 0.361(0) In 2008, 27.6% of Americans had a social media profile. P (0) 

b. The growth rate of the percentage of Americans who have a social media profile is 36.1% .

1  82.33e 0.162t  2 82.33e 0.162 t  2  1

c.

Y1 

1 82.33  1  0.162 t  ln    82.33  t  27.2 e 0.162 t 

Thus, t  27.2 . The bald eagle population will reach one-half of its carrying capacity after about 27.2 years. 27. a.

P(0) 

d.

431

 48 1  7.91e 0.017(0) In 1900 the number of invasive species present in the Great Lakes was approximately 48.

e.

b. The growth rate of invasive species is 1.7% . c.

Y1 

d.

y

e.

431

Thus, t  6 . Now, 2008  6  2014 .

431

 176 0.017(100)

29. a.

n = 20; P0  50 P (t )  50(3)t / 20

b.



86.1  79.6 1  2.12e 0.361(9) The percentage of Americans had a social media profile in 2017 was approximately 79.6. We need to find t such that P = 69.3. 86.1 Y1  ; Y2  69.3 1  2.12e 0.361t y

1  7.91e 0.017 x

1  7.91e The number of invasive species present in 2000 was approximately 176. We need to find t such that P = 175. 431 Y1  ; Y2  175 1  7.91e 0.071 x

86.1 1  2.12e0.361t

 47   

t  47 , then P (47)  50(3) 20   661 The population 47 days from now will be 661.



Thus, t  99 . Now, 1900  99  1999 . There were 175 invasive species in 1999. 553

Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions c. 700  50(3)

y  25, 000  2

d.

 t    20

 

 25, 000 eln 2

 t 

 25, 000e0.087t

 t   20 

P  t   25, 000e0.087t

 t  ln 14    ln(3)  20 

ln 14

31. m 

 t     20  ln 3 ln 14  48 t  20 ln 3

y  50  3

t /20

 

 50 eln 3

t / 20

 50eln 3(t / 20)  50e

n = 8; P0  25, 000  3  

t  3 , then P (3)  25, 000(2) 8   32, 421 The population 3 years from now will be 32,421.

 2 12   x2 y  x y  33. ln    ln  z z      1    ln  x 2 y 2   ln  z   

 1  ln x 2  ln  y 2   ln  z   

 

c. 80, 000  25, 000(2) 80, 000  (2) 25, 000

t  8 

1  2 ln x  ln y  ln z 2

t   8

ln  3.2  ln(2)

34. The denominator cannot be zero. x 2  2 x  8  ( x  4)( x  2) x  4, 2

t   8

t ln  3.2    ln(2)  8

ln  3.2 ln 2

The domain is  x | x  4, x  2

t    8

t8

ln  3.2 ln 2

1 . 5

They are not equal so they are not parallel functions. They are not opposite reciprocals so they are not perpendicular.

P (t )  25, 000(2)t /8

b.

3 y  1   ( x  4) 2 3 y 1   x  6 2 3 y  f ( x)   x  7 2

32. The slope of f ( x) is 5 . The slope of g ( x) is

0.055t

P  t   50e0.055t

30. a.

5  1 6 3   84 4 2

( y  y1 )  m( x  x1 )

The population will reach 700 in 48 days. d.

t /8

 25, 000eln 2(t /8)

  700  (3) 20  50

ln 14  ln(3)

t /8

 13.42

The population will reach 80,000 in 13.42 years. 554 Copyright © 2020 Pearson Education, Inc.


Section 5.9: Building Exponential, Logarithmic, and Logistic Models from Data

39.

35. 3x  1 2 x  3  x 3 x 4 (3 x  1)( x  4) (2 x  3)( x  3)   ( x  3)( x  4) ( x  3)( x  4) (3 x  1)( x  4)  (2 x  3)( x  3)  ( x  3)( x  4)

( g  f )( x) 

3 x  11x  4  2 x  9 x  9 2

Local minima: f (1.37)  5.85 and f (1)  1 Local maximum: f (0.37)  0.65 Increasing: [1.37, 0.37]  [1,3] Decreasing: [3, 1.37]  [0.37,1]

(3 x 2  11x  4)  (2 x 2  9 x  9) ( x  3)( x  4) 2

( x  3)( x  4)

x  2 x  13 2

( x  3)( x  4)

40. 36.

f (0)  2(0)  5(0)  1  1 2

10 x

f ( x)  0  2 x 2  5 x  1 x 

3(2 x  3)

(5)  (5) 2  4(2)(1) 2(2)

2

 5 x(2 x  3)1 3  3

5  25  8 5  17  4 4

The y-intercept is 1. The x-intercepts are  5  17 5  17  ,   4   4 37.

x 1 x  2 x x 1 ( x  1)( x  1)  x 2  2 x( x  1)

10 x 2

15 x(2 x  3)

2

3(2 x  3) 3 10 x  30 x  45 2

3(2 x  3) 3 40 x  45 2

3(2 x  3) 3

Section 5.9

x2  2 x  1  x2  2 x2  2 x

1. a.

2 x  1  2 x2  2 x 2 x2  1 x2 

1 2



1 2 x  2 2

b. Using EXPonential REGression on the data

yields: y  0.0903 1.3384 

 2 2  The solution set is   , .  2 2 

c.

y  0.0903 1.3384 

38. Using Linear Regression on the data gives: y  1.0714 x  3.9048 . The coefficient is r  0.985 .

x

 0.0903 e 

ln 1.3384 

 0.0903e 

ln 1.3384  x

N  t   0.0903e0.2915t

555

Copyright © 2020 Pearson Education, Inc.

x

2

3(2 x  3) 3(2 x  3) 3 10 x  15 x(2 x  3) 3

x


Chapter 5: Exponential and Logarithmic Functions

d.

f.

Y1  0.0903e0.2915 x 

k  0.6810  68.10% is the exponential growth rate. It represents the rate at which Tesla’s revenue is increasing.

3. a. 

e.

N  7   0.0903e

0.29157

f.

We need to find t when N  0.75 :

 0.69 bacteria

 0.75 0.75 0.2915 t e  0.0903  0.75  0.2915t  ln    0.0903   0.75  ln   0.0903  t   7.26 hours 0.2915

0.0903e

b. Using EXPonential REGression on the data

yields: y  118.7226  0.7013

 0.2915t

c.

y  118.7226  0.7013

x

x

 118.7226 eln  0.7013  118.7226eln  0.7013 x

x

A  t   118.7226e 0.3548t

d.

Y1  118.7226e 0.3548 x

e.

A  4  118.7226e 0.35484  28.7%

f.

k  0.3548  35.48% is the exponential decay rate. It represents the rate at which the percentage of patients surviving advanced-stage breast cancer is decreasing.

2. a.

b. Using EXPonential REGression on the data

yields: y  0.1350 1.9759  c.

y  0.1350 1.9759 

x

x

 0.1350 e 

ln 1.9759 



4. a.

x

 0.1350e 

ln 1.9759  x

A  t   0.1350e d.

Y1  0.1350e

0.6810 t



0.6810  x



b. Using EXPonential REGression on the data

yields: y  100.3263  0.8769  c.

y  100.3263  0.8769 

x

 100.3263 e 

ln 0.8769 

 100.3263e 

x

ln 0.8769  x

e.

A  9   0.1350e

0.6810 9

 61.98 billion

A  t   100.3263e

dollars 556 Copyright © 2020 Pearson Education, Inc.

0.1314 t

x


Section 5.9: Building Exponential, Logarithmic, and Logistic Models from Data

d.

Y1  100.3263e

0.1314  x

c.

Y1  344.5217  37.2566 ln x





e.



We need to find t when A  t   0.5  A0 100.3263e

0.1314 t

  0.5 100.3263

d. Note that 2008 is represented by t  28 . y  344.5217  37.2566 ln(28)  188 billion pounds.

 0.1314 t

e  0.5 0.1314t  ln 0.5 ln 0.5 t  5.3 weeks 0.1314  0.1314 50

f.

A  50   100.3263e

g.

We need to find t when A  t   20 . 100.3263e

e.

It is under by 2 billion pounds.

6. a.

 0.14 grams

0.1314 t

 20 20 e  100.3263 20   0.1314t  ln    100.3263   0.1314 t

b. Let x  0 correspond to 2000, x  8 correspond to 2008, x  9 correspond to 2009, etc. Using LNREGression on the data yields: y  126.1152  73.5051ln x

20   ln   100.3263   t  12.3 weeks 0.1314

5. a.

c.

Y1  127.0302  73.7554 ln x

d.

y  126.1152  73.5051ln(19)  90%

Therefore, the predicted percent of U.S. citizens on social metworing sites in 2019 is 90%.

b. Using lnREGression on the data yields: y  344.5217  37.2566 ln x e.

98  126.1152  73.5051ln x 224.1152  73.5051ln x 224.1152  ln x 73.5051 224.1152

x  e 73.5051  21.0 For 2000 + 21 = 2021, the function predicts

557

Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions

that the 98% of U.S. citizens will be on social networking sites. 7. a.

1.17765  e 0.0162 x 8.7428  1.17765  ln    0.0162 x  8.7428   1.17765  ln    8.7428   x 0.0162 x  123.75 Therefore, the United States population will be 350,000,000 in the year 2023.

Let x  0 correspond to 1900, x  10 correspond to 1910, x  20 correspond to 1920, etc.

8. a. b. Using LOGISTIC REGression on the data 762,176,844.4 yields: y  1  8.7428e 0.0162 x c.

Y1 

Let x = 1 correspond to 2001, x = 2 correspond to 2002, etc.

762,176,844.4 1  8.7428e 0.0162 x

b. Using LOGISTIC REGression on the data 16.6827 yields: y  1  1.7184e 0.0207 x d. As x   , 8.7428e 0.0162 x  0 , which means 1  8.7428e 0.0162 x  1 , so 762,176,844.4 y  762,176,844.4 1  8.7428e 0.0162 x Therefore, the carrying capacity of the United States is approximately 762,176,844 people. e.

f.

c.

The year 2012 corresponds to x = 112, so 762,176,844.4 y 1  8.7428e 0.0162(112)  314,362, 768 people Find x when y  350, 000, 000 762,176,844.4  350, 000, 000 1  8.7428e 0.0162 x

762,176,844.4  350, 000, 000 1  8.7428e

762,176,844.4  1  8.7428e 0.0162 x 350, 000, 000 762,176,844.4  1  8.7428e 0.0162 x 350, 000, 000

1.17765  8.7428e 0.0162 x

0.0162 x

Y1 

16.6827 1  1.7184e 0.0207 x

:

d. As x   , 1.7184e 0.0207 x  0 , which means 1  1.7184e 0.0207 x  1 , so 16.6827 y  16.6827 1  1.7184e 0.0207 x Therefore, the carrying capacity of the world is approximately 16.683 billion people. e. The year 2025 corresponds to x = 25 so 16.6827 y  8.24 . 1  1.7184e0.0207(25) In 2025, the population of the world was approximately 8.24 billion people.

558 Copyright © 2020 Pearson Education, Inc.


Section 5.9: Building Exponential, Logarithmic, and Logistic Models from Data

f.

We need to find x when y  10 :

10. a.

16.6827

 10 1  1.7184e 0.0207 x 16.6827  10 1  1.7184e 0.0207 x

0.0207 x

16.6827  10  17.184e 16.6827  10  17.184e 0.0207 x

6.6827  17.184e 0.0207 x 6.6827  e 0.0207 x 17.184  6.6827  ln    0.0207 x  17.184   6.6827  ln   17.184  x   45.6 0.0207 Therefore, the world population will be 10 billion in approximately the year 2045.

b. Based on the “upside down U-shape” of the graph, a quadratic model with a  0 would best describe the data. c.

Using QUADratic REGression, the quadratic model is y  0.0311x 2  3.4444 x  118.2493 .

d.

9. a.

e.

2

 201 The model predicts a total cholesterol of 201 for a 35-year-old male.

b. Based on the shape of the graph, a cubic model might best describe the data. c.

y  0.0311 35   3.4444  35   118.2493

11. a.

Using CubicReg, the cubic model is y  0.0607 x3  0.5533 x 2  4.1390 x  13.1560 .

d. b. Based on the graph, an exponential model would best describe the data. c.

Using EXPonential REGression, the model is y  115.5779  0.9012 . x

e.

 115.5449e 0.1040 x

y (11)  0.0607(16)3  0.5533(16) 2

d.

 4.1390(16)  13.1560  186.4 The model predicts an online advertising revenue of $186.4 billion in 2021.

559

Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions

e.

y  115.5779  0.9012

30

 5.1 The model predicts the expected percentage of a 30-foot putt to be made is 5.1%.

12. The graph crosses the x-axis at x  3 and x  2 and touches it at x  1 . Thus, 3 and 2 each have odd multiplicities while 1 has an even multiplicity. Using one for each odd multiplicity and two for the even multiplicity, a possible funtion is f ( x)  a ( x  3)( x  1) 2 ( x  2) . The yintercept appears to be negative so we can use (0,-2) as a typical y-intercept. So,

17. x 

4  16  60 4  76  6 6 4  2 19 2  19   6 3 

 2  19 2  19  The solution set is  , . 3   3

18.

a(0  3)(0  1) 2 (0  2)  2 a (3)(1)( 2)  2 6a  2 1 a 3 The a posible function is 1 f ( x)  ( x  3)( x  1) 2 ( x  2) . 3

13.

(4)  (4) 2  4(3)(5) 2(3)

x 1

0 x  25 x 1 0 ( x  5)( x  5) 2

f ( x) 

x 1 2

x  25 The zeros and values where f is undefined are x  1, x   5 and x  5 . Interval Number Chosen

a2  b2  c2 (1) 2  b 2  (2) 2 1  b2  4

( ,  5)

( 5, 1)

( 1, 5)

(5,  )

6

3

0

6

Value of f

0.45

0.125

0.04

0.64

Conclusion

Negative

Positive

Negative

Positive

The solution set is  x  5  x  1, x  5  or,

b2  3

using interval notation,  5, 1   5,   .

b 3

14. The equation represents a circle with center (3, 0) and radius 5.

19. f (3)  3(3)5  7(3) 4  27(3)3  67(3) 2  36  729  567  729  603  36  0 f (3)  0 . Therefore, x  3 is a factor of 3x5  7 x 4  27 x3  67 x 2  36 .

 x  x y  y2   7  1 5  (9)   , 15.  1 2 , 1  2   2 2   2  6 4   ,   2 2    3, 2 

16.

f ( x)   x  4

560 Copyright © 2020 Pearson Education, Inc.


Chapter 5 Review Exercises

20.

21.

d.

2 1 2 1 f    f   3  3  8 3 8 3 2 1 1  3 3 3 42 2   1 1 3 3 6

( g  g )(1)  g ( g (1))

 g 1  2(1) 2

 g (1)  1  2(1) 2  1

2.

g ( x)  2 x 2  1

f ( x)  x  2

a.

( f  g )(2)  f ( g (2))

 f 2(2) 2  1

f (2)  (2)4  2(2)3  5(2)  1  16  16  10  1  21 f (1)  (1) 4  2(1)3  5(1)  1  1  2  5  1  3 Since f (2) is negative and f (1) is positive and f ( x) is continuous on (2, 1) , then there exists a number c in (2, 1) such that f (c)  0 .

 f (9)  92  11

b.

( g  f )( 2)  g ( f ( 2)) g

 2 2

 g (0)  2(0) 2  1 1

c.

( f  f )(4)  f ( f (4))

 4 2  f  6  f

From the graph we see that the zero is approximately 1.32 .

d.

( g  g )(1)  g ( g (1))

f ( x)  3x  5

a.

 g (3)

g ( x)  1  2 x 2

( f  g )(2)  f ( g (2))

 f 1  2(2) 2

 2(3) 2  1  19

3.

 f (7)  3(7)  5   26

b.

f ( x)  e x

a.

g ( x)  3x  2

( f  g )(2)  f ( g (2))  f  3(2)  2   f (4)

( g  f )( 2)  g ( f ( 2))  g  3( 2)  5   g (11)

 e4

b.

( g  f )( 2)  g ( f ( 2))

 

 g e2

 1  2(11) 2   241

c.

 g 2(1) 2  1

Chapter 5 Review Exercises 1.

62

 3e2  2 3  2 2 e

( f  f )(4)  f ( f (4))  f  3(4)  5   f (7)  3(7)  5  16

561

Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions

c.

( f  f )(4)  f ( f (4))

 ee

4.

 

 f e

d.

( f  g )( x)  f ( g ( x))

4

4

 3  3x  3x2

Domain:  x x is any real number . ( g  f )( x)  g ( f ( x)) g

g ( x)  3 x  1

( g  g )( x)  g ( g ( x))  g (3x  1)  3(3x  1)  1  9x  3 1  9x  4 Domain:  x x is any real number . f ( x)  3x

2

Domain:  x x  0  .

( f  g )( x)  f ( g ( x))  f (3 x  1)  2  (3x  1)  2  3x  1  1  3x Domain:  x x is any real number .

( f  f )( x)  f ( f ( x))  f (2  x)  2  (2  x)  22 x x Domain:  x x is any real number .

 3x 

 1  3x  3x

The domain of g is  x x is any real number .

( g  f )( x)  g ( f ( x))  g (2  x)  3(2  x)  1  6  3x  1  7  3x Domain:  x x is any real number .

 3x 

 1  3x 

The domain of f is  x x is any real number .

5.

 3 1  x  x2

( g  g )(1)  g ( g (1))  g  3(1)  2   g (5)  3(5)  2  17

f ( x)  2  x

 f 1  x  x2

( f  f )( x)  f ( f ( x))  f

 3x   3 3x

Domain:  x x  0  . ( g  g )( x)  g ( g ( x))

 g 1  x  x2

  

 1  1  x  x2  1  x  x2

2

 1  1  x  x 2  1  2 x  3x 2  2 x3  x 4  3  3 x  4 x 2  2 x3  x 4 Domain:  x x is any real number .

6.

f ( x) 

x 1 x 1

g ( x) 

1 x

The domain of f is  x x  1 . The domain of g is  x x  0 .

 f  g  x   f  g  x   1 1 1 x  f    x  1 1 x 1    1 x 1  x x    1 x 1  1  x   x  

Domain  x x  0, x  1 .

g ( x)  1  x  x 2

The domain of f is  x x  0  . The domain of g is  x x is any real number . 562 Copyright © 2020 Pearson Education, Inc.


Chapter 5 Review Exercises

 g  f  x   g  f  x  

 4   4   1 x   1  x  4  4(1  x) 10. f ( g ( x))   4 1 x 4 1 x 4  4  4x 4x   x 4 4 4 4x x   g ( f ( x))  x  4 x x  ( x  4) 1 x 4x 4x   x xx4 4

1 x 1  x 1  g   x 1   x 1  x 1      x 1 

Domain  x x  1, x  1

 f  f  x   f  f  x   x 1

1

 x 1  x 1  f   x 1  x  1 1 x 1

 x  1  1  ( x  1)    x 1    x  1  1  ( x  1)    x 1  

x 1 x 1 x  1   x  1

2x 2

Thus f and g are inverses of each other. 11. x

Domain  x x  1 .

 g  g  x   g  g  x    g    1

x

Domain  x x  0 . 7. a.

1 x 1    x

The function is one-to-one because there are no two distinct inputs that correspond to the same output.

b. The inverse is  2,1 ,  5,3 ,  8,5  , 10, 6  .

2x  3 5x  2 2x  3 y 5x  2 2y  3 x 5y  2 x(5 y  2)  2 y  3 5 xy  2 x  2 y  3 5 xy  2 y  2 x  3 y (5 x  2)  2 x  3 2x  3 y 5x  2 2x  3 1 f ( x)  5x  2 f ( x) 

Inverse

Domain of f = Range of f 1 = All real numbers except

8. The function f is one-to-one because every horizontal line intersects the graph with at most one point.

Range of f = Domain of f 1 = All real numbers except

9.

2 . 5

1  f ( g ( x))  5  x  2   10  x  10  10  x 5   1 g ( f ( x))  (5 x  10)  2  x  2  2  x 5

563

Copyright © 2020 Pearson Education, Inc.

2 . 5


Chapter 5: Exponential and Logarithmic Functions

12.

1 x 1 1 y x 1 1 x Inverse y 1 x( y  1)  1 xy  x  1 xy  x  1 x 1 y x x 1 1 f ( x)  x Domain of f = Range of f 1 = All real numbers except 1 Range of f = Domain of f 1 = All real numbers except 0 f ( x) 

f ( x)  x  2

13.

f

1

Inverse

x2  y  2

x0

y  x2  2

x0

2

x0

Range of f = Domain of f 1   x | x  0 or  0,  

f ( x)  x1/ 3  1 y  x1/ 3  1 1/ 3

x y 1/ 3

y

18.

f  x   log(3x  2) requires: 3x  2  0 2 x 3  2 2  Domain:  x x   or  ,   3 3   

19. H  x   log 2 x 2  3 x  2 requires 2

p( x)  x  3 x  2  0  x  2  x  1  0

1

(,1)

(2, )

(1, 2)

3 3 2 1  Value of p 2 2 4 Conclusion positive negative positive 0

Thus, the domain of H  x   log 2 x 2  3 x  2 is  x x  1 or x  2 or  ,1   2,   . 1 20. log 2    log 2 23  3log 2 2  3 8

Inverse

 x 1

21. ln e 2  2

y  ( x  1)3 f 1 ( x)  ( x  1)3

22. 2log 20.4  0.4

Domain of f = Range of f 1 = All real numbers or  ,   Range of f = Domain of f 1 = All real numbers or  ,   15. a.

17. log5 u  13 is equivalent to 513  u

Test Value

Domain of f = Range of f 1   x | x  2 or  2,  

14.

16. 52  z is equivalent to 2  log 5 z

Interval

y2

( x)  x  2

 

 1   1  g    log3    log3 33  3 27    27 

x  2 and x  1 are the zeros of p .

y  x2 x

d.

 uv 2  2 23. log3    log 3 uv  log 3 w  w   log 3 u  log 3 v 2  log 3 w  log 3 u  2 log 3 v  log 3 w

f  4   34  81

 

b.

g  9   log3  9   log 3 32  2

c.

f  2   32 

1 9 564 Copyright © 2020 Pearson Education, Inc.


Chapter 5 Review Exercises

24. log 2 a 2 b

  4 log  a b   4  log a  log b  4

2

2

2

2

29.

1/ 2

2

4

1/ 2

1/ 2

1  2 log x  log x 3  1 2 2

26.

1/ 2 1  ln    ln  x( x  4)  2 1/ 2   x2  1    ln   1   x( x  4) 1/ 2   16   16 x 2  1    ln   x( x  4)   

 ln x 2  1

1    4  2 log 2 a  log 2 b  2    8log 2 a  2 log 2 b

25. log x 2 x3  1  log x 2  log x3  1

1 1 1 ln x 2  1  4 ln   ln( x  4)  ln x  2 2 2

 2x  3  ln  2   x  3x  2   2x  3   2 ln  2   x  3x  2   2  ln(2 x  3)  ln  ( x  1)( x  2) 

30. log 4 19 

 2 ln(2 x  3)  2 ln( x  1)  2 ln( x  2)



ln19  2.124 ln 4

31. Y1  log3 x  

ln x ln 3

 2  ln(2 x  3)  ln( x  1)  ln( x  2) 

 

 

3 1/ 2 1 27. 3log 4 x 2  log 4 x  log 4 x 2  log 4 x1/ 2 2  log 4 x 6  log 4 x1/ 4

6

1/ 4

 log 4 x  x



32.

Domain: (, )

b. Using the graph of y  2 x , shift the graph horizontally 3 units to the right.

 x 1   x  2 28. ln    ln    ln x  1 1 x x       x 1 x  2  ln     ln x  1 1 x x     x 1     ln  x2  1   x  1  x 1  1  ln     x  1 ( x  1)( x  1)  1  ln ( x  1) 2

f ( x)  2 x 3

a.

 log 4 x 25 / 4 25  log 4 x 4

c.

d.

Range: (0, ) Horizontal Asymptote: y  0 f ( x )  2 x 3 y  2 x 3

 ln( x  1)2   2 ln( x  1)

x  2 y 3 Inverse y  3  log 2 x y  3  log 2 x f 1 ( x)  3  log 2 x

565

Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions

e.

Range of f = Domain f 1 : (0, )

Domain of f = Range of f 1 : (, )

Domain of f = Range of f 1 : (, ) f.

f.

Using the graph of y  log 2 x , shift the graph vertically 3 units up.

Using the graph of y  log3 x , shift the graph horizontally to the right 1 unit, and reflect vertically about the x-axis. y x

   x 





33.

34.

x

f ( x)  1  3

a.

a.

Domain: (, )

b. Using the graph of y  3x , reflect the graph about the y-axis, and shift vertically 1 unit up. y



b. Using the graph of y  e x , shift the graph two units horizontally to the right, and stretch vertically by a factor of 3.

  x



c.

 Range: (1, ) Horizontal Asymptote: y  1

d.

y  1 3

Inverse

x 1  3  y  log3  x  1

y   log 3  x  1

f

e.

Inverse

  y  2  ln  3x  f ( x )  2  ln  3x 

y

1

f ( x )  3e x  2 x  3e y  2 x  e y 2 3 y  2  ln 3x

x

x  1  3 y

Range: (0, ) Horizontal Asymptote: y  0 y  3e x  2

f ( x)  1  3 x

d.

Domain: (, )

y

c.

f ( x)  3e x  2

1

( x)   log 3  x  1

e.

x 1  0 x 1

Range of f = Domain f 1 : (0, ) Domain of f = Range of f 1 : (, )

Range of f = Domain f 1 : (1, ) 566 Copyright © 2020 Pearson Education, Inc.


Chapter 5 Review Exercises

f.

Using the graph of y  ln x , stretch horizontally by a factor of 3, and shift vertically up 2 units.

Range of f = Domain f 1 : (, )

e.

Domain of f = Range of f 1 : (3, ) Using the graph of y  e x , compress

f.

horizontally by a factor of 12 , and shift down 3 units.

35.

f ( x) 

a.

1 ln  x  3 2

Domain: (3, )

86 3 x  4

36.

b. Using the graph of y  ln x , shift the graph to the left 3 units and compress vertically by a factor of 1 . 2

2 

3 63 x

 22

218 9 x  22 18  9 x  2 9 x  16 16 x 9

The solution set is  16  .  9

2

3x  x  3

37.

2

c.

d.

3x  x  31/ 2 1 x2  x  2 2 x2  2 x  1  0

Range: (, ) Vertical Asymptote: x  3 1 ln  x  3 2 1 y  ln  x  3 2 1 x  ln  y  3 2 2 x  ln  y  3

f ( x) 

x

 2  22  4(2)(1) 2(2)

 2  12 2  2 3 1  3   4 4 2 

The solution is  1  3 , 1  3   {1.366, 0.366} .

Inverse



y  3  e2 x y  e2 x  3 f 1 ( x)  e 2 x  3

567

Copyright © 2020 Pearson Education, Inc.

2

2




Chapter 5: Exponential and Logarithmic Functions

38.

log x 64  3 x

  x

3

3 1/ 3

42.

 64

1 64

2

1 4

3  2 x2  5x 0  2 x2  5x  3 0  (2 x  1)( x  3) 1 x or x  3 2

4

5 x  3x  2

 

ln 5 x  ln 3x  2

x ln 5  ( x  2) ln 3 x ln 5  x ln 3  2 ln 3 x ln 5  x ln 3  2 ln 3 x(ln 5  ln 3)  2 ln 3 2 ln 3 x  4.301 ln 5  ln 3  2 ln 3  The solution set is    4.301 .  ln 5  ln 3 

40.

2

252 x  5 x 12

5   5 2 2x

5x

23  22 x  5 x

The solution set is  1  . 39.

x2

  2

23  22

 641/ 3

x 3

2

8  4 x  25 x

x 2 12 2

54 x  5 x 12 4 x  x 2  12 x 2  4 x  12  0 ( x  6)( x  2)  0 x  6 or x   2

 1 The solution set is 3,  .  2

43.

2 x  5  10 x

ln 2 x  ln 5  ln10 x x ln 2  ln 5  x ln10 ln 5  x ln10  x ln 2 ln 5  x(ln10  ln 2) ln 5 x ln10  ln 2 ln 5 ln 5 x  1 10 ln 5 ln 2 The solution set is 1 .

44. log 6 ( x  3)  log 6 ( x  4)  1 log 6  ( x  3)( x  4)   1

( x  3)( x  4)  61

The solution set is 2, 6 .

x 2  7 x  12  6 x2  7 x  6  0 ( x  6)( x  1)  0 x   6 or x  1

41. log3 x  2  2 x  2  32 x2 9 x  2  92 x  2  81 x  83

Check: log3 83  2  log3 81  log3 9 2 The solution set is 83 .

ln 2 x  5  ln10 x

Since log 6 (6  3)  log 6 (3) is undefined, the

solution set is 1 .

45. e1 x  5 1  x  ln 5  x  1  ln 5 x  1  ln 5  0.609 The solution set is 1  ln 5  0.609 .

568 Copyright © 2020 Pearson Education, Inc.


Chapter 5 Review Exercises

9 x  4  3x  3  0

46.

x

x 2

x

log 2  x  2   1  0

log 2  x  2   1

x  2  21 1 x2  2 5 x 2 Based on the graph drawn in part (a), 5 f  x   0 when x  . The solution set is 2 5  5   x | x   or  ,   . 2  2 

x

Let u  3 . u 2  4u  3  0 a  1, b  4, c  3 u 

(4)  (4) 2  4(1)(3) 2(1) 4  28 4  2 7   2  7 2 2

or 3x  2  7

3x  2  7

  The solution set is log  2  7   0.398 3x can't be negative

x  log3 2  7

3

47. a.

f  x  0

d.

3   4  3  3  0 3   4  3  3  0 2 x

e.

f  x   log 2  x  2   1 y  log 2  x  2   1

.

x  log 2  y  2   1

f  x   log 2  x  2   1

y  2  2 x 1

Using the graph of y  log 2 x , shift the graph right 2 units and up 1 unit. y x

y  2 x 1  2 f 1  x   2 x 1  2



y x

f x   log 2 x  2   1



  x 



f 1 ( x)  2 x 1  2 f x   log 2 x  2   1

y x 



 b.

Inverse

x  1  log 2  y  2 

yx

f  6   log 2  6  2   1



 log 2  4   1  2  1  3

The point  6,3 is on the graph of f. c.

48. P  25e0.1d a. P  25e0.1(4)  25e0.4  37.3 watts

f  x  4

log 2  x  2   1  4

b.

log 2  x  2   3

50  25e0.1d 2  e0.1d ln 2  0.1d ln 2  6.9 decibels d 0.1

x  2  23 x2 8 x  10 The solution set is {10}. The point 10, 4 

is on the graph of f.

569

Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions 49. L  9  5.1log d a. L  9  5.1log 3.5  11.77 b.

53.

0.5 A0  A0 ek (5730)

14  9  5.1log d 5  5.1log d 5 log d   0.9804 5.1 d  100.9804  9.56 inches

50. a.

n

b.

n

0.5  e5730 k ln 0.5  5730k ln 0.5 k 5730  ln 0.5   t

log10, 000  log 90, 000  9.85 years log(1  0.20) log  0.5i   log  i 

log(1  0.15)  0.5i  log    i   log 0.5  4.27 years  log 0.85 log 0.85

 0.04  51. In 18 years, A  10, 000  1   2    10, 000(1.02)36  $20,398.87

(2) (18)

 0.04  When t = 1, A  10, 000  1   2    10, 000(1.02) 2  $10, 404

0.05 A0  A0 e 5730   ln 0.5   t

0.05  e 5730   ln 0.5  ln 0.05   t  5730  ln 0.05  24, 765 t  ln 0.5    5730 

The man died approximately 24,765 years ago. 54. Using u  T  (u0  T )e kt , with t  5 , T  70 , u0  450 , and u  400 . 400  70  (450  70)ek (5)

The effective interest rate is computed as follows: (2) (1)

10, 404  10, 000 404   0.0404 , so 10, 000 10, 000 the effective interest rate is 4.04%.

Note,

In order for the bond to double in value, we have the equation: A  2 P . 2t

 0.04  10, 000 1    20, 000 2  

330  380e5 k 330  e5 k 380  330  ln    5k  380  ln  330 / 380  k 5

Find time for temperature of 150˚F:  ln  330 / 380    t 5  150  70  (450  70)e  ln  330 / 380    t 5  80  380e  ln  330 / 380  

1.02 2t  2 2t ln1.02  ln 2 ln 2  17.5 years t 2 ln1.02  nt

A  A0 ekt

 r  0.04  52. P  A 1    85, 000 1   2   n   $41, 668.97

2(18)

 t 80 5   e 380  80   ln  330 / 380   ln  t  5  380     80  ln    380   55.22 t ln  330 / 380  5 The temperature of the skillet will be 150˚F after approximately 55.22 minutes (or 55 minutes, 13 seconds).

570 Copyright © 2020 Pearson Education, Inc.


Chapter 5 Review Exercises 55. P0  7, 632,819,325 , k  0.011 , and t  2024  2018  6 P  P0 ekt  7, 632,819,325e0.011 (6)  8,153,581,530 people

d. Find t such that P (t )  0.75 . 0.8  0.75 1  1.67e 0.16 t 0.8  0.75 1  1.67e 0.16 t

0.8  1  1.67e 0.16 t 0.75 0.8  1  1.67e 0.16 t 0.75 0.8 1 0.75  e 0.16 t 1.67  0.8   0.75  1  ln    0.16t  1.67   0.8   0.75  1  ln   t   1.67   20.13 0.16 Note that 2006  20.13  2026.13 , so 75% of new cars will have GPS in 2026.

A  A0 e kt

56.

0.5 A0  A0 ek (5.27) 0.5  e5.27 k ln 0.5  5.27k ln 0.5 k 5.27  ln 0.5    (20)

In 20 years: A  100e 5.27  In 40 years:

57. a.

 7.204 grams

 ln 0.5    (40) A  100e 5.27   0.519 grams

0.8

0.8  0.3  1 1.67 1  1.67e In 2006, about 30% of cars had a GPS. P (0) 

0.16 (0)

b. The maximum proportion is the carrying capacity, c = 0.8 = 80%. c.

Y1 

58. a.

0.8 1  1.67e0.16 x

1

0

30

b. Using EXPonential REGression on the data

0

yields: y  3610.2684 1.0406  c.

y  3610.2684 1.0406 

x

 3610.2684 e 

ln 1.0406 

 3610.2684e 

ln 1.0406  x

A  t   3610.2684e0.0398 x

d.

Y1  3610.2684 1.0406 

571

Copyright © 2020 Pearson Education, Inc.

x

x

x


Chapter 5: Exponential and Logarithmic Functions

e.

Find x when y  16000 . 3610.2684 1.0406   16000 16000 1.0406  x  3610.2684  16000  x ln1.0406  ln    3610.2684   16000  ln   3610.2684  x   37.4 ln1.0406

Y1 

x

Therefore, it will take approximately 38 years for the tuition to reach $16,000 or in 2027-28. 

59. a.





In reality, all 50 people living in the town might catch the cold. e.



b. Using LnREGression on the data yields: y  18.903  7.096 ln x where y = wind chill and x = wind speed. c.

Find t when C  10 . 46.9292  10 1  21.2733e 0.7306t 46.9292  10 1  21.2733e 0.7306t

46.9292  1  21.2733e 0.7306t 10 46.9292  1  21.2733e 0.7306t 10 3.69292  21.2733e 0.7306t 3.69292  e 0.7306t 21.2733  3.69292  ln    0.7306t  21.2733   3.69292  ln    21.2733   t 0.7306 t  2.4

Y1  18.903  7.096 ln x 



 

d. If x = 23, then y  18.903  7.096 ln 23  3o F . 

60. a.



d. As t   , 21.2733e0.7306t  0 , which means 1  21.2733e0.7306t  1 , so 46.9292 C  46.9292 1  21.2733e 0.7306t Therefore, according to the function, a maximum of about 47 people can catch the cold.



46.93 1  21.273e 0.7306t

Therefore, after approximately 2.4 days (during the 10th hour on the 3rd day), 10 people had caught the cold.

The data appear to have a logistic relation. b. Using LOGISTIC REGression on the data yields: 46.93 C c. 1  21.273e 0.7306t

572 Copyright © 2020 Pearson Education, Inc.


Chapter 5 Chapter Test

f.

Find t when C  46 . 46.9292  46 1  21.2733e 0.7306t 46.9292  46 1  21.2733e 0.7306t

b.

 g  f  2   g  f  2    2  2   g   2  2   g  0

46.9292  1  21.2733e 0.7306t 46 46.9292  1  21.2733e 0.7306t 46 0.0202  21.2733e 0.7306t 0.0202  e 0.7306t 21.2733 0.0202  e 0.7306t 21.2733  0.0202  ln    0.7306t  21.2733   0.0202  ln    21.2733   t 0.7306 t  9.5 Therefore, after approximately 9.5 days (during the 12th hour on the 10th day), 46 people had caught the cold.

 2(0)  5 5

c.

 f  g  2   f  g  2    f  2(2)  5  f 1 

2. a.

1 2 3   3 1  2 1

Graph y  4 x 2  3 : y 



x

The function is not one-to-one because it fails the horizontal line test. A horizontal line (for example, y  4 ) intersects the graph twice. b. Graph y  x  3  5 : y

Chapter 5 Test 1.

f ( x) 



x2 x2

x

g ( x)  2 x  5 

The domain of f is  x x  2 .



The domain of g is all real numbers. a.

The function is one-to-one because it passes the horizontal line test. Every horizontal line intersects the graph at most once.

 f  g  x   f  g  x    f  2 x  5 (2 x  5)  2 (2 x  5)  2 2x  7  2x  3 3  Domain  x x    . 2  

573

Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions

3.

9. log10000  x

2 3x  5 2 y 3x  5 2 x 3y  5 x(3 y  5)  2 3 xy  5 x  2 3xy  5 x  2 5x  2 y 3x 5x  2 1 f ( x)  3x f ( x) 

10 x  10000  104 x4

log 2 8log 2 5  log 2 x log 2 5log 2 8  log 2 x 3log 2 5  log 2 x log 2 53  log 2 x x  53  125

11. ln e7  7 ln e  7

Domain of f = x | x  53 , range of f =

 y | y  0 ; domain of f 1 =  x | x  0 , range of f

1

= 

y | y  53

8log 2 5  x

10.

Inverse

4. If the point (3, 5) is on the graph of f, then the

12.

f ( x)  4 x 1  2

a.

Domain: (, )

b. Using the graph of y  4 x , shift the graph 1 unit to the left, and shift 2 units down.

point (5, 3) must be on the graph of f 1 . 5. 3x  243 3x  35 x5 The solution set is 5

6. logb 16  2

c.

b 2  16 b   16  4 Since the base of a logarithm must be positive, the only viable solution is b  4 . The solution set is 4

d.

Range: (2, ) Horizontal Asymptote: y  2 f ( x )  4 x 1  2 y  4 x 1  2 x  4 y 1  2

Inverse

y 1

x2 4 y  1  log 4 ( x  2) y  log 4 ( x  2)  1

7. log5 x  4 x  54 x  625 The solution set is 625

f 1 ( x)  log 4 ( x  2)  1

e. 8. log 6

1 x 36 1 1   62 6x  36 62 x  2

Range of f = Domain f 1 : (2, ) Domain of f = Range of f 1 : (, )

f.

Using the graph of y  log 4 x , shift the graph 2 units to the left, and shift down 1

574 Copyright © 2020 Pearson Education, Inc.


Chapter 5 Chapter Test

right 1 unit, and shift up 2 units.

unit.

13.

14. 5 x  2  125

f ( x)  1  log 5  x  2 

a.

5 x  2  53 x23 x 1 The solution set is {1} .

Domain: (2, )

b. Using the graph of y  log5 x , shift the graph to the right 2 units, reflect vertically about the y-axis, and shift up 1 unit.

15. log( x  9)  2 x  9  102 x  9  100 x  91 The solution set is {91} .

16. 8  2e  x  4 2e  x  4

c.

Range: (, ) Vertical Asymptote: x  2

d.

f ( x )  1  log5  x  2 

e x  2  x  ln 2 x   ln 2  0.693 The solution set is { ln 2}  {0.693} .

x  1  log5  y  2 

2

x 3  x6

Inverse

x  1   log 5  y  2 

2

x  x3  0

1  x  log5  y  2 

x

y  2  51 x f

e.

1 x

( x)  5

(1)  (1) 2  4(1)(3) 1  13  2(1) 2

1  13 1  13  , The solution set is   2   2

y  51 x  2 1

17. log x 2  3  log  x  6 

y  1  log5  x  2 

2

 1.303, 2.303 .

Range of f = Domain f 1 : (, ) Domain of f = Range of f 1 : (2, )

f.

Using the graph of y  5 x , reflect the graph horizontally about the y-axis, shift to the

575

Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions 7 x 3  e x

18.

ln 7 x 3  ln e x ( x  3) ln 7  x x ln 7  3ln 7  x x ln 7  x  3ln 7 x(ln 7  1)  3ln 7 3ln 7 3ln 7 x   6.172 ln 7  1 1  ln 7  3ln 7  The solution set is    6.172 . 1  ln 7 

19. log 2  x  4   log 2  x  4   3

 ln 0.68   t

0.04  e 30   ln 0.68  ln 0.04   t  30  ln 0.04  250.39 t  ln 0.68     30  There will be 2 mg of the substance remaining after about 250.39 days.

22. a.

log 2  x  4  x  4    3

 ln 0.68   t 2  50e 30 

log 2 x 2  16  3

Note that 8 months =

P  1000 , r  0.05 , n  12 , and t 

x 2  16  23

 0.05  So, A  1000 1   12  

2

x  16  8 x 2  24

(12) (2 / 3)

b.

8

Because x  2 6 results in a negative arguments for the original logarithms, the only viable solution is x  2 6 . That is, the solution

3 year. Thus, 4 3 A  1000 , r  0.05 , n  4 , and t  . So, 4

Note that 9 months =

 

set is 2 6  4.899 .   4 x3 20. log 2  2   x  3x  18    22 x3  log 2    ( x  3)( x  6) 

 0.05  1000  A0 1   4  

(4) (3/ 4)

1000  A0 1.0125  1000 A0   $963.42 1.0125 3 3

 log 2 22 x3  log 2  ( x  6)( x  3)   log 2 2  log 2 x3   log 2 ( x  6)  log 2 ( x  3) 2

 2  3log 2 x  log 2 ( x  6)  log 2 ( x  3)

21.

2 . 3

 0.05   1000 1   12    $1033.82

x   24  2 6

2 year. Thus, 3

A  A0 ekt 34  50ek (30)

c.

r  0.06 and n  1 . So,  0.06  2 A0  A0 1   1   2 A0  A0 (1.06)t

(1)t

2  (1.06)t

30 k

0.68  e ln 0.68  30k ln 0.68 k 30

ln 2  11.9 ln1.06 It will take about 11.9 years to double your money under these conditions. t  log1.06 2 

 ln 0.68   t

Thus, the decay model is A  50e 30  . We need to find t when A  2 :

576 Copyright © 2020 Pearson Education, Inc.


Chapter 5 Cumulative Review

23. a.

 I  80  10 log  12   10   I  8  log  12   10  8  log I  log1012 8  log I  (12) 8  log I  12 4  log I

c.

8

2

 2 x  4 xh  2h  3 x  3h  1

3. x 2  y 2  1 2

a.

2

1 1 1 1 1 1 1          1 ;  ,  is 4 4 2 2 2 2 2 not on the graph. 2

b.

2 1 3 1 3 1  3     1 ;  ,  is on     4 4 2  2  2 2  the graph.

4. 3  x  2   4  x  5  3 x  6  4 x  20 26  x The solution set is 26 .

b. Let n represent the number of people who must shout. Then the intensity will be n  104 . If D  125 , then  n  104  125  10 log   12   10  12.5  log n  108

2

2

 2 x 2  2 xh  h 2  3 x  3h  1

I  104  0.0001 If one person shouts, the intensity is 104 watts per square meter. Thus, if two people shout at the same time, the intensity will be 2  104 watts per square meter. Thus, the loudness will be  2  104   10 log 2  108  83 D  10 log  12    10  decibels

125  10 log n  108

f  x  h  2  x  h  3 x  h 1

5. 2 x  4 y  16

x-intercept: 2 x  4  0   16 2 x  16 x 8

y-intercept: 2  0   4 y  16 4 y  16 y  4

12.5

n  10  10

n  104.5  31, 623 About 31,623 people would have to shout at the same time in order for the resulting sound level to meet the pain threshold.

6. a.

Since a  1  0, the graph is concave down. The x-coordinate of the vertex is b 2 2 x    1. 2 2a 2  1

Chapter 5 Cumulative Review 1. The graph represents a function since it passes the Vertical Line Test.

The function is not a one-to-one function since the graph fails the Horizontal Line Test. 2.

f ( x)   x 2  2 x  3 ; a  1, b  2, c  3.

f  x   2 x 2  3x  1

a.

f  3  2  3  3  3  1  18  9  1  10

b.

f   x   2   x   3   x   1  2 x 2  3x  1

2

2

577

Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions f  4   8

The y-coordinate of the vertex is  b  f     f 1  2a   12  2 1  3

a  4   b  4   24  8 2

16a  4b  24  8 16a  4b  32 4a  b  8 Replacing b with 8a in this equation yields 4a  8a  8 4a  8 a2 So b  8a  8  2   16 .

 1  2  3  2 Thus, the vertex is 1, 2  . The axis of symmetry is the line x  1 .

The discriminant is: b 2  4ac  22  4  1 3  4  12  8  0 .

Therefore, we have the function f  x   2 x 2  16 x  24 .

The graph has no x-intercepts. The y-intercept is f (0)  02  2(0)  3  3 . 8.

f ( x)  3( x  1)3  2

Using the graph of y  x3 , shift the graph 1 unit to the left, stretch vertically by a factor of 3, and shift 2 units down.

b. The graph of f ( x)   x 2  2 x  3 indicates

that f ( x)  0 for all values of x. Thus, the solution to f ( x)  0 is (, ) . 7. Given that the graph of f ( x)  ax 2  bx  c has

vertex  4, 8  and passes through the point

9.

f ( x)  x 2  2

b  4 , f  4   8 , 2a and f  0   24 . Notice that

2

 2   2  x  3  4  2  x  3 2

f  0   24 a  0   b  0   c  24 c  24 Therefore, f  x   ax 2  bx  c  ax 2  bx  24 .

Furthermore, 

b  4 , so that b  8a , and 2a

2 x3

 2  ( f  g )( x)  f   x  3 

 0, 24  , we can conclude 

2

g ( x) 

The domain of f is  x x is any real number . The domain of g is  x x  3 . So, the domain of f  g  x   is  x x  3 . ( f  g )(5) 

578 Copyright © 2020 Pearson Education, Inc.

4

 5  3

2

2

4 2

2

2

4 23 4


Chapter 5 Cumulative Review

10.

f ( x)  3x 4  15 x3  12 x 2  60 x

11. a.

 3x( x 3  5 x 2  4 x  20)

g ( x )  3x  2

Using the graph of y  3x , shift up 2 units.

 3x  x 2 ( x  5)  4( x  5)   3x( x  5)( x 2  4)  3x( x  5)( x  2)( x  2)

a. Degree is 4. The function resembles y  3x 4

for large values of x . b. y-intercept: f (0)  3(0) 4  15(0)3  12(0) 2  60(0)  0 x-intercepts: Solve f ( x)  0 0  3 x( x  5)( x  2)( x  2) x  0,5, 2, 2

Domain of g:  ,   Range of g:  2,  

c. Real zeros: 0 with multiplicity one, 5 with multiplicity one, 2 with multiplicity one, 2 with multiplicity one. The graph crosses the x-axis at x  0, x  5, x  2, and x  2. d. e.

Horizontal Asymptote for g: y  2 g ( x )  3x  2

b.

y  3x  2 x  3y  2

4 1  3

Inverse

y

x2 3 y  log3 ( x  2)

Graph

g 1  x   log3  x  2 

Domain of g 1 : (2, ) Range of g 1 : (, ) Vertical Asymptote for g 1 : x  2 c.

12.

See part a.

4 x  3  82 x

2 

2 x 3

 

 23

2x

2 2 x  6  26 x 2x  6  6x 6  4 x 6 3 x  4 2  3 The solution set is   .  2

579

Copyright © 2020 Pearson Education, Inc.


Chapter 5: Exponential and Logarithmic Functions 13. log3 ( x  1)  log3 (2 x  3)  log 9 9 log3  ( x  1)(2 x  3)   1

Project I – Internet-based Project - Answers will vary

( x  1)(2 x  3)  31 2 x2  x  3  3

Project II

2 x2  x  6  0  2 x  3 ( x  2)  0 3 or x  2 2  3   1 Since log3    1  log3    is undefined  2   2 the solution set is 2 . x

14. a.

log3  x  2   0 x  2  30 x  2 1 x  1 The solution set is 1 .

b.

log 3  x  2   0

30  130e30 k 30  e30 k 130  30  30k  ln    130  1  30  k  ln    0.04888 30  130 

Container 2: u0 = 200ºF, T = 60ºF, u(25)=110ºF, t = 25 mins. 100  60  (200  60)e 25k

The solution set is  x x  1 or  1,   . log3  x  2   3 x  2  33 x  2  27 x  25 The solution set is 25 .

15. a.

a. Newton’s Law of Cooling: u (t )  T  (u0  T )e kt , k < 0 Container 1: u0 = 200ºF, T = 70ºF, u(30)=100ºF, t = 30 mins. 100  70  (200  70)e30 k

u1 (t )  70  130e 0.04888t

x  2  30 x  2 1 x  1

c.

Chapter 5 Projects



50  140e 25k 50  e 25k 140  50  25k  ln    140   50  ln   140   0.04118 k  25 u2 (t )  60  140e 0.04118t

Container 3: u0 = 200ºF, T = 65ºF, u(20)=120ºF, t = 20 mins. 



b. Logarithmic: y  49.293  10.563ln x c.

Answers will vary

580 Copyright © 2020 Pearson Education, Inc.


Chapter 5 Projects

100  65  (200  65)e

Container 2:  110  60  ln   130  60   8.171 t  0.04118 It will remain between 110º and 130º for about 8.17 minutes

20 k

55  135e 20 k 55  e 20 k 135  55  20k  ln    135   55  ln   135   0.04490 k  20 u3 (t )  65  135e 0.04490t

Container 3:  110  65  ln   130  65   8.190 t  0.04490 It will remain between 110º and 130º for about 8.19 minutes.

b. We need time for each of the problems, so solve for t first then substitute the specific values for each container: u  T  (u0  T )e kt u T u  T  (u0  T )e kt   e kt u0  T

d. All three graphs basically lie on top of each other. e. Container 1 would be the best. It cools off the quickest but it stays in a warm beverage range the longest.

 u T  ln   u0  T   u T   kt  ln  t  k  u0  T 

f. Since all three containers are within seconds of each other in cooling and staying warm, the cost would have an effect. The cheaper one would be the best recommendation.

Container 1:  130  70  ln   200  70   15.82 minutes t  0.04888

Project III

Container 2:  130  60  ln   200  60   16.83 minutes t  0.04118

Solder Joint X=ln(εp) Fatigue Strain, εp Cycles, Nf 0.01 4.605 10, 000 0.035 1000 3.352

9.210 6.908

Container 3:  130  65  ln   200  65   16.28 minutes t  0.04490

0.1 0.4 1.5

2.303 0.916 0.405

4.605 2.303 0

1.

c. Container 1:  110  70  ln   130  70   8.295 t  0.04888 It will remain between 110º and 130º for about 8.3 minutes.

100 10 1





 

581

Copyright © 2020 Pearson Education, Inc.

Y=ln(Nf)


Chapter 5: Exponential and Logarithmic Functions 

2.



7. Nf  e0.63 ( p ) 1.84 Nf  1.88( p ) 1.84 Nf  ( p ) 1.84 1.88

 

The shape becomes exponential. 

3.

 p   0.53Nf 

1 1.84

 p   0.53Nf 

.543

 p  1.41 Nf 



 

The shape became linear. 

4.



 



Y  1.84 X  0.63

5. Y  1.84 X  0.63 ln( Nf )  1.84 ln( p )  0.63

ln( Nf )  ln ( p ) 1.84  ln(e0.63 )



ln( Nf )  ln ( p)

1.84

 (e )  0.63

Nf  ( p) 1.84 (e0.63 ) Nf  e

0.63

( p )

1.84

6. Nf  e0.63 (0.02) 1.84 Nf  2510.21 cycles Nf  e0.63 ( p ) 1.84

3000  e0.63 ( p) 1.84 3000  ( p ) 1.84 0.63 e  3000    e0.63   p  0.018

p

1 1.84

582 Copyright © 2020 Pearson Education, Inc.

.543

 p  1.41 Nf 

.543

 p  1.41 3000   p  0.018

.543


Chapter 4 Polynomial and Rational Functions Section 4.1 1.

15.

degree 3. Leading term: x3 ; Constant term: none

 2, 0  ,  2, 0  , and  0,9  x-intercepts: let y  0 and solve for x

16.

9 x 2  4  0   36

2  3x 2 2 3 2   x is a polynomial 5 5 5 3 function of degree 2. Leading term: x 2 ; 5 2 Constant term: 5

17. g ( x) 

x2  4 x  2

y-intercepts: let x  0 and solve for y 9  0   4 y  36 2

4 y  36 y9

2. Yes; it has the form an x n  an 1 x n 1  ...  a1 x  a0 where each ai is a real number and n is a positive integer.; degree 3 3. down; 4

1 x is a polynomial function of 2 1 degree 1. Leading term:  x ; Constant term: 3 2

18. h( x)  3 

19.

4. True: f ( x)  0 indicates that y  0 which indicates that the point is an x-intercept. 5. b; c

20.

6. smooth; continuous

 1,1 ,  0, 0  , and 1,1

9. a. r is a real zero of a polynomial function f . b. r is an x-intercept of the graph of f .

10. turning points 11. y  3x 4 12.  ;  13. b 14. d

1  1  x 1 is not a polynomial x function because it contains a negative exponent. f ( x)  1 

f ( x)  x( x  1)  x 2  x is a polynomial

function of degree 2. Leading term: x 2 ; Constant term: 0

7. b

c. x  r is a factor of f .

f ( x)  5 x 2  4 x 4 is a polynomial function of

degree 4. Leading term: 4 x 4 ; Constant term: 0

9 x 2  36

8.

f ( x)  4 x  x3 is a polynomial function of

21. g ( x)  x 2/3  x1 3  2 is not a polynomial function because it contains a fractional exponent. 22. h( x )  x

 x  1  x  x

1/ 2

is not a

polynomial function because it contains fractional exponents. 1 is a polynomial function 2 of degree 4. Leading term: 5 x 4 ; Constant term: 1 2

23. F ( x )  5 x 4   x3 

x2  5

 x 1  5 x 3 is not a polynomial x3 function because it contains a negative exponent.

24. F ( x ) 

247 Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

25. G ( x)  2( x  1) 2 ( x 2  1)  2( x 2  2 x  1)( x 2  1)  2( x 4  x 2  2 x3  2 x  x 2  1)  2( x 4  2 x3  2 x 2  2 x  1)  2 x 4  4 x3  4 x 2  4 x  2 is a polynomial function of degree 4. Leading term: 2 x 4 ; Constant term: 2

26

G ( x)  3x 2 ( x  2)3  3 x 2 ( x3  6 x 2  12 x  8)  3x5  18 x 4  36 x3  24 x 2 is a polynomial function of degree 5. Leading term: 3 x5 ; Constant term: 0

27.

f ( x)  ( x  1)

30.

4

Using the graph of y  x 4 , shift the graph vertically up 2 units.

Using the graph of y  x 4 , shift the graph horizontally, 1 unit to the left.

28.

31.

f ( x)  ( x  2)5

Using the graph of y  x5 , shift the graph horizontally to the right 2 units.

29.

f ( x)  x 4  2

1 4 x 2 Using the graph of y  x 4 , compress the graph f ( x) 

1 vertically by a factor of . 2

f ( x)  x5  3

Using the graph of y  x5 , shift the graph vertically, 3 units down. 248 Copyright © 2020 Pearson Education, Inc.


Section 4.1: Polynomial Functions

32.

f ( x)  3x5

35.

Using the graph of y  x5 , stretch the graph vertically by a factor of 3.

33.

34.

Using the graph of y  x5 , shift the graph horizontally, 1 unit to the right, and shift vertically 2 units up.

f ( x)   x5

Using the graph of y  x5 , reflect the graph about the x-axis.

f ( x)  ( x  1)5  2

36.

f ( x)  ( x  2) 4  3

Using the graph of y  x 4 , shift the graph horizontally left 2 units, and shift vertically down 3 units.

f ( x)   x 4

Using the graph of y  x 4 , reflect the graph about the x-axis.

37.

f ( x)  2( x  1)4  1

Using the graph of y  x 4 , shift the graph horizontally, 1 unit to the left, stretch vertically by a factor of 2, and shift vertically 1 unit up.

249 Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

38.

1 ( x  1)5  2 2 Using the graph of y  x5 , shift the graph horizontally 1 unit to the right, compress 1 vertically by a factor of , and shift vertically 2 down 2 units. f ( x) 

41.

f ( x)  a  x  (1)  ( x  1)( x  3)

For a  1 :

f ( x)  ( x  1)( x  1)( x  3)  x 2  1 ( x  3)  x3  3x 2  x  3

42.

f ( x)  a  x  ( 2)  ( x  2)( x  3)

For a  1 :

f ( x)  ( x  2)( x  2)( x  3)  x 2  4 ( x  3) 3

2

 x  3x  4 x  12

43.

f ( x)  a  x  (5)  ( x  0)( x  6)

For a  1 : f ( x)  ( x  5)( x)( x  6)

 x( x  5)( x  6)  x 2  5 x ( x  6) 3

2

2

 x  6 x  5 x  30 x

39.

 x3  x 2  30 x

f ( x)  4  ( x  2)5  ( x  2)5  4

Using the graph of y  x5 , shift the graph horizontally, 2 units to the right, reflect about the x-axis, and shift vertically 4 units up.

44.

f ( x)  a  x  ( 4)  ( x  0)( x  2)

For a  1 : f ( x)  ( x  4)( x)( x  2)

 x( x  4)( x  2)  x 2  4 x ( x  2) 3

2

2

 x  2 x  4 x  8x  x3  2 x 2  8 x

45.

f ( x)  a  x  ( 5)  x  (2)  ( x  3)( x  5)

For a  1 : f ( x)  ( x  5)( x  2)( x  3)( x  5)



 x 2  7 x  10 x 2  8 x  15 4

40.

4

2

3

2

2

 x  8 x  15 x  7 x  56 x  105 x  10 x  80 x  150

4

f ( x)  3  ( x  2)  ( x  2)  3

 x 4  x3  31x 2  25 x  150

4

Using the graph of y  x , shift the graph horizontally, 2 units to the left, reflect about the x-axis, and shift vertically 3 units up.

3

46.

f ( x)  a  x  ( 3)  x  (1)  ( x  2)( x  5)

For a  1 : f ( x)  ( x  3)( x  1)( x  2)( x  5)



 x 2  4 x  3 x 2  7 x  10 4

3

2

3

 x  7 x  10 x  4 x  28 x 2  40 x  3x 2  21x  30  x 4  3 x3  15 x 2  19 x  30

250 Copyright © 2020 Pearson Education, Inc.


Section 4.1: Polynomial Functions

47.

f ( x)  a  x  (1)  x  3

For a  1 : f ( x)  ( x  1)( x  3) 2

52.

2

  x  1 x 2  6 x  9

5 5 5 5  15  a   5   1   2   6 2 2 2 2 

735 a 16 16 a 49

15  

 x3  6 x 2  9 x  x 2  6 x  9  x3  5 x 2  3 x  9

48.

16 ( x  5)( x  1)( x  2)( x  6) 49 16   ( x 4  2 x3  31x 2  32 x  60) 49 16 4 32 3 496 2 512 960 x  x  x  x  49 49 49 49 49

f ( x)  a  x  ( 2)   x  4  2

f ( x)  

For a  1 : f ( x)  ( x  2) 2 ( x  4)

 x2  4 x  4  x  4 3

 x  4 x  4 x 2  16 x  4 x  16

2

53.

 x3  12 x  16

49.

36  12a a3

36  a(4)(1)(3)

f ( x)  3( x  3)( x  1)( x  4)

36  12a a3

54.

f ( x)  3( x  2)( x  3)( x  5)

f ( x)  a ( x  4)( x  1)( x  2) 16  a (0  4)(0  1)(0  2) 16  8a

 3x  18 x  3 x  90

50.

f ( x)  a ( x  3)( x  1)( x  4) 36  a (0  3)(0  1)(0  4)

f ( x)  a( x  2)( x  3)( x  5) 36  a(2  2)(2  3)(2  5)

3

f ( x)  a ( x  5)( x  1)( x  2)( x  6)

2

a  2

f ( x)  ax( x  2)( x  2)

f ( x)  2( x  4)( x  1)( x  2)

16  a  4  (4  2)(4  2) 16  48a 1 3 1 f ( x)   x( x  2)( x  2) 3 a

55.

45  a  2  1  2  1 2

2

45  9a a5

1 4   x3  x 3 3

51.

f ( x)  a ( x  1) 2 ( x  1) 2

f ( x)  5( x  1) 2 ( x  1) 2  5 x 4  10 x 2  5

f ( x)  ax( x  2)( x  1)( x  3)  1  1  1   1  63  a      2    1    3   2  2  2   2  63 63   a 16 a  16

56.

f ( x)  ax( x  1) 2 ( x  3) 2 48  a (1) 1  1 1  3 2

2

48  16a a  3 f ( x)  3 x( x  1) 2 ( x  3) 2

f ( x)  16 x( x  2)( x  1)( x  3)  16 x 4  32 x 3  80 x 2  96 x

 3x 5  12 x 4  6 x3  36 x 2  27 x

251 Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

57.

f ( x)  a ( x  5) 2 ( x  2)( x  4)

62. a.

128  a (3  5) 2 (3  2)(3  4)

is: 3, with multiplicity one. x 2  4  0 has no real solution.

128  64a a  2

b. The graph crosses the x-axis at 3 c.

f ( x)  2( x  5) 2 ( x  2)( x  4)

58.

values of x .

64  a  2  (2  4)(2  2) 3

64  64a a 1

2

63. a.

f ( x)  x3 ( x  4)( x  2)

The real zeros of f ( x)  3( x  7)( x  3) 2 are: 7, with multiplicity one; and –3, with multiplicity two.

b. The graph crosses the x-axis at 7 (odd multiplicity) and touches it at –3 (even multiplicity). c.

1 (even 2 multiplicity) and crosses the x-axis at -4 (odd multiplicity).

c.

n 1  3 1  2

values of x . 2

64. a.

The real zeros of f ( x)  4( x  4)( x  3)3 are: –4, with multiplicity one; and –3, with multiplicity three.

b. The graph crosses the x-axis at –4 and at –3 (odd multiplicities).

1 (even 3 multiplicity), and crosses the x-axis at 1 (odd multiplicity).

n 1  4 1  3

c.

values of x .

2

2

The real zeros of f ( x)  7 x  4 ( x  5) is: 5, with multiplicity three. x 2  4  0 has no real solution.

b. The graph crosses the x-axis at 5 (odd multiplicity). c.

n 1  7 1  6

d. The function resembles y  4 x 7 for large

values of x .

3

1 3  The real zeros of f ( x)   x    x  1 3   1 are: , with multiplicity two; and 1, with 3 multiplicity 3.

b. The graph touches the x-axis at

d. The function resembles y  4 x 4 for large

61. a.

n 1  5 1  4

d. The function resembles y  2 x5 for large

values of x .

c.

1 3  The real zero of f ( x)   2  x    x  4  2  1 are:  , with multiplicity two; -4 with 2 multiplicity 3.

b. The graph touches the x-axis at 

d. The function resembles y  3x3 for large

60. a.

n 1  7 1  6

d. The function resembles y  2 x 7 for large

f ( x)  ax3 ( x  4)( x  2)

59. a.

The real zeros of f ( x)  2  x  3 ( x 2  4)3

n 1  5 1  4

d. The function resembles y  x5 for large

values of x . 65. a.

The real zeros of f ( x)  ( x  5)3 ( x  4) 2 are: 5, with multiplicity three; and –4, with multiplicity two.

b. The graph crosses the x-axis at 5 (odd multiplicity) and touches it at –4 (even multiplicity). c.

n 1  5 1  4

d. The function resembles y  x5 for large

values of x . 252 Copyright © 2020 Pearson Education, Inc.


Section 4.1: Polynomial Functions

66. a.

The real zeros of f ( x)  x  3

 ( x  2) 2

4

are:  3 , with multiplicity two; and 2, with multiplicity four. b. The graph touches the x-axis at  3 and at 2 (even multiplicities). c.

n 1  6 1  5 6

d. The function resembles y  x for large



2 1 2 x 2  9 x 2  7 has no real 2 zeros. 2 x 2  9  0 and x 2  7  0 have no real solutions.

f ( x) 

b. The graph neither touches nor crosses the xaxis. c.

n 1  6 1  5

d. The function resembles y  x 6 for large

values of x . 68. a.

3

f ( x)   2 x 2  3 has no real zeros. 2

x  3  0 has no real solutions.

b. The graph neither touches nor crosses the xaxis. c.

n 1  6 1  5

d. The function resembles y  2 x 6 for large

values of x . 69. a.

The real zeros of f ( x)  2 x 2 ( x 2  2) are:  2 and 2 with multiplicity one; and 0, with multiplicity two.

b. The graph touches the x-axis at 0 (even multiplicity) and crosses the x-axis at  2 and 2 (odd multiplicities). c.

n 1  4 1  3

d. The function resembles y  2 x 4 for large

values of x . 70. a.

The real zeros of f ( x)  4 x( x 2  3) are:  3,

n 1  3 1  2

d. The function resembles y  4 x3 for large

values of x . 71. The graph could be the graph of a polynomial function.; zeros: 1, 1, 2 ; min degree = 3 72. The graph could be the graph of a polynomial.; zeros: 1, 2 ; min degree = 4 73. The graph cannot be the graph of a polynomial.; not continuous at x  1

values of x . 67. a.

c.

3 and 0, with multiplicity one.

b. The graph crosses the x-axis at  3 , and 0 (odd multiplicities).

3

74. The graph cannot be the graph of a polynomial.; not smooth at x  0 75. The graph crosses the x-axis at x  0 , x  1 , and x  2 . Thus, each of these zeros has an odd multiplicity. Using one for each of these multiplicities, a possible function is f ( x)  ax( x  1)( x  2) . Since the y-intercept is 0, we know f (0)  0 . Thus, a can be any positive constant. Using a  1 , the function is f ( x)  x( x  1)( x  2) . 76. The graph crosses the x-axis at x  0 and x  2 and touches at x  1 . Thus, 0 and 2 each have odd multiplicities while 1 has an even multiplicity. Using one for each odd multiplicity and two for the even multiplicity, a possible function is f ( x)  ax( x  1) 2 ( x  2) . Since the y-intercept is 0, we know f (0)  0 . Thus, a can be any positive constant. Using a  1 , the function is f ( x)  x( x  1) 2 ( x  2) . 77. The graph crosses the x-axis at x  1 and x  2 and touches it at x  1 . Thus, 1 and 2 each have odd multiplicities while 1 has an even multiplicity. Using one for each odd multiplicity and two for the even multiplicity, a possible funtion is f ( x)  ax( x  1) 2 ( x  2) . Since the y-

intercept is 1, we know f (0)  1 . Thus, a(0  1)(0  1)(0  2)  1 a(1)(1)(2)  1 2a  1 1 a 2 1 The function is f ( x)   ( x  1)( x  1) 2 ( x  2) . 2

253 Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

The graph crosses the x-axis at x  1 , x  1 , and x  2 . Thus, each of these zeros has an odd multiplicity. Using one for each of these multiplicities, a possible funtion is f ( x)  a( x  1)( x  1)( x  2) . Since the yintercept is 1 , we know f (0)  1 . Thus, a(0  1)(0  1)(0  2)  1 a (1)(1)(2)  1 2a  1 1 a 2 1 The function is f ( x)   ( x  1)( x  1)( x  2) . 2 79. The graph crosses the x-axis at x  4 and x  3 and touches it at x  1 . Thus, 4 and 3 each have odd multiplicities while 1 has an even multiplicity. Using one for each odd multiplicity and two for the even multiplicity, a possible funtion is f ( x)  a ( x  4)( x  1) 2 ( x  3) . We know f (1)  8 . Thus,

f (2)  50 . Thus,

78.

a(1  4)(1  1) 2 (1  3)  8 a(5)(2) 2 ( 2)  8 40a  8 a  0.2 The function is f ( x)  0.2( x  4)( x  1) 2 ( x  3) .

80. The graph crosses the x-axis at x  4 and x  1 and touches it at x  1 . Thus, 4 and 1 each have odd multiplicities while 1 has an even multiplicity. Using one for each odd multiplicity and two for the even multiplicity, a possible funtion is f ( x)  a ( x  4)( x  1)( x  1) 2 . We

a(2)(2  3) 2 (2  3) 2  50 a(2)(5) 2 (1) 2  50 50a  50  a  1 The function is f ( x)   x( x  3) 2 ( x  3) 2 .

82. The graph touches the x-axis at x  0 and crosses it at x  3 and x  1 and x  2 . Thus, 3 and 1 and 2 each have odd multiplicities while 0 has an even multiplicity. Using one for each odd multiplicity and two for the even multiplicity, a possible funtion is f ( x)  ax 2 ( x  3)( x  1)( x  2) . We know f ( 2)  16 . Thus, a(2) 2 (2  3)(2  1)(2  2)  16 a (2) 2 (1)(1)(4)  16 16a  16  a  1

The function is f ( x)  x 2 ( x  3)( x  1)( x  2) . 83. a. 0  ( x  3) 2 ( x  2)  x  3, x  2 b. The graph is shifted to the left 3 units so the xintercepts would be x  3  3  6 and x  2  3  1 84. a. 0  ( x  2)( x  4)3  x  2, x  4 b. The graph is shifted to the right 2 units so the xintercepts would be x  2  2  0 and x  4  2  6 85.

know f (3)  8 . Thus,

f ( x)  3( x  1)( x  1)  ( x  3)( x  1) 

2

 3( x  1)( x  1)( x  3) 2 ( x  1) 2

a(3  4)(3  1)(3  1) 2  8 a( 1)(2)(4) 2  8 32a  8 a  0.25 The function is f ( x)  0.25( x  4)( x  1)( x  1) 2 .

 3( x  1)( x  1)3 ( x  3) 2 The zeros are 1 with multiplicity 1, -3 with multiplicity 2 and -1 with multiplicity 3.

86. The power function is found by multiplying the leading terms from all the factors. 3

81. The graph crosses the x-axis at x  0 and touches it at x  3 and x  3 . Thus, 3 and 3 each have even multiplicities while 0 has an odd multiplicity. Using one for each odd multiplicity and two for the even multiplicity, a possible funtion is f ( x)  ax( x  3) 2 ( x  3) 2 . We know

1  g ( x)  4 x 2 (4  5 x) 2 (2 x  3)  x  1 2  So multiply 1 1 4 x 2 (5 x) 2 (2 x)( x)3  (4 x 2 )(25 x 2 )(2 x)( x3 ) 2 8 8  25 x

254 Copyright © 2020 Pearson Education, Inc.


Section 4.1: Polynomial Functions

The power function is y  25 x8 . 87. The graph of a polynomial function will always have a y-intercept since the domain of every polynomial function is the set of real numbers. Therefore f  0  will always produce a y-

coordinate on the graph. A polynomial function might have no x-intercepts. For example, f ( x)  x 2  1 has no x-intercepts since the equation x 2  1  0 has no real solutions. The degree will be even because the ends of the graph go in the same direction. b. The leading coefficient is positive because both ends go up. c. The function appears to be symmetric about the y-axis. Therefore, it is an even function. d. The graph touches the x-axis at x  0 . Therefore, x n must be a factor, where n is even and n  2 . e. There are six zeros with odd multiplicity and one with even multiplicity. Therefore, the minimum degree is 6(1)  1(2)  8 .

88. a.

f.

Answers will vary.

89. f ( x)  x3  bx 2  cx  d a.

True since every polynomial function has exactly one y-intercept, in this case (0, d ) .

b. True, a third degree polynomial will have at most 3 x-intercepts since the equation x3  bx 2  cx  d  0 will have at most 3 real solutions. c. True, a third degree polynomial will have at least one x-intercept since the equation x3  bx 2  cx  d  0 will have at least one real solution. d. True, since f has degree 3 and the leading coefficient 1. e. False, since f ( x)    x   b   x   c   x   d 3

2

  x3  bx 2  cx  d

90.

1 is smooth but not continuous; x g ( x)  x is continuous but not smooth. f ( x) 

91. Answers will vary , f ( x)  ( x  2)( x  1) 2 and g ( x)  ( x  2)3 ( x  1) 2 are two such polynomials.

92. Answers will vary, one such polynomial is f ( x)  x 2 ( x  1)(4  x)( x  2) 2 93. Answers will vary. 94. Answers will vary. One possibility: 1  3  f ( x)  5( x  1)3 ( x  2)  x    x   2 5    95. We need to put the equation in standard form. 5x  2 y  6 2 y  5 x  6 5 y  x3 2

Since we are looking for a perpendicular line, the 2 new slope must be m   . 5 2 y  y1   ( x  x1 ) 5 2 y  3   ( x  2) 5 2 4 y3  x 5 5 2 11 y   x 5 5 96. The denominator cannot be zero so the domain is:  x | x  5 97. x  

 (8)  (8) 2  4(4)( 3) 2(4)

8  64  48 8  112  8 8

8  4 7 2  7  8 2

  f ( x). (unless b  d  0)

f.

True only if d  0 , otherwise the statement is false.

b  b 2  4ac 2a

255 Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

So the zeros are: 98.

2  7 2  7 , 2 2

102.

5x  3  7

1 1  ( x  h)  2  ( x 2  2) 3 3 h 1 1  ( x  h)  2  ( x  2) 3  3 h 1 1 1  x h2 x2 3 3 3  h 1  h 1  3  3 h

f ( x  h)  f ( x )  h

5 x  3  7 or 5 x  3  7 5 x  4

5 x  10

4 x 5

x2

 4  So the solution set is   , 2  5  99. Since the function is linear and the slope, -3, is negative the function is decreasing. 100. y  ( x  2) 2  5

103.

x  (2) 3 2 x2  6 x 8

101. Graph:

y4  5 2 y  4  10 y  14

The endpoint is (8, 14)

4x  7 We see the graph is increasing on:  , 0  1,  

2

3

104. x  1 4 x  7 x 2  0 x  5

4 x3

 4x 2

 7x  4x  5 7 x 2

+7 4x  2

The quotient is 4 x  7 and the remainder is 4x  2 .

256 Copyright © 2020 Pearson Education, Inc.


Section 4.2: Graphing Polynomial Functions; Models

Section 4.2 1.

6.

 2, 0  and  0,10 

f ( x)  x( x  2) 2

Step 1: Degree is 3. The function resembles y  x3 for large values of x .

x-intercepts: let y  0 and solve for x 0  5 x  10 10  5 x x  2

Step 2: y-intercept: f (0)  0(0  2) 2  0

x-intercepts: solve f ( x)  0 0  x( x  2) 2

y-intercepts: let x  0 and solve for y y  5(0)  10 y  10

x  0,  2

Step 3: Real zeros: 2 with multiplicity two, 0 with multiplicity one. The graph touches the x-axis at x  2 and crosses the x-axis at x  0 . Step 4: 3  1  2

2. 7 x3 3. Local maximum value 6.48 at x  0.67; Local minimum value 3 at x  2 .  

Step 5:

f ( 3)  3; f ( 1)  1; f (1)  9 :

 





2

4. 0.337 x  2.311x  0.216 5.

f ( x)  x 2 ( x  3)

Step 1: Degree is 3. The function resembles y  x3 for large values of x . Step 2: y-intercept: f (0)  02 (0  3)  0 x-intercepts: solve f ( x)  0 0  x 2 ( x  3) x  0, x  3

Step 3: Real zeros: 0 with multiplicity two, 3 with multiplicity one. The graph touches the x-axis at x  0 and crosses the x-axis at x  3 . Step 4: 3  1  2 Step 5:

f ( 1)  4; f (2)  4; f (4)  16

7.

f ( x)  ( x  4) 2 (1  x)

Step 1: Degree is 3. The function resembles y   x3 for large values of x . Step 2: y-intercept: f (0)  (0  4) 2 (1  0)  16 x-intercepts: solve f ( x)  0 0  ( x  4) 2 (1  x) x  4, 1

Step 3: Real zeros: 4 with multiplicity two, 1 with multiplicity one. The graph touches the x-axis at x  4 and crosses the x-axis at x  1 Step 4: 3  1  2 Step 5:

257 Copyright © 2020 Pearson Education, Inc.

f ( 5)  6; f ( 2)  12; f (2)  36


Chapter 4: Polynomial and Rational Functions

Step 5:

8.

f ( 3)  250; f ( 1)  54; f (3)  10

f ( x)  ( x  1)( x  3) 2

Step 1: Degree is 3. The function resembles y  x3 for large values of x .

10.

Step 2: y-intercept: f (0)  (0  1)(0  3)2  9

x-intercepts: solve f ( x)  0 0  ( x  1)( x  3) 2

1 Step 2: y-intercept: f (0)   (0  4)(0  1)3  2 2 x-intercepts: solve f ( x)  0

x  1, 3

Step 3: Real zeros: 3 with multiplicity two, 1 with multiplicity one. The graph touches the x-axis at x  3 and crosses it at x  1 .

1 0   ( x  4)( x  1)3 2 x  4, 1

Step 3: Real zeros: 4 with multiplicity one, 1 with multiplicity three. The graph crosses the x-axis at x  4 and x  1 .

Step 4: 3  1  2 Step 5:

1 f ( x)   ( x  4)( x  1)3 2 Step 1: Degree is 4. The function resembles 1 y   x 4 for large value of x . 2

f ( 4)  5; f ( 1)  8; f (2)  25

Step 4: 4  1  3 Step 5:

9.

f ( 5)  108; f ( 3)  32; f (3)  28

f ( x)  2( x  2)( x  2)3 Step 1: Degree is 4. The function resembles y  2 x 4 for large values of x .

Step 2: y-intercept: f (0)  2(0  2)(0  2)3  32 x-intercepts: solve f ( x)  0 0  2( x  2)( x  2)3 x  2, 2

Step 3: Real zeros: 2 with multiplicity one, 2 with multiplicity three. The graph crosses the x-axis at x  2 and x  2 . Step 4: 4  1  3

11.

f ( x)  ( x  1)  x  2  ( x  4)

Step 1: Degree is 3. The function resembles y  x3 for large values of x . Step 2: y-intercept: f (0)  (0  1)  0  2  (0  4)

258 Copyright © 2020 Pearson Education, Inc.

 8


Section 4.2: Graphing Polynomial Functions; Models

x-intercepts: solve f ( x)  0 0  ( x  1)  x  2  ( x  4)

13.

x  1, 2,  4

f ( x)  x 1  x  (2  x)

Step 1: Degree is 3. The function resembles y  x3 for large values of x .

Step 3: Real zeros: 4 with multiplicity one, 1 with multiplicity one, 2 with multiplicity one. The graph crosses the x-axis at x  4, 1, 2 .

Step 2: y-intercept: f (0)  (0) 1  0 (2  0) 0 x-intercepts: solve f ( x)  0

Step 4: 3  1  2 Step 5:

0  x 1  x  (2  x)

f ( 5)  28; f ( 2)  8; f (1)  10;

x  0,1, 2

f (3)  28

Step 3: Real zeros: 0 with multiplicity one, 1 with multiplicity one, 2 with multiplicity one. The graph crosses the x-axis at x  0,1, 2 . Step 4: 3  1  2 Step 5: Graphing by hand;

12.

f ( x)   x  1 ( x  4)( x  3)

Step 1: Degree is 3. The function resembles y  x3 for large values of x Step 2: y-intercept: f (0)   0  1 (0  4)(0  3)  12 x-intercepts: solve f ( x)  0 0   x  1 ( x  4)( x  3) x  1,  4, 3

Step 3: Real zeros: 4 with multiplicity one, 1 with multiplicity one, 3 with multiplicity one. The graph crosses the x-axis at x  4, 1, 3 .

14.

f ( x)  (3  x)  2  x  ( x  1)

Step 1: Degree is 3. The function resembles y   x3 for large values of x . Step 2: y-intercept: f (0)  (3  0)  2  0 (0  1) 6 x-intercepts: solve f ( x)  0 0  (3  x)  2  x  ( x  1)

x  3,  2,  1

Step 4: 3  1  2 Step 5:

f ( 5)  48; f ( 2)  30; f (2)  6; f (4)  24

Step 3: Real zeros: 3 with multiplicity one, 2 with multiplicity one, 1 with multiplicity one. The graph crosses the x-axis at x  3, 2, 1 . Step 4: 3  1  2 Step 5: Graphing by hand;

259 Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

Step 5:

15.

17.

f ( x)  ( x  1) 2 ( x  2) 2

f ( 3)  49; f (2)  64; f (5)  49

f ( x)  2( x  1)2 ( x 2  16)

Step 1: Degree is 4. The graph of the function resembles y  2 x 4 for large values of

Step 1: Degree is 4. The graph of the function resembles y  x 4 for large values of x .

x .

Step 2: y-intercept: f (0)  (0  1) 2 (0  2) 2  4 x-intercepts: solve f ( x)  0

Step 2: y-intercept: f (0)  2(0  1) 2 (02  16)  32 x-intercept: solve f ( x)  0

( x  1) 2 ( x  2) 2  0 x  1 or x  2

2( x  1) 2 ( x 2  16)  0

Step 3: Real zeros: 1 with multiplicity two, 2 with multiplicity two. The graph touches the x-axis at x  1 and x  2 .

x  1, 4, 4 Step 3: Real zeros: 1 with multiplicity two, -4 with multiplicity one and 4 with multiplicity one. The graph touches the xaxis at x  1 and crosses the x-axis at x  4 and x  4 .

Step 4: 4  1  3 Step 5: f ( 2)  16; f (1)  4; f (3)  16

Step 4: 4  1  3 Step 5: Graphing by hand:

16.

f ( x)  ( x  4) 2 ( x  2) 2

Step 1: Degree is 4. The graph of the function resembles y  x 4 for large values of x . Step 2: y-intercept: f (0)  (0  4) 2 (0  2) 2  64 x-intercept: solve f ( x)  0 ( x  4) 2 ( x  2) 2  0

x  4 or x  2 Step 3: Real zeros: 2 with multiplicity two, 4 with multiplicity two. The graph touches the x-axis at x  2 and x  4 .

Step 4: 4  1  3

18.

f ( x)   x  1 ( x  3) 3

Step 1: Degree is 4. The graph of the function resembles y  x 4 for large values of x . Step 2: y-intercept: f (0)   0  1  0  3  3 3

x-intercept: solve f ( x)  0 ( x  1)3 ( x  3)  0 x  1 or x  3

260 Copyright © 2020 Pearson Education, Inc.


Section 4.2: Graphing Polynomial Functions; Models

Step 3: Real zeros: 1 with multiplicity three, 3 with multiplicity one. The graph crosses the x-axis at x = –1 and x = 3.

Step 2: y-intercept: f (0)  (0  2) 2 (0  2)(0  4)  32 x-intercept: solve f ( x)  0

Step 4: 4  1  3

( x  2) 2 ( x  2)( x  4)  0

x  2 or x  2 or x  4 Step 3: Real zeros: 2 with multiplicity two, 2 with multiplicity one, 4 with multiplicity one. The graph touches the x-axis at x  2 , and crosses it at x  2 and x  4 . Step 4: 4  1  3 Step 5: f ( 5)  147; f ( 3)  25; f ( 1)  27;

Step 5: Graphing by hand;

f (3)  35

19.

f ( x)  5 x x 2  4 ( x  3)

Step 1: Degree is 4. The graph of the function resembles y  5 x 4 for large values of x . Step 2: y-intercept:

f (0)  5(0) 02  4  0  3  0

x-intercept: solve f ( x)  0 2

5 x( x  4)( x  3)  0

x  0 or x  2, 2 or x  3

Step 3: Real zeros: 3 with multiplicity one, 2 with multiplicity one, 0 with multiplicity one and 2 with multiplicity one. The graph crosses the x-axis at x = –3 , x = - 2, x = 0 and x = 2. Step 4: 4  1  3 Step 5: f ( 4)  240; f ( 2.5)  14.1; f ( 1)  30; f (1)  60; f (3)  450

21.

f ( x)  x 2 ( x  2)( x 2  3)

Step 1: Degree is 5. The graph of the function resembles y  x5 for large values of x . Step 2: y-intercept: f (0)  02 (0  2)(02  3)  0 x-intercept: solve f ( x)  0 x 2 ( x  2)( x 2  3)  0 x  0 or x  2 Note: x 2  3  0 has no real solution.

Step 3: Real zeros: 0 with multiplicity two, 2 with multiplicity one. The graph touches the x-axis at x  0 and crosses it x  2 . Step 4: 5  1  4 Step 5: f ( 1)  12; f (1)  4; f (3)  108

20.

f ( x)  ( x  2) 2 ( x  2)( x  4)

Step 1: Degree is 4. The graph of the function resembles y  x 4 for large values of x . 261 Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

22.

Step 4:

f ( x)  x 2 ( x 2  1)( x  4)

Step 1: Degree is 5. The graph of the function resembles y  x5 for large values of x . Step 2: y-intercept: f (0)  02 (02  1)(0  4)  0 x-intercept: Solve f ( x)  0 2

Step 5: 2 turning points; local maximum: (–0.80, 0.57); local minimum: (0.66, –0.99)

2

x ( x  1)( x  4)  0 x  0 or x  4 Note: x 2  1  0 has no real solution.

Step 6: Graphing by hand

Step 3: Real zeros: 0 with multiplicity two, 4 with multiplicity one. The graph touches the x-axis at x  0 and crosses it at x  4 . Step 4: 5  1  4 Step 5: f ( 5)  650; f ( 3)  90; f ( 2)  40; f (1)  10

Step 7: Domain:  ,   ; Range:  ,   Step 8: Increasing on  , 0.80 and  0.66,   ; decreasing on  0.80, 0.66 24.

23.

f ( x)  x3  0.2 x 2  1.5876 x  0.31752

Step 1: Degree = 3; The graph of the function resembles y  x3 for large values of x .

f ( x)  x3  0.8 x 2  4.6656 x  3.73248

Step 1: Degree = 3; The graph of the function resembles y  x3 for large values of x . Step 2: Graphing utility

Step 2: Graphing utility

Step 3: x-intercepts: –2.16, 0.8, 2.16; y-intercept: 3.73248 Step 4: Step 3: x-intercepts: –1.26, –0.20, 1.26; y-intercept: –0.31752 Step 5: 2 turning points; local maximum: (–1.01, 6.60); local minimum: (1.54, –1.70)

262 Copyright © 2020 Pearson Education, Inc.


Section 4.2: Graphing Polynomial Functions; Models

Step 7: Domain:  ,   ; Range:  ,  

Step 6: Graphing by hand

Step 8: Increasing on  , 2.21 and  0.50,   ; decreasing on  2.21, 0.50 . 26.

f ( x)  x3  2.91x 2  7.668 x  3.8151

Step 1: Degree = 3; The graph of the function resembles y  x3 for large values of x . Step 7: Domain:  ,   ; Range:  ,  

Step 2: Graphing utility

Step 8: Increasing on  , 1.01 and 1.54,   ; decreasing on  1.01,1.54 25.

f ( x)  x3  2.56 x 2  3.31x  0.89

Step 1: Degree = 3; The graph of the function resembles y  x3 for large values of x . Step 2: Graphing utility

Step 3: x-intercepts: –0.9, 4.71; y-intercept: –3.8151 Step 4:

Step 3: x-intercepts: –3.56, 0.50; y-intercept: 0.89 Step 4:

Step 5: 2 turning points; local maximum: (–0.9, 0); local minimum: (2.84, –26.16) Step 6: Graphing by hand

Step 5: 2 turning points; local maximum: (–2.21, 9.91); local minimum: (0.50, 0) Step 6: Graphing by hand

Step 7: Domain:  ,   ; Range:  ,   Step 8: Increasing on  , 0.9 and  2.84,   ; decreasing on  0.9, 2.84 .

263 Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

27.

Step 2: Graphing utility

f ( x)  x 4  2.5 x 2  0.5625

Step 1: Degree = 4; The graph of the function resembles y  x 4 for large values of x . Step 2: Graphing utility

Step 3: x-intercepts: –3.90, –1.82, 1.82, 3.90; y-intercept: 50.2619 Step 4: Step 3: x-intercepts: –1.5, –0.5, 0.5,1.5; y-intercept: 0.5625 Step 4: Step 5: 3 turning points: local maximum: (0, 50.26); local minima: (–3.04, –35.30), (3.04, –35.30) Step 5: 3 turning points: local maximum: (0, 0.5625); local minima: (–1.12, –1), (1.12, –1)

Step 6: Graphing by hand

Step 6: Graphing by hand

Step 7: Domain:  ,   ; Range:  35.30,   Step 8: Increasing on  3.04, 0 and 3.04,   ; Step 7: Domain:  ,   ; Range:  1,  

decreasing on  , 3.04 and  0, 3.04

Step 8: Increasing on  1.12, 0 and 1.12,   ; decreasing on  , 1.12 and  0,1.12 28.

f ( x)  x 4  18.5 x 2  50.2619

Step 1: Degree = 4; The graph of the function resembles y  x 4 for large values of x .

264 Copyright © 2020 Pearson Education, Inc.


Section 4.2: Graphing Polynomial Functions; Models

29.

f  x   2 x 4   x3  5 x  4

30.

Step 1: Degree = 4; The graph of the function resembles y  2 x 4 for large values of

f  x   1.2 x 4  0.5 x 2  3x  2

Step 1: Degree = 4; The graph of the function resembles y  1.2 x 4 for large values of x .

x .

Step 2: Graphing utility

Step 2: Graphing utility:

Step 3: x-intercepts: –1.07, 1.62; y-intercept: –4 Step 4:

Step 5: 1 turning point; local minimum: (–0.42, –4.64) Step 6: Graphing by hand

Step 7: Domain:  ,   ; Range:  4.64,   Step 8: Increasing on  0.42,   ;

Step 3: x-intercepts: –1.47, 0.91; y-intercept: 2 Step 4:

Step 5: 1 turning point: local maximum: (–0.81, 3.21) Step 6: Graphing by hand

Step 7: Domain:  ,   ; Range:  , 3.21 Step 8: Increasing on  , 0.81 ;

decreasing on  , 0.42

265 Copyright © 2020 Pearson Education, Inc.

decreasing on  0.81,  


Chapter 4: Polynomial and Rational Functions

31.

f ( x)  4 x  x3   x( x 2  4)   x( x  2)( x  2)

Step 1: Degree is 3. The function resembles y   x 3 for large values of x . Step 2: y-intercept: f (0)  4(0)  03  0 x-intercepts: Solve f ( x)  0 0   x( x  2)( x  2) x  0, 2, 2 Step 3: Real zeros: 0 with multiplicity one, 2 with multiplicity one, 2 with multiplicity one. The graph crosses the x-axis at x  0, x  2, and x  2. Step 4: 3  1  2 Step 5:

f (3)  15; f (1)  3; f (1)  3; f (3)  15

33.

f ( x)  x3  x 2  12 x  x( x 2  x  12)  x( x  4)( x  3)

Step 1: Degree is 3. The function resembles y  x3 for large values of x . Step 2: y-intercept: f (0)  03  02  12(0)  0 x-intercepts: Solve f ( x)  0 0  x( x  4)( x  3) x  0, 4, 3

32.

f ( x)  x  x3   x( x 2  1)   x( x  1)( x  1)

Step 1: Degree is 3. The function resembles y   x3 for large values of x . Step 2: y-intercept: f (0)  0  03  0 x-intercepts: Solve f ( x)  0 0   x( x  1)( x  1) x  0, 1, 1

Step 3: Real zeros: 0 with multiplicity one, 4 with multiplicity one, 3 with multiplicity one. The graph crosses the x-axis at x  0, x  4, and x  3. Step 4: 3  1  2 Step 5:

f (5)  40; f (2)  20; f (2)  12; f (4)  32

Step 3: Real zeros: 0 with multiplicity one, 1 with multiplicity one, 1 with multiplicity one. The graph crosses the x-axis at x  0, x  1, and x  1 . Step 4: 3  1  2 Step 5:

f (2)  6; f ( 12 )   83 ; f ( 12 )  83 ; f (2)  6

266 Copyright © 2020 Pearson Education, Inc.


Section 4.2: Graphing Polynomial Functions; Models

34.

Step 4: 3  1  2 Step 5: f (7)  630; f (4)  192; f (1)  30 f (1)  42; f (3)  270

f ( x)  x3  2 x 2  8 x  x( x 2  2 x  8)  x( x  4)( x  2)

Step 1: Degree is 3. The function resembles y  x3 for large values of x . Step 2: y-intercept: f (0)  03  2(0) 2  8(0)  0 x-intercepts: Solve f ( x)  0 0  x( x  4)( x  2) x  0, 4, 2 Step 3: Real zeros: 0 with multiplicity one, 4 with multiplicity one, 2 with multiplicity one. The graph crosses the x-axis at x  0, x  4, and x  2.

f ( x)  4 x3  10 x 2  4 x  10  2(2 x3  5 x 2  2 x  5  2  x 2 (2 x  5)  1(2 x  5) 

Step 4: 3  1  2 Step 5:

36.

f (5)  35; f (2)  16; f (1)  5; f (3)  21

 2(2 x  5)( x 2  1)  2(2 x  5)( x  1)( x  1)

Step 1: Degree is 3. The function resembles y  4 x3 for large values of x . Step 2: y-intercept: f (0)  4(0)3  10(0) 2  4(0)  10  10

35.

f ( x)  2 x 4  12 x3  8 x 2  48 x  2 x( x3  6 x 2  4 x  24)  2 x  x 2 ( x  6)  4( x  6)   2 x( x  6)( x 2  4)  2 x( x  6)( x  2)( x  2)

Step 1: Degree is 4. The function resembles y  2 x 4 for large values of x .

x-intercepts: solve f ( x)  0 0  2(2 x  5)( x  1)( x  1) 5 x   , 1, 1 2 5 Step 3: Real zeros:  with multiplicity one, 2 1 with multiplicity one, 1 with multiplicity one. The graph crosses the 5 x-axis at x   , x  1, and x  1. 2 Step 4: 3  1  2 Step 5: f (3)  16; f (2)  6;

Step 2: y-intercept: f (0)  2(0) 4  12(0)3  8(0)2  48(0)  0 x-intercepts: Solve f ( x)  0 0  2 x( x  6)( x  2)( x  2) x  0, 6, 2, 2 Step 3: Real zeros: 0 with multiplicity one, 6 with multiplicity one, 2 with multiplicity one, 2 with multiplicity one. The graph crosses the x-axis at x  0, x  6, x  2, and x  2. 267 Copyright © 2020 Pearson Education, Inc.

f ( 12 )  9; f ( 23 )  20


Chapter 4: Polynomial and Rational Functions

37.

Step 3: Real zeros: 0 with multiplicity two, 2 with multiplicity one, 2 with multiplicity one, 5 with multiplicity one. The graph touches the x-axis at x  0 and crosses it at x  2, x  2, and x  5 .

f ( x)   x5  x 4  x3  x 2   x 2 ( x3  x 2  x  1)   x 2  x 2 ( x  1)  1( x  1)    x 2 ( x  1)( x 2  1)   x 2 ( x  1)( x  1)( x  1)

Step 4: 5  1  4 Step 5: Graphing by hand:

  x ( x  1) ( x  1) 2

2

Step 1: Degree is 5. The graph of the function resembles y   x5 for large values of x . Step 2: y-intercept: f (0)  (0)5  (0) 4  (0)3  (0) 2  0 x-intercept: Solve f ( x)  0  x 2 ( x  1) 2 ( x  1)  0 x  0, 1, 1

Step 3: Real zeros: 0 with multiplicity two, 1 with multiplicity two, 1 with multiplicity one. The graph touches the x-axis at x  0 and x  1 , and crosses it at x  1 . Step 4: 5  1  4 Step 5: f (1.5)  1.40626; f (0.54)  0.10; f (0.74)  0.43; f (1.2)  1.39392

38.

f ( x)   x5  5 x 4  4 x3  20 x 2   x 2 ( x3  5 x 2  4 x  20)   x 2  x 2 ( x  5)  4( x  5)    x 2 ( x  5)( x 2  4)

39.

f ( x)  15 x 5  80 x 4  80 x3  5 x3 (3x 2  16 x  16)  5 x3 (3x  4)( x  4) Step 1: The graph of the function resembles y  15 x5 for large values of x .

Step 2: y-intercept: f (0)  15(0)5  80(0) 4  80(0)3  0 x-intercept: solve f ( x)  0 5 x3 (3 x  4)( x  4)  0 4 x  0,  , 4 3 Step 3: Real zeros: 0 with multiplicity three, 4  with multiplicity one, -4 with 3 multiplicity one. The graph crosses the 4 x-axis at x  0, x   , and x  4 . 3 Step 4: 5  1  4 Step 5: f (4.2)  637.157; f (3)  675; f (1)  15; f (1)  175

  x 2 ( x  5)( x  2)( x  2)

Step 1: Degree is 5. The graph of the function resembles y   x 5 for large values of x . Step 2: y-intercept: f (0)  (0)5  5(0) 4  4(0)3  20(0) 2  0 x-intercept: solve f ( x)  0  x 2 ( x  2)( x  2)( x  5)  0 x  0, 2, 2, 5

268 Copyright © 2020 Pearson Education, Inc.


Section 4.2: Graphing Polynomial Functions; Models

40.

Step 5:

f ( x)  3x 6  6 x 5  12 x 4  24 x3 3

f (5.5)  9.975; f (3)  22.4; f (2)  8.4; f (4.5)  0.475; f (6)  4.4

 3x ( x  2 x  4 x  8) 3

2

 3x 3 ( x  2)( x  2) 2

Step 1: The graph of the function resembles y  3x 6 for large values of x . Step 2: y-intercept: f (0)  3(0) 6  6(0)5  12(0)4  24(0)3  0 x-intercept: solve f ( x)  0 3x3 ( x  2)( x  2) 2  0 x  0, 2, 2 Step 3: Real zeros: 0 with multiplicity three, 2 with multiplicity one, -2 with multiplicity two. The graph crosses the x-axis at x  0, and x  2 and touches at x  2 . Step 4: 6  1  5 Step 5: f (3)  405; f (1)  9; f (1)  27; f (2.5)  474.609

41.

1 3 4 2 x  x  5 x  20 5 5 1  ( x  5)( x  4)( x  5) 5 Step 1: The graph of the function resembles 1 y  x5 for large values of x . 5 Step 2: y-intercept: 1 4 f (0)  (0)3  (0) 2  5(0)  20  20 5 5 x-intercept: solve f ( x)  0 1 ( x  5)( x  4)( x  5)  0 5 x  5, 4,5 f ( x) 

42.

3 3 15 2 x  x  6 x  15 2 4 3  (2 x  5)( x  2)( x  2) 2 Step 1: The graph of the function resembles 3 y  x5 for large values of x . 2 Step 2: y-intercept: 3 15 f (0)  (0)3  (0) 2  6(0)  15  15 2 4 x-intercept: solve f ( x)  0 f ( x) 

1 (2 x  5)( x  2)( x  2)  0 5 5 x  , 2, 2 2 5 Step 3: Real zeros: with multiplicity one, 2 2 with multiplicity one, -2 with multiplicity one. The graph crosses the 5 x-axis at x  , x  4 and x  5 . 2 Step 4: 3  1  2 Step 5:

Step 3: Real zeros: -5 with multiplicity one, 4 with multiplicity one, 5 with multiplicity one. The graph crosses the x-axis at x  5, x  4 and x  5 . Step 4: 3  1  2 269 Copyright © 2020 Pearson Education, Inc.

f (2.5)  16.875; f (1)  15.75; f (1)  6.75; f (2.25)  0.398; f (3)  3.75


Chapter 4: Polynomial and Rational Functions 43. a.

Graphing, we see that the graph may be a cubic relation.

44. a.

c.

b. P(t )  0.0235t 3  0.3929t 2  1.2985t  15.6525 P(13)  0.0235(13)3  0.3929(13) 2  1.2985(13)  15.6525  13.5%

b. The cubic function of best fit is H ( x)  0.3948 x3  5.9563x 2  26.1965 x  7.4127

45. a.

c.

Graphing, we see that the graph may be a cubic relation.

For the decade 1961-1970, we have x  5 . H (5)  0.3948(5)3  5.9563(5)2  26.1695(5)  7.4127  24 The model predicts that about 24 major hurricanes struck the Atlantic Basin between 1961 and 1970.

b.

d.

T T (12)  T (9) 43.1  41.0 2.1     0.7 x 12  9 12  9 3 The average rate of change in temperature from 9am to noon was 0.7F per hour.

c. T T (21)  T (15) 45  48.9 3.9     0.65 x 21  15 21  15 6

The average rate of change in temperature from 9am to noon was 1F per hour. e.

For the decade 2011 to 2020 we have x  10 . H (10)  0.3948(10)3  5.9563(10)2  26.1695(10)  7.4127  54 The model predicts that approximately 54 major hurricanes will strike the Atlantic Basin between 2011 and 2020. The prediction does not seem to be reasonable. It appears to be too high.

d.

The cubic function of best fit is T ( x)  0.0079 x3  0.2930 x 2  2.6481x  47.6857

At 5pm we have x  17 . T 17   0.0079 17   0.2930 17  3

 2.648117   47.6857  48.32 The predicted temperature at 5pm is  48.32F .

270 Copyright © 2020 Pearson Education, Inc.

2


Section 4.2: Graphing Polynomial Functions; Models e.

c. f.

The y-intercept is approximately 47.7F . The model predicts that the midnight temperature was 47.7F .

46. a. T (r )  500(1  r )(1  r )  500(1  r )  500     Deposit 3 Account value of deposit 1

Account value of deposit 2

 500(1  2r  r 2 )  500(1  r )  500  500  1000r  500r 2  500  500r  500  500r 2  1500r  1500

b.

F (0.05)  500(.05)3  2000(.05) 2  3000(.05)  2000  2155.06 The value of the account at the beginning of the fourth year will be $2155.06.

47. a.

d. The values of the polynomial function get closer to the values of f. The approximations near 0 are better than those near 1 or 1. 48. a.

P3 (0.6)  (0.6) 2 (1  2(1  0.6))  0.648

b.

P5 (0.6)  (0.6)3 (1  3(1  0.6)  6(1  0.6) 2 )  0.68256

c.

b.

271 Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

units gives (b  4, ) and then reflecting about the y-axis gives f ( x  4)  0 on (, b  4)

d. Using MAXIMUM on the graph we find that the maximum is: E (0.7236)  0.10733 . The maximum edge is 0.10733 when the probability of winning a set is 0.7236. e. f.

E (0.5)  0 is the edge if both players have the same chance of winning a set.

50. 2 3x  1  4  10

E (1)  0 is the edge if the better player has a 100% chance of winning a set.

Since b and c are positive, the zeros are 0, b, and -c. The x-intercepts are 0, b, and -c. The y-intercept is 0. The leading term will be y  ax  x 2  x 2   ax5 . The value of a is positive, so the leading coefficient will be negative. Since the degree is odd, this means as x   the graph will increase without bound ( as x   f ( x)   ) and as x   the graph will decrease without bound ( f ( x)   as x   ). The multiplicity of c and 0 is 2 (even), so the graph will touch the x-axis at -c and 0. The multiplicity of b is 1 (odd), so the graph will cross the x-axis at b. There are at most 4 turning points, but the actual turning points cannot be determined exactly.

49.

f. The graph of f is decreasing on  , c  .

2 3x  1  6 3x  1  3 3 x  1  3 or 3x  1  3 3 x  2

3x  4

2 3

x

4 3 2 4  The solution set is  x | x   or x   or 3 3  x

2 4    ,     ,   3 3  

51. y   52.

1 x 3

f ( x)  2 x 2  7 x  3 x

a.

b 7 7   2a 4 4 2

25 7 7 7 f    2    7    3  8 4 4 4 7 25   The vertex is  ,  4 8  F A 2.45  105 S  5  106  8.75  103  140

53. S  5  106 

b. There is a local maximum on the intervals (c, 0) and (0, b) c. Both -c and 0 yield a local minimum value of 0.

3

54.

17  1  1  1 f     2    7    1  4  2  2  2

d. f ( x)  0 on the interval (b, ) [where the graph is below the x-axis]

55. x  4  0 x4 The domain is  4,   .

e. f ( x  4) is a transformation of f that is shifted right 4 units and then reflected about the y-axis. Starting with (b, ) , going right 4

56.

f (1)  f (2) 2  (7) 9   3 1  (2) 3 3

272 Copyright © 2020 Pearson Education, Inc.


Section 4.3: Properties of Rational Functions

3 units.

x 2  4 x  y 2  2 y  11

57.

x 2  4 x  4  y 2  2 y  1  11  4  1

5

( x  2) 2  ( x  1) 2  16 The center is (2,1) and the radius is 4.

58. g ( x)  

x 3 x 3 x   3 (  x )  (  x ) ( x )  x   x 3  x 

y

3

3

5





3

x  g ( x) x3  x

5

x



5

The function g is even.

5. False

59. The amount of interest is $2500. I  Pr t 2500  5000(0.08)t

6. horizontal asymptote 7. vertical asymptote 8. proper

t  6.25 years

9. True 10. False, a graph cannot intersect a vertical asymptote.

Section 4.3

11. y  0

1. True

12. True

2. Quotient: 3x  3 ; Remainder: 2 x 2  3 x  3 3x  3 x3  x 2  1 3x 4  0 x3  x 2  0 x  0

13. d

 (3x 4  3x3

 3 x)

3x 3  x 2  3 x  (3x3  3x 2  3) 2 x 2  3x  3

3. y 

14. a 4x , the denominator, q( x)  x  7 , x7 has a zero at 7. Thus, the domain of R( x) is all

15. In R ( x) 

real numbers except 7.  x | x  7 5x2 , the denominator, q( x)  3  x , 3 x has a zero at –3. Thus, the domain of R ( x) is all

1 x

16. In R ( x) 

real numbers except –3.  x | x  3 17. In H ( x) 

 4 x2 , the denominator, ( x  2)( x  4)

q( x)  ( x  2)( x  4) , has zeros at 2 and –4. Thus, the domain of H ( x) is all real numbers

except –4 and 2.  x | x  4, x  2 4. Using the graph of y  x 2 , stretch vertically by a factor of 2, then shift left 1 unit, then shift down

18. In G ( x) 

6 , the denominator, ( x  3)(4  x)

q( x)  ( x  3)(4  x) , has zeros at –3 and 4.

273 Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

Thus, the domain of G ( x) is all real numbers except –3 and 4.  x | x  3, x  4 3 x( x  1) , the denominator, 2 x 2  5 x  12 q( x)  2 x 2  5 x  12  (2 x  3)( x  4) , has zeros at

19. In F ( x) 

3 and 4 . Thus, the domain of F ( x) is all real 2 3 3   numbers except  and 4 .  x | x   , x  4  2 2   

 x(1  x) , the denominator, 3x 2  5 x  2 q( x)  3 x 2  5 x  2  (3x  1)( x  2) , has zeros at

20. In Q( x) 

1 and – 2 . Thus, the domain of Q( x) is all real 3 1  1 numbers except –2 and .  x | x  2, x   3 3  x 21. In R ( x)  3 , the denominator, x  64 q( x)  x 3  4  ( x  4)( x 2  4 x  16) , has a zero

at 2 ( x 2  4 x  4 has no real zeros). Thus, the domain of R( x) is all real numbers except 4.

 x | x  4

25. In R ( x) 

q( x)  5( x 2  4)  5( x  2)( x  2) , has zeros at 2 and –2. Thus, the domain of R( x) is all real numbers except –3 and 3.  x | x  2, x  2 26. In F ( x) 

x , the denominator, 4 x 1 q( x)  x 4  1  ( x  1)( x  1)( x 2  1) , has zeros at

–1 and 1 ( x 2  1 has no real zeros). Thus, the domain of R( x) is all real numbers except –1

 2( x 2  4) , the denominator, 3( x 2  4 x  4)

q( x)  3( x 2  4 x  4)  3( x  2) 2 , has a zero at –2. Thus, the domain of F ( x) is all real

numbers except –2.  x | x  2 27. a.

Domain:  x x  2 ; Range:  y y  1

b. Intercept: (0, 0) c.

Horizontal Asymptote: y  1

d. Vertical Asymptote: x  2 e.

28. a.

Oblique Asymptote: none Domain:  x x  1 ; Range:  y y  0

b. Intercept: (0, 2) c.

22. In R ( x) 

3( x 2  x  6) , the denominator, 5( x 2  4)

Horizontal Asymptote: y  0

d. Vertical Asymptote: x  1 e. 29. a.

Oblique Asymptote: none Domain:  x x  0 ; Range: all real numbers

and 1.  x | x  1, x  1

b.

Intercepts: (–1, 0) and (1, 0)

c.

Horizontal Asymptote: none

3x  x , the denominator, x2  9 q( x)  x 2  9 , has no real zeros. Thus, the domain of H ( x) is all real numbers.

d.

Vertical Asymptote: x  0

e.

Oblique Asymptote: y  2 x

23. In H ( x) 

2

x3 , the denominator, x4  1 q( x)  x 4  1 , has no real zeros. Thus, the domain of G ( x) is all real numbers.

30. a.

Domain:  x x  0 ; Range:  y y   2 or y  2 

24. In G ( x) 

b. Intercepts: none c.

Horizontal Asymptote: none

d. Vertical Asymptote: x  0 e.

Oblique Asymptote: y   x

274 Copyright © 2020 Pearson Education, Inc.


Section 4.3: Properties of Rational Functions

31. a.

Domain:  x x   2, x  2 ; Range:  y y  0 or y  1

b.

Intercept: (0, 0)

c.

Horizontal Asymptote: y  1

d.

Vertical Asymptotes: x   2, x  2

e.

Oblique Asymptote: none

32. a.

Range:  y | y  3 c.

Vertical asymptote: x  0 Horizontal asymptote: y  3

35. a. R  x  

1

 x  1

2

; Using the function, y 

1 , x2

shift the graph horizontally 1 unit to the right.

Domain:  x x   1, x  1 ; Range: all real numbers

b. Intercept: (0, 0) c.

Horizontal Asymptote: y  0

d. Vertical Asymptotes: x   1, x  1 e.

Oblique Asymptote: none

1 1 ; Using the function, y  , x x shift the graph vertically 2 units up.

33. a. F  x   2 

b. Domain:  x | x  1

Range:  y | y  0 c.

Vertical asymptote: x  1 Horizontal asymptote: y  0

1 3 1  3   ; Using the function y  , x x x   stretch the graph vertically by a factor of 3.

36. a. Q( x) 

b. Domain:  x | x  0

Range:  y | y  2 c.

Vertical asymptote: x  0 Horizontal asymptote: y  2

1 1 ; Using the function y  2 , 2 x x shift the graph vertically 3 units up.

34. a. Q( x)  3 

b. Domain:  x | x  0

Range:  y | y  0 c.

Vertical asymptote: x  0 Horizontal asymptote: y  0

37. a. H ( x) 

2  1   2   ; Using the function x 1  x 1

1 , shift the graph horizontally 1 unit to the x left, reflect about the x-axis, and stretch y

b. Domain:  x | x  0 275 Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

vertically by a factor of 2.

units to the left, and reflect about the x-axis.

b. Domain:  x | x  1

b. Domain:  x | x  2

Range:  y | y  0 c.

Range:  y | y  0

Vertical asymptote: x  1 Horizontal asymptote: y  0

c.

Vertical asymptote: x  2 Horizontal asymptote: y  0

1 1  1 ; Using the function y  , x x 1 shift the graph horizontally 1 unit to the right, and shift vertically 1 unit up.

40. a. R( x)  38. a. G ( x) 

 1  2 ; Using the  2 2 2  ( x  2)  ( x  2) 

1 , shift the graph horizontally 2 x2 units to the left, and stretch vertically by a factor of 2. function y 

b. Domain:  x | x  1

Range:  y | y  1 c. b. Domain:  x | x  2

Range:  y | y  0 c.

Vertical asymptote: x  2 Horizontal asymptote: y  0

39. a. R ( x) 

1 1 ; Using the  2 x2  4 x  4  x  2

function y 

1 , shift the graph horizontally 2 x2

Vertical asymptote: x  1 Horizontal asymptote: y  1

41. a. G ( x)  1 

2 2  1 ; 2 ( x  3) ( x  3) 2

 1   2 1  ( x  3) 2 

1 , shift the graph right 3 x2 units, stretch vertically by a factor of 2, and shift

Using the function y 

276 Copyright © 2020 Pearson Education, Inc.


Section 4.3: Properties of Rational Functions

vertically 1 unit up.

vertically 1 unit up.

b. Domain:  x | x  3

b. Domain:  x | x  0

Range:  y | y  1 c.

Vertical asymptote: x  3 Horizontal asymptote: y  1

1  1      2 ; Using the x 1  x 1  1 function y  , shift the graph left 1 unit, reflect x about the x-axis, and shift vertically up 2 units.

42. a. F ( x)  2 

Range:  y | y  1 c.

Vertical asymptote: x  0 Horizontal asymptote: y  1

x4 4 1  1   4    1 ; Using the x x x 1 function y  , reflect about the x-axis, stretch x vertically by a factor of 4, and shift vertically 1 unit up.

44. a. R ( x) 

b. Domain:  x | x  1

Range:  y | y  2 c.

Vertical asymptote: x  1 Horizontal asymptote: y  2

x2  4 4  1   1  2  4  2   1 ; Using 2 x x x  1 the function y  2 , reflect about the x-axis, x stretch vertically by a factor of 4, and shift

43. a. R ( x) 

b. Domain:  x | x  0

Range:  y | y  1 c.

Vertical asymptote: x  0 Horizontal asymptote: y  1

3x ; The degree of the numerator, x4 p( x)  3x, is n  1 . The degree of the denominator, q( x)  x  4, is m  1 . Since

45. R( x) 

3  3 is a horizontal 1 asymptote. The denominator is zero at x   4 , so x   4 is a vertical asymptote.

n  m , the line y 

277 Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions 3x  5 ; The degree of the numerator, x6 p( x)  3 x  5, is n  1 . The degree of the denominator, q( x)  x  6, is m  1 . Since

46. R ( x) 

3  3 is a horizontal 1 asymptote. The denominator is zero at x  6 , so x  6 is a vertical asymptote.

n  m , the line y 

47. H ( x) 

x3  8 x2  5x  6

 x  2  x2  2 x  4  x  2  x  3

x2  2x  4 , where x  2,3 x 3 The degree of the numerator in lowest terms is n  2 . The degree of the denominator in lowest terms is m  1 . Since n  m  1 , there is an oblique asymptote. Dividing: x5 x  3 x2  2 x  4 

  x 2  3x  5x  4 19 19 H ( x)  x  5  , x  2,3 x 3 Thus, the oblique asymptote is y  x  5 . The denominator in lowest terms is zero at x  3 so x  3 is a vertical asymptote. x3  1 x 2  5 x  14

x3 ; The degree of the numerator, x 1 p( x)  x3 , is n  3 . The degree of the

49. T ( x) 

4

denominator, q( x)  x 4  1 is m  4 . Since n  m , the line y  0 is a horizontal asymptote. The denominator is zero at x  1 and x  1 , so x  1 and x  1 are vertical asymptotes. 4x2 ; The degree of the numerator, x3  1 p( x)  4 x 2 , is n  2 . The degree of the

50. P ( x) 

denominator, q( x)  x3  1 is m  3 . Since n  m , the line y  0 is a horizontal asymptote. The denominator is zero at x  1 , so x  1 is a vertical asymptote. 2 x 2  5 x  12 (2 x  3)( x  4)  3 x 2  11x  4 (3 x  1)( x  4) 2x  3 1  , where x   , 4 3x  1 3 The degree of the numerator in lowest terms is n  1 . The degree of the denominator in lowest 2 terms is m  1 . Since n  m , the line y  is a 3 horizontal asymptote. The denominator in 1 1 lowest terms is zero at x   , so x   is a 3 3 vertical asymptote.

51. Q( x) 

  5 x  15 

48. G ( x) 

39 x  71 , x  2, 7 x 2  5 x  14 Thus, the oblique asymptote is y  x  5 . The denominator is zero at x  2 and x  7 , so x  2 and x  7 are vertical asymptotes. G ( x)  x  5 

 x  1 3

 x  2  x  7 

The degree of the numerator, p( x)  x3  1, is n  3 . The degree of the denominator, q( x)  x 2  5 x  14, is m  2 . Since n  m  1 , there is an oblique asymptote. Dividing: x5 2 x  5 x  14 x3 1

 x3  5 x 2  14 x

5 x  14 x  1  5 x 2  25 x  70 2

39 x  71

x2  6 x  5 ( x  5)( x  1)  2 2 x  7 x  5 (2 x  5)( x  1) x5 5  , where x   , 1 2x  5 2 The degree of the numerator in lowest terms is n  1 . The degree of the denominator in lowest 1 terms is m  1 . Since n  m , the line y  is a 2 horizontal asymptote. The denominator in 5 5 lowest terms is zero at x   , so x   is a 2 2 vertical asymptote.

52. F ( x) 

278 Copyright © 2020 Pearson Education, Inc.


Section 4.3: Properties of Rational Functions

6 x 2  19 x  7 (3 x  1)(2 x  7)  3x  1 3x  1 1  2 x  7, where x  3 The degree of the numerator in lowest terms is n  1 . Since R in lowest terms is linear there is 1 no oblique asymptote. Since is not in the 3 1 domain of R, but is not a real zero of the 3 denominator of R in lowest terms, there is no vertical asymptote to the graph of R.

53. R ( x) 

8 x 2  26 x  7 (4 x  1)(2 x  7)  4x 1 4x 1 1  2 x  7, where x   4 The degree of the numerator in lowest terms is n  1 . The degree of the denominator in lowest terms is m  0 . Since R in lowest terms is linear there is no oblique asymptote. The denominator of R(x) in lowest terms is 1, so there is no vertical asymptote.

54. R ( x) 

55. G ( x)  

x 4  1 ( x 2  1)( x 2  1)  x2  x x( x  1)

denominator in lowest terms is zero at x  0 , so x  0 is a vertical asymptote. 57. g  h  

x  16 ( x  4)( x  4) 56. F ( x )  2  x( x  2) x  2x 

2

2

( x  4)( x  2)( x  2) x( x  2) 2

( x 2  4)( x  2) , where x  0, 2 x The degree of the numerator in lowest terms is n  3 . The degree of the denominator in lowest terms is m  1 . Since n  m  2 , there is no horizontal asymptote or oblique asymptote. The

6

2

3.99  1014

g  0 

b.

g  443 

 6.374 10  0  6

2

 9.8208 m/s 2

3.99  1014

 6.374 10  443 6

2

 9.8195 m/s 2

c.

g  8848  

3.99  1014

 6.374 10  8848 6

2

 9.7936 m/s 2

d.

g h 

3.99  1014

 6.374 10  h  6

2

3.99  1014  0 as h   h2 Thus, the h-axis is the horizontal asymptote. 

e.

g  h 

3.99  1014

 6.374 10  h  6

2

 0 , to solve this

equation would require that 3.99  1014  0 , which is impossible. Therefore, there is no height above sea level at which g  0. In other words, there is no point in the entire universe that is unaffected by the Earth’s gravity!

4

 6.374 10  h 

a.

( x 2  1)( x  1)( x  1) x( x  1)

( x 2  1)( x  1) , where x  0, 1 x The degree of the numerator in lowest terms is n  3 . The degree of the denominator in lowest terms is m  1 . Since n  m  2 , there is no horizontal asymptote or oblique asymptote. The denominator in lowest terms is zero at x  0 , so x  0 is a vertical asymptote.

3.99  1014

58. P  t   a.

50 1  0.5t  2  0.01t

P 0 

50 1  0  20

50  25 insects 2

b. 5 years = 60 months; 50 1  0.5  60   1550 P  60    2  0.01  60  2.6  596 insects

c.

P t  

50 1  0.5t 

50  0.5t 

 2500 2  0.01t 0.01t as t   Thus, y  2500 is the horizontal asymptote. The area can sustain a maximum population of 2500 insects.

279 Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

59. a.

Rtot 

10 R2 10  R2

b. Horizontal asymptote: y  Rtot  10 As the value of R2 increases without bound, the total resistance approaches 10 ohms, the resistance of R1 . c.

Rtot  17 

p (4)  4.097560976 p '(4) p(4.097560976) x2  4.097560976  p '(4.097560976)  4.094906 p(4.094906) x3  4.094906   4.094904 p '(4.094906) Since x1 and x2 are the same to 4 decimal places, the zero is approximately x  4.0949 . x1  4 

61. a. Dividing: 2 x 1 2x  3   2 x  2

R1 R2 R1  R2

5

R1  2 R1

R( x)  2 

R1  2 R1

Solving graphically, let Y1  17 and

x  2 x .

Y2  2 x x

5  1   5 2  x  1 x 1

b.



  We would need R1  103.5 ohms. c. 60. a.

p (3)  (3)3  7(3)  40  34 p(5)  (5)3  7(5)  40  50

b.

c.

p is continuous and p(3)  0  p(5) , so there must be at least one real zero in the interval  3,5  . 2

p '( x)  3 x  7 . Start with x0  4 .

The only real zero of the denominator is 1, so the line x  1 is a vertical asymptote. As 2x  3 2x x  ,   2 so the line y  2 x 1 x is a horizontal asymptote.

62. a. Dividing: 3 2 x  7 6 x  16   6 x  21 -5 R ( x)  3 

280 Copyright © 2020 Pearson Education, Inc.

5 2x  7


Section 4.3: Properties of Rational Functions b.

denominator. However, if the numerator has a higher degree, there is no horizontal asymptote. 66. Answers will vary. If x  4 is a vertical asymptote, then x  4 is a zero of the denominator. If x  4 is a zero of a polynomial, then ( x  4) is a factor of the polynomial. Therefore, if x  4 is a vertical asymptote of a rational function, then ( x  4) must be a factor of the denominator.

c. The only real zero of the denominator is

7 , so 2

7 is a vertical asymptote. As 2 6 x  16 6 x x  ,   3 so the line 2x  7 2x y  3 is a horizontal asymptote.

the line x 

67. The equation of a vertical line through the point (5, 3) is x  5 . 68.

63. Answers will vary. We want a rational function n  x where n and d such that r  x   2 x  1  d  x

are polynomial functions and the degree of n  x  is less than the degree of d  x  . We could let n  x   1 and d  x   x  1 . Then our function is

69. 2 x3  xy 2  4 Test x-axis symmetry: Let y   y 2 x3  x   y   4 2

1 r  x  2x 1 . Getting a common x 1 denominator yields  2 x  1 x  1  1 r  x  x 1 x 1 2 x2  x  2 x  1  1  x 1 2 2 x  3x  2  x 1

2 x3  xy 2  4 same

Test y-axis symmetry: Let x   x

2   x   (  x) y 2  4 3

2 x3  xy 2  4 not the same Test origin symmetry: Let x   x and y   y

2   x   (  x)   y   4 3

2

Therefore, the graph will have x-axis symmetry.

x 1

65. A rational function cannot have both a horizontal and oblique asymptote. To have an oblique asymptote, the degree of the numerator must be exactly one larger than the degree of the

2

2 x3  xy 2  4 not the same

Therefore, one possibility is r  x   2 x  3x  2 . 64. Answers will vary. With rational functions, the only way to get a non-zero horizontal asymptote is if the degree of the numerator equals the degree of the denominator. In such cases, the horizontal asymptote is the ratio of the leading coefficients.

2 x (3x  7)  1   2 5 4 6 14 x x  1   2 5 5 4 6 14 x x   2  1  5 4 5 19 1 x 20 5 1  20  4 x    5  19  19

70.

f ( x)  3x  2; g ( x)  x 2  2 x  4 3 x  2  x 2  2 x  4 0  x2  x  6 0  ( x  2)( x  3) x  2 or x  3 f (2)  3(2)  2  4

f ( 3)  3( 3)  2  11 So the intersection points are: (2, 4), ( 3,11)

281 Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions 71. x  0 06 6 y    3 02 2 y0 x6 0 x2 0  x6 x6

5 x 2  13 x  6  0 (5 x  2)( x  3)  0 2 and x  3 5  2  f ( x)  0 at   ,3   5 

x

The x-intercept is (6, 0). The y-intercept is (0, 3)

74.

f ( x) 

3

x 2

( x)  6

3 x x2  6

3

x   f ( x) x 6 The function is odd. 

72. The local maximum value is f (3)  19 .

75.

3 2

x 9

2

2 3 2   x  3  x  3 x  3 x  3 

3

2  x  3

 x  3 x  3  x  3 x  3 3  2  x  3   x  3 x  3 73. 5 x 2  13 x  6  0 (5 x  2)( x  3)  0 2 x   and x  3 5

3  2x  6

 x  3 x  3

9  2x x2  9

76. 3  (2 x  4)  5 x  13 3  2 x  4  5 x  13 2 x  1  5 x  13 7 x  14 x2 The solution set is  x | x  2 or  , 2 

282 Copyright © 2020 Pearson Education, Inc.


Section 4.4: The Graph of a Rational Function

Section 4.4 2. false: sometimes the rational function may only have a hole at the undefined point.

1. y-intercept: f (0) 

0  1 1 1   02  4 4 4 2

3. c 4. True

x-intercepts: Set the numerator equal to 0 and solve for x.

5. a.

x 1  0 ( x  1)( x  1)  0 x  1 or x  1

 x | x  2

2

b.

0  x( x  2) 2 x  0 or x  2

But x = 2 makes the function undefined so the only x-intercept is 0.

 1 The intercepts are  0,  , (1, 0) , and (1, 0) .  4 6. a

In problems 7–44, we will use the terminology: R ( x) 

p ( x) , where the degree of p( x)  n and the degree of q ( x)

q( x)  m .

7. R ( x) 

Step 1:

x 1 x( x  4)

p ( x)  x  1; q( x)  x( x  4)  x 2  4 x; n  1; m  2

Domain:  x x   4, x  0 Since 0 is not in the domain, there is no y-intercept.

Step 2 & 3:The function is in lowest terms. The x-intercept is the zero of p ( x) : x  1 with odd multiplicity. Plot the point  1, 0  . The graph will cross the x-axis at this point. Step 4:

R( x) 

x 1 is in lowest terms. x( x  4)

The vertical asymptotes are the zeros of q( x) : x   4 and x  0 . Plot these lines using dashes. The multiplicity of 0 and -4 are odd so the graph will approach plus or minus infinity on either side of the asymptotes. Step 5:

Since n  m , the line y  0 is the horizontal asymptote. Solve R  x   0 to find intersection points: x 1 0 x( x  4) x 1  0 x  1 R ( x) intersects y  0 at (–1, 0). Plot the point  1, 0  and the line y  0 using dashes.

283

Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

Step 6:

Steps 7: Graphing

8. R ( x) 

Step 1:

x ( x  1)( x  2)

p ( x)  x; q ( x)  ( x  1)( x  2)  x 2  x  2; n  1; m  2

Domain:  x x   2, x  1 The y-intercept; R (0)  0

Step 2 & 3:The function is in lowest terms. The x-intercept is the zero of p ( x) . 0 with odd multiplicity. Plot the point  0, 0  . The graph will cross the x-axis at this point. Step 4:

R( x) 

x is in lowest terms. ( x  1)( x  2)

The vertical asymptotes are the zeros of q( x) : x   2 and x  1 . Graph these asymptotes using dashed lines. The multiplicity of -2 and 1 are both odd so the graph will approach plus or minus infinity on either side of the asymptotes. Step 5:

Since n  m , the line y  0 is the horizontal asymptote. Solve to find intersection points: x 0 ( x  1)( x  2) x0 R ( x) intersects y  0 at (0, 0). Plot the point  0, 0  and the line y  0 using dashes.

284

Copyright © 2020 Pearson Education, Inc.


Section 4.4: The Graph of a Rational Function

Step 6:

Steps 7: Graphing:

9. R ( x) 

Step 1:

3 x  3 3( x  1)  2 x  4 2( x  2)

p ( x)  3 x  3; q ( x)  2 x  4; n  1; m  1

Domain:  x x   2 The y-intercept is R (0) 

Step 2 & 3: R( x) 

3 0  3

2  0  4

3  3 . Plot the point  0,  . 4  4

3  x  1 is in lowest terms. The x-intercept is the zero of p ( x) , x  1 with odd multiplicity. 2  x  2

Plot the point  1, 0  . The graph will cross the x-axis at this point. Step 4:

Step 5:

R( x) 

3x  3 3  x  1  is in lowest terms. 2x  4 2  x  2

The vertical asymptote is the zero of q( x) : x   2 . Graph this asymptote using a dashed line. The multiplicity of -2 is odd so the graph will approach plus or minus infinity on either side of the asymptote. 3 Since n  m , the line y  is the horizontal asymptote. 2 Solve to find intersection points:

285

Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions 3x  3 3  2x  4 2 2  3 x  3  3  2 x  4  6x  6  6x  4 02 R ( x) does not intersect y 

3 3 . Plot the line y  with dashes. 2 2

Step 6:

Steps 7: Graphing:

10. R ( x) 

Step 1:

2x  4 2  x  2  x 1 x 1

p( x)  2 x  4; q ( x)  x  1; n  1; m  1

Domain:  x x  1 The y-intercept is R (0) 

2(0)  4 4    4 . Plot the point  0, 4  . 0 1 1

Step 2 & 3:R is in lowest terms. The x-intercept is the zero of p( x) : x  2 with odd multiplicity. Plot the point  2, 0  . The graph will cross the x-axis at this point. Step 4:

2x  4 2  x  2  is in lowest terms. x 1 x 1 The vertical asymptote is the zero of q( x) : x  1 . Graph this asymptote using a dashed line. The multiplicity of 1 is odd so the graph will approach plus or minus infinity on either side of the asymptote. R( x) 

286

Copyright © 2020 Pearson Education, Inc.


Section 4.4: The Graph of a Rational Function

Since n  m , the line y  2 is the horizontal asymptote. Solve to find intersection points: 2x  4 2 x 1 2 x  4  2  x  1

Step 5:

2x  4  2x 1 0  5 R ( x) does not intersect y  2 . Plot the line y  2 with dashes.

Step 6:

Steps 7: Graphing:

11. R ( x) 

Step 1:

3 2

x 4

3

 x  2  x  2 

p ( x)  3; q ( x)  x 2  4; n  0; m  2

Domain:  x x   2, x  2 The y-intercept is R (0) 

3 2

0 4

3 3 3    . Plot the point  0,   . 4 4 4 

Step 2 & 3:R is in lowest terms. The x-intercepts are the zeros of p( x) . Since p  x  is a constant, there are no xintercepts. Step 4:

3

is in lowest terms. The vertical asymptotes are the zeros of q( x) : x   2 and x  2 . x 4 Graph each of these asymptotes using dashed lines. The multiplicity of -2 and 2 is odd so the graph will approach plus or minus infinity on either side of the asymptotes. R( x) 

2

287

Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

Since n  m , the line y  0 is the horizontal asymptote. Solve to find intersection points:

Step 5:

3

0

2

x 4

3  0 x2  4

30 R ( x) does not intersect y  0 . Plot the line y  0 with dashes.

Step 6:

Steps 7: Graphing:

12. R ( x) 

Step 1:

6 2

x  x6

6 ( x  3)( x  2)

p ( x)  6; q ( x)  x 2  x  6; n  0; m  2

Domain:  x x   2, x  3 The y-intercept is R (0) 

6 2

0 06

6  1 . Plot the point  0, 1 . 6

Step 2 & 3:R is in lowest terms. The x-intercepts are the zeros of p( x) . Since p  x  is a constant, there are no xintercepts. Step 4:

6 is in lowest terms. The vertical asymptotes are the zeros of q( x) : x   2 and x  3 x2  x  6 Graph each of these asymptotes using dashed lines. The multiplicity of -2 and 3 is odd so the graph will approach plus or minus infinity on either side of the asymptotes. R( x) 

288

Copyright © 2020 Pearson Education, Inc.


Section 4.4: The Graph of a Rational Function

Step 5:

Since n  m , the line y  0 is the horizontal asymptote. Solve to find intersection points: 6 2

x  x6

0

6  0 x2  x  6

60 R ( x) does not intersect y  0 .

Step 6:

Steps 7: Graphing:

13. P ( x) 

Step 1:

x4  x2  1 2

x 1

p ( x)  x 4  x 2  1; q ( x)  x 2  1; n  4; m  2

Domain:  x x  1, x  1 The y-intercept is P (0) 

04  02  1 02  1

1  1 . Plot the point  0, 1 . 1

x4  x2  1

is in lowest terms. The x-intercept is the zero of p ( x) . Since p  x  is never 0, x2  1 there are no x-intercepts.

Step 2 & 3: P ( x) 

Step 4:

x4  x2  1

is in lowest terms. The vertical asymptotes are the zeros of q( x) : x  1 and x  1 . x2  1 Graph each of these asymptotes using dashed lines. The multiplicity of -1 and 1 is odd so the graph will approach plus or minus infinity on either side of the asymptotes. P( x) 

289

Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

Since n  m  1 , there is no horizontal or oblique asymptote.

Step 5: Step 6:

Steps 7: Graphing:

14. Q( x) 

Step 1:

x4  1 2

x 4

( x 2  1)( x  1)( x  1) ( x  2)( x  2)

p ( x )  x 4  1; q( x)  x 2  4; n  4; m  2

Domain:  x x   2, x  2 The y-intercept is Q(0) 

04  1 2

0 4

1 1  1  . Plot the point  0,  . 4 4  4

( x 2  1)( x  1)( x  1) is in lowest terms. The x-intercepts are the zeros of p( x) : –1 and 1 both ( x  2)( x  2) with odd multiplicity. Plot the points  1, 0  and 1, 0  . The graph crosses the x-axis at both points.

Step 2 & 3: Q( x) 

Step 4:

Step 5:

Q( x) 

x4  1 2

( x 2  1)( x  1)( x  1) is in lowest terms. ( x  2)( x  2)

x 4 The vertical asymptotes are the zeros of q( x) : x   2 and x  2 . Graph each of these asymptotes using dashed lines. The multiplicity of -2 and 2 is odd so the graph will approach plus or minus infinity on either side of the asymptotes.

Since n  m  1 , there is no horizontal asymptote and no oblique asymptote.

290

Copyright © 2020 Pearson Education, Inc.


Section 4.4: The Graph of a Rational Function

Step 6:

Steps 7: Graphing:

15. H ( x) 

Step 1:

x3  1 x2  9

 x  1  x 2  x  1  x  3 x  3

p( x)  x3  1; q( x)  x 2  9; n  3; m  2

Domain:  x x   3, x  3 03  1

1 1  1   . Plot the point  0,  . 02  9  9 9  9 Step 2 & 3: H ( x) is in lowest terms. The x-intercept is the zero of p ( x) : 1 with odd multiplicity.

The y-intercept is H (0) 

Plot the point 1, 0  . The graph will cross the x-axis at this point. Step 4:

H ( x) is in lowest terms. The vertical asymptotes are the zeros of q( x) : x   3 and x  3 . Graph each of these asymptotes using dashed lines. The multiplicity of -3 and 3 is odd so the graph will approach plus or minus infinity on either side of the asymptotes.

Step 5:

Since n  m  1 , there is an oblique asymptote. Dividing: x 9x 1 2 x  9 x3  0 x 2  0 x  1 H ( x)  x  2 x 9 x3  9x 9x 1 The oblique asymptote is y  x . Graph the asymptote with a dashed line. Solve to find intersection points:

291

Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

x3  1

x x2  9 x3  1  x3  9 x  1  9 x x

1 9

1 1 The oblique asymptote intersects H ( x) at  ,  . 9 9

Step 6:

Steps 7: Graphing:

16. G ( x) 

Step 1:

x3  1 2

x  2x

( x  1)( x 2  x  1) x( x  2)

p ( x)  x3  1; q ( x)  x 2  2 x; n  3; m  2

Domain:  x x   2, x  0 There is no y-intercept since G (0) 

Step 2 & 3: G ( x) 

03  1 2

0  2(0)

1 . 0

x3  1

is in lowest terms. The x-intercept is the zero of p( x) : –1 with odd multiplicity. x2  2x Plot the point  1, 0  . The graph will cross the x-axis at this point.

Step 4:

x3  1

is in lowest terms. The vertical asymptotes are the zeros of q( x) : x   2 and x  0 . x2  2x Graph each of these asymptotes using dashed lines. The multiplicity of -2 and 0 is odd so the graph will approach plus or minus infinity on either side of the asymptotes. G ( x) 

292

Copyright © 2020 Pearson Education, Inc.


Section 4.4: The Graph of a Rational Function

Step 5:

Since n  m  1 , there is an oblique asymptote. Dividing: x2 4x  1 2 3 x  2x x  0x2  0 x  1 G ( x)  x  2  2 x  2x x3  2 x 2  2x2

1

2

 2x  4x 4x 1 The oblique asymptote is y  x  2 . Graph this asymptote with a dashed line. Solve to find intersection points: x3  1  x2 x2  2 x x3  1  x3  4 x 1   4x 1 x 4  1 9 The oblique asymptote intersects G ( x) at   ,   .  4 4

Step 6:

Steps 7:

Graphing:

293

Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

17. R ( x) 

Step 1:

x2 x2  x  6

x2 ( x  3)( x  2)

p( x)  x 2 ; q ( x)  x 2  x  6; n  2; m  2

Domain:  x x   3, x  2 The y-intercept is R (0) 

Step 2 & 3: R ( x) 

02 2

0 06

0  0 . Plot the point  0, 0  . 6

x2

is in lowest terms. The x-intercept is the zero of p ( x) : 0 with even multiplicity. x2  x  6 Plot the point  0, 0  . The graph will touch the x-axis at this point. R( x) 

x2

Step 4:

is in lowest terms. The vertical asymptotes are the zeros of q( x) : x2  x  6 x   3 and x  2 . Graph each of these asymptotes using dashed lines. The multiplicity of -3 and 2 is odd so the graph will approach plus or minus infinity on either side of the asymptotes.

Step 5:

Since n  m , the line y  1 is the horizontal asymptote. Graph this asymptote with a dashed line. Solve to find intersection points: x2 1 x2  x  6 x2  x2  x  6 0  x6 x6 R ( x) intersects y  1 at (6, 1).

Step 6:

294

Copyright © 2020 Pearson Education, Inc.


Section 4.4: The Graph of a Rational Function

Steps 7: Graphing:

18. R ( x) 

Step 1:

x 2  x  12 2

x 4

( x  4)( x  3) p ( x)  x 2  x  12; q( x)  x 2  4; n  2; m  2 ( x  2)( x  2)

Domain:  x x   2, x  2 The y-intercept is R (0) 

02  0  12 02  4

12  3 . Plot the point  0, 3 . 4

( x  4)( x  3) is in lowest terms. The x-intercepts are the zeros of p ( x) : –4 and 3 each with ( x  2)( x  2) odd multiplicity. Plot the points  4, 0  and  3, 0  . The graph will cross the x-axis at these point.

Step 2 & 3: R ( x) 

R( x) 

x 2  x  12

Step 4:

is in lowest terms. x2  4 The vertical asymptotes are the zeros of q( x) : x   2 and x  2 . Graph each of these asymptotes using a dashed line. The multiplicity of -2 and 2 is odd so the graph will approach plus or minus infinity on either side of the asymptotes.

Step 5:

Since n  m , the line y  1 is the horizontal asymptote. Graph this asymptote using a dashed line. Solve to find intersection points: x 2  x  12 1 x2  4 x 2  x  12  x 2  4 x 8 R ( x) intersects y  1 at (8, 1).

295

Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

Step 6:

Steps 7: Graphing:

19. G ( x) 

Step 1:

x x2  4

x ( x  2)( x  2)

p( x)  x; q ( x)  x 2  4; n  1; m  2

Domain:  x x   2, x  2 The y-intercept is G (0) 

0 2

0 4

0  0 . Plot the point  0, 0  . 4

x is in lowest terms. The x-intercept is the zero of p( x) : 0 with odd multiplicity. x 4 Plot the point  0, 0  . The graph will cross the x-axis at this point.

Step 2 & 3: G ( x) 

Step 4:

Step 5:

2

x is in lowest terms. The vertical asymptotes are the zeros of q( x) : x   2 and x  2 . x 4 Graph each of these asymptotes using a dashed line. The multiplicity of -2 and 2 is odd so the graph will approach plus or minus infinity on either side of the asymptote. G ( x) 

2

Since n  m , the line y  0 is the horizontal asymptote. Graph this asymptote using a dashed line. Solve to find intersection points: x 0 x2  4 x0 G ( x) intersects y  0 at (0, 0).

296

Copyright © 2020 Pearson Education, Inc.


Section 4.4: The Graph of a Rational Function

Step 6:

Steps 7: Graphing:

20. G ( x) 

Step 1:

3x x2  1

3x ( x  1)( x  1)

p( x)  3 x; q( x)  x 2  1; n  1; m  2

Domain:  x x  1, x  1 The y-intercept is G (0) 

Step 2 & 3: G ( x) 

3(0) 2

0 1

0  0 . Plot the point  0, 0  . 1

3x

is in lowest terms. The x-intercept is the zero of p ( x) : 0 with odd multiplicity. x 1 Plot the point  0, 0  . The graph will cross the x-axis at this point.

Step 4:

Step 5:

2

3x is in lowest terms. The vertical asymptotes are the zeros of q( x) : x  1 and x  1 x 1 Graph each of these asymptotes using a dashed line. The multiplicity of -1 and 1 is odd so the graph will approach plus or minus infinity on either side of the asymptotes. G ( x) 

2

Since n  m , the line y  0 is the horizontal asymptote. Graph this asymptote using a dashed line. Solve to find intersection points: 3x 0 x2  1 3x  0 x0 G ( x) intersects y  0 at (0, 0).

297

Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

Step 6:

Steps 7: Graphing:

21. R ( x) 

Step 1:

3 ( x  1)( x 2  4)

3 ( x  1)( x  2)( x  2)

p( x)  3; q( x)  ( x  1)( x 2  4); n  0; m  3

Domain:  x x   2, x  1, x  2 The y-intercept is R (0) 

Step 2 & 3: R ( x) 

R( x) 

3 ( x  1)( x 2  4)

3 2

(0  1)(0  4)

3  3 . Plot the point  0,  . 4  4

is in lowest terms. There is no x-intercept.

3

Step 4:

is in lowest terms. ( x  1)( x 2  4) The vertical asymptotes are the zeros of q( x) : x   2, x  1, and x  2 . Graph each of these asymptotes using a dashed line. The multiplicity of -2, 1 and 2 is odd so the graph will approach plus or minus infinity on either side of the asymptotes.

Step 5:

Since n  m , the line y  0 is the horizontal asymptote. Graph this asymptote with a dashed line. Solve to find intersection points: 3 0 ( x  1)( x 2  4) 30 R ( x) does not intersect y  0 .

298

Copyright © 2020 Pearson Education, Inc.


Section 4.4: The Graph of a Rational Function

Step 6:

Steps 7: Graphing:

22. R ( x) 

Step 1:

4 2

( x  1)( x  9)

4 ( x  1)( x  3)( x  3)

p ( x)   4; q ( x)  ( x  1)( x 2  9);

n  0; m  3

Domain:  x x   3, x  1, x  3 The y-intercept is R (0) 

Step 2 & 3: R ( x) 

R( x) 

4 ( x  1)( x 2  9)

4 2

(0  1)(0  9)

4 4  4  . Plot the point  0,  . 9 9  9

is in lowest terms. There is no x-intercept.

4

Step 4:

is in lowest terms. ( x  1)( x 2  9) The vertical asymptotes are the zeros of q( x) : x   3, x  1, and x  3 Graph each of these asymptotes using a dashed line. The multiplicity of -3, -1 and 3 is odd so the graph will approach plus or minus infinity on either side of the asymptotes.

Step 5:

Since n  m , the line y  0 is the horizontal asymptote. Graph this asymptote with a dashed line. Solve to find intersection points: 4 0 ( x  1)( x 2  9) 4  0 R ( x) does not intersect y  0 .

299

Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

Step 6:

Steps 7: Graphing:

23. H ( x) 

Step 1:

x2  1 4

x  16

( x  1)( x  1) 2

( x  4)( x  2)( x  2)

p ( x)  x 2  1; q ( x)  x 4  16; n  2; m  4

Domain:  x x   2, x  2 The y-intercept is H (0) 

Step 2 & 3: H ( x) 

02  1 4

0  16

1 1  1  . Plot the point  0,  . 16 16  16 

2

x 1

is in lowest terms. The x-intercepts are the zeros of p( x) : –1 and 1 each with odd x 4  16 multiplicity. Plot  1, 0  and 1, 0  . The graph will cross the x-axis at these points. H ( x) 

x2  1

Step 4:

is in lowest terms. The vertical asymptotes are the zeros of q( x) : x   2 and x  2 x 4  16 Graph each of these asymptotes using a dashed line. The multiplicity of -2 and 2 is odd so the graph will approach plus or minus infinity on either side of the asymptotes.

Step 5:

Since n  m , the line y  0 is the horizontal asymptote. Graph this asymptote using a dashed line. Solve to find intersection points: x2  1 0 x 4  16 x2  1  0 x  1 H ( x) intersects y  0 at (–1, 0) and (1, 0). 300

Copyright © 2020 Pearson Education, Inc.


Section 4.4: The Graph of a Rational Function

Step 6:

Steps 7: Graphing:

24. H ( x) 

Step 1:

x2  4 x4  1

x2  4

p ( x)  x 2  4; q( x)  x 4  1;

( x 2  1)( x  1)( x  1)

n  2; m  4

Domain:  x x  1, x  1 The y-intercept is H (0) 

Step 2 & 3: H ( x) 

H ( x) 

x2  4 x4  1

02  4 4

0 1

4   4 . Plot the point  0, 4  . 1

is in lowest terms. There are no x-intercepts.

x2  4

Step 4:

is in lowest terms. The vertical asymptotes are the zeros of q( x) : x  1 and x  1 x4  1 Graph each of these asymptotes using a dashed line. The multiplicity of -1 and 1 is odd so the graph will approach plus or minus infinity on either side of the asymptotes.

Step 5:

Since n  m , the line y  0 is the horizontal asymptote. Graph this asymptote using a dashed line. Solve to find intersection points: x2  4 0 x4  1 x2  4  0 no real solution H ( x) does not intersect y  0 .

301

Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

Step 6:

Steps 7: Graphing:

25. F ( x) 

x 2  3x  4 ( x  1)( x  4)  x2 x2

Step 1:

Domain:  x x   2 The y-intercept is F (0) 

p( x)  x 2  3 x  4; q( x)  x  2; n  2; m  1

02  3(0)  4  4    2 . Plot the point  0, 2  . 02 2

x 2  3x  4 is in lowest terms. The x-intercepts are the zeros of p ( x) : –1 and 4 each with odd x2 multiplicity. Plot  1, 0  and  4, 0  . The graph will cross the x-axis at these points.

Step 2 & 3: F ( x) 

Step 4:

x 2  3x  4 is in lowest terms. The vertical asymptote is the zero of q( x) : x   2 x2 Graph this asymptote using a dashed line. The multiplicity of -2 is odd so the graph will approach plus or minus infinity on either side of the asymptote. F ( x) 

302

Copyright © 2020 Pearson Education, Inc.


Section 4.4: The Graph of a Rational Function

Step 5:

Since n  m  1 , there is an oblique asymptote. Dividing: x5 6 2 x  2 x  3x  4 F ( x)  x  5  x2 x2  2 x  5x  4  5 x  10 6 The oblique asymptote is y  x  5 . Graph this asymptote using a dashed line. Solve to find intersection points: x 2  3x  4  x 5 x2 x 2  3x  4  x 2  3 x  10  4  10 The oblique asymptote does not intersect F ( x) .

Step 6:

Steps 7: Graphing:

303

Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

26. F ( x) 

Step 1:

x 2  3 x  2 ( x  2)( x  1)  x 1 x 1

p ( x)  x 2  3 x  2; q ( x)  x  1; n  2; m  1

Domain:  x x  1 The y-intercept is F (0) 

02  3(0)  2 2    2 . Plot the point  0, 2  . 0 1 1

x2  3x  2 is in lowest terms. The x-intercepts are the zeros of p( x) : –2 and –1 each with x 1 odd multiplicity. Plot  2, 0  and  1, 0  . The graph will cross the x-axis at these points.

Step 2 & 3: F ( x) 

Step 4:

Step 5:

x2  3x  2 is in lowest terms. The vertical asymptote is the zero of q( x) : x  1 x 1 Graph this asymptote using a dashed line. The multiplicity of 1 is odd so the graph will approach plus or minus infinity on either side of the asymptote. F ( x) 

Since n  m  1 , there is an oblique asymptote. Dividing: x4 6 x  1 x 2  3x  2 F ( x)  x  4  1 x x2  x 4x  2 4x  4 6 The oblique asymptote is y  x  4 . Graph this asymptote using a dashed line. Solve to find intersection points: x2  3x  2  x4 x 1 x2  3x  2  x 2  3x  4 2  4 The oblique asymptote does not intersect F ( x ) .

Step 6:

304

Copyright © 2020 Pearson Education, Inc.


Section 4.4: The Graph of a Rational Function

Steps 7: Graphing:

27. R ( x) 

Step 1:

x 2  x  12 ( x  4)( x  3)  x4 x4

p( x)  x 2  x  12; q( x)  x  4; n  2; m  1

Domain:  x x  4 The y-intercept is R (0) 

02  0  12  12   3 . Plot the point  0,3 . 04 4

x 2  x  12 is in lowest terms. The x-intercepts are the zeros of p( x) : –4 and 3 each with odd x4 multiplicity . Plot  4, 0  and  3, 0  . The graph will cross the x-axis at these points.

Step 2 & 3: R ( x) 

Step 4:

Step 5:

x 2  x  12 is in lowest terms. The vertical asymptote is the zero of q( x) : x  4 x4 Graph this asymptote using a dashed line. The multiplicity of 4 is odd so the graph will approach plus or minus infinity on either side of the asymptote. R( x) 

Since n  m  1 , there is an oblique asymptote. Dividing: x5 x  4 x 2  x  12

R( x)  x  5 

x2  4 x 5 x  12

8 x4

5 x  20 8

The oblique asymptote is y  x  5 . Graph this asymptote using a dashed line. Solve to find intersection points: x 2  x  12  x5 x4 x 2  x  12  x 2  x  20 12   20 The oblique asymptote does not intersect R ( x) .

305

Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

Step 6:

Steps 7: Graphing:

28. R ( x) 

x 2  x  12 ( x  4)( x  3)  x5 x5

Step 1:

Domain:  x x  5 The y-intercept is R (0) 

p( x)  x 2  x  12; q ( x)  x  5; n  2; m  1

02  0  12 12 12   . Plot the point  0,   .  05 5 5 

x 2  x  12 is in lowest terms. The x-intercepts are the zeros of p( x) : –3 and 4 each with odd x5 multiplicity. Plot  3, 0  and  4, 0  . The graph will cross the x-axis at these points.

Step 2 & 3: R ( x ) 

Step 4:

x 2  x  12 is in lowest terms. The vertical asymptote is the zero of q( x) : x  5 x5 Graph this asymptote using a dashed line. The multiplicity of -5 is odd so the graph will approach plus or minus infinity on either side of the asymptote. R( x) 

306

Copyright © 2020 Pearson Education, Inc.


Section 4.4: The Graph of a Rational Function

Step 5:

Since n  m  1 , there is an oblique asymptote. Dividing: x6 x  5 x  x  12 2

R( x)  x  6 

x2  5x

18 x5

 6 x  12  6 x  30 18

The oblique asymptote is y  x  6 . Graph this asymptote using a dashed line. Solve to find intersection points: x 2  x  12  x6 x5 x 2  x  12  x 2  x  30 12   30 The oblique asymptote does not intersect R ( x) . Step 6:

Steps 7: Graphing:

307

Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

29. F ( x ) 

x 2  x  12 ( x  4)( x  3)  x2 x2

Step 1:

Domain:  x x   2 The y-intercept is F (0) 

p( x)  x 2  x  12; q( x)  x  2; n  2; m  1

02  0  12  12    6 . Plot the point  0, 6  . 02 2

x 2  x  12 is in lowest terms. The x-intercepts are the zeros of p( x) : –4 and 3 each with odd x2 multiplicity. Plot  4, 0  and  3, 0  . The graph will cross the x-axis at these points.

Step 2 & 3: F ( x ) 

Step 4:

Step 5:

x 2  x  12 is in lowest terms. The vertical asymptote is the zero of q( x) : x   2 x2 Graph this asymptote using a dashed line. The multiplicity of -2 is odd so the graph will approach plus or minus infinity on either side of the asymptote. F ( x) 

Since n  m  1 , there is an oblique asymptote. Dividing: x 1 x  2 x 2  x  12

F ( x)  x  1 

x2  2 x

10 x2

 x  12 x 2  10

The oblique asymptote is y  x  1 . Graph this asymptote using a dashed line. Solve to find intersection points: x 2  x  12  x 1 x2 x 2  x  12  x 2  x  2 12   2 The oblique asymptote does not intersect F ( x ) . Step 6:

308

Copyright © 2020 Pearson Education, Inc.


Section 4.4: The Graph of a Rational Function

Steps 7: Graphing:

30. G ( x) 

Step 1:

x 2  x  12 ( x  3)( x  4)  x 1 x 1

p ( x )  x 2  x  12; q( x)  x  1; n  2; m  1

Domain:  x x  1 The y-intercept is F (0) 

02  0  12  12   12 . Plot the point  0, 12  . 0 1 1

x 2  x  12 is in lowest terms. The x-intercepts are the zeros of p( x) : –3 and 4 each with odd x 1 multiplicity. Plot  3, 0  and  4, 0  . The graph will cross the x-axis at these points.

Step 2 & 3: G ( x) 

Step 4:

Step 5:

x 2  x  12 is in lowest terms. The vertical asymptote is the zero of q( x) : x   1 x 1 Graph this asymptote using a dashed line. The multiplicity of -1 is odd so the graph will approach plus or minus infinity on either side of the asymptote. G ( x) 

Since n  m  1 , there is an oblique asymptote. Dividing: x2 x  1 x  x  12 2

x2  x

G ( x)  x  2 

10 x 1

 2 x  12  2x  2  10 The oblique asymptote is y =x  2. Graph this asymptote using a dashed line. Solve to find intersection points: x 2  x  12  x2 x 1 x 2  x  12  x 2  x  2 12   2 The oblique asymptote does not intersect G ( x) .

309

Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

Step 6:

Steps 7: Graphing:

31. R ( x) 

Step 1:

x( x  1) 2 ( x  3)3

p ( x)  x( x  1) 2 ; q( x)  ( x  3)3 ; n  3; m  3

Domain:  x x   3 The y-intercept is R (0) 

Step 2 & 3: R ( x) 

0(0  1) 2 (0  3)

3

0  0 . Plot the point  0, 0  . 27

x( x  1) 2

is in lowest terms. The x-intercepts are the zeros of p( x) : 0 with odd multiplicity ( x  3)3 and 1 with even multiplicity. Plot  0, 0  . The graph will cross the x-axis at this point.

Plot 1, 0  . The graph will touch the x-axis at this point. x( x  1) 2

Step 4:

is in lowest terms. The vertical asymptote is the zero of q( x) : x   3 ( x  3)3 Graph this asymptote with a dashed line. The multiplicity of -2 is odd so the graph will approach plus or minus infinity on either side of the asymptote.

Step 5:

Since n  m , the line y  1 is the horizontal asymptote. Graph this asymptote with a dashed line. Solve to find intersection points:

R( x) 

310

Copyright © 2020 Pearson Education, Inc.


Section 4.4: The Graph of a Rational Function

x( x  1)2 ( x  3)3

1

x3  2 x 2  x  x3  9 x 2  27 x  27 0  11x 2  26 x  27 b 2  4ac  262  4 11 27   512 no real solution R ( x) does not intersect y  1 .

Step 6:

Steps 7: Graphing:

32. R ( x) 

Step 1:

( x  1)( x  2)( x  3) x ( x  4) 2

p( x)  ( x  1)( x  2)( x  3); q ( x)  x( x  4) 2 ;

n  3; m  3

Domain:  x x  0, x  4 There is no y-intercept since R (0) 

Step 2 & 3: R ( x) 

(0  1)(0  2)(0  3) 0(0  4)

2

6 . 0

( x  1)( x  2)( x  3)

is in lowest terms. The x-intercepts are the zeros of p( x) : –2, 1, and 3 x( x  4) 2 each with odd multiplicity. Plot  2, 0  , 1, 0  and  3, 0  . The graph will cross the x-axis at these points.

311

Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

R( x) 

( x  1)( x  2)( x  3)

Step 4:

is in lowest terms. x( x  4) 2 The vertical asymptotes are the zeros of q( x) : x  0 and x  4 Graph each of these asymptotes with a dashed line. The multiplicity of 0 is odd so the graph will approach plus or minus infinity on either side of the asymptote. The multiplicity of 4 is even so the graph will approach the same infinity on either side of the asymptote.

Step 5:

Since n  m , the line y  1 is the horizontal asymptote. Graph this asymptote with a dashed line. Solve to find intersection points: ( x  1)( x  2)( x  3) 1 x( x  4) 2 ( x 2  x  2)( x  3)  x( x 2  8 x  16) x3  2 x 2  5 x  6  x3  8 x 2  16 x 6 x 2  21x  6  0 2 x2  7 x  2  0 x

7  49  4(2)(2) 7  33  2(2) 4

 7  33   7  33  R ( x) intersects y  1 at  , 1 and  , 1 . 4 4    

Step 6:

Steps 7: Graphing:

312

Copyright © 2020 Pearson Education, Inc.


Section 4.4: The Graph of a Rational Function

33. R ( x) 

Step 1:

x 2  x  12 2

x  x6

( x  4)( x  3) x  4  ( x  3)( x  2) x  2

p ( x)  x 2  x  12; q( x)  x 2  x  6;

n  2; m  2

Domain:  x x   2, x  3 The y-intercept is R (0) 

02  0  12 2

0 06

12  2 . Plot the point  0, 2  . 6

x4 , x  3 . Note: R  x  is still undefined at both 3 and 2 . x2 The x-intercept is the zero of y  x  4 : –4 with odd multiplicity.

Step 2 & 3:In lowest terms, R ( x ) 

Plot  4, 0  . The graph will cross the x-axis at this point. x4 , x  3 . The vertical asymptote is the zero of f  x   x  2 : x   2 ; x2 Graph this asymptote using a dashed line. The multiplicity of -2 is odd so the graph will approach plus or minus infinity on either side of the asymptote. Note: x  3 is not a vertical asymptote because the  7 reduced form must be used to find the asymptotes. The graph has a hole at  3,  .  5

Step 4:

In lowest terms, R ( x ) 

Step 5:

Since n  m , the line y  1 is the horizontal asymptote. Graph this asymptote using a dashed line. Solve to find intersection points: x 2  x  12 1 x2  x  6 x 2  x  12  x 2  x  6 2x  6 x3 R ( x) does not intersect y  1 because R ( x) is not defined at x  3 .

Step 6:

313

Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

Steps 7: Graphing:

34. R ( x) 

Step 1:

x 2  3 x  10 2

x  8 x  15

( x  5)( x  2) x  2  ( x  5)( x  3) x  3

p( x)  x 2  3x  10;

q( x)  x 2  8 x  15;

n  2; m  2

Domain:  x x   5, x  3 The y-intercept is R (0) 

Step 2 & 3:In lowest terms, R ( x ) 

02  3(0)  10 2

0  8(0)  15

2 2 10    . Plot the point  0,   . 3 15 3 

x2 , x  5 . The x-intercept is the zero of y  x  2 : 2 with odd x3

multiplicity. Note: –5 is not a zero because reduced form must be used to find the zeros. Plot the point  2,0  . The graph will cross the x-axis at this point. x2 , x  5 . The vertical asymptote is the zero of f  x   x  3 : x   3 ; x3 Graph this asymptote using a dashed line. The multiplicity of -3 is odd so the graph will approach plus or minus infinity on either side of the asymptote. Note: x  5 is not a vertical asymptote because reduced form must be used to find the asymptotes. The graph has a hole at  5, 3.5  .

Step 4:

In lowest terms, R ( x ) 

Step 5:

Since n  m , the line y  1 is the horizontal asymptote. Graph this asymptote using a dashed line. Solve to find intersection points: x 2  3 x  10 1 x 2  8 x  15 x 2  3 x  10  x 2  8 x  15 5 x  25 x  5 R ( x) does not intersect y  1 because R( x) is not defined at x  5 .

314

Copyright © 2020 Pearson Education, Inc.


Section 4.4: The Graph of a Rational Function

Step 6:

Steps 7: Graphing:

35. R ( x) 

Step 1:

6 x2  7 x  3 2

2x  7x  6

(3 x  1)(2 x  3) 3x  1  (2 x  3)( x  2) x2

p ( x)  6 x 2  7 x  3;

q( x)  2 x 2  7 x  6; n  2; m  2

 3  Domain:  x x  , x  2  2  

The y-intercept is R (0) 

Step 2 & 3:In lowest terms, R ( x ) 

6(0) 2  7(0)  3 2

2(0)  7(0)  6

1 3 1    . Plot the point  0,   . 2 6 2 

3x  1 3 1 , x  . The x-intercept is the zero of y  3 x  1 :  with odd 3 2 x2

multiplicity. 3 Note: x  is not a zero because reduced form must be used to find the zeros. 2  1  Plot the point   , 0  . The graph will cross the x-axis at this point.  3  Step 4:

3x  1 3 , x  . The vertical asymptote is the zero of f  x   x  2 : x  2 ; 2 x2 Graph this asymptote using a dashed line. The multiplicity of 2 is odd so the graph will approach plus or minus infinity on either side of the asymptote. 3 Note: x  is not a vertical asymptote because reduced form must be used to find the asymptotes. 2 3  The graph has a hole at  , 11 . 2 

In lowest terms, R ( x ) 

315

Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

Step 5:

Since n  m , the line y  3 is the horizontal asymptote. Graph this asymptote using a dashed line. Solve to find intersection points: 6 x2  7 x  3 3 2 x2  7 x  6 6 x 2  7 x  3  6 x 2  21x  18 14 x  21 3 x 2 3 R ( x) does not intersect y  3 because R ( x) is not defined at x  . 2

Step 6:

Steps 7: Graphing:

36. R ( x ) 

Step 1:

8 x 2  26 x  15 2

2 x  x  15

(4 x  3)(2 x  5) 4 x  3  (2 x  5)( x  3) x3

p ( x)  8 x 2  26 x  15; q ( x)  2 x 2  x  15; n  2; m  2

 5  Domain:  x x   , x  3 2   8  0   26  0   15 2

The y-intercept is R (0) 

Step 2 & 3:In lowest terms, R( x) 

2  0   0  15 2

15  1 . Plot the point  0, 1 . 15

4x  3 5 3 , x   . The x-intercept is the zero of y  4 x  3 :  with odd x 3 2 4

multiplicity. 316

Copyright © 2020 Pearson Education, Inc.


Section 4.4: The Graph of a Rational Function

5 is not a zero because reduced form must be used to find the zeros. 2  3  Plot the point   , 0  . The graph will cross the x-axis at this point.  4 

Note: 

4x  3 5 , x   . The vertical asymptote is the zero of f  x   x  3 : x  3 ; 2 x 3 Graph this asymptote using a dashed line. The multiplicity of 3 is odd so the graph will approach plus or minus infinity on either side of the asymptote. 5 Note: x   is not a vertical asymptote because reduced form must be used to find the asymptotes. 2  5 14  The graph has a hole at   ,  .  2 11 

Step 4:

In lowest terms, R ( x) 

Step 5:

Since n  m , the line y  4 is the horizontal asymptote. Graph this asymptote using a dashed line. Solve to find intersection points: 8 x 2  26 x  15 4 2 x 2  x  15 8 x 2  26 x  15  8 x 2  4 x  60 30 x  75 5 x 2 5 R ( x) does not intersect y  4 because R ( x) is not defined at x   . 2

Step 6:

Steps 7: Graphing:

317

Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

37. R ( x) 

Step 1:

x 2  5 x  6 ( x  2)( x  3)   x2 x3 x3

p( x)  x 2  5 x  6; q( x)  x  3;

n  2; m  1

Domain:  x x  3 The y-intercept is R (0) 

02  5(0)  6 6   2 . Plot the point  0, 2  . 03 3

Step 2 & 3:In lowest terms, R ( x )  x  2, x  3 . The x-intercept is the zero of y  x  2 : –2 with odd multiplicity. Note: –3 is not a zero because reduced form must be used to find the zeros. Plot the point  0, 2  . The graph will cross the x-axis at this point. Step 4:In lowest terms, R ( x )  x  2, x  3 . There are no vertical asymptotes. Note: x  3 is not a vertical asymptote because reduced form must be used to find the asymptotes. The graph has a hole at  3, 1 . Step 5:

Since n  m  1 there is a possibility of an oblique asymptote. However, R in lowest terms, y  x  2 is a linear function and therefore the graph has no oblique asymptotes.

Step 6:

Steps 7: Graphing:

318

Copyright © 2020 Pearson Education, Inc.


Section 4.4: The Graph of a Rational Function

38. R ( x ) 

Step 1:

x 2  x  30 ( x  6)( x  5)   x5 x6 x6

p( x)  x 2  x  30; q( x)  x  6; n  2; m  1

Domain:  x x   6 The y-intercept is R (0) 

02  (0)  30 30   5 . Plot the point  0, 5  . 06 6

Step 2 & 3:In lowest terms, R ( x )  x  5, x  6 . The x-intercept is the zero of y  x  5 : 5 with odd multiplicity. Note: –6 is not a zero because reduced form must be used to find the zeros. Plot the point  5, 0  . The graph will cross the x-axis at this point. Step 4:

In lowest terms, R ( x )  x  5, x  6 . There are no vertical asymptotes. Note: x   6 is not a vertical asymptote because reduced form must be used to find the asymptotes. The graph has a hole at  6, 11 .

Step 5:

Since n  m  1 there is a possibility of an oblique asymptote. However, R in lowest terms, y  x  5 is a linear function and therefore the graph has no oblique asymptotes.

Step 6:

Steps 7: Graphing:

319

Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

39. H ( x) 

Step 1:

3x  6 4  x2

3x  6 ( x 2  4)

3( x  2) ( x  2)( x  2)

Domain:  x x   2, x  2 The y-intercept is H (0) 

Step 2 & 3: H ( x) 

Step 4:

Step 5:

p ( x )  3x  6; q( x)  4  x 2 ; n  1; m  2

H ( x) 

3x  6 4 x

2

3x  6 2

3(0)  6 40

2

3 3 6    . Plot the point  0,   .  4 2 2

3 is in lowest terms. The x-intercept is the zero of p( x) : none x2

3 is in lowest terms so R ( x)  x  2 . The vertical asymptotes are the zeros of x2

4 x R ( x) : x   2 . Graph the asymptote using a dashed line. The multiplicity of -2 is odd so the graph will approach plus or minus infinity on either side of the asymptote.

Since n  m , the line y  0 is the horizontal asymptote. Graph this asymptote using a dashed line. Solve to find intersection points: 3x  6 0 4  x2 3x  6  0 x2 The function is not defined at x  2 so there is no interection.

Step 6:

Steps 7: Graphing:

320

Copyright © 2020 Pearson Education, Inc.


Section 4.4: The Graph of a Rational Function

40. H ( x) 

Step 1:

2  2x x2  1

2( x  1) ( x  1)( x  1)

p ( x)  2  2 x; q ( x )  x 2  1; n  1; m  2

Domain:  x x   1, x  1 The y-intercept is H (0) 

2  2(0) 2

0 1

2  2 . Plot the point  0, 2 . 1

2( x  1) is in lowest terms. The possible x-intercept is the zero of p ( x) : -1 but H ( 1) is ( x  1)( x  1) not defined.

Step 2 & 3: H ( x) 

Step 4:

2 is in lowest terms so R ( x )  x  1 . The vertical asymptotes are the zeros of R( x) : x 1 x   1 . There is a hole at 1, 1

H ( x) 

Graph the asymptote using a dashed line. The multiplicity of -1 is odd so the graph will approach plus or minus infinity on either side of the asymptote. Step 5:

Since n  m , the line y  0 is the horizontal asymptote. Graph this asymptote using a dashed line. Solve to find intersection points: 2  2x 0 x2  1 2  2x  0 x 1 H ( x) is not defined at x  1 so there is no intersection.

Step 6:

Steps 7: Graphing:

321

Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

41. F ( x ) 

Step 1:

x2  5x  4 2

x  2x  1

( x  1)( x  4) ( x  1)

2

x4 x 1

p ( x)  x 2  5 x  4;

q( x)  x 2  2 x  1; n  2; m  2

Domain:  x x  1 The y-intercept is R (0) 

02  5(0)  4 2

0  2(0)  1

4  4 . Plot the point  0, 4 . 1

x4 , x  1 . The x-intercept is the zero of y  x  4 : 4 with odd multiplicity. x 1 Note: –5 is not a zero because reduced form must be used to find the zeros. Plot the point  4,0 . The graph crosses the x-axis at this point.

Step 2 & 3:In lowest terms, F ( x ) 

x4 , x  1 . The vertical asymptote is the zero of f  x   x  1 : x  1 ; Graph x 1 this asymptote using a dashed line. The multiplicity of 1 is odd so the graph will approach plus or minus infinity on either side of the asymptote.

Step 4:

In lowest terms, F ( x ) 

Step 5:

Since n  m , the line y  1 is the horizontal asymptote. Graph this asymptote using a dashed line. Solve to find intersection points: x2  5x  4 1 x2  2 x  1 x2  5x  4  x2  2 x  1 3x  3 x 1 F ( x ) does not intersect y  1 because R ( x) is not defined at x  1 .

Step 6:

Steps 7: Graphing:

322

Copyright © 2020 Pearson Education, Inc.


Section 4.4: The Graph of a Rational Function

42. F ( x ) 

Step 1:

x 2  2 x  15 2

x  6x  9

( x  5)( x  3) x  5  ( x  3)( x  3) x  3

p ( x)  x 2  2 x  15;

q( x)  x 2  6 x  9;

n  2; m  2

Domain:  x x  3 The y-intercept is F (0) 

Step 2 & 3:In lowest terms, F ( x) 

02  2(0)  15 2

0  6(0)  9

5 5 15    . Plot the point  0,   .  3 9 3

x5 , x  3 . The x-intercept is the zero of y  x  5 : 5 with odd x3

multiplicity. Note: –3 is not a zero because reduced form must be used to find the zeros. Plot the point  5,0 . The graph crosses the x-axis at this point. x5 , x  3 . The vertical asymptote is the zero of f  x   x  3 : x   3 ; x3 Graph this asymptote using a dashed line. The multiplicity of -3 is odd so the graph will approach plus or minus infinity on either side of the asymptote.

Step 4:

In lowest terms, F ( x) 

Step 5:

Since n  m , the line y  1 is the horizontal asymptote. Graph this asymptote using a dashed line. Solve to find intersection points: x 2  2 x  15 1 x2  6 x  9 x 2  2 x  15  x 2  6 x  9 8 x  24 x  3 R ( x) does not intersect y  1 because F ( x ) is not defined at x  3 .

Step 6:

Steps 7: Graphing:

323

Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

43. G ( x) 

x ( x  2) 2

p( x)  x; q ( x)  ( x  2) 2 ; n  1; m  2

Step 1:

Domain:  x x  2 .

Step 2:

G ( x) 

Step 3:

The y-intercept is G (0) 

x ( x  2) 2

is in lowest terms. (0) (0  2)

2

0  0 . Plot the point  0, 0  . 4

The x-intercept is the zero of p( x) : 0 with odd multiplicity. Plot the point  0, 0  . The graph crosses the x-axis at this point. Step 4:

Step 5:

x is in lowest terms. The vertical asymptote is the zero of q( x) : x  2 . Graph this ( x  2) 2 asymptote. The multiplicity of -2 is even so the graph will approach the same infinity on both sides of the asymptote. G ( x) 

Since n  m , the line y  0 is the horizontal asymptote. Graph this asymptote using a dashed line. Solve to find intersection points: x 0 ( x  2) 2 x0 G ( x) intersects y  0 at (0, 0) .

Step 6:

Steps 7: Graphing:

324

Copyright © 2020 Pearson Education, Inc.


Section 4.4: The Graph of a Rational Function

44. G ( x) 

2 x ( x  1) 2

p ( x )  2  x; q ( x)  ( x  1) 2 ; n  1; m  2

Step 1:

Domain:  x x  1 .

Step 2:

G ( x) 

Step 3:

The y-intercept is G (0) 

2 x ( x  1) 2

is in lowest terms. 2  (0) (0  1)

2

2  2 . Plot the point  0, 2 . 1

The x-intercept is the zero of p( x) : 2 with odd multiplicity. Plot the point  2, 0 . The graph crosses the x-axis at this point. Step 4:

Step 5:

2 x is in lowest terms. The vertical asymptote is the zero of q( x) : x  1 . Graph this ( x  1) 2 asymptote. The multiplicity of 1 is even so the graph will approach the same infinity on both sides of the asymptote. G ( x) 

Since n  m , the line y  0 is the horizontal asymptote. Graph this asymptote using a dashed line. Solve to find intersection points: 2 x 0 ( x  1) 2 2 x  0 x2 G ( x) intersects y  0 at (2, 0) .

Step 6:

Steps 7: Graphing:

325

Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

45.

f ( x)  x 

1 x2  1  x x

Step 1:

Domain:  x x  0

p( x)  x 2  1; q ( x)  x; n  2; m  1

There is no y-intercept because 0 is not in the domain. Step 2 & 3: f ( x) 

Step 4:

Step 5:

x2  1 is in lowest terms. There are no x-intercepts since x 2  1  0 has no real solutions. x

x2  1 is in lowest terms. The vertical asymptote is the zero of q( x) : x  0 Graph this x asymptote using a dashed line. The multiplicity of 0 is odd so the graph will approach plus or minus infinity on either side of the asymptote. f ( x) 

Since n  m  1 , there is an oblique asymptote. x 1 f ( x)  x  Dividing: x x2  1 x 2 The oblique asymptote is y =x. x 1 Graph this asymptote using a dashed line. Solve to find intersection points: x2  1 x x x2  1  x2 1 0 The oblique asymptote does not intersect f ( x ) .

Step 6:

326

Copyright © 2020 Pearson Education, Inc.


Section 4.4: The Graph of a Rational Function

Steps 7: Graphing :

46.

f ( x)  2 x 

Step 1:

9 2x2  9  x x

p( x)  2 x 2  9; q ( x)  x; n  2; m  1

Domain:  x x  0 There is no y-intercept because 0 is not in the domain.

Step 2 & 3: f ( x) 

Step 4:

Step 5:

2 x2  9 is in lowest terms. There are no x-intercepts since 2 x 2  9  0 has no real solutions. x

2 x2  9 is in lowest terms. The vertical asymptote is the zero of q( x) : x  0 x Graph this asymptote using a dashed line. The multiplicity of 0 is odd so the graph will approach plus or minus infinity on either side of the asymptote. f ( x) 

Since n  m  1 , there is an oblique asymptote. Dividing: 2x x 2x2  9 2x2

f ( x)  2 x 

9 x

9 The oblique asymptote is y  2 x . Graph this asymptote using a dashed line. Solve to find intersection points: 2 x2  9  2x x 2 x2  9  2 x2 90 The oblique asymptote does not intersect f ( x ) .

327

Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

Step 6:

Steps 7: Graphing:

47.

 p( x)  x  1; q( x)  x; n  3; m  1 .

1 x3  1  x  1 x  x  1 f ( x)  x    x x x 2

Step 1:

2

3

Domain:  x x  0 There is no y-intercept because 0 is not in the domain. x3  1 is in lowest terms. The x-intercept is the zero of p ( x) : –1 with odd multiplicity. x Plot the point  1, 0  . The graph crosses the x-axis at this point.

Step 2 & 3: f ( x) 

Step 4:

Step 5:

x3  1 is in lowest terms. The vertical asymptote is the zero of q( x) : x  0 x Graph this asymptote using a dashed line. The multiplicity of 0 is odd so the graph will approach plus or minus infinity on either side of the asymptote. f ( x) 

Since n  m  1 , there is no horizontal or oblique asymptote.

Step 6:

328

Copyright © 2020 Pearson Education, Inc.


Section 4.4: The Graph of a Rational Function

Steps 7: Graphing:

(1, 0)

48.

f ( x)  2 x 2 

Step 1:

2  x  2 x  2x  4 16 2 x3  16 2 x  8    x x x x 3

2

 p( x)  2 x  16; q( x)  x; n  3; m  1 3

Domain:  x x  0 There is no y-intercept because 0 is not in the domain. 2 x3  16 is in lowest terms. The x-intercept is the zero of p( x) : 2 with odd multiplicity. x Plot the point.  2, 0  . The graph crosses the x-axis at this point.

Step 2 & 3: f ( x) 

Step 4:

Step 5:

2 x3  16 is in lowest terms. The vertical asymptote is the zero of q( x) : x  0 x Graph this asymptote using a dashed line. The multiplicity of 0 is odd so the graph will approach plus or minus infinity on either side of the asymptote. f ( x) 

Since n  m  1 , there is no horizontal or oblique asymptote.

Step 6:

Interval

 , 2 

 2, 0 

 0,  

Number Chosen

3

1

1

Value of f f  3  16 f  1  14 f 1  18 Location of Graph Above x-axis Below x-axis Above x-axis Point on Graph

 3,16 

 1, 14 

329

Copyright © 2020 Pearson Education, Inc.

1,18


Chapter 4: Polynomial and Rational Functions

Steps 7: Graphing:

49.

f  x  x 

Step 1:

1

x4  1

x

3

 3

x

p  x   x 4  1; q  x   x3 ; n  4; m  3

Domain:  x x  0 There is no y-intercept because 0 is not in the domain.

Step 2 & 3: f  x  

x4  1

f  x 

x4  1

x3

is in lowest terms. There are no x-intercepts since x 4  1  0 has no real solutions.

Step 4:

is in lowest terms. The vertical asymptote is the zero of q( x) : x  0 x3 Graph this asymptote using a dashed line. The multiplicity of 0 is odd so the graph will approach plus or minus infinity on either side of the asymptote.

Step 5:

Since n  m  1 , there is an oblique asymptote. Dividing: x x3 x 4  1 x4

f ( x)  x 

1 x3

1 The oblique asymptote is y  x. Graph this asymptote using a dashed line. Solve to find intersection points: x4  1 x x3 x4  1  x4 1 0 The oblique asymptote does not intersect f ( x ) .

330

Copyright © 2020 Pearson Education, Inc.


Section 4.4: The Graph of a Rational Function

Step 6:

Steps 7: Graphing:

50.

f ( x)  2 x 

Step 1:

9

2 x4  9

x

x3

 3

p ( x)  2 x 4  9; q ( x)  x3 ; n  4; m  3

Domain:  x x  0 There is no y-intercept because 0 is not in the domain.

Step 2 & 3: f ( x) 

2 x4  9 x3

is in lowest terms. There are no x-intercepts since 2 x 4  9  0 has no real solutions.

2 x4  9

Step 4:

is in lowest terms. The vertical asymptote is the zero of q( x) : x  0 x3 Graph this asymptote using a dashed line. The multiplicity of 0 is odd so the graph will approach plus or minus infinity on either side of the asymptote.

Step 5:

Since n  m  1 , there is an oblique asymptote. Dividing: 2x 9 3 f ( x)  2 x  3 x 2 x4  9 x 2 x4 9 The oblique asymptote is y  2 x . Graph this asymptote using a dashed line. Solve to find intersection points:

f ( x) 

331

Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

2 x4  9

 2x x3 2 x4  9  2 x4

90 The oblique asymptote does not intersect f ( x ) .

Step 6:

Steps 7: Graphing:

51. One possibility: R ( x) 

2

x 4

52. One possibility: R ( x)  

53. One possibility: R ( x ) 

55.

x2

x 2

x 1

 x  1 x  3  x 2  a  ( x  1) 2 ( x  2) 2

(Using the point  0,1 leads to a  4 / 3 .) Thus, R( x) 

 x  1 x  3  x 2  43  ( x  1) 2 ( x  2) 2

54. One possibility: R ( x ) 

.

The likelihood of your ball not being chosen increases very quickly and approaches 1 as the number of attendees, x, increases.

3( x  2)( x  1) 2 ( x  3)( x  4) 2

332

Copyright © 2020 Pearson Education, Inc.


Section 4.4: The Graph of a Rational Function

56. Begin with the graph of f ( x) 

b. Graphing:

1 . Changing to x

1 flips the graph about the x-axis. x 1 Changing to f ( x)   shifts the graph to x6 the right by 6 units. f ( x)  

c. 59. a.

57. a.

The degree of the numerator is 1 and the degree of the denominator is 2. Thus, the horizontal asymptote is C  0 . The concentration of the drug decreases to 0 as time increases.

b. Graphing:

Using MAXIMUM, the concentration is highest after t  5 minutes. The cost of the project is the sum of the cost for the parallel side, the two other sides, and the posts. A  xy 1000  xy 1000 y x If the length of a perpendicular side is x feet, 1000 the length of the parallel side is y  x feet. Thus, 1000 C  x  2 8 x  5  4  25  x 5000  16 x   100 x

b. The domain is x  0 . Note that x is a length so it cannot be negative. In addition, if x  0 , there is no rectangle (that is, the area is 0 square feet). c.

58. a.

c.

Using MAXIMUM, the concentration is highest after t  0.71 hours.

The degree of the numerator is 1 and the degree of the denominator is 2. Thus, the horizontal asymptote is C  0 . The concentration of the drug decreases to 0 as time increases.

C  x   16 x 

5000  100 x

d. Using MINIMUM, the dimensions of cheapest cost are about 17.7 feet by 56.6 feet (longer side parallel to river).

333

Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

2 53  feet and 3 3 1000 3000 y  feet . 53 / 3 53

Note: x  17

60. a.

b.

Thus, y 

10, 000

, so x2  10, 000  2 S ( x)  4 x    2x  x2  40, 000  2 x2  x 3 2 x  40, 000  x

 772.4  45  f '  vs   600   772.4  v  s    727.4   600   772.4  v  s  

b. Graphing:

 727.4  620  600   772.4  v  s   436, 440 620  772.4  vs

620  772.4  vs   436, 440 436, 440 620 436, 440 vs  772.4   68.5 620 If f '  620 Hz , the speed of the ambulance is roughly 68.5 miles per hour.

c.

772.4  vs 

c.

y

d. The surface area is a minimum when x  21.54 inches. 10, 000 y  21.54 inches  21.544 2

436, 440 772.4  x

The dimensions of the box are: 21.54 in. by 21.54 in. by 21.54 in. e.

62. a.

Answers will vary. One possibility is to save costs or reduce weight by minimizing the material needed to construct the box. The surface area is the sum of the areas of the five sides. S  xy  xy  xy  xy  x 2  4 xy  x 2 The volume is x  x  y  x 2 y  5000.

436, 440 and Y2  620 , then find 772.4  x the intersection point.

d. Let Y1 

5000 , so x2  5000  S ( x)  4 x  2   x 2  x  20, 000  x2  x 3 x  20, 000  x

Thus, y 

The graph agrees with our direct calculation. 61. a.

Using MINIMUM, the minimum surface area (amount of cardboard) is about 2784.95 square inches.

The surface area is the sum of the areas of the six sides. S  xy  xy  xy  xy  x 2  x 2  4 xy  2 x 2 The volume is x  x  y  x 2 y  10, 000 . 334

Copyright © 2020 Pearson Education, Inc.


Section 4.4: The Graph of a Rational Function b. Graphing:

64. a.

100   r 2 h h

100  r2

A(r )  2 r 2  2 rh

c.

 100   2 r 2  2 r  2   r  200  2 r 2  r

Using MINIMUM, the minimum surface area (amount of cardboard) is about 1392.48 square inches.

A(3)  2 32 

c.

A(4)  2 42 

Answers will vary. One possibility is to save costs or reduce weight by minimizing the material needed to construct the box.

d.

A(5)  2 52 

500   r 2 h

e.

Graphing:

d. The surface area is a minimum when x  21.54 . 5000 y  10.78  21.54 2

The dimensions of the box are: 21.54 in. by 21.54 in. by 10.78 in. e.

63. a.

200 3 200  18   123.22 square feet 3

b.

h

200 4  32  50  150.53 square feet

200 5  50  40  197.08 square feet

500  r2

C (r )  6(2 r 2 )  4(2 rh)  500   12 r 2  8 r  2   r  4000  12 r 2  r

Using MINIMUM, the area is smallest when r  2.52 feet.

b. Graphing: 65. a.

P ( x)  P (0.64) 

Using MINIMUM, the cost is least for r  3.76 cm.

335

Copyright © 2020 Pearson Education, Inc.

x 4 (8 x3  28 x 2  34 x  15) 2 x2  2 x  1 (.64) 4 (8(.64)3  28(.64)2  34(.64)  15) 2(.64) 2  2(.64)  1 (.64) 4 (2.611648)  0.8126 0.5392


Chapter 4: Polynomial and Rational Functions b.

67. a.

P (0.62) 

 7  3,  , we can remove the discontinuity by  5 defining

(.62) 4 (8(.62)3  28(.62)2  34(.62)  15) 2(.62) 2  2(.62)  1

(.62) 4 (2.776576)  0.7759 0.5288 A player serving, with probability 0.62 of winning a point on a serve, has probability 0.7759 of winning the game.

 x 2  x  12 if x  3  2 x  x6  7 if x  3  5

c.

Graph P ( x) 

Since R( x) is undefined and has a hole at

x 4 (8 x3  28 x 2  34 x  15)

b. Since R( x) is undefined and has a hole at

2 x2  2 x  1 and y  0.9 and find the intersection.

3   , 11 , we can remove the discontinuity be 2   defining  6 x2  7 x  3 3 if x   2 2 2x  7 x  6  3 11 if x   2

68. a. Since R ( x) is undefined and has a hole at

 5,3.5  , we can remove the discontinuity by

The intersection is x  0.7

defining

d.

 x 2  3 x  10 if x  5  2  x  8 x  15 3.5 if x  5 

b. Since R( x) is undefined and hole at  5 14    ,  , we can remove the discontinuity be  2 11  defining

The P values seems to be approaching 1. 66. a.

32(t  2) t 5 32(0  2) 64 N (0)   =12.8 words per min 05 5

 8 x 2  26 x  15 5 if x    2 2 2 x  x  15  5 14 if x    11 2

N (t ) 

32(7  2) 288  =24 words per min 75 12

b.

N (7) 

c.

The function has the same degree in the numerator and denominator so there is a 32 horizontal asymptote at y )   32 . The 1 number of words per minute seems to be approaching 32 as the number days increases.

69. y 

x2  1 x 1

336

Copyright © 2020 Pearson Education, Inc.


Section 4.4: The Graph of a Rational Function

y

x3  1 x 1

y

x4  1 x 1

y

x4 x 1

y

x5  1 x 1

y

x6 x 1

y

x8 x 1

x = 1 is not a vertical asymptote because of the following behavior: When x  1 : y

y

70.

x2 x 1

x 2  1  x  1 x  1   x 1 x 1 x 1

x3  1  x  1 x  x  1 y   x2  x  1 x 1 x 1 y

2



All four graphs have a vertical asymptote at x2 x 1. y  has an oblique asymptote at x 1 y  x 1.

x2  1 x2  1 x4  1  x 1 x 1

 x  1  x  1 x  1 2

x 1  x  x  x 1 3

y

71. Answers will vary. One example is

2

R  x 

x5  1 ( x 4  x3  x 2  x  1)( x  1)  x 1 x 1 4 3 2  x  x  x  x 1

2  x  3 x  2 

2

 x  13

.

72. Answers will vary. One example is

In general, the graph of xn  1 y , n  1, an integer, x 1 will have a “hole” with coordinates 1, n  .

R  x 

3  x  2  x  1

2

 x  5  x  6 2

73. Answers will vary. 337

Copyright © 2020 Pearson Education, Inc.

.


Chapter 4: Polynomial and Rational Functions 83. 2 x  6 y  7 6 y  2 x  7 2 7 y   x 6 6 1 7 y   x 3 6

74. Answers will vary. 75. Answers will vary. 76. (4 x3  7 x  1)  (5 x 2  9 x  3) 

4 x3  7 x  1  5 x 2  9 x  3  4 x3  5 x 2  2 x  2 77.

3x x2  3x  1 x  5 3x ( x  5)  ( x  2)(3 x  1)

The slopes are opposite reciprocals so the lines are perpendicular. 84. x  x  7  5

3x 2  15 x  3 x 2  5 x  2

 x7  5 x

15 x  5 x  2 20 x  2  x  

x 7  x5

1 10

x  7  x 2  10 x  25 0  x 2  11x  18 0  ( x  2)( x  9)

78. The maximum value occurs at b 6 9 x   2 2a 2(  3 ) 2

x  2,9 Now check solution in the original problem. 2 27  23  5

2

2  9  9  9 f        6   5  2  2 3  2

9 97  94  5 The solution set is 9 .

2  81  54  17       5      3 4 2 2

85.

b 12  2 79. The vertex occurs at x   2a 2(3)

  x2   4  x2   0  2  4  x 

f  2   3  2   12  2   7 2

 3  4   24  7  5

  x2   4  x2   0 4  x2    2  4 x 

The vertex is  2, 5  80. y  x  4

 x2  4  x2  0

81. g (3)  5(3)  9  15  9  6 82.

  x2   4  x2   0 2 2  4  x 

2 x2  4 x2  4

f ( x  2)  ( x  2)2  3( x  2)  2  x 2  4 x  4  3x  6  2

x 2

 x x4 2

338

Copyright © 2020 Pearson Education, Inc.


Section 4.5: Polynomial and Rational Inequalities

set is  x x  0 or 1  x  2  or, using

Section 4.5

interval notation (, 0]  [1, 2] .

1. 3  4 x  5 4 x  2

6. The x-intercepts of the graph of f are 1 , 1, and 2. a. The graph of f is below the x-axis (so f is negative) for 1  x  1 or x  2 . Therefore, the solution set is  x  1  x  1 or x  2  or,

1 x 2  1 The solution set is  x x    or, using interval 2  1  notation,  ,   . 2 

using interval notation, (1, 1)  (2, ) . b. The graph of f is above the x-axis (so f is positive) for x  1 or 1  x  2 . Since the inequality is not strict, we include 0, 1, and 2 in the solution set. Therefore, the solution set is  x x  1 or 1  x  2  or, using interval notation (, 1]  [1, 2] .

x 2  5 x  24

2.

7. The x-intercept of the graph of f is 0. a. The graph of f is below the x-axis (so f is negative) for 1  x  0 or x  1 . Therefore, the solution set is  x  1  x  0 or x  1  or,

x 2  5 x  24  0 ( x  3)( x  8)  0 f ( x)  x 2  5 x  24  ( x  3)( x  8) x  3, x  8 are the zeros of f.

using interval notation, (1, 0)  (1, ) .

Interval (, 3) (3,8) (8, ) Number 4 0 9 Chosen 24 Value of f 12 12 Conclusion Positive Negative Positive

b. The graph of f is above the x-axis (so f is positive) for x  1 or 0  x  1 . Since the inequality is not strict, we include 0 in the solution set. Therefore, the solution set is  x x  1 or 0  x  1  or, using interval

notation (, 1)  [0, 1) .

The solution set is  x | 3  x  8 or, using interval notation,  3, 8 .

8. The x-intercepts of the graph of f are 1 and 3. a. The graph of f is above the x-axis (so f is positive) for x  1 or 1  x  1 or x  3 . Therefore, the solution set is  x x  1 or  1  x  1 or x  3  or, using

3. c

interval notation, (, 1)  (1, 1)  (3, ) .

4. False. The value 3 is not in the domain of f, so it must be restricted from the solution. The solution set would be  x | x  0 or x  3 .

b. The graph of f is below the x-axis (so f is negative) for 1  x  2 or 2  x  3 . Since the inequality is not strict, we include 1 and 3 in the solution set. Therefore, the solution set is  x 1  x  2 or 2  x  3  or, using

5. The x-intercepts of the graph of f are 0, 1, and 2. a. The graph of f is above the x-axis (so f is positive) for 0  x  1 or x  2 . Therefore, the solution set is  x 0  x  1 or x  2  or,

interval notation [1, 2)  (2, 3] . 9. We graphed f ( x)  x 2 ( x  3) in Problem 81 of Section 4.1. The graph is reproduced below.

using interval notation, (0, 1)  (2, ) . b. The graph of f is below the x-axis (so f is negative) for x  0 or 1  x  2 . Since the inequality is not strict, we include 0, 1, and 2 in the solution set. Therefore, the solution 339

Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

positive) for x  1 . Since the inequality is not strict, we include 1 in the solution set. Therefore, the solution set is  x x  1 or, using interval notation  ,1 .

12. We graphed f ( x)  ( x  1)( x  3) 2 in Problem 84 of Section 4.1. The graph is reproduced below.

From the graph, we see that f is below the x-axis (so f is negative) for x  0 or 0  x  3 . Thus, the solution set is  x x  0 or 0  x  3  or, using interval notation (, 0)  (0, 3) .

From the graph, we that f is above the x-axis (so f is positive) for x  1 . Therefore, the solution set is  x x  1 or, using interval notation (1, ) .

10. We graphed f ( x)  x( x  2) 2 in Problem 82 of Section 4.1. The graph is reproduced below.

13. We graphed f ( x)  2( x  2)( x  2)3 in Problem 85 of Section 4.1. The graph is reproduced below.

From the graph, we see that f is below the x-axis (so f is negative) for x  2 or 2  x  0 . Since the inequality is not strict, we include 2 and 0 in the solution set. Therefore, the solution set is  x x  0 or, using interval notation

From the graph, we see that f is below the x-axis (so f is negative) for x  2 or x  2 . Since the inequality is not strict, we include 2 and 2 in the solution set. Therefore, the solution set is  x x  2 or x  2 or, using interval notation

(, 0] .

11. We graphed f ( x)  ( x  4) 2 (1  x) in Problem 83 of Section 4.1. The graph is reproduced below.

(,  2]  [2, ) .

From the graph, we that f is above the x-axis (so f is 340

Copyright © 2020 Pearson Education, Inc.


Section 4.5: Polynomial and Rational Inequalities

1 14. We graphed f ( x)   ( x  4)( x  1)3 in Problem 2 86 of Section 4.1. The graph is reproduced below.

R is negative) for x  2 or 0  x  1 . Thus, the solution set is  x x  2 or 0  x  1 or, using interval notation (, 2)  (0, 1) . 3x  3 in Problem 9 of 2x  4 Section 4.3. The graph is reproduced below.

17. We graphed R ( x) 

From the graph, we see that f is below the x-axis (so f is negative) for x  4 or x  1 . Therefore, the solution set is  x x  4 or x  1  or, using interval notation (, 4)  (1, ) . x 1 in Problem 7 of x( x  4) Section 4.3. The graph is reproduced below.

15. We graphed R ( x) 

From the graph, we that R is below the x-axis (so R is negative) for 2  x  1 . Since the inequality is not strict, we include 1 in the solution set. Therefore, the solution set is  x  2  x  1 or, using interval notation (2, 1] . 2x  4 in Problem 10 of x 1 Section 4.3. The graph is reproduced below.

18. We graphed R ( x) 

From the graph, we that R is above the x-axis (so R is positive) for 4  x  1 or x  0 . Therefore, the solution set is  x  4  x  1 or x  0 or, using interval

notation (4, 1)  (0, ) . x in Problem 8 ( x  1)( x  2) of Section 4.3. The graph is reproduced below.

16. We graphed R ( x) 

From the graph, we that R is above the x-axis (so R is positive) for x  2 or x  1 . Since the inequality is not strict, we include 2 in the solution set. Therefore, the solution set is  x x  2 or x  1 or, using interval notation (, 2]  (1, ) .

19. ( x  4) 2 ( x  6)  0 f ( x)  ( x  4) 2 ( x  6) x  4, x  6 are the zeros of f .

From the graph, we that R is below the x-axis (so 341 Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

Interval Number

(,  6)

(6, 4)

(6, )

7

0

7

121

96

117

Chosen Value of f Conclusion

The solution set is  x x   8 or, using interval notation,  , 8  . 23.

2 x3  8 x 2  0

Negative Positive Positive

The solution set is  x x  6  or, using interval

2x2  x  4  0

notation,  , 6  .

f  x   2 x3  8 x 2

x  0, x  4 are the zeros of f.

20. ( x  5)( x  2) 2  0

Interval Number Chosen Value of f Conclusion

f ( x)  ( x  5)( x  2) 2 x  5, x   2 are the zeros of f .

(,  2)

(2, 5)

(5, )

3

0

6

Value of f

8

20

64

Conclusion

Negative

Interval Number Chosen

notation,  5,   . 3

21. x  4 x  0 x 2 ( x  4)  0

(, 0)

(0, 4)

(4, )

1

1

5

5

3

25

Chosen Value of f

Negative Negative Positive

The solution set is  x x  4  or, using interval notation,  4,   . x3  8 x 2  0

24.

6 10 50 Negative Positive Positive

3x3  15 x 2  0

Interval Number Chosen Value of f Conclusion

(, 5)

(5, 0)

(0, )

6

1

1

12 18 108 Negative Positive Positive

The solution set is  x | x  5 or, using interval notation,  , 5  . 25. ( x  2)( x  4)( x  6)  0 f ( x)  ( x  2)( x  4)( x  6) x  2, x  4, x  6 are the zeros of f .

f ( x)  x3  8 x 2  x 2  x  8 

Number

x  – 8, x  0 are the zeros of f .

Chosen

Value of f

1

3 x3  15 x 2

Interval

Conclusion

1

using interval notation,  4, 0    0,  .

x 2 ( x  8)  0

Chosen

5

x  0, x  5 are the zeros of f.

x  0, x  4 are the zeros of f .

Interval Number

(0, )

f  x   3 x3  15 x 2

f ( x)  x3  4 x 2  x 2  x  4 

Conclusion

(4, 0)

3x2  x  5  0

2

Interval Number

(, 4)

The solution set is  x | 4  x  0 or x  0 or,

Negative Positive

The solution set is  x x  5  or, using interval

22.

2 x3  8 x 2

( ,  2)

( 2, 4)

(4, 6)

(6,  )

3

3

5

7

Value of f

63

15

7

48

Conclusion

Negative

Positive

Negative

Positive

(,  8)

(8, 0)

(0, )

9

1

1

The solution set is  x x  2 or 4  x  6  or,

81

7

9

using interval notation,  , 2   4, 6 .

Negative Positive Positive

342 Copyright © 2020 Pearson Education, Inc.


Section 4.5: Polynomial and Rational Inequalities 26. ( x  1)( x  2)( x  3)  0 f ( x)  ( x  1)( x  2)( x  3) x  1, x   2, x  3 are the zeros of f .

x4  x2  0 x 2 ( x 2  1)  0

( ,  3)

( 3, 2)

( 2, 1)

( 1,  )

4

2.5

1.5

0

Value of f

6

0.375

0.375

6

Conclusion

Negative

Positive

Negative

Positive

Interval Number Chosen

x 2 ( x  1)( x  1)  0 f ( x)  x 2 ( x  1)( x  1) x  1 , x  0, x  1 are the zeros of f ( ,  1)

( 1, 0)

(0, 1)

(1,  )

2

0.5

0.5

2

Value of f

12

0.1875

0.1875

12

Conclusion

Positive

Negative

Negative

Positive

Interval Number

The solution set is  x x  3 or  2  x  1  or, using interval

Chosen

notation,  , 3   2, 1 . 27.

x4  x2

29.

x 3  4 x 2  12  0

The solution set is  x x   1 or x  1  or,

x( x  2)( x  6)  0

using interval notation,  , 1  1,  .

3

2

f ( x)  x  2 x  3 x

30. x 4  9 x 2

x  2, x  0, x  6 are the zeros of f . ( ,  2)

( 2, 0)

(0, 6)

(6,  )

3

1

1

7

Value of f

27

7

15

63

Conclusion

Negative

Positive

Negative

Positive

Interval Number Chosen

x4  9 x2  0 x 2 ( x 2  9)  0 x 2 ( x  3)( x  3)  0 f ( x)  x 2 ( x  3)( x  3) x  0, x  3, x  3 are the zeros of f

The solution set is  x  2  x  0 or x  6  or,

Interval

using interval notation,  2, 0    6,  .

Number

( ,  3)

( 3, 0)

(0, 3)

(3,  )

4

1

1

4

Value of f

112

8

8

112

Conclusion

Positive

Negative

Negative

Positive

Chosen

28. x3  2 x 2  3x  0 2

x( x  2 x  3)  0 x( x  3)( x  1)  0 f ( x)  x( x  3)( x  1) x  0, x  3, x  1 are the zeros of f Interval Number Chosen

The solution set is  x – 3  x  0 or 0  x  3  or, using interval notation,  3, 0    0,3 .

( ,  3)

( 3, 0)

(0, 1)

(1,  )

4

1

0.5

2

Value of f

20

4

0.875

10

Conclusion

Negative

Positive

Negative

Positive

The solution set is  x  3  x  0 or x  1  or, using interval notation,  3, 0   1,   .

x4  1

31.

x4  1  0 ( x 2  1)( x 2  1)  0 ( x  1)( x  1)( x 2  1)  0 f ( x)  ( x  1)( x  1)( x 2  1) x  1, x  1 are the zeros of f ; x 2  1 has no real solution Interval

(  ,  1)

( 1,1)

(1,  )

Number Chosen

2

0

2

Value of f

15

1

15

Conclusion

Positive

Negative

Positive

343 Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

The solution set is  x x  1 or x  1  or, using interval notation,  , 1  1,   .

35.

x3  1

32.

x3  1  0 ( x  1)( x 2  x  1)  0

Interval Number Chosen

f ( x)  ( x  1)( x 2  x  1)

x  1 is a zero of f; x 2  x  1 has no real solution. Interval

( , 1)

(1,  )

Number Chosen

0

2

Value of f

1

7

Conclusion

Negative

Positive

Conclusion

notation, 1,   .

(1,1)

(1, )

2

0

2

1

1

3

3

Positive

Negative Positive

The solution set is  x x   1 or x  1  or, using interval notation,  , 1  1,   . 36.

33. 3( x 2  2)  2( x  1) 2  x 2 3x 2  6  2( x 2  2 x  1)  x 2 3x 2  6  2 x 2  4 x  2  x 2 3x 2  6  3x 2  4 x  2 6  4 x  2 4x  6  2 4x  8 x2 The solution set is  x x  2 or, using interval

x 3 0 x 1 x 3 f ( x)  x 1 The zeros and values where f is undefined are x   1 and x  3 . Interval (,  1) (1, 3) (3, ) Number 2 0 4 Chosen Value of f 5 0.2 3 Conclusion Positive Negative Positive

The solution set is  x x   1 or x  3  or,

notation, (, 2) .

using interval notation,  , 1   3,   .

( x  3)( x  2)  x 2  3x  5 x 2  2 x  3x  6  x 2  3x  5 x 2  x  6  x 2  3x  5  x  6  3x  5 4 x  6  5 4 x  11 11 x 4  11  The solution set is  x x    or, using 4 

 11  interval notation,   ,   .  4 

(,  1)

Value of f

The solution set is  x x  1  or, using interval

34.

x 1 0 x 1 x 1 f ( x)  x 1 The zeros and values where f is undefined are x   1 and x  1 .

37.

( x  2)( x  2) 0 x ( x  2)( x  2) f ( x)  x The zeros and values where f is undefined are x   2, x  0 and x  2 . ( ,  2)

( 2, 0)

(0, 2)

(2,  )

3

1

1

3

Value of f

1.67

3

3

1.67

Conclusion

Negative

Positive

Negative

Positive

Interval Number Chosen

The solution set is  x x  2 or 0  x  2  or, using interval notation,  , 2   0, 2 . 344 Copyright © 2020 Pearson Education, Inc.


Section 4.5: Polynomial and Rational Inequalities

38.

( x  3)( x  2) 0 x 1 ( x  3)( x  2) f ( x)  x 1 The zeros and values where f is undefined are x   2, x  1 and x  3 . (  ,  2)

( 2, 1)

(1, 3)

(3,  )

3

0

2

4

Value of f

1.5

6

4

2

Conclusion

Negative

Positive

Negative

Positive

Interval Number Chosen

Interval

x2  4

41.

0

x 4 The zeros and values where f is undefined are ( ,  2)

( 2, 2)

(2, 3)

(3,  )

3

0

2.5

4

Value of f

0.03125

0.8

6.25

12.8

Conclusion

Positive

Positive

Negative

Positive

x4 1 x2 x4 1  0 x2 x  4  ( x  2) 0 x2 6 0 x2 6 f ( x)  x2 The value where f is undefined is x  2 . Interval

(, 2)

(2, )

Number Chosen

0

3

3

6

Negative Positive

notation,  , 2  . 42.

Value of f

7.2

2.25

.11

.083

Conclusion

Positive

Negative

Positive

Positive

using interval notation,  , 2    2,   . ( x  5) 2

0 x2  4 ( x  5) 2 0 ( x  2)( x  2)

f ( x) 

3

The solution set is  x x  2  or, using interval

The solution set is  x x   2 or x  2  or,

40.

0

Conclusion

x   2, x  2 and x  3 .

Chosen

3

Value of f

2

Number

6

using interval notation,  , 2    2,  .

( x  3) 2

Interval

(2,  )

The solution set is  x x   2 or x  2  or,

( x  3) 2 0 ( x  2)( x  2) f ( x) 

( 2, 2)

Number

using interval notation,  , 2  1,3 . ( x  3) 2

( 5, 2)

Chosen

The solution set is  x x   2 or 1  x  3  or,

39.

( ,  5)

( x  5) 2

x2  4 The zeros and values where f is undefined are x   5, x   2 and x  2 .

x2 1 x4 x2 1  0 x4 x  2  ( x  4) 0 x4 6 0 x4 6 f ( x)  x4 The value where f is undefined is x  4 . Interval

(, 4)

(4, )

Number Chosen

0

5

Value of f

1.5

6

Conclusion

Negative Positive

The solution set is  x x  4  or, using interval notation,  4,   .

345 Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

43.

3x  5 2 x2 3x  5 2 0 x2 3x  5  2( x  2) 0 x2 x9 0 x2 x9 f ( x)  x2 The zeros and values where f is undefined are

45.

x   2 and x  9 . Interval Number

(,  2)

(2, 9)

(9, )

3

0

10

Chosen Value of f

12

Conclusion

Positive

1 12 Negative Positive 4.5

The solution set is  x  2  x  9  or, using

We want to know where f ( x)  0 , so the

interval notation,  2,9 .

solution set is  x x  3 or x  7  or, using

x4 1 44. 2x  4 x4 1  0 2x  4 x  4  2x  4 0 2x  4 x8 0 2  x  2

f ( x) 

interval notation, (, 3)  [7, ) . Note that 3 is not in the solution set because 3 is not in the domain of f. 46.

x 8 2  x  2

The zeros and values where f is undefined are x   8 and x   2 . Interval Number Chosen Value of f Conclusion

x 1 2 x 3 x 1 2 0 x3 x  1  2( x  3) 0 x3 x  1  2 x  6) 0 x 3 x  7 0 x 3 x  7 f ( x)  x 3 The zeros and values where f is undefined are x  3 and x  7 . Interval (, 3) (3, 7) (7, ) Number 1 5 8 Chosen 1 Value of f 3 1  5 Conclusion Negative Positive Negative

(,  8)

(8, 2)

(2, )

9

3

0

2.5

2

1 14 Positive

Negative Positive

x 1  2 x2 x 1 20 x2 x  1  2( x  2) 0 x2 x 1 2x  4 0 x2 3x  3 0 x2 3( x  1) 0 x2 3( x  1) f ( x)  x2 The zeros and values where f is undefined are x  2 and x  1 .

The solution set is  x  8  x   2  or, using interval notation,  8, 2  .

346 Copyright © 2020 Pearson Education, Inc.


Section 4.5: Polynomial and Rational Inequalities

The zeros and values where f is undefined are x  7, x  1, and x  3 .

Interval (, 2) (2, 1) (1, ) 3 Number 3  1 Chosen 2 Value of f 6 3 2 Conclusion Positive Negative Positive

Interval Number

We want to know where f ( x)  0 , so the

Chosen

solution set is  x x  2 or x  1  or, using

Value of f

interval notation, (,  2)  [1, ) . Note that 2 is not in the solution set because 2 is not in the domain of f. 47.

49.

0

4

14

22

2

2

3

5

Positive

Negative

Positive

77

Negative

x 2 (3  x)( x  4) ( x  5)( x  1)

The zeros and values where f is undefined are x  5, x   4, x  3, x  0 and x  1 . Interval

Number Chosen

 ,  5 

6

Value of f

Negative

Negative

(5,  )

 5, 4 

4.5

0

2.5

4

6

 4,  3 

3.5

1

1

(3, 0)

1

0.75

6

36

Negative

Positive

(0, 1)

0.5

(1,  )

2

5

10

18

3

Negative

Positive

using interval notation,  , 2    3,5  . 5 3  x  3 x 1 5 3  0 x  3 x 1 5 x  5  3x  9 0 ( x  3)( x  1) 2  x  7 ( x  3)( x  1)

0

2  x  7 ( x  3)( x  1)

Conclusion

216 7 243  44 49 108

(3, 5)

The solution set is  x x  2 or 3  x  5  or,

f ( x) 

2

(2, 3)

Chosen

48.

8

(  , 2)

Number

Conclusion

(3,  )

x 2 (3  x)( x  4) 0 ( x  5)( x  1)

f ( x) 

The zeros and values where f is undefined are x  2, x  3, and x  5 .

Value of f

( 1, 3)

The solution set is  x  7  x  1 or x  3  or,

x5 ( x  2)(3x  9)

Interval

( 7, 1)

using interval notation,  7, 1   3,   .

1 2  x  2 3x  9 1 2  0 x  2 3x  9 3x  9  2( x  2) 0 ( x  2)(3 x  9) x5 0 ( x  2)(3x  9) f ( x) 

Conclusion

( ,  7)

63 44 120 7

Positive

Positive

Negative Positive

The solution set is  x x   5 or  4  x  3 or x  0 or x  1  or, using interval notation,  , 5   4, 3  0  1,   . 50.

x( x 2  1)( x  2) 0 ( x  1)( x  1) f ( x) 

x( x 2  1)( x  2) ( x  1)( x  1)

The zeros and values where f is undefined are x  1, x  0, x  1 and x  2 .

347 Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

(  ,  1)

Interval Number

( 1, 0)

(0,1)

(2,  )

(1, 2)

2

0.5

0.5

1.5

3

Value of f

40 3

25  12

1.25

1.95

3.75

Conclusion

Positive

Negative

Positive

Negative

Positive

Chosen

 ,  1

 2,  

interval notation,  , 1   0,1   2,  .

 ,  1    2    1 ,1     2 

1, 3   3,  

Number

Value of f

Conclusion

1

32

Positive

0

27

Negative

Chosen

0

16

Negative

1

1/ 2

Positive

3

1/ 4

Negative

6x  5 

53.

6 x

6 0 x 6x2  5x  6 0 x (2 x  3)(3 x  2) 0 x (2 x  3)(3 x  2) f ( x)  x The zeros and values where f is undefined are

2

5/7

Positive

4

1 / 7

Negative

Interval Number Chosen Value of f Conclusion

2

 2  x 3  3 x  2 

3

6x  5 

using interval notation,   1 ,1  (3, ) . 2

2  2    ,     , 0  3  3  

1

0.5

 3  0,   2

3   ,  2 

1

2

4 4 5 5 Negative Positive Negative Positive

We want to know where f ( x)  0 , so the 0

 2 3 solution set is  x x   or 0  x   or, 3 2  2  3  using interval notation,  ,     0,  . 3  2 

 2  x 3  3 x  2  0  x  1  x 2  x  1 f  x 

Positive

2 3 x   , x  0 and x  . 3 2

x3  1

512 / 7

The solution set is  x 1  x  2 or x  2  or,

The solution set is  x  1  x  1 or x  3  or,

52.

2

using interval notation,  1, 2   (2, ) . 3 

(3  x) (2 x  1) ( x  1)( x 2  x  1) The zeros and values where f is undefined are 1 x  3, x   , and x  1 . 2 Interval

Conclusion

3

f ( x) 

Value of f

Chosen

2   1, 3    2   , 2 3 

The solution set is  x x  1 or 0  x  1 or x  2  or, using

(3  x)3 (2 x  1) 51. 0 x3  1 (3  x)3 (2 x  1) 0 ( x  1)( x 2  x  1)

Number

Interval

 2  x 3  3 x  2   x  1  x 2  x  1

x

54.

The zeros and values where f is undefined are 2 x  2, x  , and x  1 . 3

12 7 x

12 7  0 x x 2  7 x  12 0 x ( x  3)( x  4) 0 x

x

348 Copyright © 2020 Pearson Education, Inc.


Section 4.5: Polynomial and Rational Inequalities

solution set is  x x  0 or 3  x  4  or, using

( x  3)( x  4) ; The zeros and values x where f is undefined are x  0, x  3 and x  4 .

f ( x) 

Interval

(  , 0)

(0, 3)

(3, 4)

(4,  )

1

1

3.5

5

20

6

Number Chosen Value of f

1

interval notation,  , 0    3,4  .

0.4

14 Conclusion

Negative

Positive

Negative

Positive

We want to know where f ( x)  0 , so the

55. a.

R( x) 

Step 1:

x2  5x  6 2

x  4x  4

( x  6)( x  1) ( x  2)( x  2)

p( x)  x 2  5 x  6;

q( x)  x 2  4; n  2; m  2

Domain:  x x  2 The y-intercept is R (0) 

Step 2 & 3:In lowest terms, R ( x ) 

(0) 2  5(0)  6 2

(0)  4(0)  4

6 3 3    . Plot the point  0,   . 4 2 2 

( x  6)( x  1) , x  2 . The x-intercepts are the zeros of y  x  6 and ( x  2)( x  2)

y  x  1 : 6,1 ;

Step 4:

In lowest terms, R ( x ) 

( x  6)( x  1) , x  2 . The vertical asymptote is the zero of f  x   x  2 : ( x  2)( x  2)

x  2; Graph this asymptote using a dashed line.

Step 5:

Since n  m , the line y  1 is the horizontal asymptote. Graph this asymptote using a dashed line. Solve to find intersection points: x2  5x  6 1 x2  4 x  4 x2  5x  6  x2  4x  4 5 x  6  4 x  4 9 x  10 10 x 9

349 Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

Steps 6 & 7: Graphing:

( x  6)( x  1) 0 ( x  2)( x  2)

b.

The zeros and values where f is undefined are x  6, x  1, and x  2 . Interval

Number Chosen

 ,  6 

6

 6, 1

4.5

 1, 2 

3.5

(2,  )

2

Value of f

Conclusion

216 7 243  44 49 108 120 7

Positive Negative Positive Positive

The solution set is  x x   6 or 1  x  2 or x  2  or, using interval notation,

 , 6  1, 2    2,   56. a.

R( x) 

Step 1:

2 x2  9 x  9 2

x 4

(2 x  3)( x  3) ( x  2)( x  2)

p( x)  2 x 2  9 x  9;

q ( x)  x 2  4; n  2; m  2

Domain:  x x  2, 2 The y-intercept is R (0) 

Step 2 & 3:In lowest terms, R ( x) 

2(0) 2  9(0)  9 2

(0)  4

9 9 9    . Plot the point  0,   . 4 4 4 

(2 x  3)( x  3) , x  2, 2 . The x-intercepts are the zeros of y  2 x  3 and ( x  2)( x  2)

3 y  x  3 :  , 3 ; 2

Step 4:

In lowest terms, R ( x) 

(2 x  3)( x  3) , x  2, 2 . The vertical asymptotes are the zeros of ( x  2)( x  2)

f  x   x  2 and f  x   x  2 : x  2 and x  2 ;

Graph these asymptotes using dashed lines.

350 Copyright © 2020 Pearson Education, Inc.


Section 4.5: Polynomial and Rational Inequalities

Step 5:

Since n  m , the line y  1 is the horizontal asymptote. Graph this asymptote using a dashed line. Solve to find intersection points: 2 x2  9 x  9 1 x2  4 x2  9 x  9  x2  4 9 x  13 13 x 9

Steps 6 & 7: Graphing:

(2 x  3)( x  3) 0 ( x  2)( x  2)

b.

3 The zeros and values where f is undefined are x   , x   3, x  2 and x  2 . 2 Interval

 ,  3  3, 2

Number Chosen

Value of f

Conclusion

4

5

12

Positive

2.5

 49

Negative

 2,  3   2

1.75

2

3

Positive

 3    , 2 2

0

 94

Negative

(2,  )

3

54

Positive

5

 3  The solution set is  x x   3 or  2  x   or x  2  or, using interval notation, 2   3  , 3   2,     2,   2 

57. a.

R( x) 

( x  4)( x 2  2 x  3) ( x  4)( x  3)( x  1) ( x  4)( x  1)  ( x  3)( x  2) ( x  3)( x  2) ( x  2)

p( x)  x3  2 x 2  11x  12;

q ( x)  x 2  x  6; n  3; m  2

351 Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

Step 1:

Domain:  x x  2,3 The y-intercept is R (0) 

Step 2 & 3:In lowest terms, R ( x) 

(0)3  2(0) 2  11(0)  12 2

(0)  (0)  6

12  2 . Plot the point  0, 2  . 6

( x  4)( x  1) , x  2 . The x-intercepts are the zeros of y  x  4 and ( x  2)

y  x  1 : 4, 1 ; Note: x  3 is not a zero because reduced form must be used to find the zeros.

Step 4:

In lowest terms, R ( x) 

( x  4)( x  1) , x  2 . The vertical asymptote is the zero of f  x   x  2 : ( x  2)

x  2 ; Graph this asymptote using a dashed line.

Step 5:

Since n  m  1 , there is an oblique asymptote. Dividing: x3 x 2  x  6 x3  2 x 2  11x  12 3

x x

2

3x

 6x 2

 5x  12

2

 3x  18

3x

G ( x)  x  3 

2 x  6 x2  x  6

 2x  6 The oblique asymptote is y  x  3 . Graph this asymptote with a dashed line.

Steps 6 & 7: Graphing:

b.

( x  3)( x  4)( x  1) 0 ( x  3)( x  2)

The zeros and values where f is undefined are x  4, x   2, and x  1 .

352 Copyright © 2020 Pearson Education, Inc.


Section 4.5: Polynomial and Rational Inequalities

Interval

Number Chosen

Value of f

Conclusion

 ,  4 

5

Negative

 4, 2 

4 3

3

2

Positive

 2,  1

1.5

( 1,  )

0

5 2 2

Negative Positive

The solution set is  x  4  x  2 or  1  x  3 or x  3  or, using interval notation,

 4, 2    1,3   3,   58. a.

R( x) 

x3  6 x 2  9 x  4 2

x  x  20

( x  1)( x  1)( x  4) ( x  1)( x  1)  ( x  5)( x  4) ( x  5)

p( x)  x3  6 x 2  9 x  4;

q ( x)  x 2  x  20; n  3; m  2

Step 1:

Domain:  x x  5, 4 The y-intercept is R (0) 

(0)3  6(0) 2  9(0)  4 2

(0)  (0)  20

4 1  1  . Plot the point  0,  . 20 5  5

( x  1)( x  1) , x  5 . The x-intercept is the zero of y  x  1 : 1 ; ( x  5) Note: x  4 is not a zero because reduced form must be used to find the zeros.

Step 2 & 3:In lowest terms, R ( x) 

Step 4:

In lowest terms, R ( x) 

( x  1)( x  1) , x  5 . The vertical asymptote is the zero of f  x   x  5 : ( x  5)

x  5 ; Graph this asymptote using a dashed line.

Step 5:

Since n  m  1 , there is an oblique asymptote. Dividing: x7 x 2  x  20 x3  6 x 2  9 x  4 x3  x 2  20 x

G ( x)  x  3 

2 x  6

x2  x  6

 7 x 2  29 x  4  7 x 2  7 x  140 36 x  144 The oblique asymptote is y  x  7 . Graph this asymptote with a dashed line.

353 Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

Steps 6 & 7: Graphing:

( x  1)( x  1)( x  4) 0 ( x  5)( x  4)

b.

The zeros and values where f is undefined are x  5, x  1, and x  4 . Interval

Number Chosen

 ,  5 

Value of f

Conclusion

49

Negative

6

 5,1

0

1, 4 

3

(4,  )

5

1 5 1 2 8 5

Positive Positive Positive

The solution set is  x  5  x  4 or x  4  or, using interval notation,  5, 4    4,   59. Let x be the positive number. Then x3  4 x 2

60. Let x be the positive number. Then x3  x

x3  4 x 2  0

x3  x  0

x 2 ( x  4)  0

x  x  1 x  1  0

f ( x)  x ( x  4)

f  x   x  x  1 x  1

x  0 and x  4 are the zeros of f .

x  1, x  0, and x  1 are the zeros of f.

2

Interval Number Chosen Value of f Conclusion

(, 0)

(0, 4)

(4, )

1

1

5

Number

5

3

25

Chosen

Negative Negative Positive

Since x must be positive, all real numbers greater than 4 satisfy the condition. The solution set is  x x  4  or, using interval notation,

 4,   .

(  ,  1)

( 1, 0)

(0,1)

(1,  )

2

1 / 2

1/ 2

2

Value of f

6

0.375

0.375

6

Conclusion

Negative

Positive

Negative

Positive

Interval

Since x must be positive, all real numbers between (but not including) 0 and 1 satisfy the condition. The solution set is  x 0  x  1  or, using interval notation,  0,1 .

354 Copyright © 2020 Pearson Education, Inc.


Section 4.5: Polynomial and Rational Inequalities

Interval

61. The domain of f ( x)  x 4  16 consists of all real numbers x for which x 4  16  0

(2, )

5

0

3

Chosen

 x  4   x  2  x  2  0 p( x)   x  4   x  2  x  2  2

Value of R

7

Conclusion

Positive

1 1 7 2 Negative Positive

The domain of f will be where R ( x)  0 . Thus,

2

the domain of f is  x x   4 or x  2  or,

x  – 2 and x  2 are the zeros of p . (,  2)

(2, 2)

(2, )

3

0

3

Value of p

65

16

65

Conclusion

Positive

Chosen

(4, 2)

Number

( x 2  4)( x 2  4)  0

Interval Number

(,  4)

using interval notation,  , 4    2,   . 64. The domain of f ( x) 

x 1 includes all x4

values for which x 1 0 x4 x 1 R( x)  x4 The zeros and values where the expression is undefined are x  – 4 and x  1 .

Negative Positive

The domain of f will be where p( x)  0 . Thus, the domain of f is  x x   2 or x  2  or, using interval notation,  , 2   2,   . 62. The domain of f ( x)  x3  3 x 2 consists of all real numbers x for which x3  3x 2  0

Interval Number Chosen

(,  4)

(4,1)

(1, )

5

0

2

x 2 ( x  3)  0

Value of R

6

p( x)  x 2 ( x  3)

1 4

1 6

Conclusion Positive Negative Positive

x  0 and x  3 are the zeros of p .

The domain of f will be where R ( x)  0 . Thus,

Interval Number

(, 0)

(0,3)

(3, )

1

1

4

4

2

16

Chosen Value of p Conclusion

the domain of f is  x x   4 or x  1  or, using interval notation,  , 4   1,   . f  x  g  x

65.

x 4  1  2 x 2  2

Negative Negative Positive

The domain of f will be where p( x)  0 . Thus, the domain of f is  x x  0 or x  3  or, using interval notation, 0  3,  . 63. The domain of f ( x) 

values for which

 x  3 x  1  0  x  3  x  1 x  1  0 h  x    x  3  x  1 x  1 2

2

2

x2 includes all x4

x2 0. x4

x2 x4 The zeros and values where R is undefined are x  – 4 and x  2 . R( x) 

x4  2 x2  3  0

2

x  1 and x  1 are the zeros of h. Interval (,  1) (1,1) (1, ) Number 2 0 2 Chosen Value of h 21 21 3 Conclusion Positive Negative Positive f  x   g  x  if 1  x  1 . That is, on the

355 Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

interval  1,1 .

f  x  g  x

67.

x 4  4  3x2 x4  3x 2  4  0

 x  4 x  1  0  x  2  x  2   x  1  0 h  x    x  2  x  2   x  1 2

2

2

2

x  2 and x  2 are the zeros of h. Interval (,  2) (2, 2) (2, ) Number 0 3 3 Chosen Value of h 50 50 4 Conclusion Positive Negative Positive

f  x  g  x

66.

x4  1  x  1

x4  x  0

 x  x  1  x  x  1  0 h  x   x  x  1  x  x  1 x x3  1  0

f  x   g  x  if 2  x  2 . That is, on the

2

interval  2, 2 .

2

x  0 and x  1 are the zeros of h. Interval (, 0) (0,1) (1, ) Number 1/ 2 2 1 Chosen Value of h 2 14 7 /16 Conclusion Positive Negative Positive f  x   g  x  if 0  x  1 . That is, on the

interval  0,1 . f  x  g  x

68.

x4  2  x2 x4  x2  2  0

 x  2 x  1  0  x  2  x  1 x  1  0 h  x    x  2   x  1 x  1 2

2

2

2

x  1 and x  1 are the zeros of h. Interval (,  1) (1,1) (1, ) Number 2 0 2 Chosen 2 Value of h 18 18 Conclusion Positive Negative Positive f  x   g  x  if 1  x  1 . That is, on the

356 Copyright © 2020 Pearson Education, Inc.


Section 4.5: Polynomial and Rational Inequalities

interval  1,1 .

69. R ( x) 

x 4  16

2

x 9

( x  4)( x  4) ( x  3)( x  3)

x2  9 x2  9 x4

 16

4

x  9x

2

9 x 2  16 9 x 2  81 65 The x-intercepts are where x  4  0 or x  4  0 . The vertical asymptotes are x = 3, x = -3. So we need to test a number in each interval. Interval (, 4)  4, 3  3,3  3, 4  (4, ) 5 3.5 test value 0 3.5 5 x4      x4      x 3      x3           Sign of expression

So R(x) >0 on the intervals:  , 4    3,3   4,   70. R ( x) 

x3  8 x 2  25

( x  2)( x 2  2 x  4) ( x  5)( x  5)

The x-intercept are where x  2  0 . The vertical asymptotes are x = 5, x = -5. So we need to test a number in each interval. Interval Number Chosen Conclusion

(,  5)

(5, 2)

(2, 5)

(5, )

6

0

3

6

Negative Positive Negative Positive

So R(x)>0 on the intervals:  5, 2   (5, )

357 Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

71. We need to solve C ( x)  100 . 80 x  5000  100 x 80 x  5000 100 x  0 x x 5000  20 x 0 x 20(250  x) 0 x 20  250  x  f  x  x The zeros and values where the expression is undefined are x  0 and x  250 . Interval (, 0) (0, 250) (250, ) Number 1 1 260 Chosen Value of f 5020 4980 10 /13 Conclusion Negative Positive Negative

The number of bicycles produced cannot be negative, so the solution is  x x  250  or, using interval notation,  250,   . The company must produce at least 250 bicycles each day to keep average costs to no more than $100. 72. We need to solve C  x   100 . 80 x  6000  100 x 80 x  6000 100 x  0 x x 6000  20 x 0 x 20  300  x  0 x 20  300  x  f  x  x The zeros and values where the expression is undefined are x  0 and x  300 . Interval (, 0) (0,300) (300, ) Number 1 1 310 Chosen Value of f 6020 5980 20 / 31 Conclusion Negative Positive Negative

The number of bicycles produced cannot be negative, so the solution is  x x  300  or, using interval notation, 300,   . The company

must produce at least 300 bicycles each day to keep average costs to no more than $100. K  16

73. a.

2 150  S  42  S2 300S  12, 600 S2 300 S  12, 600 S2

 16  16

 16  0

300 S  12, 600  16S 2

0 S2 Solve 16 S 2  300S  12, 600  0 and S 2  0 . The zeros and values where the left-hand side is undefined are S  0 , S  39 , S  20 . Since the stretch cannot be negative, we only consider cases where S 0. Interval Test Value

(0, 39) 1

(39, ) 40

Left side

12884

0.625

Conclusion Positive Negative

The cord will stretch less than 39 feet. b. The safe height is determined by the minimum clearance (3 feet), the free length of the cord (42 feet), and the stretch in the cord (39 feet). Therefore, the platform must be at least 3  42  39  84 feet above the ground for a 150-pound jumper. 74. Let r = the distance between Earth and the object in kilometers. Then 384, 400  r = the distance between the object and the moon. We want mmoon mobj mearth mobj G G 2 r2  384, 400  r  mmoon

 384, 400  r  mmoon

2

mearth

mearth r2

0

 384, 400  r  r 2 r 2 mmoon   384, 400  r   mearth 0 2 r 2  384, 400  r  2

2

The zeros and values where the left-hand side is undefined are r  0 , r  432,353 , r  346, 022 , and r  384, 400 . Since the

358 Copyright © 2020 Pearson Education, Inc.


Section 4.5: Polynomial and Rational Inequalities

distance from Earth to the object will be greater than 0 but less than the distance to the moon, we can exclude some of these values. Interval Test Value

(0, 346022) (346022,384400) 100, 000 350, 000 14

So the function would be y  82.

Left side

6  10

1.3  10

Negative

Positive

9x2  1  0 9x2  1

The gravitational force on the object due to the moon will be greater than the force due to the Earth when the object is more than 346,022 kilometers from Earth.

1 9 1 x  (the negative solution will not work) 3 1  The domain is  ,   3  x2 

75. x 4  1  5 has no solution because the quantity x 4  1 is never negative. ( x 4  1  1 ) 76. No, the student is not correct. For example, x  5 is in the solution set, but does not satisfy the original inequality. 5  4 1 1   0 5  3 8 8 When multiplying both sides of an inequality by a negative, we must switch the direction of the inequality. Since we do not know the sign of x  3 , we cannot multiply both sides of the inequality by this quantity.

 x 3  x 3 83. f    4 3  4   4    x  3  3  x

84.

77. Answers will vary. One example: x 5 0 x3 78. Answers will vary, for example, x 2  0 has no real solution and x 2  0 has exactly one real solution.

85.



4 3 4  So the solution is:  ,  3 

 x  y  2x   9  x  y  2

2

2

2

2

Substitute -x for x:

 ( x)  y  2( x)   9  ( x)  y   x  y  2 x   9  x  y  not the same 2

6 x  8  x 

1

LC 1 2  LC 2  LC  1 1 C L 2

2

79. 9  2 x  4 x  1

80.

f  g  3x  1 3x  1  9 x2  1

13

Conclusion

2 x. 3

2

2

2

2

2

2

2

2

not symmetric to y-axis (or origin) Substitute -y for y:

 3 x 2 y 4 (2 x 2  xy  6 y 2 )

 x  ( y )  2 x   9  x  ( y )   x  y  2 x   9  x  y  the same

 3 x 2 y 4 ( x  2 y )(2 x  3 y )

symmetric to x-axis

4 4

3 5

2

2 6

6 x y  3 x y  18 x y

2

2

2

2

81. To vertically compress we would multiply the 2 function by . 3

359 Copyright © 2020 Pearson Education, Inc.

2

2

2

2

2


Chapter 4: Polynomial and Rational Functions 86. The turning points are  0, 4  and 1.33, 2,81

3. Using synthetic division: 3 3 5 0 7 4 9 12 36 3

129

4 12 43 3

125 2

Quotient: 3x  4 x  12 x  43 Remainder: 125 4. x 2  x  3  0 x

1  12  4 1 3 2 1

1  1  12 1  13  2 2  1  13 1  13  , The solution set is  . 2 2   

5. a

5 x 2  3  2 x 2  11x  1

87.

6.

3x 2  11x  4  0 (3x  1)( x  4)  0

7. b

1 x   ,x  4 3  1  The solution set is  , 4   3 

8. False; every polynomial function of degree 3 with real coefficients has at most three real zeros. 9. 0. 10. True

3 2x  2 88. 4 x  1 8 x 2  4 x  5

11.

 6x  5 3  6x  2 13 2

12.

3 13 and the remainder is . 2 2

Section 4.6 f  1  2  1   1  2  1  3 2

f ( x)   4 x 3  5 x 2  8; c   3

f ( 3)   4( 3)3  5( 3) 2  8  108  45  8  161  0 Thus, –3 is not a zero of f and x  3 is not a factor of f .

13.

1.

f ( x)  4 x3  3 x 2  8 x  4; c  2

f (2)  4(2)3  3(2) 2  8(2)  4  32  12  16  4  8  0 Thus, 2 is not a zero of f and x  2 is not a factor of f .

8x2  2 x

The quotient is 2 x 

f c

f ( x)  5 x 4  20 x3  x  4; c  2

f (2)  5(2) 4  20(2)3  (2)  4  80  160  2  4  82 Thus, 2 is not a zero of f and x  2 is not a factor of f .

2. 6 x 2  x  2   3x  2  2 x  1

360 Copyright © 2020 Pearson Education, Inc.


Section 4.6: The Real Zeros of a Polynomial Function

14.

f  x   4 x 4  15 x 2  4 ; c  2

1 1 is not a zero of f and x  is not a 3 3 factor of f.

Thus, 

f  2   4  2   15  2   4  64  60  4  0 4

2

Thus, 2 is a zero of f and x  2 is a factor of f . 15.

6

21.

3

f ( x)  2 x  129 x  64; c   4 6

The maximum number of zeros is the degree of the polynomial, which is 7. Examining f  x   4 x 7  x3  x 2  2 , there are

3

f (4)  2( 4)  129( 4)  64  8192  8256  64  0 Thus, –4 is a zero of f and x  4 is a factor of f .

16.

three variations in sign; thus, there are three positive real zeros or there is one positive real zero. Examining

f  x   2 x 6  18 x 4  x 2  9 ; c  3

f   x   4   x     x     x   2 , 7

f  3  2  3  18  3   3  9 6

4

2

 1458  1458  9  9  0 Thus, –3 is a zero of f and x  3 is a factor of f .

17.

6

4

22.

f ( x)  4 x  64 x  x  15; c  4 2

 16,384  16,384  16  15  1  0 Thus, –4 is not a zero of f and x  4 is not a factor of f .

18.

f x  5x  2 x  6 x  5 , 4

2

 4096  4096  16  16  0 Thus, –4 is a zero of f and x  4 is a factor of f .

19.

f ( x)  2 x 4  x3  2 x  1; c  4

23.

1 2

two variations in sign; thus, there are two positive real zeros or no positive real zeros. Examining

3

f ( x)  3x 4  x3  3x  1; c   4

3

1 3

 1  1  1  1 f     3        3   1  3  3  3  3 1 1   11  2  0 27 27

f  x   8x6  7 x2  x  5

The maximum number of zeros is the degree of the polynomial, which is 6. Examining f  x   8 x 6  7 x 2  x  5 , there are

1 1 1 1 f    2      2   1 2 2 2 2 1 1   11  0 8 8 1 1 Thus, is a zero of f and x  is a factor of f . 2 2

20.

2

 5x4  2 x2  6 x  5 there is one variation in sign; thus, there is one negative real zero.

f  4    4   16  4    4   16 4

f  x   5x4  2 x2  6 x  5

one variation in sign; thus, there is one positive real zero. Examining

f  x   x 6  16 x 4  x 2  16 ; c  4 6

2

The maximum number of zeros is the degree of the polynomial, which, is 4. Examining f  x   5 x 4  2 x 2  6 x  5 , there is

f (4)  4  4   64  4    4   15 4

3

 4 x7  x3  x 2  2 there are two variations in sign; thus, there are two negative real zeros or no negative real zeros.

2

6

f  x   4 x 7  x3  x 2  2

f x  8x  7 x  x  5 , 6

2

 8x6  5x 2  x  5 there are two variations in sign; thus, there are two negative real zeros or no negative real zeros.

24.

f  x   3 x5  4 x 4  2

The maximum number of zeros is the degree of the polynomial, which is 5. Examining f  x   3 x5  4 x 4  2 , there is one variation in sign; thus, there is one positive real zero. Examining

361 Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions f   x   3   x   4   x   2 ,

f   x     x   5   x   2  x 4  5 x3  2 ,

 3x5  4 x 4  2 there is no variation in sign; thus, there are no negative real zeros.

there is one variation in sign; thus, there is one negative real zero.

5

25.

4

4

29.

f  x   2 x3  5 x 2  x  7

no variations in sign; thus, there are no positive real zeros. Examining

two variations in sign; thus, there are two positive real zeros or no positive real zeros. Examining

f x  x  x  x  x 1 , 5

f   x   2   x   5   x     x   7 , 2

30.

f  x    x3  x 2  x  1

f x   x  x  x 1 , 2

f   x   x   x   x   x   x 1 5

2

 x  x  x 1 there are two variations in sign; thus, there are two negative real zeros or no negative real zeros.

27.

f  x    x4  x2  1

The maximum number of zeros is the degree of the polynomial, which is 4. Examining f  x    x 4  x 2  1 , there are two

31.

f  x   x 4  5 x3  2

2

f  x   x6  1

in sign; thus, there is one positive real zero. Examining f   x     x   1  x 6  1 , there is 6

Examining f   x      x     x   1

28.

3

The maximum number of zeros is the degree of the polynomial, which is 6. Examining f  x   x6  1 , there is one variation

2

  x 4  x 2  1 , there are two variations in sign; thus, there are two negative real zeros or no negative real zeros.

4

  x5  x 4  x3  x 2  x  1 there is no variation in sign; thus, there are no negative real zeros.

variations in sign; thus, there are two positive real zeros or no positive real zeros. 4

f  x   x5  x 4  x3  x 2  x  1

there are five variations in sign; thus, there are five positive real zeros or three positive real zeros or there is one positive real zero. Examining

variation in sign; thus, there is one positive real zero. Examining 3

2

The maximum number of zeros is the degree of the polynomial, which is 5. Examining f  x   x5  x 4  x3  x 2  x  1 ,

The maximum number of zeros is the degree of the polynomial, which is 3. Examining f  x    x3  x 2  x  1 , there is one

3

4

  x5  x 4  x 2  x  1 there are three variations in sign; thus, there are three negative real zeros or there is one negative real zero.

 2 x3  5 x 2  x  7 there is one variation in sign; thus, there is one negative real zero.

26.

f  x   x5  x 4  x 2  x  1

The maximum number of zeros is the degree of the polynomial, which is 5. Examining f  x   x5  x 4  x 2  x  1 , there are

The maximum number of zeros is the degree of the polynomial, which is 3. Examining f  x   2 x3  5 x 2  x  7 , there are

3

3

one variation in sign; thus, there is one negative real zero. 32.

f  x   x6  1

The maximum number of zeros is the degree of the polynomial, which is 6. Examining f  x   x6  1 , there is no variation

The maximum number of zeros is the degree of the polynomial, which is 4. Examining f  x   x 4  5 x3  2 , there is one

in sign; thus, there are no positive real zeros.

variation in sign; thus, there is one positive real zero. Examining

no variation in sign; thus, there are no negative real zeros.

Examining f   x     x   1  x6  1 , there is 6

362 Copyright © 2020 Pearson Education, Inc.


Section 4.6: The Real Zeros of a Polynomial Function

33.

f  x   3x 4  3x3  x 2  x  1

40.

f ( x)   4 x3  x 2  x  6 p must be a factor of 6: p  1,  2, 3, 6 q must be a factor of –4: q  1,  2,  4 The possible rational zeros are: p 1 1 3 3  1,  2,  ,  , 3,  ,  , 6 q 2 4 2 4

41.

f ( x)  2 x5  x3  2 x 2  12 p must be a factor of 12: p  1,  2,  3, 4, 6, 12 q must be a factor of 2: q  1, 2 The possible rational zeros are: p 1 3  1,  2,  4,  , 3,  , 6, 12 q 2 2

42.

f ( x)  3 x5  x 2  2 x  18 p must be a factor of 18: p  1,  2, 3, 6, 9, 18 q must be a factor of 3: q  1, 3 The possible rational zeros are: p 1 2  1,  , 2,  , 3, 6, 9  18 q 3 3

43.

f ( x)  6 x 4  2 x3  x 2  20 p must be a factor of 20: p  1,  2, 4, 5, 10, 20 q must be a factor of 6: q  1, 2, 3, 6 The possible rational zeros are: p 1 1 2 1 4 5  1,  2,  ,  ,  ,  , 4,  , 5,  , q 2 3 3 6 3 2 5 5 10 20  ,  , 10,  , 20,  3 6 3 3

44.

f ( x)   6 x3  x 2  x  10 p must be a factor of 10: p  1,  2, 5, 10 q must be a factor of –6: q  1, 2, 3, 6 The possible rational zeros are: p 1 1 1 2 5  1,  ,  ,  , 2,  , 5,  , q 2 3 6 3 2 5 5 10  ,  , 10,  3 6 3

45.

f  x   x3  2 x 2  5 x  6

p must be a factor of 1: p  1 q must be a factor of 3: q  1, 3

The possible rational zeros are: 34.

p 1  1,  q 3

f  x   x5  x 4  2 x 2  3

p must be a factor of 3: p  1, 3 q must be a factor of 1: q  1 The possible rational zeros are: 35.

p  1, 3 q

f  x   x5  2 x 2  8 x  5

p must be a factor of –5: p  1, 5 q must be a factor of 1: q  1 The possible rational zeros are: 36.

p  1, 5 q

f  x   2 x5  x 4  x 2  1

p must be a factor of 1: p  1 q must be a factor of 2: q  1, 2 The possible rational zeros are: 37.

p 1  1,  q 2

f  x   9 x3  x 2  x  3

p must be a factor of 3: p  1, 3 q must be a factor of –9: q  1, 3, 9 The possible rational zeros are: p 1 1  1, 3,  ,  9 3 q 38.

f  x   6 x4  x2  2

p must be a factor of 2: p  1, 2 q must be a factor of 6: q  1, 2, 3, 6 The possible rational zeros are: p 1 1 2 1  1, 2,  ,  ,  ,  q 2 3 3 6 39.

f ( x)  6 x 4  x 2  9 p must be a factor of 9: p  1,  3, 9 q must be a factor of 6: q  1,  2, 3, 6 The possible rational zeros are: p 1 1 1 3 9  1,  ,  ,  , 3,  ,  9,  q 2 3 6 2 2

Step 1:

f (x) has at most 3 real zeros.

363 Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

Step 2: By Descartes’ Rule of Signs, there is one positive real zero.

x 2  3x  4 . Thus,

f x  x  2 x  5x  6 3

3

2

  x  2x  5x  6 thus, there are two negative real zeros or no negative real zeros.

Step 3: Possible rational zeros: p  1,  2,  3,  6; q  1; p  1,  2,  3,  6 q

2 5 6 3 3 6 1 1  2 0

  x  3 x  1 x  2 

The real zeros are –3, –1, and 2, each of multiplicity 1. 46.

f  x   x3  8 x 2  11x  20

Step 1:

f (x) has at most 3 real zeros.

Step 2: By Descartes’ Rule of Signs, there is one positive real zero. f   x     x   8   x   11  x   20 , 3

f  x   2 x3  x 2  2 x  1

f (x) has at most 3 real zeros.

Step 2: By Descartes’ Rule of Signs, there are three positive real zeros or there is one positive real zero. f ( x)  2( x)3  ( x) 2  2( x )  1   2 x3  x 2  2 x  1 thus, there are no negative real zeros.

Since the remainder is 0, x  (3)  x  3 is a factor. The other factor is the quotient: x2  x  2 . Thus, f  x    x  3 x 2  x  2

  x  5  x  4  x  1

Step 1:

31

The real zeros are –5, –4, and 1, each of multiplicity 1. 47.

Step 4: Using synthetic division: We try x  3 :

f  x    x  5  x 2  3x  4

2

2

  x3  8 x 2  11x  20 thus, there are two negative real zeros or no negative real zeros.

Step 3: Possible rational zeros: p  1, 2, 4, 5, 10, 20 q  1

Step 3: Possible rational zeros: p  1 q  1,  2 1 p  1,  q 2 Step 4: Using synthetic division: We try x  1 : 1 2 1 2 1 2 1 3 2 1 3 2 x  1 is not a factor 1 We try x  : 2 1 2 1 2 1 2 1 0 1 2

0 2 0

1 is a factor and the quotient is 2 x 2  2 . 2 Thus, 1  f  x   2 x3  x 2  2 x  1   x   2 x 2  2 2  . 1   2  x   x2  1 2  x

p  1, 2, 4, 5, 10, 20 q

Step 4: Using synthetic division: We try x  5 :

51

8 11  20  5  15 20 1 3 4 0 Since the remainder is 0, x  (5)  x  5 is a

Since x 2  1  0 has no real solutions, the only 1 real zero is x  , of multiplicity 1. 2

factor. The other factor is the quotient: 364 Copyright © 2020 Pearson Education, Inc.


Section 4.6: The Real Zeros of a Polynomial Function

48.

f ( x)  2 x3  x 2  2 x  1

f ( x)  2( x)3  4( x) 2  10   x   20 ,

Step 1:

 2 x3  4 x 2  10 x  20 thus, there is one negative real zeros.

f (x) has at most 3 real zeros.

Step 2: By Descartes’ Rule of Signs, there are no positive real zeros.

Step 3: Possible rational zeros: p  1, 2, 5, 10; q  1; p  1, 2, 5, 10 q

f x  2x  x  2x 1 3

2

 2 x3  x 2  2 x  1 thus, there are three negative real zeros or there is one negative real zero.

Step 4: Using synthetic division: We try x  2 : 2 1 2 5 10 2 0  10

Step 3: Possible rational zeros: p  1; q  1,  2; 1 p  1,  q 2

1 0 5 0 Since the remainder is 0, x  2 is a factor. The other factor is the quotient: x 2  5 . We can find the remaining real zeros by solving x2  5  0

Step 4: Using synthetic division: We try x  1 : 1 2 1 2 1 2 1 3

x2  5

2 1 3  2

x 5

x  1 is not a factor

2

0

2

real zeros are 2, multiplicity 1. 50.

Since x 2  1  0 has no real solutions, the only 1 real zero is x   , of multiplicity 1. 2 f  x   2 x 3  4 x 2  10 x  20

 2 x3  2 x 2  5 x  10

Step 1:

 3 x3  2 x 2  5 x  10

1 x  is a factor and the quotient is 2 x 2  2 2 1  f ( x)  2 x3  x 2  2 x  1   x   2 x 2  2 2  1   2  x   x2  1 2 

49.



5 , and  5 , each of

f  x   3 x3  6 x 2  15 x  30

0

Thus, f ( x)  2  x  2  x  5 x  5 . The

1 We try x  : 2 1  2 1 2 1 2 1 0 1

f (x) has at most 3 real zeros.

Step 2: By Descartes’ Rule of Signs, there are two positive real zeros or no positive real zeros.

Step 1:

f (x) has at most 3 real zeros.

Step 2: By Descartes’ Rule of Signs, there is one positive real zero. f ( x)  3( x)3  6( x) 2  15   x   30 ,  3 x3  6 x 2  15 x  30 thus, there are two negative real zeros or no negative real zeros.

Step 3: Possible rational zeros: p  1, 2, 5, 10; q  1; p  1, 2, 5, 10 q Step 4: Using synthetic division: We try x  2 : 2 1 2  5  10 2 0 10 1

0

365 Copyright © 2020 Pearson Education, Inc.

5

0


Chapter 4: Polynomial and Rational Functions

Since the remainder is 0, x  2 is a factor. The other factor is the quotient: x 2  5 . We can find the remaining real zeros by solving x2  5  0 x2  5

The real zeros are



52.

Thus, f ( x)  3  x  2  x  5 x  5 . The real zeros are 2 , multiplicity 1. 51.

4

3

f ( x)  2 x 4  x3  5 x 2  2 x  2

5 , and  5 , each of

f x  2 x  x  5x  2 x  2 4

f (x) has at most 4 real zeros.

f  x   2  x     x  7  x   3 x   3 2

 2 x 4  x3  7 x 2  3x  3 thus, there are two negative real zeros or no negative real zeros.

Step 4: Using synthetic division: We try x  1 : 1 2 1  5 2 2 2 1 4 2

Step 3: Possible rational zeros: p  1,  3; q  1, 2; p 1 3   , 1,  , 3 q 2 2

2 1 4 2 0 x  1 is a factor and the quotient is 2 x3  x 2  4 x  2 . Factoring by grouping gives 2 x3  x 2  4 x  2  x 2  2 x  1  2  2 x  1

Step 4: Using synthetic division: We try x  1 : 1 2 1  7  3 3 2 1 6 3

  2 x  1 x 2  2

2 x3  x 2  6 x  3 . Factoring by grouping gives 2 x3  x 2  6 x  3  x 2  2 x  1  3  2 x  1   2 x  1 x 2  3

 x  2  1   2  x    x  1  x  2  x  2  2 

f ( x)   2 x  1 x  1 x  2

Set each of these factors equal to 0 and solve: x2  3  0 2x 1  0 2x  1 x2  3 1 x 3 x 2 Thus,

  1   2  x    x  1  x  3  x  3  2 

f ( x)   2 x  1 x  1 x  3 x  3

Set each of these factors equal to 0 and solve: x2  2  0 2x  1  0 2 x  1 x2  2 1 x 2 x 2 Thus,

2 1  6 3 0 x  1 is a factor and the quotient is

2

Step 3: Possible rational zeros: p  1,  2; q  1, 2; p 1   , 1,  2, 3 q 2

Step 2: By Descartes’ Rule of Signs, there are two positive real zeros or no positive real zeros. 3

3

 2 x 4  x3  5 x 2  2 x  2 thus, there are two negative real zeros or no negative real zeros.

2

4

f (x) has at most 4 real zeros.

Step 2: By Descartes’ Rule of Signs, there are two positive real zeros or no positive real zeros.

f ( x)  2 x  x  7 x  3 x  3

Step 1:

3 , and  3 , each

of multiplicity 1.

Step 1:

x 5

1 , 1 , 2

1 The real zeros are  , 1, 2 of multiplicity 1

53.

2 , and  2 , each

f ( x)  x 4  x3  3 x 2  x  2

Step 1:

f (x) has at most 4 real zeros.

366 Copyright © 2020 Pearson Education, Inc.


Section 4.6: The Real Zeros of a Polynomial Function

Step 4: Using synthetic division: We try x  2 :  21  1  6 4 8 2 6 0 8 1 3 0 4 0

Step 2: By Descartes’ Rule of Signs, there are two positive real zeros or no positive real zeros. f   x     x     x   3   x     x   2 thus, 4

3

2

 x 4  x3  3x 2  x  2 there are two negative real zeros or no negative real zeros.

x  2 is a factor and the quotient is x3  3x 2  4 .

Step 3: Possible rational zeros: p  1,  2; q  1; p  1,  2 q

We try x  1 on x3  3x 2  4 11  3 0 4 1 4  4 1 4 4 0

Step 4: Using synthetic division: We try x  2 :

x  1 is a factor and the quotient is x 2  4 x  4 . Thus,

 21

f  x    x  2  x  1 x 2  4 x  4

1  3 1 2 2 2 2 2 1 1 1 1 0

  x  2  x  1 x  2 

x3  x 2  x  1 .

55.

2

We try x  1 on x  x  x  1 11  1  1 1 1 2 1 1 2 1 0

2

The real zeros are –2, –1, each of multiplicity 1, and 1, of multiplicity 2. 54. f (x)  x  x  6x  4x  8 Step 1: f (x) has at most 4 real zeros. 3

2

Step 2: By Descartes’ Rule of Signs, there are two positive real zeros or no positive real zeros. f x  x  x  6x  4x  8 4

3

f (x) has at most 4 real zeros.

Step 2: By Descartes’ Rule of Signs, there are no positive real zeros.

f ( x)   x  2  x  1 x 2  2 x  1

4

f ( x)  4 x 4  5 x3  9 x 2  10 x  2

Step 1:

x  1 is a factor and the quotient is x 2  2 x  1 . Thus,   x  2  x  1 x  1

2

The real zeros are –2, –1, each of multiplicity 1, and 2, of multiplicity 2.

x  2 is a factor and the quotient is

3

2

 x 4  x3  6 x 2  4 x  8 thus, there are two negative real zeros or no negative real zeros.

Step 3: Possible rational zeros: p  1,  2,  4,  8; q  1; p  1,  2,  4,  8 q

f   x   4   x   5   x   9   x   10   x   2 4

3

2

 4 x 4  5 x3  9 x 2  10 x  2 thus, there are four negative real zeros or two negative real zeros or no negative real zeros.

Step 3: Possible rational zeros: p  1,  2; q  1, 2, 4; p 1 1   ,  , 1,  2 q 4 2 Step 4: Using synthetic division: We try x  1 : 1 4 5 9 10 2  4 1  8  2 4 1 8 2 0 x  1 is a factor and the quotient is 4 x3  x 2  8 x  2 . Factoring by grouping gives 4 x3  x 2  8 x  2  x 2  4 x  1  2  4 x  1

  4 x  1 x 2  2

Set each of these factors equal to 0 and solve:

367 Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

f ( x)   3 x  1 x  1 x 2  2

4x  1  0

x2  2  0

4 x  1

x 2  2

1 x 4

x   2 no real sol.

Thus,

f ( x)   4 x  1 x  1 x 2  2

 

1   4  x    x  1 x 2  2 4  1 The real zeros are  and 1 , each of 4 multiplicity 1.

56.

 

1   3  x    x  1 x 2  2 3  1 The real zeros are  and 1 , each of 3 multiplicity 1.

57. x 4  x3  2 x 2  4 x  8  0 The solutions of the equation are the zeros of f  x   x 4  x3  2 x 2  4 x  8 .

Step 1:

f (x) has at most 4 real zeros.

f ( x)  3x 4  4 x3  7 x 2  8 x  2 Step 1: f (x) has at most 4 real zeros.

Step 2: By Descartes’ Rule of Signs, there are three positive real zeros or there is one positive real zero.

Step 2: By Descartes’ Rule of Signs, there are no positive real zeros.

f x  x  x  2x  4x  8

f x  3x  4  x  7  x  8x  2 4

3

2

 3x 4  4 x3  7 x 2  8 x  2 thus, there are four negative real zeros or two negative real zeros or no negative real zeros.

4

3

2

 x 4  x3  2 x 2  4 x  8 thus, there is one negative real zero.

Step 3: Possible rational zeros: p  1,  2,  4,  8; q  1; p  1,  2,  4,  8 q

Step 3: Possible rational zeros: p  1,  2; q  1, 3; p 1 2   ,  , 1,  2 q 3 3

Step 4: Using synthetic division: We try x  1 :

Step 4: Using synthetic division: We try x  1 : 1 3 4 7 8 2  3 1  6  2

x  1 is a factor and the quotient is x3  2 x 2  4 x  8 .

11  1 2  4  8 1 2  4 8 1  2 4 8 0

3 1 6 2 0 x  1 is a factor and the quotient is 3x3  x 2  6 x  2 . Factoring by grouping gives 3x3  x 2  6 x  2  x 2  3x  1  2  3x  1

  3 x  1 x 2  2

Set each of these factors equal to 0 and solve: 3x  1  0 x2  2  0 3x  1 x 2  2 1 x   2 x 3 no real sol. Thus,

We try x  2 on x3  2 x 2  4 x  8

21  2 2 1 0

4 8 0 8 4 0

x  2 is a factor and the quotient is x 2  4 .

Thus, f  x    x  1 x  2  x 2  4 . 2

Since x  4  0 has no real solutions, the solution set is 1, 2 .

368 Copyright © 2020 Pearson Education, Inc.


Section 4.6: The Real Zeros of a Polynomial Function

58. 2 x3  3 x 2  2 x  3  0 Solve by factoring: x 2 (2 x  3)  (2 x  3)  0

x

3 2 2 Since x  1  0 has no real solutions, the  3 solution set is   .  2 x

59. 3x3  4 x 2  7 x  2  0 The solutions of the equation are the zeros of f  x   3 x3  4 x 2  7 x  2 .

f (x) has at most 3 real zeros.

Step 2: By Descartes’ Rule of Signs, there are two positive real zeros or no positive real zeros. f x  3x  4  x  7  x  2 3

2 8 2 2 2 2   1  2 2 2  The solution set is 1  2,  1  2,  . 3  

(2 x  3) x 2  1  0

Step 1:

 2  4  4(1)(1) 2(1)

2

60. 2 x3  3x 2  3x  5  0 The solutions of the equation are the zeros of f  x   2 x3  3 x 2  3 x  5 .

Step 1:

f (x) has at most 3 real zeros.

Step 2: By Descartes’ Rule of Signs, there is one positive real zero. f  x   2  x   3 x   3 x   5 3

2

 3 x3  4 x 2  7 x  2 thus, there is one negative real zero.

 2 x3  3 x 2  3x  5 thus, there are two negative real zeros or no negative real zeros.

Step 3: Possible rational zeros: p  1,  2; q  1,  3 p 1 2  1,  2,  ,  q 3 3

Step 3: Possible rational zeros: p  1,  5; q  1,  2 p 1 5  1,  5,  ,  q 2 2

Step 4: Using synthetic division: 2 We try x  : 3 2 3 4 7 2 3 2 4 2

Step 4: Using synthetic division: 5 We try x  : 2 5 2 3 3 5 2 5 5 5

3 6 3

2

0

2

2

0

5 is a factor. The other factor is the 2 quotient: 2 x 2  2 x  2 . Thus, 5  f ( x)   x   2 x 2  2 x  2 2  5   2  x   x2  x  1 2  x

x

2 is a factor. The other factor is the quotient 3

3x 2  6 x  3 . Thus, 2  f ( x)   x   3x 2  6 x  3 3  2   3  x   x2  2 x  1 3  Using the quadratic formula to solve x2  2 x  1  0 :

Since x 2  x  1  0 has no real solutions, the 5 solution set is   . 2

369 Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

thus, there are two negative real zeros or no negative real zeros.

61. 3x3  x 2  15 x  5  0 Solving by factoring: x 2 (3 x  1)  5(3 x  1)  0

Step 3: Possible rational zeros: p  1,  2,  3,  6; q  1; p  1,  2,  3,  6 q

  (3 x  1)  x  5  x  5   0 (3x  1) x 2  5  0

 The solution set is  5,  3

5,

1 . 3

2

62. 2 x  11x  10 x  8  0 The solutions of the equation are the zeros of f  x   2 x3  11x 2  10 x  8 .

Step 1:

f (x) has at most 3 real zeros.

Step 2: By Descartes’ Rule of Signs, there are two positive real zeros or no positive real zeros. f   x   2   x   11  x   10   x   8 3

2

 2 x3  11x 2  10 x  8 thus, there is one negative real zero.

Step 3: Possible rational zeros: p  1,  2,  4,  8; q  1,  2 p 1  1,  2,  4,  8,  q 2

f (x) has at most 4 real zeros.

Step 2: By Descartes’ Rule of Signs, there are two positive real zeros or no positive real zeros. f x  x  4 x  2 x  x  6  x 4  4 x3  2 x 2  x  6

x  2 is a factor and the quotient is x 2  x  1 .

Thus, f ( x)   x  3 x  2  x 2  x  1 .

64. x 4  2 x3  10 x 2  18 x  9  0 The solutions of the equation are the zeros of f  x   x 4  2 x3  10 x 2  18 x  9

Step 1:

f (x) has at most 4 real zeros.

Step 2: By Descartes’ Rule of Signs, there are four positive real zeros or two positive real zeros or no positive real zeros. 3

2

 x 4  2 x3  10 x 2  18 x  9 Thus, there are no negative real zeros.

63. x 4  4 x3  2 x 2  x  6  0 The solutions of the equation are the zeros of f  x   x 4  4 x3  2 x 2  x  6 .

3

We try x  2 on x3  x 2  x  2  21 1 1 2 2 2 2 1 1 1 0

4

 1  The solution set is  , 2, 4  .  2 

4

x  3 is a factor and the quotient is x3  x 2  x  2 .

f   x     x   2   x   10   x   18   x   9

  x  4  2 x  1 x  2 

Step 1:

4 2 1 6 3 3 3 6 1 1 1 2 0

Since x  x  1  0 has no real solutions , the solution set is 3, 2 .

4 2  11 10 8 8  12  8 2 3 2 0 x  4 is a factor. The other factor is the quotient: 2 x 2  3 x  2 . Thus,

 31

2

Step 4: Using synthetic division: We try x  4 :

f ( x)   x  4  2 x 2  3x  2

Step 4: Using synthetic division: We try x  3 :

2

Step 3: Possible rational zeros: p  1,  3,  9; q  1 p  1,  3,  9 q Step 4: Using synthetic division: We try x  1 : 11  2 10  18 9 1 1 9 9 1 1 9 9 0 x  1 is a factor and the quotient is x3  x 2  9 x  9 .

370 Copyright © 2020 Pearson Education, Inc.


Section 4.6: The Real Zeros of a Polynomial Function

We try x  1 on x3  x 2  9 x  9 11 1 9  9 1 0 9 1 0 9 0

3 2 x  3 x  2  0  2 x3  3x 2  6 x  4  0 2 The solutions of the equation are the zeros of f ( x)  2 x3  3x 2  6 x  4 .

66. x3 

x  1 is a factor and the quotient is x 2  9 . Thus, f ( x)   x  1

2

 x  9 . 2

2

Since x  9  0 has no real solutions, the solution set is 1 . 2 2 8 x  x  1  0  3 x3  2 x 2  8 x  3  0 3 3 The solutions of the equation are the zeros of f ( x)  3x3  2 x 2  8 x  3 .

65. x3 

Step 1:

f (x) has at most 3 real zeros.

Step 2: By Descartes’ Rule of Signs, there are two positive real zeros or no positive real zeros. f ( x)  3( x)3  2( x) 2  8( x)  3 ,  3x3  2 x 2  8 x  3 thus, there is one negative real zero.

Step 3: To find the possible rational zeros: p  1,  3; q  1,  3 p 1  1,  3,  q 3 Step 4: Using synthetic division: 1 We try x  : 3 1  3 2 8 3 3 1 1  3 3 9

3 x

0

1 is a factor. The other factor is the 3 2

quotient: 3x  3x  9 . Thus, 1  f ( x)   x   3 x 2  3 x  9 3  1    x    3 x 2  x  3 3 

  3 x  1 x 2  x  3 2

Step 1:

f (x) has at most 3 real zeros.

Step 2: By Descartes’ Rule of Signs, there is one positive real zero. f ( x)  2( x)3  3( x) 2  6( x)  4  2 x3  3 x 2  6 x  4 thus, there are two negative real zeros or no negative real zeros.

Step 3: To find the possible rational zeros: p  1,  2, 4; q  1,  2 p 1  1,  ,  2, 4 q 2 Step 4: Using synthetic division: We try x  1 : 1 2 3 6 4 2 5 11 2 5 11 7 x  1 is not a factor

We try x  12 1 2

2

3 6 4 1 2 4

2

4 8

0

x  12 is a factor Thus,

1  f ( x)   x   2 x 2  4 x  8 2  1   2  x   x2  2 x  4 2 

Since x 2  2 x  4  0 has no real solutions, the 1  solution set is   . 2 67. 2 x 4  19 x3  57 x 2  64 x  20  0 The solutions of the equation are the zeros of f ( x)  2 x 4  19 x3  57 x 2  64 x  20 .

Step 1:

Since x  x  3  0 has no real solutions, the  1 solution set is   .  3

f (x) has at most 4 real zeros.

Step 2: By Descartes’ Rule of Signs, there are four positive real zeros or two positive real zeros or no positive real zeros.

371 Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

f ( x)  2   x   19   x   57   x   64   x   20 4

3

2

 2 x 4  19 x3  57 x 2  64 x  20 Thus, there are no negative real zeros.

68. 2 x 4  x3  24 x 2  20 x  16  0 The solutions of the equation are the zeros of f ( x)  2 x 4  x3  24 x 2  20 x  16 .

Step 3: To find the possible rational zeros: p  1,  2, 4, 5, 10, 20; q  1,  2; p 1 5  1,  , 2, 4, 5,  , 10, 20 q 2 2

Step 1:

Step 4: Using synthetic division: We try x  1 : 1 2  19 57  64 20 2  17 40  24

 2 x 4  x3  24 x 2  20 x  16 thus, there are two negative real zeros or no negative real zeros.

1 We try x  : 2 1 2  19 57  64 20 2 1 9 24  20 48  40

0

4

3

2

2 5  14  8 0 x  2 is a factor, and the other factor is the quotient 2 x3  5 x 2  14 x  8 .

3

1  7 10 0 x  2 is a factor, and the other factor is the quotient x 2  7 x  10 . Thus,

x  9 x  24 x  20   x  2  x  7 x  10

  x  2  x  2  x  5  1 2  f ( x)  2  x    x  2   x  5  2   1  The solution set is  , 2,5 . 2 

2

Now try x  4 as a factor of 2 x  5 x  14 x  8 . 4 2 5  14  8  8 12 8

2

Thus, f ( x)   x  2  2 x3  5 x 2  14 x  8 .

Now try x – 2 as a factor of x3  9 x 2  24 x  20 . 2 1  9 24  20 2  14 20

2

f ( x)  2   x     x   24   x   20   x   16

Step 4: Using synthetic division: We try x  2 : 2 2 1  24 20 16 4 10  28  16

1 x  is a factor and the quotient is 2 2 x3  18 x 2  48 x  40 . Thus, 1  f ( x)   x   2 x3  18 x 2  48 x  40 2  1   2  x   x3  9 x 2  24 x  20 2 

3

Step 2: By Descartes’ Rule of Signs, there are two positive real zeros or no positive real zeros.

Step 3: To find the possible rational zeros: p  1,  2, 4, 8, 16; q  1,  2; p 1  1,  , 2, 4, 8, 16 q 2

2  17 40  24  4 x  1 is not a factor

2  18

f (x) has at most 4 real zeros.

2 3 2 0 x  4 is a factor, and the other factor is the quotient 2 x 2  3 x  2 . Thus,

2 x3  5 x 2  14 x  8   x  4  2 x 2  3 x  2

  x  4  2 x  1 x  2 

f ( x)   x  2  x  4  2 x  1 x  2    x  2   x  4  2 x  1 2

1   The solution set is 4,  , 2  . 2  

372 Copyright © 2020 Pearson Education, Inc.


Section 4.6: The Real Zeros of a Polynomial Function

69.

f  x   x 4  3x 2  4 r

1 2 1 2

coeff of q(x)

remainder

1 2 2 6 2 1 2 0 1 2 2 6 2 1 2 0

1 1 1 1

For r = 2, the last row of synthetic division contains only numbers that are positive or 0, so we know there are no zeros greater than 2. For r = -2, the last row of synthetic division results in alternating positive (or 0) and negative (or 0) values, so we know that there are no zeros less than -2. The upper bound is 2 and the lower bound is -2. 70.

f  x   x 4  5 x 2  36 r

coeff of q(x)

remainder

1 2

1 1

1 2

4 1

4 2

40 40

3 1 2 3

1 1 1 1

3 1 2 3

4 4 1 4

12 0 4 40 2 40 12 0

For r = 3, the last row of synthetic division contains only numbers that are positive or 0, so we know there are no zeros greater than 3. For r = -3, the last row of synthetic division results in alternating positive (or 0) and negative (or 0) values, so we know that there are no zeros less than -3. The upper bound is 3 and the lower bound is -3. 71.

f  x   x 4  x3  x  1 r

1 1

coeff of q(x)

1 1

2 0

2 0

remainder

1 1

0 0

For r = 1, the last row of synthetic division contains only numbers that are positive or 0, so we know there are no zeros greater than 1. For r = -1, the last row of synthetic division results in alternating positive (or 0) and negative (or 0) values, so we know that there are no zeros less than -1. The upper bound is 1 and the lower bound is -1. 72.

f  x   x 4  x3  x  1 r

1 1

coeff of q(x)

1 1

0 2

0 2

remainder

1 1

0 0

For r = 1, the last row of synthetic division contains only numbers that are positive or 0, so we know there are no zeros greater than 1. For r = -1, the last row of synthetic division results in alternating positive (or 0) and negative (or 0) values, so we know that there are no zeros less than -1. The upper bound is 1 and the lower bound is -1.

373 Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

73.

f  x   3 x 4  3 x3  x 2  12 x  12 r

coeff of q(x)

remainder

1

3

6

5

7

5

2 1

3 3

9 0

17 1

22 11

56 23

2

3

3

5

22

56

For r = 2, the last row of synthetic division contains only numbers that are positive or 0, so we know there are no zeros greater than 2. For r = -2, the last row of synthetic division results in alternating positive (or 0) and negative (or 0) values, so we know that there are no zeros less than -2. The upper bound is 2 and the lower bound is -2. 74. f  x   3 x 4  3 x3  5 x 2  27 x  36 r

coeff of q(x)

1 2 1 2 3

3 3 3 3 3

0 3 6 9 12

5 1 1 13 31

remainder

22 29 26 1 66

14 22 62 38 162

For r = 2, the last row of synthetic division contains only numbers that are positive or 0, so we know there are no zeros greater than 2. For r = -3, the last row of synthetic division results in alternating positive (or 0) and negative (or 0) values, so we know that there are no zeros less than -3. The upper bound is 2 and the lower bound is -3. 75.

f  x   4 x5  x 4  2 x3  2 x 2  x  1 r

coeff of q(x)

1 1

4 4

3 5

5 7

remainder

3 9

4 10

3 11

For r = 1, the last row of synthetic division contains only numbers that are positive or 0, so we know there are no zeros greater than 1. For r = -1, the last row of synthetic division results in alternating positive (or 0) and negative (or 0) values, so we know that there are no zeros less than -1. The upper bound is 1 and the lower bound is -1. 76.

1 1 1 1 1  f  x   4 x 5  x 4  x3  x 2  2 x  2  4  x5  x 4  x3  x 2  x   4 4 4 2 2  r

1 1

coeff of q(x)

4 4

5 3

6 4

remainder

7 3

5 1

3 3

For r = 1, the last row of synthetic division contains only numbers that are positive or 0, so we know there are no zeros greater than 1. For r = -1, the last row of synthetic division results in alternating positive (or 0) and negative (or 0) values, so we know that there are no zeros less than -1. The upper bound is 1 and the lower bound is -1.

374 Copyright © 2020 Pearson Education, Inc.


Section 4.6: The Real Zeros of a Polynomial Function

77.

f  x    x 4  3 x3  4 x 2  2 x  9   x 4  3 x3  4 x 2  2 x  9 r

coeff of q(x)

remainder

1 2 3

1 1 1

2 1 0

2 2 4

4 6 14

5 3 33

1 2

1 1

4 5

8 14

6 26

3 43

For r = 3, the last row of synthetic division contains only numbers that are positive or 0, so we know there are no zeros greater than 3. For r = -2, the last row of synthetic division results in alternating positive (or 0) and negative (or 0) values, so we know that there are no zeros less than -2. The upper bound is 3 and the lower bound is -2. 78.

f  x   4 x5  5 x3  9 x 2  3 x  12   4 x5  5 x3  9 x 2  3 x  12 r

1 2 1 2

coeff of q(x)

4 4 4 4

4 8 4 8

1 11 1 11

remainder

10 13 8 31

13 23 5 59

1 58 7 106

For r = 2, the last row of synthetic division contains only numbers that are positive or 0, so we know there are no zeros greater than 2. For r = -2, the last row of synthetic division results in alternating positive (or 0) and negative (or 0) values, so we know that there are no zeros less than -2. The upper bound is 2 and the lower bound is -2.

79.

f  x   8 x 4  2 x 2  5 x  1;

0,1

82.

f (0)  1  0 and f (1)  10  0 The value of the function is positive at one endpoint and negative at the other. Since the function is continuous, the Intermediate Value Theorem guarantees at least one zero in the given interval.

80.

f ( x)  x 4  8 x3  x 2  2;

 1, 0

f ( x)  2 x3  6 x 2  8 x  2;

 5,  4

f (5)  58  0 and f ( 4)  2  0 The value of the function is positive at one endpoint and negative at the other. Since the function is continuous, the Intermediate Value Theorem guarantees at least one zero in the given interval.

 3,  2

f (3)   42  0 and f ( 2)  5  0 The value of the function is positive at one endpoint and negative at the other. Since the function is continuous, the Intermediate Value Theorem guarantees at least one zero in the given interval.

83.

f (1)   6  0 and f (0)  2  0 The value of the function is positive at one endpoint and negative at the other. Since the function is continuous, the Intermediate Value Theorem guarantees at least one zero in the given interval.

81.

f ( x)  3x3  10 x  9;

f ( x)  x5  x 4  7 x3  7 x 2  18 x  18; 1.4, 1.5 f (1.4)   0.1754  0 and f (1.5)  1.4063  0 The value of the function is positive at one endpoint and negative at the other. Since the function is continuous, the Intermediate Value Theorem guarantees at least one zero in the given interval.

84.

f ( x)  x5  3 x 4  2 x3  6 x 2  x  2;

1.7, 1.8

f (1.7)  0.35627  0 and f (1.8)  –1.021  0 The value of the function is positive at one endpoint and negative at the other. Since the function is continuous, the Intermediate Value Theorem guarantees at least one zero in the given interval.

375 Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

85. 8 x 4  2 x 2  5 x  1  0;

f  0.67   0.6535; f  0.66   0.5458

0  r 1

Consider the function f  x   8 x  2 x  5 x  1

f  0.66   0.5458; f  0.65   0.4410

Subdivide the interval [0,1] into 10 equal subintervals: [0,0.1]; [0.1,0.2]; [0.2,0.3]; [0.3,0.4]; [0.4,0.5]; [0.5,0.6]; [0.6,0.7]; [0.7,0.8]; [0.8,0.9]; [0.9,1] f  0   1; f  0.1  0.5192

f  0.65   0.4410; f  0.64   0.3390

f  0.1  0.5192; f  0.2   0.0672

f  0.61  0.0495; f  0.60   0.0416

4

2

f  0.2   0.0672; f  0.3  0.3848

So f has a real zero on the interval [0.2,0.3]. Subdivide the interval [0.2,0.3] into 10 equal subintervals: [0.2,0.21]; [0.21,0.22]; [0.22,0.23]; [0.23,0.24]; [0.24,0.25]; [0.25,0.26];[0.26,0.27]; [0.27,0.28]; [0.28,0.29]; [0.29,0.3] f  0.2   0.0672; f  0.21  0.02264 f  0.21  0.02264; f  0.22   0.0219

So f has a real zero on the interval [0.21,0.22], therefore r  0.21 , correct to two decimal places.

f  0.64   0.3390; f  0.63  0.2397 f  0.63  0.2397; f  0.62   0.1433

f  0.62   0.1433; f  0.61  0.0495

So f has a real zero on the interval [–0.61, –0.6], therefore r  0.60 , correct to two decimal places. 87. 2 x3  6 x 2  8 x  2  0;

 5  r  4

Consider the function f  x   2 x3  6 x 2  8 x  2 Subdivide the interval [–5, –4] into 10 equal subintervals: [–5, –4.9]; [–4.9, –4.8]; [–4.8, –4.7]; [–4.7, –4.6]; [–4.6, –4.5]; [–4.5, –4.4]; [–4.4, –4.3]; [–4.3, –4.2]; [–4.2, –4.1]; [–4.1, –4] f  5   58; f  4.9   50.038 f  4.9   50.038; f  4.8   42.544 f  4.8   42.544; f  4.7   35.506

86. x 4  8 x3  x 2  2  0;

1  r  0

Consider the function f  x   x 4  8 x3  x 2  2 Subdivide the interval [–1, 0] into 10 equal subintervals: [–1, –0.9]; [–0.9, –0.8]; [–0.8, –0.7]; [–0.7, –0.6]; [–0.6, –0.5]; [–0.5, –0.4]; [–0.4, –0.3]; [–0.3, –0.2]; [–0.2, –0.1]; [–0.1,0] f  1  6; f  0.9   3.9859 f  0.9   3.9859; f  0.8   2.3264 f  0.8   2.3264; f  0.7   0.9939

f  0.7   0.9939; f  0.6   0.0416

So f has a real zero on the interval [–0.7, –0.6]. Subdivide the interval [–0.7, –0.6] into 10 equal subintervals: [–0.7, –0.69]; [–0.69, –0.68]; [–0.68, –0.67]; [–0.67, –0.66]; [–0.66, –0.65]; [–0.65, –0.64]; [–0.64, –0.63]; [–0.63, –0.62]; [–0.62, –0.61]; [–0.61, –0.6] f  0.7   0.9939; f  0.69   0.8775 f  0.69   0.8775; f  0.68   0.7640 f  0.68   0.7640; f  0.67   0.6535

f  4.7   35.506; f  4.6   28.912

f  4.6   28.912; f  4.5   22.75 f  4.5   22.75; f  4.4   17.008 f  4.4   17.008; f  4.3  11.674

f  4.3  11.674; f  4.2   6.736 f  4.2   6.736; f  4.1  2.182 f  4.1  2.182; f  4   2

So f has a real zero on the interval [–4.1, –4]. Subdivide the interval [–4.1, –4] into 10 equal subintervals: [–4.1, –4.09]; [–4.09, –4.08]; [–4.08, –4.07]; [–4.07, –4.06]; [–4.06, –4.05]; [–4.05, –4.04]; [–4.04, –4.03]; [–4.03, –4.02]; [–4.02, –4.01]; [–4.01, –4] f  4.1  2.182; f  4.09   1.7473 f  4.09   1.7473; f  4.08   1.3162

f  4.08   1.3162; f  4.07   0.8889 f  4.07   0.8889; f  4.06   0.4652 f  4.06   0.4652; f  4.05   0.0453

f  4.05   0.4653; f  4.04   0.3711

376 Copyright © 2020 Pearson Education, Inc.


Section 4.6: The Real Zeros of a Polynomial Function

Subdivide the interval [1.1,1.2] into 10 equal subintervals: [1.1,1.11]; [1.11,1.12]; [1.12,1.13]; [1.13,1.14]; [1.14,1.15]; [1.15,1.16];[1.16,1.17]; [1.17,1.18]; [1.18,1.19]; [1.19,1.2] f 1.1  0.359; f 1.11  0.2903

So f has a real zero on the interval [–4.05, –4.04], therefore r  4.04 , correct to two decimal places. 88. 3x3  10 x  9  0;

 3  r  2

Consider the function f  x   3 x3  10 x  9

f 1.11  0.2903; f 1.12   0.2207

Subdivide the interval [–3, –2] into 10 equal subintervals: [–3, –2.9]; [–2.9, –2.8]; [–2.8, –2.7]; [–2.7, –2.6]; [–2.6, –2.5]; [–2.5, –2.4]; [–2.4, –2.3]; [–2.3, –2.2]; [–2.2, –2.1]; [–2.1, –2] f  3  42; f  2.9   35.167

f 1.12   0.2207; f 1.13  0.1502 f 1.13  0.1502; f 1.14   0.0789

f 1.14   0.0789; f 1.15   0.0066 f 1.15   0.0066; f 1.16   0.0665

f  2.9   35.167; f  2.8   28.856

So f has a real zero on the interval [1.15,1.16], therefore r  1.15 , correct to two decimal places.

f  2.8   28.856; f  2.7   23.049 f  2.7   23.049; f  2.6   17.728 f  2.6   17.728; f  2.5   12.875

f  2.5   12.875; f  2.4   8.472 f  2.4   8.472; f  2.3  4.501 f  2.3  4.501; f  2.2   0.944

f  2.2   0.944; f  2.1  2.217

So f has a real zero on the interval [–2.2, –2.1]. Subdivide the interval [–2.2, –2.1] into 10 equal subintervals: [–2.2, –2.19]; [–2.19, –2.18]; [–2.18, –2.17]; [–2.17, –2.16]; [–2.16, –2.15]; [–2.15, –2.14]; [–2.14, –2.13]; [–2.13, –2.12]; [–2.12, –2.11]; [–2.11, –2.1] f  2.2   0.944; f  2.19   0.6104 f  2.19   0.6104; f  2.18   0.2807 f  2.18   0.2807; f  2.17   0.0451

So f has a real zero on the interval [–2.18, –2.17], therefore r  2.17 , correct to two decimal places. 89.

f  x   x3  x 2  x  4 f 1  1; f  2   10

So f has a real zero on the interval [1,2]. Subdivide the interval [1,2] into 10 equal subintervals: [1,1.1]; [1.1,1.2]; [1.2,1.3]; [1.3,1.4]; [1.4,1.5]; [1.5,1.6]; [1.6,1.7]; [1.7,1.8]; [1.8,1.9]; [1.9,2] f 1  1; f 1.1  0.359

90.

f  x   2 x4  x2  1 f  0   1; f 1  2

So f has a real zero on the interval [0,1]. Subdivide the interval [0,1] into 10 equal subintervals: [0,0.1]; [0.1,0.2]; [0.2,0.3]; [0.3,0.4]; [0.4,0.5]; [0.5,0.6]; [0.6,0.7]; [0.7,0.8]; [0.8,0.9]; [0.9,1] f  0   1; f  0.1  0.9898 f  0.1  0.9898; f  0.2   0.9568 f  0.2   0.9568; f  0.3  0.8938 f  0.3  0.8938; f  0.4   0.7888

f  0.4   0.7888; f  0.5   0.625 f  0.5   0.625; f  0.6   0.3808 f  0.6   0.3808; f  0.7   0.0298

f  0.7   0.0298; f  0.8   0.4592

So f has a real zero on the interval [0.7,0.8]. Subdivide the interval [0.7,0.8] into 10 equal subintervals: [0.7,0.71]; [0.71,0.72]; [0.72,0.73]; [0.73,0.74]; [0.74,0.75]; [0.75,0.76];[0.76,0.77]; [0.77,0.78]; [0.78,0.79]; [0.79,0.8] f  0.7   0.298; f  0.71  0.0123 So f has a real zero on the interval [0.7,0.71], therefore r  0.70 , correct to two decimal places.

f 1.1  0.359; f 1.2   0.368

So f has a real zero on the interval [1.1,1.2]. 377 Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

91.

therefore r  2.53 , correct to two decimal places.

f  x   2 x 4  3 x3  4 x 2  8 f  2   16; f  3  37

92.

So f has a real zero on the interval [2,3]. Subdivide the interval [2,3] into 10 equal subintervals: [2,2.1]; [2.1,2.2]; [2.2,2.3]; [2.3,2.4]; [2.4,2.5]; [2.5,2.6]; [2.6,2.7]; [2.7,2.8]; [2.8,2.9]; [2.9,3] f  2   16; f  2.1  14.5268

f  2   4; f  3  43

So f has a real zero on the interval [2,3]. Subdivide the interval [2,3] into 10 equal subintervals: [2,2.1]; [2.1,2.2]; [2.2,2.3]; [2.3,2.4]; [2.4,2.5]; [2.5,2.6]; [2.6,2.7]; [2.7,2.8]; [2.8,2.9]; [2.9,3] f  2   4; f  2.1  1.037

f  2.1  14.5268; f  2.2   12.4528

f  2.2   12.4528; f  2.3  9.6928 f  2.3  9.6928; f  2.4   6.1568

f  2.1  1.037; f  2.2   2.264

f  2.4   6.1568; f  2.5   1.75

So f has a real zero on the interval [2.1,2.2].

f  2.5   1.75; f  2.6   3.6272

Subdivide the interval [2.1,2.2] into 10 equal subintervals: [2.1,2.11]; [2.11,2.12]; [2.12,2.13]; [2.13,2.14]; [2.14,2.15]; [2.15,2.16];[2.16,2.17]; [2.17,2.18]; [2.18,2.19]; [2.19,2.2] f  2.1  1.037; f  2.11  0.7224

So f has a real zero on the interval [2.5,2.6]. Subdivide the interval [2.5,2.6] into 10 equal subintervals: [2.5,2.51]; [2.51,2.52]; [2.52,2.53]; [2.53,2.54]; [2.54,2.55]; [2.55,2.56];[2.56,2.57]; [2.57,2.58]; [2.58,2.59]; [2.59,2.6] f  2.5   1.75; f  2.51  1.2576

f  2.11  0.7224; f  2.12   0.4044 f  2.12   0.4044; f  2.13  0.0830

f  2.51  1.2576; f  2.52   0.7555

f  2.13  0.0830; f  2.14   0.2418

f  2.52   0.7555; f  2.53  0.2434

So f has a real zero on the interval [2.13,2.14], therefore r  2.13 , correct to two decimal places.

f  2.53  0.2434; f  2.54   0.2787

So f has a real zero on the interval [2.53,2.54], 93.

f  x   3x3  2 x 2  20

f ( x)  x3  2 x 2  5 x  6  ( x  3)( x  1)( x  2) x-intercepts: –3, –1, 2; Near 3 : f  x    x  3 3  1 3  2   10  x  3

Near 1 : f  x    1  3 x  1 1  2   6  x  1 Near 2: f  x    2  3 2  1 x  2   15  x  2  Plot the point  3, 0  and show a line with positive slope there. Plot the point  1, 0  and show a line with negative slope there. Plot the point  2, 0  and show a line with positive slope there. y-intercept: f  0   03  2  0   5  0   6  6 ; 2

The graph of f crosses the x-axis at x = –3, –1 and 2 since each zero has multiplicity 1. Interval

 , 3

 3, 1

 1, 2 

 2,  

Number Chosen Value of f Location of Graph Point on Graph

–4 –18

–2 4

0 –6

3 24

Below x-axis  4, 18 

Above x-axis  2, 4 

Below x-axis  0, 6 

Above x-axis  3, 24 

378 Copyright © 2020 Pearson Education, Inc.


Section 4.6: The Real Zeros of a Polynomial Function

94.

f ( x)  x3  8 x 2  11x  20  ( x  5)( x  4)( x  1) x-intercepts: –5, –4, 1; Near 5 : f  x    x  5  5  4  5  1  6  x  5 

Near 4 : f  x    4  5  x  4  4  1  5  x  4  Near 1: f  x   1  5 1  4  x  1  30  x  1 Plot the point  5, 0  and show a line with positive slope there. Plot the point  4, 0  and show a line with negative slope there. Plot the point 1, 0  and show a line with positive slope there. y-intercept: f  0   03  8  0   11 0   20  20 2

The graph of f crosses the x-axis at x = –5, –4 and 1 since each zero has multiplicity 1. Interval

 , 5

 5, 4 

 4,1

1,  

Number Chosen Value of f Location of Graph Point on Graph

–6 –14

–4.5 1.375

0 –20

2 42

Below x-axis  6, 14 

Above x-axis  4.5,1.375

Below x-axis  0, 20 

Above x-axis  2, 42 

379 Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

95.

1  f  x   2 x3  x 2  2 x  1   x   2 x 2  2 2 

x-intercept:

1 ; 2

Near

2  5 1 1   1  1  : f  x   x    2   2   x     2 2 2 2 2      

1  Plot the point  , 0  and show a line with positive slope there. 2 

y-intercept: f  0   2  0   02  2  0   1  1 3

The graph of f crosses the x-axis at x = Interval Number Chosen Value of f Location of Graph Point on Graph

96.

1 since the zero has multiplicity 1. 2

1   ,  2  0 –1

1   , 2  1 2

Below x-axis  0, 1

Above x-axis 1, 2 

1  f ( x)  2 x3  x 2  2 x  1   x   2 x 2  2 2  1 x-intercept:  2 2  5 1 1   1  1  Near  : f  x    x    2     2    x     2 2   2  2   2  1  Plot the point   , 0  and show a line with positive slope there.  2 

y-intercept: f  0   2  0   02  2  0   1  1 3

The graph of f crosses the x-axis at x = 

1 since the zero has multiplicity 1. 2

380 Copyright © 2020 Pearson Education, Inc.


Section 4.6: The Real Zeros of a Polynomial Function

Interval Number Chosen Value of f Location of Graph Point on Graph

97.

1   ,   2  –1 –2

 1   ,  2  0 1

Below x-axis  1, 2 

Above x-axis  0,1

f ( x)  x 4  x 2  2   x  1 x  1 x 2  2

x-intercepts: –1, 1

Near 1 : f  x    x  1 1  1  1  2  6  x  1

2

Near 1: f  x   1  1 x  1 12  2  6  x  1 Plot the point  1, 0  and show a line with negative slope there. Plot the point 1, 0  and show a line with positive slope there. y-intercept: f  0   04  02  2  2 The graph of f crosses the x-axis at x = –1 and 1 since each zero has multiplicity 1.

Interval

 , 1

 1,1

1,  

Number Chosen Value of f Location of Graph Point on Graph

–2 18

0 –2

2 18

Above x-axis  2,18 

Below x-axis  0, 2 

Above x-axis  2,18 

381 Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

98.

f  x   x 4  3 x 2  4   x  2  x  2  x 2  1

x-intercepts: –2, 2

Near 2 : f  x    x  2  2  2   2   1  20  x  2 

2

Near 2: f  x    2  2  x  2  22  1  20  x  2  Plot the point  2, 0  and show a line with negative slope there. Plot the point  2, 0  and show a line with positive slope there. y-intercept: f  0   04  3  0   4  4 2

The graph of f crosses the x-axis at x = –2 and 2 since each zero has multiplicity 1.

99.

Interval

 , 2 

 2, 2 

 2,  

Number Chosen Value of f Location of Graph Point on Graph

–3 50

0 –4

3 50

Above x-axis  3,50 

Below x-axis  0, 4 

Above x-axis  3,50 

f  x   4 x 4  7 x 2  2   2 x  1 2 x  1 x 2  2

1 1 x-intercepts:  , 2 2 2    1   1  9 1 Near  : f  x    2 x  1  2     1      2     2 x  1   2 2 2 2      

Near

  1 2  9 1  1  : f  x    2    1  2 x  1     2    2 x  1  2   2 2  2   

 1  Plot the point   , 0  and show a line with negative slope there.  2  1  Plot the point  , 0  and show a line with positive slope there. 2 

y-intercept: f  0   4  0   7  0   2  2 4

2

The graph of f crosses the x-axis at x = 

1 1 and since each zero has multiplicity 1. 2 2

382 Copyright © 2020 Pearson Education, Inc.


Section 4.6: The Real Zeros of a Polynomial Function

Interval Number Chosen Value of f Location of Graph Point on Graph

100.

1   ,   2  –1 9

 1 1  ,   2 2 0 –2

1   , 2  1 9

Above x-axis  1, 9 

Below x-axis  0, 2 

Above x-axis 1,9 

f  x   4 x 4  15 x 2  4   2 x  1 2 x  1 x 2  4

1 1 x-intercepts:  , 2 2 2    1   1  17 1 Near  : f  x    2 x  1  2     1      4     2 x  1   2 2 2 2      

Near

  1 2  17 1  1  : f  x    2    1  2 x  1     4    2 x  1  2   2 2  2   

 1  Plot the point   , 0  and show a line with negative slope there.  2  1  Plot the point  , 0  and show a line with positive slope there. 2 

y-intercept: f  0   4  0   15  0   4  4 4

2

The graph of f crosses the x-axis at x = 

Interval Number Chosen Value of f Location of Graph Point on Graph

1 1 and since each zero has multiplicity 1. 2 2

1   ,   2  –1 15

 1 1  ,   2 2 0 –4

1   , 2  1 15

Above x-axis  1,15

Below x-axis  0, 4 

Above x-axis 1,15 

383 Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

101.

f ( x)  x 4  x3  3x 2  x  2  ( x  2)( x  1)( x  1) 2 x-intercepts: –2, –1, 1

Near 2 : f  x    x  2  2  1 2  1  9  x  2  2

Near 1 : f  x    1  2  x  1 1  1  4  x  1 2

Near 1: f  x   1  2 1  1 x  1  6  x  1 2

2

Plot the point  2, 0  and show a line with negative slope there. Plot the point  1, 0  and show a line with positive slope there. Plot the point 1, 0  and show a parabola opening up there. y-intercept: f  0   04  03  3  0   0  2  2 2

The graph of f crosses the x-axis at x = –2 and –1 since each zero has multiplicity 1. The graph of f touches the x-axis at x = 1 since the zero has multiplicity 2.

102.

Interval

 , 2 

 2, 1

 1,1

1,  

Number Chosen Value of f Location of Graph Point on Graph

–3 32

–1.5 –1.5625

0 2

2 12

Above x-axis  3, 32 

 1.5, 1.5625 

Below x-axis

Above x-axis  0, 2 

Above x-axis  2,12 

f ( x)  x 4  x3  6 x 2  4 x  8  ( x  2)( x  1)( x  2) 2 x-intercepts: –2, –1, 2

Near 2 : f  x    x  2  2  1 2  2   16  x  2  2

Near 1 : f  x    1  2  x  1 1  2   9  x  1 2

Near 2: f  x    2  2  2  1 x  2   12  x  2  2

2

384 Copyright © 2020 Pearson Education, Inc.


Section 4.6: The Real Zeros of a Polynomial Function

Plot the point  2, 0  and show a line with negative slope there. Plot the point  1, 0  and show a line with positive slope there. Plot the point  2, 0  and show a parabola opening up there. y-intercept: f  0   04  03  6  0   4  0   8  8 2

The graph of f crosses the x-axis at x = –2 and –1 since each zero has multiplicity 1. The graph of f touches the x-axis at x = 2 since the zero has multiplicity 2.

103.

Interval

 , 2 

 2, 1

 1, 2 

 2,  

Number Chosen Value of f Location of Graph Point on Graph

–3 50

–1.5 –3.0625

0 8

3 20

Above x-axis  3, 50 

 1.5, 3.0625 

Below x-axis

Above x-axis  0,8 

Above x-axis  3, 20 

f ( x)  4 x5  8 x 4  x  2  ( x  2)

x-intercepts:  Near 

 2 x  1 2 x  1 2 x  1 2

2 2 , ,2 2 2

   2 2 2  : f  x      2   2     1  2  2   2  

 2  2 Near : f  x     2  2  2 

Near 2: f  x    x  2 

  2 2  2 x  1  2    1  2   2    

2    2    2   2 2 x  1  2  1 2 1          2    2       

 2  4  2 x  1

 2  4 2 x  1

 2  2  1  2  2  1  2  2  1  63  x  2 2

 2  , 0  and show a line with positive slope there. Plot the point    2   2  Plot the point  , 0  and show a line with negative slope there.  2  Plot the point  2, 0  and show a line with positive slope there.

y-intercept: f  0   4  0   8  0   0  2  2 5

4

The graph of f crosses the x-axis at x  

2 2 and x  2 since each zero has multiplicity 1. , x 2 2

385 Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

 2  ,   2   –1 –9

 2 2 ,     2 2  0 2

 2  , 2    2  1 –3

Below x-axis  1, 9 

Above x-axis  0, 2 

Below x-axis 1, 3

Interval Number Chosen Value of f Location of Graph Point on Graph

104.

f ( x)  4 x5  12 x 4  x  3  ( x  3)

x-intercepts: 3, 

3 323 Above x-axis  3,323

 2 x  1 2 x  1 2 x  1 2

2 2 , 2 2

Near 3 : f  x    x  3 Near 

 2,  

 2  3  1  2  3  1  2  3  1  323  x  3 2

   2 2 2  : f  x      3   2     1  2  2   2  

 2  2 Near : f  x     3  2  2 

2    2 2 x  1  2     1  2   2    

2    2    2   2 2 x  1  2  1 2 1          2    2       

 2  6 2 x  1

 2  6 2 x  1

Plot the point  3, 0  and show a line with positive slope there.

 2  Plot the point   , 0  and show a line with negative slope there.  2   2  Plot the point  , 0  and show a line with positive slope there.  2 

y-intercept: f  0   4  0   12  0   0  3  3 5

4

The graph of f crosses the x-axis at x  

2 2 and x  3 since each zero has multiplicity 1. , x 2 2

386 Copyright © 2020 Pearson Education, Inc.


Section 4.6: The Real Zeros of a Polynomial Function

105.

–4 –1023

 2  3,   2   –2 63

 2 2 ,     2 2  0 –3

 2  ,     2  1 12

Below x-axis  4, 1023

Above x-axis  2, 63

Below x-axis  0, 3

Above x-axis 1,12 

Interval

 , 3

Number Chosen Value of f Location of Graph Point on Graph

f ( x)  3 x 3  16 x 2  3 x  10 will factor into

f ( x)  ( x  1)(3x  2)( x  5) . Solving ( x  1)(3x  2)( x  5)  0 we get 2 , x  5 . f ( x  3) would shift the 3 graph left by three units and thus would shift the zeros left by three units. So the zeros would be x  1  3  4 2 7 x  3   3 3 x  5  3  8 x  1, x 

106.

107. From the Remainder and Factor Theorems, x  2 is a factor of f if f  2   0 .

 2 3  k  2  2  k  2   2  0 8  4k  2k  2  0 2k  10  0 2k  10 k 5

108. From the Remainder and Factor Theorems, x  2 is a factor of f if f  2   0 .

 2 4  k  2 3  k  2 2  1  0

f ( x)  4 x3  11x 2  26 x  24 will factor into

16  8k  4k  1  0

f ( x)  ( x  2)(4 x  3)( x  4) . Solving ( x  2)(4 x  3)( x  4)  0 we get 3 , x  4 . f ( x  2) would shift the 4 graph right by two units and thus would shift the zeros right by two units. So the zeros would be x  2  2  0 3 11 x 2 4 4 x  42  6

12k  17  0 12k  17 k

x  2, x 

17 12

109. From the Remainder Theorem, we know that the remainder is f 1  2 1

20

 8 1  1  2  2  8  1  2  7 10

The remainder is –7.

110. From the Remainder Theorem, we know that the remainder is 387 Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions f  1  3  1   1   1  2  1  1 17

9

5

The remainder is 1. 111. We want to prove that x  c is a factor of x n  c n , for any positive integer n. By the Factor Theorem, x  c will be a factor of f  x 

provided f  c   0 . Here, f  x   x n  c n , so that f  c   c n  c n  0 . Therefore, x  c is a factor of x n  c n . 112. We want to prove that x  c is a factor of x n  c n , if n  1 is an odd integer. By the Factor Theorem, x  c will be a factor of f  x 

provided f  c   0 . Here, f  x   x  c , so n

n

that f  c    c   c n  c n  c n  0 if n  1 n

is an odd integer. Therefore, x  c is a factor of x n  c n if n  1 is an odd integer. 113. x3  8 x 2  16 x  3  0 has solution x  3 , so x  3 is a factor of f  x   x3  8 x 2  16 x  3 .

Using synthetic division 3 1  8 16  3 3  15 3 1 5 1 0 Thus,

f  x   x 3  8 x 2  16 x  3   x  3 x 2  5 x  1 .

Solving x 2  5 x  1  0 5  25  4 5  21  2 2 The sum of these two roots is 5  21 5  21 10    5. 2 2 2 x

x3  x 2  294 x3  x 2  294  0 The solutions to this equation are the same as the real zeros of f  x   x3  x 2  294 .

By Descartes’ Rule of Signs, we know that there is one positive real zero. p  1, 2, 3, 6, 7, 14, 21, 42, 49, 98, 147, 294 q  1 The possible rational zeros are the same as the values for p. p  1, 2, 3, 6, 7, 14, 21, 42, 49, 98, q 147, 294 Using synthetic division: 71 1 0  294 7 42 294 1 6 42 0 7 is a zero, so the length of the edge of the original cube was 7 inches.

 x  18x  72 ( x  4)  2 x 2

3

x3  14 x 2  288  2 x3

f  x   x3  5 x 2  5 x  2   x  2  x 2  3x  1 .

Solving x 2  3x  1  0 ,

115. Let x be the length of a side of the original cube. After removing the 1-inch slice, one dimension will be x  1 . The volume of the new solid will be: ( x  1)  x  x . Solve the volume equation: ( x  1)  x  x  294

116. Let x be the length of a side of the original 3 cube. The volume is x . The dimensions are changed to x  6, x  12, and x  4 . The volume of the new solid will be (x  6)(x  12)(x  4) . Solve the volume equation: ( x  6)( x  12)( x  4)  2 x3

114. x3  5 x 2  5 x  2  0 has solution x  2 , so x  2 is a factor of f  x   x3  5 x 2  5 x  2 .

Using synthetic division 2 1 5 5 2 2 6 2 1 3 1 0 Thus,

3  9  4 3  13 .  2 2 The sum of these two roots is 3  13 3  13 6    3 . 2 2 2 x

x3  14 x 2  288  0 The solutions to this equation are the same as the real zeros of f  x   x3  14 x 2  288 .

By Descartes’ Rule of Signs, we know that there are two positive real zeros or no positive real zeros.

388 Copyright © 2020 Pearson Education, Inc.


Section 4.6: The Real Zeros of a Polynomial Function p  1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 32, 36, 48, 72, 96, 144, 288 q  1 The possible rational zeros are the same as the values for p: p  1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, q 32, 36, 48, 72, 96, 144, 288 Using synthetic division: 61 14 0 288 6  48  288 1  8  48 0 Therefore, 6 is a zero; the other factor is 2 x  8x  48  x  12  x  4 . The other zeros are 12 and –4. The length of the edge of the original cube was 6 cm or 12 cm.

118.

f  x   8x4  2 x2  5x  1

f  x   x n  an 1 x n 1  an  2 x n  2  ...  a1 x  a0 ;

117.

where an 1 , an  2 ,...a1 , a0 are integers. If r is a real zero of f , then r is either rational or irrational. We know that the rational roots of f must be of the form

p where p is a divisor of q

a0 and q is a divisor of 1. This means that p  p . q Therefore, r is an integer or r is irrational. q  1 . So if r is rational, then r 

0  r 1

We begin with the interval [0,1]. f  0   1; f 1  10 Let mi = the midpoint of the interval being considered. So m1  0.5 n mn f  mn 

New interval

1

0.5

f  0.5   1.5  0

[0,0.5]

2

0.25

f  0.25   0.15625  0

[0,0.25]

3

0.125

f  0.125   0.4043  0

[0.125,0.25]

4

0.1875

f  0.1875   0.1229  0

[0.1875,0.25]

5

0.21875

f  0.21875   0.0164  0

[0.1875,0.21875]

6

0.203125

f  0.203125   0.0533  0

[0.203125,0.21875]

7

0.2109375

f  0.2109375   0.0185  0

[0.2109375,0.21875]

8

0.21484375

f  0.21484375   0.00105  0

[0.21484375,0.21875]

9

0.216796875

f  0.216796875   0.007655271  0

[0.21484375,0.2167968]

10

0.2158203125

f  0.216796875   0.007655271  0

[0.21484375,0.21582031]

11

0.21533203125

f  0.216796875   0.007655271  0

[0.21484375,0.21533203]

Since the endpoints of the new interval at Step 11 agree to three decimal places, r = 0.215, correct to three decimal places.

389 Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions 119. b 120. Let

p be a rational zero of the polynomial f  x   an x n  an 1 x n 1  an  2 x n  2  ...  a1 x  a0 where q

an , an 1 , an  2 ,...a1 , a0 are integers . Suppose also that p and q have no common factors other than 1 and – 1. Then n

 p  p  p f    an    an 1   q q     q 

a p  a p q  a q 1

n

n

n

n 1

n 1

n 1

 p  an  2   q

n2 p

n2

 p  ...  a1    a0  0 q

n2 2

q  ...  a1 pq n 1  a0 q n  0

 an p n  an 1 p n 1q  an  2 p n  2 q 2  ...  a1 pq n 1  a0 q n  0  an p n  an 1 p n 1q  an  2 p n  2 q 2  ...  a1 pq n 1  a0 q n

Because p is a factor of the left side of this equation, p must also be a factor of a0 q n . Since p is not a factor of q, p must be a factor of a0 . Similarly, q must be a factor of an 121. Let y1  x 3 , y2  1  x 2 , and

124.

f  x   y1  y2  ( x3 )  (1  x 2 )  x3  x 2  1.

Note that f ( x)  0 where y1  y2 , that is, where y1 and y2 intersect. Since f is a polynomial function and f (0)  1 and f (1)  1 are of opposite sign, the Intermediate Value Theorem guarantees there is at least one real number c in the interval (0, 1) where f (c)  0 . That is there is at least one real number c in the interval where the graphs of y1  x 3 and y2  1  x 2 intersect. 122.

By the Rational Zero Theorem, the only possible p 1 rational zeros are:  1,  . q 2 3 is not in the list of possible rational 5 zeros, it is not a zero of f (x) .

Since

125.

2 is not in the list of possible rational 3 zeros, it is not a zero of f .

By the Rational Zero Theorem, the only possible p 1 7 rational zeros are:  1, 7,  ,  . q 2 2 1 is not in the list of possible rational 3 zeros, it is not a zero of f .

123.

f  x   x7  6 x5  x 4  x  2

By the Rational Zero Theorem, the only possible p rational zeros are:  1, 2 . q

f  x   2 x3  3 x 2  6 x  7

Since

f  x   2 x 6  5 x 4  x3  x  1

Since

126.

f ( x)  3 x 2  30 x  4

   3  x  10 x  25   4  75  3  x  5   71  3 x 2  10 x  4 2

f  x   4 x3  5 x 2  3x  1

By the Rational Zero Theorem, the only possible rational zeros are:

p 1 1  1,  ,  . q 2 4

1 is not in the list of possible rational 3 zeros, it is not a zero of f .

Since

2

127.

 3,8

128. 2 x  5 y  3 5 y  2 x  3 2 3 y  x 5 5

390 Copyright © 2020 Pearson Education, Inc.

2


Section 4.7: Complex Zeros; Fundamental Theorem of Algebra

1 129. a  , b  2, c  9 3

4.

 25  4(1)  29

1 (2)  (2)2  4   (9) 3 x 1   2  3 

5. one 6. 3  4i 7. True

2  4  12 2  8  2 2     3 3

8. False; would also need 3  5i 9. Since complex zeros appear in conjugate pairs, 4  i , the conjugate of 4  i , is the remaining zero of f .

2  2i 2  3  3i 2 2   3

130.

 3, 2 and 5,  

131.

 , 3 and  2,5

 5  2i    5  2i   25  10i  10i  4i 2

10. Since complex zeros appear in conjugate pairs, 3  i , the conjugate of 3  i , is the remaining zero of f . 11. Since complex zeros appear in conjugate pairs, i , the conjugate of i , and 3  i , the conjugate of 3  i , are the remaining zeros of f .

132. -5 and -1

12. Since complex zeros appear in conjugate pairs, 2  i , the conjugate of 2  i , is the remaining zero of f .

133. (5, 0), (1, 0), (0,3) 134. (3, 2), (2, 6), and (5,1) 135. Absolute minimum: f (3)  2 ; no absolute maximum

13. Since complex zeros appear in conjugate pairs, i , the conjugate of i , and  5i , the conjugate of 5i , are the remaining zeros of f . 14. Since complex zeros appear in conjugate pairs, i , the conjugate of i , is the remaining zero. 15. Since complex zeros appear in conjugate pairs, i , the conjugate of i , is the remaining zero.

Section 4.7 1.

 3  2i    3  5i   3  3  2i  5i  3i

 3  2i  3  5i   9  15i  6i  10i 2  9  21i  10  1  1  21i

2. The zeros of f  x  are the solutions to the 2

equation x  2 x  2  0 . x2  2 x  2  0 a  1, b  2, c  2 x

2  22  4 1 2  2 1

2  4 2  2i   1  i 2 2

The solution set is {1  i,  1  i} . 3. 3  4i

16. Since complex zeros appear in conjugate pairs, 2  i , the conjugate of 2  i , and i , the conjugate of i , are the remaining zeros of f . 17. Since complex zeros appear in conjugate pairs, 4  9i , the conjugate of 4  9i , and 7  2i , the conjugate of 7  2i , are the remaining zeros. 18. Since complex zeros appear in conjugate pairs, i , the conjugate of i , 3  2i , the conjugate of 3  2i , and  2  i , the conjugate of  2  i , are the remaining zeros of f .

For 19–24, we will use an  1 as the lead coefficient of the polynomial. Also note that

 x   a  b i   x   a  b i    x  a   b i   x  a   b i  2 2   x  a   b i 

391 Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions 19. Since 3  2i is a zero, its conjugate 3  2i is also a zero of f .

20. Since 1  2i and i are zeros, their conjugates 1  2i and i are also zeros of f .

f ( x)  ( x  4)( x  4)  x  (3  2i )   x  (3  2i ) 

f ( x)  ( x  i )( x  (i ))  x  (1  2i )  x  (1  2i ) 

    x  8 x  16  x  6 x  9  4i    x  8 x  16  x  6 x  13 

 ( x  i )( x  i )  ( x  1)  2i  ( x  1)  2i 

 x  8 x  16  ( x  3)  2i   ( x  3)  2i  2 2

2

2

2

  x  2 x  1  4i    x  1 x  2 x  5   x2  i 2

2

2

2

2

2

 x 4  2 x3  5 x 2  1x 2  2 x  5

 x 4  6 x 3  13 x 2  8 x3  48 x 2

 104 x  16 x 2  96 x  208

 x 4  2 x3  6 x 2  2 x  5

 x 4  14 x 3  77 x 2  200 x  208

21. Since i is a zero, its conjugate i is also a zero, and since 1  i is a zero, its conjugate 1  i is also a zero of f . f ( x)  ( x  2)( x  i )( x  i )  x  (1  i )   x  (1  i ) 

   ( x  2)  x  1 x  2 x  1  i    x  2 x  x  2  x  2 x  2 

 ( x  2) x 2  i 2  ( x  1)  i   ( x  1)  i  2

3

2

2

2

2

 x5  2 x 4  2 x3  2 x 4  4 x3  4 x 2  x3  2 x 2  2 x  2 x 2  4 x  4  x5  4 x 4  7 x3  8 x 2  6 x  4 22. Since i is a zero, its conjugate i is also a zero; since 4  i is a zero, its conjugate 4  i is also a zero; and since 2  i is a zero, its conjugate 2  i is also a zero of f . f ( x)  ( x  i )( x  i )  x  (4  i )   x  (4  i )   x  (2  i )   x  (2  i ) 

   ( x  4)  i   ( x  4)  i   ( x  2)  i   ( x  2)  i    x  1 x  8 x  16  i  x  4 x  4  i    x  1 x  8 x  17  x  4 x  5    x  8 x  17 x  x  8 x  17  x  4 x  5    x  8 x  18 x  8 x  17  x  4 x  5  2

 x i

2

2

2

2

2

2

2

2

2

4

3

2

4

3

2

2

2

2

 x 6  4 x 5  5 x 4  8 x 5  32 x 4  40 x3  18 x 4  72 x3  90 x 2  8 x3  32 x 2  40 x  17 x 2  68 x  85

 x 6  12 x 5  55 x 4  120 x3  139 x 2  108 x  85

23. Since i is a zero, its conjugate i is also a zero. f ( x)  ( x  3)( x  3)( x  i )  x  i 

     x  6 x  9  x  1  x2  6 x  9 x2  i 2 2

2

 x 4  x 2  6 x3  6 x  9 x 2  9  x 4  6 x3  10 x 2  6 x  9

392

Copyright © 2020 Pearson Education, Inc.


Section 4.7: Complex Zeros; Fundamental Theorem of Algebra 24. Since 1  i is a zero, its conjugate 1  i is also a zero of f . f ( x)  ( x  1)  x  (1  i )   x  (1  i )  3

    x  3 x  3x  1 x  2 x  1  i    x  3 x  3x  1 x  2 x  2 

 x  3 x  3x  1  ( x  1)  i   ( x  1)  i  3

2

3

2

2

3

2

2

4 x2  7 x  2 x 2  16 4 x 4  7 x3  62 x 2  112 x  32 4x4

 64 x 2 7 x3  2 x 2  112 x

2

7 x3

5

4

3

2

 x  5 x  11x  13x  8 x  2

25. Since 3i is a zero, its conjugate 3i is also a zero of f . x  3i and x  3i are factors of f .

Thus, ( x  3i )( x  3i )  x 2  9 is a factor of f . Using division to find the other factor: x5 x 2  9 x3  5 x 2  9 x  45 x

3

 9x  45

 5x2

 45

 32

4 x 2  7 x  2  (4 x  1)( x  2)

1 and  2 . 4 1 The zeros of f are 4i,  4i,  2, . 4

The remaining zeros are

28. Since 3i is a zero, its conjugate  3i is also a zero of h . x  3 i and x  3 i are factors of h .

3x 2  5 x  2 x 2  9 3x 4  5 x3  25 x 2  45 x  18

x  5 is a factor, so the remaining zero is 4. The zeros of f are 5, 3i,  3i .

3x 4

 27 x 2 5 x3  2 x 2  45 x 5 x3

26. Since 5i is a zero, its conjugate 5i is also a zero of g . x  5 i and x  5 i are factors of g . 2

Thus, ( x  5 i )( x  5 i )  x  25 is a factor of g . Using division to find the other factor:

 45 x  2 x2

 18

2

 18

 2x

3x 2  5 x  2  (3 x  1)( x  2)

x3 x 2  25 x3  3x 2  25 x  75 x3

1 and  2 . 3 1 The zeros of h are 3i,  3i,  2, . 3 The remaining zeros are

 25 x 3x 2

 75

2

 75

3x

 32

2

Thus, ( x  3i )( x  3i )  x 2  9 is a factor of h . Using division to find the other factor:

2

 5x

 2 x2  2x

 x5  2 x 4  2 x3  3 x 4  6 x3  6 x 2  3 x3  6 x 2  6 x  x 2  2 x  2

 112 x

x  3 is a factor, so the remaining zero is –3. The zeros of g are –3, 5 i,  5 i .

27. Since  4i is a zero, its conjugate 4i is also a zero of f . x  4i and x  4i are factors of f .

29. Since 2  5i is a zero, its conjugate 2  5i is also a zero of h . x  (2  5i ) and x  (2  5i ) are factors of h . Thus, ( x  (2  5i ))( x  (2  5i ))  (( x  2)  5i )(( x  2)  5i )

2

Thus, ( x  4i )( x  4i )  x  16 is a factor of f . Using division to find the other factor:

393 Copyright © 2020 Pearson Education, Inc.

 x 2  4 x  4  25i 2  x 2  4 x  29


Chapter 4: Polynomial and Rational Functions

is a factor of h . Using division to find the other factor:

3

2

3 x  2 x  21x  14 2

5

x 4

4

4 x 2  3x  24

3x

5

 12 x

x 2  4 x  29 4 x 4  7 x3  23 x 2  15 x  522 4

3

4 x  4 x  29 x

2

3

2 x  21x  6 x 4

2

2x

 3 x3  6 x 2  15 x 3

3

3 x  2 x  9 x  6 x  84 x  56

3

4

 8x

2

2

3

2

 21x  14 x  84 x

2

 3 x  12 x  87 x

 21x3

2

 18 x  72 x  522 2

18 x  72 x  522

 12 x

 14 x 2

 56

2

 56

14 x

2

x  3 x  18  ( x  3)( x  6) The remaining zeros are –3 and 6. The zeros of h are 2  5i, 2  5i,  3, 6 .

3x3  2 x 2  21x  14  x 2 (3x  2)  7(3 x  2)  (3 x  2)( x 2  7)

30. Since 1  3i is a zero, its conjugate 1  3i is also a zero of f . x  (1  3 i ) and x  (1  3 i ) are factors of f . Thus, ( x  (1  3i ))( x  (1  3i ))  (( x  1)  3i )(( x  1)  3i ) is a factor of f .

 x  7 

 (3 x  2) x  7

2 The remaining zeros are  , 7, and  7 . 3 2 The zeros of h are 2i,  2i,  7, 7,  . 3

(( x  1)  3i )(( x  1)  3i )  x 2  2 x  1  9i 2

32. Since 3 i is a zero, its conjugate  3i is also a zero of g . x  3 i and x  3 i are factors of g .

 x 2  2 x  10 Using division to find the other factor:

Thus, ( x  3 i )( x  3 i )  x 2  9 is a factor of g . Using division to find the other factor:

x2  5x  6 x 2  2 x  10 x 4  7 x3  14 x 2  38 x  60

2 x3  3x 2  23 x  12

x 4  2 x3  10 x 2

x 2  9 2 x 5  3 x 4  5 x3  15 x 2  207 x  108

 5 x3  4 x 2  38 x

2 x5

 5 x3  10 x 2  50 x

 18 x3

 6 x 2  12 x  60

 3x 4  23x3  15 x 2

 6 x 2  12 x  60

3 x 4

 27 x 2  23x3  12 x 2  207 x

x 2  5 x  6  ( x  1)( x  6) The remaining zeros are –1 and 6. The zeros of f are 1  3i, 1  3i,  1, 6 .

 23x3

31. Since  2i is a zero, its conjugate 2i is also a zero of h . x  2i and x  2i are factors of h . Thus, ( x  2i )( x  2i )  x 2  4 is a factor of h . Using division to find the other factor:

 207 x 12 x 2

 108

2

 108

12 x

0

Using the Rational Root theorem, we see that 3 is a potential rational zero. 3 2  3

 23

12

6

27

 12

9

4

0

2

394

Copyright © 2020 Pearson Education, Inc.


Section 4.7: Complex Zeros; Fundamental Theorem of Algebra x  3 is a factor. The remaining factor is

2 1 8

2 x 2  9 x  4  (2 x  1)( x  4) .

2  12

1 The zeros of g are 3i,  3i,  3, , 4 . 2

33.

1  3 2

x

1 3 1 3   i and   i 2 2 2 2



f ( x)  x 4  1  x 2  1 x 2  1

2

The solutions of x  1  0 are x   i . The zeros are: 1, 1,  i, i . f  x    x  1 x  1 x  i  x  i 

f ( x)  x3  8 x 2  25 x  26

Step 1:

2(1)

f  x    x  2  x  3  2i  x  3  2i 

36.

f ( x)  x3  13 x 2  57 x  85

f ( x ) has 3 complex zeros.

Step 2: By Descartes Rule of Signs, there are no positive real zeros. f ( x)  ( x)3  13( x) 2  57( x)  85 , thus,

  x 3  13x 2  57 x  85 there are three negative real zeros or there is one negative real zero.

Step 3:

f ( x ) has 3 complex zeros.

Possible rational zeros:

p  1,  5,  17,  85; q  1; p  1,  5,  17,  85 q

Step 2: By Descartes Rule of Signs, there are three positive real zeros or there is one positive real zero.

Step 4:

f ( x)  ( x)3  8( x) 2  25( x)  26 , thus,

We try x  5 :

3

2

  x  8 x  25 x  26 there are no negative real zeros. Step 3:

5 1

Using synthetic division:

13

57

85

 5  40  85

Possible rational zeros:

p  1,  2,  13,  26; q  1;

1

8

17

0

x  5 is a factor. The other factor is the

p  1,  2,  13,  26 q

Step 4:

.

6  16 6  4i   3  2i 2 2 The zeros are 2, 3  2i, 3  2i .

Step 1:

 ( x  1)( x  1) x 2  1

35.

( 6)  ( 6) 2  4(1)(13)

1 3 1 3 The zeros are: 1,   i,   i. 2 2 2 2  1 3  1 3  f  x    x  1  x   i x   i  2 2   2 2  

34.

0

The solutions of x 2  6 x  13  0 are:

2

2 1

13

26

x  2 is a factor. The other factor is the quotient: x 2  6 x  13 .

of x 2  x  1  0 are: 1  1  4 1 1

6

1

f ( x)  x3  1  ( x  1) x 2  x  1 The solutions

x

25  26

quotient: x 2  8 x  17 .

Using synthetic division:

The solutions of x 2  8 x  17  0 are:

We try x  2 :

395 Copyright © 2020 Pearson Education, Inc.


Chapter 4: Polynomial and Rational Functions

x

 8  82  4 117 

2 1

x3  x 2  25 x  25  x 2 ( x  1)  25( x  1)

8   4

 ( x  1) x 2  25

2

 8  2i  4i 2 The zeros are 5,  4  i,  4  i .

 ( x  1)( x  5i )( x  5i )

The zeros are 3, 1,  5 i, 5 i . f  x    x  3 x  1 x  5i  x  5i 

f  x    x  5  x  4  i  x  4  i  37.



40.

f ( x)  x 4  5 x 2  4  x 2  4 x 2  1

 ( x  2i )( x  2i )( x  i )( x  i )



f ( x)  x 4  13 x 2  36  x 2  4 x 2  9

f ( x)  x 4  3 x3  19 x 2  27 x  252

Step 2: By Descartes Rule of Signs, there are three positive real zeros or there is one positive real zero.

 ( x  2i )( x  2i )( x  3i )( x  3i )

4

4

Step 3:

q  1;

f ( x)  ( x) 4  2( x)3  22( x)2  50( x)  75

The possible rational zeros are the same as the values of p .

2

 x  2 x  22 x  50 x  75

Step 4:

Thus, there are three negative real zeros or there is one negative real zero.

7 1

p  1,  3,  5,  15,  25,  75; q  1; p  1,  3,  5,  15,  25,  75 q

3  19

27

 252

7

28

 63

252

1 4

9

 36

0

x  7 is a factor. The other factor is the quotient:

Using synthetic division:

We try x  3 : 3 1

Using synthetic division:

We try x  7 :

Possible rational zeros:

Step 4:

Possible rational zeros:

 42,  63,  84,  126,  252;

Step 2: By Descartes Rule of Signs, there is 1 positive real zero.

Step 3:

2

p  1,  2,  3,  4,  6,  7,  9,  12,  14,  18,  21,  28,  36,

f ( x ) has 4 complex zeros.

3

3

Thus, there is 1 negative real zero.

f ( x)  x 4  2 x3  22 x 2  50 x  75

4

2

 x  3 x  19 x  27 x  252

f  x    x  3i  x  2i  x  2i  x  3i 

Step 1:

3

f (  x)  (  x )  3(  x)  19(  x )  27(  x)  252

The zeros are:  3 i,  2 i, 2 i, 3 i .

39.

f ( x ) has 4 complex zeros.

Step 1:

The zeros are:  2i,  i, i, 2i . 38.

x3  4 x 2  9 x  36  x 2 ( x  4)  9( x  4)

2 22

50  75

3

3

 75

75

1 1

25

 25

0

2

 ( x  4) x  9

 ( x  4)( x  3 i )( x  3 i )

The zeros are 7, 4,  3 i, 3 i . f  x    x  7  x  4  x  3i  x  3i 

x  3 is a factor. The other factor is the quotient: x3  x 2  25 x  25 .

396

Copyright © 2020 Pearson Education, Inc.

.


Section 4.7: Complex Zeros; Fundamental Theorem of Algebra

41.

The solutions of x 2  4 x  13  0 are:

f ( x)  3x 4  x3  9 x 2  159 x  52 f ( x ) has 4 complex zeros.

x

Step 2: By Descartes Rule of Signs, there are three positive real zeros or there is one positive real zero.

Step 1:

3

2

Thus, there is 1 negative real zero. Possible rational zeros:

p  1,  2,  4,  13,  26,  52; p  1,  2,  4,  13,  26,  52, q 1 2 4 13 26 52  , , , , , 3 3 3 3 3 3

Step 4:

4  36 4  6i   2  3i 2 2

42.

f ( x)  2 x 4  x3  35 x 2  113 x  65

f ( x ) has 4 complex zeros.

Step 1:

q  1,  3;

Using synthetic division:

We try x  4 :

.

The zeros are  4,

 3 x  x  9 x  159 x  52

Step 3:

2(1)

1 , 2  3 i, 2  3 i . 3 1  f  x   3  x  4   x    x  2  3i  x  2  3i  3 

f (  x )  3(  x ) 4  (  x )3  9(  x) 2  159(  x )  52 4

( 4)  ( 4) 2  4(1)(13)

Step 2: By Descartes Rule of Signs, there are two positive real zeros or no positive real zeros. f (  x)  2(  x) 4  (  x )3  35(  x) 2  113(  x)  65  2 x 4  x3  35 x 2  113 x  65

Thus, there are two negative real zeros or no negative real zeros.

1  9

159  52

Step 3:

 12

52

 172

52

p  1,  5,  13,  65; q  1,  2;

3  13

43

 13

0

p 1 5 13 65  1,  5,  13,  65,  ,  ,  ,  q 2 2 2 2

4 3

x  4 is a factor and the quotient is 3x3  13 x 2  43x  13 .

We try x 

Step 4:

1 on 3x3  13 x 2  43x  13 : 3

1 3  13 43  13 3 1 4 13 3

 12

39

Possible rational zeros:

Using synthetic division:

We try x  5 : 5 2

1  35  113 10

55

100  65

2 11

20

 13

1 is a factor and the quotient is 3 3x 2  12 x  39 .

2 x 3  11x 2  20 x  13

x

0

x  5 is a factor and the quotient is

0

3x 2  12 x  39  3 x 2  4 x  13

65

We try x 

1 on 2 x 3  11x 2  20 x  13 : 2

1 2 11 2 1

20  13

2 12

397 Copyright © 2020 Pearson Education, Inc.

6

13

26

0


Chapter 4: Polynomial and Rational Functions

g ( x)  a( x 2  1)( x 2  4)

1 is a factor and the quotient is 2 2 x 2  12 x  26 . x

2 x 2  12 x  26  2 x 2  6 x  13

4  a(02  1)(02  4) 4  a(1)(4)

a  1 g ( x)   ( x 2  1)( x 2  4)

The solutions of x 2  6 x  13  0 are: x 

 6  62  4(1)(13) 2(1)

  ( x 4  5 x 2  4)

f (1)  15 g (1)  10 so

.

 6  16  6  4i   3  2 i 2 2

( f  g )(1)  f (1)  g (1)  15  (10)  25

1 ,  3  2 i,  3  2 i . 2 1  f  x   2  x  5   x    x  3  2i  x  3  2i  2 

The zeros are 5,

43.

45. a.

 x4  2 x2  1  2 x2

    x  1  2 x  x  1  2 x    x  2 x  1 x  2 x  1  2   2   4(1)(1) b. x  2

 x2  1  2 x2

f ( x)  2 x3  14 x 2  bx  3 3

2

0  2(2)  14(2)  b(2)  3 0  16  26  2b  3 43 2 so

2

2

2

2

2

b

2(1)

 2  2 2 2 2 2 2 x  ,  2 2 2 2 and

43 x3 2 g ( x)  x3  cx 2  8 x  30

f ( x)  2 x3  14 x 2 

0  (3  i )3  (3  i ) 2 c  8(3  i )  30 0  (18  26i )  (8  6i )c  (24  8i )  30 0  18  26i  8  6ic  24  8i  30

x

0  18  24  30  8c  26i  6ic  8i c  3 3

2

 2   4(1)(1) 2

2(1)

2  2 2 2 2 2 2 x  ,  2 2 2 2 The zeros are 2 2 2 2 2 2 2 2   i,   i,   i,   i 2 2 2 2 2 2 2 2 

2

So g ( x)  x  3 x  8 x  30 43 13 f (1)  2  14  3 2 2 g (1)  1  3  8  30  20  13  ( f  g )(1)    20  130  2

44.

f ( x)  x 4  1

46. If the coefficients are real numbers and 2  i is a zero, then 2  i would also be a zero. This would then require a polynomial of degree 4.

f ( x)  ( x  (3  i ))( x  (3  i ))( x  2)( x  2)  ( x  3  i )( x  3  i )( x  2)( x  2)  x 4  6 x3  6 x 2  24 x  40

47. Three zeros are given. If the coefficients are real numbers, then the complex zeros would also have their conjugates as zeros. This would mean

g ( x)  a( x  i )( x  i )( x  2i )( x  2i )

398

Copyright © 2020 Pearson Education, Inc.


Section 4.7: Complex Zeros; Fundamental Theorem of Algebra

that there are 5 zeros, which would require a polynomial of degree 5.

54. A   r 2   (3) 2

48. If the coefficients are real numbers, then complex zeros must appear in conjugate pairs. We have a conjugate pair and one real zero. Thus, there is only one remaining zero, and it must be real because a complex zero would require a pair of complex conjugates. 49. One of the remaining zeros must be 4  i , the conjugate of 4  i . The third zero is a real number. Thus, the fourth zero must also be a real number in order to have a degree 4 polynomial. 50. a. f ( x)  (3  i )2  2(3  i )i  10  (8  6i )  6i  2  10 0

 9 ft 2  28.274 ft 2 C  2 r  2 (3)  6 ft  18.850 ft x  3x  2  3x  2 x   3x  2   x 1 x 1 x 1 x We cannot use any values of x that makes any denominator zero so the domain is:  x | x  1, x  0

55. ( f / g )( x) 

56.

x x5 

y 3 5 y3

 x  5  y  3 2 y   x  5  3

2

2

b. f ( x)  (3  i )  2(3  i )i  10  (8  6i )  6i  2  10  12i  4  0 c. The coefficients are not real numbers. 51.

57. The domain of the radical must be nonnegative and the domain of the denominator cannot be zero. So the domain is:  x | x  0 or  0,   58. 3(0)  y 2  12 y 2  12 y   12  2 3



The y-intercepts are : 0, 2 3 , 0, 2 3 . 3x  02  12 3 x  12

52.

x4 The x-intercept is:  4, 0 

3 x  5 3  x  25 x  22

59.

53. (2 x  5)(3 x 2  x  4)  (2 x)3 x 2  (2 x) x  (2 x)4

x 3 x 3 x 3 x 3 x 9   x7 x 3  x  7 x  3

 5(3x )  5( x)  5( 4) 2

 6 x3  2 x 2  8 x  15 x 2  5 x  20  6 x3  13 x 2  13 x  20

399 Copyright © 2020 Pearson Education, Inc.

x9

 x  7   x  3


Chapter 4 Polynomial and Rational Functions 60.

6.

f ( x)   ( x  1) 4

Using the graph of y  x 4 , shift right 1 unit, then reflect about the x-axis.

f ( x  h)  f ( x) (( x  h)3  8)  ( x3  8)  h (( x  h)3  8)  ( x3  8)  h 3 2 x  3 x h  3xh 2  h3  8  x3  8  h 2 2 3 3 x h  3xh  h  h 2 h(3 x  3xh  h 2 )   3x 2  3 xh  h 2 h

7.

f ( x)  ( x  1) 4  2

Using the graph of y  x 4 , shift right 1 unit, then shift up 2 units.

Chapter 4 Review Exercises 1.

2.

3.

f ( x)  4 x5  3 x 2  5 x  2 is a polynomial of degree 5. 3 x5 is a rational function. It is not a 2x 1 polynomial because there are variables in the denominator. f ( x) 

f ( x)  3 x 2  5 x1/ 2  1 is not a polynomial

because the variable x is raised to the

1 power, 2

8.

f ( x)  x( x  2)( x  4)

Step 1:

Degree is 3. The function resembles y  x3 for large values of x .

Step 2:

y-intercept: f  0    0  0  2   0  4   0

which is not a nonnegative integer. 4.

f ( x)  3 is a polynomial of degree 0.

5.

f ( x)  ( x  2)3

x-intercepts: solve f ( x)  0 : x( x  2)( x  4)  0 x  0 or x  2 or x  4

Using the graph of y  x3 , shift left 2 units. Step 3:

The graph crosses the x-axis at x = 4 , x = 2 and x = 0 since each zero has multiplicity 1.

Step 4:

The polynomial is of degree 3 so the graph has at most 3  1  2 turning points.

Step 5:

f ( 5)  15; f ( 3)  3; f ( 1)  3; f (1)  15

400 Copyright © 2020 Pearson Education, Inc.


Chapter 4 Review Exercises

Step 4: Step 5:

9.

f ( x)  ( x  2) 2 ( x  4)

Step 1:

Degree is 3. The function resembles y  x3 for large values of x .

Step 2:

y-intercept: f  0    0  2   0  4   16 2

x-intercepts: solve f ( x)  0 : Step 3:

Step 4:

Step 5:

( x  2) 2 ( x  4)  0  x  2 or x  4 The graph crosses the x-axis at x = –4 since this zero has multiplicity 1. The graph touches the x-axis at x = 2 since this zero has multiplicity 2.

11.

f ( x)   x  1  x  3  x  1 2

Step 1:

Degree is 4. The function resembles y  x 4 for large values of x .

Step 2:

y-intercept: f  0    0  1  0  3  0  1 2

3 x-intercepts: solve f ( x)  0 :

The polynomial is of degree 3 so the graph has at most 3  1  2 turning points. f ( 5)  49; f ( 2)  32; f (3)  7

 x  12  x  3 x  1  0 Step 3:

Step 4:

Step 5:

10.

the x-axis at x  0 since it has multiplicity 1. The polynomial is of degree 3 so the graph has at most 3  1  2 turning points. f ( 1)  6; f (1)  2; f (3)  18

f ( x)  2 x3  4 x 2  2 x 2  x  2 

Step 1:

Degree is 3. The function resembles y  2 x3 for large values of x .

Step 2:

x-intercepts: 0, 2; y-intercept: 0

Step 3:

The graph crosses x-axis at x  2 since it has multiplicity 2 and touches 401 Copyright © 2020 Pearson Education, Inc.

x  1 or x  3 or x  1 The graph crosses the x-axis at x  3 and x  1 since each zero has multiplicity 1.The graph touches the x-axis at x = 1 since this zero has multiplicity 2. The polynomial is of degree 4 so the graph has at most 4  1  3 turning points. f ( 4)  75; f ( 2)  9; f (2)  15


Chapter 4 Polynomial and Rational Functions x2 is in lowest terms. ( x  3)( x  3) x 9 The denominator has zeros at –3 and 3. Thus, the domain is  x x  3, x  3 . The degree of

12. R ( x) 

x2 2

the numerator, p( x)  x  2, is n  1 . The degree of the denominator q( x)  x 2  9, is m  2 . Since n  m , the line y  0 is a horizontal asymptote. Since the denominator is zero at –3 and 3, x = –3 and x = 3 are vertical asymptotes. x2  4 13. R ( x)  is in lowest terms. The x2 denominator has a zero at 2. Thus, the domain is  x x  2 . The degree of the numerator, p( x)  x 2  4, is n  2 . The degree of the

denominator, q( x)  x  2, is m  1 . Since n  m  1 , there is an oblique asymptote.

x2 x  2 x2 

4

2

x  2x 2x  4 2x  4 8

R( x)  x  2 

8 x2

Thus, the oblique asymptote is y  x  2 . Since the denominator is zero at 2, x = 2 is a vertical asymptote. 14. R ( x ) 

x2  3x  2

 x  2

2

 x  2  x  1 x  1 is in  x2  x  2 2

lowest terms. The denominator has a zero at –2. Thus, the domain is  x x  2 . The degree of

Dividing:

the numerator, p ( x)  x 2  3 x  2, is n  2 . The degree of the denominator,

(cont on next column)

q( x)   x  2   x 2  4 x  4, is m  2 . Since 2

1 n  m , the line y   1 is a horizontal 1 x 1 x2 is zero at 2 , x  2 is a vertical asymptote.

asymptote. Since the denominator of y 

15. R ( x) 

Step 1:

2x  6 x

p ( x )  2 x  6; q ( x)  x; n  1; m  1

Domain:  x x  0 There is no y-intercept because 0 is not in the domain. 2 x  6 2  x  3  is in lowest terms. x x

Step 2:

R( x) 

Step 3:

The x-intercept is the zero of p( x) : 3 Near 3: R  x  

Step 4:

2  x  3 . Plot the point  3, 0  and show a line with positive slope there. 3

2 x  6 2  x  3 is in lowest terms. The vertical asymptote is the zero of q( x) : x  0 .  x x Graph this asymptote using a dashed line. The multiplicity of 0 is odd so the graph will approach plus or minus infinity on either side of the asymptote. R( x) 

402 Copyright © 2020 Pearson Education, Inc.


Chapter 4 Review Exercises

Step 5:

Since n  m , the line y 

2  2 is the horizontal asymptote. Solve to find intersection points: 1

2x  6 2 x 2x  6  2x 6  0 R ( x) does not intersect y  2 . Plot the line y  2 with dashes.

Step 6:

Steps 7:

16. H ( x) 

Graphing:

x2 x( x  2)

p( x)  x  2; q( x)  x( x  2)  x 2  2 x; n  1; m  2

Step 1:

Domain:  x x  0, x  2 .

Step 2:

H ( x) 

Step 3:

There is no y-intercept because 0 is not in the domain.

x2 is in lowest terms. x( x  2)

The x-intercept is the zero of p( x) : –2 Near 2 : H  x   Step 4:

1  x  2  . Plot the point  2, 0  and show a line with positive slope there. 8

x2 is in lowest terms. The vertical asymptotes are the zeros of q( x) : x  0 and x  2 . x( x  2) Graph these asymptotes using dashed lines. The multiplicity of 0 and 2 are odd so the graph will approach plus or minus infinity on either side of the asymptotes. H ( x) 

403 Copyright © 2020 Pearson Education, Inc.


Chapter 4 Polynomial and Rational Functions

Since n  m , the line y  0 is the horizontal asymptote. Solve to find intersection points: x2 0 x( x  2) x20 x  2 H ( x) intersects y  0 at (–2, 0). Plot the line y  0 using dashes.

Step 5:

Step 6:

Steps 7: Graphing:

17. R ( x) 

x2  x  6 2

x  x6

( x  3)( x  2) ( x  3)( x  2)

p( x)  x 2  x  6; q ( x)  x 2  x  6;

Step 1:

Domain:  x x   2, x  3 .

Step 2:

R( x) 

Step 3:

The y-intercept is R (0) 

x2  x  6 x2  x  6

is in lowest terms. 02  0  6 2

0 06

6  1 . Plot the point  0,1 . 6

The x-intercepts are the zeros of p ( x) : –3 and 2. Near 3 : R  x    Near 2: R  x   

5  x  3 . Plot the point  3, 0  and show a line with negative slope there. 6

5  x  2  . Plot the point  2, 0  and show a line with negative slope there. 4

404 Copyright © 2020 Pearson Education, Inc.


Chapter 4 Review Exercises

Step 4:

Step 5:

R( x) 

x2  x  6

is in lowest terms. The vertical asymptotes are the zeros of q( x) : x2  x  6 x  2 and x  3 . Graph these asymptotes with dashed lines. The multiplicity of -2 and 3 are odd so the graph will approach plus or minus infinity on either side of the asymptotes. 1 Since n  m , the line y   1 is the horizontal asymptote. Solve to find intersection points: 1 x2  x  6 1 x2  x  6 x2  x  6  x2  x  6 2x  0 x0 R ( x) intersects y  1 at (0, 1). Plot the line y  1 using dashes.

Step 6:

Steps 7: Graphing:

18. F ( x) 

x3 x2  4

x3  x  2  x  2

p( x)  x3 ; q( x)  x 2  4; n  3; m  2

Step 1:

Domain:  x x   2, x  2 .

Step 2:

F ( x) 

Step 3:

The y-intercept is F (0) 

x3 x2  4

is in lowest terms. 03 2

0 4

0  0 . Plot the point  0, 0  . 4

405 Copyright © 2020 Pearson Education, Inc.


Chapter 4 Polynomial and Rational Functions

The x-intercept is the zero of p( x) : 0. 1 Near 0: F  x    x3 . Plot the point  0, 0  and indicate a cubic function there (left tail up and right 4 tail down). x3

Step 4:

F ( x) 

is in lowest terms. The vertical asymptotes are the zeros of q( x) : x   2 and x  2 . x2  4 Graph these asymptotes using dashed lines. The multiplicity of -2 and 2 are odd so the graph will approach plus or minus infinity on either side of the asymptotes.

Step 5:

Since n  m  1 , there is an oblique asymptote. Dividing: x x3 4x 2  x 2 x  4 x3 2 x 4 x 4  4x x3 4x The oblique asymptote is y  x . Solve to find intersection points: x3 x2  4

x

x3  x3  4 x 4x  0 x0 F ( x ) intersects y  x at (0, 0). Plot the line y  x using dashed lines.

Step 6:

Steps 7: Graphing:

406 Copyright © 2020 Pearson Education, Inc.


Chapter 4 Review Exercises

19. R ( x) 

2 x4 ( x  1) 2

p( x)  2 x 4 ; q( x)  ( x  1) 2 ; n  4; m  2

Step 1:

Domain:  x x  1 .

Step 2:

R ( x) 

Step 3:

The y-intercept is R (0) 

2x4 ( x  1) 2

is in lowest terms. 2(0) 4 (0  1)

2

0  0 . Plot the point  0, 0  . 1

The x-intercept is the zero of p( x) : 0. Near 0: R  x   2 x 4 . Plot the point  0, 0  and show the graph of a quartic opening up there. R ( x) 

2x4

Step 4:

is in lowest terms. The vertical asymptote is the zero of q( x) : x  1 . ( x  1) 2 Graph this asymptote using a dashed line. The multiplicity of 1 is even so the graph will approach plus or minus infinity on the same side of the asymptote.

Step 5:

Since n  m  1 , there is no horizontal asymptote and no oblique asymptote.

Step 6:

Steps 7: Graphing:

407 Copyright © 2020 Pearson Education, Inc.


Chapter 4 Polynomial and Rational Functions

20. G ( x) 

x2  4 2

x x2

( x  2)( x  2) x  2  ( x  2)( x  1) x  1

Step 1:

Domain:  x x   1, x  2 .

Step 2:

In lowest terms, G ( x) 

Step 3:

The y-intercept is G (0) 

p ( x)  x 2  4; q( x)  x 2  x  2;

x2 , x2. x 1 02  4 2

0 02

4  2 . Plot the point  0, 2  . 2

The x-intercept is the zero of y  x  2 : –2; Note: 2 is not a zero because reduced form must be used to find the zeros. Near 2 : G  x    x  2 . Plot the point  2, 0  and show a line with negative slope there. Step 4:

Step 5:

x2 , x  2 . The vertical asymptote is the zero of f ( x)  x  1 : x  1 ; x 1 Graph this asymptote using a dashed line. Note: x  2 is not a vertical asymptote because reduced form  4 must be used to find the asymptotes. The graph has a hole at  2,  . The multiplicity of -1 is odd so  3 the graph will approach plus or minus infinity on either side of the asymptote. In lowest terms, G ( x) 

1 Since n  m , the line y   1 is the horizontal asymptote. Solve to find intersection points: 1 2 x 4 1 2 x x2 x2  4  x2  x  2 x2 G ( x) does not intersect y  1 because G ( x) is not defined at x  2 . Plot the line y  1 using dashes.

Step 6:

408 Copyright © 2020 Pearson Education, Inc.


Chapter 4 Review Exercises

Steps 7: Graphing:

x3  x 2  4 x  4

21. 3

( , 4)

( 4, 1)

( 1, 1)

(1,  )

5

2

0

2

Value of f

24

6

4

18

Conclusion

Negative

Positive

Negative

Positive

Interval

2

x  x  4x  4  0

Number

x  x  1  4  x  1  0

Chosen

2

 x  4  x  1  0 2

 x  2  x  2  x  1  0 f ( x)   x  2  x  2  x  1

The solution set is  x  4  x  1 or x  1 , or,

x   2, x  1, and x  2 are the zeros of f . ( , 2)

( 2, 1)

( 1, 2)

(2,  )

3

3 / 2

0

3

Value of f

10

0.875

4

20

Conclusion

Negative

Positive

Negative

Positive

Interval Number Chosen



The solution set is  x | x  2 or  1  x  2 , or, using interval notation,  , 2    1, 2  . 



x3  4 x 2  x  4

22.

using interval notation,  4, 1  1,   .

x3  4 x 2  x  4  0 x 2  x  4   1 x  4   0

 x  1  x  4  0 2

23.



Chosen

x   4, x  1, and x  1 are the zeros of f .

2x  6 2 1 x 2x  6 2 0 1 x 2 x  6  2(1  x) 0 1 x 4x  8 0 1 x 4  x  2 f ( x)  1 x The zeros and values where the expression is undefined are x  1, and x  2 . Interval Number

 x  1 x  1 x  4   0 f ( x)   x  1 x  1 x  4 

Value of f Conclusion

 , 1

1, 2 

 2,  

0

1.5

3

8

4

2

Negative Positive Negative

The solution set is  x x  1 or x  2  , or,

409 Copyright © 2020 Pearson Education, Inc.


Chapter 4 Polynomial and Rational Functions

using interval notation,  ,1   2,   . 

24.



interval notation,  , 4    2, 4    6,   .

( x  2)( x  1) 0 x3 ( x  2)( x  1) f ( x)  x3 The zeros and values where the expression is undefined are x  1, x  2, and x  3 . Interval

 , 1

1, 2 

 2, 3 

(3,  )

0

1.5

2.5

4

2

1

Number Chosen Value of f

3

6

Conclusion

Negative

Positive

3 2

Negative

26.

25.

x 2  8 x  12 x 2  16 f ( x) 

f ( x)  8 x3  3 x 2  x  4

 10 So R  10 and g is not a factor of f .

27.

f ( x)  x 4  2 x3  15 x  2

Since g ( x)  x  2 then c  2 . From the Remainder Theorem, the remainder R when f ( x ) is divided by g ( x ) is f (c ) :

Positive

f (2)  (2) 4  2(2)3  15(2)  2  16  2(8)  30  2 0 So R  0 and g is a factor of f .

28. 4 12

x 2  8 x  12

x 2  16 ( x  2)( x  6) 0 ( x  4)( x  4) The zeros and values where the expression is undefined are x   4, x  2, x  4, and x  6 . Interval

Number Chosen

 ,  4 

5

 4, 2 

0

 2, 4 

3

 4, 6 

5

 6,  

7

Value of f

77 9 3  4 3 7 1  3 5 33

 8  3 1 4

6

0

f (1)  8(1)3  3(1) 2  1  4

using interval notation, 1, 2   3,  . 

Since g ( x)  x  1 then c  1 . From the Remainder Theorem, the remainder R when f ( x ) is divided by g ( x ) is f (c ) :

The solution set is  x 1  x  2 or x  3  , or,







12

0

8

48

192

736 2944 11,776 47,104

48

184

736 2944 11,776 47,105

0

0

0

1

f (4)  47,105

29.

f  x   12 x8  x7  8 x 4  2 x3  x  3

The maximum number of zeros is the degree of the polynomial, which is 8. Examining f  x   12 x8  x 7  8 x 4  2 x3  x  3 ,

Conclusion

there are four variations in signs; thus, there are four, two or no positive real zeros. Examining

Positive

f   x   12   x     x   8(  x) 4  2(  x)3    x   3 8

Negative

7

 12 x8  x 7  8 x 4  2 x3  x  3

, there are two variations in sign; thus, there are two negative real zeros or no negative real zeros.

Positive Negative Positive

The solution set is  x x   4 or 2  x  4 or x  6  , or, using

30.

f  x   6 x5  x 4  5 x3  x  1

The maximum number of zeros is the degree of the polynomial, which is 5. Examining f  x   6 x5  x 4  5 x3  x  1 , there is one variation in sign; thus, there is one positive real zero.

410 Copyright © 2020 Pearson Education, Inc.


Chapter 4 Review Exercises

Examining

The zeros are –2, of multiplicity 1 and

f   x   6   x     x   5   x   (  x)  1 , 5

4

3

 6 x5  x 4  5 x3  x  1 there are two variations in sign; thus, there are two negative real zeros or no negative real zeros. 31. a0  3 , a8  12 p  1, 3 q  1, 2, 3, 4, 6, 12 p 1 3 1 1 3 1 1  1, 3,  ,  ,  ,  ,  ,  ,  q 2 2 3 4 4 6 12

32.

f ( x)  x3  3x 2  6 x  8

10

Using synthetic division: We try x  2 : 2 1 4 9  20 20 4

10  20

  Thus, f ( x)  ( x  2)( x  2)  x  5   ( x  2)  x  5  2

2

Thus, f ( x)  ( x  2) x 2  5 x  4 .  ( x  2)( x  1)( x  4) The zeros are –2, 1, and 4, each of multiplicity 1. f ( x)  4 x3  4 x 2  7 x  2

Possible rational zeros: p  1,  2; q  1,  2,  4; p 1 1  1,  2,  ,  2 4 q

2

Since x 2  5  0 has no real solutions, the only zero is 2, of multiplicity 2. 35. 2 x 4  2 x3  11x 2  x  6  0 The solutions of the equation are the zeros of f ( x)  2 x 4  2 x3  11x 2  x  6 . Possible rational zeros: p  1,  2,  3,  6; q  1,  2; p 1 3  1,  2,  3,  6,  ,  q 2 2

Using synthetic division: We try x  3 : 3 2 2  11 1 6 6

Using synthetic division: We try x  2 : 2 4 4 7 2 8 8 2

12  3

6

2 4 1 2 0 x  3 is a factor and the quotient is 2x3  4 x 2  x  2  2 x 2  x  2   1 x  2 

4 4 1 0 x  2 is a factor. The other factor is the quotient: 4 x2  4 x  1 .

Possible rational zeros: p  1,  2,  4,  5,  10,  20; q  1; p  1,  2,  4,  5,  10,  20 q

  x  2 x2  5

1 5 4 0 x  2 is a factor. The other factor is the quotient: x 2  5 x  4 .

33.

f ( x)  x 4  4 x3  9 x 2  20 x  20

x3  2 x 2  5 x  10  x 2  x  2   5  x  2 

8

34.

1 2 5  10 0 x  2 is a factor and the quotient is

Using synthetic division: We try x  2 : 2 1 3 6 8 2

multiplicity 2.

2

Possible rational zeros: p  1,  2,  4,  8; q  1; p  1,  2,  4,  8 q

1 , of 2

Thus, f ( x)   x  2  4 x 2  4 x  1 .   x  2  (2 x  1)(2 x  1)

  Thus, f ( x)  ( x  3)( x  2)  2 x  1 .   x  2 2 x2  1 2

Since 2 x 2  1  0 has no real solutions, the solution set is 3, 2 .

411 Copyright © 2020 Pearson Education, Inc.


Chapter 4 Polynomial and Rational Functions

For r = 2, the last row of synthetic division contains only numbers that are positive or 0, so we know there are no zeros greater than 2. For r = -3, the last row of synthetic division results in alternating positive (or 0) and negative (or 0) values, so we know that there are no zeros less than -3. The upper bound is 2 and the lower bound is -3.

36. 2 x 4  7 x3  x 2  7 x  3  0 The solutions of the equation are the zeros of f ( x)  2 x 4  7 x3  x 2  7 x  3 . Possible rational zeros: p  1,  3; q  1,  2; p 1 3  1,  3,  ,  q 2 2 39.

Using synthetic division: We try x  3 : 3 2 7 1 7 3 6 3

6

  2 x  1 x  1

Thus,

2

40.

  x  3 2 x  1 x  1 x  1

1   The solution set is 3,  1,  , 1 . 2  

37.

41.

f  x   x3  x 2  4 x  2 r

coeff of q(x)

1

1

0

2 3 1

1 1 1

1 2 2 2 2 8 2 2 0

2

1

3

4 2

2

f  x   2 x3  7 x 2  10 x  35 r

coeff of q(x)

1

2

5

15

20

5 1 2

2 2 2

3 5 5 10 11 12

60 45 11

3

2

13

remainder

52

29

f  x   x3  x  2

So by the Intermediate Value Theorem, f has a zero on the interval [1,2]. Subdivide the interval [1,2] into 10 equal subintervals: [1,1.1]; [1.1,1.2]; [1.2,1.3]; [1.3,1.4]; [1.4,1.5]; [1.5,1.6]; [1.6,1.7]; [1.7,1.8]; [1.8,1.9]; [1.9,2] f 1  2; f 1.1  1.769

For r = 3, the last row of synthetic division contains only numbers that are positive or 0, so we know there are no zeros greater than 3. For r = -2, the last row of synthetic division results in alternating positive (or 0) and negative (or 0) values, so we know that there are no zeros less than -2. The upper bound is 3 and the lower bound is -2. 38.

0, 1

f 1  2; f  2   4

remainder

2

f ( x)  8 x 4  4 x3  2 x  1;

f (0)  1  0 and f (1)  1  0 The value of the function is positive at one endpoint and negative at the other. Since the function is continuous, the Intermediate Value Theorem guarantees at least one zero in the given interval.

f ( x)  ( x  3)  2 x  1 x  1 2

0, 1

f (0)  1  0 and f (1)  1  0 The value of the function is positive at one endpoint and negative at the other. Since the function is continuous, the Intermediate Value Theorem guarantees at least one zero in the given interval.

3

2 1  2 1 0 x  3 is a factor and the quotient is 2x3  x 2  2 x  1  x 2  2 x  1  1 2 x  1 .

f ( x)  3x3  x  1;

f 1.1  1.769; f 1.2   1.472

f 1.2   1.472; f 1.3  1.103 f 1.3  1.103; f 1.4   0.656 f 1.4   0.656; f 1.5   0.125

f 1.5   0.125; f 1.6   0.496

So f has a real zero on the interval [1.5,1.6]. Subdivide the interval [1.5,1.6] into 10 equal subintervals: [1.5,1.51]; [1.51,1.52]; [1.52,1.53]; [1.53,1.54]; [1.54,1.55]; [1.55,1.56];[1.56,1.57]; [1.57,1.58]; [1.58,1.59]; [1.59,1.6] f 1.5   0.125; f 1.51  0.0670 f 1.51  0.0670; f 1.52   0.0082

412 Copyright © 2020 Pearson Education, Inc.


Chapter 4 Review Exercises f 1.52   0.0082; f 1.53  0.0516

So f has a real zero on the interval [1.52,1.53], therefore the zero is 1.52, correct to two decimal places.

44. Since complex zeros appear in conjugate pairs, i , the conjugate of i , and 1  i , the conjugate of 1  i , are the remaining zeros of f .

f  x    x  i  x  i  x  1  i  x  1  i   x 4  2 x3  3x 2  2 x  2

42.

45.

f  x   8 x 4  4 x3  2 x  1 f  0   1; f 1  1 ,

f ( x)  x3  3 x 2  6 x  8 .

Possible rational zeros: p  1,  2,  4,  8; q  1; p  1,  2,  4,  8 q

So by the Intermediate Value Theorem, f has a zero on the interval [0,1]. Subdivide the interval [0,1] into 10 equal subintervals: [0,0.1]; [0.1,0.2]; [0.2,0.3]; [0.3,0.4]; [0.4,0.5]; [0.5,0.6]; [0.6,0.7]; [0.7,0.8]; [0.8,0.9]; [0.9,1] f  0   1; f  0.1  1.2032

Using synthetic division: We try x  1 : 1 1 3 6 8

f  0.1  1.2032; f  0.2   1.4192

1  2 8

f  0.2   1.4192; f  0.3  1.6432

1

 2 8

0

x  1 is a factor and the quotient is x 2  2 x  8 Thus,

f  0.3  1.6432; f  0.4   1.8512 f  0.4   1.8512; f  0.5   2

f ( x)  ( x  1) x 2  2 x  8  ( x  1)( x  4)( x  2) .

f  0.5   2; f  0.6   2.0272

The complex zeros are 1, 4, and –2, each of multiplicity 1.

f  0.6   2.0272; f  0.7   1.8512 f  0.7   1.8512; f  0.8   1.3712 f  0.8   1.3712; f  0.9   0.4672

f  0.9   0.4672; f 1  1

So f has a real zero on the interval [0.9,1]. Subdivide the interval [0.9,1] into 10 equal subintervals: [0.9,0.91]; [0.91,0.92]; [0.92,0.93]; [0.93,0.94]; [0.94,0.95]; [0.95,0.96];[0.96,0.97]; [0.97,0.98]; [0.98,0.99]; [0.99,1] f  0.9   0.4672; f  0.91  0.3483 f  0.91  0.3483; f  0.92   0.2236 f  0.92   0.2236; f  0.93   0.0930

f  0.93  0.0930; f  0.94   0.0437

So f has a real zero on the interval [0.93,0.94], therefore the zero is 0.93, correct to two decimal places. 43. Since complex zeros appear in conjugate pairs, 4  i , the conjugate of 4  i , is the remaining zero of f . f  x    x  6  x  4  i  x  4  i 

46.

f ( x)  4 x3  4 x 2  7 x  2 .

Possible rational zeros: p  1,  2; q  1, 2, 4; 1 1 p  1,  ,  , 2 2 4 q Using synthetic division: We try x  2 : 2 4 4 7 2 8 8  2 4

4

1

0

x  2 is a factor and the quotient is 4x 2  4 x  1 . Thus,

f ( x)  ( x  2) 4 x 2  4 x  1

.

  x  2  2 x  1 2 x  1

  x  2  2 x  1  4  x  2  x  12 2

2

The complex zeros are –2, of multiplicity 1, and 1 , of multiplicity 2. 2

 x3  14 x 2  65 x  102

413 Copyright © 2020 Pearson Education, Inc.


Chapter 4 Polynomial and Rational Functions

47.

f ( x)   x  2  x  3

f ( x)  x 4  4 x 3  9 x 2  20 x  20 . Possible rational zeros: p  1,  2,  4,  5, 10, 20; q  1; p  1,  2,  4,  5, 10, 20 q

The complex zeros are 2, –3, 

2 2 i , and i, 2 2

each of multiplicity 1. 49.

10  20

f ( x)  x3  2.37 x 2  4.68 x  6.93

Step 1: Degree = 3; The graph of the function resembles y  x3 for large values of x .

1  2 5  10 0 x  2 is a factor and the quotient is x3  2 x 2  5 x  10 .



 2  x  2  x  3 x  22 i x  22 i

Using synthetic division: We try x  2 : 2 1 4 9  20 20 2 4

 2 x  i  2 x  i 

Step 2: Graphing utility

Thus, f ( x)  ( x  2) x3  2 x 2  5 x  10 . 3

2

We can factor x  2 x  5 x  10 by grouping. x3  2 x 2  5 x  10  x 2  x  2   5  x  2 

    x  2   x  5i  x  5i  f ( x)  ( x  2)  x  5i  x  5i    x  2 x2  5

2

The complex zeros are 2, of multiplicity 2, and 5i and  5i , each of multiplicity 1. 48.

Step 3: x-intercepts: -1.93, 1.14, 3.16; y-intercept: 6.93 Step 4:

f ( x)  2 x 4  2 x3  11x 2  x  6 .

Possible rational zeros: p  1,  2,  3,  6; q  1, 2; p 1 3  1,  , 2,  3,   6 2 2 q

Step 5: 2 turning points; local maximum: (–0.69, 8.70); local minimum: (2.27, –4.21)

Using synthetic division: We try x  2 : 2 2 2  11 1  6 4

12

2

Step 6: Graphing by hand

6

2 6 1 3 0 x  2 is a factor and the quotient is 2 x3  6 x 2  x  3 .

Thus, f ( x)  ( x  2) 2 x3  6 x 2  x  3 . 3

2

We can factor 2 x  6 x  x  3 by grouping. 2 x 3  6 x 2  x  3  2 x 2  x  3   x  3

    x  3  2 x  i  2 x  i    x  3 2 x 2  1

Step 7: Domain:  ,   ; Range:  ,   Step 8: Increasing on  , 0.69 and  2.27,   ; decreasing on  0.69, 2.27 

414 Copyright © 2020 Pearson Education, Inc.


Chapter 4 Test

50. a.

250  r 2 h 

h

250 r

2

then shift down 2 units.

;

 250  A(r )  2 r 2  2rh  2r 2  2r  2   r  500  2r 2  r

b.

c.

500 3 500  18   223.22 square cm 3 500 A(5)  2  52  5  50  100  257.08 square cm

A(3)  2  32 

The maximum number of real zeros is the degree, n  3 . b. g  x   2 x3  5 x 2  28 x  15

2. a.

We list all integers p that are factors of a0  15 and all the integers q that are factors of a3  2 . p :  1,  3,  5,  15 q :  1, 2

d. Use MINIMUM on the graph of 500 y1  2x 2  x

p

Now we form all possible ratios q :

The area is smallest when the radius is approximately 3.41 cm. 51. a.

c.

p 1 3 5 15 :  , 1,  ,  , 3, 5,  , 15 q 2 2 2 2 If g has a rational zero, it must be one of the 16 possibilities listed.

c.

We can find the rational zeros by using the fact that if ris a zero of g, then g  r   0 . That is, we evaluate the function for different values from our list of rational zeros. If we get g  r   0 , we have a zero. Then we use long division to reduce the polynomial and start again on the reduced polynomial.

b.

P (t )  0.803t 3  7.460t 2  24.511t  201.064 3

2

P (10)  0.803(10)  7.460(10)  24.511(10)  201.064  503 The predicted new home price for January 2022 is approximately $503,000.

g 1  2 1  5 1  28 1  15 , 3

2

 2  5  28  15  36 g  3  2  3  5  3  28  3  15 3

2

 54  45  84  15 0 So, we know that 3 is a zero. This means that  x  3 must be a factor of g. Using

Chapter 4 Test 1.

We will start with the positive integers:

long division we get

f ( x)  ( x  3) 4  2

Using the graph of y  x 4 , shift right 3 units, 415 Copyright © 2020 Pearson Education, Inc.


Chapter 4 Polynomial and Rational Functions

 2 x3  6 x 2

The power function that the graph of g resembles for large values of x is given by

f.

2 x 2  11x  5 x  3 2 x3  5 x 2  28 x  15

the term with the highest power of x. In this case, the power function is y  2 x3 . So, the graph of g will resemble the graph of y  2 x3 for large values of x .

11x 2  28 x

 11x 2  33 x

g.

5 x  15   5 x  15  0

Thus, we can now write

g  x    x  3 2 x 2  11x  5

We could first evaluate the function at several values for x to help determine the scale. Putting all this information together, we obtain the following graph:

The quadratic factor can be factored so we get: g  x    x  3 2 x  1 x  5  To find the remaining zeros of g, we set the last two factors equal to 0 and solve. 2x 1  0 x5  0 2 x  1 x  5 1 x 2 1 Therefore, the zeros are 5 ,  , and 3. 2 Notice how these rational zeros were all in the list of potential rational zeros. d. The x-intercepts of a graph are the same as the zeros of the function. In the previous 1 part, we found the zeros to be 5 ,  , and 2 1 3. Therefore, the x-intercepts are 5 ,  , 2 and 3.

To find the y-intercept, we simply find g  0 . g  0   2  0   5  0   28  0   15  15 3

2

So, the y-intercept is 15 . e.

Whether the graph crosses or touches at an x-intercept is determined by the multiplicity. Each factor of the polynomial occurs once, so the multiplicity of each zero is 1. For odd multiplicity, the graph will cross the x-axis at the zero. Thus, the graph crosses the xaxis at each of the three x-intercepts.

3.

x 3  4 x 2  25 x  100  0 x 2  x  4   25  x  4   0

 x  4   x 2  25  0

x  4  0 or x 2  25  0 x4

x 2  25 x   25

x  5i The solution set is 4, 5i, 5i .

4.

3 x3  2 x  1  8 x 2  4 3x3  8 x 2  2 x  3  0 If we let the left side of the equation be f  x  ,

then we are simply finding the zeros of f. We list all integers p that are factors of a0  3 and all the integers q that are factors of a3  3 . p :  1, 3 ; q : 1, 3 p

Now we form all possible ratios q : p 1 :  , 1, 3 q 3

416 Copyright © 2020 Pearson Education, Inc.


Chapter 4 Test

the denominator is 1. Therefore, the graph has the horizontal asymptote y  12  2 .

It appears that there is a zero near x  1 . f 1  3 1  8 1  2 1  3  0 3

2

Therefore, x=1 is a zero and  x  1 is a factor of f  x  . We can reduce the polynomial expression

by using synthetic division. 1 3 8

2

3

3 5 3 3 5 3

0

Thus, f  x    x  1 3 x 2  5 x  3 . We can find the remaining zeros by using the quadratic formula. 3x 2  5 x  3  0 a  3, b  5, c  3 x

  5  

Asymptotes: Since the function is in lowest terms, the graph has one vertical asymptote, x  1 . The degree of the numerator is one more than the degree of the denominator so the graph will have an oblique asymptote. To find it, we need to use long division (note: we could also use synthetic division in this case because the dividend is linear). x 1 x  1 x2  2 x  3

 x2  x

 5 2  4  3 3 2  3

x3

5  25  36 5  61  6 6  5  61 5  61  Thus, the solution set is 1, , . 6 6   

5. We start by factoring the numerator and denominator. 2 x 2  14 x  24 2  x  3  x  4  g  x  2   x  10   x  4  x  6 x  40

The domain of f is  x | x  10, x  4 . In lowest terms, g  x  

x2  2 x  3 x 1 Start by factoring the numerator.  x  3  x  1 r  x  x 1 The domain of the function is  x | x  1 .

6. r  x  

2  x  3

with x  4 . x  10 The graph has one vertical asymptote, x  10 , since x  10 is the only factor of the denominator of g in lowest terms. The graph is still undefined at x  4 , but there is a hole in the graph there instead of an asymptote.

Since the degree of the numerator is the same as the degree of the denominator, the graph has a horizontal asymptote equal to the quotient of the leading coefficients. The leading coefficient in the numerator is 2 and the leading coefficient in

  x  1 4 The oblique asymptote is y  x  1 .

7. From problem 6 we know that the domain is  x | x  1 and that the graph has one vertical

asymptote, x  1 , and one oblique asymptote, y  x 1. x-intercepts: To find the x-intercepts, we need to set the numerator equal to 0 and solve the resulting equation.  x  3 x  1  0 x  3  0 or x  1  0 x  3 x 1 The x-intercepts are 3 and 1. The points  3, 0  and 1, 0  are on the graph.

y-intercept: 02  2  0   3 r  0   3 0 1 The y-intercept is 3 . The point  0, 3 is on the graph.

417 Copyright © 2020 Pearson Education, Inc.


Chapter 4 Polynomial and Rational Functions

Test for symmetry:

 x  2  x  3 x  2x  3  x 1 x 1 Since r   x   r  x  , the graph is not symmetric 2

r x 

2

with respect to the y-axis. Since r   x   r  x  , the graph is not symmetric with respect to the origin. Behavior near the asymptotes: To determine if the graph crosses the oblique asymptote, we solve the equation r  x  x 1

The zeros of the numerator and denominator, 3 , 1 , and 1, divide the x-axis into four subintervals.  , 3 ,  3, 1 ,  1,1 , 1,   We can check a point in each subinterval to determine if the graph is above or below the xaxis. Interval  , 3  3, 1  1,1 1,   Number 0 3 5 2 Value of r 3 3 3 3 Location below above below above Point  5, 3  2,3  0, 3  3,3

get f  x    x  2  x   x  3  i   x  3  i 

4

2

3

2

y  x 1

3

2

 x  6 x  10 x  2 x  12 x  20 x  x 4  4 x3  2 x 2  20 x

9. Since the domain excludes 4 and 9, the denominator must contain the factors  x  4 

and  x  9  . However, because there is only one vertical asymptote, x  4 , the numerator must also contain the factor  x  9  . The horizontal asymptote, y  2 , indicates that the degree of the numerator must be the same as the degree of the denominator and that the ratio of the leading coefficients needs to be 2. We can accomplish this by including another factor in the numerator,  x  a  , where a  4 , along with a factor of 2. Therefore, we have r  x  

2  x  9  x  a 

 x  4  x  9 

.

If we let a  1 , we get 2  x  9   x  1 2 x 2  20 x  18 . r  x    x  4   x  9  x 2  13x  36

5

(3, 0) (1, 0) (0, 3)

x  1

where a is any real number. If we let a  1 , we

2

3  1 false The result is a contradiction so the graph does not cross the oblique asymptote.

5

f  x   a  x   2    x  0   x   3  i    x   3  i  

 x2  2 x  x  3  i   x  3  i 

x2  2 x  3  x2  2 x  1

5

factor of the polynomial. This allows us to write the following function:

    x  2 x  x  6 x  10 

x2  2 x  3  x  1, x  1 x 1

y

8. Since the polynomial has real coefficients, we can apply the Conjugate Pairs Theorem to find the remaining zero. If 3  i is a zero, then its conjugate, 3  i , must also be a zero. Thus, the four zeros are 2 , 0, 3  i , and 3  i . The Factor Theorem says that if f  c   0 , then  x  c  is a

5

x

10. Since we have a polynomial function and polynomials are continuous, we simply need to show that f  a  and f  b  have opposite signs

(where a and b are the endpoints of the interval). f  0   2  0   3  0   8  8 2

f  4   2  4   3  4   8  36 2

Since f  0   8  0 and f  4   36  0 , the Intermediate Value Theorem guarantees that there is at least one real zero between 0 and 4. 418 Copyright © 2020 Pearson Education, Inc.


Chapter 4 Cumulative Review

11.

x2 2 x 3 We note that the domain of the variable consists of all real numbers except 3. Rearrange the terms so that the right side is 0. x2 2 0 x 3 x2 For f  x    2 , we find the zeros of f and x3 the values of x at which f is undefined. To do this, we need to write f as a single rational expression. x2 2 f  x  x 3 x2 x 3   2 x 3 x 3 x  2  2x  6  x3 x  8  x3 The zero of f is x  8 and f is undefined at x  3 . We use these two values to divide the real number line into three subintervals. 

Interval Num. ch osen Value of f C onclus ion

,3 

Interval Number

2.5

1

1

Value of f

8

0.625

2

12

Conclusion

Negative

Positive

Negative

Positive

 

The solution set is , 3  2,0

Chapter 4 Cumulative Review 1. P  1, 3 , Q   4, 2  d P ,Q  

 4  12   2  32  5 2   12 

25  1

 26

2.

x2  x x2  x  0 x( x  1)  0

8,  

f ( x)  x 2  x

0 4 9 8 4  1 3 6 negative pos itive negative

x  0, x  1 are the zeros of f .

Interval

(, 0)

(0, 1)

(1, )

1

0.5

2

2

0.25

2

Number

Since we want to know where f  x  is negative,

Chosen

we conclude that values of x for which x  3 or x  8 are solutions. The inequality is strict so the solution set is  x | x  3 or x  8 . In

Conclusion Positive Negative Positive

Value of f

The solution set is  x x  0 or x  1  or

interval notation we write  ,3 or  8,   .

 , 0 or 1,   in interval notation.

x3  7 x 2  2 x 2  6 x

12.

4

Chosen

3,8 

(,  3) (3,  2) (2, 0) (0, )

x3  5 x 2  6 x  0 x( x  3)( x  2)  0

f  x   x ( x  3)( x  2)

x  0, x  3, x  2 are the zeros of f .

3.

x 2  3x  4 x 2  3x  4  0

 x  4   x  1  0 f x   x 2  3x  4 x  1, x  4 are the zeros of f .

419 Copyright © 2020 Pearson Education, Inc.


Chapter 4 Polynomial and Rational Functions

(,  1)

(1, 4)

(4, )

2

0

5

Value of f

6

4

6

Conclusion

Positive

Interval Number Chosen

Negative Positive

The solution set is  x  1  x  4  or  1, 4  in interval notation. 6. y  x3

4. Slope –3, Containing the point (–1, 4)

Using the point-slope formula yields: y  y1  m  x  x1  y  4  3  x   1  y  4  3 x  3 y  3 x  1

7. This relation is not a function because the ordered pairs (3, 6) and (3, 8) have the same first element, but different second elements.

Thus, f  x   3 x  1 .

8.

x3  6 x 2  8 x  0

x x2  6 x  8  0 x  x  4  x  2  0 x  0 or x  4 or x  2

The solution set is 0, 2, 4 . 5. Parallel to y  2 x  1 ; Slope 2, Containing the point (3, 5) Using the point-slope formula yields: y  y1  m  x  x1  y  5  2  x  3 y  5  2x  6 y  2x 1

9. 3x  2  5 x  1 3  2x 3 x 2 3 x 2 3 3   The solution set is  x x   or  ,   in 2   2  interval notation.

420 Copyright © 2020 Pearson Education, Inc.


Chapter 4 Cumulative Review

10.

Origin: Replace x by  x and y by  y :

x2  4x  y2  2 y  4  0

 y  x  9 x 3

( x 2  4 x  4)  ( y 2  2 y  1)  4  4  1

y   x3  9 x

( x  2) 2  ( y  1) 2  9

which is equivalent to y  x3  9 x . Therefore, the graph is symmetric with respect to origin.

( x  2) 2  ( y  1) 2  32 Center: (–2, 1) Radius 3

12. 3x  2 y  7 2 y  3 x  7 3 7 y  x 2 2 3 . Every line that is 2 perpendicular to the given line will have slope 2  . Using the point 1, 5  and the point-slope 3 formula yields: y  y1  m  x  x1 

The given line has slope

2  x  1 3 2 2 y 5   x  3 3 2 17 y   x 3 3 y 5  

13. Not a function, since the graph fails the Vertical Line Test, for example, when x  0 . 11. y  x 3  9 x

14.

3

x-intercepts: 0  x  9 x

0  x x2  9

0  x  x  3 x  3 x  0, 3, and 3  0, 0  ,  3, 0  ,  3, 0 

y-intercepts: y  03  9  0   0   0, 0 

f ( x)  x 2  5 x  2

a.

f (3)  32  5(3)  2  9  15  2  22

b.

f ( x)    x   5   x   2  x 2  5 x  2

c.

 f ( x)   x 2  5 x  2   x 2  5 x  2

d.

f (3x)   3x   5  3 x   2  9 x 2  15 x  2

Test for symmetry: 3

x-axis: Replace y by  y :  y  x  9 x , which is not equivalent to y  x 3  9 x .

e.

2

2

f  x  h  f  x h

y-axis: Replace x by  x : y    x   9   x  3

3

 x  9x

which is not equivalent to y  x 3  9 x .

 x  h 2  5  x  h   2   x 2  5 x  2  h

x  2 xh  h  5 x  5h  2  x 2  5 x  2 h 2 2 xh  h  5h  h  2x  h  5 

2

421 Copyright © 2020 Pearson Education, Inc.

2


Chapter 4 Polynomial and Rational Functions

15.

f ( x) 

a. b.

x5 x 1

Domain

17.

a  2, b  4, c  1. Since a  2  0, the graph is concave up.

 x x  1 .

25 7 = =7  6; 2 1 1  2,6  is not on the graph of f . f (2) 

The point  2, 7  is on the graph. c.

35 8 = =4; 3 1 2  3,4  is on the graph of f . f (3) 

The y-coordinate of the vertex is 2  b  f     f 1  2 1  4 1  1  1 .  2a 

The discriminant is: b 2  4ac   4   4  2  1  8  0 , so the graph 2

has two x-intercepts. The x-intercepts are found by solving: 2 x2  4 x  1  0

x  5  9x  9 14  8 x 14 7  8 4 7  Therefore,  ,9  is on the graph of f . 4  x

x 

  4   8 2  2

42 2 2 2  4 2

f ( x ) is a rational function since it is in the

The x-intercepts are

p( x) form . q( x)

16.

The x-coordinate of the vertex is b 4 x  1. 2a 2  2

Thus, the vertex is (1, –1). The axis of symmetry is the line x  1 .

d. Solve for x x5 9 x 1 x  5  9  x  1

e.

f ( x)  2 x 2  4 x  1

2 2 2 2 and . 2 2

The y-intercept is f (0)  1 .

f  x   3 x  7

The graph is a line with slope –3 and y-intercept (0, 7).

422 Copyright © 2020 Pearson Education, Inc.


Chapter 4 Cumulative Review

18.

f  x   x2  3x  1 average rate of change of f from 1 to 2 :

f  2   f 1 2 1

11  5  6  msec 1

f  2   11 so the point  2,11 is on the graph.

Using this point and the slope m  6 , we can obtain the equation of the secant line: y  y1  m  x  x1  y  11  6  x  2 

d. Range:  y y  5  or  ,5 

y  11  6 x  12 y  6x 1

19. a.

22.

x-intercepts:  5, 0  ;  1, 0  ;  5, 0  ;

2

Using the graph of y  x 2 , shift left 1 unit, vertically stretch by a factor of 3, reflect about the x-axis, then shift up 5 units.

y-intercept: (0,–3) b. The graph is not symmetric with respect to the origin, x-axis or y-axis. c.

f ( x)  3  x  1  5

The function is neither even nor odd.

d. f is increasing on  ,  3 and  2,   ; f is

decreasing on  3, 2 ; e.

f has a local maximum value at x  3, and

the local maximum is f  3  5 . f.

f has a local minimum value at x  2, and

the local minimum is f  2   6 . 20.

f ( x) 

23.

f ( x)  x 2  5 x  1

a.

5x

x2  9 5 x 5 x  2   f  x  , therefore f ( x)  2 x  9 x  9 f is an odd function.21. 2 x  1 f ( x)   3 x  4

a.

( f  g )( x)  x 2  5 x  1   4 x  7   x2  9 x  6 The domain is:  x x is a real number .

b.

if  3  x  2

f  x  x2  5x  1  f     ( x)  4 x  7 g  x g

 7 The domain is:  x x    . 4 

if x  2

Domain:  x x  3 or  3,  

g ( x )  4 x  7

24. a.

R( x)  x  p  1   x   x  150   10  1 2   x  150 x 10

 1  b. x-intercept:   , 0   2  y-intercept: (0,1)

c.

423 Copyright © 2020 Pearson Education, Inc.


Chapter 4 Polynomial and Rational Functions

b.

1 (100) 2  150(100) 10  1000  15, 000

R (100)  

b. x 2  bx  c  0 ( x  r1 )( x  r2 )  0 x 2  r1 x  r2 x  r1r2  0

 $14, 000

c.

x 2  (r1  r2 ) x  r1r2  0

1 2 x  150 x is a quadratic 10 1 function with a    0 , the vertex will 10 be a maximum point. The vertex occurs b 150 when x     750 . 2a 2  1 / 10 

b  (r1  r2 )

Since R ( x )  

c  r1r2

c.

The maximum revenue is given by

f ( x)  ( x  2)( x 2  3 x  4) f ( x)  ( x  2)( x  4)( x  1) zeros: 2 . 4. 1 sum  2  4  1  1 , product  (2)(4)(1)  8 sum of double products  2(4)  (2)(1)  4(1)  8  2  4  10

1 R (750)   (750) 2  150(750) . 10  56, 250  112, 500

The coefficient of x 2 is the negative sum. The coefficient of x is the sum of the double products. The constant term is the negative product.

Thus, the revenue is maximized when x  750 units sold.

 $56, 250

d.

f ( x)  x3  x 2  10 x  8

d.

1 (750)  150  75  150  $75 is 10 the selling price that maximizes the revenue. p

f ( x)  x3  bx 2  cx  d f ( x)  ( x  r1 )( x  r2 )( x  r3 ) f ( x)  ( x 2  (r1  r2 ) x  r1r2 )( x  r3 ) f ( x)  x3  (r1  r2  r3 ) x 2 (r1r2  r1r3  r2 r3 ) x  r1r2 r3 b  (r1  r2  r3 )

c  r1r2  r1r3  r2 r3

Chapter 4 Projects

d  r1r2 r3

Project I – Internet-based Project

e.

Answers will vary

f ( x)  x 4  bx3  cx 2  dx  e f ( x)  ( x  r1 )( x  r2 )( x  r3 )( x  r4 ) f ( x)  ( x3  (r1  r2  r3 ) x 2  (r1r2  r1r3  r2 r3 ) x  r1r2 r3 )( x  r3 ) f ( x)  x 4  (r1  r2  r3  r4 ) x3

Project II

  r1r2  r1r3  r2 r3  r1r4  r2 r4  r3 r4  x 2

a. x 2  8 x  9  0 ( x  9)( x  1)  0

(r1r2 r4  r1r3 r4  r2 r3 r4  r1r2 r3 ) x  r1r2 r3 r4

sum  9  1  8 , product   9 1  9

b  (r1  r2  r3  r4 )

x  9 or x  1

c  r1r2  r1r3  r2 r3  r1r4  r2 r4  r3 r4 d  (r1r2 r4  r1r3 r4  r2 r3 r4  r1r2 r3 ) e  r1r2 r3 r4

f. The coefficients are sums, products, or sums of products of the zeros. If f ( x)  x n  an 1 x n 1  an  2 x n  2  ...  a1 x  a0 , 424 Copyright © 2020 Pearson Education, Inc.


Chapter 4 Projects

then: an 1 will be the negative of the sum of the zeros. an  2 will be the sum of the double products. a1 will be the negative (if n is even) or positive (if n is odd) of the sum of (n-1) products. a0 will be the negative (if n is odd) or positive (if n is even) product of the zeros. These will always hold. These would be useful if you needed to multiply a number of binomials in x  c form together and you did not want to have to do the multiplication out. These formulas would help same time.

425 Copyright © 2020 Pearson Education, Inc.


Chapter 3 Linear and Quadratic Functions 11. a

Section 3.1 1. From the equation y  3 x  1 , we see that the yintercept is 1 . Thus, the point  0, 1 is on the graph. We can obtain a second point by choosing a value for x and finding the corresponding value for y. Let x  1 , then y  3 1  1  1 . Thus, the point 1,1 is also on the graph. Plotting the two

12. d 13.

f  x   2x  3

a.

Slope = 2; y-intercept = 3

b. Plot the point (0, 3). Use the slope to find an additional point by moving 1 unit to the right and 2 units up.

points and connecting with a line yields the graph below.

y y 3  5 2 2   2. m  2 1  x2  x1 1  2 3 3

3.

c.

average rate of change = 2

d.

increasing

14. g  x   5 x  4

f (2)  4(2)  3  5 f (4)  4(4)  3  13 y f (4)  f (2) 13  (5) 8     4 x 42 42 2

a.

Slope = 5; y-intercept = 4

b. Plot the point (0, 4) . Use the slope to find an additional point by moving 1 unit to the right and 5 units up.

4. 60 x  900  15 x  2850 75 x  900  2850 75 x  3750 x  50 The solution set is {50}. 5.

f  2   7.5  2   15  0

6. True

c.

average rate of change = 5

d.

increasing

7. slope; y-intercept 8. positive 9. True 10. False. The y-intercept is 8. The average rate of change is 2 (the slope). 163 Copyright © 2020 Pearson Education, Inc.


Chapter 3: Linear and Quadratic Functions 15. h  x   3x  4 a. Slope = 3 ; y-intercept = 4 b. Plot the point (0, 4). Use the slope to find an additional point by moving 1 unit to the right and 3 units down.

c. d.

c.

average rate of change =

d.

increasing

1 4

2 18. h  x    x  4 3 2 a. Slope =  ; y-intercept = 4 3 b. Plot the point (0, 4). Use the slope to find an additional point by moving 3 units to the right and 2 units down.

average rate of change = 3 decreasing

16. p  x    x  6 a. Slope = 1 ; y-intercept = 6 b. Plot the point (0, 6). Use the slope to find an additional point by moving 1 unit to the right and 1 unit down.

c.

average rate of change = 

d.

decreasing

2 3

19. F  x   4 a. Slope = 0; y-intercept = 4 b. Plot the point (0, 4) and draw a horizontal line through it.

c. d. 17.

average rate of change = 1 decreasing

1 x 3 4 1 a. Slope = ; y-intercept = 3 4 b. Plot the point (0, 3) . Use the slope to find an additional point by moving 4 units to the right and 1 unit up. f  x 

c. d.

average rate of change = 0 constant

164 Copyright © 2020 Pearson Education, Inc.


Section 3.1: Properties of Linear Functions and Linear Models 20. G  x   2 a. b.

Slope = 0; y-intercept = 2 Plot the point (0, 2) and draw a horizontal line through it.

23.

x

y  f  x

2

8

1

3

0

0

Avg. rate of change = 3   8  1   2  0   3 0   1

5 5 1

3 3 1

y x

1 1 2 0 This is not a linear function, since the average rate of change is not constant. c. d. 21.

average rate of change = 0 constant

x

y  f  x

2

4

24.

Avg. rate of change =

y x

1

1

1 4 3   3 1   2  1

0

2

2  1 3   3 0   1 1

1

5

5   2  1 0

3  3 1

22.

8

x

y  f  x

2

1 4

1

1 2

0

1

Avg. rate of change =

y x

 12  14  14 1   1   2  1 4 1  12  12 1   0   1 1 2

1 2 2 4 This is not a linear function since the average rate of change is not constant.

y  f  x

2

4

1

0

0

4

40 4  4 0   1 1

1

8

84 4  4 1 0 1

Avg. rate of change = 0   4 

1   2 

y x

4 4 1

12  8 4  4 2 1 1 This is a linear function with slope = 4, since the average rate of change is constant at 4.

8   5 

3   3 2 1 1 This is a linear function with slope = –3, since the average rate of change is constant at –3.

2

x

25.

2

12

x

y  f  x

2

26

1

4

0

2

Avg. rate of change = 4   26  1   2 

2   4  0   1

y x

22  22 1

6 6 1

1 –2 2 –10 This is not a linear function, since the average rate of change is not constant.

165 Copyright © 2020 Pearson Education, Inc.


Chapter 3: Linear and Quadratic Functions

26.

x

y  f  x

2

4

1

3.5

0

3

1

2.5

Avg. rate of change = 3.5   4  1   2 

3   3.5  0   1

2.5   3 1 0 2   2.5 

y x

29.

a.

27.

2

g  x   2 x  5

f  x  0 4x 1  0

0.5  0.5 1

0.5  0.5 1

0.5  0.5 1

x

b.

y  f  x

2

8

1

8

88 0  0 1   2  1

0

8

88 0  0 0   1 1

1

8

88 0  0 1 0 1

Avg. rate of change =

f  x  0 x

1 4

 1 1  The solution set is  x x   or  ,   . 4 4    

x

1 4

4x 1  0

0.5  0.5 2 1 1 This is a linear function, since the average rate of change is constant at 0.5

2

f  x   4 x  1;

c.

f  x  g  x 4 x  1  2 x  5 6x  6

y x

x 1

d.

f  x  g  x 4 x  1  2 x  5 6x  6 x 1 The solution set is  x x  1 or  , 1 .

e.

88 0  0 2 1 1 This is a linear function with slope = 0, since the average rate of change is constant at 0.

28.

2

8

x

y  f  x

2

0

1

1

1 0 1  1 1   2  1

4

4 1 3  3 0   1 1

0

Avg. rate of change =

y x

1 9 2 16 This is not a linear function, since the average rate of change is not constant.

30.

f  x   3 x  5;

a.

g  x   2 x  15

f  x  0 3x  5  0 x

b.

5 3

f  x  0 3x  5  0 x

5 3

 5 5  The solution set is  x x    or  ,   . 3 3   

166 Copyright © 2020 Pearson Education, Inc.


Section 3.1: Properties of Linear Functions and Linear Models

c.

f  x  g  x

32. a.

3x  5  2 x  15 5 x  10

b. The point (15, 60) is on the graph of y  g ( x) , so the solution to g ( x)  60 is x  15 .

x2

d.

The point (5, 20) is on the graph of y  g ( x) , so the solution to g ( x)  20 is x  5 .

f  x  g  x

c.

3x  5  2 x  15 5 x  10 x2 The solution set is  x x  2 or  2,   .

e.

The point (15, 0) is on the graph of y  g ( x) , so the solution to g ( x)  0 is x  15 .

d. The y-coordinates of the graph of y  g ( x) are above 20 when the x-coordinates are smaller than 5. Thus, the solution to g ( x)  20 is

 x x  5 or (, 5) . e.

The y-coordinates of the graph of y  f ( x) are below 60 when the x-coordinates are larger than 15 . Thus, the solution to g ( x)  60 is

 x x  15 or [15, ) . f. 31. a.

The point (40, 50) is on the graph of y  f ( x) , so the solution to f ( x)  50 is x  40 .

b. The point (88, 80) is on the graph of y  f ( x) , so the solution to f ( x)  80 is x  88 . c.

The point (40, 0) is on the graph of y  f ( x) , so the solution to f ( x)  0 is x  40 .

d. The y-coordinates of the graph of y  f ( x) are above 50 when the x-coordinates are larger than 40. Thus, the solution to f ( x)  50 is

 x x  40 or (40, ) . e.

f.

The y-coordinates of the graph of y  f ( x) are between 0 and 80 when the x-coordinates are between 40 and 88. Thus, the solution to 0  f ( x)  80 is  x 40  x  88 or (40, 88) .

 x 15  x  15 or (15, 15) . 33. a.

f  x   g  x  when their graphs intersect.

Thus, x  4 . b.

f  x   g  x  when the graph of f is above

the graph of g. Thus, the solution is  x x  4 or (, 4) . 34. a.

f  x   g  x  when their graphs intersect.

Thus, x  2 . b.

The y-coordinates of the graph of y  f ( x) are below 80 when the x-coordinates are smaller than 88. Thus, the solution to f ( x)  80 is  x x  88 or (, 88] .

The y-coordinates of the graph of y  f ( x) are between 0 and 60 when the xcoordinates are between 15 and 15. Thus, the solution to 0  f ( x)  60 is

f  x   g  x  when the graph of f is below

or intersects the graph of g. Thus, the solution is  x x  2 or  , 2 . 35. a.

f  x   g  x  when their graphs intersect.

Thus, x  6 . b.

g  x   f  x   h  x  when the graph of f is

above or intersects the graph of g and below the graph of h. Thus, the solution is  x 6  x  5 or  6, 5 .

167 Copyright © 2020 Pearson Education, Inc.


Chapter 3: Linear and Quadratic Functions

36. a.

f  x   g  x  when their graphs intersect.

Thus, x  7 . b.

g  x   f  x   h  x  when the graph of f is

above the graph of g and below or intersects the graph of h. Thus, the solution is  x 4  x  7 or  4, 7  .

b.

40. a. b.

37. C  x   2.5 x  85 a.

C  40   2.5  40   85  $185 .

b.

Solve C  x   2.5 x  85  245 2.5 x  85  245 2.5 x  160 160 x  64 miles 2.5

c.

39. a.

Solve C  x   2.5 x  85  150 2.5 x  85  150 2.5 x  65 65  326 miles x 2.5

a.

b.

c.

c.

16.64  64 minutes 0.26

Solve C  x   0.26 x  5  50 0.26 x  5  50 0.26 x  45 45 x  173 minutes 0.26

d. The number of minutes cannot be negative, so x  0 . If there are 30 days in the month, then the number of minutes can be at most 30  24  60  43, 200 . Thus, the implied domain for C is {x | 0  x  43, 200} or [0, 43200] .

Solve S  p   D  p  .  600  50 p  1200  25 p 75 p  1800 1800  24 p 75 S  24   600  50  24  600

Solve D  p   S  p  . 1800  75 p 1800 p 75 24  p The demand will exceed supply when the price is less than $24 (but still greater than $0). That is, $0  p  $24 .

b. Solve C  x   0.26 x  5  21.64

x

152.4  2.47 x  54.10 2.47 x  98.3 x  39.8 cm

1200  25 p  600  50 p

C  50  0.26  50  5  $18 .

0.26 x  16.64

H (46.8)  2.47(46.8)  54.1  169.7 cm

Thus, the equilibrium price is $24, and the equilibrium quantity is 600 T-shirts.

38. C  x   0.26 x  5

0.26 x  5  21.64

175.3  2.89 x  78.1 2.89 x  97.2 x  33.6 cm

41. S  p    600  50 p; D  p   1200  25 p

d. The number of miles driven cannot be negative, so the implied domain for C is {x | x  0} or [0, ) .

a.

H (37.1)  2.89(37.1)  78.1  185.3 cm

The price will eventually be increased.

42. S  p    2000  3000 p; D  p   10000  1000 p a.

Solve S  p   D  p  .  2000  3000 p  10000  1000 p 4000 p  12000 12000 3 4000 S  3   2000  3000  3  7000 p

Thus, the equilibrium price is $3, and the equilibrium quantity is 7000 hot dogs.

168 Copyright © 2020 Pearson Education, Inc.


Section 3.1: Properties of Linear Functions and Linear Models b. Solve D  p   S  p  .

e.

0.12  x  9525   952.50  3109.50

10000  1000 p  2000  3000 p 12000  4000 p

c.

We are told that the tax function T is for adjusted gross incomes x between $9,075 and $36,900, inclusive. Thus, the domain is  x 9,525  x  38, 700 or 9525, 38700 .

b.

T  20, 000   0.12  20, 000  9525   952.50

c.

d.

0.12 x  1143  952.50  3109.50 0.12 x  190.50  3109.50 0.12 x  2919 x  24,325 A single filer with an adjusted gross income of $24,325 will have a tax bill of $3109.50.

12000 p 4000 3 p The demand will be less than the supply when the price is greater than $3. The price will eventually be decreased.

43. a.

 2209.50 If a single filer’s adjusted gross income is $20,000, then his or her tax bill will be $2546.25. The independent variable is adjusted gross income, x. The dependent variable is the tax bill, T.

Evaluate T at x  9525, 20000, and 38700 . T  9525   0.12  9525  9525   952.50  952.50 T  20, 000   0.12  20, 000  9525   952.50  2209.50 T  38, 700   0.12  37,800  9525   952.50

We must solve T  x   3109.50 .

44. a.

b.

The independent variable is payroll, p. The payroll tax only applies if the payroll exceeds $195 million. Thus, the domain of T is  p | p  195 or (195, ) . T  209.3  0.50  209.3  195   7.15

The balance tax for the New York Yankees was $7.15 million. c.

Evaluate T at p  203.4 , 195, and 300 million. T  209.3  0.50  209.3  195   7.15 million T 195   0.50 195  195   0 million T  300   0.50  300  195   52.5 million

Thus, the points  209.3 million, 7.15 million  ,

195 million, 0 million  , and  300 million, 52.5 million  are on the graph.

 4453.50 Thus, the points  9075,898.50  ,

 20000, 2209.50  , and  36900, 4737.50  are on the graph.

169 Copyright © 2020 Pearson Education, Inc.


Chapter 3: Linear and Quadratic Functions

d.

We must solve T  p   24.5 . 0.50  p  195   24.5 0.50 p  97.5  24.5 0.50 p  122 p  244 If the luxury tax is $24.5 million, then the payroll of the team is $244 million.

b. The age of the computer cannot be negative, and the book value of the computer will be $0 after 3 years. Thus, the implied domain for V is {x | 0  x  3} or [0, 3]. c.

The graph of V ( x)  1000 x  3000

d.

V (2)  1000(2)  3000  1000 The computer’s book value after 2 years will be $1000.

e.

Solve V ( x)  2000 1000 x  3000  2000 1000 x  1000 x 1 The computer will have a book value of $2000 after 1 year.

45. R  x   8 x; C  x   4.5 x  17,500 a.

Solve R  x   C  x  . 8 x  4.5 x  17,500 3.5 x  17,500 x  5000 The break-even point occurs when the company sells 5000 units.

b. Solve R  x   C  x  8 x  4.5 x  17,500 3.5 x  17,500 x  5000 The company makes a profit if it sells more than 5000 units. 46. R ( x )  12 x; C ( x)  10 x  15, 000 a. Solve R ( x)  C ( x) 12 x  10 x  15, 000 2 x  15, 000 x  7500 The break-even point occurs when the company sells 7500 units. b. Solve R ( x)  C ( x) 12 x  10 x  15, 000 2 x  15, 000 x  7500 The company makes a profit if it sells more than 7500 units. 47. a.

Consider the data points ( x, y ) , where x = the age in years of the computer and y = the value in dollars of the computer. So we have the points (0,3000) and (3, 0) . The slope formula yields: y 0  3000 3000 m    1000 x 30 3 The y-intercept is (0,3000) , so b  3000 . Therefore, the linear function is V ( x)  mx  b  1000 x  3000 .

48. a.

Consider the data points  x, y  , where x = the age in years of the machine and y = the value in dollars of the machine. So we have the points  0,120000  and 10, 0  . The slope formula yields: y 0  120000 120000    12000 m x 10  0 10 The y-intercept is  0, 120000  , so b  120, 000 . Therefore, the linear function is V  x   mx  b  12, 000 x  120, 000 .

b. The age of the machine cannot be negative, and the book value of the machine will be $0 after 10 years. Thus, the implied domain for V is {x | 0  x  10} or [0, 10].

170 Copyright © 2020 Pearson Education, Inc.


Section 3.1: Properties of Linear Functions and Linear Models

c.

The graph of V  x   12, 000 x  120, 000

50. a.

b.

The new daily fixed cost is 100 1800   $1805 20 Let x = the number of bicycles manufactured. We can use the cost function C  x   mx  b , with m = 90 and b = 1805. Therefore C  x   90 x  1805

d.

c.

The graph of C  x   90 x  1805

d.

The cost of manufacturing 14 bicycles is given by C 14   90 14   1805  $3065 .

e.

Solve C  x   90 x  1805  3780 90 x  1805  3780 90 x  1975 x  21.94 So approximately 21 bicycles could be manufactured for $3780.

V  4   12000  4   120000  72000

The machine’s value after 4 years is given by $72,000. e.

49. a.

Solve V  x   72000 . 12000 x  120000  72000 12000 x  48000 x4 The machine will be worth $72,000 after 4 years. Let x = the number of bicycles manufactured. We can use the cost function C  x   mx  b , with m = 90 and b = 1800. Therefore C  x   90 x  1800

b.

The graph of C  x   90 x  1800 51. a. b.

d (2.4)  5.5(2.4)  13.2 cm

c.

19.8  5.5w w  3.6 kg

52. a. c.

The cost of manufacturing 14 bicycles is given by C 14   90 14   1800  $3060 .

d. Solve C  x   90 x  1800  3780 90 x  1800  3780 90 x  1980 x  22 So 22 bicycles could be manufactured for $3780.

d ( w)  5.5w

First we find the equation of the function given two ordered pairs: (1.5,9), (2.5,5) 59  4 2.5  1.5 y  9  4( x  1.5)

m

y  9  4 x  6 y  4 x  15  d ( w)  4 w  15

b. c.

d (0)  4(0)  15  15 cm 0  4 w  15 4 w  15

w  3.75 lb

171 Copyright © 2020 Pearson Education, Inc.


Chapter 3: Linear and Quadratic Functions h  h1  m( s  s1 ) h  0  0.6( s  20) h  0.6s  12 Using function notation, we have h( s )  0.6s  12 .

9 53. Solving F  C  32 for C gives 5 5 C   F  32  , and solving R  F  459.67 for 9 F gives F  R  459.67 . Then

d. The number of sodas cannot be negative, so s  0 . Likewise, the number of hot dogs cannot be negative, so, h( s )  0 . 0.6 s  12  0 0.6 s  12 s  20 Thus, the implied domain for h(s) is {s | 0  s  20} or [0, 20] .

5  F  32  9 5   R  459.67   32  9 5   R  491.67  9 5  R  273.15 9

C

e.

So C ( R) 

5 R  273.15 . 9

54. a.

f.

b.

c.

h Avg. rate of change = s

s

h

20

0

15

3

30 3   0.6 15  20 5

10

6

63 3   0.6 10  15 5

5

9

96 3   0.6 5  10 5

Since each input (soda) corresponds to a single output (hot dogs), we know that number of hot dogs purchased is a function of number of sodas purchased. Also, because the average rate of change is constant at 0.6 hot dogs per soda, the function is linear. From part (b), we know m  0.6 . Using ( s1 , h1 )  (20, 0) , we get the equation:

g.

If the number of hot dogs purchased increases by $1, then the number of sodas purchased decreases by 0.6. s-intercept: If 0 hot dogs are purchased, then 20 sodas can be purchased. h-intercept: If 0 sodas are purchased, then 12 hot dogs may be purchased.

55. The graph shown has a positive slope and a positive y-intercept. Therefore, the function from (d) and (e) might have the graph shown. 56. The graph shown has a negative slope and a positive y-intercept. Therefore, the function from (b) and (e) might have the graph shown. 57. A linear function f  x   mx  b will be odd

provided f   x    f  x  . That is, provided m   x   b    mx  b  .

172 Copyright © 2020 Pearson Education, Inc.

mx  b   mx  b b  b 2b  0 b0


Section 3.1: Properties of Linear Functions and Linear Models

So a linear function f  x   mx  b will be odd provided b  0 .

61.

A linear function f  x   mx  b will be even provided f   x   f  x  . That is, provided m   x   b  mx  b . mx  b  mx  b  mxb  mx 0  2mx m0 So, yes, a linear function f  x   mx  b cab be

f (3)  f (1) 3 1 12  ( 2)  2 14  2 7

62.

even provided m  0 . 58. Answers may vary. x 2  4 x  y 2  10 y  7  0

59.

( x 2  4 x  4)  ( y 2  10 y  25)  7  4  25 ( x  2) 2  ( y  5) 2  62

Center: (2, 5) ; Radius = 6

63.

f ( x)  x 2  10 x  7  ( x 2  10 x  25)  7  25 2

 ( x  5)  18

64. g ( x)  3x 2  15 x  13  3( x 2  5 x)  13 25  75   3  x 2  5 x    13  4  4  2

5  23   3x    2 4 

60.

2x  B x3 2(5)  B f (5)  8  53 10  B 8 2 16  10  B B6

f ( x) 

173 Copyright © 2020 Pearson Education, Inc.


Chapter 3: Linear and Quadratic Functions

Section 3.2

65. 4(0) 2  9 y  72 y 8 y-intercept: (0,8)

y

1.



4 x 2  9(0)  72 4 x 2  72

x 2  18 x   18  3 2



The x-intercepts are: 3 2, 0 , 3 2, 0

66. Since the radicand must not be negative then: x20 x  2 Also, x  4  0  x  4 The domain is:  x | x  2, x  4 67.

f (2)  f (1) 2  (1) 5  11  3 6  3  2 y  5  2( x  2) y  5  2 x  4 y  2 x  9



x

No, the relation is not a function because an input, 1, corresponds to two different outputs, 5 and 12. 2. Let  x1 , y1   1, 4  and  x2 , y2    3, 8  . m

y2  y1 8  4 4   2 x2  x1 3  1 2

y  y1  m  x  x1 

m

y  4  2  x  1 y  4  2x  2 y  2x  2

3. scatter plot 4. True 5. Linear relation, m  0 6. Nonlinear relation

68.

7. Linear relation, m  0 8. Linear relation, m  0 9. Nonlinear relation 10. Nonlinear relation 11. a.

Local maximum: f (1)  4 Local minimum: f (4.33)  14.52 Increasing:  2,1 ,  4.33,8 Decreasing: 1, 4.33

b.

Answers will vary. We select (4, 6) and (8, 14). The slope of the line containing these points is: 14  6 8 m  2 84 4 The equation of the line is:

174 Copyright © 2020 Pearson Education, Inc.


Section 3.2: Building Linear Models from Data y  y1  m( x  x1 )

d.

Using the LINear REGression program, the line of best fit is: y  1.1286 x  3.8619

e.

r  0.991

y  6  2( x  4) y  6  2x  8 y  2x  2

f.

c.

d.

Using the LINear REGression program, the line of best fit is: y  2.0357 x  2.3571

e.

r  0.996

13. a.

f. b.

12. a.

b.

Answers will vary. We select (5, 2) and (11, 9). The slope of the line containing 92 7 these points is: m   11  5 6 The equation of the line is: y  y1  m( x  x1 ) 7 ( x  5) 6 7 35 y2  x 6 6 7 23 y  x 6 6 y2 

c.

Answers will vary. We select (–2, –4) and (2, 5). The slope of the line containing these points is: 5  ( 4) 9 m  . 2  ( 2) 4 The equation of the line is: y  y1  m( x  x1 ) 9 y  ( 4)  ( x  ( 2)) 4 9 9 9 1 y4 x  y  x 4 2 4 2

c.

d

Using the LINear REGression program, the line of best fit is: y  2.2 x  1.2

e.

r  0.976

f.

175 Copyright © 2020 Pearson Education, Inc.


Chapter 3: Linear and Quadratic Functions 140  100 40  4 10   20  10 The equation of the line is: y  y1  m( x  x1 )

14. a.

m

y  100  4  x  (20)  y  100  4 x  80

b.

Answers will vary. We select (–2, 7) and (2, 0). The slope of the line containing 07 7 7 these points is: m    . 2  (2) 4 4 The equation of the line is: y  y1  m( x  x1 ) 7 y  7   ( x  ( 2)) 4 7 7 y7   x 4 2 7 7 y   x 4 2

c.

y  4 x  180



c.

d.

  Using the LINear REGression program, the line of best fit is: y  3.8613 x  180.2920

e.

r  0.957



f.

d.

e.

Using the LINear REGression program, the line of best fit is: y  1.8 x  3.6

  

16. a.

r  0.988

f.

b.

15. a.



  Selection of points will vary. We select (–30, 10) and (–14, 18). The slope of the line containing these points is: 18  10 8 1 m   14   30  16 2

The equation of the line is: y  y1  m( x  x1 ) 1  x  (30)  2 1 y  10  x  15 2 1 y  x  25 2 y  10 

b.

  Answers will vary. We select (–20,100) and (–10,140). The slope of the line containing these points is:

176 Copyright © 2020 Pearson Education, Inc.


Section 3.2: Building Linear Models from Data



c.

e.

f.

d.

  Using the LINear REGression program, the line of best fit is: y  0.4421x  23.4559

e.

r  0.944

x  62.3 : y  2.599(62.3)  107.274  269 We predict that a candy bar weighing 62.3 grams will contain 269 calories. If the weight of a candy bar is increased by one gram, then the number of calories will increase by 2.599.

18. a.



f.

 

b. c.

Linear with positive slope. Answers will vary. We will use the points (200, 2.5) and (500, 5.8) . 5.8  2.5 3.3   0.011 500  200 300 N  N1  m  w  w1 

m

17. a.

N  2.5  0.011 w  200  N  2.5  0.011w  2.2 N  0.011w  0.3

d.

b. Linear with positive slope. c. Answers will vary. We will use the points (39.52, 210) and (66.45, 280) . 280  210 70   2.5993316 66.45  39.52 26.93 y  210  2.5993316( x  39.52) y  210  2.5993316 x  102.7255848 y  2.599 x  107.288

m

e.

d. f.

N (450)  0.015(450)  0.5  6.25 We predict that the length of a tornado that is 450 yards wide will be 6.25 miles. For each 1-yard increase in the width of a tornado, the length of the tornado increases by 0.011 mile, on average.

177 Copyright © 2020 Pearson Education, Inc.


Chapter 3: Linear and Quadratic Functions 19. a.

The independent variable is the number of hours spent playing video games and cumulative grade-point average is the dependent variable because we are using number of hours playing video games to predict (or explain) cumulative grade-point average.

d. e.

b.

average. w(990)  1.1857(990)  1231.8279  58 knots To find the pressure, we solve the following equation: 85  1.1857 p  1231.8279 1146.8279  1.1857 p 967  p A hurricane with a wind speed of 85 knots would have a pressure of approximately 967 millibars.

21.

c.

Using the LINear REGression program, the line of best fit is: G (h)  0.0942h  3.2763

d.

If the number of hours playing video games in a week increases by 1 hour, the cumulative grade-point average decreases 0.09, on average. G (8)  0.0942(8)  3.2763  2.52 We predict a grade-point average of approximately 2.52 for a student who plays 8 hours of video games each week. 2.40  0.0942(h)  3.2763 2.40  3.2763  0.0942h 0.8763  0.0942h 9.3  h

e.

f.

The data do not follow a linear pattern so it would not make sense to find the line of best fit. 22. a.

A student who has a grade-point average of 2.40 will have played approximately 9.3 hours of video games. 20. a.

The relation appears to be linear.

b.

Using the LINear REGression program, the line of best fit is:

w( p)  1.1857 p  1231.8279

c.

For each 10-millibar increase in the atmospheric pressure, the wind speed of the tropical system decreases by 1.1857 knots, on

b.

Using the LINear REGression program, the line of best fit is: m(n)  0.2409n  16.1606 .

c.

r  0.994 ; this supports part b.

d. If Internet ad spending increases by 1%, magazine ad spending goes down by about 0.2409%, on average. e.

Domain: n 0  n  67.1 Note that the m-intercept is roughly 16.2 and that the percent of Internet sales cannot be negative.

f.

D(26)  0.2409(26.0)  16.1606  9.9 Percent of magazine sales is about 9.9%.

178 Copyright © 2020 Pearson Education, Inc.


Section 3.2: Building Linear Models from Data

x2  4x  3

31.

x2  4x  3  0 a  1, b  4, c  3

23. Using the ordered pairs (1, 5) and (3, 8) , the line of best fit is y  1.5 x  3.5 . x

(4)  (4) 2  4(1)(3) 2(1)

4  16  12 2 4  28   2 2  2 7 

The correlation coefficient is r  1 . This is reasonable because two points determine a line. 24. A correlation coefficient of 0 implies that the data do not have a linear relationship. 25. The y-intercept would be the calories of a candy bar with weight 0 which would not be meaningful in this problem. 26. G (0)  0.0942(0)  3.2763  3.2763 . The approximate grade-point average of a student who plays 0 hours of video games per week would be 3.28. 27. m 

3  5 8   2 3  ( 1) 4 y  y1  m  x  x1 

32. 5(2 x  7)  6 x  10  3( x  9) 10 x  35  6 x  10  3x  27 4 x  35  3x  17 7 x  52 52 x 7  52  The solution set is   ,    7  33.

y  5  2  x  1 y  5  2 x  2 y  2 x  3 or 2x  y  3

f ( x) 

( x) 2 5  2( x) 2

x2  f ( x) 5  2 x2 The function is even. 

28. The domain would be all real numbers except those that make the denominator zero. x 2  25  0 x 2  25  x  5 So the domain is:  x | x  5, 5

29.

34. 3(0)  8 y  6 8 y  6 6 3  8 4 3  The y-intercept is  0,   . 4  3x  8(0)  6 3x  6 x2 The x-intercept is  2, 0  . y

f ( x)  5 x  8 and g ( x)  x 2  3x  4

( g  f )( x)  ( x 2  3 x  4)  (5 x  8)  x 2  3x  4  5 x  8  x 2  8 x  12

30. Since y is shifted to the left 3 units we would use y  ( x  3) 2 . Since y is also shifted down 4

The solution set is 2  7, 2  7 .

units, we would use y  ( x  3) 2  4 .

179 Copyright © 2020 Pearson Education, Inc.


Chapter 3: Linear and Quadratic Functions

35.

6  x 1 6  x 1  x  35 6  x  1 36  ( x  1) 35  x    x  35 6  x  1  x  35  6  x  1



36.

x  35

 x  35   6  x  1 

4x

1



2

1 6  x 1

4x

3(2  x)

 3(2  x)   1 1 1 (2  x) 2 (2  x) 2 (2  x ) 2 4 x  3(2  x) 4 x  6  3x 7x  6    1 1 1 (2  x) 2 (2  x ) 2 (2  x) 2 2

7  1 7 49  6. 3  x 2  x       3  2 3 36  7 49    3 x2  x   3 36   7   3 x   6 

2

7. parabola 8. axis (or axis of symmetry) 9. 

b 2a

10. True; a  2  0 . 11. True; 

Section 3.3 1. y  x 2  9 To find the y-intercept, let x  0 : y  02  9  9 . To find the x-intercept(s), let y  0 :

13. b 14. d 15. C

x 9

16. E

x   9  3 The intercepts are (0, 9), (3, 0), and (3, 0) .

2.

12. True

x2  9  0 2

17. F 18. A

2 x2  7 x  4  0

19. G

 2 x  1 x  4   0 2 x  1  0 or x  4  0 2 x  1 or

x  4

1 or 2

x  4

x

b 4  2 2a 2  1

20. B 21. H 22. D

1  The solution set is 4,  . 2 

23. a.

Vertex:  3, 2 

Axis of symmetry: x  3 b. concave up

2

25 1  3.   (5)   4 2 

4. right; 4 5. The discriminant is (5) 2  4(2)(8)  89 so there are two real solutions.

180 Copyright © 2020 Pearson Education, Inc.


Section 3.3: Quadratic Functions and Their Properties c.

27. a.

Vertex:  6,3

Axis of symmetry: x  6 b. concave up c.

24. a.

Vertex:  4, 1

Axis of symmetry: x  4 b. concave down c.

28. a.

Vertex:  1, 3

Axis of symmetry: x  1 b. concave up c.

25. a.

Vertex:  3,5 

Axis of symmetry: x  3 b. concave down c.

29. a.

1 7 Vertex:  ,   2 6

Axis of symmetry: x 

1 2

b. concave down c.

26. a.

Vertex:  1, 4 

Axis of symmetry: x  1 b. concave up c. 30. a.

Vertex:  5, 0 

Axis of symmetry: x  5 b. concave down

181 Copyright © 2020 Pearson Education, Inc.


Chapter 3: Linear and Quadratic Functions c.

33.

f ( x)  ( x  2) 2  2

Using the graph of y  x 2 , shift left 2 units, then shift down 2 units.

31.

1 2 x 4 Using the graph of y  x 2 , compress vertically f ( x) 

1 by a factor of . 4

32.

34.

f ( x)  ( x  3) 2  10

Using the graph of y  x 2 , shift right 3 units, then shift down 10 units.

f ( x)  2 x 2  4

Using the graph of y  x 2 , stretch vertically by a factor of 2, then shift up 4 units.

35.

f ( x)  x 2  4 x  2  ( x 2  4 x  4)  2  4  ( x  2) 2  2

Using the graph of y  x 2 , shift left 2 units, then shift down 2 units.

182 Copyright © 2020 Pearson Education, Inc.


Section 3.3: Quadratic Functions and Their Properties

36.

f ( x)  x 2  6 x  1  ( x 2  6 x  9)  1  9  ( x  3) 2  10

Using the graph of y  x 2 , shift right 3 units, then shift down 10 units.

39.

f ( x)   x 2  2 x

  x2  2x

 ( x 2  2 x  1)  1  ( x  1) 2  1

37.

Using the graph of y  x 2 , shift left 1 unit, reflect across the x-axis, then shift up 1 unit.

2

f ( x)  2 x  4 x  1

 2 x2  2x  1  2( x 2  2 x  1)  1  2  2( x  1) 2  1

Using the graph of y  x 2 , shift right 1 unit, stretch vertically by a factor of 2, then shift down 1 unit.

40.

f ( x)  2 x 2  6 x  2

 2 x 2  3x  2 9 9   2  x 2  3 x    2  4 2  2

3  13   2  x    2 2 

38.

f ( x)  3 x 2  6 x

2

 3 x  2x

3 units, 2 reflect about the x-axis, stretch vertically by a 13 units. factor of 2, then shift up 2

Using the graph of y  x 2 , shift right

2

 3( x  2 x  1)  3  3( x  1) 2  3

Using the graph of y  x 2 , shift left 1 unit, stretch vertically by a factor of 3, then shift down 3 units.

183 Copyright © 2020 Pearson Education, Inc.


Chapter 3: Linear and Quadratic Functions

41.

1 2 x  x 1 2 1  x2  2 x  1 2 1 2 1  x  2x  1 1  2 2 1 3 2   x  1  2 2 Using the graph of y  x 2 , shift left 1 unit, f ( x) 

 

1 , then shift 2

3 units. 2

For f ( x)  x 2  2 x , a  1 , b  2 , c  0. Since a  1  0 , the graph is concave up. The x-coordinate of the vertex is x

compress vertically by a factor of down

43. a.

b (2) 2    1 . 2a 2(1) 2

The y-coordinate of the vertex is  b  f    f (1)  (1) 2  2(1)  1  2  1.  2a  Thus, the vertex is (1,  1) . The axis of symmetry is the line x  1 . b. The discriminant is b 2  4ac  (2) 2  4(1)(0)  4  0 , so the graph has two x-intercepts. The x-intercepts are found by solving: x2  2 x  0 x( x  2)  0 x  0 or x  2 The x-intercepts are –2 and 0 . The y-intercept is f (0)  0 . c.

42.

2 2 4 x  x 1 3 3 2 2  x  2x 1 3 2 2  x2  2 x  1 1  3 3 2 5 2   x  1  3 3 Using the graph of y  x 2 , shift left 1 unit, f ( x) 

 

compress vertically by a factor of down

5 unit. 3

2 , then shift 3

d.

The domain is (, ) . The range is [1, ) .

e.

Decreasing on  ,  1 . Increasing on  1,   .

f.

f ( x)  0 on  , 2    0,   f ( x)  0 on  2, 0 

184 Copyright © 2020 Pearson Education, Inc.


Section 3.3: Quadratic Functions and Their Properties

44. a.

b.

For f ( x)  x 2  4 x , a  1 , b  4 , c  0 . Since a  1  0 , the graph is concave up. The x-coordinate of the vertex is b (4) 4 x   2. 2a 2(1) 2 The y-coordinate of the vertex is  b  f    f (2)  (2) 2  4(2)  4  8  4.  2a  Thus, the vertex is (2,  4) . The axis of symmetry is the line x  2 . The discriminant is: b 2  4ac  (4) 2  4(1)(0)  16  0 , so the graph has two x-intercepts. The x-intercepts are found by solving: x2  4 x  0 x( x  4)  0 x  0 or x  4. The x-intercepts are 0 and 4. The y-intercept is f (0)  0 .

b.

The y-coordinate of the vertex is  b  f    f (3)  (3) 2  6(3)  2a   9  18  9. Thus, the vertex is (3, 9) . The axis of symmetry is the line x  3 . The discriminant is: b 2  4ac  (6) 2  4(1)(0)  36  0 , so the graph has two x-intercepts. The x-intercepts are found by solving:  x2  6 x  0  x( x  6)  0 x  0 or x  6. The x-intercepts are 6 and 0 . The y-intercepts are f (0)  0 .

c.

c.

Increasing on  ,  3 .

f ( x)  0 on  6, 0  f ( x)  0 on  , 6    0,  

Decreasing on  , 2 . 46. a.

f ( x)  0 on  , 0    4,   f ( x)  0 on  0, 4 

45. a.

e.

f.

Increasing on  2,   . f.

The domain is (, ) . The range is (, 9] . Decreasing on  3,   .

d.. The domain is (, ) . The range is [4, ) . e.

d.

For f ( x)   x 2  6 x , a  1 , b  6 , c  0 . Since a  1  0, the graph is concave down. The x-coordinate of the vertex is b (6) 6 x    3. 2a 2(1) 2

For f ( x)   x 2  4 x, a  1, b  4 , c  0 . Since a  1  0 , the graph is concave down. The x-coordinate of the vertex is b 4 4 x    2. 2a 2(1) 2 The y-coordinate of the vertex is  b  f    f (2)  2a 

185 Copyright © 2020 Pearson Education, Inc.

 (2) 2  4(2)  4.


Chapter 3: Linear and Quadratic Functions

The x-intercepts are found by solving: x2  2 x  8  0 ( x  4)( x  2)  0 x  4 or x  2. The x-intercepts are 4 and 2 . The y-intercept is f (0)  8 .

Thus, the vertex is (2, 4) . The axis of symmetry is the line x  2 . b.

The discriminant is: b 2  4ac  42  4(1)(0)  16  0, so the graph has two x-intercepts. The x-intercepts are found by solving:  x2  4 x  0  x( x  4)  0 x  0 or x  4. The x-intercepts are 0 and 4. The y-intercept is f (0)  0 .

c.

c.

d. The domain is (, ) . The range is [9, ) . e.

Decreasing on  ,  1 . Increasing on  1,   .

d.

The domain is (, ) . The range is (, 4] .

e.

Increasing on  , 2 .

f.

f ( x)  0 on  4, 2 

Decreasing on  2,   . f.

48. a.

f ( x)  0 on  0, 4  f ( x)  0 on  , 0    4,  

47. a.

f ( x)  0 on  , 4    2,  

For f ( x)  x 2  2 x  8 , a  1 , b  2 , c  8 . Since a  1  0 , the graph is concave up. The x-coordinate of the vertex is b 2 2 x    1 . 2a 2(1) 2 The y-coordinate of the vertex is  b  f    f (1)  (1) 2  2(1)  8  2a   1  2  8  9. Thus, the vertex is (1,  9) . The axis of symmetry is the line x  1 .

b. The discriminant is: b 2  4ac  22  4(1)(8)  4  32  36  0 , so the graph has two x-intercepts.

For f ( x)  x 2  2 x  3, a  1, b  2, c  3. Since a  1  0 , the graph is concave up. The x-coordinate of the vertex is b (2) 2 x    1. 2a 2(1) 2 The y-coordinate of the vertex is  b  f    f (1)  12  2(1)  3  4.  2a  Thus, the vertex is (1,  4) . The axis of symmetry is the line x  1 .

b.

The discriminant is: b 2  4ac  ( 2) 2  4(1)( 3)  4  12  16  0 ,

so the graph has two x-intercepts. The x-intercepts are found by solving: x2  2 x  3  0 ( x  1)( x  3)  0 x  1 or x  3.

186 Copyright © 2020 Pearson Education, Inc.


Section 3.3: Quadratic Functions and Their Properties

The x-intercepts are 1 and 3 . The y-intercept is f (0)  3 . c.

d.

The domain is (, ) . The range is [4, ) .

e.

Decreasing on  , 1 . Increasing on 1,   .

f.

f ( x)  0 on  , 1   3,   f ( x)  0 on  1,3

49. a.

2

For f ( x)  x  2 x  1 , a  1 , b  2 , c  1 . Since a  1  0 , the graph is concave up. The x-coordinate of the vertex is b 2 2 x    1 . 2a 2(1) 2 The y-coordinate of the vertex is  b  f    f (1)  2a  2

 (1)  2(1)  1  1  2  1  0. Thus, the vertex is (1, 0) . The axis of symmetry is the line x  1 .

b. The discriminant is: b 2  4ac  22  4(1)(1)  4  4  0 , so the graph has one x-intercept. The x-intercept is found by solving: x2  2 x  1  0 ( x  1) 2  0 x  1. The x-intercept is 1 . The y-intercept is f (0)  1 .

d.

The domain is (, ) . The range is [0, ) .

e.

Decreasing on  ,  1 . Increasing on  1,   .

f.

f ( x)  0 on  , 1   1,   f ( x)  0 has no solution.

50. a.

For f ( x)  x 2  6 x  9 , a  1 , b  6 , c  9 . Since a  1  0 , the graph is concave up. The x-coordinate of the vertex is b 6 6 x    3 . 2a 2(1) 2 The y-coordinate of the vertex is  b  f    f (3)  2a 

 (3) 2  6(3)  9  9  18  9  0. Thus, the vertex is (3, 0) . The axis of symmetry is the line x  3 . b. The discriminant is: b 2  4ac  62  4(1)(9)  36  36  0 , so the graph has one x-intercept. The x-intercept is found by solving: x2  6 x  9  0 ( x  3) 2  0 x  3. The x-intercept is 3 . The y-intercept is f (0)  9 .

c.

187 Copyright © 2020 Pearson Education, Inc.


Chapter 3: Linear and Quadratic Functions c.

d.

The domain is (, ) . The range is 

15  ,  . 8 

e.

1 1 Decreasing on  ,  . Increasing on  ,   .

f.

f ( x)  0 on  ,  

4

4

f ( x)  0 has no solution.

52. a. d.

The domain is (, ) . The range is [0, ) .

e.

Decreasing on  ,  3 . Increasing on  3,   .

f.

2

 b  1 1 1 f    f    4   2  1 a 2 4 4       4 1 1 3   1  . 4 2 4 1 ,3 . Thus, the vertex is 4 4 The axis of symmetry is the line x  1 . 4

f ( x)  0 on  , 3   3,   f ( x)  0 has no solution.

51. a.

For f ( x)  2 x 2  x  2 , a  2 , b  1 , c  2 . Since a  2  0 , the graph is concave up. The x-coordinate of the vertex is b (1) 1   . x 2a 2(2) 4 The y-coordinate of the vertex is

 

b.

2

 b  1 1 1 f    f    2    2  2a  4 4 4 1 1 15   2 . 8 4 8  1 15  Thus, the vertex is  ,  . 4 8 

b.

c.

For f ( x)  4 x 2  2 x  1 , a  4 , b  2 , c  1 . Since a  4  0 , the graph is concave up. The x-coordinate of the vertex is b (2) 2 1 x    . 2a 2(4) 8 4 The y-coordinate of the vertex is

The discriminant is: b 2  4ac  (2) 2  4(4)(1)  4  16  12 , so the graph has no x-intercepts. The y-intercept is f (0)  1 .

c.

The axis of symmetry is the line x  1 . 4 The discriminant is: b 2  4ac  (1) 2  4(2)(2)  1  16  15 , so the graph has no x-intercepts. The y-intercept is f (0)  2 . d.

The domain is (, ) .

The range is  3 ,  . 4 e.

f.

Decreasing on , 1  . 4 1 Increasing on  ,  . 4

f ( x)  0 on  ,   f ( x)  0 has no solution.

188 Copyright © 2020 Pearson Education, Inc.


Section 3.3: Quadratic Functions and Their Properties

53. a.

b 3 3 1    . 2a 2(3) 6 2 The y-coordinate of the vertex is

For f ( x)  2 x 2  2 x  3 , a  2 , b  2 , c  3 . Since a  2  0 , the graph is concave down. The x-coordinate of the vertex is b (2) 2 1 x    . 2a 2(2) 4 2 The y-coordinate of the vertex is

x

2

 b  1 1 1 f    f    3    3    2 2 2 2 a       2 3 3 5    2   . 4 2 4 1 5 Thus, the vertex is  ,   . 2 4 1 The axis of symmetry is the line x  . 2 The discriminant is: b 2  4ac  32  4(3)( 2)  9  24  15 , so the graph has no x-intercepts. The y-intercept is f (0)  2 .

2

 b  1 1 1 f    f    2    2    3 2 2 2 a       2 1 5   1 3   . 2 2 1 5 Thus, the vertex is  ,   . 2 2 1 The axis of symmetry is the line x  . 2

b.

b.

The discriminant is: b 2  4ac  22  4(2)(3)  4  24  20 , so the graph has no x-intercepts. The y-intercept is f (0)  3 .

c.

c. d.

The domain is (, ) . 5  The range is  ,   . 4 

e. d.

The domain is (, ) . 5  The range is  ,   . 2 

e.

f.

f.

1  Increasing on  ,  . 2  1  Decreasing on  ,   . 2 

1  Increasing on  ,  . 2  1  Decreasing on  ,   . 2 

f ( x)  0 has no solution. f ( x)  0 on  ,  

55. a.

f ( x)  0 has no solution. f ( x)  0 on  ,  

54. a. For f ( x)  3x 2  3 x  2 , a  3 , b  3 , c  2 . Since a  3  0 , the graph is concave down. The x-coordinate of the vertex is

For f ( x)  3x 2  6 x  2 , a  3 , b  6 , c  2 . Since a  3  0 , the graph is concave up. The x-coordinate of the vertex is b 6 6 x    1 . 2a 2(3) 6 The y-coordinate of the vertex is  b  f    f (1)  3(1) 2  6(1)  2  2a   3  6  2  1. Thus, the vertex is (1,  1) .

189 Copyright © 2020 Pearson Education, Inc.


Chapter 3: Linear and Quadratic Functions

b.

The axis of symmetry is the line x  1 .

 b   5 f    f    2a   4

The discriminant is: b 2  4ac  62  4(3)(2)  36  24  12 , so the graph has two x-intercepts. The x-intercepts are found by solving: 3x 2  6 x  2  0

 5  5  2    5    3  4  4 25 25   3 8 4 1  . 8  5 1 Thus, the vertex is   ,   .  4 8

x

2

b  b 2  4ac 2a

6  12 6  2 3 3  3   6 6 3 3 3 The x-intercepts are 1  and 1  . 3 3 The y-intercept is f (0)  2 . 

The axis of symmetry is the line x   b.

c.

The discriminant is: b 2  4ac  52  4(2)(3)  25  24  1 , so the graph has two x-intercepts. The x-intercepts are found by solving: 2 x2  5x  3  0 (2 x  3)( x  1)  0 3 x   or x  1. 2 3 The x-intercepts are  and  1 . 2 The y-intercept is f (0)  3 .

c. d.

The domain is (, ) . The range is  1,   .

e.

Decreasing on  ,  1 . Increasing on  1,   .

f.

 3  3  , f ( x)  0 on  , 1     1  3 3      3 3 , 1  f ( x)  0 on  1   3 3  

56. a.

For f ( x)  2 x 2  5 x  3 , a  2 , b  5 , c  3 . Since a  2  0 , the graph is concave up. The x-coordinate of the vertex is b 5 5 x   . 2a 2(2) 4 The y-coordinate of the vertex is

d.

The domain is (, ) .  1  The range is   ,   .  8 

e.

5  Decreasing on  ,   . 4   5  Increasing on   ,   .  4 

190 Copyright © 2020 Pearson Education, Inc.

5 . 4


Section 3.3: Quadratic Functions and Their Properties

f.

57. a.

3  f ( x)  0 on  ,     1,   2   3  f ( x)  0 on   , 1 2  

For f ( x)  4 x 2  6 x  2 , a  4 , b  6 , c  2 . Since a  4  0 , the graph is concave down. The x-coordinate of the vertex is b (6) 6 3    . x 2a 2(4) 8 4 The y-coordinate of the vertex is

d. The domain is (, ) . 17   The range is  ,  . 4 

e.

f.

2

b.

 b   3  3  3 f    f     4     6     2 2 4 4 a        4 9 9 17   2 . 4 2 4  3 17  Thus, the vertex is   ,  .  4 4 3 The axis of symmetry is the line x   . 4 The discriminant is: b 2  4ac  (6) 2  4( 4)(2)  36  32  68 , so the graph has two x-intercepts. The x-intercepts are found by solving: 4 x 2  6 x  2  0

x

58. a.

For f ( x)  3 x 2  8 x  2, a  3, b  8, c  2 . Since a  3  0 , the graph is concave up. The x-coordinate of the vertex is b (8) 8 4    . x 2a 2(3) 6 3 The y-coordinate of the vertex is 2

The axis of symmetry is the line x 

c.

 3  17 3  17  , f ( x)  0 on   4 4    3  17   3  17  f ( x)  0 on  ,  4 , 4    

 b  4 4 4 f    f    3   8    2 2 3 3 a       3 16 32 10   2  . 3 3 3  4 10  Thus, the vertex is  ,   . 3 3

b  b 2  4ac (6)  68  2a 2(4)

6  68 6  2 17 3  17   8 8 4 3  17 3  17 and . The x-intercepts are 4 4 The y-intercept is f (0)  2 .

 3  Decreasing on   ,   .  4  3  Increasing on  ,   . 4 

b.

4 . 3

The discriminant is: b 2  4ac  (8) 2  4(3)(2)  64  24  40 , so the graph has two x-intercepts. The x-intercepts are found by solving: 3x 2  8 x  2  0 x

b  b 2  4ac (8)  40  2a 2(3)

8  40 8  2 10 4  10   6 6 3 4  10 4  10 and . The x-intercepts are 3 3 The y-intercept is f (0)  2 . 

191 Copyright © 2020 Pearson Education, Inc.


Chapter 3: Linear and Quadratic Functions c.

5  a  0  2  1 2

5  a  2   1 2

5  4a  1 4  4a 1 a The quadratic function is

f  x    x  2  1  x2  4 x  5 . 2

61. Consider the form y  a  x  h   k . From the 2

graph we know that the vertex is  3,5  so we

d. The domain is (, ) .

have h  3 and k  5 . The graph also passes through the point  x, y    0, 4  . Substituting

 10  The range is   ,   .  3 

e.

f.

these values for x, y, h, and k, we can solve for a:

4  Decreasing on  ,  . 3  4  Increasing on  ,   . 3 

4  a  0  (3)   5 2

4  a  3  5 2

 4  10   4  10  , f ( x)  0 on  ,  3   3    4  10 4  10  , f ( x)  0 on   3   3

4  9a  5 9  9a 1  a The quadratic function is f  x     x  3  5   x 2  6 x  4 . 2

62. Consider the form y  a  x  h   k . From the 2

59. Consider the form y  a  x  h   k . From the

graph we know that the vertex is  2,3 so we

graph we know that the vertex is  1, 2  so we

have h  2 and k  3 . The graph also passes through the point  x, y    0, 1 . Substituting

2

have h  1 and k  2 . The graph also passes through the point  x, y    0, 1 . Substituting

these values for x, y, h, and k, we can solve for a:

these values for x, y, h, and k, we can solve for a:

1  a  0  2   3

1  a  0   1    2 

1  a  2   3

1  a 1  2

1  4a  3 4  4a 1  a The quadratic function is

2

2

2

2

1  a  2 1 a The quadratic function is

f  x    x  1  2  x 2  2 x  1 . 2

60. Consider the form y  a  x  h   k . From the 2

graph we know that the vertex is  2,1 so we have h  2 and k  1 . The graph also passes through the point  x, y    0,5  . Substituting these values for x, y, h, and k, we can solve for a:

f  x     x  2  3   x2  4 x  1 . 2

63. Consider the form y  a  x  h   k . From the 2

graph we know that the vertex is 1, 3 so we have h  1 and k  3 . The graph also passes through the point  x, y    3,5  . Substituting these values for x, y, h, and k, we can solve for a:

192 Copyright © 2020 Pearson Education, Inc.


Section 3.3: Quadratic Functions and Their Properties 5  a  3  1  (3) 2

68. For f ( x)  4 x 2  8 x  3, a  4, b  8, c  3. Since a  4  0, the graph opens up, so the vertex is a minimum point. The minimum occurs at b (8) 8 x    1. The minimum value is 2a 2(4) 8

5  a  2  3 2

5  4a  3 8  4a 2a The quadratic function is

f (1)  4(1) 2  8(1)  3  4  8  3  1 .

f  x   2  x  1  3  2 x 2  4 x  1 . 2

64. Consider the form y  a  x  h   k . From the 2

graph we know that the vertex is  2, 6  so we have h  2 and k  6 . The graph also passes through the point  x, y    4, 2  . Substituting these values for x, y, h, and k, we can solve for a: 2  a  4  (2)   6 2

2  a  2   6 2

2  4a  6 8  4a 2  a The quadratic function is f  x   2  x  2   6  2 x 2  8 x  2 . 2

65. For f ( x)  3x 2  24 x, a  3, b  24, c  0 . Since a  3  0, the graph opens up, so the vertex is a minimum point. The minimum b 24 24 occurs at x     4. 2a 2(3) 6 The minimum value is f (4)  3(4) 2  24(4)  48  96  48 . 66. For f ( x)  2 x 2  12 x, a  2, b  12, c  0, . Since a  2  0, the graph opens down, so the vertex is a maximum point. The maximum b 12 12    3. occurs at x  2a 2(2) 4 The maximum value is f (3)  2(3) 2  12(3)  18  36  18 . 67. For f ( x)  2 x 2  12 x  3, a  2, b  12, c  3. Since a  2  0, the graph opens up, so the vertex is a minimum point. The minimum occurs at b 12 12 x    3. The minimum value is 2a 2(2) 4

69. For f ( x)   x 2  6 x  1 , a  1, b  6 , c   4 . Since a  1  0, the graph opens down, so the vertex is a maximum point. The maximum occurs b 6 6    3 . The maximum value at x  2a 2(1)  2

is f (3)  (3) 2  6(3)  1  9  18  1  8 . 70. For f ( x)   2 x 2  8 x  3 , a  2, b  8, c  3. Since a   2  0, the graph opens down, so the vertex is a maximum point. The maximum 8 8 b occurs at x     2 . The 2a 2( 2)  4 maximum value is f (2)   2(2) 2  8(2)  3   8  16  3  11 . 71. For f ( x)  5 x 2  20 x  3 , a  5, b  20, c  3. Since a  5  0, the graph opens down, so the vertex is a maximum point. The maximum occurs b 12 12    2 . The maximum value at x  2a 2(3)  6

is f (2)  5(2)2  20(2)  3  20  40  3  23 . 72. For f ( x)  4 x 2  4 x , a  4, b  4, c  0. Since a  4  0, the graph opens up, so the vertex is a minimum point. The minimum occurs at b ( 4) 4 1 x    . The minimum value is 2a 2(4) 8 2 2

1 1 1 f    4    4    1  2  1 . 2 2 2

73. Use the form f ( x)  a ( x  h) 2  k . The vertex is (0, 2) , so h = 0 and k = 2. f ( x)  a( x  0) 2  2  ax 2  2 .

f (3)  2(3) 2  12( 3)  3  18  36  3  21 .

193 Copyright © 2020 Pearson Education, Inc.


Chapter 3: Linear and Quadratic Functions

Since the graph passes through (1, 8) , f (1)  8 .

c.

f ( x)  ax  2 2

8  a (1) 2  2 8 a2 6a f  x   6 x2  2 . a  6, b  0, c  2

f (1)  2(1)  1  2  1  3 g (1)  (1) 2  4  1  4  3 f (3)  2(3)  1  6  1  5 g (3)  (3) 2  4  9  4  5 Thus, the graphs of f and g intersect at the points (1, 3) and (3, 5) .

76. a and d.

74. Use the form f ( x)  a ( x  h)  k . The vertex is (1, 4) , so h  1 and k  4 . 2

f ( x)  a ( x  1) 2  4 . Since the graph passes through (1,  8) , f (1)  8 . 8  a (1  1) 2  4 8  a (2) 2  4 8  4a  4 12  4a 3  a f ( x)  3( x  1) 2  4  3( x 2  2 x  1)  4  3 x 2  6 x  3  4  3 x 2  6 x  1 a  3, b  6, c  1

b.

75. a and d.

f ( x)  g ( x) 2 x  1  x 2  9 0  x2  2 x  8 0  ( x  4)( x  2) x  4  0 or x  2  0 x  4 x2

The solution set is {4, 2}. c.

b.

f (4)  2(4)  1  8  1  7 g (4)  (4) 2  9  16  9  7 f (2)  2(2)  1  4  1  5 g (2)  (2) 2  9  4  9  5 Thus, the graphs of f and g intersect at the points  4, 7  and  2, 5  .

f ( x)  g ( x) 2x 1  x2  4 0  x2  2x  3 0  ( x  1)( x  3) x  1  0 or x  3  0 x  1 x3

The solution set is {1, 3}. 194 Copyright © 2020 Pearson Education, Inc.


Section 3.3: Quadratic Functions and Their Properties 77. a and d.

b.

f  x  g  x  x2  9  2 x  1 0  x2  2x  8 0   x  4  x  2  x  4  0 or x  2  0 x  4 x2 The solution set is {4, 2}.

c. b.

2

g  4   2  4   1  8  1  7

f  x  g  x

f  2     2   9  4  9  5 2

 x  4  2 x  1 2

g  2  2  2  1  4  1  5

0  x  2x  3 2

Thus, the graphs of f and g intersect at the points  4, 7  and  2, 5  .

0   x  1 x  3 x  1  0 or x  3  0 x  1 x3 The solution set is {1, 3}.

c.

f  4     4   9  16  9  7

79. a and d.

f 1    1  4  1  4  3 2

g 1  2  1  1  2  1  3 f  3    3  4  9  4  5 2

g  3  2  3  1  6  1  5

Thus, the graphs of f and g intersect at the points  1, 3 and  3, 5  . 78. a and d.

f  x  g  x

b.

 x  5 x  x 2  3x  4 2

0  2 x2  2 x  4 0  x2  x  2 0   x  1 x  2  x  1  0 or x  2  0 x  1 x2 The solution set is {1, 2}.

c.

f  1    1  5  1  1  5  6 2

g  1   1  3  1  4  1  3  4  6 2

f  2     2   5  2   4  10  6 2

g  2   22  3  2   4  4  6  4  6

Thus, the graphs of f and g intersect at the points  1, 6  and  2, 6  .

195 Copyright © 2020 Pearson Education, Inc.


Chapter 3: Linear and Quadratic Functions 80. a and d.

b. The x-intercepts are not affected by the value of a. The y-intercept is multiplied by the value of a . c.

The axis of symmetry is unaffected by the value of a . For this problem, the axis of symmetry is x  1 for all values of a.

d. The x-coordinate of the vertex is not affected by the value of a. The y-coordinate of the vertex is multiplied by the value of a . e. b.

f  x  g  x

82. a.

 x2  7 x  6  x2  x  6 0  2 x2  6 x x3  0

x0 x3 The solution set is {0, 3}.

c.

For a  1: f ( x)  1( x  (5))( x  3)  ( x  5)( x  3)  x 2  2 x  15 For a  2 : f ( x)  2( x  (5))( x  3)  2( x  5)( x  3)

0  2 x  x  3 2 x  0 or

The x-coordinate of the vertex is the mean of the x-intercepts.

 2( x 2  2 x  15)  2 x 2  4 x  30 For a  2 : f ( x)  2( x  (5))( x  3)

f  0     0   7  0   6  6 2

g  0   02  0  6  6

 2( x  5)( x  3)

f  3    3  7  3  6  9  21  6  6 2

 2( x 2  2 x  15)  2 x 2  4 x  30 For a  5 : f ( x)  5( x  (5))( x  3)

g  3  32  3  6  9  3  6  6

Thus, the graphs of f and g intersect at the points  0, 6  and  3, 6  . 81. a.

 5( x  5)( x  3)  5( x 2  2 x  15)  5 x 2  10 x  75

For a  1: f ( x)  a ( x  r1 )( x  r2 )  1( x  (3))( x  1)  ( x  3)( x  1)  x 2  2 x  3 For a  2 : f ( x)  2( x  (3))( x  1)

b. The x-intercepts are not affected by the value of a. The y-intercept is multiplied by the value of a . c.

 2( x  3)( x  1)  2( x 2  2 x  3)  2 x 2  4 x  6 For a  2 : f ( x)  2( x  (3))( x  1)  2( x  3)( x  1)  2( x 2  2 x  3)  2 x 2  4 x  6 For a  5 : f ( x)  5( x  (3))( x  1)  5( x  3)( x  1) 2

The axis of symmetry is unaffected by the value of a . For this problem, the axis of symmetry is x  1 for all values of a.

d. The x-coordinate of the vertex is not affected by the value of a. The y-coordinate of the vertex is multiplied by the value of a . e.

83. a.

The x-coordinate of the vertex is the mean of the x-intercepts. x

b 4   2 2a 2 1

y  f  2    2   4  2   21  25 2

2

 5( x  2 x  3)  5 x  10 x  15

The vertex is  2, 25  .

196 Copyright © 2020 Pearson Education, Inc.


Section 3.3: Quadratic Functions and Their Properties f  x  0

b.

x  4 x  21  0

x  2 x  8  8

 x  7  x  3  0

x2  2x  0

x7  0

x  x  2  0

2

x3  0

or

x  7 x3 The x-intercepts of f are (7, 0) and (3, 0).

c.

f  x   8

c.

2

x  0 or

x  2

The solutions f  x   8 are 2 and 0. Thus,

f  x   21

the points  2, 8  and  0, 8  are on the

x 2  4 x  21  21

graph of f.

x2  4x  0 x  x  4  0 x  0 or

x20

d.

x40 x  4





The solutions f  x   21 are 4 and 0. Thus, the points  4, 21 and  0, 21 are on the graph of f. d.



85. h( x)  a.



b. 84. a.

2

The vertex is  1, 9  .

c.

f  x  0

 x  4  x  2   0 x  4

Solving when h( x )  0 : 

x2  2x  8  0 or

The maximum height is 2

y  f  1   1  2  1  8  9

x40

8 , b  1, c  200. 625 The maximum height occurs when b 1 625 x    39.1 feet 2a 2  8 / 625  16 from base of the cliff. a

 625  8  625  625 h     16  200  16  625  16  7025   219.5 feet. 32

b 2 x   1 2a 2 1

b.

32 x 2 8 2  x  200   x  x  200 625 (50) 2

8 2 x  x  200  0 625

x

x2  0 x2

The x-intercepts of f are (4, 0) and (2, 0).

x

1  12  4  8 / 625  (200) 2  8 / 625  1  11.24  0.0256

x  91.90 or x  170 Since the distance cannot be negative, the

197 Copyright © 2020 Pearson Education, Inc.


Chapter 3: Linear and Quadratic Functions

projectile strikes the water approximately 170 feet from the base of the cliff.  d.

e.

  Using the MAXIMUM function 

c.

Solving when h( x )  0 : 2 2 x x0 625  2  x x  1  0 625   2 x  0 or  x 1  0 625 

2 x 625 625  312.5 x  0 or x 2 Since the distance cannot be zero, the projectile lands 312.5 feet from where it was fired.  d. x  0 or

1

  Using the ZERO function 

e.

  Using the MAXIMUM function 

 

f.

8 2 x  x  200  100 625 8 2  x  x  100  0 625

  Using the ZERO function 

12  4  8 / 625 100 

1  6.12  0.0256 2  8 / 625  x  57.57 or x  135.70 Since the distance cannot be negative, the projectile is 100 feet above the water when it is approximately 135.7 feet from the base of the cliff. x

86. a.

b.

32 x 2 2 2 x x x 2 625 (100) 2 a , b  1, c  0. 625 The maximum height occurs when b 1 625 x    156.25 feet 2a 2  2 / 625  4 h( x ) 

The maximum height is 2

 

f.

Solving when h  x   50 :  

2 2 x  x  50  0 625

x

1 

12  4  2 / 625  50  2  2 / 625 

1  0.36 1  0.6  0.0064 0.0064 x  62.5 or x  250 The projectile is 50 feet above the ground 62.5 feet and 250 feet from where it was fired. 

 625  2  625  625 h     4  4  625  4  625   78.125 feet 8

2 2 x  x  50 625

198 Copyright © 2020 Pearson Education, Inc.


Section 3.3: Quadratic Functions and Their Properties

87. R( p )  4 p 2  4000 p , a   4, b  4000, c  0. Since a  4  0 the graph is a parabola that is concave down, so the vertex is a maximum point. b  4000   500 . The maximum occurs at p  2a 2( 4) Thus, the unit price should be $500 for maximum revenue. The maximum revenue is R(500)   4(500) 2  4000(500)  1000000  2000000  $1, 000, 000 1 2 1 p  2900 p , a   , b  2900, c  0. 2 2 1 Since a    0, the graph is a parabola that is 2 concave down, so the vertex is a maximum point. The maximum occurs at b  2900  2900 p    2900 . Thus, the 2a 2  1/ 2  1

b. The minimum marginal cost is 2  b  f    f  20   5  20   200  20   4000  2a   2000  4000  4000  $2000 91. a.

a  0.2, b  75, c  0 The maximum revenue occurs when b 75 75 x    187.5 2a 2  0.2  0.4

88. R( p )  

unit price should be $2900 for maximum revenue. The maximum revenue is 1 2 R  2900     2900   2900  2900  2  4205000  8410000  $4, 205, 000 89. a.

90. a.

The maximum revenue occurs when x  187 or x  188 watches. The maximum revenue is: R (187)  75 187   0.2 187   $7031.20 2

R (188)  75 188   0.2 188   $7031.20 2

b.

C ( x)  5 x 2  200 x  4000 , a  5, b  200, c  4000. Since a  5  0, the graph is concave up, so the vertex is a minimum point. The minimum marginal cost b   200  200    20 , occurs at x  2a 2(5) 10 20,000 smartphones manufactured.

P ( x)  R  x   C  x   75 x  0.2 x 2   32 x  1750   0.2 x 2  43 x  1750

c.

P( x)  0.2 x 2  43 x  1750 a  0.2, b  43, c  1750 x

C ( x)  x 2  140 x  7400 , a  1, b  140, c  7400. Since a  1  0, the graph is concave up, so the vertex is a minimum point. The minimum marginal cost b (140) 140    70 , occurs at x  2a 2(1) 2 70,000 digital music players produced.

b. The minimum marginal cost is 2  b  f    f  70    70   140  70   7400  2a   4900  9800  7400  $2500

R ( x)  75 x  0.2 x 2

b 43 43    107.5 2a 2  0.2  0.4

The maximum profit occurs when x  107 or x  108 watches. The maximum profit is: P (107)  0.2 107   43 107   1750 2

 $561.20 P (108)  0.2 108   43 108   1750 2

 $561.20

d. Answers will vary. 92. a.

R( x)  9.5 x  0.04 x 2 a  0.04, b  9.5, c  0 The maximum revenue occurs when b 9.5 9.5   x 2a 2  0.04  0.08  118.75  119 boxes of candy The maximum revenue is: R (119)  9.5 119   0.04 119   $564.06

199 Copyright © 2020 Pearson Education, Inc.

2


Chapter 3: Linear and Quadratic Functions

b.

P( x)  R  x   C  x   9.5 x  0.04 x 2  1.25 x  250   0.04 x 2  8.25 x  250

c.

P ( x)  0.04 x 2  8.25 x  250 a  0.04, b  8.25, c  250 The maximum profit occurs when b 8.25 8.25 x   2a 2  0.04  0.08

95. We are given: V ( x)  kx(a  x)  kx 2  akx . The reaction rate is a maximum when: b ak ak a x    . 2a 2(k ) 2k 2 96. Vertex: (3, 5); Center:  3,1 d  (3  3) 2  (1  5) 2  (6) 2  (4) 2  36  16

 103.125  103 boxes of candy The maximum profit is: P (103)  0.04 103  8.25 103  250

 52  2 13

2

 $175.39

x 2  10 x  25  y 2  8 y  16  32  25  16

d. Answers will vary. 93. a.

d (v)  1.1v  0.06v

x 2  10 x  y 2  8 y  32

97.

 x  5   y  4  9 2

2

center: (5, 4)

d (45)  1.1(45)  0.06(45) 2

3( x 2  2 x)  1 

 49.5  121.5  171 ft.

b.

3( x 2  2 x  1)  1  3 

200  1.1v  0.06v 2

3( x 2  1)  4

0  200  1.1v  0.06v 2

vertex: (1, 4)

x   1.1  1.1  4  0.06  200  2

2  0.06 

 

d  (1  (5)) 2  (4  (4)) 2

1.1  49.21

 (6) 2  (8) 2

0.12 1.1  7.015

 36  64

0.12

v  49 or v  68 Disregard the negative value since we are talking about speed. So the maximum speed you can be traveling would be approximately 49 mph.

c.

94. a. b.

The 1.1v term might represent the reaction time. a

b 19.17 19.17    29.0 years old 2a 2  0.33 0.66

B (29.0)  0.33(29.0) 2  19.17(29.0)  213.37  65.0 births per 1000 unmarried women

c.

B (40)  0.33(40) 2  19.17(40)  213.37  25.43 births per 1000 unmarried women 40 years of age

2

 100  10

98. If x is even, then ax 2 and bx are even and ax 2  bx is even, which means that ax 2  bx  c is odd. If x is odd, then ax 2 and bx are odd and ax 2  bx is even, which means that ax 2  bx  c is odd. In either case f ( x) is odd. 99. Let (x, y) be a point on the line y = x. Then the distance from (x, y) to the point (3, 1) is d

 x  3   y  1 . Since y = x, 2

d ( x) 

2

 x  32   x  12

 x2  6x  9  x2  2 x  1  2 x 2  8 x  10

 d ( x)2  2 x 2  8 x  10 .

200 Copyright © 2020 Pearson Education, Inc.


Section 3.3: Quadratic Functions and Their Properties

Because a = 2 > 0, it has a minimum. The xcoordinate of the minimum point of  d ( x)  also 2

provides the x-coordinate of the minimum point of b (8) 8 d ( x) : x     2 . So, 2 is the x2a 2(2) 4 coordinate of the point on the line y = x that is closest to the point (3, 1). Since y = x, the ycoordinate is also 2. So the point (2, 2) is the point on the line y = x that is closest to (3, 1). 100. Let (x, y) be a point on the line y = x + 1. Then the distance from (x, y) to the point (4, 1) is d

 x  4    y  1 . Since y = x + 1, 2

d ( x) 

2

 x  4 2   ( x  1)  12

 x 2  8 x  16  x 2  2 x 2  8 x  16

f ( x)  x3  7 x 2  5 x  35 is increasing on 1   1   ,  3  ,  5,   and decreasing on   3 ,5  .     2  102. The second derivative f  x   3x  14 x  5 is a

quadratic function, so its graph is a parabola. Note that a = 36, b = -48, and c = 0. Because a  36  0 , the parabola is concave up. The x48 2  . The coordinate of the vertex is h   2  36 3 y-coordinate is 2

 d ( x)2  2 x 2  8 x  16 . Since a = 2 > 0, it has a minimum. The xcoordinate of the minimum point of  d ( x)  will 2

also provides the x-coordinate of the minimum b (8) 8 point of d ( x) : x     2 . So, 2 is 2a 2(2) 4 the x-coordinate of the point on the line y that is closest to the point (4, 1). The y-coordinate is y = 2 + 1 = 3. Thus, the point is (2, 3) is the point on the line y = x + 1 that is closest to (4, 1). 101. The derivative f   x   3x 2  14 x  5 is a

quadratic function, so its graph is a parabola. Note that a = 3, b = 14 , and c = 5 . Because a  3  0 , the parabola is concave up. The x14 7  . The coordinate of the vertex is h   23 3 y-coordinate is 2

1 and 5. So f ( x)  0 for 3  1  on the interval   ,5  , and f ( x)  0 on the  3  1  interval  ,   ,  5,   . Then 3 

The x-intercepts are 

64 7 7 7 k  f     3    14    5   . So, the 3 3 3 3  7 64  vertex is  ,   ,which lies below the x-axis. 3  3 So the graph of f  is below the x-axis when x is between the x-intercepts, and the graph of f  is above the x-axis when x is outside the xintercepts. The find the x-intercepts, solve f ( x)  0 : 3x 2  14 x  5  0  (3 x  1)( x  5)  0 1  x   or x  5. 3

2 2 2 k  f     36    48    16 . So, the 3 3 3 2  vertex is  , 16  ,which lies below the x-axis. 3  So the graph of f  is below the x-axis when x is between the x-intercepts, and the graph of f  is above the x-axis when x is outside the xintercepts. The find the x-intercepts, solve f ( x)  0 : 36 x 2  48 x  0  12 x(3 x  4)  0 4  x  0 or x  . 3 4 The x-intercepts are 0 and . So f ( x)  0 for 3 4   on the interval  0,  , and f ( x)  0 on the  3 4  interval  , 0  ,  ,   . Then 3  f ( x)  3x 4  8 x3  6 x  1 is concave up on

 , 0  ,  3 ,   and concave down on  0, 3  . 4

4

103. Answers will vary.

201 Copyright © 2020 Pearson Education, Inc.


Chapter 3: Linear and Quadratic Functions

104. y  x 2  2 x  3 ; y  x 2  2 x  1 ; y  x 2  2 x

Each member of this family will be a parabola with the following characteristics: (i) is concave up since a > 0; b 2   1 ; (ii) vertex occurs at x   2a 2(1) (iii) There is at least one x-intercept since b 2  4ac  0 . 105. y  x 2  4 x  1 ; y  x 2  1 ; y  x 2  4 x  1

2

b  b2  equation y  a  x    c  . We can then 2a  4a  draw the graph by applying transformations to the graph of the basic parabola y  x 2 , which is concave up. When a  0 , the basic parabola will either be stretched or compressed vertically. When a  0 , the basic parabola will either be stretched or compressed vertically as well as reflected across the x-axis. Therefore, when a  0 , the graph of f ( x)  ax 2  bx  c will open up, and when a  0 , the graph of f  x   ax 2  bx  c will open down.

108. No. We know that the graph of a quadratic function f  x   ax 2  bx  c is a parabola with

vertex  2ba , f  2ba

  . If a > 0, then the vertex

is a minimum point, so the range is  f  b ,  . If a < 0, then the vertex is a 2a 

 

maximum point, so the range is , f  2ba  .  Therefore, it is impossible for the range to be  ,   . 109. Two quadratic functions can intersect 0, 1, or 2 times. 110. x 2  4 y 2  16 To check for symmetry with respect to the xaxis, replace y with –y and see if the equations are equivalent. x 2  4(  y ) 2  16

Each member of this family will be a parabola with the following characteristics: (i) is concave up since a > 0 (ii) y-intercept occurs at (0, 1). 106. The graph of the quadratic function f  x   ax 2  bx  c will not have any

x-intercepts whenever b 2  4ac  0 . 107. By completing the square on the quadratic function f  x   ax 2  bx  c we obtain the

x 2  4 y 2  16 So the graph is symmetric with respect to the xaxis. To check for symmetry with respect to the yaxis, replace x with –x and see if the equations are equivalent. (  x) 2  4 y 2  16 x 2  4 y 2  16 So the graph is symmetric with respect to the yaxis. To check for symmetry with respect to the origin, replace x with –x and y with –y and see if the equations are equivalent. (  x)2  4(  y ) 2  16 x 2  4 y 2  16

202 Copyright © 2020 Pearson Education, Inc.


Section 3.4: Build Quadratic Models from Verbal Descriptions and from Data

So the graph is symmetric with respect to the origin.

118.

111. 27  x  5 x  3 6 x  24 x4 So the solution set is:  , 4 or  x | x  4 .

(3 x  5)  

112. x 2  y 2  10 x  4 y  20  0 2

4 x2

2

x  10 x  y  4 y  20 2

( x  10 x  25)  ( y 2  4 y  4)  20  25  4 2

2

2

( x  5)  ( y  2)  3

1

2

 8 x (3 x  5) 3 3

4 x2 2

(3 x  5) 3

2

(3 x  5) 3

f (7)  3(7) 2  25(7)  28  147  189  28  0

3  23  117. g  x  12    x  12   8 2  32   x 88  x

2

(3x  5) 3

 x  5 x    c  5c   x  5x  c  5c 2

xc

2

2

xc x  c  5 x  5c  xc ( x  c)( x  c)  5( x  c)  xc ( x  c )  ( x  c )  5  xc  xc5 2

114. 5 x  7 y  35 7 y  5 x  35 5 y   x5 7 A parallel line would have the same slope, 5 m . 7 5 ( y  3)   ( x  14) 7 5 y  3   x  10 7 5 y   x7 7

116.

4 x 2  24 x 2  40 x

2

axis we change it to y   x .

The relation is a function.

(3 x  5) 3

113. To reflect a graph about the y-axis, we change f ( x ) to f (  x) so to reflect y  x about the y-

Range: 3, 4, 5, , 6, 7

2

(3 x  5) 3

28 x 2  40 x

Center: (5, 2) ; Radius = 3

115. Domain: 1, 2,3, 4,5

8 x(3x  5)

4 x 2  8 x(3 x  5)

2

119.

2

Section 3.4 1. A   r 2 2. Use LIN REGression to get y  1.7826 x  4.0652 3. a.

R ( p)  p  6 p  600   6 p 2  600 p

b. The quantity sold price cannot be negative, so p  0 . Similarly, the price should be positive, so p  0 . 6 p  600  0 6 p  600 p  100 Thus, the implied domain for R is { p | 0  p  100} or  0, 100 . c.

p

b 600 600    $50 2a 2  6   12 

d. The maximum revenue is

203 Copyright © 2020 Pearson Education, Inc.


Chapter 3: Linear and Quadratic Functions

R (50)  6(50) 2  600(50)

4. a.

 15000  30000

b. The quantity sold price cannot be negative, so p  0 . Similarly, the price should be positive, so p  0 . 3 p  360  0 3 p  360 p  120 Thus, the implied domain for R is { p | 0  p  120} or  0, 120 .

 $15, 000

e.

R ( p )  p  3 p  360   3 p 2  360 p

x  6(50)  600  300

f.

c.

p

b 360 360    $60 2a 2  3  6 

d. The maximum revenue is R (60)  3(60) 2  360(60)

g.

Graph R  6 x 2  600 x and R  12600 . Find where the graphs intersect by solving 12600  6 x 2  600 x .

 10800  21600  $10,800

e.

x  3(60)  360  180

f.

g.

Graph R  3 p 2  360 p and R  9600 . Find where the graphs intersect by solving 9600  3 p 2  360 p .

6 x 2  600 x  12600  0 x 2  100 x  2100  0 ( x  30)( x  70)  0 x  30, x  70

The company should charge between $30 and $70.

204 Copyright © 2020 Pearson Education, Inc.


Section 3.4: Build Quadratic Models from Verbal Descriptions and from Data

3x 2  360 x  9600  0 x 2  30 x  3200  0 ( x  40)( x  80)  0 x  40, x  80

The company should charge between $40 and $80. 5. a.

R ( p )  p  5 p  100   5 p 2  100 p

b. The quantity sold price cannot be negative, so p  0 . Similarly, the price should be positive, so p  0 . 5 p  100  0 5 p  100 p  20 Thus, the implied domain for R is { p | 0  p  20} or  0, 20 . c.

p

5 x 2  100 x  480  0 x 2  20 x  96  0 ( x  8)( x  12)  0 x  8, x  12

b 100 100    $10 2a 2  5   10 

d. The maximum revenue is

The company should charge between $8 and $12. 6.

R (10)  5(10) 2  100(10)  500  1000

b. The quantity sold price cannot be negative, so p  0 . Similarly, the price should be positive, so p  0 . 20 p  500  0 20 p  500 p  25 Thus, the implied domain for R is { p | 0  p  25} or  0, 25 .

 $500

e.

x  5(10)  100  50

f.

a. R ( p )  p  20 p  500   20 p 2  500 p

graph

c.

p

b 500 500    $12.50 2a 2  20   40 

d. The maximum revenue is g.

2

Graph R  5 x  100 x and R  480 . Find where the graphs intersect by solving 480  5 x 2  100 x .

R (12.5)  20(12.5) 2  500(12.5)  3125  6250  $3125

e.

x  20(12.5)  500  250

205 Copyright © 2020 Pearson Education, Inc.


Chapter 3: Linear and Quadratic Functions f.

c.

A(100)  1002  200(100)  10000  20000  10, 000 yd 2

8. a.

g.

Graph R  20 x 2  500 x and R  3000 . Find where the graphs intersect by solving 3000  20 x 2  500 x .

Let x = width and y = width of the rectangle. Solving P  2 x  2 y  3000 for y: 3000  2 x y  1500  x. 2 Then A( x)  (1500  x) x  1500 x  x 2   x 2  1500 x. b 1500  1500    750 feet 2a 2( 1) 2

b.

x

c.

A(750)  7502  1500(750)  562500  1125000  562,500 ft 2

9. Let x = width and y = length of the rectangle. Solving P  2 x  y  4000 for y: y  4000  2 x . Then A( x)  (4000  2 x) x  4000 x  2 x 2   2 x 2  4000 x b  4000  4000    1000 meters x 4 2a 2( 2) maximizes area. A(1000)   2(1000) 2  4000(1000) .  2000000  4000000  2, 000, 000 The largest area that can be enclosed is 2,000,000 square meters.

20 x 2  500 x  3000  0 x 2  25 x  150  0 ( x  10)( x  15)  0 x  10, x  15

The company should charge between $10 and $15. 7. a. Let w  width and l  length of the rectangular area. Solving P  2 w  2l  400 for l : 400  2w l  200  w . 2 Then A( w)  (200  w) w  200 w  w2   w2  200 w

b.

w

b  200  200    100 yards 2a 2(1) 2

10. Let x = width and y = length of the rectangle. 2 x  y  2000 y  2000  2 x Then A( x)  (2000  2 x) x  2000 x  2 x 2   2 x 2  2000 x b 2000 2000 x    500 meters 2a 2( 2) 4 maximizes area. A(500)   2(500) 2  2000(500)  500, 000  1, 000, 000  500, 000 The largest area that can be enclosed is 500,000 square meters.

206 Copyright © 2020 Pearson Education, Inc.


Section 3.4: Build Quadratic Models from Verbal Descriptions and from Data 11. Locate the origin at the point where the cable touches the road. Then the equation of the parabola is of the form: y  ax 2 , where a  0. Since the point (200, 75) is on the parabola, we can find the constant a : 75 Since 75  a (200) 2 , then a   0.001875 . 2002 When x  100 , we have: y  0.001875(100) 2  18.75 meters . (–200,75)

y

–200

(0,0)

(200,75)

100

x 200

12. Locate the origin at the point directly under the highest point of the arch. Then the equation of the parabola is of the form: y   ax 2  k , where a > 0. Since the maximum height is 25 feet, when x  0, y  k  25 . Since the point (60, 0) is on the parabola, we can find the constant a : Since 0   a (60) 2  25 then 25 . The equation of the parabola is: 602 25 h( x)   2 x 2  25 . 60

13. a.

Let x = the depth of the gutter and y the width of the gutter. Then A  xy is the crosssectional area of the gutter. Since the aluminum sheets for the gutter are 12 inches wide, we have 2 x  y  12 . Solving for y : y  12  2 x . The area is to be maximized, so: A  xy  x(12  2 x)   2 x 2  12 x . This equation is a parabola opening down; thus, it has a maximum b 12 12 when x    3. 2a 2( 2)  4 Thus, a depth of 3 inches produces a maximum cross-sectional area.

b. Graph A  2 x 2  12 x and A  16 . Find where the graphs intersect by solving 16  2 x 2  12 x .

2 x 2  12 x  16  0 x2  6 x  8  0 ( x  4)( x  2)  0 x  4, x  2

a

The graph of A  2 x 2  12 x is above the graph of A  16 where the depth is between 2 and 4 inches.

(0,25)

(–60,0)

(0,0)

10

20

40

(60,0)

14. Let x  width of the window and y  height of the rectangular part of the window. The x perimeter of the window is: x  2 y   20. 2 40  2 x  x . Solving for y : y  4 The area of the window is: 2

At x  10 : 25 25 (10) 2  25    25  24.3 ft. 36 602 At x  20 : 25 25 h(20)   2 (20) 2  25    25  22.2 ft. 9 60 At x  40 : 25 100 h(40)   2 (40) 2  25    25  13.9 ft. 9 60 h(10)  

 40  2 x  x  1  x  A( x)  x    2  2  4     x 2 x 2 x 2  10 x    2 4 8  1  2      x  10 x.  2 8 This equation is a parabola opening down; thus, it has a maximum when

207 Copyright © 2020 Pearson Education, Inc.


Chapter 3: Linear and Quadratic Functions b 10 10    5.6 feet 2a 1     2     1    2 8  4 40  2(5.60)  (5.60) y  2.8 feet 4 The width of the window is about 5.6 feet and the height of the rectangular part is approximately 2.8 feet. The radius of the semicircle is roughly 2.8 feet, so the total height is about 5.6 feet. x

15. Let x  the width of the rectangle or the diameter of the semicircle and let y  the length of the x rectangle. The perimeter of each semicircle is . 2 The perimeter of the track is given x x by:   y  y  1500 . 2 2 Solving for x :  x  2 y  1500 x  1500  2 y 1500  2 y x 

The area of the rectangle is:  2 2 1500  1500  2 y  A  xy   y y  y.       This equation is a parabola opening down; thus, it has a maximum when 1500 b 1500     375. y 4 2a  2   2     1500  2(375) 750 Thus, x    238.73   The dimensions for the rectangle with maximum 750  238.73 meters by 375 meters. area are  16. Let x = width of the window and y = height of the rectangular part of the window. The perimeter of the window is: 3x  2 y  16 16  3 x y 2 The area of the window is

3 2  16  3 x  A( x )  x   4 x 2   3 2 3 2 x  x 2 4  3 3 2     x  8x  2 4   8x 

This equation is a parabola opening down; thus, it has a maximum when 8 b x  2a  3 3 2     2 4  

8

16  3.75 ft. 6  3

3 2 The window is approximately 3.75 feet wide.  16  48 16  3   16  6  3   6  3  8  24  y  2 2 6  3 The height of the equilateral triangle is 8 3 3  16  feet, so the total height is  2  6  3  6  3 3 

8

24 8 3   5.62 feet. 6  3 6  3

17. a.

From the graph, the data appear to follow a quadratic relation with a  0 . b. Using the QUADratic REGression program I ( x)  49.421x 2  4749.034 x  60370.056

c.

b 4749.034   48.0 2a 2(49.421) An individual will earn the most income at about 48.0 years of age. x

208 Copyright © 2020 Pearson Education, Inc.


Section 3.4: Build Quadratic Models from Verbal Descriptions and from Data d. The maximum income will be: I(48.0) = 49.421(48.0) 2  4749.034(48.0)  60,370.056

19. a.

 $53, 717

e.

From the graph, the data appear to be linearly related with m  0 . b. Using the LINear REGression program R ( x)  1.337 x  936.781 18. a.

c.



20. a.

  From the graph, the data appear to follow a quadratic relation with a  0 .

R (875)  1.337(875)  936.781  2107 The rent for an 875 square-foot apartment in San Diego will be about $2107 per month. 

 

b. Using the QUADratic REGression program

From the graph, the data appear to be linearly related with m  0 . b. Using the LINear REGression program

h( x )  0.0037 x 2  1.0318 x  5.6667

c.

b 1.0318   139.4 2a 2(0.0037) The ball will travel about 139.4 feet before it reaches its maximum height.

x

C ( x)  0.233x  2.037

c.

d. The maximum height will be: h(139.4)  2 0.0037(139.4)  1.0318(139.4)  5.6667  77.6 feet

e.

C (80)  0.233(80)  2.037  16.6 When the temperature is 80F , there will be about 16.6 chirps per second.

21. a.



 

From the graph, the data appear to follow a quadratic relation with a  0 .

209 Copyright © 2020 Pearson Education, Inc.


Chapter 3: Linear and Quadratic Functions b. Using the QUADratic REGression program

y0  (4) 2  3(4)  5  9, y1  02  3  0  5  5,

B (a )  0.561a 2  32.550a  371.675

and y2  42  3  4  5  33 So 4 h area   y0  4 y1  y2    9  4  5  33 3 3 4 248   62  3 3

c. B (35)  0.561(35) 2  32.550(35)  371.675  80.35

The birthrate of 35-year-old women is about 80.35 per 1000. 22. Substitute each point into the equation: y0  a (h) 2  b(h)  c  ah 2  bh  c;

26. Note that h = 1. Then y0  (1) 2  (1)  4  2, y1  02  0  4  4, and y2  12  1  4  4 So 1 h area   y0  4 y1  y2    2  4  4  4  3 3 1 22   22  3 3

y1  a(0) 2  b(0)  c  c; y2  a(h) 2  b(h)  c  ah 2  bh  c Then: y0  4 y1  y2  ah 2  bh  c  4c  ah 2  bh  c  2ah 2  6c.

So, Area 

h h 2ah 2 6c   y0  4 y1  y2  . 3 3

23. Note that h = 1. Then y0  5(1) 2  8  3,

27. Answers will vary. One possibility follows: If the price is $140, no one will buy the calculators, thus making the revenue $0. 28. d  ( x2  x1 ) 2  ( y2  y1 ) 2

2

y1  5  0  8  8, and y2  5 12  8  3 So 1 h area   y0  4 y1  y2    3  4  8  3 3 3 1 38   38  3 3

 (( 1)  4) 2  (5  ( 7))2  ( 5) 2  (12) 2  25  144  169  13

29.

( x  h) 2  ( y  k ) 2  r 2 ( x  ( 6)) 2  ( y  0) 2  ( 7) 2 ( x  6) 2  y 2  7

24. Note that h = 2. Then y0  2(2) 2  8  16, y1  2  02  8  8, 2

and y2  2  2  8  16 So 2 h area   y0  4 y1  y2   16  4  8  16  3 3 2 128   64  3 3

30. x  

 (8)  82  4(5)( 3) 8  64  60  2(5) 10 8  124 8  2 31 4  31   10 10 5

 4  31 4  31  , So the zeros are:   5 5  

25. Note that h = 4. Then

210 Copyright © 2020 Pearson Education, Inc.


Section 3.5: Inequalities Involving Quadratic Functions 31. 5(0)  7 y  140 7 y  140 y  20 5 x  7(0)  140 5 x  140 x  28

36.

f ( x) 

3 x 1

3 3  f ( x  h)  f ( x ) x  h  1 x  1  h h x 1   x 1  h  x  h  1 x  1  h  x 1  x  1  h   1         x  h  1  1   h 

The x-intercept is  28, 0  and the y-intercept is

 0, 20  32. 2 3x  7  9  21

  1  h        x  h  1 x  1   h  1   x  h  1 x  1

2 3x  7  30 3x  7  15 3 x  7  15 or 3x  7  15 3 x  8

3x  22

8 x 3

22 x 3  8 22  The solution set is  ,   3 3

33. 3 1

7

37. 4( x  1)5 ( x  7)3  5( x  1) 4 ( x  7) 4  ( x  1) 4 ( x  7)3  4( x  1)  5( x  7)   ( x  1) 4 ( x  7)3  4 x  4  5 x  35  ( x  1) 4 ( x  7)3  9 x  31

19  15

3  12 21 1 4

7

6 2

The quotient is x  4 x  7  8 and the remainder is 6. 34. The denominator cannot be 0. x 3  16 x  0 x( x 2  16)  0 x( x  4)( x  4)  0 x  0, 4, 4 The solution set is  x | x  4, 0, 4 .

35. y  2 9  ( x  3) 2  4

Section 3.5 1. 3x  2  7 3 x  9 x  3 The solution set is  x | x  3 or  3,   . 2.

 2, 7  represents the numbers between 2 and 7, including 7 but not including 2 . Using inequality notation, this is written as 2  x  7 .

3. a.

f ( x)  0 when the graph of f is above the x-

axis. Thus,  x x  2 or x  2 or, using interval notation,  , 2    2,   .

211 Copyright © 2020 Pearson Education, Inc.


Chapter 3: Linear and Quadratic Functions

b.

intersects the x-axis. Thus,  x  2  x  2 or, using interval notation,  2, 2 .

4. a.

g ( x)  0 when the graph of g is below the

x-axis. Thus,  x x  1 or x  4 or, using

interval notation,  , 1   4,   . b.



f ( x)  0 when the graph of f is below or

g ( x)  0 when the graph of f is above or

intersects the x-axis. Thus,  x  1  x  4



 The graph is below the x-axis for 2  x  5 . Since the inequality is strict, the solution set is  x  2  x  5  or, using interval notation,

 2, 5  .

or, using interval notation,  1, 4 . 5. a.

g ( x)  f  x  when the graph of g is above

or intersects the graph of f. Thus  x  2  x  1 or, using interval notation,

 2, 1 . b.

f ( x)  g  x  when the graph of f is above

the graph of g. Thus,  x x  2 or x  1 or, using interval notation,  , 2   1,   . 6. a.

f ( x)  g  x  when the graph of f is below

the graph of g. Thus,  x x  3 or x  1 or, using interval notation,  , 3  1,   . b.

f ( x)  g  x  when the graph of f is above

or intersects the graph of g. Thus,  x  3  x  1 or, using interval notation,

 3, 1 . 7. x 2  3 x  10  0 We graph the function f ( x)  x 2  3 x  10 . The intercepts are y-intercept: f (0)  10 2

x-intercepts: x  3x  10  0 ( x  5)( x  2)  0 x  5, x   2 b (3) 3 The vertex is at x    . Since 2a 2(1) 2 49 3  3 49  f     , the vertex is  ,   . 4 4  2 2

8. x 2  3x  10  0 We graph the function f ( x)  x 2  3 x  10 . The intercepts are y-intercept: f (0)  10

x-intercepts: x 2  3x  10  0 ( x  5)( x  2)  0 x  5, x  2 b (3) 3    . Since The vertex is at x  2a 2(1) 2 49  3  3 49  f      , the vertex is   ,   . 4 4   2  2 



 The graph is above the x-axis when x  5 or x  2 . Since the inequality is strict, the solution set is  x x  5 or x  2  or, using interval notation,  , 5    2,   . 9. x 2  4 x  0 We graph the function f ( x)  x 2  4 x . The intercepts are y-intercept: f (0)  0

x-intercepts: x 2  4 x  0 x( x  4)  0 x  0, x  4

212 Copyright © 2020 Pearson Education, Inc.


Section 3.5: Inequalities Involving Quadratic Functions

The vertex is at x 

b (4) 4    2 . Since 2a 2(1) 2

The vertex is at x 

b (0)   0 . Since 2a 2(1)



f (0)  9 , the vertex is  0, 9  . 





 The graph is above the x-axis when x  0 or x  4 . Since the inequality is strict, the solution set is  x x  0 or x  4  or, using interval

 The graph is below the x-axis when 3  x  3 . Since the inequality is strict, the solution set is  x  3  x  3  or, using interval notation,

f  2   4 , the vertex is  2, 4  .

 3, 3 .

notation,  , 0    4,   . 10. x 2  8 x  0 We graph the function f ( x)  x 2  8 x . The intercepts are y-intercept: f (0)  0

12. x 2  1  0 We graph the function f ( x)  x 2  1 . The intercepts are y-intercept: f (0)  1 x2  1  0

x-intercepts:

x-intercepts: x 2  8 x  0 x( x  8)  0 x  0, x  8 b (8) 8 The vertex is at x     4 . 2a 2(1) 2

( x  1)( x  1)  0 x  1, x  1 b (0)   0 . Since The vertex is at x  2a 2(1)

Since f  4   16 , the vertex is  4, 16  . 

f (0)  1 , the vertex is  0, 1 . 





 The graph is above the x-axis when x  8 or x  0 . Since the inequality is strict, the solution set is  x x   8 or x  0  or, using interval

 The graph is below the x-axis when 1  x  1 . Since the inequality is strict, the solution set is  x  1  x  1  or, using interval notation,

 1, 1 .

notation,  , 8    0,   . 11. x 2  9  0 We graph the function f ( x)  x 2  9 . The intercepts are y-intercept: f (0)  9

x-intercepts:

x2  9  0 ( x  3)( x  3)  0 x  3, x  3

x 2  x  12

13.

x  x  12  0 We graph the function f ( x)  x 2  x  12 . y-intercept: f (0)  12 2

x-intercepts:

x 2  x  12  0 ( x  4)( x  3)  0 x  4, x  3

The vertex is at x  213 Copyright © 2020 Pearson Education, Inc.

b (1) 1    . Since 2a 2(1) 2


Chapter 3: Linear and Quadratic Functions

49  1  1 49  f      , the vertex is   ,   . 2 4 4     2 

The vertex is at x 

49 5  5 49  f     , the vertex is  ,   . 8 8  4 4 





 The graph is above the x-axis when x  4 or x  3 . Since the inequality is strict, the solution set is  x x  4 or x  3  or, using interval

 1  x  3. 2 Since the inequality is strict, the solution set is  1   x   x  3  or, using interval notation, 2  

The graph is below the x-axis when 

notation,  , 4    3,   . 14.

x 2  7 x  12 x 2  7 x  12  0 We graph the function f ( x)  x 2  7 x  12 . y-intercept: f (0)  12

x-intercepts: x 2  7 x  12  0 ( x  4)( x  3)  0 x   4, x  3 The vertex is at x 

 1    , 3 .  2 

16.

b (7) 7    . Since 2a 2(1) 2

1  7  1 1 f      , the vertex is   ,   . 4  2  2 4 

b (5) 5   . Since 2a 2(2) 4

6 x2  6  5x 6 x2  5x  6  0 We graph the function f ( x)  6 x 2  5 x  6 . The intercepts are y-intercept: f (0)  6

x-intercepts:

6x2  5x  6  0 (3x  2)(2 x  3)  0

2 3 x ,x 3 2 b (5) 5 The vertex is at x    . Since 2a 2(6) 12



 The graph is below the x-axis when 4  x  3 . Since the inequality is strict, the solution set is  x | 4  x  3 or, using interval notation,

169  5  5 169  f   , the vertex is  ,  . 24 24   12   12



 4, 3 . 15.



2 x2  5x  3 2 x2  5x  3  0 We graph the function f ( x)  2 x 2  5 x  3 . The intercepts are y-intercept: f (0)  3

x-intercepts:

2x2  5x  3  0 (2 x  1)( x  3)  0

 2 3 x . 3 2 Since the inequality is strict, the solution set is

The graph is below the x-axis when 

1 x , x3 2

214 Copyright © 2020 Pearson Education, Inc.


Section 3.5: Inequalities Involving Quadratic Functions 

 2 3  x   x   or, using interval notation, 3 2   2 3  ,  .  3 2



2

17. x  x  1  0 We graph the function f ( x)  x 2  x  1 . The intercepts are y-intercept: f (0)  1

x-intercepts: x 

(1)  (1) 2  4(1)(1) 2(1)



The graph is always above the x-axis. Thus, the solution is all real numbers or using interval notation,  ,   . 19.

1  3 (not real) 2 Therefore, f has no x-intercepts. 

4 x2  9  6 x 4 x2  6 x  9  0 We graph the function f ( x)  4 x 2  6 x  9 . y-intercept: f (0)  9 x-intercepts: x 

The vertex is at x 

b (1) 1   . Since 2a 2(1) 2

(6)  ( 6) 2  4(4)(9) 2(4)

6  108 (not real) 8 Therefore, f has no x-intercepts. b (6) 6 3    . Since The vertex is at x  2a 2(4) 8 4 

1 3 1 3 f    , the vertex is  ,  . 2 4 2 4 

 3 27   3  27 , the vertex is  , f   . 4 4 4 4   



 

The graph is never below the x-axis. Thus, there is no real solution.



18. x  2 x  4  0 We graph the function f ( x)  x 2  2 x  4 . y-intercept: f (0)  4 2

x-intercepts: x 

(2)  (2) 2  4(1)(4) 2(1)

2  12 (not real) 2 Therefore, f has no x-intercepts. b (2)   1 . Since The vertex is at x  2a 2(1) 

 The graph is never below the x-axis. Thus, there is no real solution. 20.

25 x 2  16  40 x 25 x 2  40 x  16  0 We graph the function f ( x)  25 x 2  40 x  16 .

y-intercept: f (0)  16 x-intercepts: 25 x 2  40 x  16  0

f  1  3 , the vertex is  1,3 .

(5 x  4) 2  0 5x  4  0 x

215 Copyright © 2020 Pearson Education, Inc.

4 5


Chapter 3: Linear and Quadratic Functions

The vertex is at x 

b (40) 40 4    . 2a 2(25) 50 5

22. 2  2 x 2  3 x    9 4 x 2  6 x  9 4 x2  6 x  9  0 We graph the function f ( x)  4 x 2  6 x  9 . y-intercept: f (0)  9

4 4  Since f    0 , the vertex is  , 0  . 5 5  

x-intercepts: x 

6  108 (not real) 8 Therefore, f has no x-intercepts. b (6) 6 3    . Since The vertex is at x  2a 2(4) 8 4



 The graph is never below the x-axis. Thus, there is no real solution. 21.

6  x 2  1  5 x

 3  27  3 27  f   , the vertex is  , . 4 4 4 4  

6 x2  6  5x 6 x2  5x  6  0 We graph the function f ( x)  6 x 2  5 x  6 . y-intercept: f (0)  6

x-intercepts:

6x2  5x  6  0 (3x  2)(2 x  3)  0



2 3 x ,x 3 2 b (5) 5   . Since The vertex is at x  2a 2(6) 12 169  5  5 169  f   , the vertex is  ,  . 12 24 24     12 

 The graph is always above the x-axis. Thus, the solution set is all real numbers or, using interval notation,  ,   . 23.

f ( x)  x 2  1; g ( x)  3x  3 f ( x)  0

a.

x 1  0 ( x  1)( x  1)  0 x  1; x  1 2



Solution set: 1, 1 . b.



The graph is above the x-axis when x  

2 or 3

3 . Since the inequality is strict, solution set 2  2 3 is  x x   or x   or, using interval 3 2  x

2 3   notation,  ,     ,   . 3 2  

(6)  ( 6) 2  4(4)(9) 2(4)

g ( x)  0 3x  3  0 3x  3 x  1 Solution set: 1 . f ( x)  g ( x)

c.

x  1  3x  3 x  3x  4  0 ( x  4)( x  1)  0 x  4; x  1 2

2

Solution set: 1, 4 .

216 Copyright © 2020 Pearson Education, Inc.


Section 3.5: Inequalities Involving Quadratic Functions

d.



f ( x)  0

We graph the function f ( x)  x  1 . y-intercept: f (0)  1 2

x-intercepts:



x2  1  0 ( x  1)( x  1)  0 x  1, x  1

The vertex is at x 

 The graph of p is above the x-axis when x  1 or x  4 . Since the inequality is strict, the solution set is  x x  1 or x  4  or, using interval

b (0)   0 . Since 2a 2(1)

f (0)  1 , the vertex is (0, 1). 

notation,  , 1   4,   . g.



 The graph is above the x-axis when x  1 or x  1 . Since the inequality is strict, the solution set is  x x  1 or x  1 or, using

x-intercepts: x 2  2  0 x2  2

interval notation, (, 1)  (1, ) . e.

f ( x)  1 x2  1  1 x2  2  0 We graph the function p( x)  x 2  2 . The intercepts of p are y-intercept: p(0)  2

x 2 b (0) The vertex is at x    0 . Since 2a 2(1)

g ( x)  0 3x  3  0 3x  3 x  1 The solution set is  x x  1 or, using

p(0)  2 , the vertex is (0, 2). 

interval notation,  , 1 . f.



f ( x)  g ( x) x 2  1  3x  3 x 2  3x  4  0 We graph the function p( x)  x 2  3x  4 . The intercepts of p are y-intercept: p(0)  4

x-intercepts:

 The graph of p is above the x-axis when x   2 or x  2 . Since the inequality is not strict, the solution set is

 x x   2 or x  2  or, using interval

x 2  3x  4  0 ( x  4)( x  1)  0 x  4, x  1

The vertex is at x 

b (3) 3   . Since 2a 2(1) 2

25 3  3 25  , the vertex is  ,   . p    4 4  2 2

notation, ,  2    2,  . 24.

f ( x)   x 2  3;

a.

g ( x )  3x  3

f ( x)  0 x  3  0 x2  3 2

x 3

Solution set:  3, 3 .

217 Copyright © 2020 Pearson Education, Inc.


Chapter 3: Linear and Quadratic Functions

b.

g  x  0 3x  3  0 3 x  3 x 1 Solution set: {1}.

x-intercepts:  x 2  3 x  0  x( x  3)  0 x  0; x  3 b (3) 3 3    . The vertex is at x  2a 2(1) 2 2

c.

f ( x)  g ( x)  x  3  3 x  3 0  x 2  3x 0  x( x  3) x  0; x  3 Solution set: 0, 3 .

3 9 3 9 Since p    , the vertex is  ,  . 2 4   2 4 

2

d.



f ( x)  0

 The graph of p is above the x-axis when 0  x  3 . Since the inequality is strict, the solution set is  x 0  x  3  or, using

We graph the function f ( x)   x 2  3 . y-intercept: f (0)  3 x-intercepts:  x 2  3  0 x2  3 x 3 b (0)   0 . Since The vertex is at x  2a 2(1) f (0)  3 , the vertex is (0, 3). 

 The graph is above the x-axis when  3  x  3 . Since the inequality is strict,

 x  3  x  3  or, 

g.

f ( x)  1  x2  3  1  x2  2  0 We graph the function p( x)   x 2  2 . The intercepts of p are y-intercept: p(0)  2

x-intercepts:  x 2  2  0 x2  2



the solution set is

interval notation, (0, 3) .

x 2 b (0)   0 . Since The vertex is at x  2a 2(1) p(0)  2 , the vertex is (0, 2). 

using interval notation,  3, 3 . e.

g ( x)  0 3x  3  0 3 x  3 x 1 The solution set is  x x  1 or, using

interval notation, 1,   . f.

f ( x)  g ( x)  x 2  3  3x  3  x 2  3x  0 We graph the function p( x)   x 2  3 x . The intercepts of p are y-intercept: p(0)  0



 The graph of p is above the x-axis when  2  x  2 . Since the inequality is not

strict, the solution set is

x  2  x 2

or, using interval notation,   2, 2  .

218 Copyright © 2020 Pearson Education, Inc.


Section 3.5: Inequalities Involving Quadratic Functions

25.

f ( x)   x 2  1;

a.

g ( x)  4 x  1

e.

f  x  0  x2  1  0 1  x2  0 1  x 1  x   0

 1 The solution set is  x x    or, using 4  1  interval notation,  ,   . 4 

x  1; x  1

Solution set: 1, 1 . b.

g  x  0 4x  1  0 4 x  1 1 x 4

f.

f  x  g  x

x-intercepts:  x 2  4 x  0  x( x  4)  0 x  0; x  –4

 x2  1  4x  1 0  x2  4x 0  x  x  4 x  0; x  4

The vertex is at x 

Solution set: 4, 0 . d.

b (4) 4    2 . 2a 2(1) 2

Since p(2)  4 , the vertex is (2, 4). 

f  x  0

We graph the function f ( x)   x 2  1 . y-intercept: f (0)  1



x 1  0 x2  1  0 ( x  1)( x  1)  0 x  1; x  1 b (0)   0 . Since The vertex is at x  2a 2(1)

x-intercepts:

f  x  g  x  x2  1  4x  1  x2  4 x  0 We graph the function p( x)   x 2  4 x . The intercepts of p are y-intercept: p(0)  0

 1 Solution set:   .  4

c.

g  x  0 4x  1  0 4 x  1 1 x 4

2

f (0)  1 , the vertex is (0, 1). 



 The graph is above the x-axis when 1  x  1 . Since the inequality is strict, the solution set is  x  1  x  1  or, using

 The graph of p is above the x-axis when 4  x  0 . Since the inequality is strict, the solution set is  x  4  x  0 or, using

interval notation,  4, 0  . g.

f ( x)  1  x2  1  1  x2  0 We graph the function p( x)   x 2 . The

vertex is at x 

b (0)   0 . Since 2a 2(1)

p(0)  0 , the vertex is (0, 0). Since a  1  0 , the parabola opens downward.

interval notation,  1, 1 .

219 Copyright © 2020 Pearson Education, Inc.


Chapter 3: Linear and Quadratic Functions



The graph is above the x-axis when 2  x  2 . Since the inequality is strict, the solution set is  x 2  x  2 or, using



 The graph of p is never above the x-axis, but it does touch the x-axis at x = 0. Since the inequality is not strict, the solution set is {0}. 26.

f ( x)   x 2  4; g ( x)   x  2 a. f ( x)  0 2 x  4  0 x2  4  0 ( x  2)( x  2)  0 x  2; x  2

interval notation,  2, 2  . e.

interval notation,  2,   . f.

Solution set: 2, 2 . b.

g ( x)  0 x  2  0 2  x Solution set: 2 .

c.

f ( x)  g ( x)  x2  4   x  2 0  x2  x  6 0   x  3 x  2  x  3; x  2 Solution set: 2, 3 .

d.

 x2  x  6  0 x2  x  6  0 ( x  2)( x  3)  0 x  2; x  3

The vertex is at x 

b (1) 1 1    . 2a 2(1) 2 2

 1 25   1  25 , the vertex is  ,  . Since p    2 4  2 4 



 The graph of p is above the x-axis when 2  x  3 . Since the inequality is strict, the solution set is  x  2  x  3 or, using

x  4  0 x2  4  0 ( x  2)( x  2)  0 x  2; x  2 2

The vertex is at x 

f ( x)  g ( x)  x2  4   x  2  x2  x  6  0 We graph the function p( x)   x 2  x  6 . The intercepts of p are y-intercept: p(0)  6

x-intercepts:

f ( x)  0  x2  4  0 We graph the function f ( x)   x 2  4 . y-intercept: f (0)  4

x-intercepts:

g ( x)  0 x  2  0 x  2 x  2 The solution set is  x x  2 or, using

b (0)   0 . Since 2a 2(1)

f (0)  4 , the vertex is (0, 4). 



interval notation, (2, 3) . g.

f ( x)  1  x2  4  1  x2  3  0 We graph the function p( x)   x 2  3 . The intercepts of p are y-intercept: p(0)  3

x-intercepts:  x 2  3  0 x2  3 x 3

 220 Copyright © 2020 Pearson Education, Inc.


Section 3.5: Inequalities Involving Quadratic Functions

The vertex is at x 

b (0)   0 . Since 2a 2(1)

f (0)  4 , the vertex is (0, 4). 





 The graph of p is above the x-axis when  3  x  3 . Since the inequality is not

 The graph is above the x-axis when x  2 or x  2 . Since the inequality is strict, the solution set is  x x  2 or x  2  or,

 x  3  x  3

or, using interval notation,   3, 3  . f  x   x  4; 2

using interval notation,  , 2    2,   . e.

g  x  x  4

g ( x)  0 x  4  0 We graph the function g ( x)   x 2  4 . 2

2

f  x  0

a.

y-intercept: g (0)  4

x2  4  0  x  2  x  2   0 x  2; x  2

x-intercepts:

Solution set: 2, 2 . g  x  0

b.

x  4  0 x2  4  0  x  2  x  2   0



f ( x)  g ( x) x2  4   x2  4 2 x2  8  0 2  x  2  x  2   0

 The graph is below the x-axis when x  2 or x  2 . Since the inequality is not strict, the solution set is  x x  2 or x  2  or,

x  2; x  2

Solution set: 2, 2 .

using interval notation,  , 2   2,   .

f ( x)  0 x 4  0 We graph the function f ( x)  x 2  4 . 2

y-intercept: f (0)  4 x-intercepts:

b (0)   0 . Since 2a 2(1)

g (0)  4 , the vertex is (0, 4). 

x  2; x  2 Solution set: 2, 2 .

d.

 x2  4  0 x2  4  0 ( x  2)( x  2)  0 x  2; x  2

The vertex is at x 

2

c.

b (0)   0 . Since 2a 2(1)

p(0)  3 , the vertex is (0, 3). 

strict, the solution set is

27.

The vertex is at x 

x2  4  0 ( x  2)( x  2)  0 x  2; x  2

f.

f ( x)  g ( x) x  4   x2  4 2 x2  8  0 We graph the function p( x)  2 x 2  8 . 2

y-intercept: p(0)  8 x-intercepts:

221 Copyright © 2020 Pearson Education, Inc.

2 x2  8  0 2( x  2)( x  2)  0 x  2; x  2


Chapter 3: Linear and Quadratic Functions

The vertex is at x 

b (0)   0 . Since 2a 2(2)

b.

p(0)  8 , the vertex is (0, 8). 

g ( x)  0  x2  1  0 x2  1  0  x  1 x  1  0 x  1; x  1

Solution set: 1, 1 .



c.

f ( x)  g ( x) x  2 x  1   x2  1 2 x2  2 x  0 2 x  x  1  0 2

 The graph is above the x-axis when x  2 or x  2 . Since the inequality is strict, the solution set is  x x  2 or x  2  or,

x  0, x  1 Solution set: 0, 1 .

using interval notation, (, 2)  (2, ) . g.

f ( x)  1 2 x 4 1 x2  5  0 We graph the function p( x)  x 2  5 .

d.

y-intercept: f (0)  1 x-intercepts: x 2  2 x  1  0

y-intercept: p(0)  5

 x  1  0 2

x-intercepts: x 2  5  0 x2  5

x 1  0 x 1 b (2) 2   1. The vertex is at x  2a 2(1) 2

x 5 b (0)   0 . Since The vertex is at x  2a 2(1) p(0)  5 , the vertex is (0, 5). 

Since f (1)  0 , the vertex is (1, 0). 





 The graph of p is above the x-axis when x   5 or x  5 . Since the inequality is not strict, the solution set is

 The graph is above the x-axis when x  1 or x  1 . Since the inequality is strict, the solution set is  x x  1 or x  1  or, using

 x x   5 or x  5 or, using interval 

notation, ,  5    5,  . 28.

f  x   x 2  2 x  1; g  x    x 2  1

a.

f ( x)  0 x  2x  1  0 We graph the function f ( x)  x 2  2 x  1 . 2

f ( x)  0 x2  2x  1  0 ( x  1) 2  0 x 1  0 x 1 Solution set: 1 .

interval notation,  , 1  1,   . e.

g ( x)  0  x2  1  0 We graph the function g ( x)   x 2  1 .

y-intercept: g (0)  1 x-intercepts:

222 Copyright © 2020 Pearson Education, Inc.

 x2  1  0 x2  1  0 ( x  1)( x  1)  0 x  1; x  1


Section 3.5: Inequalities Involving Quadratic Functions

The vertex is at x 

f.

b (0)   0 . Since 2a 2(1)

The vertex is at x 

g (0)  1 , the vertex is (0, 1). 

Since p (1)  1 , the vertex is (1, 1). 





 The graph is below the x-axis when x  1 or x  1 . Since the inequality is not strict, the solution set is  x x  1 or x  1  or,

 The graph of p is above the x-axis when x  0 or x  2 . Since the inequality is not strict, the solution set is  x x  0 or x  2

using interval notation,  , 1  1,   .

or, using interval notation,  , 0   2,   .

f ( x)  g ( x) x  2 x  1   x2  1 2 x2  2 x  0 We graph the function p( x)  2 x 2  2 x . 2

29.

f  x   x 2  x  2;

a.

x-intercepts: 2 x 2  2 x  0 2 x( x  1)  0 x  0; x  1 The vertex is at x 

b.

x  2; x  1

Solution set: 2, 1 . c.

interval notation,  , 0   1,   . f ( x)  1 x2  2x  1  1 x2  2 x  0 We graph the function p( x)  x 2  2 x .

f ( x)  g ( x) x  x  2  x2  x  2 2 x  0 x0 Solution set: 0 . 2



 The graph is above the x-axis when x  0 or x  1 . Since the inequality is strict, the solution set is  x x  0 or x  1  or, using

g ( x)  0 x  x2  0  x  2  x  1  0 2

1 1 1 1 Since p    , the vertex is  ,  . 2 2 2 2 

x-intercepts: x 2  2 x  0 x( x  2)  0 x  0; x  2

f ( x)  0 x x2  0  x  2  x  1  0 x  2, x  1

Solution set: 1, 2 .

b (2) 2 1    . 2a 2(2) 4 2

y-intercept: p(0)  0

g  x   x2  x  2

2

y-intercept: p(0)  0

g.

b (2) 2   1 . 2a 2(1) 2

d.

f ( x)  0 x x2  0 We graph the function f ( x)  x 2  x  2 . 2

y-intercept: f (0)  2 x2  x  2  0 ( x  2)( x  1)  0 x  2; x  1 b (1) 1   . Since The vertex is at x  2a 2(1) 2

x-intercepts:

9 1 9 1 f     , the vertex is  ,   . 2 4 2 4  

223 Copyright © 2020 Pearson Education, Inc.


Chapter 3: Linear and Quadratic Functions



x-intercepts: x 2  x  3  0 x



  1 

 1  4 1 3 2 1 2

1  1  12 1  13  2 2 x  1.30 or x  2.30 b (1) 1   . Since The vertex is at x  2a 2(1) 2 

 The graph is above the x-axis when x  1 or x  2 . Since the inequality is strict, the solution set is  x x  1 or x  2 or, using

13  1 13  1 p     , the vertex is  ,   . 4 2 4  2 

interval notation,  , 1   2,   . e.

g ( x)  0 x2  x  2  0 We graph the function g ( x)  x 2  x  2 .



y-intercept: g (0)  2 x2  x  2  0 ( x  2)( x  1)  0 x  2; x  1 b (1) 1    . Since The vertex is at x  2a 2(1) 2

x-intercepts:

 The graph of p is above the x-axis when 1  13 1  13 or x  . Since the x 2 2 inequality is not strict, the solution set is  1  13 1  13  or x  x x   or, using 2 2   interval notation,   1  13  1  13 ,   .  ,  2   2  

7  1 7  1 f      , the vertex is   ,   . 4  2 4  2 



 The graph is below the x-axis when 2  x  1 . Since the inequality is not strict, the solution set is  x  2  x  1 or, using

30.

f ( x)   x 2  x  1; g ( x)   x 2  x  6 a. f ( x)  0 2 x  x 1  0 x2  x  1  0

interval notation,  2, 1 . f.

interval notation,  , 0  . g.

x

f ( x)  g ( x) 2 x  x  2  x2  x  2 2 x  0 x0 The solution set is  x x  0 or, using

y-intercept: p(0)  3

1  4 1 1 2 1 2

1  1  4 1  5  2 2  1  5 1  5  Solution set:  , . 2 2   g ( x)  0 2 x  x  6  0 x2  x  6  0  x  3 x  2   0 

b.

f ( x)  1 x  x2 1 x2  x  3  0 We graph the function p( x)  x 2  x  3 . 2

 1 

x  3; x  2 Solution set: 2, 3 .

224 Copyright © 2020 Pearson Education, Inc.


Section 3.5: Inequalities Involving Quadratic Functions

c.

f ( x)  g ( x)  x  x  1   x2  x  6 2 x  5  0 2 x  5 5 x 2  5 Solution set:   .  2

 x2  x  6  0 x2  x  6  0  x  3 x  2   0 x  3; x  2 b (1) 1 1    . The vertex is at x  2a 2(1) 2 2

x-intercepts:

2

d.

 1 25   1  25 , the vertex is  ,  . Since f    2 4 2 4    

f ( x)  0  x2  x  1  0 We graph the function f ( x)   x 2  x  1 . y-intercept: f (0)  1



x-intercepts:  x 2  x  2  0 x2  x  2  0

 The graph is below the x-axis when x  2 or x  3 . Since the inequality is not strict, the solution set is  x x  2 or x  3  or,

(1)  (1)  4(1)(1) 2(1) 2

x

1  1  4 1  5  2 2 x  1.62 or x  0.62 b (1) 1 1    . The vertex is at x  2a 2(1) 2 2 

using interval notation,  ,  2  3,   . f.

 1 5  1 5 Since f     , the vertex is   ,  . 2 4  2 4   



f ( x)  g ( x)  x  x  1   x2  x  6 2 x  5 5 x 2 The solution set is  x x   52  or, using 2

interval notation,  ,  52  . g.

f ( x)  1 x  x 1  1  x2  x  0 We graph the function p( x)   x 2  x . y-intercept: p(0)  0 2

 The graph is above the x-axis when 1  5 1  5 x . Since the inequality 2 2

is strict, the solution set is

x-intercepts:

 1  5 1  5  x x  or, using interval 2 2  

 1  5 1  5  , . 2 2  

notation,  e.

g ( x)  0 2 x  x  6  0 We graph the function g ( x)   x 2  x  6 . y-intercept: g (0)  6

 x2  x  0  x  x  1  0

x  0; x  1 The vertex is at x 

b (1) 1 1    . 2a 2(1) 2 2

 1 1  1 1 Since p     , the vertex is   ,  . 2 4  2 4  

225 Copyright © 2020 Pearson Education, Inc.


Chapter 3: Linear and Quadratic Functions

The vertex of p is at x 



 The graph of p is above the x-axis when 1  x  0 . Since the inequality is not strict, the solution set is  x  1  x  0  or, using interval notation,  1, 0 . 31. The domain of the expression f ( x)  x 2  16

includes all values for which x 2  16  0 . We graph the function p( x)  x 2  16 . The intercepts of p are y-intercept: p(0)  6 x 2  16  0

x-intercepts:

( x  4)( x  4)  0 x  4, x  4

The vertex of p is at x 

b (0)   0 . Since 2a 2(1)

1 1 1 1  Since p    , the vertex is  ,  .  6  12  6 12  



 The graph of p is above the x-axis when 1 0  x  . Since the inequality is not strict, the 3  1 solution set of x  3 x 2  0 is  x 0  x   . 3 

 1 Thus, the domain of f is also  x 0  x   or, 3   1 using interval notation,  0,  .  3 33. a.

p(0)  16 , the vertex is  0, 16  .

  b.

 The graph of p is above the x-axis when x  4 or x  4 . Since the inequality is not strict, the solution set of x 2  16  0 is  x | x  4 or x  4 . Thus, the domain of f is also  x | x  4 or x  4 or, using interval notation,  , 4   4,   . 32. The domain of the expression f  x   x  3 x 2

includes all values for which x  3 x 2  0 . We graph the function p( x)  x  3x 2 . The intercepts of p are y-intercept: p(0)  6 x-intercepts:

b (1) 1 1    . 2a 2(3) 6 6

The ball strikes the ground when s (t )  80t  16t 2  0 . 80t  16t 2  0 16t  5  t   0 t  0, t  5 The ball strikes the ground after 5 seconds. Find the values of t for which 80t  16t 2  96 16t 2  80t  96  0 We graph the function f (t )  16t 2  80t  96 . The intercepts are

y-intercept: f (0)  96 t-intercepts: 16t 2  80t  96  0 16(t 2  5t  6)  0 16(t  2)(t  3)  0 t  2, t  3 The vertex is at t 

b (80)   2.5 . 2a 2(16)

Since f  2.5   4 , the vertex is  2.5, 4  .

x  3x 2  0 x(1  3 x)  0

1 x  0, x  . 3 226 Copyright © 2020 Pearson Education, Inc.


Section 3.5: Inequalities Involving Quadratic Functions

35. a.

 4 p  p  1000   0 p  0, p  1000 Thus, the revenue equals zero when the price is $0 or $1000.



 The graph of f is above the t-axis when 2  t  3 . Since the inequality is strict, the solution set is t | 2  t  3 or, using interval notation,  2, 3 . The ball is more than 96 feet above the ground for times between 2 and 3 seconds. 34. a.

R ( p)   4 p 2  4000 p  0

The ball strikes the ground when s (t )  96t  16t 2  0 . 96t  16t 2  0 16t  6  t   0 t  0, t  6 The ball strikes the ground after 6 seconds.

b. Find the values of t for which 96t  16t 2  128 2 16t  96t  128  0 We graph f (t )  16t 2  96t  128 . The intercepts are y-intercept: f (0)  128

b. Find the values of p for which  4 p 2  4000 p  800, 000  4 p 2  4000 p  800, 000  0

We graph f ( p )   4 p 2  4000 p  800, 000 . The intercepts are y-intercept: f (0)  800, 000 p-intercepts: 4 p 2  4000 p  800000  0 p 2  1000 p  200000  0 p

  1000  

 1000   4 1 200000  2 1 2

1000  200000 2 1000  200 5  2  500  100 5 p  276.39; p  723.61 . 

The vertex is at p 

b (4000)   500 . 2a 2(4)

t-intercepts: 16t 2  96t  128  0 16(t 2  6t  8)  0 16(t  4)(t  2)  0 t  4, t  2 b (96)   3 . Since The vertex is at t  2a 2(16)

Since f  500   200, 000 , the vertex is

f  3  16 , the vertex is  3, 16  . 



  The graph of f is above the t-axis when 2  t  4 . Since the inequality is strict, the solution set is  t 2  t  4  or, using interval

 500, 200000  . 

 The graph of f is above the p-axis when 276.39  p  723.61 . Since the inequality is strict, the solution set is  p 276.39  p  723.61 or, using interval

notation,  276.39, 723.61  . The revenue is more than $800,000 for prices between $276.39 and $723.61.

notation,  2, 4  . The ball is more than 128 feet above the ground for times between 2 and 4 seconds. 227 Copyright © 2020 Pearson Education, Inc.


Chapter 3: Linear and Quadratic Functions

36. a.

R( p)  

1 2 p  1900 p  0 2

1 p  p  3800   0 2 p  0, p  3800 Thus, the revenue equals zero when the price is $0 or $3800. 

b.

2000c  24.3845  24.3845c  200 24.3845c 2  2000c  224.3845  0 We graph f (c )  24.3845c 2  2000c  224.3845 . The intercepts are y-intercept: f (0)  224.3845 c-intercepts: 24.3845c 2  2000c  224.3845  0 c

2000 

 2000   4  24.3845 224.3845 2  24.3845  2

2000  3,978,113.985 48.769 c  0.112 or c  81.907 

1 2 p  1900 p  1200000  0 2 p 2  3800 p  2400000  0  p  800  p  3000   0 p  800; p  3000

The vertex is at p 

2

Find the values of p for which 1  p 2  1900 p  1200000 2 1 2  p  1900 p  1200000  0 2 1 We graph f ( p)   p 2  1900 p  1200000 . 2 The intercepts are y-intercept: f (0)  1, 200, 000 p-intercepts: 

2

 9.81   2000  c(2000)  1  c 2     200  2   897  2000c  24.3845 1  c 2  200

The vertex is at b (2000) c   41.010 . Since 2a 2(24.3845) f  41.010   40, 785.273 , the vertex is

b (1900)   1900 . 2a 2(1/ 2)

 41.010, 40785.273 . 

Since f 1900   605, 000 , the vertex is

1900, 605000  . 

  The graph of f is above the c-axis when 0.112  c  81.907 . Since the inequality is strict, the solution set is c 0.112  c  81.907 or, using interval

  The graph of f is above the p-axis when 800  p  3000 . Since the inequality is strict, the solution set is  p 800  p  3000 or, using interval

notation,  800, 3000  . The revenue is more than $1,200,000 for prices between $800 and $3000.

 g  x  37. y  cx  1  c 2      2  v 

a.

2

notation,  0.112, 81.907  . b.

Since the round is to be on the ground y  0 . Note, 75 km = 75,000 m. So, x  75, 000, v  897, and g  9.81 .

2

 9.81   75, 000  c(75, 000)  1  c 2    0  2   897  75, 000c  34, 290.724 1  c 2  0

2

Since the round must clear a hill 200 meters high, this mean y  200 . Now x  2000, v  897, and g  9.81 .

75, 000c  34, 290.724  34, 290.724c  0 34, 290.724c 2  75, 000c  34, 290.724  0 We graph f (c)  34,290.724c 2  75,000c  34,290.724 .

228 Copyright © 2020 Pearson Education, Inc.


Section 3.5: Inequalities Involving Quadratic Functions

The intercepts are y-intercept: f (0)  34, 290.724 c-intercepts: 34, 290.724c 2  75, 000c  34, 290.724  0 (75, 000) 

c=

 75, 000   4  34, 290.724  34, 290.724  2  34, 290.724  2

75,000  921,584,990.2 68,581.448 c  0.651 or c  1.536 

It is possible to hit the target 75 kilometers away so long as c  0.651 or c  1.536 . 38. Note that v = 25 mph =

110 ft/sec. We solve 3

1 2 w 2 kx  v for x when k = 9450, g = 32.2, 2 2g

and v =

110 . 3

1 4000  110  (9450) x 2    2 2(32.2)  3 

40. ( x  2) 2  0

We graph the function f ( x)  ( x  2) 2 . y-intercept: f (0)  4 x-intercepts: ( x  2) 2  0 x2  0 x2 The vertex is the vertex is  2, 0  .  

 The graph is above the x-axis when x  2 or x  2 . Since the inequality is strict, the solution set is  x x  2 or x  2 . Therefore, the given

inequality has exactly one real number that is not a solution, namely x  2 .

2

4725 x 2  83,505.86611 x 2  17.67319918 x  4.204 since x > 0. To the nearest tenth, the spring must be able to compress at least 4.3 feet.

39. ( x  4)  0 2

41. Solving x 2  x  1  0 We graph the function f ( x)  x 2  x  1 . y-intercept: f (0)  1

x-intercepts: b 2  4ac  12  4 11  3 , so f has no x-intercepts. The vertex is at x 

We graph the function f ( x)  ( x  4) 2 . y-intercept: f (0)  16 x-intercepts: ( x  4) 2  0 x4  0 x4 The vertex is the vertex is  4, 0  . 

b (1) 1    . Since 2a 2(1) 2

 1 3  1 3 f     , the vertex is   ,  . 2 4    2 4 



 The graph is always above the x-axis. Thus, the solution is the set of all real numbers or, using interval notation, (, ) .



 The graph is never below the x-axis. Since the inequality is not strict, the only solution comes from the x-intercept. Therefore, the given inequality has exactly one real solution, namely x  4.

42. Solving x 2  x  1  0 We graph the function f ( x)  x 2  x  1 . y-intercept: f (0)  1

x-intercepts: b 2  4ac  (1) 2  4(1)(1)  3 , so f has no x-intercepts.

229 Copyright © 2020 Pearson Education, Inc.


Chapter 3: Linear and Quadratic Functions

The vertex is at x 

b (1) 1   . Since 2a 2(1) 2

b.

 1 3  1 3 f     , the vertex is   ,  .  2 4  2 4

The graph is never below the x-axis. Thus, the inequality has no solution. That is, the solution set is { } or  . 43. The x-intercepts are included when the original inequality is not strict (when it contains an equal sign with the inequality). 44. Since the radical cannot be negative we determine what makes the radicand a nonnegative number. 10  2 x  0 2 x  10 x5 So the domain is:  x | x  5 . 45.

 (  x) (  x) 2  9 x  2   f ( x) x 9 Since f   x    f ( x) then the function is odd. f   x 

46. a.

2 x6 3 2 6 x 3 x9 2 y  (0)  6 3  6 The intercepts are:  9, 0 ,  0, 6 0

3x  y  4 47. y  3 x  y m  3 x  3y  6 3y  x  6 1 y   x6 3 1 m 3

Neither 48. a  1, b  6, c  8 x

6  62  4(1)(8) 2(1)

6  36  32 2 6  68 6  2 17   2 2  3  17 

The solution set is 3  17, 3  17 4(0) 2  25 02  1 25   25 1

49. y 

230 Copyright © 2020 Pearson Education, Inc.


Chapter 3 Review Exercises

Chapter 3 Review Exercises

4 x 2  25 x2  1 0  4 x 2  25 25 0  x2  4 25 2 x  4 5 x 2 0

1.

f  x   2x  5

a.

Slope = 2; y-intercept = 5

b.

average rate of change = 2

c.

Plot the point (0, 5) . Use the slope to find an additional point by moving 1 unit to the right and 2 units up.

d.

increasing

 5  5  The x-intercepts are   , 0  ,  , 0  and the y 2  2  intercept is  0, 25  . 50.

( g  f )( x)  (3x  4)  ( x 2  2 x  7)  3x  4  x 2  2 x  7   x2  x  3

51. ( f  g )( x)  ( x 2  2 x  7)(3x  4)  3 x3  4 x 2  6 x 2  8 x  21x  28  3 x3  2 x 2  29 x  28

52.

2. h( x)  f ( x  h)  f ( x) 3( x  h) 2  5( x  h)  (3x 2  5 x)  h h 2 2 2 3x  6 xh  3h  5 x  5h  3 x  5 x  h 2 6 xh  3h  5h h(6 x  3h  5)   h h  6 x  3h  5

4 x6 5 4 ; y-intercept = 6 5

a.

Slope =

b.

average rate of change =

c.

Plot the point (0, 6) . Use the slope to find an additional point by moving 5 units to the right and 4 units up.

d.

increasing

4 5

53. 5 x 4 (2 x  7) 4  8 x5 (2 x  7)3 (2 x  7)8  

x 4 (2 x  7)3 5(2 x  7)  8 x  (2 x  7)

8

x (2 x  7)  5(2 x  7)  8 x  4

3

(2 x  7)

x (2 x  7) 10 x  35  8 x  4

8

3

(2 x  7)

8

x 4  2 x  35 (2 x  7)5

3. G  x   4 a.

Slope = 0; y-intercept = 4

b.

average rate of change = 0

231 Copyright © 2020 Pearson Education, Inc.


Chapter 3: Linear and Quadratic Functions

7.

constant

d. 4.

x

y  f  x

–1

–2

0

3

1

8

2

13

3

18

Avg. rate of change = 3   2  0   1

x

y  f  x

–1

–3

0

4

5 5 1

83 5  5 1 0 1 13  8 5  5 2 1 1 18  13 5  5 3 2 1

1

7

2 3

6 1

Avg. rate of change = 4   3 0   1

f ( x)   ( x  4) 2

Using the graph of y  x 2 , shift the graph 4 units right, then reflect about the x-axis.

y x

This is a linear function with slope = 5, since the average rate of change is constant at 5. 5.

shift down 4 units.

Plot the point (0, 4) and draw a horizontal line through it.

c.

y x

8.

f ( x)  3( x  2) 2  1

Using the graph of y  x 2 , stretch vertically by a factor of 3, then shift 2 units left, then reflect about the x-axis, then shift 1 unit up.

7 7 1

74 3  3 1 0 1

This is not a linear function, since the average rate of change is not constant. 6.

9. a.

f ( x)  ( x  1) 2  4

Using the graph of y  x 2 , shift left 1 unit, then

f ( x)  ( x  2) 2  2  x2  4 x  4  2  x2  4 x  6 a  1, b  4, c  6. Since a  1  0, the graph is concave up. The x-coordinate of b 4 4 the vertex is x      2. 2a 2(1) 2

232 Copyright © 2020 Pearson Education, Inc.


Chapter 3 Review Exercises

The y-coordinate of the vertex is  b  f     f (2)  (2) 2  4  2   6  2 .  2a  Thus, the vertex is (2, 2). The axis of symmetry is the line x  2 . The discriminant is: b 2  4ac  (4) 2  4 1 (6)  8  0 , so the

1 2 x  16  0 4 x 2  64  0 x 2  64 x  8 or x   8 The x-intercepts are –8 and 8. The y-intercept is f (0)  16 .

graph has no x-intercepts. The y-intercept is f (0)  6 .

b. c.

The domain is (, ) . The range is [2, ) .

The domain is (, ) . The range is [16, ) .

c.

Decreasing on  , 0 . Increasing on  0,   .

Decreasing on  , 2 . Increasing on  2,   .

10. a.

b.

f ( x) 

11. a.

1 2 x  16 4

1 1 , b  0, c  16. Since a   0, the 4 4 graph is concave up. The x-coordinate of b 0 0     0. the vertex is x   1 2a 1 2  2 4 The y-coordinate of the vertex is 1  b  f     f (0)  (0) 2  16  16 . 4  2a  Thus, the vertex is (0, –16). The axis of symmetry is the line x  0 . The discriminant is: 1 b 2  4ac  (0) 2  4   (16)  16  0 , so 4 the graph has two x-intercepts. The x-intercepts are found by solving: a

f ( x)   4 x 2  4 x a   4, b  4, c  0. Since a   4  0, the graph is concave down. The x-coordinate of the vertex is b 4 4 1 x    . 2a 2( 4) 8 2 The y-coordinate of the vertex is 2

 b  1 1 1 f     f     4   4   2a  2 2 2  1  2  1 1  Thus, the vertex is  , 1 . 2  1 The axis of symmetry is the line x  . 2 The discriminant is: b 2  4ac  42  4(  4)(0)  16  0 , so the graph has two x-intercepts. The x-intercepts are found by solving:  4x2  4 x  0  4 x( x  1)  0 x  0 or x  1 The x-intercepts are 0 and 1. The y-intercept is f (0)   4(0) 2  4(0)  0 .

233 Copyright © 2020 Pearson Education, Inc.


Chapter 3: Linear and Quadratic Functions

b.

The domain is (, ) .

b.

The range is  , 1 . c.

12. a.

1  The range is  ,   . 2 

1  Increasing on  ,  2  1  Decreasing on  ,   . 2  f ( x) 

The domain is (, ) .

c.

9 2 x  3x  1 2

9 9 a  , b  3, c  1. Since a   0, the 2 2 graph is concave up. The x-coordinate of the vertex is 3 3 b 1 x    . 2a 9 3 9 2  2 The y-coordinate of the vertex is 2

 b   1 9 1  1 f     f         3   1  2a   3 2 3  3 1 1  1 1  2 2 1 1  Thus, the vertex is   ,  .  3 2 1 The axis of symmetry is the line x   . 3 The discriminant is: 9 b 2  4ac  32  4   (1)  9  18   9  0 , 2 so the graph has no x-intercepts. The y9 2 intercept is f  0    0   3  0   1  1 . 2

13. a.

1  Decreasing on  ,   . 3   1  Increasing on   ,   .  3  f ( x)  3x 2  4 x  1 a  3, b  4, c  1. Since a  3  0, the graph is concave up. The x-coordinate of the b 4 4 2 vertex is x      . 2a 2(3) 6 3 The y-coordinate of the vertex is 2

 b   2  2  2 f     f     3    4    1  2a   3  3  3 4 8 7   1   3 3 3 2 7  Thus, the vertex is   ,   . 3  3 2 The axis of symmetry is the line x   . 3 The discriminant is: b 2  4ac  (4) 2  4(3)(1)  28  0 , so the graph has two x-intercepts. The x-intercepts are found by solving: 3x 2  4 x  1  0 . x 

b  b 2  4ac  4  28  2a 2(3) 4  2 7 2  7  6 3

The x-intercepts are

234 Copyright © 2020 Pearson Education, Inc.

2  7  1.55 and 3


Chapter 3 Review Exercises

2  7  0.22 . 3

16.

a  3, b  12, c  4. Since a  3  0, the graph is concave down, so the vertex is a maximum point. The maximum occurs at 12 12 b x   2. 2a 2(3) 6 The maximum value is 2  b  f     f  2   3  2   12  2   4 2 a    12  24  4  16

2

The y-intercept is f (0)  3(0)  4(0)  1  1 .

b.

17. x 2  6 x  16  0 We graph the function f ( x)  x 2  6 x  16 . The intercepts are y-intercept: f (0)  16

The domain is (, ) .

x-intercepts: x 2  6 x  16  0 ( x  8)( x  2)  0 x   8, x  2 b (6)   3 . Since The vertex is at x  2a 2(1)

 7  The range is   ,   .  3 

c.

14.

15.

f ( x)  3x 2  12 x  4

2  Decreasing on  ,   3   2  Increasing on   ,   .  3 

f (3)  25 , the vertex is  3, 25  . 

f ( x)  3 x 2  6 x  4



a  3, b   6, c  4. Since a  3  0, the graph is concave up, so the vertex is a minimum point. The minimum occurs at b 6 6 x   1. 2a 2(3) 6 The minimum value is 2  b  f     f 1  3 1  6 1  4  2a   36 4 1

 The graph is below the x-axis when 8  x  2 . Since the inequality is strict, the solution set is  x | 8  x  2 or, using interval notation,

f ( x)   x 2  8 x  4

a  1, b  8, c   4. Since a  1  0, the graph is concave down, so the vertex is a maximum point. The maximum occurs at b 8 8 x    4. 2a 2(1) 2 The maximum value is 2  b  f     f  4    4  8  4  4  2a   16  32  4  12

 8, 2  . 18.

3x 2  14 x  5 3x 2  14 x  5  0 We graph the function f ( x)  3 x 2  14 x  5 . The intercepts are y-intercept: f (0)  5

x-intercepts: 3x 2  14 x  5  0 (3x  1)( x  5)  0 1 x , x5 3 b (14) 14 7    . The vertex is at x  2a 2(3) 6 3

235 Copyright © 2020 Pearson Education, Inc.


Chapter 3: Linear and Quadratic Functions

64  7 64  7 Since f     , the vertex is  ,   . 3  3 3 3 

21. a. b.

c.

0.01x  25, 000  100, 000 0.01x  75, 000 x  7,500, 000 Bill’s sales would have to be $7,500,000 in order to earn $100,000.



The graph is above the x-axis when x  

19. Use the form f ( x)  a ( x  h) 2  k . The vertex is (2,  4) , so h  2 and k  4 .

S (1, 000, 000)  0.01(1, 000, 000)  25, 000  10, 000  25, 000  35, 000 In 2005, Bill’s salary was $35,000.



1 or 3 x  5 . Since the inequality is not strict, the  1  solution set is  x x   or x  5 or, using 3   1  interval notation,  ,    5,   . 3 

S ( x)  0.01x  25, 000

d.

22. a.

0.01x  25, 000  150, 000 0.01x  125, 000 x  12,500, 000 Bill’s sales would have to be more than $12,500,000 in order for his salary to exceed $150,000.

If x  1500  10 p, then p 

1500  x . 10

R ( p )  px  p (1500  10 p )  10 p 2  1500 p

f ( x)  a ( x  2) 2  4 .

Since the graph passes through (0,  16) , f (0)  16 . 16  a (0  2) 2  4

b. Domain:  p 0  p  150 c.

16  a ( 2) 2  4 12  4a 3  a f ( x)  3( x  2) 2  4

p

b 1500 1500    $75 2a 2  10  20

d. The maximum revenue is R(75)  10(75) 2  1500(75)  56250  112500  $56, 250

 3( x 2  4 x  4)  4  3x 2  12 x  12  4  3x 2  12 x  16

20. Use the form f ( x)  a ( x  h) 2  k . The vertex is (1, 2) , so h  1 and k  2 .

e.

x  1500  10(75)  1500  750  750

f.

Graph R  10 p 2  1500 p and R  56000 .

f ( x)  a ( x  1) 2  2 .

Since the graph passes through (1, 6) , f (1)  6 . 6  a(1  1) 2  2 6  a(2) 2  2 6  4a  2 4  4a 1 a f ( x)  1( x  1) 2  2  ( x 2  2 x  1)  2  x2  2 x  3

Find where the graphs intersect by solving 56000  10 p 2  1500 p . 10 p 2  1500 p  56000  0 p 2  150 p  5600  0 ( p  70)( p  80)  0 p  70, p  80 The company should charge between $70 and $80.

236 Copyright © 2020 Pearson Education, Inc.


Chapter 3 Review Exercises 23. Since there are 200 feet of border, we know that 2 x  2 y  200 . The area is to be maximized, so A  x  y . Solving the perimeter formula for y : 2 x  2 y  200 2 y  200  2 x y  100  x The area function is: A( x )  x(100  x)   x 2  100 x The maximum value occurs at the vertex: b (100) 100    50 x 2 2a 2(1) The pond should be 50 feet by 50 feet for maximum area.

25. Consider the diagram

d

x Let d  diameter of the semicircles  width of the rectangle Let x  length of the rectangle 100  outside dimension length 100  2 x  2  circumference of a semicircle  100  2 x  circumference of a circle 100  2 x   d

24. Consider the diagram

100   d  2 x 100   d x 2 1 50   d  x 2

x

y Total amount of fence = 3x  2 y  10, 000 y

10, 000  3 x 3  5000  x 2 2

3   Total area enclosed =  x  y    x   5000  x  2   3 3 A  x   5000 x  x 2   x 2  5000 x is a 2 2 3 quadratic function with a    0 . 2 So the vertex corresponds to the maximum value for this function. The vertex occurs when b 5000 5000 x   . 2a 2  3 / 2  3

The maximum area is: 2

3  5000   5000   5000  A     5000   2 3   3   3  3  25, 000, 000  25, 000, 000    2 9 3  12,500, 000 25, 000, 000   3 3 12,500, 000  3  4,166, 666.67 square meters

We need an expression for the area of a rectangle in terms of a single variable. Arectangle  x  d 1     50   d   d 2   1 2  50d   d 2 1 This is a quadratic function with a     0 . 2 Therefore, the x-coordinate of the vertex represents the value for d that maximizes the area of the rectangle and the y-coordinate of the vertex is the maximum area of the rectangle. The vertex occurs at 50 50 50 b    d    2a 1 2      2  This gives us 1 1  50  x  50   d  50      50  25  25 2 2   Therefore, the side of the rectangle with the 50 feet and the other side semicircle should be  should be 25 feet. The maximum area is 50 1250  25       397.89 ft 2 .  

237 Copyright © 2020 Pearson Education, Inc.


Chapter 3: Linear and Quadratic Functions

26. C ( x)  4.9 x 2  617.4 x  19, 600 ; a  4.9, b  617.4, c  19, 600. Since a  4.9  0, the graph is concave up, so the vertex is a minimum point. a. The minimum marginal cost occurs at  617.40 617.40 b x    63 . 2a 2(4.9) 9.8 Thus, 63 golf clubs should be manufactured in order to minimize the marginal cost. b. The minimum marginal cost is C  63   4.9  63   617.40  63   19600 2

0   a(10) 2  10 1  0.10 10 10 The equation of the parabola is: 1 y   x 2  10 10 At x  8 : 1 y   (8) 2  10   6.4  10  3.6 feet 10 a

10

2

29. a.

 $151.90

27. The area function is: A( x )  x(10  x)   x 2  10 x The maximum value occurs at the vertex: b 10 10 x   5 2a 2(1) 2 The maximum area is: A(5)  (5)2  10(5)   25  50  25 square units 

x

b. Yes, the two variables appear to have a linear relationship. c.

Using the LINear REGression program, the line of best fit is: y  1.3902 x  1.1140

d.

y  1.39017  26.5   1.11395  37.95 mm

xx

x



28. Locate the origin at the point directly under the highest point of the arch. Then the equation is in the form: y  ax 2  k , where a  0 . Since the maximum height is 10 feet, when x  0, y  k  10 . Since the point (10, 0) is on the parabola, we can find the constant:

238 Copyright © 2020 Pearson Education, Inc.


Chapter 3 Test 30. a.

c.

The slope is negative, so the graph is decreasing.

d.

Plot the point (0, 3) . Use the slope to find an additional point by moving 1 unit to the right and 4 units down.

The data appear to be quadratic with a < 0. b. The maximum revenue occurs at b   411.88  A  2a 2(7.76) 411.88   $26.5 thousand 15.52 c.

The maximum revenue is  b  R   R  26.53866   2a 

2.

f ( x)  3x 2  2 x  8

y-intercept: f (0)  8 x-intercepts:

3x 2  2 x  8  0 (3x  4)( x  2)  0

 7.76  26.5    411.88  26.5   942.72 2

 $6408 thousand

d. Using the QUADratic REGression program, the quadratic function of best fit is: y  7.76 x 2  411.88 x  942.72 .

x

4 ; x2 3

The intercepts are (0, 8),   , 0  , and (2, 0) . 4  3

3. G ( x)  2 x 2  4 x  1

y-intercept: G (0)  1 x-intercepts: 2 x 2  4 x  1  0 a  2, b  4, c  1

e.

x



2 b  b 2  4ac 4  4  4  2 1  2a 2  2 

4  24 4  2 6 2  6   4 4 2 2 6  The intercepts are (0, 1) ,  , 0  , and  2  

 

2 6  , 0 .   2 

Chapter 3 Test 1.

f  x   4 x  3

a. Slope = 4 ; y-intercept = 3. b. average rate of change = 4 239 Copyright © 2020 Pearson Education, Inc.


Chapter 3: Linear and Quadratic Functions f ( x)  g ( x)

4. a.

b. The x-coordinate of the vertex is b  12 12 x   2. 2a 2  3 6

x 2  3x  5 x  3 x2  2x  3  0 ( x  1)( x  3)  0 x  1  0 or x  3  0 x  1 or x3

The y-coordinate of the vertex is 2  b  f     f  2   3  2   12  2   4  2a   12  24  4  8 Thus, the vertex is  2, 8  .

The solution set is 1, 3 . b.

c.

The axis of symmetry is the line x  2 .

d. The discriminant is: b 2  4ac   12   4  3 4   96  0 , so 2

the graph has two x-intercepts. The xintercepts are found by solving: 3x 2  12 x  4  0 . x 

b  b 2  4ac (12)  96  2a 2(3) 12  4 6 6  2 6  6 3

The x-intercepts are c.

 x | 1 < x  3 ;  1,3

62 6  0.37 and 3

62 6  3.63 . The y-intercept is 3

f (0)  3(0) 2  12(0)  4  4 .

e. 5.

f ( x)   x  3  2 2

Using the graph of y  x 2 , shift right 3 units, then shift down 2 units. y





  

6. a.

 

7.

x



f ( x)  3 x 2  12 x  4 a  3, b  12, c  4. Since a  3  0, the graph is concave up.

f ( x)  2 x 2  12 x  3 a  2, b  12, c  3. Since a  2  0, the graph is concave down, so the vertex is a maximum point. The maximum occurs at b 12 12 x   3. 2a 2(2) 4

240 Copyright © 2020 Pearson Education, Inc.


Chapter 3 Cumulative Review

c.

The maximum value is f  3  2  3  12  3  3  18  36  3  21 . 2

8. x 2  10 x  24  0 We graph the function f ( x)  x 2  10 x  24 . The intercepts are y-intercept: f (0)  24

x-intercepts: x 2  10 x  24  0 ( x  4)( x  6)  0 x  4, x  6 b (10) 10    5. The vertex is at x  2a 2(1) 2

p

b  10000  10000    $500 2a 2  10  20

d. The maximum revenue is R(500)  10(500) 2  10000(500)  2500000  15000000  $2,500, 000 e.

x  10000  10(500)  10000  5000  5000

f.

Graph R  10 p 2  10000 p and R  1600000 . Find where the graphs intersect by solving 56000  10 p 2  1500 p .

Since f (5)  1 , the vertex is (5, 1). 

10 p 2  10000 p  1600000  0 p 2  1000 p  160000  0 ( p  200)( p  800)  0 p  200, p  800 The company should charge between $200 and $800.



 The graph is above the x-axis when x  4 or x  6 . Since the inequality is not strict, the solution set is  x x  4 or x  6 or, using

interval notation,  , 4   6,   . 9. a. b.

c.

Chapter 3 Cumulative Review

C (m)  0.15m  129.50 C (860)  0.15(860)  129.50  129  129.50  258.50 If 860 miles are driven, the rental cost is $258.50. C (m)  213.80 0.15m  129.50  213.80 0.15m  84.30 m  562 The rental cost is $213.80 if 562 miles were driven.

10. a.

If x  10000  10 p, then

1. P   1,3 ; Q   4, 2 

Distance between P and Q: d  P, Q  

2

2

 (5) 2  (5) 2  25  25  50  5 2 Midpoint between P and Q:  1  4 3  2   3 1  ,     ,   1.5, 0.5  2  2 2  2

2. y  x3  3x  1 a.

10000  x . p 10

 4   1    2  3

 2, 1 : 1   2   3  2   1 3

1  8  6  1

R ( p )  px  p (10000  10 p)  10 p 2  10000 p

1  1 Yes,  2, 1 is on the graph.

b. Domain:  p 0  p  1000

241 Copyright © 2020 Pearson Education, Inc.


Chapter 3: Linear and Quadratic Functions

b.

 2,3 : 3   2   3  2   1 3

Slope of perpendicular = 

3  8  6 1

y  y1  m( x  x1 )

33 Yes,  2,3 is on the graph.

c.

1 2

1  x  3 2 1 3 y 5   x 2 2 1 13 y   x 2 2 y 5  

 3,1 : 1   3  3  3  1 3

1  27  9  1 1  35 No,  3,1 is not on the graph.

3. 5 x  3  0 5 x  3 3 x 5

 3  3  The solution set is  x x    or   ,   . 5  5   6. x 2  y 2  4 x  8 y  5  0 x2  4x  y2  8 y  5

4. (–1,4) and (2,–2) are points on the line. 2  4 6 Slope    2 2   1 3

( x 2  4 x  4)  ( y 2  8 y  16)  5  4  16 ( x  2) 2  ( y  4) 2  25 ( x  2) 2  ( y  4) 2  52 Center: (2, –4) Radius = 5

y  y1  m  x  x1 

y  4  2  x   1  y  4  2  x  1 y  4  2 x  2 y  2 x  2

7. Yes, this is a function since each x-value is paired with exactly one y-value. 8. 5. Perpendicular to y  2 x  1 ; Containing (3, 5)

f ( x)  x 2  4 x  1 a.

f (2)  2 2  4  2   1  4  8  1  3

b.

f ( x)  f  2   x 2  4 x  1   3  x2  4x  2

c.

f ( x)    x   4   x   1  x 2  4 x  1

d.

 f ( x)    x 2  4 x  1   x 2  4 x  1

2

242 Copyright © 2020 Pearson Education, Inc.


Chapter 3 Cumulative Review

e.

f ( x  2)   x  2   4  x  2   1 2

12.

f ( x) 

 x2  4 x  4  4 x  8  1

f ( x) 

f ( x  h)  f  x 

Therefore, f is neither even nor odd.

h

 x  h   4  x  h   1   x 2  4 x  1 2

x x2   f  x  or  f  x  2   x   1 2 x  1 2

 x2  3

f.

x2 2x 1

13.

f  x   x 3  5 x  1 on the interval  4, 4 

Use MAXIMUM and MINIMUM on the graph of y1  x3  5 x  1 .

h x 2  2 xh  h 2  4 x  4h  1  x 2  4 x  1  h 2 xh  h 2  4h  h h  2x  h  4   2x  h  4 h

 

 

3z  1 6z  7 The denominator cannot be zero: 6z  7  0 6z  7 7 z 6  7 Domain:  z z   6 

9. h( z ) 



 Local maximum is 5.30 and occurs at x  1.29 ; Local minimum is –3.30 and occurs at x  1.29 ; f is increasing on  4, 1.29 or 1.29, 4 ;

f is decreasing on  1.29,1.29 .

10. Yes, the graph represents a function since it passes the Vertical Line Test. 11.

f ( x) 

a.

b. c.

14.

x x4

1 1 1  1   , so 1,  is not on 1 4 5 4  4 the graph of f. f (1) 

2 2   1, so  2,  1 is a 2  4 2 point on the graph of f. f (2) 

Solve for x: x 2 x4 2x  8  x x  8 So, (8, 2) is a point on the graph of f.

f ( x)  3x  5; g ( x)  2 x  1 a. f ( x)  g ( x) 3x  5  2 x  1 3x  5  2 x  1 x  4

b.

f  x  g  x 3x  5  2 x  1 3x  5  2 x  1 x  4 The solution set is  x x  4 or  4,   .

15. a.

Domain:  x | 4  x  4 or  4, 4 Range:  y | 1  y  3 or  1, 3

b.

Intercepts:  1, 0  ,  0, 1 , 1, 0  x-intercepts: 1, 1 y-intercept: 1

243 Copyright © 2020 Pearson Education, Inc.


Chapter 3: Linear and Quadratic Functions c.

point is multiplied by 2.

The graph is symmetric with respect to the y-axis.

d. When x  2 , the function takes on a value of 1. Therefore, f  2   1 . e.

The function takes on the value 3 at x  4 and x  4 .

f.

f  x   0 means that the graph lies below

the x-axis. This happens for x values between 1 and 1. Thus, the solution set is  x | 1  x  1 or  1, 1 . g.

Since the graph is symmetric about the yaxis, the function is even.

j.

The graph of y  f  x   2 is the graph of y  f  x  but shifted up 2 units.

k. The function is increasing on the interval 0, 4 .

Chapter 3 Projects Project I – Internet-based Project

Answers will vary. h.

The graph of y  f   x  is the graph of

Project II

y  f  x  but reflected about the y-axis.

a.

1000 m/sec



 kg

b. The data would be best fit by a quadratic function.

i.

The graph of y  2 f  x  is the graph of y  f  x  but stretched vertically by a

factor of 2. That is, the coordinate of each

y  0.085 x 2  14.46 x  1069.52

244 Copyright © 2020 Pearson Education, Inc.


Chapter 3 Projects 1000

These results seem reasonable since the function fits the data well.

m/sec



 kg

c.

s0 = 0m

Type

Weight kg

Velocity m/sec

MG 17

10.2

905

2 v0 t  s0 2 s (t )  4.9t 2  639.93t Best. (It goes the highest)

MG 131

19.7

710

s (t )  4.9t 2  502.05t

MG 151

41.5

850

s (t )  4.9t 2  601.04t

MG 151/20

42.3

695

s (t )  4.9t 2  491.44t

MG/FF

35.7

575

s (t )  4.9t 2  406.59t

MK 103

145

860

s (t )  4.9t 2  608.11t

MK 108

58

520

s (t )  4.9t 2  367.70t

WGr 21

111

315

s (t )  4.9t 2  222.74t

Type

Weight kg

Velocity m/sec

MG 17

10.2

905

2 v0 t  s0 2 s (t )  4.9t 2  639.93t  200 Best. (It goes the highest)

MG 131

19.7

710

s (t )  4.9t 2  502.05t  200

MG 151

41.5

850

s (t )  4.9t 2  601.04t  200

MG 151/20

42.3

695

s (t )  4.9t 2  491.44t  200

MG/FF

35.7

575

s (t )  4.9t 2  406.59t  200

MK 103

145

860

s (t )  4.9t 2  608.11t  200

MK 108

58

520

s (t )  4.9t 2  367.70t  200

WGr 21

111

315

s (t )  4.9t 2  222.74t  200

Type

Weight kg

Velocity m/sec

MG 17

10.2

905

2 v0 t  s0 2 s (t )  4.9t 2  639.93t  30 Best. (It goes the highest)

MG 131

19.7

710

s (t )  4.9t 2  502.05t  30

MG 151

41.5

850

s (t )  4.9t 2  601.04t  30

MG 151/20

42.3

695

s (t )  4.9t 2  491.44t  30

MG/FF

35.7

575

s (t )  4.9t 2  406.59t  30

Equation in the form: s (t )  4.9t 2 

s0 = 200m

Equation in the form: s (t )  4.9t 2 

s0 = 30m

Equation in the form: s (t )  4.9t 2 

245 Copyright © 2020 Pearson Education, Inc.


Chapter 3: Linear and Quadratic Functions

MK 103

145

860

s (t )  4.9t 2  608.11t  30

MK 108

58

520

s (t )  4.9t 2  367.70t  30

WGr 21

111

315

s (t )  4.9t 2  222.74t  30

Notice that the gun is what makes the difference, not how high it is mounted necessarily. The only way to change the true maximum height that the projectile can go is to change the angle at which it fires. Project III a.

e. x

1 2

3

4

5

f.

y y2  y1 3  (1)    2 1 x x2  x1

1

3

5 15 33 59

2

3

4

14 6 2 10 18 26

x

2 1 0 1

y

23

2 y x2

y y2  y1 5  (3)    2 1 x x2  x1

9

2

3

4

3 5 15 33 59 8 8

8

8

8

The second differences are all the same.

y are the same. x

g. The paragraph should mention at least two observations: 1. The first differences for a linear function are all the same. 2. The second differences for a quadratic function are the same.

 Median Income ($)

0

9

As x increases,

y y2  y1 1  1    2 1 x x2  x1

c.

1

23

y increases. This makes sense x because the parabola is increasing (going up) steeply as x increases.

y y2  y1 1  3    2 1 x x2  x1

All of the values of

2

y y x

y  2 x  5 3 1 1 3 5

b.

x

 Age Class Midpoint

I 30633  9548 d.   2108.50 x 10 I 37088  30633   645.50 x 10 I 41072  37088   398.40 x 10 I 34414  41072   665.80 x 10 I 19167  34414   1524.70 x 10 I values are not all equal. The data are These x not linearly related.

Project IV a. – i.

Answers will vary , depending on where the CBL is located above the bouncing ball.

j.

The ratio of the heights between bounces will be the same.

246 Copyright © 2020 Pearson Education, Inc.


Chapter 2 Functions and Their Graphs 16. explicitly

Section 2.1 1.

17. a.

 1,3

2. 3  2   5  2   2

1 1  3  4   5  2   2  2   12  10  

43 or 21 12 or 21.5 2

4. 3  2 x  5 2 x  2 x  1 Solution set:  x | x  1 or  , 1

5.

c. {(0, 1.411), (22, 1.305), (40, 1.229), (70, 1.121), (100, 1.031)} 18. a.

Domain: {1.80, 1.78, 1.77} Range: {87.1, 86.9, 92.0, 84.1, 86.4}

b.

c. {(1.80, 87.1), (1.78, 86.9), (1.77, 83.0), (1.77, 84.1), (1.80, 86.4)}

52

19. Domain: {Elvis, Colleen, Kaleigh, Marissa} Range: {Jan. 8, Mar. 15, Sept. 17} Function

6. radicals 7. independent; dependent

20. Domain: {Bob, John, Chuck} Range: {Beth, Diane, Linda, Marcia} Not a function

8. a 9. c 10. False; g  0 11. False; every function is a relation, but not every relation is a function. For example, the relation x 2  y 2  1 is not a function. 12. verbally, numerically, graphically, algebraically 13. False; if the domain is not specified, we assume it is the largest set of real numbers for which the value of f is a real number. 14. False; if x is in the domain of a function f, we say that f is defined at x, or f(x) exists. 15. difference quotient

b.

1 2

3. We must not allow the denominator to be 0. x  4  0  x  4 ; Domain:  x x  4 .



Domain: {0,22,40,70,100} Range: {1.031, 1.121, 1.229, 1.305, 1.411}

21. Domain: {20, 30, 40} Range: {200, 300, 350, 425} Not a function 22. Domain: {Less than 9th grade, 9th-12th grade, High School Graduate, Some College, College Graduate} Range: {$18,120, $23,251, $36,055, $45,810, $67,165} Function 23. Domain: {-3, 2, 4} Range: {6, 9, 10} Not a function 24. Domain: {–2, –1, 3, 4} Range: {3, 5, 7, 12} Function

65 Copyright © 2020 Pearson Education, Inc.


Chapter 2: Functions and Their Graphs 25. Domain: {1, 2, 3, 4} Range: {3} Function

34. Graph y  x . The graph passes the vertical line test. Thus, the equation represents a function.

26. Domain: {0, 1, 2, 3} Range: {–2, 3, 7} Function 27. Domain: {-4, 0, 3} Range: {1, 3, 5, 6} Not a function

35. x 2  8  y 2 Solve for y : y   8  x 2

28. Domain: {-4, -3, -2, -1} Range: {0, 1, 2, 3, 4} Not a function

For x  0, y  2 2 . Thus, 0, 2 2 and

29. Domain: {–1, 0, 2, 4} Range: {-1, 3, 8} Function

since a distinct x-value corresponds to two different y-values.

30. Domain: {–2, –1, 0, 1} Range: {3, 4, 16} Function

36. y   1  2 x For x  0, y  1 . Thus, (0, 1) and (0, –1) are on the graph. This is not a function, since a distinct xvalue corresponds to two different y-values.

 0, 2 2  are on the graph. This is not a function,

31. Graph y  2 x 2  3x  4 . The graph passes the vertical line test. Thus, the equation represents a function.

37. x  y 2 Solve for y : y   x For x  1, y  1 . Thus, (1, 1) and (1, –1) are on the graph. This is not a function, since a distinct x-value corresponds to two different y-values. 38. x  y 2  1

3

32. Graph y  x . The graph passes the vertical line test. Thus, the equation represents a function.

Solve for y : y   1  x For x  0, y  1 . Thus, (0, 1) and (0, –1) are on the graph. This is not a function, since a distinct xvalue corresponds to two different y-values. 39. Graph y  3 x . The graph passes the vertical line test. Thus, the equation represents a function.

1 . The graph passes the vertical line x test. Thus, the equation represents a function.

33. Graph y 

66 Copyright © 2020 Pearson Education, Inc.


Section 2.1: Functions 3x  1 . The graph passes the vertical x2 line test. Thus, the equation represents a function.

f.

40. Graph y 

f  x  1  3  x  1  2  x  1  4 2

 3 x2  2 x  1  2x  2  4  3x2  6 x  3  2 x  2  4  3x2  8 x  1

41.

g.

f  2 x   3  2 x   2  2 x   4  12 x 2  4 x  4

h.

f  x  h  3 x  h  2  x  h  4

2

2

 3 x 2  2 xh  h 2  2 x  2h  4

Solve for y: y  2 x  3 or y  (2 x  3)

 3x 2  6 xh  3h 2  2 x  2h  4

For x  1, y  5 or y  5 . Thus, 1,5  and

1, 5  are on the graph. This is not a function,

44.

since a distinct x-value corresponds to two different y-values. 42. x 2  4 y 2  1 Solve for y: x 2  4 y 2  1 2

2

4 y  x 1 x2  1 y2  4

f  x    2 x2  x  1

a.

f  0    2  0   0  1  1

b.

f 1   2 1  1  1   2

c.

f  1   2  1   1  1   4

d.

f   x    2   x     x   1   2x2  x 1

e.

 f  x    2 x 2  x  1  2 x 2  x  1

f.

f  x  1   2  x  1   x  1  1

2

2

2

2

  2 x2  2 x  1  x  1 1

 x2  1 2 1 1  For x  2, y   . Thus,  2,  and 2 2  1    2,   are on the graph. This is not a 2  function, since a distinct x-value corresponds to two different y-values.

  2 x2  4x  2  x   2 x 2  3x  2

g.

f  2 x    2  2 x    2 x   1   8x2  2 x  1

h.

f  x  h    2( x  h) 2   x  h   1

2

  2 x 2  2 xh  h 2  x  h  1   2 x 2  4 xh  2h 2  x  h  1

f  x   3x 2  2 x  4

a.

f  0  3 0  2  0  4   4

b.

f 1  3 1  2 1  4  3  2  4  1

2

2

c.

f  1  3  1  2  1  4  3  2  4  3

d.

f   x   3   x   2   x   4  3x 2  2 x  4

e.

 f  x    3x 2  2 x  4  3x 2  2 x  4

45.

f  x 

a.

2

2

2

y

43.

y  2x  3

b. c.

x 2

x 1

0 0 0 1 1 1 1 f 1  2  1 1 2 1 1 1 f  1    2  1  1 1  1 2

f  0 

0

2

x

x

d.

f x 

e.

x  x   f  x    2  2  1 x x 1  

67 Copyright © 2020 Pearson Education, Inc.

x 1 2

2

x 1


Chapter 2: Functions and Their Graphs

f.

x 1

f  x  1 

 x  1  1 x 1

x2  2 x  1  1 x 1

g. h.

46.

x2  2 x  2 2x 2x f 2x   2 2  2x 1 4x  1 f  x  h 

f  x 

xh

 x  h 2  1

48.

xh x 2  2 xh  h 2  1

x2  1 x4 02  1 1 1   04 4 4

a.

f  0 

b.

12  1 0 f 1   0 1 4 5

c.

f  1 

 12  1 1  4

f x   x  4  x  4

e.

 f  x     x  4   x  4

f.

f  x  1  x  1  4

g.

f 2x  2x  4  2 x  4

h.

f  x  h  x  h  4

0 0 3

f  x   x2  x

a.

f  0   02  0  0  0

b.

f 1  12  1  2

c.

f  1 

 12   1  1  1  0  0

d.

f x 

  x 2    x  

e.

 f  x  

 x  x   x  x

f.

f  x  1 

 x  12   x  1

d.

x2  1 f x   x  4 x  4

e.

 x2  1   x2  1  f  x       x  4  x4 

f.

 x  1  1  x  1  4

f  x  1 

49.

4x2  1 2x  4

g.

f 2x 

h.

 x  h 2  1 x 2  2 xh  h 2  1 f  x  h   xh4  x  h  4

2x  4

f  x  x  4

a.

f 0  0  4  0  4  4

b.

f 1  1  4  1  4  5

c.

f  1   1  4  1  4  5

g.

f 2x 

 2 x 2  2 x 

h.

f  x  h 

4 x2  2 x

 x  h 2   x  h 

 x 2  2 xh  h 2  x  h

x2  2 x  1  1 x2  2 x  x5 x5 

2

 x 2  3x  2

2

 2 x 2  1

2

x2  x

 x2  2 x  1  x  1

  x 2  1

47.

d.

2

f  x 

2x 1 3x  5 2  0  1

0 1 1  05 5

a.

f  0 

b.

f 1 

c.

f  1 

d.

f x 

e.

 2x  1   2x 1  f  x      3x  5  3x  5

68

Copyright © 2020 Pearson Education, Inc.

3 0  5 2 1  1

3 1  5

2 1 3 3   35 2 2

2  1  1

3  1  5

2x 1

3 x  5

 2  1 1 1   3  5  8 8

 2x  1 2x 1  3 x  5 3x  5


Section 2.1: Functions

f.

f  x  1 

g.

f 2x 

h.

50.

2  2x   1

3 2x  5

2x  2 1 2x  3  3x  3  5 3x  2

4x 1 6x  5

2  x  h 1

3 x  h  5

2 x  2h  1 3 x  3h  5

0  2

 1 2

1

c.

f  1  1 

1  2 

f   x  1 

2

 1

1

 1  2 

2

1 3  4 4

1 8  9 9

1  1  0 1

57. F ( x) 

x3  x x3  x  0

f  x  1  1 

1

 x  1  2

 2x  2

2

 1

2

 1

1

 x  3

4  x  1

2

x  0, x 2  1

Domain:  x x  0 58. G ( x) 

x  4x x  4x  0

2

x( x 2  4)  0 x  0, x 2  4 x  0, x  2

1

 x  h  2 2

f ( x)  x 2  2

Domain:  x x is any real number

x4 3

3

1

f ( x)  5 x  4

f ( x) 

x2

x( x 2  1)  0

Domain:  x x is any real number

53.

x 2  4  x  2 Domain:  x x   2, x  2

  x  2 2

1

2x 2

x 4 x 4  0

1

f  x  h  1

x 2

2

f.

h.

52.

56. h( x) 

e.

f 2x  1 

x2  1 Domain:  x x is any real number

x  16 x  16  0

  1 1   f  x    1  1 2   x  2    x  2 2  

g.

x2

x 2  16  x  4 Domain:  x x   4, x  4 1

f 1  1 

f ( x) 

2

 x  2 2

f 0  1 

54.

55. g ( x) 

1

b.

d.

51.

3  x  1  5

f  x  h 

f  x  1

a.

2  x  1  1

Domain:  x x   2, x  0, x  2 59. h( x )  3 x  12 3x  12  0 3x  12 x4 Domain:  x x  4

x 1

2 x2  8 Domain:  x x is any real number

69 Copyright © 2020 Pearson Education, Inc.


Chapter 2: Functions and Their Graphs

Also 3t  21  0

60. G ( x)  1  x 1 x  0  x  1 x 1 Domain:  x x  1 61. p( x) 

3t  21  0 3t  21 t7

Domain: t t  4, t  7

x 2x  3 1

z 3 z2 z 3 0

66. h( z ) 

2x  3 1  0 2x  3  1

z  3 Also z  2  0 z2 Domain:  z z  3, z  2

2 x  3  1 or 2 x  3  1 2 x  4 2 x  2 x  2 x  1 Domain:  x x   2, x  1

67. 62. p( x) 

x 1 3x  1  4

Domain:  x x is any real number . 68. g (t )  t 2  3 t 2  7t

3x  1  4  0

Domain: t t is any real number .

3x  1  4 3 x  1  4 or 3 x  1  4

69. M (t )  5

3 x  3

3x  5 5 x  1 x 3  5 Domain:  x x  1, x   3 

63.

t 1 2

t  5t  14

t 2  5t  14  0 (t  2)(t  7)  0 t  2  0 or t  7  0 t  2 t 7 Domain: t t  2, x  7

x

f ( x) 

f ( x)  3 5 x  4

x4

x4  0 x4 Domain:  x x  4

70. N ( p )  5

2 p  98 2

2 p  98  0 2( p 2  49)  0

x  x2

64. q( x ) 

p 2

2( p  7)( p  7)  0 p  7  0 or p  7  0

x  2  0 x  2

p  7

Domain:  p p  7, x  7

x  2

Domain:  x x   2 65. P (t ) 

p7

71.

t4 3t  21

f ( x)  3x  4

a.

g ( x)  2 x  3

( f  g )( x)  3 x  4  2 x  3  5 x  1

Domain:  x x is any real number .

t4 0 t4

70

Copyright © 2020 Pearson Education, Inc.


Section 2.1: Functions

b.

( f  g )( x)  (3 x  4)  (2 x  3)  3x  4  2 x  3  x7

Domain:  x x is any real number . c.

e.

( f  g )(3)  5(3)  1  15  1  14

f.

( f  g )(4)  4  3  1

g.

( f  g )(2)  6(2) 2  2  2  6(4)  2  2  24  2  2  20

( f  g )( x)  (3x  4)(2 x  3)  6 x 2  9 x  8 x  12

h.

 6 x 2  x  12

Domain:  x x is any real number . d.

73.

f  3x  4   ( x)  2x  3 g

b.

( f  g )(3)  5(3)  1  15  1  16

f.

( f  g )(4)  4  7  11

g.

( f  g )(2)  6(2) 2  2  12  24  2  12  10

h.

 f  3(1)  4 3  4 7    7   (1)  2(1)  3 2  3 1 g

a.

c.

Domain:  x x is any real number . c.

d.

g ( x)  3 x  2

( f  g )( x)  2 x  1  3 x  2  5 x  1

( f  g )( x)  (2 x  1)  (3 x  2)  2 x  1  3x  2  x  3 Domain:  x x is any real number .

 6 x2  x  2 Domain:  x x is any real number .  f  2x 1   ( x)  g x2 3   3x  2  0 2 3 2  Domain:  x x   . 3 

( f  g )(3)  2(3) 2  3  1  2(9)  3  1  18  3  1  20

f.

( f  g )(4)   2(4) 2  4  1  2(16)  4  1  32  4  1  29

g.

( f  g )(2)  2(2)3  2(2) 2  2(8)  2(4)  16  8  8

h. 74.

 f  x 1   ( x)  2 g 2x   Domain:  x x  0 .

e.

( f  g )( x)  (2 x  1)(3 x  2)

3x  2  x 

( f  g )( x)  ( x  1)(2 x 2 )  2 x3  2 x 2

Domain:  x x is any real number .

 6 x 2  4 x  3x  2

d.

( f  g )( x)  ( x  1)  (2 x 2 )   2 x2  x  1

Domain:  x x is any real number . b.

( f  g )( x)  x  1  2 x 2  2 x 2  x  1

 x  1  2x2

e.

f ( x)  2 x  1

g ( x)  2 x 2

Domain:  x x is any real number .

3 2

 3 Domain:  x x   . 2 

72.

f ( x)  x  1

a.

2x  3  0  2x  3  x 

 f  2(1)  1 2  1 3   3   (1)  g 3(1)  2 32 1  

 f  11 0 0   0   (1)  2 g 2(1) 2 2(1)  

f ( x)  2 x 2  3

71 Copyright © 2020 Pearson Education, Inc.

g ( x)  4 x3  1


Chapter 2: Functions and Their Graphs

a.

( f  g )( x)  2 x 2  3  4 x3  1 3

b.

 4x  2x  4 Domain:  x x is any real number .

b.

 

2

c.

3

d.

  4 x3  2 x 2  2

Domain:  x x is any real number .



3x  5  x 

 f  2 x2  3   ( x)  3 4x 1 g 3 4x  1  0

e.

4 x3  1

f.

g.

h.

( f  g )(3)  4(3)3  2(3) 2  4

76.

a.

( f  g )(4)   4(4)3  2(4) 2  2

b.

 8(32)  12(8)  2(4)  3

c.

 256  96  8  3  363

( f  g )( x)  x  x

( f  g )( x)  x  x  x x

Domain:  x x is any real number .

2

a.

( f  g )( x)  x  x

Domain:  x x is any real number .

( f  g )(2)  8(2)5  12(2)3  2(2) 2  3

 f  2(1)  3 2(1)  3 2  3 5    1   (1)  g 4(1)3  1 4(1)  1 4  1 5  

f ( x)  x

g ( x)  x

Domain:  x x is any real number .

 256  32  2  222

75.

 f  1 1 1 1      (1)  g 3(1)  5 3  5  2 2  

f ( x)  x

 4(64)  2(16)  2

h.

( f  g )(2)  3(2) 2  5 2  6 2 5 2  2

 108  18  4  130

g.

( f  g )(4)  4  3(4)  5  2  12  5  5

 4(27)  2(9)  4

f.

( f  g )(3)  3  3(3)  5  3 95  3  4

3 1 1 2 x3    x  3    4 4 2 3   2 Domain:  x x   . 2  

e.

 f  x   ( x)  3x  5 g x  0 and 3 x  5  0 5 3  5 Domain:  x x  0 and x   . 3 

( f  g )( x)  2 x 2  3 4 x3  1

 8 x5  12 x3  2 x 2  3 Domain:  x x is any real number .

d.

( f  g )( x)  x (3x  5)  3x x  5 x

Domain:  x x  0 .

( f  g )( x)  2 x  3  4 x  1  2 x 2  3  4 x3  1

c.

( f  g )( x)  x  (3 x  5)  x  3 x  5

Domain:  x x  0 .

2

d.

g ( x)  3 x  5

( f  g )( x)  x  3 x  5

Domain:  x x  0 .

x  f    ( x)  x g Domain:  x x  0 .

e.

( f  g )(3)  3  3  3  3  6

f.

( f  g )(4)  4  4  4  4  0

g.

( f  g )(2)  2 2  2  2  4

72

Copyright © 2020 Pearson Education, Inc.


Section 2.1: Functions

h.

77.

1 1  f   1   (1)  1 1 g

f ( x)  1 

a.

1 x

g ( x) 

( f  g )( x)  1 

c.

( f  g )( x)  1 

1 x

x4 Domain:  x 1  x  4 .

1 1 2   1 x x x d.

1 1  1 x x

Domain:  x x  0 . c.

Domain:  x 1  x  4 . e.

78.

( f  g )(4)  1

g.

( f  g )(2) 

h.

 f    (1)  1  1  2 g

f ( x)  x  1

a.

f.

( f  g )(4)  4  1  4  4  3  0  3 0  3

g.

( f  g )(2)  (2)2  5(2)  4  4  10  4  2

2 5  3 3

f.

( f  g )(3)  3  1  4  3  2  1  2 1

1 x 1  f  x  x  x 1  x  x 1 d.   ( x)  1 1 x 1 g x x Domain:  x x  0 . 1

( f  g )(3)  1 

 f  x 1 x 1    ( x)  4 x 4 x g x  1  0 and 4  x  0 x  1 and  x  4 x4

 11 1 1 ( f  g )( x)  1     2  xx x x

Domain:  x x  0 .

e.

h.

1 1 1 1 3     2 (2) 2 2 4 4

79.

 f  1 1 0   0 0   (1)  g 4 1 3   

f ( x) 

a.

2x  3 3x  2

( f  g )( x)  x  1  4  x

g ( x) 

3x  2  0 3x  2  x  2 3 Domain: x x  2 . 3

x4

4x 3x  2

2x  3 4x  3x  2 3x  2 2x  3  4x 6x  3   3x  2 3x  2

( f  g )( x) 

g ( x)  4  x

x  1  0 and 4  x  0 x  1 and  x  4

Domain:  x 1  x  4 . b.

 x  1 4  x 

  x2  5x  4 x  1  0 and 4  x  0 x  1 and  x  4

Domain:  x x  0 . b.

( f  g )( x) 

( f  g )( x)  x  1  4  x x  1  0 and 4  x  0 x  1 and  x  4 x4

Domain:  x 1  x  4 .

73 Copyright © 2020 Pearson Education, Inc.


Chapter 2: Functions and Their Graphs

b.

2x  3 4x  3x  2 3x  2 2x  3  4x  2x  3   3x  2 3x  2

( f  g )( x) 

a.

x 1  0

2 3  2 Domain:  x x   . 3  3x  2  x 

b.

c.

2 3  2 Domain:  x x   . 3 

2 2 x 1  x x x0

( f  g )( x)  x  1  x 1  0

and

x  1 Domain:  x x  1, and x  0 .

2x  3  f  3x  2 2 x  3  3x  2  2 x  3   ( x)  4 x  3x  2 4 x 4x g 3x  2 3x  2  0 and x  0

d.

 f    ( x)  g x 1  0

x 1 x x 1  2 2 x and x  0

x  1 Domain:  x x  1, and x  0 .

3x  2 2 3

 2  Domain:  x x  and x  0  . 3  

e.

( f  g )(3)  3  1 

2 2 2 8  4   2  3 3 3 3

f.

( f  g )(4)  4  1 

2 1  5 4 2

( f  g )(3) 

6(3)  3 18  3 21   3 3(3)  2 9  2 7

g.

( f  g )(2) 

f.

( f  g )(4) 

 2(4)  3  8  3  5 1    3(4)  2 12  2 10 2

h.

 f  1 11 2    (1)  2 2 g

g.

( f  g )(2) 

e.

h.

80.

and

x  1 Domain:  x x  1, and x  0 .

2  2 x  3   4 x  8 x  12 x ( f  g )( x)      3 x  2   3 x  2  (3x  2) 2 3x  2  0

x

2 x x0

( f  g )( x)  x  1  x 1  0

3x  2  x 

d.

and

x  1 Domain:  x x  1, and x  0 .

3x  2  0

c.

2 x x0

( f  g )( x)  x  1 

8(2) 2  12(2)

 3(2)  2 2 8(4)  24

 6  2

2

32  24

 4

2

81. 

56 7  16 2

g ( x) 

( f  g )( x)  6 

1 x  3 x  1  g ( x) 2 7 5  x  g ( x) 2 7 g ( x)  5  x 2

6

f  2(1)  3 2  3 5     (1)  4(1) 4 4 g

f ( x)  x  1

f ( x)  3x  1

2 2 1 2 3   3 2 2

2 x

74

Copyright © 2020 Pearson Education, Inc.

1 x 2


Section 2.1: Functions

82.

f ( x) 

1 x

f ( x  h)  f ( x ) h 3( x  h) 2  2  (3 x 2  2)  h 2 3 x  6 xh  3h 2  2  3 x 2  2  h 6 xh  3h 2  h  6 x  3h

 f  x 1   ( x)  2 g x x  

1  x x 2  x g ( x) 1 1 x2  x g ( x)  x   x 1 x x 1 x2  x 1 x( x  1) x  1    x x 1 x 1 x 1

83.

87.

f ( x  h)  f ( x ) h ( x  h) 2  ( x  h)  4  ( x 2  x  4)  h 2 2 x  2 xh  h  x  h  4  x 2  x  4  h 2 xh  h 2  h  h  2x  h 1

f ( x)  4 x  3

f ( x  h)  f ( x) 4( x  h)  3  (4 x  3)  h h 4 x  4h  3  4 x  3  h 4h  4 h

84.

f ( x)  3x  1 f ( x  h)  f ( x) 3( x  h)  1  (3x  1)  h h 3x  3h  1  3x  1  h 3h   3 h

85.

f ( x)  x 2  4 f ( x  h)  f ( x ) h ( x  h) 2  4  ( x 2  4)  h 2 x  2 xh  h 2  4  x 2  4  h 2 2 xh  h  h  2x  h

86.

f ( x)  x 2  x  4

88.

f  x   3x 2  2 x  6 f  x  h  f  x h 3  x  h  2  2  x  h   6    3 x 2  2 x  6       h 

3 x 2  2 xh  h 2  2 x  2h  6  3x 2  2 x  6

h 3x  6 xh  3h  2h  3 x 2 6 xh  3h 2  2h   h h  6 x  3h  2 2

f ( x)  3 x 2  2

75 Copyright © 2020 Pearson Education, Inc.

2


Chapter 2: Functions and Their Graphs

89.

f ( x) 

5 4x  3

91.

2

2

2 x  6 x  2hx  6h  2 x  6 x  2 xh

 x  h  3 x  3

h

   1 6h      x  h  3 x  3   h  

92. f ( x) 

2x x3

2( x  h) 2x  f ( x  h)  f ( x ) x  h  3 x  3  h h 2( x  h)( x  3)  2 x  x  3  h   x  h  3 x  3  h

5 5  f ( x  h)  f ( x) 4( x  h)  3 4 x  3  h h 5(4 x  3)  5  4( x  h)  3  4( x  h)  3 4 x  3  h  20 x  15  20 x  15  20h   1         4( x  h)  3 4 x  3   h    1  20h      4( ) 3 4 3 x h x       h   20   4( x  h)  3 4 x  3

90.

f ( x) 

1 x3

f ( x) 

6   3 x  3 x h 

5x x4

5( x  h) 5x  f ( x  h)  f ( x ) x  h  4 x  4  h h 5( x  h)( x  4)  5 x  x  4  h   x  h  4 x  4  h

1 1  f ( x  h)  f ( x ) x  h  3 x  3  h h x  3   x  3  h  x  h  3 x  3  h  x  3 x  3 h  1         x  h  3 x  3   h    1  h      x h x 3 3       h   1   x  h  3 x  3

5 x  20 x  5hx  20 h  5 x  20 x  5 xh 2

2

 x  h  4 x  4 h

   1 20h      x  h  4 x  4   h  

76

Copyright © 2020 Pearson Education, Inc.

20   x h 4 x  4 


Section 2.1: Functions

93.

f  x 

x2

95.

f  x  h  f  x 

  

94.

h

f ( x  h)  f ( x )  x  h   h h

2

2

h

x  x 2  2 xh  h 2 x  x  h 2

 x  h  2  x  2

2

h 1 2   h2 xh      h  x 2  x  h 2

1 xh2 x2

 1  h  2 x  h     h  x 2  x  h 2

f ( x)  x  1 f  x  h  f  x

h x  h 1  x 1 h x  h 1  x 1 x  h 1  x 1   h x  h 1  x 1 x  h  1  ( x  1) h   h x  h 1  x 1 h x  h 1  x 1 

x2  x  h 

 x  h  2  x  2

1 x2

x2   x  h 

h

h

2

xh2  x2 h 2 xh  x2 xh2 x2  h xh2 x2 xh2 x2

1 x2 1

h 

f  x 

 

96.

f  x 

2 x  h x  x  h 2

2

  2x  h x2  x  h 

1 x 1

f ( x  h)  f ( x )  x  h   1  h h 2

1 x 1

2

x2  1   x  h   1

1

2

( x  1)( x  h   1) 2

2

x  h 1  x 1

2

2

1

2

h

x  1  x 2  2 xh  h 2  1 ( x  1)( x  h   1) 2

2

h 2 xh  h 2

1    h  ( x 2  1)( x  h 2  1) h  2 x  h  1   2  h  ( x  1)( x  h 2  1)  

77 Copyright © 2020 Pearson Education, Inc.

2 x  h ( x  1)( x  h   1) 2

2

  2x  h ( x  1)( x  h   1) 2

2


Chapter 2: Functions and Their Graphs

97.

f ( x)  4  x 2

99.

f  x  h  f  x

0  x2  2 x  8 0  ( x  4)( x  2) x  4  0 or x  2  0 x4 or x  2

h 4  ( x  h) 2  4  x 2

h 4  ( x  h) 2  4  x 2

h

h 

  

98.

The solution set is:  2, 4

4  ( x  h) 2  4  x 2

4  ( x  h) 2  4  x 2

100.

4  ( x  h) 2  (4  x 2 )

 4  ( x  h)  4  x  2

2

4  ( x 2  2 xh  h 2 )  (4  x 2 ) h

 x  h  1  x  1 2 xh  h 2

h

 x  h  1  x  1 2 x  h 4  ( x  h) 2  4  x 2 4  ( x  h) 2  4  x 2

101.

1

x2  xh2 x2  xh2

102.

x2  xh2

h x2 xh2 x2  xh2 x  2  ( x  h  2)  h( x  2) x  h  2  ( x  h  2) x  2 x2 xh2  h( x  2) x  h  2  ( x  h  2) x  2 h  h( x  2) x  h  2  ( x  h  2) x  2 1  ( x  2) x  h  2  ( x  h  2) x  2

f ( x)  3x 2  Bx  4 and f (1)  12 : f (1)  3(1) 2  B (1)  4 12  3  B  4 B5

 

f ( x)  2 x3  Ax 2  4 x  5 and f (2)  5

f (2)  2(2)3  A(2) 2  4(2)  5 5  16  4 A  8  5 5  4 A  19 14  4 A 14 7 A  4 2

x2 f ( x  h)  f ( x )  h 1 1  xh2 x2  h

h x2 xh2

7 5 3  x 16 6 4 7 3 5    x 16 4 6 5 7 12 x  6 16 16 5 5 x 6 16 5 6 3 x   16 5 8 

3 The solution set is:   8

(2 x  h)

f  x 

11  x 2  2 x  3

103.

3x  8 and f (0)  2 2x  A 3(0)  8 f (0)  2(0)  A 8 2 A  2A  8 A  4 f ( x) 

78

Copyright © 2020 Pearson Education, Inc.


Section 2.1: Functions

104.

2x  B 1 and f (2)  3x  4 2 2(2)  B f (2)  3(2)  4 1 4B  2 10 5  4B

b.

f ( x) 

H  x   15 : 15  20  4.9 x 2 5   4.9 x 2 x 2  1.0204 x  1.01 seconds H  x   10 :

B  1

10  20  4.9 x 2 10   4.9 x 2

105. Let x represent the length of the rectangle. x Then, represents the width of the rectangle 2 since the length is twice the width. The function x x2 1 2 for the area is: A( x )  x    x 2 2 2 106. Let x represent the length of one of the two equal sides. The function for the area is: 1 1 A( x )   x  x  x 2 2 2

x 2  2.0408 x  1.43 seconds H  x  5 : 5  20  4.9 x 2 15   4.9 x 2 x 2  3.0612 x  1.75 seconds

c.

107. Let x represent the number of hours worked. The function for the gross salary is: G ( x)  16 x 108. Let x represent the number of items sold. The function for the gross salary is: G ( x)  10 x  100 109. a.

H 1  20  4.9 1

H  x  0

0  20  4.9 x 2  20   4.9 x 2 x 2  4.0816 x  2.02 seconds

110. a.

H 1  20  13 1  20  13  7 meters 2

H 1.1  20  13 1.1  20  13 1.21 2

2

 20  15.73  4.27 meters

 20  4.9  15.1 meters H 1.1  20  4.9 1.1

2

H 1.2   20  13 1.2   20  13 1.44  2

 20  4.9 1.21

 20  18.72  1.28 meters

 20  5.929  14.071 meters H 1.2   20  4.9 1.2 

2

b.

H  x   15 15  20  13 x 2

 20  4.9 1.44 

5  13 x 2

 20  7.056  12.944 meters

x 2  0.3846 x  0.62 seconds H  x   10 10  20  13 x 2 10  13 x 2 x 2  0.7692 x  0.88 seconds

79 Copyright © 2020 Pearson Education, Inc.


Chapter 2: Functions and Their Graphs H  x  5

2

c.

5  20  13x 2

2 8 5 8 5 2 2 A   4  1      3 3 3 3 9 3 3    

15   13 x 2

2

x  1.1538 x  1.07 seconds

c.

L  x L 113. R  x      x   P  x P

H  x  0 0  20  13x 2  20  13x 2

114. T  x   V  P  x   V  x   P  x 

x 2  1.5385

115. H  x    P  I  x   P  x   I  x 

x  1.24 seconds

116. N  x    I  T  x   I  x   T  x 

x 36, 000 111. C  x   100   x 10 a.

117. a.

 0.05 x 3  0.8 x 2  155 x  500

b.

450 36, 000 C  450   100   10 450  100  45  80

c.

600 36, 000  10 600  100  60  60

118. a. b.

400 36, 000  10 400  100  40  90

P is the dependent variable; a is the independent variable P (20)  0.027(20) 2  6.530(20)  363.804  244.004 In 2015 there are 244.004 million people who are 20 years of age or older.

c.

2

P (0)  0.027(0) 2  6.530(0)  363.804  363.804 In 2015 there are 363.804 million people.

2

1 4 8 4 2 2 1 1 A   4  1      3 3 9 3 3 3 3

119. a.

R (v)  2.2v; B (v)  0.05v 2  0.4 v  15 D (v )  R (v )  B (v )

8 2  1.26 ft 2 9

 2.2v  0.05v 2  0.4 v  15  0.05v 2  2.6v  15

2

b.

When 15 hundred smartphones are sold, the profit is $1836.25.

 10.8  130.6  363.804

C  400   100 

2

 $1836.25

 $230

a.

3

P (15)  0.05(15)  0.8(15)  155(15)  500  168.75  180  2325  500

C  600   100 

112. A  x   4 x 1  x

 1.2 x 2  220 x  0.05 x 3  2 x 2  65 x  500

 $220

d.

 

 1.2 x 2  220 x  0.05 x 3  2 x 2  65 x  500

 $225

c.

P ( x)  R( x)  C ( x)

500 36, 000  10 500  100  50  72

C  500   100   $222

b.

8 5  1.99 ft 2 9

1 3 3 1 1 A   4  1    2  2 2 4 2 2 2

b.

 3  1.73 ft 2

2

D (60)  0.05(60)  2.6(60)  15  180  156  15  321

80

Copyright © 2020 Pearson Education, Inc.


Section 2.1: Functions c. 120. a.

The car will need 321 feet to stop once the impediment is observed.

c.

F  a  b   5  a  b   2  5a  5b  2

h  x  2x

Since 5a  5b  2  5a  2  5b  2  F  a   F  b  ,

h  a  b   2  a  b   2a  2b

F  x   5 x  2 does not have the property.

 h  a   h b  h  x   2 x has the property.

b.

F  x   5x  2

d.

g  x   x2

G  x 

1 x

G a  b 

g  a  b    a  b   a 2  2ab  b 2 2

Since a 2  2ab  b 2  a 2  b 2  g  a   g  b  ,

G  x 

1 1 1    G  a   G b ab a b

1 does not have the property. x

g ( x)  x 2 does not have the property.

121.

f ( x  h)  f ( x ) 3 x  h  3 x   h h 1

1

 x  h 3  x 3 h 1

1

2

1

1

2

2

1

1

2

 x  h  3  x 3 ( x  h) 3  x 3 ( x  h) 3  x 3 

h

( x  h) 3  x 3 ( x  h) 3  x 3 h

2

1

1

2

( x  h) 3  x 3 ( x  h) 3  x 3 

xhx h  ( x  h) 3  x 3 ( x  h) 3  x 3    1 2

2

1

1

1

1

2

h h ( x  h) 3  x 3 ( x  h) 3  x 3    2

1

1

2

2

( x  h) 3  x 3 ( x  h) 3  x 3

122.

 x4  2 f   3x  2  5x  4  x4  1. Solve 5x  4 x4 1 5x  4 x  4  5x  4

123. We need

x2  1  0 . Since x 2  1  0 for all 7  3x  1

real numbers x, we need 7  3 x  1  0 . 7  3x  1  0 3x  1  7 7  3 x  1  7

x2

Therefore, f 1  3(2)  2  10 2

2  x 

8 3

8 8   The domain of f is  x | 2  x   , or  2,  3 3   in interval notation.

81 Copyright © 2020 Pearson Education, Inc.


Chapter 2: Functions and Their Graphs 124. No. The domain of f is  x x is any real number , but the domain of g is

129. Let x represent the amount of the 7% fat hamburger added. % fat tot. amt. amt. of fat 20% 12  0.2012 7% x  0.07  x  15% 12  x  0.1512  x 

 x x  1 . 125.

3x  x3 ( your age)

 0.2012   0.07 x    0.1512  x 

126. Answers will vary.

2.4  0.07 x  1.8  0.15 x

127. ( x  12)2  y 2  16 x-intercept (y=0): ( x  12) 2  02  16

0.6  .08 x x  7.5 7.5 lbs. of the 7% fat hamburger must be added, producing 19.5 lbs. of the 15% fat hamburger.

( x  12) 2  16 ( x  12)  4

x 3  9 x  2 x 2  18

130.

x  12  4

x 3  2 x 2  9 x  18  0

x  16, x  8 ( 16, 0), ( 8, 0) y-intercept (x=0): (0  12) 2  y 2  16

( x 3  2 x 2 )  (9 x  18)  0 x 2 ( x  2)  9( x  2)  0 ( x 2  9)( x  2)  0

(12) 2  y 2  16

( x  3)( x  3)( x  2)  0 ( x  3)  0 or ( x  3)  0 or ( x  2)  0

2

y  16  144  128 There are no real solutions so there are no yintercepts. Symmetry: ( x  12) 2  (  y ) 2  16

x  3, x  3, x  2 The solution set is:  3, 3, 2

131.

( x  12) 2  y 2  16 This shows x-axis symmetry.

a  bx  ac  d a  ac  d  bx a(1  c)  d  bx

128. y  3 x 2  8 x

a

y  3( 1) 2  8 1 There is no solution so (-1,-5) is NOT a solution. y  3x2  8 x

132.

y  3(4) 2  8 4

d  bx 1 c

r  kd 2 0.4  k (0.6) 2 10 k 9 Thus, 10 r  (1.5) 2 9  2.5 kg  m 2

 48  16  32 So (4,32) is a solution. y  3x2  8 x y  3(9) 2  8 9  243  24  219  171 So (9,171) is NOT a solution.

82

Copyright © 2020 Pearson Education, Inc.


Section 2.2: The Graph of a Function 3. vertical 133. 3x  10 y  12 10 y  3x  12 3 6 y  x 10 5

f  5   3

5.

f  x   ax 2  4 a  1  4  2  a  2 2

3 . The slope of a 10 10 perpendicular line would be  . 3

6. False. The graph must pass the vertical line test in order to be the graph of a function.

(4 x 2  7)  3  (3 x  5)  8 x

7. False; e.g. y 

The slope of the line is

134.

4.

(4 x 2  7) 2 12 x 2  21  (24 x 2  40 x) (4 x 2  7) 2 2

2

12 x  21  24 x  40 x 2

(4 x  7)

2

8. True  

9. c 2

12 x  40 x  21



(4 x 2  7) 2 12 x 2  40 x  21

10. a 11. a.

Section 2.2

b. c.

f (3) is positive since f (3)  3.7.

d.

f (4) is negative since f (4)   1.

e.

f ( x)  0 when x  3, x  6, and x  10.

f.

f ( x)  0 when  3  x  6, and 10  x  11.

g.

The domain of f is  x  6  x  11 or

  6, 11 .

x 2  4  0   16 2

x 2  16

h.

x  4   4, 0  ,  4, 0 

y-intercepts:

 0   4 y 2  16 2

4 y 2  16 y2  4 y  2   0, 2  ,  0, 2 

2. False;

f (6)  0 since (6, 0) is on the graph. f (11)  1 since (11, 1) is on the graph.

2

1. x  4 y  16 x-intercepts:

f (0)  3 since (0,3) is on the graph. f ( 6)  3 since ( 6, 3) is on the graph.

(4 x 2  7) 2

135. Add the powers of x to obtain a degree of 7.

2

1 . x

x  2y  2 2  2 y  2 0  2y 0 y

  3, 4 . i.

The x-intercepts are 3 , 6, and 10.

j.

The y-intercept is 3.

k.

The line y 

l.

The line x  5 intersects the graph 1 time.

m.

f ( x)  3 when x  0 and x  4.

n.

f ( x)   2 when x  5 and x  8.

12. a.

The point  2, 0  is on the graph.

The range of f is  y  3  y  4 or

1 intersects the graph 3 times. 2

f (0)  0 since (0, 0) is on the graph. f (6)  0 since ( 6, 0) is on the graph.

83 Copyright © 2020 Pearson Education, Inc.


Chapter 2: Functions and Their Graphs

b.

f (2)  2 since (2,  2) is on the graph.

c.

f (2)  1 since (2, 1) is on the graph.

Symmetry about y-axis.

16. Function

c.

f (3) is negative since f (3)  1.

d.

f (1) is positive since f (1)  1.0.

e.

f ( x)  0 when x  0, x  4, and x  6.

b. Intercepts:  , 0  ,  , 0  , (0, 0)

f.

f ( x)  0 when 0  x  4.

c.

g.

The domain of f is  x  4  x  6 or

a.

Range:  y  1  y  1

h. The range of f is  y  2  y  3 or  2, 3 .

The x-intercepts are 0, 4, and 6.

j.

The y-intercept is 0.

a.

b. Intercepts: (0, 0)

l.

The line x  1 intersects the graph 1 time.

m.

f ( x)  3 when x  5.

n.

f ( x)   2 when x  2.

c.

a.

b. Intercepts: (2, 0)(2, 0)(0, 2)(0, 2) c.

Domain:  x x  1 or x  1 ;

a.

Domain:  x 0  x  3 ; Range:  y y <2

Symmetry about the x-axis, y-axis and the origin

b. Intercepts: (1, 0)

14. Function

c.

Domain:  x x is any real number ;

None

20. Function

Range:  y y  0

a.

Domain:  x 0  x  4 ; Range:  y 0  y  3

b. Intercepts: (0,1)

None

b. Intercepts: (0, 0) c.

15. Function a.

Symmetry about the x-axis, y-axis and the origin

19. Function

b. Intercepts: (1, 0), (1, 0)

c.

Domain:  x  2  x  2 ; Range:  y  2  y  2

Range:  y y is any real number

a.

Symmetry about the x-axis

18. Not a function since vertical lines will intersect the graph in more than one point.

13. Not a function since vertical lines will intersect the graph in more than one point.

c.

Domain:  x x  0 ; Range:  y y is any real number

k. The line y  1 intersects the graph 2 times.

a.

Symmetry about the origin.

17. Not a function since vertical lines will intersect the graph in more than one point.

  4, 6 . i.

Domain:  x    x   ;

Domain:  x    x   ;

None

21. Function

Range:  y  1  y  1

a.

Domain:  x x is any real number ; Range:  y y  2

     b. Intercepts:   , 0  ,  , 0  , (0,1)  2  2 

b. Intercepts: (–3, 0), (3, 0), (0,2) 84

Copyright © 2020 Pearson Education, Inc.


Section 2.2: The Graph of a Function c.

Symmetry about y-axis.

26.

22. Function a. Domain:  x x  3 ;

a.

b.

b. Intercepts: (–3, 0), (2,0), (0,2) c. None

c.

Domain:  x x is any real number ; Range:  y y  3

Range:  y y  5

x  3 x  5   0  x  0, x  5 3

f.

2

27.

f ( x) 

f (1)  3 1  1  2  2 2

a.

f (2)  3  2    2   2  8 2

The point  2,8  is on the graph of f. c.

Solve for x : 2  3 x 2  x  2 0  3x  x 0  x  3x  1  x  0, x   1 3 1 (0, –2) and  , 2 are on the graph of f . 3

b.

c.

d. The domain of f is  x x is any real number .

x-intercepts: f  x  =0  3 x 2  x  2  0

 3x  2  x  1  0  x  f.

x2 x6

3 2 5    14 36 3 The point  3,14  is not on the graph of f. f (3) 

f (4) 

42 6   3 46 2

The point  4, 3 is on the graph of f.

2

e.

y-intercept: f  0   3  0   5  0   0

None

The point  1, 2  is on the graph of f. b.

Domain:  x x is any real number ;

f ( x)  3 x 2  x  2

a.

Solve for x : 2  3 x 2  5 x  3 x 2  5 x  2  0  3x  1 x  2   0  x   13 , x  2 (2, –2) and  1 , 2 on the graph of f . 3

x-intercepts: f  x  =0  3 x 2  5 x  0

e.

b. Intercepts: (–1, 0), (2,0), (0,4)

25.

2

d. The domain of f is  x x is any real number .

None

24. Function

c.

f (2)  3  2   5  2  =  22

b. Intercepts: (1, 0), (3,0), (0,9)

a.

2

The point  2, 22  is on the graph of f.

23. Function

c.

f (1)  3  1  5  1  8  2

The point  1, 2  is not on the graph of f.

Range:  y y  0

a.

f ( x)  3x 2  5 x

2 , x  1 3

y-intercept: f  0  =3  0   0  2  2 2

Solve for x : x2 2 x6 2 x  12  x  2 x  14 (14, 2) is a point on the graph of f .

d. The domain of f is  x x  6 . e.

x-intercepts:

x2 0 x6 x  2  0  x  2 f  x  =0 

85 Copyright © 2020 Pearson Education, Inc.


Chapter 2: Functions and Their Graphs

f. y-intercept: f  0  

28.

f ( x) 

a.

b.

c.

c.

02 1  06 3

1

x 2 x4

2

12  2 3  1 4 5  3 The point 1,  is on the graph of f.  5

(3 x 2  1)(4 x 2  1)  0

f (1) 

3x 2  1  0  x  

e.

a.

b.

f.

3 3

30.

f ( x) 

a.

b.

12 x 4

c.

x2  1

12(1) 4 12  6 (1) 2  1 2 The point (–1,1) is on the graph of f. f (1) 

0

y-intercept: f  0 

y-intercept: 02  2 2 1 f  0    04 4 2

12  0  2

4

0 1

0 0 0 1

2x x2

1 2  1 2 2 1 f       1 3 3 2 2  2 2 1 2 The point  ,   is on the graph of f. 2 3 2(4) 8  4 42 2 The point  4, 4  is on the graph of f. f (4) 

Solve for x : 2x 1  x  2  2x   2  x x2 (–2,1) is a point on the graph of f .

d. The domain of f is  x x  2  .

4

12(3) 972 486   2 5 (3)  1 10  486  The point  3,  is on the graph of f. 5   f (3) 

12 x 4

x2  1 4 12 x  0  x  0

x-intercepts:

f ( x) 



x-intercept: f  x  =0 

Solve for x : 1 x2  2   x  4  2x2  4 2 x4 0  2 x2  x 1 x  2 x  1  0  x  0 or x  2 1 1 1      0,  and  ,  are on the graph of f .  2 2 2

x2  2  0  x2  2  0 x4 This is impossible, so there are no xintercepts.

29.

3

d. The domain of f is  x x is any real number .

f  x  =0 

f.

1

 3   3  ,1 ,  ,1 are on the graph of f .    3   3 

2

0 2 2 1   04 4 2  1 The point  0,  is on the graph of f.  2 f (0) 

12 x 4

x2  1 x  1  12 x 4 4 2 12 x  x  1  0

2

d. The domain of f is  x x   4 . e.

Solve for x :

e.

x-intercept: 2x  0  2x  0 x2 x0

f  x  =0 

f.

y-intercept: f  0  

86

Copyright © 2020 Pearson Education, Inc.

0 0 02


Section 2.2: The Graph of a Function ( f  g )(2)  f (2)  g (2)  2  1  3

 5,13.2  , and 15,10  . The complete graph

b.

( f  g )(4)  f (4)  g (4)  1  (3)  2

is given below.

c.

( f  g )(6)  f (6)  g (6)  0  1  1

d.

( g  f )(6)  g (6)  f (6)  1  0  1

e.

( f  g )(2)  f (2)  g (2)  2(1)  2

f.

f  f (4) 1 1     (4)  g g (4)  3 3  

31. a.

32. h  x    a.

136 x 2 v2

 2.7 x  3.5

33. h  x   

We want h 15   10 . 

136 15  v

2

2

 2.7 15   3.5  10 

30, 600 v2

h  x  

 2.7 x  3.5 302 which simplifies to 34 2 h  x   x  2.7 x  3.5 225

c.

Using the velocity from part (b), 2 34 h 9   9   2.7  9   3.5  15.56 ft  225 The ball will be 15.56 feet above the floor when it has traveled 9 feet in front of the foul line.

d. Select several values for x and use these to find the corresponding values for h. Use the results to form ordered pairs  x, h  . Plot the

points and connect with a smooth curve. 2 34 h  0   0   2.7  0   3.5  3.5 ft  225 2 34 h  5   5   2.7  5   3.5  13.2 ft  225 2 24 h 15    15   2.7 15   3.5  10 ft  225 Thus, some points on the graph are  0,3.5  ,

 x6

44  8 

2

h 8  

 8  6 282 2816   14 784  10.4 feet

b.

h 12   

c.

From part (a) we know the point  8,10.4  is

44 12 

2

 12   6 282 6336   18 784  9.9 feet

126 x 2

b.

v2

a.

 34

v 2  900 v  30 ft/sec The ball needs to be thrown with an initial velocity of 30 feet per second.

44 x 2

on the graph and from part (b) we know the point 12,9.9  is on the graph. We could evaluate the function at several more values of x (e.g. x  0 , x  15 , and x  20 ) to obtain additional points. h 0  

44  0 

h 15    h  20   

2

282

  0  6  6

44 15 

2

282 44  20  282

2

 15   6  8.4   20   6  3.6

Some additional points are  0, 6  , 15,8.4  and  20,3.6  . The complete graph is given

87 Copyright © 2020 Pearson Education, Inc.


Chapter 2: Functions and Their Graphs

below.

Solve: 1  x 2  0

1  x 1  x   0 Case1: 1  x  0

1 x  0

and

x  1

x 1

and

(i.e.  1  x  1) 6

Case2: 1  x  0

d.

h 15   

44 15 

and

1 x  0

x  1 and

x 1

(which is impossible)

2

Therefore the domain of A is  x 0  x  1 .

 15   6  8.4 feet 282 No; when the ball is 15 feet in front of the foul line, it will be below the hoop. Therefore it cannot go through the hoop.

b. Graphing A( x )  4 x 1  x 2 

In order for the ball to pass through the hoop, we need to have h 15   10 . 10   11  

44 15  v

2

2

44 15 

 15   6

c.

2

v2 v 2  4  225 

When x  0.7 feet, the cross-sectional area is maximized at approximately 1.9996 square feet. Therefore, the length of the base of the beam should be 1.4 feet in order to maximize the cross-sectional area.

v 2  900 v  30 ft/sec The ball must be shot with an initial velocity of 30 feet per second in order to go through the hoop.

34. A( x )  4 x 1  x a.

35. h( x) 

2

Domain of A( x )  4 x 1  x 2 ; we know that x must be greater than or equal to zero, since x represents a length. We also need 1  x 2  0 , since this expression occurs under a square root. In fact, to avoid Area = 0, we require x  0 and 1  x 2  0 .

32 x 2 1302

a.

h(100) 

b.

h(300) 

c.

h(500) 

x 32(100) 2

 100 1302 320, 000   100  81.07 feet 16,900 32(300) 2

 300 1302  2,880, 000   300  129.59 feet 16,900

88

Copyright © 2020 Pearson Education, Inc.

32(500) 2

 500 1302  8, 000, 000   500  26.63 feet 16,900


Section 2.2: The Graph of a Function

The ball is about 26.63 feet high after it has traveled 500 feet. d.

Solving h( x) 

32 x 2 1302

g.

The ball travels approximately 275 feet before it reaches its maximum height of approximately 131.8 feet.

x0

32 x 2

x0 1302  32 x  x  1  0  1302  32 x x  0 or 1  0 1302 32 x 1 1302 2 130  32 x

h. The ball travels approximately 264 feet before it reaches its maximum height of approximately 132.03 feet.

1302  528.13 feet 32 Therefore, the golf ball travels 528.13 feet. x

e.

y1  150

32 x 2 1302

x  4000  36. W (h)  m    4000  h 

a.

2

h  14110 feet  2.67 miles ; 2

0 5

f.

4000   W (2.67)  120    119.84  4000  2.67  On Pike's Peak, Amy will weigh about 119.84 pounds.

600

Use INTERSECT on the graphs of 32 x 2 y1   x and y2  90 . 1302

b. Graphing: 120

150

0

600

c.

5 150

0

0 119.5

600

5

The ball reaches a height of 90 feet twice. The first time is when the ball has traveled approximately 115.07 feet, and the second time is when the ball has traveled about 413.05 feet.

5

Create a TABLE:

The weight W will vary from 120 pounds to about 119.7 pounds. d. By refining the table, Amy will weigh 119.95 lbs at a height of about 0.83 miles

89 Copyright © 2020 Pearson Education, Inc.


Chapter 2: Functions and Their Graphs

(4382 feet).

c.

C  50   51, 000

It costs the company $51,000 to produce 50 computers in a day. d. The domain is q | 0  q  80 . This e.

37. C ( x)  100  a.

indicates that production capacity is limited to 80 computers in a day.

Yes, 4382 feet is reasonable. x 36000  10 x

C (480)  100 

600 36000 C (600)  100   10 600  $220

 x | x  0

c.

Graphing:

The graph is curved down and rises slowly at first. As production increases, the graph rises more quickly and changes to being curved up.

f.

The inflection point is where the graph changes from being curved down to being curved up.

480 36000  10 480

 $223

b.

e.

39. a.

C  0   $50

It costs $50 if you use 0 gigabytes. b.

C  5   $50

It costs $50 if you use 5 gigabytes. c.

C 15   $150

It costs $90 if you use 15 gigabytes. d.

d. The domain is g | 0  g  30 . This

TblStart  0; Tbl  50

indicates that there are at most 30 gigabytes in a month. e. e.

The cost per passenger is minimized to about $220 when the ground speed is roughly 600 miles per hour.

The graph is flat at first and then rises in a straight line.

40. g (2)  5  f (2)  4

Since f (2)  (2) 2  4(2)  c  12  c we have

38.

a.

12  c 4 5 3 12  c 9 3 12  c  27 c  15

C  0   5000

This represents the fixed overhead costs. That is, the company will incur costs of $5000 per day even if no computers are manufactured. b.

f (3)  32  4  3  15  12

C 10   19, 000

It costs the company $19,000 to produce 10 computers in a day. 90

Copyright © 2020 Pearson Education, Inc.


Section 2.2: The Graph of a Function 48.

g (5)  52  n  25  n

41.

f ( g (5))  f (25  n)  25  n  2  4 so,

25  n  2 25  n  4 n  21

g (n)  n 2  n  (21) 2  (21)  420 .

42. Answers will vary. From a graph, the domain can be found by visually locating the x-values for which the graph is defined. The range can be found in a similar fashion by visually locating the y-values for which the function is defined.

If an equation is given, the domain can be found by locating any restricted values and removing them from the set of real numbers. The range can be found by using known properties of the graph of the equation, or estimated by means of a table of values. 43. The graph of a function can have any number of x-intercepts. The graph of a function can have at most one y-intercept (otherwise the graph would fail the vertical line test). 44. Yes, the graph of a single point is the graph of a function since it would pass the vertical line test. The equation of such a function would be something like the following: f  x   2 , where x  7.

45. (a) III; (b) IV; (c) I; (d) V; (e) II 46. (a) II; (b) V; (c) IV; (d) III; (e) I

49. a.

2 hours elapsed; Kevin was between 0 and 3 miles from home.

0.5 hours elapsed; Kevin was 3 miles from home. c. 0.3 hours elapsed; Kevin was between 0 and 3 miles from home. d. 0.2 hours elapsed; Kevin was at home. e. 0.9 hours elapsed; Kevin was between 0 and 2.8 miles from home. f. 0.3 hours elapsed; Kevin was 2.8 miles from home. g. 1.1 hours elapsed; Kevin was between 0 and 2.8 miles from home. h. The farthest distance Kevin is from home is 3 miles. i. Kevin returned home 2 times. b.

50. a.

47.

Michael travels fastest between 7 and 7.4 minutes. That is,  7, 7.4  .

b. Michael's speed is zero between 4.2 and 6 minutes. That is,  4.2, 6  .

Between 0 and 2 minutes, Michael's speed increased from 0 to 30 miles/hour. d. Between 4.2 and 6 minutes, Michael was stopped (i.e, his speed was 0 miles/hour). e. Between 7 and 7.4 minutes, Michael was traveling at a steady rate of 50 miles/hour. f. Michael's speed is constant between 2 and 4 minutes, between 4.2 and 6 minutes, between 7 and 7.4 minutes, and between 7.6 and 8 minutes. That is, on the intervals (2, 4), (4.2, 6), (7, 7.4), and (7.6, 8). c.

91 Copyright © 2020 Pearson Education, Inc.


Chapter 2: Functions and Their Graphs 51. Answers (graphs) will vary. Points of the form (5, y) and of the form (x, 0) cannot be on the graph of the function.

60. The car traveling north travels a distance or 25t and the car traveling west travels a distance of 35t where t is the time of travel. Using the Pythagorean we have: 402  (35t ) 2  (25t ) 2

52. The only such function is f  x   0 because it is

the only function for which f  x    f  x  . Any

1600  1225t 2  625t 2

other such graph would fail the vertical line test.

1600  1850t 2

53. Answers may vary. 54.

t 2  0.8649 t  0.93 hours Converting to minutes we have 0.93(60)  55.8 minutes

f ( x  2)  ( x  2) 2  ( x  2)  3  ( x 2  4 x  4)  x  2  3   x2  5x  9

61. 3x  4  7 and 5  2 x  13 3x  3 2 x  8 x 1 x  4

55. d  (1  3) 2  (0  ( 6)) 2  ( 2) 2  ( 6) 2  4  36  40  2 10

The solution set is  4,1 .

2 56. y  4   x  ( 6)  3 2 y4 x4 3 2 y  x8 3

62.

(5 x 2  7 x  2)  (8 x  10)  5 x 2  7 x  2  8 x  10  5 x 2  15 x  12

63.

57. Since the function contains a cube root then the domain is:

 3,10

 ,   2

1  58.  (12)   36 2 

Section 2.3 1. 2  x  5

x 6 x 6   x6 x 6 59. 1 x6  x  6 x  6 x  6  

2. slope 

y 83 5   1 x 3   2  5

3. x-axis: y   y

  y   5x2  1  y  5x2  1 y  5 x 2  1 different

y-axis: x   x y  5x 1 2

y  5 x 2  1 same

92

Copyright © 2020 Pearson Education, Inc.


Section 2.3: Properties of Functions

origin: x   x and y   y

19. Yes. The local maximum at x  2 is 10.

 y   5x 1 2

 y  5x2  1

20. No. There is a local minimum at x  5 ; the local minimum is 0.

y  5 x 2  1 different

21.

f has local maxima at x   2 and x  2 . The local maxima are 6 and 10, respectively.

22.

f has local minima at x   8, x  0 and x  5 . The local minima are –4, 0, and 0, respectively.

23.

f has absolute minimum of 4 at x = –8.

24.

f has absolute maximum of 10 at x = 2.

The equation has symmetry with respect to the y-axis only. y  y1  m  x  x1 

4.

y   2   5  x  3 y  2  5  x  3

5. y  x 2  9 x-intercepts: 0  x2  9

25. a.

Intercepts: (–2, 0), (2, 0), and (0, 3).

b.

Domain:  x  4  x  4 or  4, 4 ;

x 2  9  x  3

Range:  y 0  y  3 or  0, 3 .

y-intercept:

Increasing: [–2, 0] and [2, 4]; Decreasing: [–4, –2] and [0, 2]. d. Since the graph is symmetric with respect to the y-axis, the function is even.

c.

y   0   9  9 2

The intercepts are  3, 0  ,  3, 0  , and  0, 9  . 6. increasing

26. a.

Intercepts: (–1, 0), (1, 0), and (0, 2).

b. Domain:  x  3  x  3 or  3, 3 ;

7. even; odd

Range:  y 0  y  3 or  0, 3 .

8. True

Increasing: [–1, 0] and [1, 3]; Decreasing: [–3, –1] and [0, 1]. d. Since the graph is symmetric with respect to the y-axis, the function is even. c.

9. True 10. False; odd functions are symmetric with respect to the origin. Even functions are symmetric with respect to the y-axis.

27. a.

Intercepts: (0, 1).

11. c

b. Domain:  x x is any real number ;

12. d

Range:  y y  0 or  0,   .

13. Yes

c.

14. No, it is increasing.

d. Since the graph is not symmetric with respect to the y-axis or the origin, the function is neither even nor odd.

15. No 16. Yes 17.

28. a.

f is increasing on the intervals

Intercepts: (1, 0).

b. Domain:  x x  0 or  0,   ;

Range:  y y is any real number .

 8, 2 , 0, 2 , 5, 7 . 18.

Increasing: (, ) ; Decreasing: never.

f is decreasing on the intervals:

c.

Increasing: [0, ) ; Decreasing: never.

 10, 8 ,  2, 0 ,  2,5 . 93 Copyright © 2020 Pearson Education, Inc.


Chapter 2: Functions and Their Graphs d. Since the graph is not symmetric with respect to the y-axis or the origin, the function is neither even nor odd.

d. Since the graph is not symmetric with respect to the y-axis or the origin, the function is neither even nor odd.

Intercepts: (, 0), (, 0), and (0, 0) .

33. a.

b. Domain:  x    x   or  ,  ;

b.

29. a.

34. a.

   Increasing:   ,  ;  2 2     Decreasing:  ,   and  ,   . 2  2 

b.

35. a.

b.

     Intercepts:   , 0  ,  , 0  , and (0, 1) .  2  2 

.

f has a local minimum value of –1 at

f has a local maximum value of 1 at x  0.

b.

f has a local minimum value of –1 both at x   and x   .

37.

f ( x)  4 x3 f ( x)  4( x)3   4 x3   f  x 

1  5   1 Intercepts:  , 0  ,  , 0  , and  0,  . 3 2      2

Therefore, f is odd. 38.

Range:  y  1  y  2 or  1, 2 .

f ( x)  2 x 4  x 2 f ( x)  2( x) 4  ( x) 2  2 x 4  x 2  f  x 

Increasing:  2, 3 ; Decreasing:  1, 1 ;

Therefore, f is even.

Constant:  3,  1 and 1, 2

39. g ( x)  10  x 2

d. Since the graph is not symmetric with respect to the y-axis or the origin, the function is neither even nor odd.

g ( x)  10  ( x) 2  10  x 2  g  x 

Therefore, g is even.

Intercepts:   2.3, 0  ,  3, 0  , and  0, 1 .

40. h( x)  3 x3  5

b. Domain:  x  3  x  3 or  3, 3 ;

h( x)  3( x)3  5   3 x3  5

h is neither even nor odd.

Range:  y  2  y  2 or  2, 2 . c.

2

36. a.

Increasing:  , 0 ; Decreasing:  0,  .

b. Domain:  x  3  x  3 or  3, 3 ;

32. a.

d. Since the graph is symmetric with respect to the y-axis, the function is even.

c.

f has a local maximum value of 1 at

x . 2

Range:  y  1  y  1 or  1, 1 .

31. a.

f has a local minimum value of 0 at both

x

b. Domain:  x    x   or  ,  ;

c.

f has a local maximum value of 2 at x  0. x  1 and x  1.

d. Since the graph is symmetric with respect to the origin, the function is odd. 30. a.

f has a local minimum value of 0 at both x   2 and x  2.

Range:  y  1  y  1 or  1, 1 . c.

f has a local maximum value of 3 at x  0.

41. F ( x)  3 4 x

Increasing:  3,  2 and  0, 2 ;

F ( x)  3 4 x   3 4 x   F  x 

Decreasing:  2, 3 ; Constant:   2, 0 .

Therefore, F is odd.

94

Copyright © 2020 Pearson Education, Inc.


Section 2.3: Properties of Functions

51.

42. G ( x)  x

f has an absolute minimum of 1 at x  1. f has an absolute maximum of 4 at x = 3.

G ( x)   x G is neither even nor odd.

f has an local minimum value of 1 at x  1. f has an local maximum value of 4 at x = 3.

43.

f ( x)  x  x

52.

f ( x)   x   x   x  x

f has no absolute maximum.

f is neither even nor odd.

44.

f has an absolute minimum of 1 at x  0. f has no local minimum. f has no local maximum.

f ( x)  3 2 x 2  1 f ( x)  3 2( x) 2  1  3 2 x 2  1  f  x 

53.

f has an absolute minimum of 0 at x  0. f has no absolute maximum.

Therefore, f is even.

f has an local minimum value of 0 at x  0.

1 2 x 8 1 1 g ( x)   2  g  x 2 ( x)  8 x  8 Therefore, g is even.

f has an local minimum value of 2 at x  3.

45. g ( x) 

f has an local maximum value of 3 at x  2.

54.

f has an absolute maximum of 4 at x  2. f has no absolute minimum. f has an local maximum value of 4 at x  2. f has an local minimum value of 2 at x  0.

x 46. h( x )  2 x 1 x x  2  h  x  h(  x )  2 ( x)  1 x  1 Therefore, h is odd.  x3 3x2  9  (  x )3 x3  2  h  x  h(  x )  2 3( x)  9 3 x  9 Therefore, h is odd.

47. h( x) 

48. F ( x) 

55.

f has no absolute maximum or minimum. f has no local maximum or minimum.

56.

f has no absolute maximum or minimum. f has no local maximum or minimum.

57.

f  x   x3  3 x  2 on the interval  2, 2 

Use MAXIMUM and MINIMUM on the graph of y1  x3  3x  2 .

2x x

2( x )  2 x   F  x x x Therefore, F is odd.

F ( x) 

49.

f has an absolute maximum of 4 at x  1. f has an absolute minimum of 1 at x  5. f has an local maximum value of 3 at x  3. f has an local minimum value of 2 at x  2.

50.

f has an absolute maximum of 4 at x  4. f has an absolute minimum of 0 at x  5. f has an local maximum value of 4 at x  4.

local maximum: f ( 1)  4 local minimum: f (1)  0

f is increasing on:  2, 1 and 1, 2 ; f is decreasing on:  1,1

f has an local minimum value of 1 at x  1.

95 Copyright © 2020 Pearson Education, Inc.


Chapter 2: Functions and Their Graphs

58.

f  x   x3  3 x 2  5 on the interval  1,3

Use MAXIMUM and MINIMUM on the graph of y1  x3  3 x 2  5 .

local maximum: f (0)  5 local minimum: f (2)  1

f is increasing on:  1, 0 and  2,3 ;

local maximum: f (0)  0 local minimum: f ( 0.71)  0.25 ; f (0.71)  0.25

f is decreasing on:  0, 2 59.

f  x   x5  x3 on the interval  2, 2 

f is increasing on:  0.71, 0 and  0.71, 2 ;

Use MAXIMUM and MINIMUM on the graph of y1  x5  x3 .

f is decreasing on:  2, 0.71 and  0, 0.71

0.5

2

61.

f  x   0.2 x3  0.6 x 2  4 x  6 on the

interval  6, 4 

2

Use MAXIMUM and MINIMUM on the graph of y1  0.2 x3  0.6 x 2  4 x  6 .

0.5 0.5

2

2

0.5

local maximum: f ( 0.77)  0.19 local minimum: f (0.77)  0.19

f is increasing on:  2, 0.77  and  0.77, 2 ; f is decreasing on:  0.77, 0.77  60.

local maximum: f (1.77)  1.91 local minimum: f ( 3.77)  18.89

f  x   x 4  x 2 on the interval  2, 2 

Use MAXIMUM and MINIMUM on the graph of y1  x 4  x 2 .

f is increasing on:  3.77,1.77  ; f is decreasing on:  6, 3.77  and 1.77, 4

96

Copyright © 2020 Pearson Education, Inc.


Section 2.3: Properties of Functions

62.

f  x   0.4 x3  0.6 x 2  3 x  2 on the

f ( 1.87)  0.95 , f (0.97)  2.65

f is increasing on:  1.87, 0 and  0.97, 2 ;

interval  4,5  Use MAXIMUM and MINIMUM on the graph of y1  0.4 x3  0.6 x 2  3 x  2 .

f is decreasing on:  3, 1.87  and  0, 0.97  64.

f  x   0.4 x 4  0.5 x3  0.8 x 2  2 on the

interval  3, 2  Use MAXIMUM and MINIMUM on the graph of y1  0.4 x 4  0.5 x3  0.8 x 2  2 .

local maximum: f (2.16)  3.25 local minimum: f ( 1.16)  4.05

f is increasing on:  1.16, 2.16 ; f is decreasing on:  4, 1.16 and  2.16,5 63.

f  x   0.25 x 4  0.3x3  0.9 x 2  3 on the

interval  3, 2  Use MAXIMUM and MINIMUM on the graph of y1  0.25 x 4  0.3x3  0.9 x 2  3 . local maxima: f ( 1.57)  0.52 , f (0.64)  1.87 local minimum:  0, 2  f (0)  2

f is increasing on:  3, 1.57  and  0, 0.64 ; f is decreasing on:  1.57, 0 and  0.64, 2 65.

f ( x)  2 x 2  4 a. Average rate of change of f from x  0 to x2 f  2  f 0 20

 2  2  4   2  0  4  2

local maximum: f (0)  3 local minimum: 97 Copyright © 2020 Pearson Education, Inc.

 4    4  2

2

2 8   4 2


Chapter 2: Functions and Their Graphs b.

Average rate of change of f from x = 1 to x = 3:

c.

 

2  3  4  2 1  4 f  3  f 1  3 1 2  14    2  16    8 2 2 Average rate of change of f from x = 1 to x = 4: 2

2

 

2  4   4  2 1  4 f  4   f 1  4 1 3  28    2  30    10 3 3

66.

2

2

b. Average rate of change of g from x  1 to x 1: g 1  g  1 1   1

c.

3 1  33  4  3  7   13  4 1  7      2  22    4  18   9 2 2

f ( x)   x3  1 a. Average rate of change of f from x = 0 to x = 2:

 

  2  1   0  1 f  2  f 0  20 2 7  1 8    4 2 2 b. Average rate of change of f from x = 1 to x = 3:

c.

3

3

 

68. h  x   x 2  2 x  3 a.

3

 

12  2 1  3   12  2  1  3     2  2    6  4    2 2 2

b. Average rate of change of h from x  0 to x  2: h  2  h  0

 1  1    1  1 f 1  f  1  2 1   1 

3

3

0  2 2   1 2 2

20   2  2  2  2   3     0  2  2  0   3     2  3   3 0   0 2 2

67. g  x   x3  4 x  7 a.

Average rate of change of h from x  1 to x 1: h 1  h  1 1   1

  3  1   1  1 f  3  f 1  3 1 2 26   0  26    13 2 2 Average rate of change of f from x = –1 to x = 1: 3

13  4 1  7    13  4  1  7      2  4   10  6    3 2 2 Average rate of change of g from x  1 to x 3: g  3  g 1

Average rate of change of g from x  3 to x  2 : g  2   g  3 2   3

 2 3  4  2   7    33  4  3  7      1  7    8  15    15 1 1

98

Copyright © 2020 Pearson Education, Inc.


Section 2.3: Properties of Functions c.

Average rate of change of h from x  2 to x 5: h  5  h  2  52   5  2  2  5   3    2  2  2  2   3      3 18   3 15   5 3 3

69.

71. g  x   x 2  2 a.

Therefore, the average rate of change of g from 2 to 1 is 1 . b. From (a), the slope of the secant line joining  2, g  2   and 1, g 1  is 1 .We use the

point-slope form to find the equation of the secant line: y  y1  msec  x  x1 

f  x   5x  2

Average rate of change of f from 1 to 3: y f  3  f 1 13  3 10    5 x 3 1 3 1 2 Thus, the average rate of change of f from 1 to 3 is 5. b. From (a), the slope of the secant line joining 1, f 1  and  3, f  3  is 5. We use the

a.

y  2  1 x   2   y  2  x  2 y  x

72. g  x   x 2  1 a.

point-slope form to find the equation of the secant line: y  y1  msec  x  x1 

b. From (a), the slope of the secant line joining  1, g  1  and  2, g  2   is 1. We use the

y  5x  2

70.

point-slope form to find the equation of the secant line: y  y1  msec  x  x1 

f  x   4 x  1

a.

Average rate of change of f from 2 to 5: y f  5   f  2  19   7    x 52 52 12   4 3 Therefore, the average rate of change of f from 2 to 5 is 4 .

b. From (a), the slope of the secant line joining  2, f  2   and  5, f  5  is 4 . We use the

point-slope form to find the equation of the secant line: y  y1  msec  x  x1  y   7   4  x  2  y  7  4 x  8 y  4 x  1

Average rate of change of g from 1 to 2: y g  2   g  1 52 3    1 x 2   1 2   1 3 Therefore, the average rate of change of g from 1 to 2 is 1.

y  3  5  x  1 y  3  5x  5

Average rate of change of g from 2 to 1: y g 1  g  2  1  2 3     1 x 1   2  1   2  3

y  2  1 x   1  y  2  x 1 y  x3

73. h  x   x 2  2 x

Average rate of change of h from 2 to 4: y h  4   h  2  8  0 8    4 x 42 42 2 Therefore, the average rate of change of h from 2 to 4 is 4. b. From (a), the slope of the secant line joining  2, h  2   and  4, h  4   is 4. We use the

a.

point-slope form to find the equation of the secant line: y  y1  msec  x  x1  y  0  4  x  2 y  4x  8

99 Copyright © 2020 Pearson Education, Inc.


Chapter 2: Functions and Their Graphs f  2   (2)3  12(2)  8  24  16

74. h  x   2 x 2  x a.

b.

So there is a local minimum value of 16 at x  2 .

Average rate of change from 0 to 3: y h  3  h  0  15  0   x 30 30 15   5 3 Therefore, the average rate of change of h from 0 to 3 is 5 . From (a), the slope of the secant line joining  0, h(0)  and  3, h(3)  is 5 . We use the

77. F  x    x 4  8 x 2  9 a.

Since F   x   F  x  , the function is even. b.

Since the function is even, its graph has y-axis symmetry. The second local maximum value is 25 and occurs at x  2 .

c.

Because the graph has y-axis symmetry, the area under the graph between x  0 and x  3 bounded below by the x-axis is the same as the area under the graph between x  3 and x  0 bounded below the x-axis. Thus, the area is 50.4 square units.

y  5 x

g  x   x3  27 x g   x     x   27   x  3

  x3  27 x

 g  x

78. G  x    x 4  32 x 2  144

Since g   x    g  x  , the function is odd. b.

a.

Since g  x  is odd then it is symmetric

2

Since G   x   G  x  , the function is even.

So there is a local maximum of 54 at x  3 .

b.

Since the function is even, its graph has y-axis symmetry. The second local maximum is in quadrant II and is 400 and occurs at x  4 .

c.

Because the graph has y-axis symmetry, the area under the graph between x  0 and x  6 bounded below by the x-axis is the same as the area under the graph between x  6 and x  0 bounded below the x-axis. Thus, the area is 1612.8 square units.

f  x    x3  12 x f   x      x   12   x  3

3

 x  12 x

   x3  12 x

  f  x

Since f   x    f  x  , the function is odd. b.

4

 G  x

g  3  (3)3  27(3)  27  81  54

a.

G   x      x   32   x   144   x 4  32 x 2  144

about the origin so there exist a local maximum at x  3 .

76.

2

 F  x

y  0  5  x  0 

  x3  27 x

4

  x4  8x  9

point-slope form to find the equation of the secant line: y  y1  msec  x  x1 

75. a.

F x   x  8x  9

Since f  x  is odd then it is symmetric about the origin so there exist a local maximum at x  3 .

100

Copyright © 2020 Pearson Education, Inc.


Section 2.3: Properties of Functions 1

2500 x 2500 2 y1  0.3 x  21x  251  x

79. C  x   0.3 x 2  21x  251  a.



 

b. Use MINIMUM. Rounding to the nearest whole number, the average cost is minimized when approximately 10 lawnmowers are produced per hour.

81. a.







c. 80. a.

The minimum average cost is approximately $239 per mower.

b.

C  t   .002t  .039t  .285t  .766t  .085 4

3

2

Graph the function on a graphing utility and use the Maximum option from the CALC menu. 1



c.

The concentration will be highest after about 2.16 hours. b. Enter the function in Y1 and 0.5 in Y2. Graph the two equations in the same window and use the Intersect option from the CALC menu.

avg. rate of change 

P  2.5   P  0 

2.5  0 0.18  0.09  2.5  0 0.09  2.5  0.036 gram per hour On average, the population is increasing at a rate of 0.036 gram per hour from 0 to 2.5 hours. avg. rate of change 

P  6   P  4.5 

6  4.5 0.50  0.35  6  4.5 0.15  1.5  0.1 gram per hour On average, the population is increasing at a rate of 0.1 gram per hour from 4.5 to 6 hours.

The average rate of change is increasing as time passes. This indicates that the population is increasing at an increasing rate.

82. a.

1



After taking the medication, the woman can feed her child within the first 0.71 hours (about 42 minutes) or after 4.47 hours (about 4hours 28 minutes) have elapsed.





101 Copyright © 2020 Pearson Education, Inc.


Chapter 2: Functions and Their Graphs d. Average rate of change of f from x  0 to x  0.01 :

b. The slope represents the average rate of change of the debt from 2007 to 2012. c.

d.

83.

avg. rate of change 

f  0.01  f  0 

P  2010   P  2008 

0.01  0

2010  2008 13562  10025  2 3537  2  $ 1, 768.5 billion/yr

avg. rate of change 

e.

Average rate of change of f from x  0 to x  0.001 : 0.001  0

2013  2011 16738  14790  2 1948  2  $ 974 billion/yr

f.

f.

The average rate of change is decreasing as time passes.

2016  2014 19573  17824  2 1749  2  $ 874.5 billion

f ( x)  x 2

a.

Average rate of change of f from x  0 to x 1: f 1  f  0  12  02 1   1 1 0 1 1

b. Average rate of change of f from x  0 to x  0.5 : f  0.5   f  0  0.5  0

c.

 0.52  02 0.5

0.25  0.5 0.5

Average rate of change of f from x  0 to x  0.1 : f  0.1  f  0  0.1  0

 0.12  02 0.1

 0.0012  02

0.001 0.000001   0.001 0.001

Graphing the secant lines:

P  2016   P  2014 

avg. rate of change 

 0.012  02

0.01 0.0001   0.01 0.01

f  0.001  f  0 

P  2013  P  2011

e.

0.01  0.1 0.1

102

Copyright © 2020 Pearson Education, Inc.


Section 2.3: Properties of Functions

g.

f.

Graphing the secant lines:

g.

The secant lines are beginning to look more and more like the tangent line to the graph of f at the point where x  1 .

The secant lines are beginning to look more and more like the tangent line to the graph of f at the point where x  0 .

h. The slopes of the secant lines are getting smaller and smaller. They seem to be approaching the number zero. 84.

f ( x)  x 2

a.

Average rate of change of f from x  1 to x  2: f  2   f 1 22  12 3   3 2 1 1 1

b. Average rate of change of f from x  1 to x  1.5 : f 1.5   f 1 1.5  1

c.

1.52  12 0.5

1.25  2.5 0.5

Average rate of change of f from x  1 to x  1.1 : f 1.1  f 1 1.1  1

1.12  12 0.1

0.21  2.1 0.1

d. Average rate of change of f from x  1 to x  1.01 : f 1.01  f 1 1.01  1

e.

1.012  12 0.01

Average rate of change of f from x  1 to x  1.001 : f 1.001  f 1 1.001  1

h. The slopes of the secant lines are getting smaller and smaller. They seem to be approaching the number 2.

0.0201   2.01 0.01

1.0012  12

85.

f ( x)  2 x  5

a.

f ( x  h)  f ( x ) h 2( x  h)  5  2 x  5 2h   2 h h

msec 

0.001 0.002001   2.001 0.001

103 Copyright © 2020 Pearson Education, Inc.


Chapter 2: Functions and Their Graphs b. When x  1 : h  0.5  msec  2 h  0.1  msec  2 h  0.01  msec  2 as h  0, msec  2 c.

87.

f ( x)  x 2  2 x

a.

Using the point 1, f 1   1, 7  and slope, m  2 , we get the secant line: y  7  2  x  1 y  7  2x  2 y  2x  5

b. When x = 1, h  0.5  msec  2 1  0.5  2  4.5 h  0.1  msec  2 1  0.1  2  4.1 h  0.01  msec  2 1  0.01  2  4.01 as h  0, msec  2 1  0  2  4

d. Graphing:

c.

y  3  4.01x  4.01 y  4.01x  1.01

f ( x)  3 x  2

a.

f ( x  h)  f ( x ) h 3( x  h)  2  (3x  2) 3h    3 h h

msec 

d. Graphing:

b. When x = 1, h  0.5  msec  3 h  0.1  msec  3 h  0.01  msec  3 as h  0, msec  3 c.

Using point 1, f 1   1,3 and slope = 4.01, we get the secant line: y  3  4.01 x  1

The graph and the secant line coincide. 86.

f ( x  h)  f ( x ) h 2 ( x  h)  2( x  h)  ( x 2  2 x)  h 2 2 x  2 xh  h  2 x  2h  x 2  2 x  h 2 2 xh  h  2h  h  2x  h  2

msec 

88.

Using point 1, f 1   1, 1 and

f ( x)  2 x 2  x

a.

slope = 3 , we get the secant line: y   1  3  x  1 y  1  3 x  3 y  3 x  2

d. Graphing:

f ( x  h)  f ( x ) h 2( x  h) 2  ( x  h)  (2 x 2  x)  h 2 2( x  2 xh  h 2 )  x  h  2 x 2  x  h 2 2 2 x  4 xh  2h  x  h  2 x 2  x  h 2 4 xh  2h  h  h  4 x  2h  1

msec 

b. When x = 1, h  0.5  msec  4 1  2  0.5   1  6

The graph and the secant line coincide. 104

Copyright © 2020 Pearson Education, Inc.


Section 2.3: Properties of Functions h  0.1  msec  4 1  2  0.1  1  5.2

d. Graphing:

h  0.01  msec  4 1  2  0.01  1  5.02

as h  0, msec  4 1  2  0   1  5

c.

Using point 1, f 1   1,3 and slope = 5.02, we get the secant line: y  3  5.02  x  1 y  3  5.02 x  5.02 y  5.02 x  2.02

90.

d. Graphing:

f ( x)   x 2  3x  2 f ( x  h)  f ( x ) a. msec  h 2

  x  h   3  x  h   2   x 2  3x  2

h 2

2

2

( x  2 xh  h )  3 x  3h  2  x  3 x  2  h 2

89.

f ( x)  2 x 2  3 x  1 f ( x  h)  f ( x ) a. msec  h 

2 xh  h 2  3h h  2 x  h  3

h 2

2

2

2

2

2( x  2 xh  h )  3 x  3h  1  2 x  3 x  1 h

2 x  4 xh  2h  3 x  3h  1  2 x  3 x  1 h

2

2

4 xh  2h  3h h  4 x  2h  3 

b. When x = 1, h  0.5  msec  2 1  0.5  3  0.5 h  0.1  msec  2 1  0.1  3  0.9 h  0.01  msec  2 1  0.01  3  0.99 as h  0, msec  2 1  0  3  1 c.

Using point 1, f 1   1, 0  and slope = 0.99, we get the secant line: y  0  0.99  x  1 y  0.99 x  0.99

b. When x = 1, h  0.5  msec  4 1  2  0.5   3  2

d. Graphing:

h  0.1  msec  4 1  2  0.1  3  1.2 h  0.01  msec  4 1  2  0.01  3  1.02

as h  0, msec  4 1  2  0   3  1

c.

2

2  x  h   3  x  h   1  2 x 2  3x  1 2

2

 x  2 xh  h  3 x  3h  2  x  3 x  2 h

Using point 1, f 1   1, 0  and slope = 1.02, we get the secant line: y  0  1.02  x  1 y  1.02 x  1.02

105 Copyright © 2020 Pearson Education, Inc.


Chapter 2: Functions and Their Graphs

91.

f ( x) 

a.

1 x

92. f ( x  h)  f ( x ) h  1  1   x   x  h    xh x     x  h x   h h  x  x  h   1   h   1           x  h x   h    x  h x   h 

msec 



f ( x) 

a.

1

 x  h x 1

1  0.5 1

1 10     0.909 1.1 11 1 h  0.01  msec   1  0.011

b. When x = 1, h  0.5  msec 

1 100   0.990 1.01 101 1 1 msec      1 1  0 1    1

h  0.1  msec 



c.

 2 xh  h 2   1      x  h 2 x 2   h    2 x  h 2 x  h   2 2 2 x  2 xh  h 2 x 2  x  h x

1 2     0.667 1.5 3 1 h  0.1  msec   1  0.11

as h  0,

f ( x  h)  f ( x ) h  1 1    2 2   x  h x   h  x 2   x  h 2      x  h 2 x 2    h  x 2  x 2  2 xh  h 2    1   2 2   h   x  h x  

msec 

b. When x = 1,

h  0.5  msec  

1 x2

2 1  0.5

1  0.5 1

2 2

2 1  0.1

1  0.1 1

h  0.01  msec 

Using point 1, f 1   1,1 and

2 2



10  1.1111 9



210  1.7355 121

2 1  0.01

1  0.012 12

20,100  1.9704 10, 201 2  1  0 as h  0, msec   2 1  0 2 12 

100 , we get the secant line: 101 100 y 1    x  1 101 100 100 y 1   x 101 101 100 201 y x 101 101

slope = 

c.

Using point 1, f 1   1,1 and slope = 1.9704 , we get the secant line: y  1  1.9704  x  1 y  1  1.9704 x  1.9704

d. Graphing:

y  1.9704 x  2.9704

d. Graphing:

106

Copyright © 2020 Pearson Education, Inc.


Section 2.3: Properties of Functions

93.

f (2)  12 and f (1)  8, so

97. A function that is increasing on an interval can have at most one x-intercept on the interval. The graph of f could not "turn" and cross it again or it would start to decrease.

f (2)  f (1) 12  4 2  (1) 3 f ( x)  4 

98. An increasing function is a function whose graph goes up as you read from left to right.

3x 2  4 x  1  4 3x 2  4 x  5  0

y

4  42  4(3)(5) 4  76  x 2(3) 6 

5

4  2 19 2  19  6 3

x

2  19  2.1 is outside the interval 3

x

2  19  .079 is in the interval. 3

2  19 The only such number is . 3  x   x 94. g ( x)  2 f     2 f   . Since f is odd,  3  3  x x f     f    3 3 x  x g ( x)  2 f    2 f      g ( x) 3  3 so g is odd. So g is odd.

3

5

A decreasing function is a function whose graph goes down as you read from left to right. y 5

3

95. Answers will vary. One possibility follows:

99. To be an even function we need f   x   f  x 

2 (3, 0) 4

(1, 2)

3

5

y



3

(0, 3)

and to be an odd function we need f   x    f  x  . In order for a function be both even and odd, we would need f  x    f  x  . This is only possible if f  x   0 .

5 (2, 6)

100. The graph of y  5 is a horizontal line.

96. Answers will vary. See solution to Problem 89 for one possibility.

107 Copyright © 2020 Pearson Education, Inc.


Chapter 2: Functions and Their Graphs

The local maximum is y  5 and it occurs at each x-value in the interval.

108.

 x  2  2  3x  115x   3x  1 3  x  2  2 x  6 x  x  2   3x  1  x  2  5 x   3x  1   6 x  x  2   3x  1 5 x  10 x  3 x  1  6 x  x  2   3x  1 8 x  10 x  1 3

2

101. Not necessarily. It just means f  5   f  2  .

The function could have both increasing and decreasing intervals. 102.

f ( x2 )  f ( x1 ) bb  0 x2  x1 x2  x1 f (2)  f (2) 0  0  0 4 2   2 

103.

540  36(15)  6 15

 16a  4ab  4ab  b 2

2

5

2

2

5

2

2

2

5

5

3

2

2

5

5

3

110.

105. C ( x)  0.80 x  40

3

5

5

3x  7  3  5 3x  7  8 3x  7  8 or 3 x  7  8 3 x  15 3x  1 1 x  5 x 3 1 The solution set is 5, . 3

1 mile 24 hrs   0.727 miles/day 33 hrs 1 day 106. 1 day  6 miles  8.25 days 0.727 miles 330 S T 330 S 10 S  8.25 days

 

x6  7 x3  8

111.

x6  7 x3  8  0

( x  h) 2  ( y  k ) 2  r 2

( x3  8)( x3  1)  0 2

x3  8  0

or x3  1  0

x 3  8 x3  1 x  2 x 1 The solution set is 2,1 .

112.

3 y 2  D  3x 2  3 xy 2  3 x 2 y  D  0 3 y 2  D  3 x 2 y  D  3 x 2  3xy 2 D  3 y 2  3x 2 y   3 x 2  3 xy 2 D

2 3 x 2  3 xy 2 xy 2  x 2 x  y  x    y 2  x2 y y  y  x2  3 y 2  3x 2 y

108

Copyright © 2020 Pearson Education, Inc.

3

2

  75 3   7 3  2 , 2     10 ,  2     

2

 16a 2  8ab  b 2

 6 ( x  3) 2  ( y  (2)) 2     2  3 ( x  3) 2  ( y  2) 2  2

4

 x  x y  y2  109.  1 2 , 1  2   2  2  35 1  (4)   2 , 2   

104. (4a  b) 2  (4a  b)(4a  b)

107.

5


Section 2.4: Library of Functions; Piecewise-defined Functions 9. b

Section 2.4 1. y 

10. a

x

11. C 12. A 13. E 14. G 15. B 16. D 2. y 

3.

17. F

1 x

18. H 19.

f  x  x

20.

f  x   x2

y  x3  8 y-intercept: Let x  0 , then y   0   8  8 . 3

x-intercept: Let y  0 , then 0  x3  8 x3  8 x2

The intercepts are  0, 8  and  2, 0  . 4.

 , 0 

5. piecewise-defined 6. True 7. False; the cube root function is odd and increasing on the interval  ,   . 8. False; the domain and range of the reciprocal function are both the set of real numbers except for 0. 109 Copyright © 2020 Pearson Education, Inc.


Chapter 2: Functions and Their Graphs

21.

f  x   x3

25.

f ( x)  3 x

22.

f  x  x

26.

f  x  3

23.

1 f  x  x

27. a. b.

f (0)  4

c.

f (2)  3(3)  2  7

28. a.

24.

f  2   3  2   6

b.

f  1  0

c.

f  0  2  0  1  1

29. a.

f  x  x

f ( 3)  (  3) 2  9

2

f  2   2  2   4  0

b.

f  0  2  0  4  4

c.

f 1  2 1  4  6

d.

f  3   3  1  26

30. a.

f (1)  ( 1)3  1

3

b.

f (0)   0   0

c.

f (1)  3(1)  2  5

3

110

Copyright © 2020 Pearson Education, Inc.


Section 2.4: Library of Functions; Piecewise-defined Functions

d. 31.

f  3  3  3  2  11 if x  0 if x  0

2 x f ( x)   1

a.

33.

if x  1  2 x  3 f ( x)   3 x  2 if x 1  a. Domain:  x x is any real number

b. x-intercept: none y-intercept: f  0   2  0   3  3

Domain:  x x is any real number

The only intercept is  0,3 .

b. x-intercept: none y-intercept: f  0  1

c.

Graph:

The only intercept is  0,1 . c.

Graph:

d. Range:  y y  1 ; 1,   34. d. Range:  y y  0 ;  , 0    0,   32.

a.

b.

if x  0 if x  0

3x f ( x)   4

if x   2 x  3 f ( x)   if x   2  2 x  3 a. Domain:  x x is any real number 2 x  3  0 2 x  3

Domain:  x x is any real number

x

b. x-intercept: none y-intercept: f  0   4

x-intercepts: 3,  y-intercept:

The only intercept is  0, 4  . c.

x3 0 x  3

3 2

3 2

f  0   2  0   3  3

 3  The intercepts are  3, 0  ,   , 0  , and  2 

Graph: y

 0, 3 .

5



c.



Graph:

5

5

 5

d. Range:  y y  0 ;  , 0    0,   111 Copyright © 2020 Pearson Education, Inc.


Chapter 2: Functions and Their Graphs d. Range:  y y  1 ;  , 1

35.

x  3  f ( x)  5  x  2 

c.

if  2  x  1 if x  1 if x  1

a.

Domain:  x x   2 ;  2,  

b.

x3  0 x  3 (not in domain) x-intercept: 2

x  2  0  x  2 x2

d. Range:  y y  5 ;  , 5 

y-intercept: f  0   0  3  3

c.

Graph:

37.

1  x f ( x)   2 x

if x  0 if x  0

The intercepts are  2, 0  and  0,3 .

a.

Domain:  x x is any real number

Graph:

b.

1 x  0 x2  0 x  1 x0 x-intercepts: 1, 0

y-intercept:

f  0   02  0

The intercepts are  1, 0  and  0, 0  . c.

Graph:

d. Range:  y y  4, y  5 ;  , 4   5 36.

2 x  5  f ( x)  3 5 x

if  3  x  0 if x  0 if x  0

a.

Domain:  x x   3 ;  3,  

b.

2x  5  0 2 x  5 5 x 2

x-intercept: 

d. Range:  y y is any real number

5 x  0 x0 (not in domain of piece)

38.

5 2

y-intercept: f  0   3

1 if x  0  f ( x)   x 3 x if x  0  a. Domain:  x x is any real number

b.

 5  The intercepts are   , 0  and  0, 3 .  2 

1 0 x (no solution) x-intercept: 0

3

x 0 x0

y-intercept: f  0   3 0  0 The only intercept is  0, 0  . 112

Copyright © 2020 Pearson Education, Inc.


Section 2.4: Library of Functions; Piecewise-defined Functions c.

Graph:

b.

2 x  0 x2

x 0 x0 (not in domain of piece)

no x-intercepts y-intercept: f  0   2  0  2 The intercept is  0, 2  . c.

y

d. Range:  y y is any real number 39.

 x f ( x)   3  x

a.

Graph: (3, 5)

5

if  2  x  0

(4, 2) (0, 2)

if x  0 5

Domain:  x  2  x  0 and x  0 or

5

 x | x  2, x  0 ;  2, 0    0,   . 5

b. x-intercept: none There are no x-intercepts since there are no values for x such that f  x   0 .

y-intercept: There is no y-intercept since x  0 is not in the domain. c.

2  x f ( x)    x

a.

41.

 x2  f ( x)   x  2 7 

Graph:

d. Range:  y y  0 ;  0,   40.

d. Range:  y y  1 ; 1,   if 0  x  2 if 2  x  5 if  5

a.

Domain:  x x  0 ;  0,   .

b.

x2  0 x0 (not in domain of piece) x20 70 x  2 (not possible) (not in domain of piece) No intercepts.

if  3  x  1 if x  1

Domain:  x  3  x  1 and x  1 or

 x | x  3, x  1 ;  3,1  1,   .

113 Copyright © 2020 Pearson Education, Inc.

x


Chapter 2: Functions and Their Graphs c.

Graph:

43. Answers may vary. One possibility follows: if  1  x  0  x  f ( x)   1 if 0  x  2  2 x 44. Answers may vary. One possibility follows: if  1  x  0 x f ( x)   if 0  x  2 1 45. Answers may vary. One possibility follows: if x  0  x f ( x)   if 0  x  2  x  2

d. Range:  y 0  y  7 ;  0, 7

42.

46. Answers may vary. One possibility follows: if  1  x  0 2 x  2 f ( x)   if x  0 x

3x  5 if  3  x  0  if 0  x  2 f ( x)  5  2  x  1 if x  2

a.

Domain:  x x  3 ; 3,   .

b.

3x  5  0

50 x2  1  0 5 (not possible) x 2  1 x 3 (not possible)

x-intercept: 

5 3

y-intercept: f  0   5  5  The intercepts are (0,5) and   , 0  .  3 

c.

47. a.

f (1.7)  int  2(1.7)   int(3.4)  3

b.

f (2.8)  int  2(2.8)   int(5.6)  5

c.

f (3.6)  int  2(3.6)   int(7.2)   8

48. a.

 1.2  f (1.2)  int    int(0.6)  0  2 

b.

 1.6  f (1.6)  int    int(0.8)  0  2 

c.

 1.8  f (1.8)  int    int( 0.9)  1  2 

49. a.

Graph:

b. The domain is  0, 6 .

d. Range:  4,  

c.

Absolute max: f (2)  6 Absolute min: f (6)  2

114

Copyright © 2020 Pearson Education, Inc.


Section 2.4: Library of Functions; Piecewise-defined Functions 50. a.

c.

For 0  x  30 : C  23.44  0.91686 x  0.26486 x  1.18172 x  23.44 For x  30 : C  23.44  0.91686  30   0.50897  x  30   0.26486(30)  23.44  27.5058  0.50897 x  15.2691  7.9458  0.50897 x  43.6225

b. The domain is  2, 2 .

Absolute max: f ( 2)  f (2)  3 Absolute min: none if 0  x  3 34.99 51. C   15 x  10.01 if x  3

The monthly charge function: if 0  x  30 1.18172 x  23.44 C 0.50897 x  43.6225 if x  30 

c.

a.

C  2  $34.99

b.

C  5  15  5  10.01  $64.99

c.

C 13  15 13  10.01  $184.99

d. Graph:

2  3int 1  x  0  x  4  52. F  x   2  9int  3  x  4  x  9 74 9  x  24 

a.

F  2   2  3int(1  2)  5

54. a.

Parking for 2 hours costs $5. b.

F  7   2  9int  3  7   38

Parking for 7 hours costs $38. c.

F 15   74

Parking for 15 hours costs $74. d.

1 hr 24 min   0.4 hr 60 min F  8.4   2  9int  3  8.4   2   9  (6)  56 Parking for 8 hours and 24 minutes costs $56.

53. a.

b.

Charge for 20 therms: C  23.44  0.91686(20)  0.26486(20)  $47.07 Charge for 150 therms: C  23.44  0.91686(30)  0.26486(30)  0.50897(120)  $119.97

Charge for 1000 therms: C  90.00  0.1201(150)  0.0549(850)  0.35(1000)  $504.68

b. Charge for 6000 therms: C  90.00  0.1201(150)  0.0549(4850) +0.0482 1000   0.35(6000)  $2522.48

c.

For 0  x  150 : C  90.00  0.1201x  0.35 x  0.4701x  90.00 For 150  x  5000 : C  90.00  0.1201150   0.0549  x  150   0.35 x  90.00  18.015  0.0549 x  8.235  0.35 x  0.4049 x  99.78

115 Copyright © 2020 Pearson Education, Inc.


Chapter 2: Functions and Their Graphs

For x  5000 : C  90.00  0.1201150   0.0549  4850 

d.

 0.0482  x  5000   0.35 x  90.00  18.015  266.265  0.0482 x  241  0.35 x  0.3982 x  133.28 The monthly charge function: 0.4701x  90.00 if 0  x  150  C  x   0.4049 x  82.38 if 150  x  5000 0.3982 x  115.88 if x  5000

55. For schedule X: 0.10 x 952.50  0.12( x  9525)  4453.50  0.22( x  38, 700)  f ( x)  14, 089.50  0.24( x  82,500) 32, 089.75  0.32( x  157,500)  45, 689.50  0.35( x  200, 000)  150, 689.50  0.37( x  500, 000) 56. For Schedule Y  1 : 0.10 x 1905.00  0.12( x  19, 050)  8,907.00  0.22( x  77, 400)  f ( x)  28,179.00  0.24( x  165, 000) 64,179.00  0.32( x  315, 000)  91,379.00  0.35( x  400, 000)  161,379.00  0.37( x  600, 000) 57. a.

if 0  x  9525 if 9525  x  38, 700 if 38, 700  x  82,500 if 82,500  x  157,500 if 157,500  x  200, 000 if 200, 000  x  500, 000 if x  500, 000

if 0  x  19, 050 if 19,050  x  77, 400 if 77, 400  x  165, 000 if 165, 000  x  315, 000 if 315, 000  x  400, 000 if 400, 000  x  600, 000 if x  600, 000

Let x represent the number of miles and C be the cost of transportation. if 0  x  100 0.50 x 0.50(100)  0.40( x  100) if 100  x  400  C ( x)   0.50(100) 0.40(300) 0.25( 400) if 400  x  800 x     0.50(100)  0.40(300)  0.25(400)  0( x  800) if 800  x  960 0.50 x 10  0.40 x  C ( x)   70  0.25 x 270

if 0  x  100 if 100  x  400 if 400  x  800 if 800  x  960

116

Copyright © 2020 Pearson Education, Inc.


Section 2.4: Library of Functions; Piecewise-defined Functions

b. For hauls between 100 and 400 miles the cost is: C ( x)  10  0.40 x . c.

For hauls between 400 and 800 miles the cost is: C ( x)  70  0.25 x .

58. Let x = number of days car is used. The cost of renting is given by 185 if x  7 222 if 7  x  8  259 if 8  x  9 C  x   296 if 9  x  10 333 if 10  x  11  370 if 11  x  14

given by 9000 8250  5250 C s   3750 2250  1500

Let s = the credit score of an individual who wishes to borrow $300,000 with an 80% LTV ratio. The adverse market delivery charge is

if 680  s  699 if 700  s  719 if 720  s  739 if s  740

b. 725 is between 720 and 739 so the charge would be $2250. c.

59. a.

if s  659 if 660  s  679

670 is between 660 and 679 so the charge would be $8250.

60. Let x = the amount of the bill in dollars. The minimum payment due is given by  x if 0  x  10 10 if 10  x  500  f  x   30 if 500  x  1000 50 if 1000  x  1500  70 if x  1500

117 Copyright © 2020 Pearson Education, Inc.


Chapter 2: Functions and Their Graphs

For 12  x  13 : C  x   1.00  12  0.21  $3.52

61. a.

W  10C

64. Use intervals  0,8  , 8,16  , 16,32  , 32,38 

b.

(10.45  10 5  5)(33  10) W  33   4C 22.04

c.

W  33 

d.

W  33  1.5958(33  10)   4C

e.

When 0  v  1.79 , the wind speed is so small that there is no effect on the temperature. When the wind speed exceeds 20, the wind chill depends only on the air temperature.

thought or as  0,3 and  8,8  .

W  10C

thought of as 16,8  and  32,3 .

f. 62. a. b.

W  33 

(exclude 0 and 38 since those would be the walls). Depth for the intervals 8,16  and 32, 38  are constant (8 ft and 3 ft

(10.45  10 15  15)(33  10)  3C 22.04

respectively). The other two are linear functions. On  0,8  the endpoint coordinates can be

m

W  33 

10.45  10 5  5 33   10 

5 x3 8

38 5  32  16 16 5 8   (16)  b 16 13  b 5 y   x  13 16 Therefore,  5 if 0  x  8  8 x3  if 8  x  16  8 d ( x)   5   x  13 if 16  x  32  16 3 if 32  x  38  m

22.04

10.45  10 15  15 33   10  22.04

 34C

d.

y

On 16,32  the endpoint coordinates can be

 21C

c.

83 5  80 8

W  33  1.5958  33   10     36C

63. Let x = the number of ounces and C  x  = the

postage due. For 0  x  1 : C  x   $1.00 For 1  x  2 : C  x   1.00  0.21  $1.21 For 2  x  3 : C  x   1.00  2  0.21  $1.42 For 3  x  4 : C  x   1.0  3  0.21  $1.63 

118

Copyright © 2020 Pearson Education, Inc.


Section 2.4: Library of Functions; Piecewise-defined Functions 65. The function f changes definition at 2 and the function g changes definition at 0. Combining these together, the sum function will change definitions at 0 and 2. On the interval  , 0 : ( f  g )( x )  f ( x )  g ( x )  (2 x  3)  ( 4 x  1) .  2 x  4 On the interval  0, 2  :

 f  g  ( x)  f ( x)  g ( x)  (2 x  3)  ( x  7) .  3x  4 On the interval  2,   :

left k units. The graph of y  ( x  4) 2 is the same as the graph of y  x 2 , but shifted to the left 4 units. The graph of y  ( x  5) 2 is the graph of y  x 2 , but shifted to the right 5 units.

68. Each graph is that of y  x , but either

compressed or stretched vertically.

( f  g )( x )  f ( x )  g ( x)  ( x 2  5 x )  ( x  7)  x2  6x  7

2 x  4 if x  0  So,  f  g  ( x)  3x  4 if 0  x  2  x 2  6 x  7 if x  2 

66. Each graph is that of y  x 2 , but shifted vertically.

If y  k x and k  1 , the graph is stretched vertically; if y  k x and 0  k  1 , the graph is 1 x is 4 the same as the graph of y  x , but compressed

compressed vertically. The graph of y 

vertically. The graph of y  5 x is the same as the graph of y  x , but stretched vertically. 69. The graph of y   x 2 is the reflection of the

If y  x 2  k , k  0 , the shift is up k units; if

graph of y  x 2 about the x-axis.

y  x 2  k , k  0 , the shift is down k units. The

graph of y  x 2  4 is the same as the graph of y  x 2 , but shifted down 4 units. The graph of y  x 2  5 is the graph of y  x 2 , but shifted up 5 units.

67. Each graph is that of y  x 2 , but shifted horizontally.

If y  ( x  k ) 2 , k  0 , the shift is to the right k units; if y  ( x  k ) 2 , k  0 , the shift is to the

The graph of y   x is the reflection of the graph of y  x about the x-axis.

Multiplying a function by –1 causes the graph to be a reflection about the x-axis of the original function's graph.

119 Copyright © 2020 Pearson Education, Inc.


Chapter 2: Functions and Their Graphs

70. The graph of y   x is the reflection about the

y-axis of the graph of y  x .

73. The graphs of y  x n , n a positive odd integer, all have the same general shape. All go through the points (1, 1) , (0, 0) , and (1, 1) . As n increases, the graph of the function increases at a greater rate for x  1 and is flatter around 0 for

y  x y x

5

x 1.



The same type of reflection occurs when graphing y  2 x  1 and y  2( x)  1 .

74.

The graph of y  f ( x) is the reflection about the y-axis of the graph of y  f ( x) .

1 if x is rational f  x   0 if x is irrational Yes, it is a function. Domain =  x x is any real number or  ,  

Range = {0, 1} or  y | y  0 or y  1

71. The graph of y  ( x  1)3  2 is a shifting of the

y-intercept: x  0  x is rational  y  1 So the y-intercept is y  1 .

graph of y  x3 one unit to the right and two units up. Yes, the result could be predicted.

x-intercept: y  0  x is irrational So the graph has infinitely many x-intercepts, namely, there is an x-intercept at each irrational value of x. f   x   1  f  x  when x is rational; f   x   0  f  x  when x is irrational.

Thus, f is even. The graph of f consists of 2 infinite clusters of distinct points, extending horizontally in both directions. One cluster is located 1 unit above the x-axis, and the other is located along the x-axis.

72. The graphs of y  x n , n a positive even integer, are all U-shaped and open upward. All go through the points (1, 1) , (0, 0) , and (1, 1) . As n increases, the graph of the function is narrower for x  1 and flatter for x  1 .

75. Answers will vary. 76. ( x 3 y 5 )2  x 6 y 10 

120

Copyright © 2020 Pearson Education, Inc.

x6 y10


Section 2.5: Graphing Techniques: Transformations

The domain is  x | x  7 . 77.

2

85. 3x3 y  2 x 2 y 2  18 x  12 y 

2

x  y  6 y  16 2 x  y 2  6 y  16 2 x  ( y 2  6 y  9)  16  9 x 2  ( y  3) 2  52

3x y  2 x y   18x  12 y   3

2 2

x 2 y  3x  2 y   6  3x  4 y  

 3x  2 y   x 2 y  6 

Center (h,k): (0, 3); Radius = 5 78. 4 x  5(2 x  1)  4  7( x  1) 4 x  10 x  5  4  7 x  7 6 x  5  7 x  3 x  8

Section 2.5

The solution set is: {8}

1. horizontal; right

79. Let x represent the amount of money invested in a mutual fund. Then 60, 000  x represents the amount of money invested in CD's. Since the total interest is to be $3700, we have: 0.08 x  0.03(60, 000  x)  3700

4. True; the graph of y   f  x  is the reflection

100 0.08 x  0.03(60, 000  x)   3700100

about the x-axis of the graph of y  f  x  .

8 x  3(60, 000  x)  370, 000 8 x  180, 000  3 x  370, 000 5 x  180, 000  370, 000 5 x  190, 000 x  38, 000 $38,000 should be invested in a mutual fund at 8% and $22,000 should be invested in CD's at 3%.

80. 2 1

3

Quotient: x  x  2 Remainder: -2

7. B 8. E 9. H

13. L 14. C

3  2i 2

15. F 16. J

82. 2 x 7 83.

6. b

12. A

1 6 2

5t    25t   25t  625t  25t 1  25t  2 2

5. d

11. I

2

81.

3. False

10. D

0 6

2 2 4 1

2. y

7

2

2

4

7

4

3

 5t 2 1  25t 3

84. The radicand cannot be negative so: x7  0 x  7

17. G 18. K 19. y  ( x  4)3 20. y  ( x  4)3 21. y  x3  4

121 Copyright © 2020 Pearson Education, Inc.


Chapter 2: Functions and Their Graphs 35. (c); To go from y  f  x  to y  2 f  x  , we

22. y  x3  4

stretch vertically by a factor of 2. Multiply the y-coordinate of each point on the graph of y  f  x  by 2. Thus, the point 1,3 would

23. y    x    x3 3

24. y   x3

become 1, 6  .

25. y  5 x3

36. (c); To go from y  f  x  to y  f  2 x  , we

1 3 1  26. y   x   x 4 64  

compress horizontally by a factor of 2. Divide the x-coordinate of each point on the graph of y  f  x  by 2. Thus, the point  4, 2  would

27. y   2 x   8 x3

become  2, 2  .

3

3

28. y 

1 3 x 4

29. (1)

y  x 2

37.

f ( x)  x 2  1

Using the graph of y  x 2 , vertically shift downward 1 unit.

 x  2 (3) y     x  2     x  2 (2)

30. (1)

y

y x

(2)

y   x3

(3)

y   x3 2

31. (1)

The domain is  ,   and the range is

y3 x

(2)

y 3 x 4

(3)

y  3 x5 4

 1,   .

38.

f ( x)  x 2  4

Using the graph of y  x 2 , vertically shift upward 4 units.

32. (1)

y  x 2

(2)

y  x  2

(3)

y  ( x  3)  2   x  3  2

33. (c); To go from y  f  x  to y   f  x  we

reflect about the x-axis. This means we change the sign of the y-coordinate for each point on the graph of y  f ( x) . Thus, the point (3, 6) would become  3, 6  .

The domain is  ,   and the range is  4,   .

34. (d); To go from y  f  x  to y  f   x  , we

reflect each point on the graph of y  f  x  about the y-axis. This means we change the sign of the x-coordinate for each point on the graph of y  f  x  . Thus, the point  3, 6  would become

 3, 6  . 122

Copyright © 2020 Pearson Education, Inc.


Section 2.5: Graphing Techniques: Transformations

39. g ( x)  3x

Using the graph of y  x , horizontally compress by a factor of 3.

The domain is 0,   and the range is 0,   . 40. g ( x)  3

The domain is  2,   and the range is 0,   . 42. h( x)  x  1

Using the graph of y  x , horizontally shift to the left 1 unit.

1 x 2

Using the graph of y  3 x , horizontally stretch by a factor of ½.

The domain is  1,   and the range is 0,   . The domain is  ,   and the range is

 ,   .

43.

f ( x)  ( x  1)3  2

Using the graph of y  x3 , horizontally shift to the right 1 unit  y   x  1  , then vertically   3

3 shift up 2 units  y   x  1  2  .  

41. h( x) 

x2

Using the graph of y  x , horizontally shift to the left 2 units. The domain is  ,   and the range is

 ,   .

123 Copyright © 2020 Pearson Education, Inc.


Chapter 2: Functions and Their Graphs

44.

f ( x)  ( x  2)3  3

Using the graph of y  x3 , horizontally shift to the left 2 units  y   x  2   , then vertically   3

3 shift down 3 units  y   x  2   3 .  

The domain is 0,   and the range is 0,   . 47.

f ( x)   3 x

Using the graph of y  3 x , reflect the graph about the x-axis. The domain is  ,   and the range is

 ,   . 45. g ( x)  4 x

Using the graph of y  x , vertically stretch by a factor of 4.

The domain is  ,   and the range is

 ,   . 48.

f ( x)   x

Using the graph of y  x , reflect the graph about the x-axis. The domain is 0,   and the range is 0,   . 1 x 2 Using the graph of y  x , vertically compress

46. g ( x) 

by a factor of

1 . 2

The domain is 0,   and the range is  , 0  .

124 Copyright © 2020 Pearson Education, Inc.


Section 2.5: Graphing Techniques: Transformations

49.

f ( x)  2( x  1) 2  3

51. g ( x)  2 x  2  1 2

Using the graph of y  x , horizontally shift to

Using the graph of y  x , horizontally shift to

the left 1 unit  y   x  1  , vertically stretch  

the right 2 units  y  x  2  , vertically stretch  

by a factor of 2  y  2  x  1  , and then   vertically shift downward 3 units  y  2  x  12  3 .  

shift upward 1 unit  y  2 x  2  1 .  

2

by a factor of 2  y  2 x  2  , and vertically  

2

The domain is  2,   and the range is 1,   .

The domain is  ,   and the range is

52. g ( x)  3 x  1  3

 3,   . 50.

Using the graph of y  x , horizontally shift to the left 1 unit  y  x  1  , vertically stretch by a

f ( x)  3( x  2) 2  1

Using the graph of y  x 2 , horizontally shift to

factor of 3  y  3 x  1  , and vertically shift

2

the right 2 units  y   x  2  , vertically  

downward 3 units  y  3 x  1  3 .

stretch by a factor of 3  y  3  x  2   , and then   vertically shift upward 1 unit  y  3  x  2 2  1 .   2

The domain is  ,   and the range is  3,   . The domain is  ,   and the range is 1,   .

125

Copyright © 2020 Pearson Education, Inc.


Chapter 2: Functions and Their Graphs

53. h( x )   x  2

Using the graph of y  x , reflect the graph about the y-axis  y   x  and vertically shift   downward 2 units  y   x  2  .  

The domain is  ,   and the range is

 ,   . 56.

The domain is  , 0  and the range is  2,   . 54. h( x ) 

4 1  2  4   2 x x

Stretch the graph of y 

f ( x)   4 x  1

Using the graph of y  x , horizontally shift to the right 1 unit  y  x  1  , reflect the graph   about the x-axis  y   x  1  , and stretch  

1 vertically by a factor x

vertically by a factor of 4  y  4 x  1  .  

1 4  of 4  y  4    and vertically shift upward 2 x x  4   units  y   2  . x  

The domain is 1,   and the range is  , 0  .

The domain is  , 0    0,   and the range is

 , 2    2,   . 55.

f ( x)   ( x  1)3  1

Using the graph of y  x3 , horizontally shift to the left 1 unit  y   x  1  , reflect the graph   3

about the x-axis  y    x  1  , and vertically   3

3 shift downward 1 unit  y    x  1  1 .  

126 Copyright © 2020 Pearson Education, Inc.


Section 2.5: Graphing Techniques: Transformations 57. g ( x)  2 1  x  2   1  x   2 x  1

Using the graph of y  x , horizontally shift to the right 1 unit  y  x  1  , and vertically stretch by a factor or 2  y  2 x  1  .

The domain is  , 0   0,   and the range is

 , 0   0,  .

60.

f ( x)  3 x  1  3

Using the graph of f ( x)  3 x , horizontally shift

The domain is  ,   and the range is 0,   .

to the right 1 unit  y  3 x  1 , then vertically shift up 3 units  y  3 x  1  3 .  

58. g ( x)  4 2  x  4 ( x  2)

Using the graph of y  x , reflect the graph about the y-axis  y   x  , horizontally shift   to the right 2 units  y    x  2   , and   vertically stretch by a factor of 4  y  4   x  2  .  

The domain is  ,   and the range is

 ,   . 61. a.

F ( x)  f ( x)  3 Shift up 3 units.

The domain is  , 2  and the range is 0,   . 59. h( x) 

1 2x

Using the graph of y  by a factor of

1 , vertically compress x

1 . 2

127

Copyright © 2020 Pearson Education, Inc.


Chapter 2: Functions and Their Graphs

b.

G ( x)  f ( x  2) Shift left 2 units.

f.

g ( x)  f ( x) Reflect about the y-axis.

c.

P ( x)   f ( x) Reflect about the x-axis.

g.

h( x)  f (2 x)

d.

e.

Compress horizontally by a factor of

H ( x)  f ( x  1)  2 Shift left 1 unit and shift down 2 units.

Q( x) 

62. a.

F ( x)  f ( x)  3 Shift up 3 units.

1 f ( x) 2

Compress vertically by a factor of

1 . 2

b.

G ( x)  f ( x  2) Shift left 2 units.

128 Copyright © 2020 Pearson Education, Inc.

1 . 2


Section 2.5: Graphing Techniques: Transformations

c.

d.

e.

P ( x)   f ( x) Reflect about the x-axis.

Q( x) 

h( x)  f (2 x)

Compress horizontally by a factor of

H ( x)  f ( x  1)  2 Shift left 1 unit and shift down 2 units.

1 f ( x) 2

Compress vertically by a factor of

f.

g.

1 . 2

g ( x)  f ( x) Reflect about the y-axis.

63. a.

F ( x)  f ( x)  3 Shift up 3 units.

b.

G ( x)  f ( x  2) Shift left 2 units.

c.

P ( x)   f ( x) Reflect about the x-axis.

129

Copyright © 2020 Pearson Education, Inc.

1 . 2


Chapter 2: Functions and Their Graphs

d.

H ( x)  f ( x  1)  2 Shift left 1 unit and shift down 2 units.

e.

Q( x) 

1 f ( x) 2

64. a.

F ( x)  f ( x)  3 Shift up 3 units.

b.

G ( x)  f ( x  2) Shift left 2 units.

c.

P ( x)   f ( x) Reflect about the x-axis.

d.

H ( x)  f ( x  1)  2 Shift left 1 unit and shift down 2 units.

1 Compress vertically by a factor of . 2

f.

g ( x)  f ( x) Reflect about the y-axis.

g.

h( x)  f (2 x)

Compress horizontally by a factor of

1 . 2

130 Copyright © 2020 Pearson Education, Inc.


Section 2.5: Graphing Techniques: Transformations

e.

Q( x) 

1 unit.

1 f ( x) 2

Compress vertically by a factor of

1 . 2

66.

f ( x)  x 2  6 x

f ( x)  ( x 2  6 x  9)  9

f.

g.

g ( x)  f ( x) Reflect about the y-axis.

f ( x)  ( x  3) 2  9

Using f ( x)  x 2 , shift right 3 units and shift down 9 units.

h( x)  f (2 x)

Compress horizontally by a factor of 12 .

67.

f ( x)  x 2  8 x  1

f ( x)  x 2  8 x  16  1  16 f ( x)   x  4   15 2

Using f ( x)  x 2 , shift right 4 units and shift down 15 units.

65.

f ( x)  x 2  2 x f ( x)  ( x 2  2 x  1)  1 f ( x)  ( x  1) 2  1

Using f ( x)  x 2 , shift left 1 unit and shift down 68.

f ( x)  x 2  4 x  2

f ( x)  x 2  4 x  4  2  4 f ( x)   x  2   2 2

131

Copyright © 2020 Pearson Education, Inc.


Chapter 2: Functions and Their Graphs

Using f ( x)  x 2 , shift left 2 units and shift down 2 units.

71.

f  x   3x 2  12 x  17

   3  x  4 x  4   17  12  3 x 2  4 x  17 2

 3  x  2   5 2

Using f  x   x 2 , shift left 2 units, stretch vertically by a factor of 3, reflect about the xaxis, and shift down 5 units.

69.

f  x   2 x 2  12 x  19

   2  x  6 x  9   19  18  2 x 2  6 x  19 2

 2  x  3  1 2

Using f  x   x 2 , shift right 3 units, vertically stretch by a factor of 2, and then shift up 1 unit. 72.

f  x   2 x 2  12 x  13

   2  x  6 x  9   13  18  2 x 2  6 x  13 2

 2  x  3  5 2

Using f  x   x 2 , shift left 3 units, stretch vertically by a factor of 2, reflect about the xaxis, and shift up 5 units. 70.

f  x   3x 2  6 x  1

   3  x  2 x  1  1  3  3 x2  2 x  1 2

 3  x  1  2 2

Using f  x   x 2 , shift left 1 unit, vertically stretch by a factor of 3, and shift down 2 units. 73. a.

The graph of y  f  x  2  is the same as the graph of y  f  x  , but shifted 2 units to the left. Therefore, the x-intercepts are 7 and 1.

b. The graph of y  f  x  2  is the same as

the graph of y  f  x  , but shifted 2 units to

132 Copyright © 2020 Pearson Education, Inc.


Section 2.5: Graphing Techniques: Transformations

c.

the right. Therefore, the x-intercepts are 3 and 5.

x-axis. Therefore, we can say that the graph of y   f  x  must be decreasing on the

The graph of y  4 f  x  is the same as the

interval  1,5 .

graph of y  f  x  , but stretched vertically

d. The graph of y  f   x  is the same as the

by a factor of 4. Therefore, the x-intercepts are still 5 and 3 since the y-coordinate of each is 0.

graph of y  f  x  , but reflected about the y-axis. Therefore, we can say that the graph of y  f   x  must be decreasing on the

d. The graph of y  f   x  is the same as the

interval  5,1 .

graph of y  f  x  , but reflected about the y-axis. Therefore, the x-intercepts are 5 and 3 . 74. a.

76. a.

the graph of y  f  x  , but shifted 2 units to the left. Therefore, the graph of f  x  2  is

The graph of y  f  x  4  is the same as the graph of y  f  x  , but shifted 4 units to

decreasing on the interval  4,5 .

the left. Therefore, the x-intercepts are 12 and 3 .

b. The graph of y  f  x  5  is the same as

the graph of y  f  x  , but shifted 5 units to

b. The graph of y  f  x  3 is the same as

the right. Therefore, the graph of f  x  5 

the graph of y  f  x  , but shifted 3 units to

is decreasing on the interval 3,12 .

the right. Therefore, the x-intercepts are 5 and 4. c.

c.

The graph of y  2 f  x  is the same as the

The graph of y   f  x  is the same as the graph of y  f  x  , but reflected about the

graph of y  f  x  , but stretched vertically

x-axis. Therefore, we can say that the graph of y   f  x  must be increasing on the

by a factor of 2. Therefore, the x-intercepts are still 8 and 1 since the y-coordinate of each is 0.

interval  2, 7  . d. The graph of y  f   x  is the same as the

d. The graph of y  f   x  is the same as the

graph of y  f  x  , but reflected about the

graph of y  f  x  , but reflected about the

y-axis. Therefore, we can say that the graph of y  f   x  must be increasing on the

y-axis. Therefore, the x-intercepts are 8 and 1 . 75. a.

The graph of y  f  x  2  is the same as

interval  7, 2 .

The graph of y  f  x  2  is the same as the graph of y  f  x  , but shifted 2 units to

77. a.

y  f ( x)

the left. Therefore, the graph of f  x  2  is increasing on the interval  3, 3 . b. The graph of y  f  x  5  is the same as

the graph of y  f  x  , but shifted 5 units to the right. Therefore, the graph of f  x  5  is increasing on the interval  4,10 . c.

The graph of y   f  x  is the same as the graph of y  f  x  , but reflected about the 133

Copyright © 2020 Pearson Education, Inc.


Chapter 2: Functions and Their Graphs

b.

y f x 

b. The graph of y  2 f  x  2   1 is the

graph of y  f  x  but shifted right 2 units, stretched vertically by a factor of 2, reflected about the x-axis, and shifted up 1 unit. Thus, the point 1,3 becomes the point  3, 5  . c.

The graph of y  f  2 x  3 is the graph of

y  f  x  but shifted left 3 units and

78. a.

horizontally compressed by a factor of 2. Thus, the point 1,3 becomes the point

To graph y  f ( x) , the part of the graph for f that lies in quadrants III or IV is reflected about the x-axis.

 1,3 . 80. a.

The graph of y  g  x  1  3 is the graph of y  g  x  but shifted left 1 unit and down 3 units. Thus, the point  3,5  becomes the point  4, 2  .

b. The graph of y  3 g  x  4   3 is the graph

of y  g  x  but shifted right 4 units, stretched vertically by a factor of 3, reflected about the x-axis, and shifted up 3 units. Thus, the point  3,5 becomes the point 1, 12  .

b. To graph y  f  x  , the part of the graph

for f that lies in quadrants II or III is replaced by the reflection of the part in quadrants I and IV reflected about the yaxis.

c.

The graph of y  g  3x  9  is the graph of

y  f  x  but shifted left 9 units and horizontally compressed by a factor of 3. Thus, the point  3,5  becomes the point

 4,5 . 81. a. f ( x)  int(  x) Reflect the graph of y  int( x) about the yaxis.

79. a.

The graph of y  f  x  3  5 is the graph of y  f  x  but shifted left 3 units and down 5 units. Thus, the point 1,3 becomes the point  2, 2  . b. g ( x)   int( x) 134 Copyright © 2020 Pearson Education, Inc.


Section 2.5: Graphing Techniques: Transformations

Reflect the graph of y  int( x) about the xaxis.

83. a. f ( x)  x  3  3

Using the graph of y  x , horizontally shift to the right 3 units  y  x  3  and vertically shift downward 3 units  y  x  3  3 .

82. a. f ( x)  int( x  1) Shift the graph of y  int( x) right 1 unit.

1 bh 2 1  (6)(3)  9 2 The area is 9 square units.

b. A 

84. a. f ( x)  2 x  4  4 b. g ( x)  int(1  x)  int( ( x  1))

Using the graph of y  x , horizontally shift to

Using the graph of y  int( x) , reflect the

the right 4 units  y  x  4  , vertically stretch

graph about the y-axis  y  int(  x)  ,

by a factor of 2 and flip on the x-axis  y  2 x  4  , and vertically shift upward 4    units  y  2 x  4  4 .

horizontally shift to the right 1 unit  y  int( ( x  1))  .

1 bh 2 1  (4)(4)  8 2 The area is 8 square units.

b. A 

135

Copyright © 2020 Pearson Education, Inc.


Chapter 2: Functions and Their Graphs R  3  0.15  3  0.03  3  5.46 2

85. a.

From the graph, the thermostat is set at 72F during the daytime hours. The thermostat appears to be set at 65F overnight.

b.

To graph y  T  t   2 , the graph of T  t  is

 6.72 The estimated worldwide music revenue for 2015 is $6.72 billion. R  5   0.15  5   0.03  5   5.46 2

shifted down 2 units. This change will lower the temperature in the house by 2 degrees.

 9.06 The estimated worldwide music revenue for 2017 is $5.46 billion.

b.

r  x  R  x  2  0.15  x  2   0.03  x  2   5.46 2

 0.15 x 2  4 x  4  0.03  x  2   5.46  0.15 x 2  0.6 x  0.6  0.03x  0.06  5.46  0.15 x 2  0.63 x  6.12

c. c.

The graph of r  x  is the graph of R  x  shifted 2 units to the left. Thus, r  x 

To graph y  T  t  1 , the graph of T  t 

represents the estimated worldwide music revenue, x years after 2010.

should be shifted left one unit. This change will cause the program to switch between the daytime temperature and overnight temperature one hour sooner. The home will begin warming up at 5am instead of 6am and will begin cooling down at 8pm instead of 9pm.

r  2   0.15  2   0.63  2   6.12  5.46 2

The estimated worldwide music revenue for 2012 is $5.46 billion. r  5   0.15  5   0.63  5   6.12 2

 6.72 The estimated worldwide music revenue for 2015 is $6.72 billion. r  7   0.15  7   0.63  7   6.12 2

 9.06 The estimated worldwide music revenue for 2017 is $9.06 billion.

d. In r  x  , x represents the number of years

after 2010 (see the previous part). e. 86. a.

R  0   0.15  0   0.03  0   5.46  5.46 2

The estimated worldwide music revenue for 2012 is $5.46 billion.

Answers will vary. One advantage might be that it is easier to determine what value should be substituted for x when using r  x  instead of R  x  to estimate worldwide music revenue.

136 Copyright © 2020 Pearson Education, Inc.


Section 2.5: Graphing Techniques: Transformations

9 87. F  C  32 5

e.

If the length of the pendulum is multiplied by k , the period is multiplied by k .

89. y  ( x  c) 2 If c  0, y  x 2 . If c  3, y  ( x  3) 2 ; shift right 3 units. If c   2, y  ( x  2) 2 ; shift left 2 units.

9 F  ( K  273)  32 5 Shift the graph 273 units to the right.

90. y  x 2  c 88. a.

T  2

If c  0, y  x 2 .

l g

If c  3, y  x 2  3; shift up 3 units. If c   2, y  x 2  2; shift down 2 units.

b.

T1  2

l 1 l2 ; T2  2 ; g g

T3  2

l 3 g

91.

f ( x  5) is a shift right 5 units; increasing on

 2,8 and 16, 24 ; decreasing of 8,16 . f (2 x  5) compresses horizontally by a factor of

½; increasing on 1, 4 and 8,12 ; decreasing on c.

As the length of the pendulum increases, the period increases.

d.

T1  2

 4,8 .  f (2 x  5) reflects about the x-axis; increasing on  4,8 ; decreasing on 1, 4 and 8,12 . 3 f (2 x  5) stretches

2l 3l 4l ; T2  2 ; T3  2 g g g

vertically by a factor or 3 but does not affect 137

Copyright © 2020 Pearson Education, Inc.


Chapter 2: Functions and Their Graphs

increasing/decreasing. Therefore 3 f (2 x  5) is increasing on  4,8 . 92. Write the general normal density as   x   2     1 1    exp    . Starting f ( x)      2 2     with the standard normal density,  x2  1 exp    , stretch/compress f ( x)  2  2 horizontally by a factor of  to get   x 2      1  exp      f ( x)   2  2    

graph of f by a factor of 14 . 94. The graph of y  f ( x)  2 will shift the graph of y  f ( x) down by 2 units. The graph of y  f ( x  2) will shift the graph of y  f ( x) to the right by 2 units.

1   multiply all the x-coordinates by   , then shift   the graph horizontally  units (left if   0

96. The range of f ( x)  x 2 is  0,   . The graph of

units if k > 0 and shifted down k units if k < 0,

  x   2     1      exp  . Then   2 2    

stretch/compress vertically by a factor of

so the range of g is  k ,   . 97. The domain of g ( x)  1

to

get   x   2     1 1    exp    f ( x)     2  2     1   multiply all the y -coordinates by   .   1. Stretch/compress horizontally by a factor or  (stretch if   1 ) 2. Shift horizontally  units (left if   0 and

right if   0 ). 3.Stretch/compress vertically by a factor of (compress if   1 )

95. The graph of y   x is the graph of y  x but reflected about the y-axis. Therefore, our region is simply rotated about the y-axis and does not change shape. Instead of the region being bounded on the right by x  4 , it is bounded on the left by x  4 . Thus, the area of 16 the second region would also be square 3 units.

g ( x)  f ( x)  k is the graph of f shifted up k

and right if   0 ) to get

f ( x) 

93. The graph of y  4 f ( x) is a vertical stretch of the graph of f by a factor of 4, while the graph of y  f (4 x) is a horizontal compression of the

1

x is  0,   . The graph

of g ( x  k ) is the graph of g shifted k units to the right, so the domaine of g is  k ,   . 98. 3x  5 y  30 5 y  3x  30 3 y  x6 5 3 The slope is and the y-intercept is -6. 5 13.1 13.1   8.4214 . The 7 2 total distance is 26.2 mile. Thus the average 26.2  3.11 mph . speed is 8.4214

99. The total time run is

138 Copyright © 2020 Pearson Education, Inc.


Section 2.6: Mathematical Models: Building Functions 100. g  1.75m g  1.75(9)  15.75 gal 101. y 2  x  4 x-intercepts: (0) 2  x  4 0 x4 x  4

105.

y-intercepts: y2  0  4 y2  4 y  2

The intercepts are  4, 0 ,  0, 2 and  0, 2 . Test x-axis symmetry: Let y   y

f ( x  h)  f ( x )  h 3( x  h) 2  2( x  h)  1  (3x 2  2 x  1)  h 3( x 2  2 xh  h 2 )  2 x  2h  1  3 x 2  2 x  1  h 3x 2  6 xh  3h 2  2 x  2h  1  3x 2  2 x  1 h 2 6 xh  h  2h h(6 x  h  2)   6x  h  2 h h

z 3  216   z    6  3

  y 2  x  4

106.

y 2  x  4 same

3

 ( z  6)( z 2  6 z  36)

Test y-axis symmetry: Let x   x y 2   x  4 different Test origin symmetry: Let x   x and y   y .

  y 2   x  4

Section 2.6

y 2   x  4 different

1. a.

Therefore, the graph will have x-axis symmetry.

d  x 2  y 2 . Since P is a point on the

102. The denominator must not be zero. x 2  5 x  14  0 ( x  7)( x  2)  0 x  7, x  2

graph of y  x 2  8 , we have: d ( x)  x 2  ( x 2  8) 2  x 4  15 x 2  64

So the domain is:  x | x  7, x  2 103. 16t 2  96t  200  88 16t 2  96t  112  0 16(t 2  6t  7)  0 16(t  7)(t  1)  0 t  7, t  1 Since t represents time the only answer that is reasonable is 7 seconds. 104.

3

The distance d from P to the origin is

b.

d (0)  04  15(0) 2  64  64  8

c.

d (1)  (1) 4  15(1) 2  64  1  15  64  50  5 2  7.07 

d.



 

16 x5 y 6 z  3 8  2 x3 x 2 y 6 z  2 xy 2 3 2 x 2 z

e.

d is smallest when x  2.74 or when x  2.74 .

139

Copyright © 2020 Pearson Education, Inc.


Chapter 2: Functions and Their Graphs

2. a.

The distance d from P to (0, –1) is 2

4. a.

2

The distance d from P to the origin is

d  x 2  y 2 . Since P is a point on the

d  x  ( y  1) . Since P is a point on the graph of y  x 2  8 , we have:

graph of y 

d ( x)  x 2  ( x 2  8  1) 2 2

2

 x  x 7

4

2

2

b.

d (0)  04  13(0) 2  49  49  7

c.

d (1)  (1)4  13(1) 2  49  37  6.08

d.

2

1 1 d ( x)  x     x 2  2 x x  

  x  13x  49 2

1 , we have: x

b.

8

10 5

–5 0

c. –4

d is smallest when x  1 or x  1 .

4 0

e.

d is smallest when x  2.55 or when x  2.55 .

d.

d (1) 

3. a.

the graph of y  x , we have: d ( x)  ( x  1) 2 

 x   x  x 1 2

2

where x  0 . b.

1

 2

5. By definition, a triangle has area 1 A  b h, b  base, h  height. From the figure, 2 we know that b  x and h  y. Expressing the area of the triangle as a function of x , we have: 1 1 1 A( x )  xy  x x3  x 4 . 2 2 2

 

2

0

2 0

d is smallest when x  12 .

6. By definition, a triangle has area 1 A  b h, b=base, h  height. Because one 2 vertex of the triangle is at the origin and the other is on the x-axis, we know that b  x and h  y. Expressing the area of the triangle as a function of x , we have: 1 1 9 1 A( x )  xy  x 9  x 2  x  x3 . 2 2 2 2

7. a. d.

 12  1

The distance d from P to the point (1, 0) is d  ( x  1) 2  y 2 . Since P is a point on

c.

12  1  2; d (1)  1

12 1 3 d ( x)   1  2 2 2

A( x )  xy  x 16  x 2

b. Domain:  x 0  x  4 140 Copyright © 2020 Pearson Education, Inc.


Section 2.6: Mathematical Models: Building Functions c.

The area is largest when x  2.31 .

e.

The largest area is A(1.41)  2 1.41 4  1.412  4 square

30

units. The largest perimeter is p (1.79)  4 1.79   2 4  1.792  8.94 4

0

units.

0

9. a.

In Quadrant I, x 2  y 2  4  y  4  x 2

A( x)  (2 x)(2 y )  4 x 4  x 2

d. The largest area is

b.

p ( x)  2(2 x)  2(2 y )  4 x  4 4  x 2

c.

Graphing the area equation: 10

A(2.31)  2.31 16  2.312  24.63 square

units. 8. a.

A( x)  2 xy  2 x 4  x 2

0

b.

p( x)  2(2 x)  2( y )  4 x  2 4  x 2

c.

Graphing the area equation:

2 0

4

The area is largest when x  1.41 . d. Graphing the perimeter equation: 0

12

2 0

0

2 0

The area is largest when x  1.41 . d. Graphing the perimeter equation: 10

The perimeter is largest when x  1.41 . 10. a. 0

2

b.

0

11. a.

A(r )  (2r )(2r )  4r 2

p (r )  4(2r )  8r C  circumference, A  total area, r  radius, x  side of square C  2r  10  4 x  r  52 x

The perimeter is largest when x  1.79 . 141

Copyright © 2020 Pearson Education, Inc.


Chapter 2: Functions and Their Graphs

Total Area  area square + area circle  x 2   r 2

A( x )  x   52 x 2

2

c.

8

25  20 x  4 x 2 x   2

b. Since the lengths must be positive, we have: 10  4 x  0 and x  0  4 x  10 and x  0 x  2.5 and x  0 Domain:  x 0  x  2.5 c.

The area is smallest when x  2.08 meters.

0

3.33

0

The total area is smallest when x  1.40 meters. 8

13. a.

0

Since the wire of length x is bent into a circle, the circumference is x . Therefore, C ( x)  x .

b. Since C  x  2 r , r 

2.5 0

x . 2

2

x2  x  . A( x )   r 2      4  2 

14. a. 12. a.

C  circumference, A  total area, r  radius, x  side of equilateral triangle 10  3x C  2r  10  3x  r  2

The height of the equilateral triangle is Total Area  area triangle  area circle

3 2  10  3 x  x    4  2 

b. Since P  x  4s, s 

1 x , we have 4

2

3 x. 2

1  3   x  x    r2 2  2  A( x) 

Since the wire of length x is bent into a square, the perimeter is x . Therefore, p( x)  x .

2

3 2 100  60 x  9 x 2  x  4 4

1 1  A( x )  s 2   x   x 2 . 16 4 

15. a.

A  area, r  radius; diameter  2r A(r )  (2r )(r )  2r 2

b.

p  perimeter p(r )  2(2r )  2r  6r

16. C  circumference, r  radius; x  length of a side of the triangle

b. Since the lengths must be positive, we have: 10  3x  0 and x  0  3x  10 and x  0 10 x and x  0 3  10  Domain:  x 0  x   3 

Since ABC is equilateral, EM  142 Copyright © 2020 Pearson Education, Inc.

3x . 2


Section 2.6: Mathematical Models: Building Functions

d 2  3  40t

3x 3x  OE  r 2 2

Therefore, OM 

2   x   3x r In OAM , r 2      2  2 

2

d1  2  30t

d

2

x 3  x 2  3 rx  r 2 4 4 3 rx  x 2

r2 

b. The distance is smallest at t  0.07 hours.

x 3 Therefore, the circumference of the circle is  x  2 3 C ( x )  2 r  2  x  3  3 r

20. r  radius of cylinder, h  height of cylinder, V  volume of cylinder

17. Area of the equilateral triangle 1 3 3 2 A  x x x 2 2 4

2

h2 h2 h r 2     R2  r 2   R2  r 2  R2  4 4 2 2 V  r h

x2 . 3 Area inside the circle, but outside the triangle: 3 2 A( x )   r 2  x 4 3 2  3 2 x2   x     x 3 4 3 4 

From problem 16, we have r 2 

  h2  h2  V (h)    R 2   h  h  R 2   4  4   

21.

r  radius of cylinder, h  height of cylinder, V  volume of cylinder H H h  R r Hr  R  H  h 

By similar triangles:

18. d 2  d12  d 2 2 d 2   30t    40t  2

Hr  RH  Rh

2

Rh  RH  Hr

d  t   900 t  1600 t  2500 t  50 t 2

2

2

RH  Hr H  R  r   R R  H  R  r    H  R  r  r2 V (r )   r 2 h   r 2   R R   h

d2 =40t d1=30t

d

22. a. 19. a.

d

2

 d12  d 2 2

d 2   2  30t    3  40t  2

d t  

2

 2  30t 2   3  40t 2

The total cost of installing the cable along the road is 500x . If cable is installed x miles along the road, there are 5  x miles between the road to the house and where the cable ends along the road.

 4  120t  900t 2  9  240t  1600t 2  2500t 2  360t  13

143

Copyright © 2020 Pearson Education, Inc.


Chapter 2: Functions and Their Graphs House

23. a.

time on land is given by

d

2

Town P

d  (5  x) 2  22

T ( x) 

C ( x)  500 x  700 x 2  10 x  29 Domain:  x 0  x  5  C (1)  500 1  700 1  10 1  29

x

12  x d1 12  x x2  4    5 3 5 3

b. Domain:  x 0  x  12 

2

 500  700 20  $3630.50

c.

C (3)  500  3  700 32  10  3  29



T (4)  

 1500  700 8  $3479.90

d.

T (8)  

e.

12–x

d1  x 2  22  x 2  4 The total time for the trip is:

 25  10 x  x 2  4  x 2  10 x  29 The total cost of installing the cable is:

d.

12  x . 5

d1

2

x

5x

c.

d1 . The 3

Island Box

b.

The time on the boat is given by

3000

24. a.

Using MINIMUM, the graph indicates that x  2.96 miles results in the least cost.

12  4 42  4  5 3 8 20   3.09 hours 5 3

12  8 82  4  5 3 4 68   3.55 hours 5 3

Let A  amount of material , x  length of the base , h  height , and V  volume . 10 V  x 2 h  10  h  2 x Total Area A   Area base    4   Area side   x 2  4 xh  10   x2  4 x  2  x  40  x2  x 40 2 A x  x  x 40  1  40  41 ft 2 1

b.

A 1  12 

c.

A  2   22 

144 Copyright © 2020 Pearson Education, Inc.

40  4  20  24 ft 2 2


Section 2.6: Mathematical Models: Building Functions

d.

y1  x 2 

26. Consider the diagrams shown below.

40 x

100

10

0

0 



The amount of material is least when x  2.71 ft. e.

The largest area is A  2.71  2.712 

25.

40  22.1 ft 2 2.71

a.

length = 24  2x ; width = 24  2x ; height = x V ( x)  x(24  2 x)(24  2 x)  x(24  2 x) 2

b.

V (3)  3(24  2(3)) 2  3(18) 2

There is a pair of similar triangles in the diagram. This allows us to write r 4 r 1 1    r h h 16 h 4 4 Substituting into the volume formula for the conical portion of water gives

 3(324)  972 in 3 .

c.

V (10)  10(24  2(10))2  10(4) 2

2

1 1 1   3 V  h   r 2h    h  h  h . 3 3 4  48

 10(16)  160 in 3 . d.

y1  x(24  2 x )2

27. a.

1100

0

0

12

Use MAXIMUM. 

The total cost is the sum of the shipment cost, storage cost, and product cost. Since each shipment will contain x units, there are 600/x shipments per year, each costing $15.  600   9000  So the shipment cost is 15   = .  x   x  The storage cost for the year is given as 1.60 x. The product costs is 600(4.85)  2910. So, the total cost is C ( x) 



The volume is largest when x  4 inches. e.

The largest volume is V (4)  4(24  2(4)) 2  1024 in 3 145

Copyright © 2020 Pearson Education, Inc.

9000  1.60 x  2910. x


Chapter 2: Functions and Their Graphs b.

31.

10 14  4 x 10 x  4(14) 10 x  56 x  5.6

32. x  u  1 u 1 u 1 y  u 11 u

The retailer should order 75 drives per order for a minimum yearly cost of $3150. 28.

33.

x5 2

1

x 3 

3x 3 

2 x  3  5  2 2x  3  3

2 x  3  3 or 2 x  3  3 2 x  0 or 2x  6 x  0 or

2

3x 3 3x 3 x  5  3x 2

3x 3 4x  5 2

3x  2  4

Convert this to miles-per-hour. 5 5 1 5 sec  min  hr  hr. 60 3600 720 66 66 ft  mi 5280 66

distance 5280  1  9 mph time 720

Since the truck is traveling 55 mph, the Fusion must travel 55 + 9 = 64 mph. y2  y1 6  ( 2) 8    4 1 3 x2  x1 2

3x

34.  3x  2  4

x3

29. In order for the 16-foot long Ford Fusion to pass the 50-foot truck, the Ford Fusion must travel the length of the truck and the length of itself in the time frame of 5 seconds. Thus the Fusion must travel an additional 66 feet in 5 seconds.

30. m 

2

3x 3

The solution set is  0,3 .

speed=

x5

No solution since a square root cannot be negative. 35. Since the graph is symmetric is symmetric about the origin then (3, -2) is symmetric to (-3, 2). 36.

v

2.6t d2

vd 2  2.6t

E P

E P

2

 vd 2  E  2.6t   P  

v2 d 4 E  2 P 6.76t 2 4 Pv d E 6.76t 2 6.76t 2 E P 2 4 v d

146 Copyright © 2020 Pearson Education, Inc.


Chapter 2 Review Exercises

3x 2  7 x  4 x  2

37. 2

3x  11x  2  0 b 2  4ac  (11) 2  4(3)(2)  121  24  97

d.

 3x  3 x  f ( x)    2   x  1  x2  1

e.

f ( x  2) 

3( x  2) ( x  2) 2  1 3 x  2 3x  6  2 x  4x  4 1 x  4x  3

f.

Chapter 2 Review Exercises 1. a.

Domain {8, 16, 20, 24}

7.

Range {$6.30, $12.32, $13.99} b. {(8,$6.30), (16,$13.99), (20,$12.32), (24,$13.99)} c.

d.

f (2 x) 

2

3(2 x ) 6x  2 2 (2 x)  1 4 x  1

f ( x)  x 2  4

a.

f (2)  22  4  4  4  0  0

b.

f (2) 

c.

f ( x)  ( x) 2  4  x 2  4

d.

 f ( x)   x 2  4

e.

f ( x  2)  ( x  2) 2  4

 2 2  4 

44  0  0

 x2  4 x  4  4  x2  4 x

f.

f (2 x)  (2 x) 2  4  4 x 2  4

 4 x2  1  2 x2  1

2. This relation represents a function. Domain = {–1, 2, 4}; Range = {0, 3}.

8.

3. Domain {2,4}; Range {-1,1,2} Not a function

x2  4 x2 22  4 4  4 0   0 4 4 22

a.

f (2) 

b.

f (2) 

 2 2  4 4  4 0   0 4 4  2 2

c.

f ( x) 

( x) 2  4 x 2  4  x2 ( x) 2

a.

3(2) 6 6 f (2)    2 2 4 1 3  (2)  1

d.

 x2  4  4  x2 x2  4  f ( x)    2     x2 x2  x 

b.

3(2) 6 6 f (2)     2 (2) 2  1 4  1 3

e.

f ( x  2) 

c.

3( x) 3 x f ( x)   2 2 ( x)  1 x  1

4. not a function; domain [-1, 3]; range [-2, 2] 5. function; domain: all real numbers; range  3,   6.

f ( x) 

f ( x) 

3x x 1 2

147

Copyright © 2020 Pearson Education, Inc.

( x  2) 2  4 x 2  4 x  4  4  ( x  2) 2 ( x  2) 2 x2  4 x x  x  4  ( x  2) 2 ( x  2) 2


Chapter 2: Functions and Their Graphs

f.

f (2 x)  

9.

(2 x) 2  4 4 x 2  4  (2 x) 2 4 x2

14.

  x 1

4 x2  1

2

4 x2

x2

x  8 Domain:  x x  8

x x 9 The denominator cannot be zero: x2  9  0 f ( x) 

2

15.

g ( x)  3 x  1

 2  x  3x  1  2 x  3 Domain:  x x is any real number

x  3 or 3

Domain:  x x  3, x  3

( f  g )( x)  f  x   g ( x)  2  x   3 x  1

f ( x)  2  x The radicand must be non-negative: 2 x  0

 2  x  3x  1  4 x  1 Domain:  x x is any real number

x2 Domain:  x x  2 or  , 2

( f  g )( x)  f ( x)  g  x    2  x  3 x  1

x 11. g ( x)  x The denominator cannot be zero: x0

 6 x  2  3x 2  x  3x 2  5 x  2

Domain:  x x is any real number

Domain:  x x  0

f  x 2  x  f   g  ( x)  g x  3x  1     3x  1  0

x 12. f ( x)  2 x  2x  3 The denominator cannot be zero: x2  2 x  3  0

1 3  1 Domain:  x x    3  3 x  1  x  

 x  3 x  1  0 x  3 or 1 Domain: x x  3, x  1

13.

f ( x)  2  x

( f  g )( x)  f  x   g ( x)

( x  3)( x  3)  0

10.

x x8 The radicand must be non-negative and not zero: x8 0 f ( x) 

16.

f ( x)  3x 2  x  1

g ( x)  3x

( f  g )( x)  f  x   g ( x)

x 1 x2  4 The denominator cannot be zero: x2  4  0 f ( x) 

 3x2  x  1  3x  3x2  4 x  1 Domain:  x x is any real number

 x  2 x  2  0

( f  g )( x)  f  x   g ( x)

x  2 or 2 Also, the radicand must be non-negative: x 1  0

 3x 2  x  1  3x  3x 2  2 x  1 Domain:  x x is any real number

x  1 Domain:  1, 2   2,  

148

Copyright © 2020 Pearson Education, Inc.


Chapter 2 Review Exercises ( f  g )( x)  f ( x)  g  x 

18.

f ( x)  2 x 2  x  1 f  x  h  f  x h

 3x 2  x  1  3x   9 x3  3x 2  3 x Domain:  x x is any real number

2

f  x  3x 2  x  1  f   g  ( x)  g x  3x     3x  0  x  0

x 1 1 g ( x)  x 1 x    f g x f x g x ( )( )   ( ) f ( x) 

 

x  1 1 x  x  1  1 x  1   x 1 x x  x  1 2

h

2

2 x  2 xh  h

2

  x  h  1  2x  x 1

19. a.

Range:

2

x  x  x 1 x  2x 1  x  x  1 x  x  1

 y  3  y  3  ;  3, 3

b. Intercept:  0, 0  c.

f  2   1

( f  g )( x)  f  x   g ( x)

d.

f  x   3 when x = –4

e.

f ( x)  0 when 0  x  3

x  1 1 x  x  1  1 x  1   x 1 x x  x  1 2

2

Domain:  x  4  x  3  ;  4, 3

Domain:  x x  0, x  1

h 2 x 2  4 xh  2h 2  x  h  1  2 x 2  x  1  h 4 xh  2h 2  h h  4 x  2h  1   h h  4 x  2h  1

Domain:  x x  0

17.

2  x  h    x  h   1  2 x 2  x  1

 x | 0  x  3

2

x  x  x 1 x 1  x  x  1 x  x  1

f.

To graph y  f  x  3 , shift the graph of f horizontally 3 units to the right.

Domain:  x x  0, x  1 x 1  x 1 1  ( f  g )( x)  f ( x)  g  x     x   x  1 x  x  1    Domain:  x x  0, x  1 x 1 f  x  x  1  x  1   x  x( x  1)  f   g  ( x)  g x  1   x  1   1   x  1        x Domain:  x x  0, x  1

149

Copyright © 2020 Pearson Education, Inc.


Chapter 2: Functions and Their Graphs

g.

4  x2 1  x4 4  ( x) 2 4  x 2 g ( x)    g ( x) 1  ( x) 4 1  x 4 g is even.

1  To graph y  f  x  , stretch the graph of 2  f horizontally by a factor of 2.

22. g ( x) 

23. G ( x)  1  x  x3 G (  x )  1  (  x )  (  x )3  1  x  x 3  G ( x) or G ( x ) G is neither even nor odd.

h.

To graph y   f  x  , reflect the graph of f

x 1  x2 x x f ( x)     f ( x) 1  ( x) 2 1  x 2 f is odd.

24.

f ( x) 

25.

f  x   2 x3  5 x  1 on the interval  3,3

vertically about the y-axis.

Use MAXIMUM and MINIMUM on the graph of y1  2 x3  5 x  1 . 20

20. a.

3

Domain:  , 4 Range:  ,3

20

Decreasing:  2, 2

e.

The graph has no symmetry.

f.

The function is neither.

g.

x-intercepts:  3, 0  ,  0, 0  ,  3, 0  ;

Use MAXIMUM and MINIMUM on the graph of y1  2 x 4  5 x3  2 x  1 . 20

2

f ( x)  x3  4 x

20

3 2 10 20

3

f ( x)  ( x)  4( x)   x  4 x

20

f  x   2 x 4  5 x3  2 x  1 on the interval  2,3

26.

y-intercept: (0,0) 3

3

f is decreasing on:  0.91, 0.91 .

Local minimum is 1 at x  2 ; Local maximum is 1 at x  2

d. No absolute minimum; Absolute maximum is 3 at x  4

21.

3 3

local maximum value: 4.04 when x  0.91 local minimum value: 2.04 when x  0.91 f is increasing on:  3, 0.91 and  0.91,3 ;

b. Increasing:  , 2 and  2, 4 ; c.

20

3 10

  x3  4 x   f ( x) 2

f is odd.

3 10

local maximum: 1.53 when x  0.41 150

Copyright © 2020 Pearson Education, Inc.


Chapter 2 Review Exercises

local minimal values: 0.54 when x  0.34 , 3.56 when x  1.80 f is increasing on:  0.34, 0.41 and 1.80, 3 ;

33.

f ( x)  x

34.

f ( x)  x

f is decreasing on:  2, 0.34 and  0.41, 1.80 . 27.

f ( x)  8 x 2  x

a.

b.

c.

28.

f (2)  f (1) 8(2) 2  2  [8(1) 2  1]  2 1 1  32  2  (7)  23 f (1)  f (0) 8(1) 2  1  [8(0) 2  0]  1 0 1  8  1  0  7 f (4)  f (2) 8(4) 2  4  [8(2) 2  2]  42 2 128  4  (30) 94    47 2 2

f ( x)  2  5 x f (3)  f (2)  2  5  3    2  5  2    3 2 32  2  15    2  10   1  13   8   5

29.

f ( x)  3x  4 x 2

35. F ( x )  x  4 . Using the graph of y  x ,

2  2  f (3)  f (2) 3  3  4  3   3  2   4  2    3 2 3 2  9  36    6  16   1  27  10  17

vertically shift the graph downward 4 units.

30. Refer to question 29 for the slope. y  10  17( x  2) y  10  17 x  34 y  17 x  24

Intercepts: (–4,0), (4,0), (0,–4) Domain:  x x is any real number

31. The graph does not pass the Vertical Line Test and is therefore not a function.

Range:  y y   4 or  4,  

32. The graph passes the Vertical Line Test and is therefore a function.

36. g ( x)   2 x . Reflect the graph of y  x

about the x-axis and vertically stretch the graph by a factor of 2.

151

Copyright © 2020 Pearson Education, Inc.


Chapter 2: Functions and Their Graphs

39. h( x )  ( x  1) 2  2 . Using the graph of y  x 2 , horizontally shift the graph to the right 1 unit and vertically shift the graph up 2 units.

Intercepts: (0, 0) Domain:  x x is any real number Range:  y y  0 or  , 0

Intercepts: (0, 3) Domain:  x x is any real number Range:  y y  2 or  2,  

37. h( x)  x  1 . Using the graph of y  x , horizontally shift the graph to the right 1 unit.

40. g ( x)   2( x  2)3  8

Using the graph of y  x3 , horizontally shift the graph to the left 2 units, vertically stretch the graph by a factor of 2, reflect about the x-axis, and vertically shift the graph down 8 units.

y

x

  2  3 4, 0  Intercept: (1, 0) Domain:  x x  1 or 1,  

5 

Range:  y y  0 or  0,   38.



f ( x)  1  x  ( x  1) . Reflect the graph of



y  x about the y-axis and horizontally shift the graph to the right 1 unit.

Intercepts: (0,–24),  2  3 4, 0   3.6, 0  Domain:  x x is any real number Range:  y y is any real number 41.

3x f ( x)   x 1

a.

if  2  x  1 if x  1

Domain:  x x  2  or  2,  

b. Intercept:  0, 0 

Intercepts: (1, 0), (0, 1) Domain:  x x  1 or  , 1 Range:  y y  0 or  0,  

152

Copyright © 2020 Pearson Education, Inc.


Chapter 2 Review Exercises c.

Graph:

44. a.

x 2 h  10  h 

10 x2

A( x )  2 x 2  4 x h  10   2 x2  4 x  2  x  40  2 x2  x

d. Range:  y | y  6  or  6,  

42.

x  f ( x)  1 3x 

a.

A(1)  2 12 

c.

A(2)  2  22 

40  8  20  28 ft 2 2

d. Graphing:

if  4  x  0

50

if x  0 if x  0

Domain:  x x   4 or  4,   5

0

b. Intercept: (0, 1) c.

40  2  40  42 ft 2 1

b.

0

Graph:

The area is smallest when x  2.15 feet. 45. a.

Consider the following diagram: P(x,y)

y

y  10  x

d. Range:  y y   4, y  0 43.

2

x

Ax  5 and f (1)  4 6x  2 A(1)  5 4 6(1)  2 A5 4 4 A  5  16 f ( x) 

The area of the rectangle is A  xy . Thus, the area function for the rectangle is: A( x )  x(10  x 2 )

A  11

b.

The maximum area is roughly: A(1.83)  (1.83)3  10(1.83)  12.17 square units

The maximum value occurs at the vertex:

153

Copyright © 2020 Pearson Education, Inc.


Chapter 2: Functions and Their Graphs

can never equal 0. This means that x  2 . Domain:  x | x  2

Chapter 2 Test 1. a.

 2,5 ,  4, 6  ,  6, 7  , 8,8

g  1 

This relation is a function because there are no ordered pairs that have the same first element and different second elements. Domain: 2, 4, 6,8

x4 x 2  5 x  36 The function tells us to divide x  4 by

4. h  x  

Range: 5, 6, 7,8 b.

1,3 ,  4, 2  ,  3,5 , 1, 7 

x 2  5 x  36 . Since division by 0 is not defined, we need to exclude any values which make the denominator 0. x 2  5 x  36  0

This relation is not a function because there are two ordered pairs that have the same first element but different second elements.

 x  9  x  4   0

Domain: 3,1, 4

x  9 or x  4 Domain:  x | x  9, x  4

Range: 2,3,5, 7 c.

This relation is not a function because the graph fails the vertical line test.

(note: there is a common factor of x  4 but we must determine the domain prior to simplifying)

Domain:  1,  

h  1 

Range:  x x is any real number d. This relation is a function because it passes the vertical line test. Domain:  x x is any real number

5. a.

Range:  y | y  2 or  2,   2.

f  x   4  5x

The function tells us to take the square root of 4  5x . Only nonnegative numbers have real square roots so we need 4  5 x  0 . 4  5x  0 4  5x  4  0  4 5 x  4 5 x 4  5 5 4 x 5  4 4  Domain:  x x   or  ,  5 5    

 1  4 5 1    1  5  1  36 40 8 2

To find the domain, note that all the points on the graph will have an x-coordinate between 5 and 5, inclusive. To find the range, note that all the points on the graph will have a y-coordinate between 3 and 3, inclusive. Domain:  x | 5  x  5 or  5, 5 Range:  y | 3  y  3 or  3, 3

b. The intercepts are  0, 2  ,  2, 0  , and  2, 0  .

x-intercepts: 2, 2 y-intercept: 2 c.

f 1 is the value of the function when x  1 . According to the graph, f 1  3 .

d. Since  5, 3 and  3, 3 are the only

points on the graph for which y  f  x   3 , we have f  x   3 when x  5 and x  3 .

f  1  4  5  1  4  5  9  3

3. g  x  

 1  2 1  1  1  2 1

e.

x2 x2

To solve f  x   0 , we want to find xvalues such that the graph is below the xaxis. The graph is below the x-axis for values in the domain that are less than 2 and greater than 2. Therefore, the solution set is  x | 5  x  2 or 2  x  5 . In

The function tells us to divide x  2 by x  2 . Division by 0 is undefined, so the denominator 154

Copyright © 2020 Pearson Education, Inc.


Chapter 2 Chapter Test

keep the part for which x  1 .

interval notation we would write the solution set as  5, 2    2,5 . 6.

f  x    x 4  2 x3  4 x 2  2

We set Xmin = 5 and Xmax = 5. The standard Ymin and Ymax will not be good enough to see the whole picture so some adjustment must be made.

b. To find the intercepts, notice that the only piece that hits either axis is y  x  4 . y  x4 y  x4 y  04 0  x4 y  4 4x

The intercepts are  0, 4  and  4, 0  . c.

To find g  5  we first note that x  5 so we must use the first “piece” because 5  1 . g  5   2  5   1  10  1  9

d. To find g  2  we first note that x  2 so we

We see that the graph has a local maximum value of 0.86 (rounded to two places) when x  0.85 and another local maximum value of 15.55 when x  2.35 . There is a local minimum value of 2 when x  0 . Thus, we have Local maxima: f  0.85   0.86

must use the second “piece” because 2  1 . g  2   2  4  2 8. a. The average rate of change from 3 to 4 is

given by f  4   f  3 43

f  2.35   15.55

Local minima: f  0   2

 3  4   3  4   4    3  3  3  3  4   2

The function is increasing on the intervals  5, 0.85 and 0, 2.35 and decreasing on the

43 40  22 18    18 43 1

intervals  0.85, 0 and  2.35,5 . 7. a.

2

x  1 2 x  1 f  x   x  1  x4 To graph the function, we graph each “piece”. First we graph the line y  2 x  1 but only keep the part for which x  1 . Then we plot the line y  x  4 but only

b.

y  40  18( x  4) y  40  18 x  72 y  18 x  32

9. a.

( f  g )( x)  2 x 2  1   3 x  2 2

 2 x  1  3x  2  2 x 2  3x  3

b.

( f  g )( x)  2 x 2  1  3 x  2 3

 6 x  4 x 2  3x  2

155

Copyright © 2020 Pearson Education, Inc.


Chapter 2: Functions and Their Graphs

c.

y

f  x  h  f  x



      2  x  2 xh  h   1   2 x  1  2  x  h   1  2 x2  1 2

2

2





2



x

 2 x 2  4 xh  2h 2  1  2 x 2  1 

 4 xh  2h 2

10. a.

y  2 x  1

3

3

The basic function is y  x so we start with the graph of this function. y

The last step is to shift this graph up 3 units to obtain the graph of y  2  x  1  3 . 3

y  x3



y







  

x



x





Next we shift this graph 1 unit to the left to

y  2 x  1  3 3

obtain the graph of y   x  1 . 3

y   x  1

3

y

b. The basic function is y  x so we start

with the graph of this function.



y

y x



 

x





x



Next we reflect this graph about the x-axis to obtain the graph of y    x  1 . 3

Next we shift this graph 4 units to the left to obtain the graph of y  x  4 .

y

 

y  



y  x4

x 





y    x  1

3

Next we stretch this graph vertically by a factor of 2 to obtain the graph of

x

Next we shift this graph up 2 units to obtain

y  2  x  1 . 3

156

Copyright © 2020 Pearson Education, Inc.


Chapter 2 Cumulative Review b. If the rink is 90 feet wide, then we have x  90 .

the graph of y  x  4  2 . y

y  x4 2

V  90  

2

The volume of ice is roughly 3460.29 ft 3 .





902 10  90    90     3460.29 3 3 24

x

13.

f   x   (  x ) 2  7   x 2  7 same The function is even.

11. a. f ( x  h)  f ( x) ( x  h) 2  3( x  h)  ( x 2  3 x)  h h 2 2 x  2 xh  h  3 x  3h  x 2  3x  h 2 xh  h 2  3h  h h(2 x  h  3)   2x  h  3 h

12. a.

Let x = width of the rink in feet. Then the length of the rectangular portion is given by 2 x  20 . The radius of the semicircular x portions is half the width, or r  . 2 To find the volume, we first find the area of the surface and multiply by the thickness of the ice. The two semicircles can be combined to form a complete circle, so the area is given by A  l  w   r2  x   2 x  20  x      2 2

 2 x  20 x 

1.

3 x  8  10 3x  8  8  10  8 3 x  18 3x 18  3 3 x6 The solution set is 6 .

2.

3x 2  x  0 x  3 x  1  0 x  0 or 3x  1  0 3x  1 1 3  1 The solution set is 0,  .  3 x

2

3.

 x2

x2  8x  9  0

 x  9  x  1  0

4 We have expressed our measures in feet so we need to convert the thickness to feet as well. 1 ft 2 1 2 in   ft  ft 12 in 12 6 Now we multiply this by the area to obtain the volume. That is, 1  x2  V  x    2 x 2  20 x  6 4  V  x 

Chapter 2 Cumulative Review

x  9  0 or x  1  0 x9 x  1 The solution set is 1,9 .

x 2 10 x  x 2   3 3 24

157

Copyright © 2020 Pearson Education, Inc.


Chapter 2: Functions and Their Graphs

4.

6 x2  5x  1  0

4  Interval notation:  ,   3 

 3x  1 2 x  1  0 3x  1  0 or 2 x  1  0 3x  1 2x  1 1 2 1 1  The solution set is  ,  . 3 2  x

5.

1 3

x

8.

3  2 x  5  3 2  2x  8 1 x  4 Solution set:  x |1  x  4

2x  3  4 2 x  3  4 or 2 x  3  4 2 x  7 2x  1

6.

7 2

Interval notation: 1, 4 

1 2  7 1 The solution set is  ,  .  2 2 x

x

9.

 2x  3   2 2

4x 1  7 4 x  1  7 or 4 x  1  7 4 x  8 4x  6 3 x  2 x 2 3  Solution set:  x | x  2 or x   2  3  Interval notation:  , 2    ,   2 

2x  3  2 2

2x  3  4 2x  1 x

2x  5  3

1 2

Check: ? 1 2   3  2 2 ?

1 3  2

10. a.

?

4 2 22 T 1  The solution set is   . 2

 x2  x1    y2  y1  2

2

 3   2    5   3

 3  2    5  3

2

2

2

 52   2   25  4 2

7. 2  3x  6 3x  4 x

d

 29 4 3

4  Solution set:  x | x    3 

158

Copyright © 2020 Pearson Education, Inc.

2


Chapter 2 Cumulative Review

b.

c.

 x  x y  y2  M  1 2 , 1  2   2  2  3 3   5    ,   2  2   1    , 4  2  m

12. x  y 2

 x, y  2 2 x   2   4  4, 2  2 1 x   1  1 1, 1 0 x  02  0  0, 0  1 x  12  1 1,1 2 2 x2 4  4, 2  y

y2  y1 5   3 2 2    x2  x1 5 5 3   2 

x  y2

11. 3 x  2 y  12 x-intercept: 3x  2  0   12 3 x  12 x4 The point  4, 0  is on the graph.

y-intercept: 3  0   2 y  12

13. x 2   y  3  16 2

2 y  12 y  6

This is the equation of a circle with radius r  16  4 and center at  0,3 . Starting at the

The point  0, 6  is on the graph.

center we can obtain some points on the graph by moving 4 units up, down, left, and right. The corresponding points are  0, 7  ,  0, 1 ,

 4,3 , and  4,3 , respectively.

159

Copyright © 2020 Pearson Education, Inc.


Chapter 2: Functions and Their Graphs

The graph of the equation has y-axis symmetry.

14. y  x x 0 1 4

 x, y  y  0  0  0, 0  y  1  1 1,1 y  4  2  4, 2 

16. First we find the slope: 84 4 1 m   8 2 6   2 

y x

Next we use the slope and the given point  6,8  in the point-slope form of the equation of a line: y  y1  m  x  x1  1  x  6 2 1 y 8  x 3 2 1 y  x5 2 y 8 

17. 15. 3 x 2  4 y  12 x-intercepts: 3x 2  4  0   12

f  x    x  2  3 2

Starting with the graph of y  x 2 , shift the graph 2 units to the left  y   x  2   and down 3   2

2 units  y   x  2   3 .  

3 x 2  12 x2  4 x  2 y-intercept: 3  0   4 y  12 2

4 y  12 y  3

The intercepts are  2, 0  ,  2, 0  , and  0, 3 . Check x-axis symmetry: 3x 2  4   y   12 3x 2  4 y  12 different

Check y-axis symmetry: 3   x   4 y  12 2

3 x 2  4 y  12 same Check origin symmetry: 3   x   4   y   12 2

3x 2  4 y  12 different

160

Copyright © 2020 Pearson Education, Inc.


Chapter 2 Projects

18.

f  x 

Project II

1 x

1 x y x 1 1 y   1 1 1 y  1 1 1 1 y 2 2

1. Silver: C  x   20  0.16  x  200   0.16 x  12

 x, y 

20  C ( x)   0.16 x  12

 1, 1

0  x  200 x  200

Gold: C  x   50  0.08  x  1000   0.08 x  30

1,1

50.00 0  x  1000  C ( x)   0.08 x  30 x  1000 

 1  2,   2

Platinum: C  x   100  0.04  x  3000   0.04 x  20 C ( x)  100.00 0  x  3000   0.04 x 20 x  3000 

Cost (dollars)

C(x) 300

2  x if x  2 19. f  x    if x  2  x Graph the line y  2  x for x  2 . Two points

Silver Gold

200 Platinum

100 0

1000

2000

3000

4000 x

K-Bytes

on the graph are  0, 2  and  2, 0  .

3. Let y = #K-bytes of service over the plan minimum.

Graph the line y  x for x  2 . There is a hole in the graph at x  2 .

Silver: 20  0.16 y  50 0.16 y  30 y  187.5 Silver is the best up to 187.5  200  387.5 K-bytes of service. Gold: 50  0.08 y  100 0.08 y  50 y  625 Gold is the best from 387.5 K-bytes to 625  1000  1625 K-bytes of service. Platinum: Platinum will be the best if more than 1625 K-bytes is needed. 4. Answers will vary.

Chapter 2 Projects Project I – Internet-based Project – Answers will vary

161

Copyright © 2020 Pearson Education, Inc.


Chapter 2: Functions and Their Graphs Project III

6. C(4.5) = 100(4.5) + 140 4  (5  4.5) 2

1.

 $738.62 The cost for the Steven’s cable would be $738.62.

Possible route 1

Driveway 2 miles

7. 5000(738.62) = $3,693,100 State legislated 5000(695.96) = $3,479,800 cheapest cost It will cost the company $213,300 more.

Cable box

5 miles

Possible route 2

Highway

House

2.

$140/mile L

4  (5  x )2

Project IV

2 miles

1. A   r 2

Cable box

2. r  2.2t

5 miles $10 0/mile

C ( x)  100 x  140 L

3. r  2.2  2   4.4 ft

C ( x)  100 x  140 4  (5  x)

3.

2

r  2.2  2.5   5.5 ft

x C  x

4. A   (4.4) 2  60.82 ft 2

0 100  0   140 4  25  $753.92

A   (5.5)2  95.03 ft 2

1 100 1  140 4  16  $726.10

5. A   (2.2t ) 2  4.84 t 2

2 100  2   140 4  9  $704.78

6. A  4.84 (2) 2  60.82 ft 2

3 100  3  140 4  4  $695.98

A  4.84 (2.5) 2  95.03 ft 2

4 100  4   140 4  1  $713.05 5 100  5   140 4  0  $780.00

The choice where the cable goes 3 miles down the road then cutting up to the house seems to yield the lowest cost. 4. Since all of the costs are less than $800, there would be a profit made with any of the plans.

A(2.5)  A(2) 95.03  60.82   68.42 ft/hr 2.5  2 0.5

8.

A(3.5)  A(3) 186.27  136.85   98.84 ft/hr 3.5  3 0.5

9. The average rate of change is increasing. 10. 150 yds = 450 ft r  2.2t 450 t  204.5 hours 2.2

C(x ) dollars 



7.

11. 6 miles = 31680 ft Therefore, we need a radius of 15,840 ft. 15,840 t  7200 hours 2.2

 x miles

Using the MINIMUM function on a graphing calculator, the minimum occurs at x  2.96 . C(x) dollars 



 x miles

The minimum cost occurs when the cable runs for 2.96 mile along the road. 162

Copyright © 2020 Pearson Education, Inc.


Chapter 1 Graphs (f) Quadrant IV

Section 1.1 1. 0 2.

5   3  8  8

3.

32  42  25  5

4. 112  602  121  3600  3721  612 Since the sum of the squares of two of the sides of the triangle equals the square of the third side, the triangle is a right triangle. 5.

1 bh 2

16. (a) Quadrant I (b) Quadrant III (c) Quadrant II (d) Quadrant I (e) y-axis (f) x-axis

6. true 7. x-coordinate or abscissa; y-coordinate or ordinate 8. quadrants 9. midpoint 10. False; the distance between two points is never negative. 11. False; points that lie in Quadrant IV will have a positive x-coordinate and a negative y-coordinate. The point  1, 4  lies in Quadrant II.

17. The points will be on a vertical line that is two units to the right of the y-axis.

 x  x y  y2  12. True; M   1 2 , 1 2   2 13. b 14. a 15. (a) Quadrant II (b) x-axis (c) Quadrant III (d) Quadrant I (e) y-axis

1 Copyright © 2020 Pearson Education, Inc.


Chapter 1: Graphs 18. The points will be on a horizontal line that is three units above the x-axis.

28. d ( P1 , P2 ) 

 6  ( 4) 2   2  (3) 2

 102  52  100  25  125  5 5

29. d ( P1 , P2 ) 

 2.3  (0.2) 2  1.1  (0.3) 2

 2.52  0.82  6.25  0.64  6.89  2.62

30. d ( P1 , P2 ) 

 (1.5) 2  (1.2) 2  2.25  1.44

19. d ( P1 , P2 )  (2  0) 2  (1  0) 2

 3.69  1.92

 22  12  4  1  5

31. d ( P1 , P2 )  (0  a) 2  (0  b) 2

20. d ( P1 , P2 )  (2  0) 2  (1  0) 2  (2) 2  12  4  1  5

 (3) 2  12  9  1  10

22. d ( P1 , P2 ) 

 2  (1)   (2  1)

 a 2  a 2  2a 2  a

23. d ( P1 , P2 )  (5  3) 2   4   4  

d ( A, B ) 

2

24. d ( P1 , P2 ) 

 2   1    4  0 

 3  4  9  16 

25. d ( P1 , P2 ) 

 4  (7) 2  (0  3)2

d ( B, C ) 

25  5

d ( A, C ) 

 1  (2) 2  (0  5)2

 12  (5) 2  1  25  26

 112  ( 3) 2  121  9  130

 4  2 2   2  (3) 2

 22  52  4  25  29 27. d ( P1 , P2 )  (6  5) 2  1  (2) 

 1  12  (0  3)2

 (2) 2  (3)2  4  9  13

2

2

1  (2) 2  (3  5)2

 32  (2) 2  9  4  13

2

26. d ( P1 , P2 ) 

2

33. A  (2,5), B  (1,3), C  (1, 0)

 22   8   4  64  68  2 17

2

 (a )2  (a )2

2

 32  12  9  1  10

2

 (  a ) 2  ( b ) 2  a 2  b 2

32. d ( P1 , P2 )  (0  a ) 2  (0  a) 2

21. d ( P1 , P2 )  (2  1) 2  (2  1) 2

2

 0.3  1.2 2  1.1  2.32

2

 12  32  1  9  10

2 Copyright © 2020 Pearson Education, Inc.


Section 1.1: The Distance and Midpoint Formulas

Verifying that ∆ ABC is a right triangle by the Pythagorean Theorem:

 d ( A, B)2   d ( B, C )2   d ( A, C )2

 13    13    26  2

2

1  bh . In this 2

12  (2) 2  (3  5)2

2

400  400 1 The area of a triangle is A  bh . In this 2 problem, 1 A    d ( A, B )    d ( B, C )  2 1  10 2 10 2 2 1  100  2  100 square units 2

d ( A, B) 

 6  ( 5) 2  (0  3)2

 112  ( 3) 2  121  9  130

 142  (2) 2

d ( B, C ) 

 196  4  200  10 2

 5  6 2  (5  0)2

 (1) 2  52  1  25

10  12 2  (11  3)2 2

 (2)  (14)

 26

2

d ( A, C ) 

 4  196  200

 5  ( 5) 2  (5  3)2

 102  22  100  4

 10 2 d ( A, C ) 

2

35. A  ( 5,3), B  (6, 0), C  (5,5)

34. A  (2, 5), B  (12, 3), C  (10,  11)

d ( B, C ) 

2

200  200  400

problem, A  1   d ( A, B)    d ( B, C )  2  1  13  13  1 13 2 2 13  2 square units

d ( A, B ) 

10 2   10 2    20 

2

13  13  26 26  26

The area of a triangle is A 

 d ( A, B)2   d ( B, C )2   d ( A, C )2

 104

10  (2)   (11  5) 2

2

 2 26

 122  (16) 2  144  256  400  20

Verifying that ∆ ABC is a right triangle by the Pythagorean Theorem:

Verifying that ∆ ABC is a right triangle by the Pythagorean Theorem: 3 Copyright © 2020 Pearson Education, Inc.


Chapter 1: Graphs

 d ( A, C )2   d ( B, C )2   d ( A, B)2

 d ( A, C )2   d ( B, C )2   d ( A, B)2

 104    26    130 

 29    2 29    145 

2

2

2

104  26  130 130  130 1 The area of a triangle is A  bh . In this 2 problem, 1 A    d ( A, C )    d ( B, C )  2 1   104  26 2 1   2 26  26 2 1   2  26 2  26 square units

36. A  (6, 3), B  (3, 5), C  (1, 5) d ( A, B) 

 3  (6)   (5  3) 2

2

 92  (8) 2  81  64  145 d ( B, C ) 

 1  32  (5  (5))2

 (4) 2  102  16  100  116  2 29 d ( A, C ) 

2

2

29  4  29  145 29  116  145 145  145 1 The area of a triangle is A  bh . In this 2 problem, 1 A    d ( A, C )    d ( B, C )  2 1   29  2 29 2 1   2  29 2  29 square units

37. A  (4, 3), B  (0, 3), C  (4, 2) d ( A, B )  (0  4) 2   3  (3) 

2

 ( 4)2  02  16  0  16 4 d ( B, C ) 

 4  0 2   2  (3) 2

 42  52  16  25  41

 1  ( 6)   (5  3) 2

2

2

 52  22  25  4

d ( A, C )  (4  4) 2   2  (3) 

2

 02  52  0  25

 29

 25 5

Verifying that ∆ ABC is a right triangle by the Pythagorean Theorem:

Verifying that ∆ ABC is a right triangle by the Pythagorean Theorem:

4 Copyright © 2020 Pearson Education, Inc.


Section 1.1: The Distance and Midpoint Formulas

 d ( A, B)2   d ( A, C )2   d ( B, C )2 4 2  52 

 41

 d ( A, B)2   d ( B, C )2   d ( A, C )2

2

42  22  2 5

1 bh . In this 2

problem, 1 A    d ( A, B)    d ( A, C )  2 1  45 2  10 square units

d ( A, B )  (4  4) 2  1  (3) 

1 bh . In this problem, 2

1   d ( A, B)    d ( B, C )  2 1  42 2  4 square units

2

 02  42  0  16  16 4

39. The coordinates of the midpoint are: x x y y  ( x, y )   1 2 , 1 2  2   2  35 4 4  , 2   2 8 0  ,  2 2  (4, 0) 40. The coordinates of the midpoint are:  x  x y  y2  ( x, y )   1 2 , 1 2   2

 2  4 2  1  12

 (2) 2  02  4  0  4 2 d ( A, C )  (2  4) 2  1  (3) 

The area of a triangle is A  A

38. A  (4, 3), B  (4, 1), C  (2, 1)

d ( B, C ) 

2

16  4  20 20  20

16  25  41 41  41

The area of a triangle is A 

2

 (2) 2  42  4  16  20

 2  2 0  4   , 2   2 0 4  ,  2 2   0, 2 

41. The coordinates of the midpoint are: x x y y  ( x, y )   1 2 , 1 2  2   2  1  8 4  0  ,  2   2 7 4  ,  2 2 7    , 2 2 

2 5

Verifying that ∆ ABC is a right triangle by the Pythagorean Theorem:

5 Copyright © 2020 Pearson Education, Inc.


Chapter 1: Graphs 42. The coordinates of the midpoint are: x x y y  ( x, y )   1 2 , 1 2  2   2  2  4 3  2   , 2   2  6 1   ,  2 2  1    3,   2  43. The coordinates of the midpoint are:  x  x y  y2  ( x, y )   1 2 , 1 2   2  7  9 5  1   , 2   2  16  4   ,   2 2 

48. The new x coordinate would be 1  2  3 and the new y coordinate would be 6  4  10 . Thus the new point would be  3,10  49. a. If we use a right triangle to solve the problem, we know the hypotenuse is 13 units in length. One of the legs of the triangle will be 2+3=5. Thus the other leg will be: 52  b 2  132 25  b 2  169 b 2  144 b  12

 (8, 2)

44. The coordinates of the midpoint are:  x  x y  y2  ( x, y )   1 2 , 1 2   2   4  2 3  2  ,  2   2   2 1  ,    2 2  1    1,   2 

Thus the coordinates will have an y value of 1  12  13 and 1  12  11 . So the points are  3,11 and  3, 13 . b. Consider points of the form  3, y  that are a

distance of 13 units from the point  2, 1 . d

 x2  x1 2   y2  y1 2

 3  (2) 2   1  y 2

 52   1  y 2

 25  1  2 y  y 2

45. The coordinates of the midpoint are:  x  x y  y2  ( x, y )   1 2 , 1 2   2 a0 b0  , 2   2 a b  ,   2 2

y 2  2 y  26

y 2  2 y  26

13  132 

y 2  2 y  26

2

169  y 2  2 y  26 0  y 2  2 y  143

46. The coordinates of the midpoint are:  x  x y  y2  ( x, y )   1 2 , 1 2   2 a0 a0  , 2   2 a a  ,  2 2

47. The x coordinate would be 2  3  5 and the y coordinate would be 5  2  3 . Thus the new point would be  5,3 .

0   y  11 y  13 y  11  0

or y  13  0 y  11 y  13

Thus, the points  3,11 and  3, 13 are a distance of 13 units from the point  2, 1 .

6 Copyright © 2020 Pearson Education, Inc.


Section 1.1: The Distance and Midpoint Formulas 50. a. If we use a right triangle to solve the problem, we know the hypotenuse is 17 units in length. One of the legs of the triangle will be 2+6=8. Thus the other leg will be:

d

 x2  x1 2   y2  y1 2

 4  x 2   3  0 2

82  b 2  17 2

 16  8 x  x 2   3

64  b 2  289

 16  8 x  x 2  9

b 2  225 b  15

2

 x 2  8 x  25 6  x 2  8 x  25

Thus the coordinates will have an x value of 1  15  14 and 1  15  16 . So the points are  14, 6  and 16, 6  .

62 

 x  8x  25  2

2

36  x 2  8 x  25 0  x 2  8 x  11

b. Consider points of the form  x, 6  that are

a distance of 17 units from the point 1, 2  . d

 x2  x1 2   y2  y1 2

1  x 2   2   6  

 x 2  2 x  1  8

x

(8)  (8) 2  4(1)(11) 2(1)

8  64  44 8  108  2 2 86 3   43 3 2 x  4  3 3 or x  4  3 3 

2

2

 x 2  2 x  1  64

Thus, the points 4  3 3, 0 and 4  3 3, 0 are

 x 2  2 x  65

on the x-axis and a distance of 6 units from the point  4, 3 .

17  x 2  2 x  65 17 2 

x 2  2 x  65

52. Points on the y-axis have an x-coordinate of 0. Thus, we consider points of the form  0, y  that

2

are a distance of 6 units from the point  4, 3 .

289  x 2  2 x  65 0  x 2  2 x  224 0   x  14  x  16  x  14  0 or x  16  0 x  14 x  16 Thus, the points  14, 6  and 16, 6  are a

distance of 13 units from the point 1, 2  .

d

 x2  x1 2   y2  y1 2

 4  0  2   3  y  2

 42  9  6 y  y 2  16  9  6 y  y 2 

y 2  6 y  25

51. Points on the x-axis have a y-coordinate of 0. Thus, we consider points of the form  x, 0  that are a

distance of 6 units from the point  4, 3 .

7 Copyright © 2020 Pearson Education, Inc.


Chapter 1: Graphs

6

y 2  6 y  25

62 

 y  6 y  25  2

x1  x2 2 3  x2 1  2 2  3  x2 x

2

36  y 2  6 y  25 0  y 2  6 y  11 y

1  x2

6  36  44 6  80  2 2 6  4 5   3  2 5 2 y  3  2 5 or y  3  2 5

2  y2

 x  x y  y2  56. M   x, y    1 2 , 1 . 2   2 P2   x2 , y2   (7, 2) and ( x, y )  (5, 4) , so

x1  x2 2 x1  7 5 2 10  x1  7 x

Thus, the points 0, 3  2 5 and 0, 3  2 5

are on the y-axis and a distance of 6 units from the point  4, 3 . 53. a.

y1  y2 2 6  y2 4 2 8  6  y2 y

Thus, P2  (1, 2) .

( 6)  (6)2  4(1)( 11) 2(1)

and

To shift 3 units left and 4 units down, we subtract 3 from the x-coordinate and subtract 4 from the y-coordinate.  2  3,5  4   1,1

b. To shift left 2 units and up 8 units, we subtract 2 from the x-coordinate and add 8 to the y-coordinate.  2  2,5  8   0,13 54. Let the coordinates of point B be  x, y  . Using

the midpoint formula, we can write  1  x 8  y   2,3   2 , 2  .   This leads to two equations we can solve. 1  x 8 y 2 3 2 2 1  x  4 8 y  6 x5 y  2 Point B has coordinates  5, 2  .

and

3  x1

y1  y2 2 y1  (2) 4  2 8  y1  (2) y

6  y1

Thus, P1  (3, 6) . 06 00 , 57. The midpoint of AB is: D   2   2   3, 0  04 04 , The midpoint of AC is: E   2   2   2, 2  64 04 , The midpoint of BC is: F   2   2   5, 2  d (C , D) 

 0  4 2  (3  4)2

 ( 4) 2  ( 1) 2  16  1  17 d ( B, E ) 

 2  6 2  (2  0)2

 ( 4) 2  22  16  4  20  2 5 d ( A, F )  (2  0) 2  (5  0) 2

 x  x y  y2  55. M   x, y    1 2 , 1 . 2   2

 22  52  4  25  29

P1   x1 , y1   (3, 6) and ( x, y )  (1, 4) , so

8 Copyright © 2020 Pearson Education, Inc.


Section 1.1: The Distance and Midpoint Formulas 58. Let P1  (0, 0), P2  (0, 4), P  ( x, y ) d  P1 , P2   (0  0)  (4  0) 2

60. d ( P1 , P2 ) 

2

 7 2  ( 2) 2

 16  4

 49  4

d  P1 , P   ( x  0) 2  ( y  0) 2 2

2

2

2

 53

 x y 4 d  P2 , P   ( x  0)  ( y  4)

 ( 2)2  ( 7) 2

2

 4  49

 x 2  ( y  4) 2  4

 53

 x 2  ( y  4) 2  16 Therefore, y2   y  4

 4  6 2  (5  2)2

d ( P2 , P3 ) 

 x  y  16 2

 6  (1) 2  (2  4)2

 4  (1) 2  (5  4)2

d ( P1 , P3 ) 

 52  ( 9) 2

2

y 2  y 2  8 y  16

 25  81

8 y  16

 106

y2 which gives x 2  22  16

Since  d ( P1 , P2 )    d ( P2 , P3 )    d ( P1 , P3 )  , 2

the triangle is a right triangle. Since d  P1 , P2   d  P2 , P3  , the triangle is

x 2  12 x  2 3 Two triangles are possible. The third vertex is

  2 3, 2  or  2 3, 2 .

isosceles. Therefore, the triangle is an isosceles right triangle. 61. d ( P1 , P2 ) 

59. d ( P1 , P2 )  ( 4  2) 2  (1  1) 2

 0  ( 2) 2   7  (1) 2

 22  82  4  64  68  2 17

 ( 6) 2  02

 3  0 2  (2  7)2

d ( P2 , P3 ) 

 36 6 d ( P2 , P3 ) 

2

2

  4  ( 4)   (3  1) 2

2

 0  ( 4)

 32  ( 5) 2  9  25 2

 34

2

 3  (2) 2   2  (1) 2

d ( P1 , P3 ) 

 16 4

 52  32  25  9

 ( 6) 2  ( 4) 2

 34 Since d ( P2 , P3 )  d ( P1 , P3 ) , the triangle is isosceles.

 36  16

Since  d ( P1 , P3 )    d ( P2 , P3 )    d ( P1 , P2 )  ,

 52

the triangle is also a right triangle. Therefore, the triangle is an isosceles right triangle.

d ( P1 , P3 )  ( 4  2) 2  (3  1) 2

2

 2 13

Since  d ( P1 , P2 )    d ( P2 , P3 )    d ( P1 , P3 )  , 2

2

2

the triangle is a right triangle.

9 Copyright © 2020 Pearson Education, Inc.

2

2


Chapter 1: Graphs 65. a.

  4  7 2   0  2 2

62. d ( P1 , P2 ) 

 (11) 2  ( 2) 2

First: (90, 0), Second: (90, 90), Third: (0, 90) Y

 121  4  125

(0,90)

(90,90)

5 5

 4  ( 4) 2  (6  0)2

d ( P2 , P3 ) 

 82  62  64  36

X

 100  10

(0,0)

b. Using the distance formula:

 4  7 2   6  2 2

d ( P1 , P3 ) 

(90,0)

d  (310  90) 2  (15  90) 2

 (3) 2  42  9  16

 2202  (75)2  54025

 25 5

 5 2161  232.43 feet

Since  d ( P1 , P3 )    d ( P2 , P3 )    d ( P1 , P2 )  , 2

2

2

c.

d  (300  0) 2  (300  90)2

the triangle is a right triangle.

 3002  2102  134100

63. Using the Pythagorean Theorem: 902  902  d 2 8100  8100  d

2

16200  d

2

 30 149  366.20 feet

66. a.

d  16200  90 2  127.28 feet 90

Using the distance formula:

First: (60, 0), Second: (60, 60) Third: (0, 60) y

(0,60)

(60,60)

90 d 90

90

x (0,0)

64. Using the Pythagorean Theorem: 602  602  d 2

b. Using the distance formula: d  (180  60) 2  (20  60) 2

3600  3600  d 2  7200  d 2

 1202  ( 40) 2  16000

d  7200  60 2  84.85 feet 60

60

 40 10  126.49 feet

c.

Using the distance formula: d  (220  0) 2  (220  60)2

d 60

(60,0)

60

 2202  1602  74000  20 185  272.03 feet

10 Copyright © 2020 Pearson Education, Inc.


Section 1.1: The Distance and Midpoint Formulas 67. The Focus heading east moves a distance 60t after t hours. The truck heading south moves a distance 40t after t hours. Their distance apart after t hours is: d  (60t ) 2  (45t ) 2  3600t 2  2025t 2  5625t 2  75t miles 60t

45t

68.

15 miles 5280 ft 1 hr    22 ft/sec 1 hr 1 mile 3600 sec 2

  2013  2017 102.87  126.17   ,  2 2    4030 229.04   , 2   2   2015, 114.52 

71. For 2009 we have the ordered pair  2009, 21756  and for 2017 we have the ordered

pair  2017, 24858  . The midpoint is 

 4026 46614   ,  2   2   2013, 23307 

22t

69. a.

y y

 year, $    2009 2 2017 , 21756 2 24858 

 10000  484t 2 feet

100

x x

 x, y    1 2 2 , 1 2 2 

The estimate for 2010 is $114.52 billion. The estimate net sales of Costco Wholesale Corporation in 2015 is $0.85 billion off from the reported value of $113.67 billion.

d

d  1002   22t 

70. Let P1  (2013, 102.87) and P2  (2017, 126.17) . The midpoint is:

d

Using the midpoint, we estimate the poverty level in 2013 to be $23,307. This is lower than the actual value.

The shortest side is between P1  (2.6, 1.5) and P2  (2.7, 1.7) . The estimate for the desired intersection point is:  x1  x2 y1  y2   2.6  2.7 1.5  1.7  ,   2 , 2  2 2     5.3 3.2    ,   2 2    2.65, 1.6 

72. Let P1   0, 0  , P2   a, 0  , and a 3a P3   ,  . Then 2 2 

d  P1 , P2  

 x2  x1 2   y2  y1 2

 a  0 2   0  0  2 

d  P2 , P3  

b. Using the distance formula: d  (2.65  1.4) 2  (1.6  1.3) 2  (1.25) 2  (0.3) 2  1.5625  0.09  1.6525  1.285 units

11 Copyright © 2020 Pearson Education, Inc.

 x2  x1 2   y2  y1 2

2  a   3a    a     0  2 2    

a2  a

a 2 3a 2   4 4

2

4a 2  a2  a 4


Chapter 1: Graphs

d  P1 , P3  

Since the lengths of the sides of the triangle formed by the midpoints are all equal, the triangle is equilateral. 73. Let P1   0, 0  , P2   0, s  , P3   s, 0  , and

 x2  x1 2   y2  y1 2

2  a   3a    0     0  2   2 

2

4a 2 a 2 3a 2     a2  a 4 4 4 Since the lengths of the three sides are all equal, the triangle is an equilateral triangle. The midpoints of the saids are 0a 00  a  M P1P2   ,    , 0 2  2   2   3 a   3a 3 a  a    0 a M P2 P3   2, 2    4 , 4      2  2     3a  a 0 0  2, 2  a, 3a M P1P3     2  2   4 4      Then,

d M P1 P2 , M P2 P3

2   3a a   3 a        0   4 2  4  2

a  3a        4   4 

2

y (0, )s

(,ss)

(,s 0) (0, 0)

x

The points P1 and P4 are endpoints of one diagonal and the points P2 and P3 are the endpoints of the other diagonal. 0s 0s   s s  M P1 P4   ,  ,  2  2 2  2 0s s0  s s  M P2 P3   ,  ,  2  2 2  2 The midpoints of the diagonals are the same. Therefore, the diagonals of a square intersect at their midpoints. 74. Let P   a, 2a  . Then

 a  5 2   2a  12   a  4 2   2a  4 2

2

 a  5 2   2a  12   a  4 2   2a  4 2 5a 2  6a  26  5a 2  8a  32

a a 2 3a 2    16 16 2 d M P2 P3 , M P1 P3

P4   s, s  be the vertices of the square.

6a  26  8a  32

2 3a  3a a   3 a         4   4 4  4

2a  6

2

a  3

Then P  (3, 6) .

2

a     02 2 

75. Arrange the parallelogram on the coordinate plane so that the vertices are P1   0, 0  , P2  (a, 0), P3  (a  b, c) and P4  (b, c)

a a2  4 2

Then the lengths of the sides are: 2

 a a  3a  0  d M P1 P2 , M P1 P3       4 2  4 

2

 a  3a         4   4  

a a 2 3a 2   16 16 2

2

2

d ( P1 , P2 ) 

 a  0 2   0  0 2

 a2  a

d ( P2 , P3 ) 

(a  b)  a 2   c  0 2

 b2  c 2

12 Copyright © 2020 Pearson Education, Inc.


Section 1.2: Graphs of Equations in Two Variables; Intercepts; Symmetry

2. x 2  9  0 d ( P3 , P4 ) 

x2  9

b  (a  b)2   c  c 2

x   9  3 The solution set is 3,3 .

 a2  a

and

3. intercepts

d ( P1 , P4 ) 

b  0   c  0 2

2

 b c

2

4. y  0

2

5. y-axis

P1 and P3 are the endpoints of one diagonal, and P2 and P4 are the endpoints of the other diagonal. The lengths of the diagonals are d ( P1 , P3 ) 

(a  b)  02   c  0 2

6. 4 7.

 3, 4 

8. True

 a 2  2ab  b 2  c 2

9. False; the y-coordinate of a point at which the graph crosses or touches the x-axis is always 0. The x-coordinate of such a point is an x-intercept.

and d ( P2 , P4 )  (b  a )2   c  0  . 2

10. False; a graph can be symmetric with respect to both coordinate axes (in such cases it will also be symmetric with respect to the origin). For example: x 2  y 2  1

 a 2  2ab  b 2  c 2

Sum of the squares of the sides: a 2  ( b2  c 2 )2  a 2  ( b2  c 2 )2  2a 2  2b 2  2c 2

11. d

Sum of the squares of the diagonals:

12. c

 a  2ab  b  c    a  2ab  b  c  2

2

2

2

 2a 2  2b 2  2c 2

76. Answers will vary.

2

2

2

2

13. y  x 4  x 0  04  0

1  14  1

4  (2) 4  2

00 1 0 4  16  2 The point (0, 0) is on the graph of the equation.

14. y  x3  2 x 0  03  2 0

Section 1.2 1. 2  x  3  1  7

1  13  2 1

00 1  1 1  1 The points (0, 0) and (1, –1) are on the graph of the equation.

2  x  3  6

15. y 2  x 2  9

x  3  3

32  02  9

x  6 The solution set is 6 .

1  13  2 1

02  32  9

02  (3) 2  9

99 0  18 0  18 The point (0, 3) is on the graph of the equation.

13 Copyright © 2020 Pearson Education, Inc.


Chapter 1: Graphs

The intercepts are  6, 0  and  0, 6  .

16. y 3  x  1 3

3

3

2  11 0  1  1 1  0 1 82 00 11 The points (0, 1) and (–1, 0) are on the graph of the equation.

17. x 2  y 2  4 02  22  4

( 2) 2  22  4

44

84

(0, 2) and

 2  2  4 2

2

 2, 2  are on the graph of the

44

equation. 18. x 2  4 y 2  4 02  4 12  4 22  4  02  4 22  4  12   4 44 44 54 The points (0, 1) and (2, 0) are on the graph of the equation. 2

19. y  x  2 x-intercept: 0 x2 2  x

21. y  2 x  8 x-intercept: y-intercept: 0  2x  8 y  2 0  8 2 x  8 y 8 x  4 The intercepts are  4, 0  and  0,8  .

y-intercept: y  02 y2

The intercepts are  2, 0  and  0, 2  .

20. y  x  6 x-intercept: 0  x6 6x

22. y  3 x  9 x-intercept: y-intercept: 0  3x  9 y  30  9 3x  9 y  9 x3 The intercepts are  3, 0  and  0, 9  .

y-intercept: y  06 y  6

14 Copyright © 2020 Pearson Education, Inc.


Section 1.2: Graphs of Equations in Two Variables; Intercepts; Symmetry

23. y  x 2  1 x-intercepts: 0  x2  1 x2  1

The intercepts are  2, 0  ,  2, 0  , and  0, 4  . y-intercept: y  02  1 y  1

x  1 The intercepts are  1, 0  , 1, 0  , and  0, 1 .

26. y   x 2  1 x-intercepts:

24. y  x 2  9 x-intercepts: 0  x2  9 x2  9

y-intercept:

0  x 1

y   0  1

x2  1

y 1

2

2

x  1 The intercepts are  1, 0  , 1, 0  , and  0,1 .

y-intercept: y  02  9 y  9

x  3 The intercepts are  3, 0  ,  3, 0  , and  0, 9  .

27. 2 x  3 y  6 x-intercepts: 2x  30  6 2x  6 x3

25. y   x 2  4 x-intercepts:

3y  6 y2

The intercepts are  3, 0  and  0, 2  . y-intercepts:

0  x  4

y    0  4

x2  4

y4

2

y-intercept: 2 0  3 y  6

2

x  2

15 Copyright © 2020 Pearson Education, Inc.


Chapter 1: Graphs

The intercepts are  1, 0  , 1, 0  , and  0, 4  .

28. 5 x  2 y  10 x-intercepts: 5 x  2  0   10

y-intercept: 5  0   2 y  10

5 x  10

2 y  10

x2

y5

The intercepts are  2, 0  and  0, 5  .

31.

29. 9 x 2  4 y  36 x-intercepts:

y-intercept:

9 x  4  0   36

9  0   4 y  36

9 x 2  36

4 y  36 y9

2

2

x2  4

32.

x  2 The intercepts are  2, 0  ,  2, 0  , and  0,9  .

33.

30. 4 x 2  y  4 x-intercepts:

y-intercept:

4x  0  4

4  0  y  4

4 x2  4

y4

2

2

2

x 1 x  1

16 Copyright © 2020 Pearson Education, Inc.


Section 1.2: Graphs of Equations in Two Variables; Intercepts; Symmetry 34.

39.

35.

40.

y 5

(c) = (5, 2)

(a) = (5, 2)

5

5



(b) = (5, 2) 5

36.

41. a.

Intercepts:  1, 0  and 1, 0 

b. Symmetric with respect to the x-axis, y-axis, and the origin. 42. a.

Intercepts:  0,1

b. Not symmetric to the x-axis, the y-axis, nor the origin 37.

43. a.

Intercepts:  2 , 0 ,  0,1 , and 2 , 0

b. Symmetric with respect to the y-axis. 44. a.

Intercepts:  2, 0  ,  0, 3 , and  2, 0 

b. Symmetric with respect to the y-axis. 45. a.

Intercepts:  0, 0 

b. Symmetric with respect to the x-axis. 38.

46. a.

Intercepts:  2, 0  ,  0, 2  ,  0, 2  , and  2, 0 

b. Symmetric with respect to the x-axis, y-axis, and the origin. 47. a.

Intercepts:  2, 0  ,  0, 0  , and  2, 0 

b. Symmetric with respect to the origin. 48. a.

Intercepts:  4, 0  ,  0, 0  , and  4, 0 

b. Symmetric with respect to the origin. 17 Copyright © 2020 Pearson Education, Inc.


Chapter 1: Graphs

49. a.

x-intercepts:  2,1 , y-intercept 0

b. Not symmetric to x-axis, y-axis, or origin. 50. a.

x-intercepts:  1, 2 , y-intercept 0

b. Not symmetric to x-axis, y-axis, or origin. 51. a. Intercepts: none b. Symmetric with respect to the origin. 52. a. Intercepts: none b. Symmetric with respect to the x-axis. 53.

57. y 2  x  16 x-intercepts: 02  x  16 16  x

y-intercepts: y 2  0  16 y 2  16 y  4

The intercepts are  16, 0  ,  0, 4  and  0, 4  . Test x-axis symmetry: Let y   y

  y 2  x  16 y 2  x  16 same

Test y-axis symmetry: Let x   x y 2   x  16 different Test origin symmetry: Let x   x and y   y .

  y 2   x  16 y 2   x  16 different

Therefore, the graph will have x-axis symmetry.

54.

58. y 2  x  9 x-intercepts: (0) 2   x  9 0  x  9 x9

y-intercepts: y2  0  9 y2  9 y  3

The intercepts are  9, 0  ,  0, 3 and  0,3 . Test x-axis symmetry: Let y   y

  y 2  x  9 y 2  x  9 same

55.

Test y-axis symmetry: Let x   x y 2   x  9 different Test origin symmetry: Let x   x and y   y .

  y 2   x  9 y 2   x  9 different

Therefore, the graph will have x-axis symmetry. 56.

59. y  3 x x-intercepts: y-intercepts: 3 y 30 0 0 x 0x The only intercept is  0, 0  .

Test x-axis symmetry: Let y   y  y  3 x different

18 Copyright © 2020 Pearson Education, Inc.


Section 1.2: Graphs of Equations in Two Variables; Intercepts; Symmetry

Test y-axis symmetry: Let x   x y  3  x   3 x different Test origin symmetry: Let x   x and y   y  y  3 x  3 x y  3 x same

Therefore, the graph will have origin symmetry. 60. y  5 x x-intercepts: y-intercepts: 3 y50 0 0 x 0x The only intercept is  0, 0  .

Test x-axis symmetry: Let y   y

Test x-axis symmetry: Let y   y x2    y   4  0 x 2  y  4  0 different

Test y-axis symmetry: Let x   x

  x 2  y  4  0 x 2  y  4  0 same

Test origin symmetry: Let x   x and y   y

  x 2    y   4  0

5

 y  x different

Test y-axis symmetry: Let x   x y  5  x   5 x different Test origin symmetry: Let x   x and y   y 5

62. x 2  y  4  0 x-intercepts: y-intercept: x2  0  4  0 02  y  4  0 y  4 x2  4 y  4 x  2 The intercepts are  2, 0  ,  2, 0  , and  0, 4  .

5

 y  x   x y  5 x same

x 2  y  4  0 different

Therefore, the graph has y-axis symmetry. 63. 25 x 2  4 y 2  100 x-intercepts:

25  0   4 y 2  100

25 x 2  100 x2  4 x  2

4 y 2  25 y2  5 y  5

2

Therefore, the is symmetric with respect to the origin. 61. x 2  y  9  0 x-intercepts: x2  9  0 x2  9

y-intercepts: 02  y  9  0 y9

y-intercepts:

25 x 2  4  0   100

2

The intercepts are  2, 0  ,  2, 0  ,  0, 5  , and

 0,5 . Test x-axis symmetry: Let y   y

x  3 The intercepts are  3, 0  ,  3, 0  , and  0,9  .

25 x 2  4   y   100

Test x-axis symmetry: Let y   y

Test y-axis symmetry: Let x   x

x 2  y  9  0 different

Test y-axis symmetry: Let x   x

  x 2  y  9  0

2

25 x 2  4 y 2  100 same 25   x   4 y 2  100 2

25 x 2  4 y 2  100 same

Test origin symmetry: Let x   x and y   y 25   x   4   y   100 2

x 2  y  9  0 same Test origin symmetry: Let x   x and y   y

  x 2  y  9  0

2

25 x 2  4 y 2  100 same

Therefore, the graph has x-axis, y-axis, and origin symmetry.

x 2  y  9  0 different

Therefore, the graph has y-axis symmetry.

19 Copyright © 2020 Pearson Education, Inc.


Chapter 1: Graphs

64. 4 x 2  y 2  4 x-intercepts:

y-intercepts:

66. y  x 4  1 x-intercepts: 0  x4  1

y-intercepts: y  04  1 y  1

4 x 2  02  4

4  0  y2  4

4 x2  4

y2  4

x4  1

x2  1

y  2

x  1 The intercepts are  1, 0  , 1, 0  , and  0, 1 .

2

x  1 The intercepts are  1, 0  , 1, 0  ,  0, 2  , and

Test x-axis symmetry: Let y   y

 0, 2  .

 y  x 4  1 different

Test x-axis symmetry: Let y   y

Test y-axis symmetry: Let x   x

4x    y   4

y  x 1 4

2

2

y  x 4  1 same

4 x 2  y 2  4 same

Test y-axis symmetry: Let x   x

Test origin symmetry: Let x   x and y   y

4x  y  4

 y  x 1

2

4

2

 y  x 4  1 different

4 x 2  y 2  4 same

Test origin symmetry: Let x   x and y   y 4x   y  4 2

2

2

2

4 x  y  4 same

Therefore, the graph has x-axis, y-axis, and origin symmetry. 65. y  x3  64 x-intercepts: 0  x3  64 x3  64

y-intercepts: y  03  64 y  64

Therefore, the graph has y-axis symmetry. 67. y  x 2  2 x  8 x-intercepts: 0  x2  2x  8 0   x  4  x  2 

y-intercepts: y  02  2  0   8 y  8

x  4 or x  2 The intercepts are  4, 0  ,  2, 0  , and  0, 8  .

Test x-axis symmetry: Let y   y  y  x 2  2 x  8 different

x4 The intercepts are  4, 0  and  0, 64  .

Test y-axis symmetry: Let x   x

Test x-axis symmetry: Let y   y

y  x 2  2 x  8 different

 y  x3  64 different

Test origin symmetry: Let x   x and y   y

Test y-axis symmetry: Let x   x

 y  x  2x  8

y    x   64 3

y  x  2x  8 2

2

 y  x 2  2 x  8 different

y   x3  64 different

Therefore, the graph has no symmetry.

Test origin symmetry: Let x   x and y   y  y    x   64 3

y  x3  64 different Therefore, the graph has no symmetry.

68. y  x 2  4 x-intercepts: 0  x2  4 x 2  4

y-intercepts: y  02  4 y4

no real solution The only intercept is  0, 4  .

20 Copyright © 2020 Pearson Education, Inc.


Section 1.2: Graphs of Equations in Two Variables; Intercepts; Symmetry

Test x-axis symmetry: Let y   y 2

 y  x  4 different

Test y-axis symmetry: Let x   x y  x  4 2

y  x 2  4 same

Test origin symmetry: Let x   x and y   y  y  x  4 2

x2  4 2x x-intercepts: x2  4 0 2x 2 x 4  0

70. y 

y-intercepts: 02  4 4 y  2 0 0 undefined

2

x 4

 y  x  4 different

x  2 The intercepts are  2, 0  and  2, 0  .

Therefore, the graph has y-axis symmetry.

Test x-axis symmetry: Let y   y

2

69. y 

x 2  16 x-intercepts: y-intercepts: 4  0 0 4x y 2  0 0 2 16 0  16 x  16 4x  0 x0 The only intercept is  0, 0  .

Test y-axis symmetry: Let x   x

  x 2  4 y 2x y

4x different x 2  16 Test y-axis symmetry: Let x   x 4x y   x 2  16 y 

4x x 2  16 4x

y

4x 2

x  16 4x

x 2  16

  x 2  4 2x

x2  4 2 x x2  4 y same 2x

y 

71. y 

 x3

x2  9 x-intercepts:  x3 0 2 x 9 3 x  0

  x 2  16

y  

y 

Therefore, the graph has origin symmetry.

different

Test origin symmetry: Let x   x and y   y y 

x2  4 different 2x

Test origin symmetry: Let x   x and y   y

Test x-axis symmetry: Let y   y

y

x2  4 different 2x

y 

4x

same

Therefore, the graph has origin symmetry.

y-intercepts: 03 0 y 2  0 0  9 9

x0 The only intercept is  0, 0  .

Test x-axis symmetry: Let y   y y  y

 x3 x2  9 x3 x2  9

21 Copyright © 2020 Pearson Education, Inc.

different


Chapter 1: Graphs

Test y-axis symmetry: Let x   x  x

73. y  x3

3

y y

  x 2  9 x3

different

x2  9

Test origin symmetry: Let x   x and y   y y  y  y

 x

3

  x 2  9 x3 x2  9  x3

74. x  y 2 same

x2  9

Therefore, the graph has origin symmetry. 72. y 

x4  1

2 x5 x-intercepts: 0

y-intercepts: 04  1 1 y  5 0 2  0

x4  1

2 x5 undefined x 4  1 no real solution There are no intercepts for the graph of this equation. Test x-axis symmetry: Let y   y y 

75. y  x

x4  1

different 2 x5 Test y-axis symmetry: Let x   x y y

  x 4  1 5 2x x4  1 2 x5

different

76. y 

Test origin symmetry: Let x   x and y   y y  y  y

1 x

  x 4  1 5 2x x4  1 2 x5 x4  1 2 x5

same

Therefore, the graph has origin symmetry.

22 Copyright © 2020 Pearson Education, Inc.


Section 1.2: Graphs of Equations in Two Variables; Intercepts; Symmetry 77. If the point  a, 4  is on the graph of

point  0, 2  is on the graph of the equation. Due

2

to the x-axis symmetry, the point  0, 2  must

2

also be on the graph. Therefore, 2 is another yintercept.

y  x  3 x , then we have

4  a  3a 0  a 2  3a  4 0   a  4  a  1 a40

83. a.

or a  1  0

 x  y  x  x  y 2

2

2

2

2

x-intercepts:

a  4 a 1 Thus, a  4 or a  1 .

 x   0  x   x   0 2

2

2

2

 x  x  x 2

2

78. If the point  a, 5  is on the graph of

2

2

x 4  2 x3  x 2  x 2

y  x 2  6 x , then we have

5  a 2  6a

x 4  2 x3  0

0  a 2  6a  5

x3  x  2   0

0   a  5  a  1

x3  0 or

x2  0

a5  0

x0

x2

or a  1  0 a  5 a  1 Thus, a  5 or a  1 .

y-intercepts:

 0  y  0   0  y 2

79. For a graph with origin symmetry, if the point  a, b  is on the graph, then so is the point

2 2

also be on the graph. Therefore, 6 is another xintercept. 81. For a graph with origin symmetry, if the point  a, b  is on the graph, then so is the point

 a, b  . Since 4 is an x-intercept in this case, the point  4, 0  is on the graph of the equation. Due to the origin symmetry, the point  4, 0  must also be on the graph. Therefore, 4 is another x-intercept.

2

2

y4  y2

of an equation with origin symmetry, the point  1, 2  must also be on the graph.

 a, b  . Since 6 is an x-intercept in this case, the point  6, 0  is on the graph of the equation. Due to the y-axis symmetry, the point  6, 0  must

2

y   y

 a, b  . Since the point 1, 2  is on the graph

80. For a graph with y-axis symmetry, if the point  a, b  is on the graph, then so is the point

2

2

y4  y2  0

y2 y2 1  0

y 2  0 or

y2 1  0

y0

y2  1 y  1

The intercepts are  0, 0  ,  2, 0  ,  0, 1 , and  0,1 . b. Test x-axis symmetry: Let y   y

 x   y  x  x   y 2

2

2

2

 x  y  x  x  y 2

2

2

2

2

2

same

Test y-axis symmetry: Let x   x

  x   y    x     x   y

82. For a graph with x-axis symmetry, if the point  a, b  is on the graph, then so is the point

 a, b  . Since 2 is a y-intercept in this case, the 23 Copyright © 2020 Pearson Education, Inc.

2

2

2

2

 x  y  x  x  y 2

2

2

2

2

2

different


Chapter 1: Graphs

Test origin symmetry: Let x   x and y   y

  x     y     x     x     y  2

2

2

2

 x  y  x  x  y 2

2

2

2

2

2

different

Thus, the graph will have x-axis symmetry. 84. a.

16 y 2  120 x  225 y-intercepts: 16 y 2  120  0   225

Let x = 0. (02  y 2 ) 2  a 2 (02  y 2 ) y 4  a 2 ( y 2 ) y4  a2 y2  0 y2 ( y2  a2 )  0 y0

(Note that the solutions to y 2  a 2  0 are not real) So the intercepts are are (0,0), (a,0) and (-a,0). Test x-axis symmetry: Replace y by -y ( x 2  ( y )2 )2  a 2 ( x 2  ( y )2 )

16 y 2  225 225 y2   16 no real solution

( x 2  y 2 ) 2  a 2 ( x 2  y 2 ) equivalent

Test y-axis symmetry: replace x by -x (( x) 2  y 2 ) 2  a 2 (( x) 2  y 2 )

x-intercepts: 16  0   120 x  225 2

( x 2  y 2 ) 2  a 2 ( x 2  y 2 ) equivalent

0  120 x  225 120 x  225 225 15 x  120 8

Test origin symmetry: replace x by -x and y by -y (( x) 2  ( y ) 2 ) 2  a 2 (( x) 2  ( y ) 2 )

 15  The only intercept is  , 0  . 8 

b. Test x-axis symmetry: Let y   y

( x 2  y 2 ) 2  a 2 ( x 2  y 2 ) equivalent

The graph is symmetric by respect to the xaxis, the y-axis, and the origin. 86. Let y = 0.

16   y   120 x  225 2

16 y 2  120 x  225 same

Test y-axis symmetry: Let x   x 16 y 2  120   x   225

( x 2  02  ax) 2  b 2 ( x 2  02 ) x 4  2ax3  a 2 x 2  b 2 x 2  0 x 2  ( x  (a  b)  ( x  (a  b)   0 x  0 or x  a  b or x  a  b

16 y 2  120 x  225 different

Test origin symmetry: Let x   x and y   y 16   y   120   x   225 2

16 y 2  120 x  225 different

Thus, the graph has x-axis symmetry. 85. Let y = 0. ( x 2  02 ) 2  a 2 ( x 2  02 ) x4  a2 ( x2 )

Let x = 0. (02  y 2  a  0) 2  b 2 (02  y 2 ) y 4  b2 y 2  0 y 2 ( y  b)( y  b)  0 y  0, y  b, y  b So the intercepts are (0,0), (a-b,0), (a+b,0), (0,-b), (0, b). Test x-axis symmetry: replace y by -y 2

x4  a2 x2  0

 x 2  ( y ) 2  ax   b 2  x 2  ( y ) 2     

x2 ( x2  a2 )  0

( x 2  y 2  ax) 2  b 2 ( x 2  y 2 ) Equivalent

x2  0

or

( x2  a2 )  0

x  0 or x 2  a 2 x   a, a

24 Copyright © 2020 Pearson Education, Inc.


Section 1.2: Graphs of Equations in Two Variables; Intercepts; Symmetry

Test y-axis symmetry: replace x by -x 2

 ( x) 2  y 2  a( x)   b 2 ( x) 2  y 2      ( x 2  y 2  ax) 2  b 2 ( x 2  y 2 ) Not equivalent

Test origin symmetry: replace x by -x and y by -y 2

 ( x) 2  ( y ) 2  a ( x)   b 2  (  x) 2  (  y ) 2      ( x 2  y 2  ax) 2  b 2 ( x 2  y 2 ) No equivalent

The graph is symmetric with respect to the x-axis only.

variable x is all real numbers. Thus,

 x   x only for x  0. 2

d. For y  x 2 , the range of the variable y is y  0 ; for y  x , the range of the variable y is all real numbers. Also,

if x  0 . Otherwise,

x 2  x only

x2   x .

88. Answers will vary. A complete graph presents enough of the graph to the viewer so they can “see” the rest of the graph as an obvious continuation of what is shown. 89. Answers will vary. One example:

87. a.

y

x

90. Answers will vary 91. Answers will vary 92. Answers will vary. Case 1: Graph has x-axis and y-axis symmetry, show origin symmetry.  x, y  on graph   x,  y  on graph

(from x-axis symmetry)  x,  y  on graph    x,  y  on graph

 from y-axis symmetry  Since the point   x,  y  is also on the graph, the graph has origin symmetry. Case 2: Graph has x-axis and origin symmetry, show y-axis symmetry.  x, y  on graph   x,  y  on graph

b.

Since

x 2  x for all x , the graphs of

y  x 2 and y  x are the same.

c.

For y 

  x

2

, the domain of the variable

x is x  0 ; for y  x , the domain of the

 from x-axis symmetry   x,  y  on graph    x, y  on graph  from origin symmetry  Since the point   x, y  is also on the graph, the graph has y-axis symmetry. Case 3: Graph has y-axis and origin symmetry, show x-axis symmetry.

25 Copyright © 2020 Pearson Education, Inc.


Chapter 1: Graphs

 x, y  on graph    x, y  on graph  from y-axis symmetry  Since the point  x,  y  is also on the graph, the graph has x-axis symmetry. 93. Answers may vary. The graph must contain the points  2,5  ,  1,3 , and  0, 2  . For the

graph to be symmetric about the y-axis, the graph must also contain the points  2,5  and 1,3

6. m1  m2 ; y-intercepts; m1  m2  1 7. 2 8.  9. c 10. d 11. b

(note that (0, 2) is on the y-axis).

12. d

For the graph to also be symmetric with respect to the x-axis, the graph must also contain the points  2, 5  ,  1, 3 ,  0, 2  ,  2, 5  , and

13. a.

14. a.

1. undefined; 0 2. 3; 2 x-intercept: 2 x  3(0)  6 2x  6 x3 y-intercept: 2(0)  3 y  6 3y  6 y2

Slope 

1 0 1  20 2

Slope 

1 2 1  1  ( 2) 3

b. If x increases by 3 units, y will decrease by 1 unit. 16. a.

Slope 

2 1 1  2  (1) 3

b. If x increases by 3 units, y will increase by 1 unit. 17.

3. True

1 0 1  20 2

b. If x increases by 2 units, y will decrease by 1 unit. 15. a.

Section 1.3

Slope 

b. If x increases by 2 units, y will increase by 1 unit.

1, 3 . Recall that a graph with two of the symmetries (x-axis, y-axis, origin) will necessarily have the third. Therefore, if the original graph with y-axis symmetry also has xaxis symmetry, then it will also have origin symmetry.

1 2

Slope 

y2  y1 0  3 3   x2  x1 4  2 2

4. False; the slope is 3 . 2 2 y  3x  5 3 5 y  x 2 2 ?

5. True; 2 1   2   4 ?

2  24 4  4 True

26 Copyright © 2020 Pearson Education, Inc.


Section 1.3: Lines

18. Slope 

y2  y1 4  2 2    2 x2  x1 3  4 1

22. Slope 

y2  y1 22 0   0 x2  x1 5  4 9

19. Slope 

y2  y1 1 3 2 1    x2  x1 2  ( 2) 4 2

23. Slope 

y2  y1 22 4   undefined. x2  x1 1  (1) 0

20. Slope 

y2  y1 3 1 2   x2  x1 2  ( 1) 3

24. Slope 

y2  y1 2  0 2   undefined. x2  x1 2  2 0

21. Slope 

y2  y1 1  (1) 0   0 x2  x1 2  (3) 5

25. P  1, 2  ; m  3

27 Copyright © 2020 Pearson Education, Inc.


Chapter 1: Graphs 26. P   2,1 ; m  4

30. P   2, 4  ; m  0

27. P   2, 4  ; m  

3 4

31. P   0, 3 ; slope undefined

(note: the line is the y-axis) 28. P  1,3 ; m  

2 5

29. P   1, 3 ; m  0

32. P   2, 0  ; slope undefined

33. P  1, 2  ; m  3 ; y  2  3( x  1) 34. P   2,1 ; m  4 ; y  1  4( x  2) 3 3 35. P   2, 4  ; m   ; y  4   ( x  2) 4 4

36. P  1,3 ; m  

2 2 ; y  3   ( x  1) 5 5

37. P   1,3 ; m  0 ; y  3  0 38. P   2, 4  ; m  0 ; y  4  0 28 Copyright © 2020 Pearson Education, Inc.


Section 1.3: Lines

4 ; point: 1, 2  1 If x increases by 1 unit, then y increases by 4 units. Answers will vary. Three possible points are: x  1  1  2 and y  2  4  6

39. Slope  4 

 2, 6 

 0, 6  x  0  3  3 and y  6  4  10

 3,10  x  3  3  6 and y  10  4  14

 6,14 

x  2  1  3 and y  6  4  10

 3,10  x  3  1  4 and y  10  4  14

 4,14  2 ; point:  2,3 1 If x increases by 1 unit, then y increases by 2 units. Answers will vary. Three possible points are: x  2  1  1 and y  3  2  5

40. Slope  2 

 1,5

2 ; point:  2, 3 1 If x increases by 1 unit, then y decreases by 2 units. Answers will vary. Three possible points are: x  2  1  1 and y  3  2  5

43. Slope  2 

 1, 5  x  1  1  0 and y  5  2  7

 0, 7  x  0  1  1 and y  7  2  9

1, 9 

x  1  1  0 and y  5  2  7

 0, 7 

1 ; point:  4,1 1 If x increases by 1 unit, then y decreases by 1 unit. Answers will vary. Three possible points are: x  4  1  5 and y  1  1  0

44. Slope  1 

x  0  1  1 and y  7  2  9

1,9  3 3 ; point:  2, 4   2 2 If x increases by 2 units, then y decreases by 3 units. Answers will vary. Three possible points are: x  2  2  4 and y  4  3  7

41. Slope  

 4, 7 

 5, 0  x  5  1  6 and y  0  1  1

 6, 1 x  6  1  7 and y  1  1  2

x  4  2  6 and y  7  3  10

 6, 10  x  6  2  8 and y  10  3  13

8, 13 4 ; point:  3, 2  3 If x increases by 3 units, then y increases by 4 units.

42. Slope 

Answers will vary. Three possible points are: x  3  3  0 and y  2  4  6

 7, 2  45. (0, 0) and (2, 1) are points on the line. 1 0 1 Slope   20 2 y -intercept is 0; using y  mx  b : 1 y  x0 2 2y  x 0  x  2y 1 x  2 y  0 or y  x 2

29 Copyright © 2020 Pearson Education, Inc.


Chapter 1: Graphs 46. (0, 0) and (–2, 1) are points on the line. 1 0 1 1 Slope    2 20 2 y -intercept is 0; using y  mx  b : 1 y   x0 2 2 y  x x  2y  0 1 x  2 y  0 or y   x 2 47. (–1, 3) and (1, 1) are points on the line. 1 3 2 Slope    1 1  (1) 2 Using y  y1  m( x  x1 ) y  1  1( x  1) y 1  x 1 y  x  2 x  y  2 or y   x  2 48. (–1, 1) and (2, 2) are points on the line. 2 1 1 Slope   2  (1) 3 Using y  y1  m( x  x1 ) 1 y  1   x  (1)  3 1 y  1  ( x  1) 3 1 1 y 1  x  3 3 1 4 y  x 3 3 x  3 y   4 or y 

51. y  y1  m( x  x1 ), m  

1 2

1 y  2   ( x  1) 2 1 1 y2   x 2 2 1 5 y   x 2 2 1 5 x  2 y  5 or y   x  2 2

52. y  y1  m( x  x1 ), m  1 y  1  1( x  (1)) y 1  x 1 y  x2 x  y   2 or y  x  2 53. Slope = 3; containing (–2, 3) y  y1  m( x  x1 ) y  3  3( x  ( 2)) y  3  3x  6 y  3x  9 3x  y   9 or y  3 x  9

54. Slope = 2; containing the point (4, –3) y  y1  m( x  x1 ) y  (3)  2( x  4) y  3  2x  8 y  2 x  11 2 x  y  11 or y  2 x  11

1 4 x 3 3

49. y  y1  m( x  x1 ), m  2 y  3  2( x  3) y  3  2x  6 y  2x  3 2 x  y  3 or y  2 x  3 50. y  y1  m( x  x1 ), m  1 y  2  1( x  1) y  2  x 1 y  x  3 x  y  3 or y   x  3

1 55. Slope = ; containing the point (3, 1) 2 y  y1  m( x  x1 ) 1 ( x  3) 2 1 3 y 1  x  2 2 1 1 y  x 2 2 y 1 

x  2 y  1 or y 

30 Copyright © 2020 Pearson Education, Inc.

1 1 x 2 2


Section 1.3: Lines 60. Slope = –2; y-intercept = –2 y  mx  b y   2 x  ( 2) 2 x  y   2 or y   2 x  2

2 56. Slope =  ; containing (1, –1) 3 y  y1  m( x  x1 ) 2 ( x  1) 3 2 2 y 1   x  3 3 2 1 y   x 3 3

y  (1)  

2 x  3 y  1 or y  

61. x-intercept = –4; y-intercept = 4 Points are (–4, 0) and (0, 4) 40 4 m  1 0  ( 4) 4 y  mx  b y  1x  4 y  x4 x  y   4 or y  x  4

2 1 x 3 3

57. Containing (1, 3) and (–1, 2) 2  3 1 1 m   1  1  2 2 y  y1  m( x  x1 )

62. x-intercept = 2; y-intercept = –1 Points are (2,0) and (0,–1) 1  0 1 1 m   02 2 2 y  mx  b 1 y  x 1 2 1 x  2 y  2 or y  x  1 2

1 y  3  ( x  1) 2 1 1 y 3  x 2 2 1 5 y  x 2 2 x  2 y   5 or y 

1 5 x 2 2

58. Containing the points (–3, 4) and (2, 5) 54 1 m  2  (3) 5 y  y1  m( x  x1 )

64. Slope undefined; containing the point (3, 8) This is a vertical line. x3 No slope-intercept form.

1 y  5  ( x  2) 5 1 2 y 5  x  5 5 1 23 y  x 5 5 x  5 y   23 or y 

63. Slope undefined; containing the point (2, 4) This is a vertical line. x2 No slope-intercept form.

65. Horizontal lines have slope m  0 and take the form y  b . Therefore, the horizontal line

passing through the point  3, 2  is y  2 . 1 23 x 5 5

59. Slope = –3; y-intercept =3 y  mx  b y  3 x  3 3x  y  3 or y  3x  3

66. Vertical lines have an undefined slope and take the form x  a . Therefore, the vertical line passing through the point  4, 5  is x  4 . 67. Parallel to y  2 x ; Slope = 2 Containing (–1, 2) y  y1  m( x  x1 ) y  2  2( x  (1)) y  2  2x  2  y  2x  4 2 x  y   4 or y  2 x  4

31 Copyright © 2020 Pearson Education, Inc.


Chapter 1: Graphs 68. Parallel to y  3x ; Slope = –3; Containing the point (–1, 2) y  y1  m( x  x1 ) y  2  3( x  ( 1)) y  2  3 x  3  y  3x  1 3x  y  1 or y  3 x  1

69. Parallel to x  2 y   5 ; 1 Slope  ; Containing the point  0, 0  2 y  y1  m( x  x1 ) 1 1 ( x  0)  y  x 2 2 1 x  2 y  0 or y  x 2 y0 

70. Parallel to 2 x  y   2 ; Slope = 2 Containing the point (0, 0) y  y1  m( x  x1 ) y  0  2( x  0) y  2x 2 x  y  0 or y  2 x

Slope of perpendicular   y  y1  m( x  x1 )

1 2

1 y  ( 2)   ( x  1) 2 1 1 1 3 y2  x  y   x 2 2 2 2 1 3 x  2 y  3 or y   x  2 2

75. Perpendicular to x  2 y  5 ; Containing the point (0, 4) Slope of perpendicular = –2 y  mx  b y  2 x  4 2 x  y  4 or y  2 x  4 76. Perpendicular to 2 x  y  2 ; Containing the point (–3, 0) 1 Slope of perpendicular  2 y  y1  m( x  x1 ) 1 1 3 ( x  (3))  y  x  2 2 2 1 3 x  2 y   3 or y  x  2 2 y0 

71. Parallel to x  5 ; Containing (4,2) This is a vertical line. x  4 No slope-intercept form. 72. Parallel to y  5 ; Containing the point (4, 2) This is a horizontal line. Slope = 0 y2 1 73. Perpendicular to y  x  4; Containing (1, –2) 2 Slope of perpendicular = –2 y  y1  m( x  x1 )

77. Perpendicular to x  8 ; Containing (3, 4) Slope of perpendicular = 0 (horizontal line) y4 78. Perpendicular to y  8 ; Containing the point (3, 4) Slope of perpendicular is undefined (vertical line). x  3 No slope-intercept form.

y  ( 2)   2( x  1) y  2   2x  2  y   2x 2 x  y  0 or y   2 x

74. Perpendicular to y  2 x  3 ; Containing the point (1, –2)

32 Copyright © 2020 Pearson Education, Inc.


Section 1.3: Lines 79. y  2 x  3 ; Slope = 2; y-intercept = 3

83. y 

1 1 x  2 ; Slope  ; y-intercept = 2 2 2

80. y  3 x  4 ; Slope = –3; y-intercept = 4 84. y  2 x 

81.

82.

1 y  x 1 ; y  2x  2 2 Slope = 2; y-intercept = –2

1 1 ; Slope = 2; y -intercept  2 2

1 85. x  2 y  4 ; 2 y   x  4  y   x  2 2 1 Slope   ; y-intercept = 2 2

1 1 x y  2; y   x2 3 3 1 Slope   ; y-intercept = 2 3

33 Copyright © 2020 Pearson Education, Inc.


Chapter 1: Graphs

86.  x  3 y  6 ; 3 y  x  6  y 

Slope 

1 x2 3

89. x  y  1 ; y   x  1 Slope = –1; y-intercept = 1

1 ; y-intercept = 2 3

90. x  y  2 ; y  x  2 Slope = 1; y-intercept = –2 87. 2 x  3 y  6 ; 3 y   2 x  6  y 

Slope 

2 x2 3

2 ; y-intercept = –2 3

91. x   4 ; Slope is undefined y-intercept - none

3 88. 3x  2 y  6 ; 2 y   3 x  6  y   x  3 2 3 Slope   ; y-intercept = 3 2

92. y  1 ; Slope = 0; y-intercept = –1

34 Copyright © 2020 Pearson Education, Inc.


Section 1.3: Lines 93. y  5 ; Slope = 0; y-intercept = 5

97. 2 y  3 x  0 ; 2 y  3x  y  Slope 

3 x 2

3 ; y-intercept = 0 2

94. x  2 ; Slope is undefined y-intercept - none 3 98. 3x  2 y  0 ; 2 y  3 x  y   x 2 3 Slope   ; y-intercept = 0 2

95. y  x  0 ; y  x Slope = 1; y-intercept = 0

99. a.

x-intercept: 2 x  3  0   6 2x  6 x3 The point  3, 0  is on the graph.

y-intercept: 2  0   3 y  6

96. x  y  0 ; y   x Slope = –1; y-intercept = 0

3y  6 y2

The point  0, 2  is on the graph. y

b.

5  

5

5 5

35 Copyright © 2020 Pearson Education, Inc.

x


Chapter 1: Graphs

100. a.

x-intercept: 3x  2  0   6

y-intercept: 6  0   4 y  24

3x  6

4 y  24 y  6

x2 The point  2, 0  is on the graph.

y-intercept: 3  0   2 y  6

The point  0, 6  is on the graph. b.

2 y  6 y  3

The point  0, 3 is on the graph. y

b.

5 

5

5

x



103. a.

7 x  21

5

101. a.

x-intercept: 7 x  2  0   21 x3 The point  3, 0  is on the graph.

x-intercept: 4 x  5  0   40

y-intercept: 7  0   2 y  21

4 x  40

2 y  21

x  10 The point  10, 0  is on the graph.

y

y-intercept: 4  0   5 y  40 5 y  40 y 8

The point  0,8  is on the graph.

21 2

 21  The point  0,  is on the graph.  2

b.

b.

104. a.

x-intercept: 5 x  3  0   18 5 x  18

102. a.

x-intercept: 6 x  4  0   24

x

6 x  24 x4 The point  4, 0  is on the graph.

18 5

 18  The point  , 0  is on the graph. 5 

36 Copyright © 2020 Pearson Education, Inc.


Section 1.3: Lines

y-intercept: 5  0   3 y  18

2 y4 3 2  y4 3 y  6

y-intercept:  0  

3 y  18 y6

The point  0, 6  is on the graph.

The point  0, 6  is on the graph.

b. b.

105. a.

1 1 x   0  1 2 3 1 x 1 2 x2 The point  2, 0  is on the graph.

x-intercept:

y-intercept:

107. a.

x-intercept: 0.2 x  0.5  0   1 0.2 x  1 x5 The point  5, 0  is on the graph.

y-intercept: 0.2  0   0.5 y  1

1 1  0  y  1 2 3 1 y 1 3 y3

0.5 y  1 y  2

The point  0, 2  is on the graph.

The point  0,3 is on the graph.

b.

b.

108. a. 106. a.

2  0  4 3 x4 The point  4, 0  is on the graph.

x-intercept: x 

x-intercept: 0.3x  0.4  0   1.2 0.3x  1.2 x  4 The point  4, 0  is on the graph.

y-intercept: 0.3  0   0.4 y  1.2 0.4 y  1.2 y3

The point  0,3 is on the graph.

37 Copyright © 2020 Pearson Education, Inc.


Chapter 1: Graphs b.

53 2 2   2  1 3 3 30 3  P2  1,3 , P3   1, 0  : m2  1   1 2

119. P1   2,5  , P2  1,3 : m1 

Since m1  m2  1 , the line segments P1 P2 and P2 P3 are perpendicular. Thus, the points P1 , P2 , and P3 are vertices of a right triangle.

109. The equation of the x-axis is y  0 . (The slope is 0 and the y-intercept is 0.) 110. The equation of the y-axis is x  0 . (The slope is undefined.) 111. The slopes are the same but the y-intercepts are different. Therefore, the two lines are parallel. 112. The slopes are opposite-reciprocals. That is, their product is 1 . Therefore, the lines are perpendicular. 113. The slopes are different and their product does not equal 1 . Therefore, the lines are neither parallel nor perpendicular. 114. The slopes are different and their product does not equal 1 (in fact, the signs are the same so the product is positive). Therefore, the lines are neither parallel nor perpendicular. 115. Intercepts:  0, 2  and  2, 0  . Thus, slope = 1. y  x  2 or x  y   2 116. Intercepts:  0,1 and 1, 0  . Thus, slope = –1. y   x  1 or x  y  1

1 117. Intercepts:  3, 0  and  0,1 . Thus, slope =  . 3 1 y   x  1 or x  3 y  3 3 118. Intercepts:  0, 1 and  2, 0  . Thus, 1 slope =  . 2 1 y   x  1 or x  2 y   2 2

120. P1  1, 1 , P2   4,1 , P3   2, 2  , P4   5, 4  1   1

4 1 2  3; ; m24  4 1 3 54 2   1 42 2 m34   ; m13  3 52 3 2 1 Each pair of opposite sides are parallel (same slope) and adjacent sides are not perpendicular. Therefore, the vertices are for a parallelogram. m12 

121. P1   1, 0  , P2   2,3 , P3  1, 2  , P4   4,1 m12  m34 

30 3 1 3   1 ; m24   1 ; 2   1 3 42 1   2  4 1

2  0 3  1 ; m13   1 3 1   1

Opposite sides are parallel (same slope) and adjacent sides are perpendicular (product of slopes is 1 ). Therefore, the vertices are for a rectangle. 122. P1   0, 0  , P2  1,3 , P3   4, 2  , P4   3, 1 30 23 1  3 ; m23   ; 1 0 4 1 3 1  2 1  0 1  3 ; m14   m34  30 3 3 4

m12 

d12 

1  0 2   3  0 2  1  9  10

d 23 

 4  12   2  32  9  1  10

d34 

 3  4 2   1  2 2  1  9  10

d14 

 3  0 2   1  0 2  9  1  10

Opposite sides are parallel (same slope) and adjacent sides are perpendicular (product of slopes is 1 ). In addition, the length of all four sides is the same. Therefore, the vertices are for a square. 123. Let x = number of miles driven, and let C = cost in dollars.

38 Copyright © 2020 Pearson Education, Inc.


Section 1.3: Lines

Total cost = (cost per mile)(number of miles) + fixed cost C  0.60 x  39 When x = 110, C   0.60110  39  $105.00 .

128. a.

When x = 230, C   0.60 230  39  $177.00 .

c.

124. Let x = number of pairs of jeans manufactured, and let C = cost in dollars. Total cost = (cost per pair)(number of pairs) + fixed cost C  20 x  1200 When x = 400, C   20  400   1200  $9200 .

b.

C  0.649 x  21.82

For 90 therms, C  0.649  90   21.82  $80.23

For 150 therms, C  0.649 150   21.82  $119.17

d.

When x = 740, C   20  740   1200  $16, 000 . 125. Let x = number of miles driven annually, and let C = cost in dollars. Total cost = (approx cost per mile)(number of miles) + fixed cost C  0.14 x  4252 126. Let x = profit in dollars, and let S = salary in dollars. Weekly salary = (% share of profit)(profit) + weekly pay S  0.05 x  525

127. a.

C  0.0889 x  8.01 ; 0  x  1000

b.

For each usage increase of 1 therm the monthly charge increases by $0.649 (that is, 64.9 cents).

e.

129. (C ,  F )  (0, 32); (C ,  F )  (100, 212) 212  32 180 9   100  0 100 5 9  F  32  (C  0) 5 9  F  32  (C ) 5 5 C  ( F  32) 9 If  F  70 , then 5 5 C  (70  32)  (38) 9 9 C  21.1 slope 

130. a. b.

c.

For 200 kWh, C  0.0889  200   8.01  $25.79

d.

For 500 kWh, C  0.0889  500   8.01  $52.46

e.

For each usage increase of 1 kWh, the monthly charge increases by $0.0889 (that is, 8.89 cents).

131. a.

K º C  273

5 º C  (º F  32) 9 5 K  ( F  32)  273 9 5 160 K  ºF   273 9 9 5 2297 K  ºF  9 9

The y-intercept is (0, 30), so b = 30. Since the ramp drops 2 inches for every 25 inches

39 Copyright © 2020 Pearson Education, Inc.


Chapter 1: Graphs

of run, the slope is m  the equation is y  

2 2   . Thus, 25 25

0  0.625 x  37.875 37.875  0.625 x 60.6  x y-intercept: y  0.625(0)  37.875  37.875 The intercepts are (60.6, 0) and (0, 37.875).

b. x-intercept:

2 x  30 . 25

b. Let y = 0. 0

2 x  30 25

c.

2 x  30 25 25  2  25  x    30  2  25  2 x  375 The x-intercept is (375, 0). This means that the ramp meets the floor 375 inches (or 31.25 feet) from the base of the platform.

c.

132. a.

d. Let x = 39.2. y  0.625(39.2)  37.875  13.4% 133. a.

No. From part (b), the run is 31.25 feet which exceeds the required maximum of 30 feet.

d. First, design requirements state that the maximum slope is a drop of 1 inch for each 1 12 inches of run. This means m  . 12 Second, the run is restricted to be no more than 30 feet = 360 inches. For a rise of 30 inches, this means the minimum slope is 30 1 1 . That is, m  . Thus, the  12 360 12 1 . The only possible slope is m  12 diagram indicates that the slope is negative. Therefore, the only slope that can be used to obtain the 30-inch rise and still meet design 1 requirements is m   . In words, for 12 every 12 inches of run, the ramp must drop exactly 1 inch.

Let x represent the percent of internet ad spending. Let y represent the percent of print ad spending. Then the points (0.19, 0.26) and (0.35, 0.16) are on the line. 16  26 10 Thus, m     0.625 . Using 35  19 16 the point-slope formula we have y  26  0.625( x  19) y  26  0.625 x  11.875 y  0.625 x  37.875

y-intercept: When Internet ads account for 0% of U.S. advertisement spending, print ads account for 37.875% of the spending. x-intercept: When Internet ads account for 60.6% of U.S. advertisement spending, print ads account for 0% of the spending.

Let x = number of boxes to be sold, and A = money, in dollars, spent on advertising. We have the points ( x1 , A1 )  (100, 000, 40, 000); ( x2 , A2 )  (200, 000, 60, 000) 60, 000  40, 000 200, 000  100, 000 20, 000 1   100, 000 5 1 A  40, 000   x  100, 000  5 1 A  40, 000  x  20, 000 5 1 A  x  20, 000 5 slope 

b. If x = 300,000, then 1 A   300, 000   20, 000  $80, 000 5 c.

Each additional box sold requires an additional $0.20 in advertising.

134. 2 x  y  C Graph the lines: 2x  y   4 2x  y  0 2x  y  2 All the lines have the same slope, 2. The lines

40 Copyright © 2020 Pearson Education, Inc.


Section 1.3: Lines

are parallel.

The midpoint of (a, b) and (b, a) is  ab ba  M  , . 2   2

Since the x and y coordinates of M are equal, M lies on the line y  x . Note:

ab ba  2 2

137. The three midpoints are 0a 00  a   ab 0c  ab c  , , ,      ,0,  2  2   2 2   2 2  2 135. Put each linear equation in slope/intercept form. x  2y  5 2 x  3 y  4  0 ax  y  0 y   ax 2 y   x  5  3 y  2 x  4 1 5 2 4 y   x y  x 2 2 3 3

If the slope of y  ax equals the slope of either of the other two lines, then no triangle is formed. 2 2 1 1 So, a    a  and a   a   . 3 3 2 2 Also if all three lines intersect at a single point, then no triangle is formed. So, we find where 1 5 2 4 y   x  and y  x  intersect. 2 2 3 3 1 5 2 4  x  x 2 2 3 3 7 7  x 6 6 x 1 1 5  (1)   2 2 2 The two lines intersect at (1, 2). If y  ax also contains the point (1, 2), then 2  a 1  a  2 .

The three numbers are

1 2 ,  , and -2. 2 3

136. The slope of the line containing  a, b  and

 b, a  is ab  1 ba The slope of the line y  x is 1.

The two lines are perpendicular.

0b 0c b c  , and   , . 2  2 2  2  ab c  Line 1 from (0,0) to  ,   2 2 c 0 c 2 m  ; ab a  b 0 2 c ( x  0) y0  ab c y x1 ab b c Line 2 from (a, 0) to  ,  2 2 c c 0 c m 2  2  b b  2a b  2a a 2 2 c ( x  a) y0  b  2a c y ( x  a) b  2a a  Line 3 from  , 0  to (b, c) 2  c0 2c m  a 2b  a b 2 a 2c  y0  x  2b  a  2 a 2c  y x  2b  a  2 Find where line 1 and line 2 intersect:

41 Copyright © 2020 Pearson Education, Inc.


Chapter 1: Graphs

c c x ( x  a) ab b  2a b  2a x  xa ab b  2a  a  b x  a ab 3a x  a ab ab x ; 3 Substitute into line 1: c ab c   . y 3 ab 3

139. (b), (c), (e) and (g) The line has positive slope and positive y-intercept.

 ab c So, line 1 and line 2 intersect at  , .  3 3  ab c , : Show that line 3 contains the point   3 3

142. (d) The equation y  2 x  2 has slope 2 and yintercept (0, 2). The equation x  2 y  1 has

140. (a), (c), and (g) The line has negative slope and positive y-intercept. 141. (c) The equation x  y  2 has slope 1 and yintercept (0, 2). The equation x  y  1 has slope 1 and y-intercept (0, 1). Thus, the lines are parallel with positive slopes. One line has a positive y-intercept and the other with a negative y-intercept.

1 1  and y-intercept  0,   . The lines 2 2  1   are perpendicular since 2     1 . One line  2 has a positive y-intercept and the other with a negative y-intercept.

slope 

2c  a  b a  2c 2b  a c So      2b  a  3 2  2b  a 6 3  ab c the three lines intersect at  , .  3 3 y

143 – 145. Answers will vary.

138. Refer to Figure 47 on page 178. Assume m1m2  1 . Then

146. No, the equation of a vertical line cannot be written in slope-intercept form because the slope is undefined.

 d ( A, B)2  (1  1)2  (m1  m2 )2  (m1  m2 ) 2

147. No, a line does not need to have both an xintercept and a y-intercept. Vertical and horizontal lines have only one intercept (unless they are a coordinate axis). Every line must have at least one intercept.

 m12  2m1m2  m2 2  m12  2(1)  m2 2  m12  m2 2  2

Now,

148. Two lines with equal slopes and equal y-intercepts are coinciding lines (i.e. the same).

 d (O, B)2  (1  0)2  (m1  0)2  1  m12 ,  d (O, A)2  (1  0)2  (m2  0)2  1  m22

149. Two lines that have the same x-intercept and yintercept (assuming the x-intercept is not 0) are the same line since a line is uniquely defined by two distinct points.

So

 d (O, B)2   d (O, A)2  1  m12  1  m22  m12  m2 2  2   d ( A, B ) 

2

By the converse of the Pythagorean Theorem, AOB is a right triangle with right angle at vertex O. Thus lines OA and OB are perpendicular.

150. No. Two lines with the same slope and different xintercepts are distinct parallel lines and have no points in common. Assume Line 1 has equation y  mx  b1 and Line 2 has equation y  mx  b2 ,

42 Copyright © 2020 Pearson Education, Inc.


Section 1.4: Circles

b Line 1 has x-intercept  1 and y-intercept b1 . m b Line 2 has x-intercept  2 and y-intercept b2 . m Assume also that Line 1 and Line 2 have unequal x-intercepts. If the lines have the same y-intercept, then b1  b2 .

b b b b b1  b2  1  2   1   2 m m m m b1 b2 But     Line 1 and Line 2 have the m m same x-intercept, which contradicts the original assumption that the lines have unequal x-intercepts. Therefore, Line 1 and Line 2 cannot have the same y-intercept. 151. Yes. Two distinct lines with the same y-intercept, but different slopes, can have the same x-intercept if the x-intercept is x  0 . Assume Line 1 has equation y  m1 x  b and Line 2 has equation y  m2 x  b , b and y-intercept b . Line 1 has x-intercept  m1

b and y-intercept b . m2 Assume also that Line 1 and Line 2 have unequal slopes, that is m1  m2 . If the lines have the same x-intercept, then b b   . m1 m2

Line 2 has x-intercept 

b b  m1 m2  m2 b  m1b m2b  m1b  0

slope by switching the direction of one of the subtractions.

Section 1.4 1. add;  12 10   25 2

2.

 x  2 2  9 x2   9 x  2  3 x  23 x  5 or x  1 The solution set is {1, 5}.

3. False. For example, x 2  y 2  2 x  2 y  8  0 is not a circle. It has no real solutions. 4. radius 5. True; r 2  9  r  3 6. False; the center of the circle

 x  32   y  2 2  13 is  3, 2  . 7. d 8. a 9. Center = (2, 1) Radius  distance from (0,1) to (2,1)  (2  0) 2  (1  1) 2  4  2

Equation: ( x  2) 2  ( y  1) 2  4

But  m2 b  m1b  0  b  m1  m2   0 b0 or m1  m2  0  m1  m2

Since we are assuming that m1  m2 , the only way that the two lines can have the same x-intercept is if b  0.

10. Center = (1, 2) Radius  distance from (1,0) to (1,2)  (1  1) 2  (2  0) 2  4  2

Equation: ( x  1) 2  ( y  2) 2  4 11. Center = midpoint of (1, 2) and (4, 2) 1 4 2  2  ,  5, 2 2 2 2

152. Answers will vary. 153. m 

y2  y1 3 4  2 6    2 x2  x1 1   3 4

It appears that the student incorrectly found the 43 Copyright © 2020 Pearson Education, Inc.

  


Chapter 1: Graphs

 

Radius  distance from 5 , 2 to (4,2) 2

General form: x 2  y 2  4 y  4  4 x2  y2  4 y  0

2

5 9 3    4    (2  2)2   2 4 2  2

5 9  Equation:  x    ( y  2) 2  2 4  

12. Center = midpoint of (0, 1) and (2, 3)  0  2 1 3   ,   1, 2  2   2 Radius  distance from 1, 2  to (2,3) 

 2  12  (3  2)2 

2

Equation:  x  1  ( y  2) 2  2 2

16. ( x  h) 2  ( y  k ) 2  r 2 ( x  1) 2  ( y  0)2  32 ( x  1) 2  y 2  9

13. ( x  h) 2  ( y  k ) 2  r 2

General form: x 2  2 x  1  y 2  9

( x  0) 2  ( y  0) 2  22

x2  y 2  2 x  8  0

2

2

x y 4

General form: x 2  y 2  4  0

17. ( x  h) 2  ( y  k ) 2  r 2 14. ( x  h) 2  ( y  k ) 2  r 2 ( x  0) 2  ( y  0) 2  32 x2  y 2  9

General form: x 2  y 2  9  0

( x  4) 2  ( y  (3)) 2  52 ( x  4) 2  ( y  3) 2  25 General form: x 2  8 x  16  y 2  6 y  9  25

x2  y 2  8x  6 y  0

15. ( x  h) 2  ( y  k ) 2  r 2 ( x  0) 2  ( y  2) 2  22 x 2  ( y  2) 2  4

44 Copyright © 2020 Pearson Education, Inc.


Section 1.4: Circles

18. ( x  h) 2  ( y  k ) 2  r 2

General form: x 2  10 x  25  y 2  4 y  4  49

( x  2) 2  ( y  (3)) 2  42

x 2  y 2  10 x  4 y  20  0

( x  2) 2  ( y  3) 2  16

General form: x 2  4 x  4  y 2  6 y  9  16 x2  y2  4 x  6 y  3  0

21. ( x  h) 2  ( y  k ) 2  r 2 2

1  1 2  x    ( y  0)    2  2

19. ( x  h) 2  ( y  k ) 2  r 2 ( x   2 ) 2  ( y  1) 2  42

2

2

1 1  2 x   y  2 4 

( x  2) 2  ( y  1) 2  16

General form: x 2  4 x  4  y 2  2 y  1  16

1 1  y2  4 4 2 2 x y x0

General form: x 2  x 

x 2  y 2  4 x  2 y  11  0

20. ( x  h) 2  ( y  k ) 2  r 2 ( x   5 ) 2  ( y  (2)) 2  7 2 ( x  5) 2  ( y  2) 2  49

22. ( x  h) 2  ( y  k ) 2  r 2 

1   2 

2

 x  0 2   y         

2

1 2

1 1  x2   y    2 4 

45 Copyright © 2020 Pearson Education, Inc.

2


Chapter 1: Graphs

1 1  4 4 x2  y2  y  0

General form: x 2  y 2  y 

24. ( x  h) 2  ( y  k ) 2  r 2

( x   3) 2  ( y  2) 2  2 5

2

( x  3) 2  ( y  2) 2  20

General form: x 2  6 x  9  y 2  4 y  4  20

x2  y2  6 x  4 y  7  0

25. x 2  y 2  4 x 2  y 2  22

a.

Center: (0, 0); Radius  2

b.

23. ( x  h) 2  ( y  k ) 2  r 2 ( x  5) 2  ( y  (1)) 2 

 13 

2

( x  5) 2  ( y  1) 2  13 General form: x 2  10 x  25  y 2  2 y  1  13

c.

x-intercepts: x 2   0   4 2

x2  4 x   4  2

x 2  y 2  10 x  2 y  13  0

y-intercepts:  0   y 2  4 2

y2  4 y   4  2

The intercepts are  2, 0  ,  2, 0  ,  0, 2  , and  0, 2  . 26. x 2  ( y  1) 2  1 x 2  ( y  1) 2  12

a.

Center:(0, 1); Radius  1

46 Copyright © 2020 Pearson Education, Inc.


Section 1.4: Circles b.

y-intercepts:  0  3  y 2  4 2

 32  y 2  4 9  y2  4 y 2  5 No real solution. The intercepts are 1, 0  and  5, 0  .

28. 3  x  1  3  y  1  6 2

c.

x-intercepts: x 2  (0  1) 2  1 x2  1  1 x2  0 x 0 0

2

 x  12   y  12  2 a.

Center: (–1,1); Radius =

2

b.

y-intercepts:  0   ( y  1) 2  1 2

( y  1) 2  1 y 1   1 y  1  1 y  11 y  2 or y  0

The intercepts are  0, 0  and  0, 2  .

c.

x-intercepts:  x  1   0  1  2 2

 x  12   12  2  x  12  1  2  x  12  1

27. 2  x  3  2 y 2  8 2

 x  32  y 2  4 a.

2

Center: (3, 0); Radius  2

b.

x 1   1 x  1  1 x  1  1 x  0 or x  2

y-intercepts:  0  1   y  1  2 2

c.

12   y  12  2 2 1   y  1  2  y  12  1

x-intercepts:  x  3   0   4 2

2

y 1   1

 x  3  4 2

y  1  1 y  11 y  2 or y  0

x 3   4 x  3  2 x  3 2 x  5 or x  1

2

The intercepts are  2, 0  ,  0, 0  , and  0, 2  .

47 Copyright © 2020 Pearson Education, Inc.


Chapter 1: Graphs b.

29. x 2  y 2  2 x  4 y  4  0 x2  2 x  y 2  4 y  4 ( x 2  2 x  1)  ( y 2  4 y  4)  4  1  4 ( x  1) 2  ( y  2) 2  32

a.

Center: (1, 2); Radius = 3

b. c.

x-intercepts: ( x  2) 2  (0  1) 2  52 ( x  2) 2  1  25 ( x  2) 2  24 x  2   24 x  2  2 6

c.

x  2  2 6

x-intercepts: ( x  1) 2  (0  2) 2  32

y-intercepts: (0  2)2  ( y  1) 2  52

( x  1) 2  (2) 2  32

4  ( y  1) 2  25

 x  1  4  9 2

( y  1) 2  21

 x  1  5 2

y  1   21

x 1   5

x  1 5

2

 2  2 6, 0 ,  0,  1  21 , and  0,  1  21  .

2

(1)  ( y  2)  3 1   y  2  9 2

31.

 y  2 2  8 y2   8 y  2  2 2 y  22 2

   0, 2  2 2  , and  0, 2  2 2  .

The intercepts are 1  5, 0 , 1  5, 0 ,

2

The intercepts are 2  2 6, 0 ,

y-intercepts: (0  1) 2  ( y  2) 2  32 2

y  1  21

x2  y2  4 x  4 y  1  0 x2  4 x  y 2  4 y  1 ( x 2  4 x  4)  ( y 2  4 y  4)  1  4  4 ( x  2) 2  ( y  2) 2  32

Center: (–2, 2); Radius = 3 y b.  a.



2

x  y  4 x  2 y  20  0

30.

x 2  4 x  y 2  2 y  20

 x



( x 2  4 x  4)  ( y 2  2 y  1)  20  4  1 ( x  2) 2  ( y  1) 2  52

a.



Center: (–2,–1); Radius = 5

48 Copyright © 2020 Pearson Education, Inc.


Section 1.4: Circles

c.

x-intercepts: ( x  2) 2  (0  2) 2  32

x2  y 2  x  2 y  1  0

33.

2

x 2  x  y 2  2 y  1 1 1  2 2  x  x    ( y  2 y  1)  1   1 4 4   2 2 1  1 2  x    ( y  1)    2  2

4  ( y  2)2  9

a.

( y  2)2  5

b.

( x  2) 2  4  9 ( x  2) 2  5 x2  5 x  2  5

y-intercepts: (0  2)  ( y  2) 2  32

1 1  Center:  , 1 ; Radius = 2 2  

y2   5 y  2 5

The intercepts are 2  5, 0 ,

 2  5, 0 ,  0, 2  5  , and  0, 2  5  . 32.

x2  y2  6 x  2 y  9  0 x 2  6 x  y 2  2 y  9 2 ( x  6 x  9)  ( y 2  2 y  1)  9  9  1 ( x  3) 2  ( y  1) 2  12

a.

2

c.

Center: (3, –1); Radius = 1

b.

1  1 x-intercepts:  x    (0  1) 2    2  2 2 1 1   x   1  2 4  2

1 3  x    2 4  No real solutions 2

c.

2

1  1 y-intercepts:  0    ( y  1) 2    2  2 1 1 2   y  1  4 4 2  y  1  0 y 1  0 y  1

x-intercepts: ( x  3) 2  (0  1) 2  12 ( x  3) 2  1  1

The only intercept is  0, 1 .

 x  32  0 x3  0 x3 2 y-intercepts: (0  3)  ( y  1) 2  12 9  ( y  1) 2  1

 y  12  8 No real solution. The intercept only intercept is  3, 0  .

34.

1 0 2 1 x2  x  y 2  y  2 1  2 1 1 1 1  2 x  x  y  y     4  4 2 4 4  x2  y2  x  y 

2

2

1  1  2  x    y   1 2  2 

a.

 1 1 Center:   ,   ; Radius = 1  2 2

49 Copyright © 2020 Pearson Education, Inc.

2


Chapter 1: Graphs b.

b.

2

c.

2

1  1  x-intercepts:  x     0    12 2  2  2 1 1  x    1 2 4 

c.

x-intercepts: ( x  3) 2  (0  2) 2  52

 x  32  4  25  x  32  21 x  3   21

2

1 3  x   2 4  1 3 x  2 2 1  3 x 2 2

x  3  21 2

y-intercepts: (0  3)  ( y  2) 2  52 9   y  2   25 2

 y  2 2  16 y  2  4

2

1  1  y-intercepts:  0     y    12 2 2    2 1  1  y   1 4  2

2 x 2  2 y 2  12 x  8 y  24  0

35.

2

2

x  y  6 x  4 y  12

 0, 6  , and  0, 2  . 36. a.

2x2  2 y2  8x  7  0 2 x 2  8 x  2 y 2  7 7 x2  4 x  y2   2 7 2 2 ( x  4 x  4)  y    4 2 1 2 2 ( x  2)  y  2 2  2 2 2 ( x  2)  y     2 

Center: (–2, 0); Radius =

x 2  6 x  y 2  4 y  12 ( x 2  6 x  9)  ( y 2  4 y  4)  12  9  4 ( x  3)2  ( y  2) 2  52

a.

 3  21, 0 ,

The intercepts are 3  21, 0 ,

2

1 3  y   2 4   1 3 y  2 2 1  3 y 2  1  3   1  3  , 0  ,  , 0  , The intercepts are   2   2   1  3   1  3   0,  , and  0,  . 2 2    

y  2  4 y  2 or y  6

Center: (3,–2); Radius = 5

50 Copyright © 2020 Pearson Education, Inc.

2 2


Section 1.4: Circles b.

c.

x-intercepts:  x  2    0   22 2

2

( x  2)2  4

 x  2 2   4 x  2  2 x  2  2 x  0 or x  4

y-intercepts:  0  2   y 2  22 2

c.

4  y2  4

1 2 1 2  x  2  2

x-intercepts: ( x  2) 2   0   2

y2  0 y0

The intercepts are  4, 0  and  0, 0  .

1 2 2 x2  2 x2 

x  2  1 2 1 2 4 y  2

38. 3 x 2  3 y 2  12 y  0 x2  y 2  4 y  0 2 2

y-intercepts: (0  2) 2  y 2 

x2  y 2  4 y  4  0  4 x2   y  2  4 2

a.

Center:  0, 2  ; Radius: r  2

b.

7 2 No real solutions.  2  , 0  and The intercepts are  2  2    2  , 0  .  2  2   y2  

37.

2

c.

2

2 x  8x  2 y  0 x2  4 x  y2  0 x2  4 x  4  y 2  0  4

x-intercepts: x 2   0  2   4 2

x2  4  4 x2  0

 x  2 2  y 2  22 a. Center:  2, 0  ; Radius: r  2

x0

y-intercepts: 0   y  2   4 2

2

 y  2 2  4

b.

y2   4 y  2  2 y  22 y  4 or y  0

The intercepts are  0, 0  and  0, 4  .

51 Copyright © 2020 Pearson Education, Inc.


Chapter 1: Graphs 39. Center at (0, 0); containing point (–2, 3). r

 2  0    3  0   2

2

4  9  13

Equation: ( x  0)2  ( y  0) 2  2

 13 

47. (b) ; Center:  1, 2  ; Radius = 2

2

40. Center at (1, 0); containing point (–3, 2).

 3  12   2  0 2  16  4 

Equation: ( x  1) 2  ( y  0) 2 

 20 

20  2 5 2

( x  1) 2  y 2  20

41. Endpoints of a diameter are (1, 4) and (–3, 2). The center is at the midpoint of that diameter:  1  (3) 4  2  Center:  ,    1,3 2   2

Radius: r  (1  (1)) 2  (4  3) 2  4  1  5 Equation: ( x  (1)) 2  ( y  3) 2 

 5

2

( x  1) 2  ( y  3) 2  5

42. Endpoints of a diameter are (4, 3) and (0, 1). The center is at the midpoint of that diameter:  4  0 3 1 Center:  ,    2, 2  2   2

Radius: r  (4  2) 2  (3  2) 2  4  1  5 Equation: ( x  2) 2  ( y  2) 2  2

2

  5

( x  2)  ( y  2)  5 43.

C  2 r 16  2 r r 8 ( x  2) 2  ( y  (4)) 2   8 

2

( x  2) 2  ( y  4) 2  64

44.

A   r2 49   r 2 r7 ( x  (5)) 2  ( y  6) 2   7 

2

46. (d) ; Center:  3,3 ; Radius = 3

2

x  y  13

r

45. (c); Center: 1; Radius = 2

48. (a) ; Center:  3,3 ; Radius = 3 49. The centers of the circles are: (4,-2) and (-1,5). 5  (2) 7 7 The slope is m     . Use the 5 1  4 5 slope and one point to find the equation of the line. 7 y  (2)   ( x  4) 5 7 28 y2  x 5 5 5 y  10  7 x  28 7 x  5 y  18 50. Find the centers of the two circles: x2  y2  4x  6 y  4  0 ( x 2  4 x  4)  ( y 2  6 y  9)   4  4  9 ( x  2) 2  ( y  3) 2  9

Center:  2, 3 x2  y 2  6 x  4 y  9  0 ( x 2  6 x  9)  ( y 2  4 y  4)   9  9  4 ( x  3) 2  ( y  2)2  4

Center:  3, 2  Find the slope of the line containing the centers:  2  (3) 1 m  3  2 5 Find the equation of the line containing the centers: 1 y  3   ( x  2) 5 5 y  15   x  2 x  5 y  13 x  5 y  13  0

2

( x  5) 2  ( y  6) 2  49

52 Copyright © 2020 Pearson Education, Inc.


Section 1.4: Circles

the origin. Because of symmetry, we have that x  y at the upper-right corner of the square. Therefore, we get x 2  y 2  36

51. Consider the following diagram:

x 2  x 2  36

(2,2)

2 x 2  36 x 2  18 x3 2 The length of one side of the square is 2x . Thus,

Therefore, the path of the center of the circle has the equation y  2 .

the area of the square is 2  3 2

52. Consider the following diagram:

  72 square 2

units. From the equation of the circle, we have r  6 . The area of the circle is

 r 2    6   36 square units. 2

Therefore, the area of the shaded region is A  36  72 square units.

(7,7)

55. The diameter of the Ferris wheel was 250 feet, so the radius was 125 feet. The maximum height was 264 feet, so the center was at a height of 264  125  139 feet above the ground. Since the center of the wheel is on the y-axis, it is the point (0, 139). Thus, an equation for the wheel is:

 x  0 2   y  139 2  1252 2 x 2   y  139   15, 625

Therefore the path of the center of the circle has the equation x  7 . 53. Let the upper-right corner of the square be the point  x, y  . The circle and the square are both

centered about the origin. Because of symmetry, we have that x  y at the upper-right corner of the square. Therefore, we get x2  y 2  9 x2  x2  9

56. The diameter of the wheel is 520 feet, so the radius is 260 feet. The maximum height is 550 feet, so the center of the wheel is at a height of 550  260  290 feet above the ground. Since the center of the wheel is on the y-axis, it is the point (0, 290). Thus, an equation for the wheel is:

 x  0 2   y  290 2  2602 2 x 2   y  290  67, 600

2x2  9 9 x2  2 9 3 2  2 2 The length of one side of the square is 2x . Thus, the area is x

2

57.

2  3 2 A  s 2   2    3 2  18 square units.  2  

54. The area of the shaded region is the area of the circle, less the area of the square. Let the upperright corner of the square be the point  x, y  .

The circle and the square are both centered about

Refer to figure. Since the radius of the building is 60.5 m and the height of the building is 110 m,

53 Copyright © 2020 Pearson Education, Inc.


Chapter 1: Graphs

then the center of the building is 49.5 m above the ground, so the y-coordinate of the center is 49.5. The equation of the circle is given by x 2  ( y  49.5) 2  60.52  3660.25

x 2  (mx  b) 2  r 2 x 2  m 2 x 2  2bmx  b 2  r 2 (1  m 2 ) x 2  2bmx  b 2  r 2  0 This equation has one solution if and only if the discriminant is zero. (2bm) 2  4(1  m 2 )(b 2  r 2 )  0

58. Complete the square to find the equation of the circle representing the formula for the building. x 2  y 2  78 y  1521  1843  1521  3364

4b 2 m 2  4b 2  4r 2  4b 2 m 2  4m 2 r 2  0

x 2  ( y  39) 2  582

 4b 2  4r 2  4m 2 r 2  0  b2  r 2  m2 r 2  0

r 2 (1  m 2 )  b 2

b.

Refer to figure. The y coordinate of the center is 39. The radius is 58. Thus the height of the building is 58 + 39 = 97 m. 59. Center at (2, 3); tangent to the x-axis. r 3 Equation: ( x  2) 2  ( y  3) 2  32

( x  2) 2  ( y  3) 2  9

60. Center at (–3, 1); tangent to the y-axis. r 3 Equation: ( x  3) 2  ( y  1) 2  32 ( x  3) 2  ( y  1) 2  9

61. Center at (–1, 3); tangent to the line y = 2. This means that the circle contains the point (–1, 2), so the radius is r = 1. Equation: ( x  1) 2  ( y  3) 2  (1) 2 ( x  1) 2  ( y  3) 2  1

62. Center at (4, –2); tangent to the line x = 1. This means that the circle contains the point (1, –2), so the radius is r = 3. Equation: ( x  4) 2  ( y  2) 2  (3) 2 ( x  4) 2  ( y  2) 2  9

63. a.

From part (a) we know (1  m 2 ) x 2  2bmx  b 2  r 2  0 . Using the quadratic formula, since the discriminant is zero, we get:  2bm bm bmr 2 mr 2 x    b 2(1  m 2 )  b 2  b2  2 r  2  mr  y  m b  b 

Substitute y  mx  b into x 2  y 2  r 2 :

m2 r 2 m2 r 2  b2 r 2 b   b b b

  mr 2 r 2  The point of tangency is  , . b   b

c.

The slope of the tangent line is m . The slope of the line joining the point of tangency and the center (0,0) is:  r2    0 2  b   r  b 1 m  mr 2  b  mr 2  0   b  The two lines are perpendicular.

64. Let (h, k ) be the center of the circle. x  2y  4  0 2y  x  4 1 y  x2 2 1 The slope of the tangent line is . The slope 2 from (h, k ) to (0, 2) is –2.

54 Copyright © 2020 Pearson Education, Inc.


Section 1.4: Circles

So the equation of the tangent line is: 2 y2 2    x  1 4 2 2 y2 2   x 4 4 4y 8 2   2 x  2

2k  2 0h 2  k  2h The other tangent line is y  2 x  7 , and it has slope 2. 1 The slope from (h, k ) to (3, –1) is  . 2 1  k 1  3h 2 2  2k  3  h

2 x  4y  9 2

66. x 2  y 2  4 x  6 y  4  0 ( x 2  4 x  4)  ( y 2  6 y  9)  4  4  9

2k  1  h h  1  2k Solve the two equations in h and k : 2  k  2(1  2k ) 2  k  2  4k 3k  0 k 0 h  1  2(0)  1 The center of the circle is (1, 0).

( x  2) 2  ( y  3) 2  9 Center: (2, –3) The slope of the line containing the center and 2 2  3  (3) 2 2 3, 2 2  3 is  2 2 3 2 1

Then the slope of the tangent line is:

 is

2 2 0  2 2 .Then the slope of the tangent 1 0

line is

1 2 2



1



2 2 So, the equation of the tangent line is 2 y  2 2 3   ( x  3) 4 2 3 2 y2 2 3   x 4 4 4 y  8 2  12   2 x  3 2

65. The slope of the line containing the center (0,0)

and 1, 2 2

2 . 4

2 4

2 x  4 y  11 2  12

1  x  x y  y2  and the radius is 67. The center of the circle is  1 2 , 1 ( x1  x2 ) 2  ( y1  y2 ) 2 . Then the equation of  2 2   2 2

2

x x   y  y2  1  2 2 the circle is  x  1 2    y  1   4  x1  x2   ( y1  y2 )  . Expanding, gives 2 2     2

x  x( x1  x2 )  2

2

 x1  x2 2 4 2

2

 y  y ( y1  y2 ) 

2

2

 y1  y2 2 4

1

 x12  2 x1 x2  x2 2  y12  2 y1 y2  y2 2 

4

2

2

2

2

4 x  4 x1 x  4 x2 x  x1  2 x1 x2  x2  4 y  4 y1 y  4 y2 y  y1  2 y1 y2  y2  x1  2 x1 x2  x2  y1  2 y1 y2  y2 2

2

4 x  4 x1 x  4 x2 x  4 x1 x2  4 y  4 y1 y  4 y2 y  4 y1 y2  0 2

2

x  x1 x  x2 x  x1 x2  y  y1 y  y2 y  y1 y2  0

x  x  x1   x2  x  x1   y  y  y1   y2  y  y1   0

 x  x1  x  x2    y  y1  y  y2   0

55 Copyright © 2020 Pearson Education, Inc.

2


Chapter 1: Graphs

2

2

d  e d 2  e2  4 f  68. Complete the square to get  x     y    . The slope of the line between the center 2  2 4  y0  2e x0  d2  d e m   . So the slope of the tangent line is . tan   ,   and the point of tangency  x0 , y0  is m  x0  d2 y0  2e  2 2 x d Therefore, the equation of the tangent line is y  y0   0 2e ( x  x0 ) which is equivalent to y0  2 ( x  x0 )  x0  d2    y  y0   y0  2e   0

d d e e x  x0 2  x0  y0 y  y  y0 2  y0  0 2 2 2 2 d e d e   x0 x  y0 y  x  y   x0 2  y0 2  x0  y0   0 2 2 2 2   x0 x 

Because  x0 , y0  is on the circle, x0 2  y0 2  dx0  ey0  f  0 , and x0 2  y0 2 

d e d e x0  y0   x0  y0  f Substituting this result gives 2 2 2 2

d e e  d  x0  y0    x0  y0  f   0 2 2 2  2  d e d e x0 2  y0 2  x0  y0  x0  y0  f  0 2 2 2 2  x  x0   y  y0  x0 2  y0 2  d    e  f  0  2   2  x0 2  y0 2 

69. (b), (c), (e) and (g) We need h, k  0 and  0, 0  on the graph. 70. (b), (e) and (g) We need h  0 , k  0 , and h  r .

student needs to write the equation in the standard form  x  h    y  k   r 2 . 2

2

 x  3   y  2   16 2

2

 x   3   y  2  4 2

2

2

71. Answers will vary. 72. The student has the correct radius, but the signs of the coordinates of the center are incorrect. The

Chapter 1 Review Exercises 1. P1   0, 0  and P2   4, 2  a.

d  P1 , P2  

 4  0 2   2  0 2

b. The coordinates of the midpoint are:  x  x y  y2  ( x, y )   1 2 , 1 2   2

 16  4  20  2 5

56 Copyright © 2020 Pearson Education, Inc.

04 02  4 2  ,    ,    2,1 2  2 2  2


Chapter 1 Review Exercises

c.

slope 

5. x-intercepts: 4, 0, 2 ; y-intercepts: 2, 0, 2 Intercepts: (4, 0), (0, 0), (2, 0), (0, 2), (0, 2)

y 2  0 2 1    x 4  0 4 2

d. For each run of 2, there is a rise of 1. 2. P1  1, 1 and P2   2,3 a.

d  P1 , P2  

 2  12   3   1 

2

 9  16  25  5

b. The coordinates of the midpoint are:  x  x y  y2  ( x, y )   1 2 , 1 2   2  1   2  1  3   ,  2   2  1 2   1    ,     ,1  2 2  2 

c.

slope 

y 3   1 4 4    x 2  1 3 3

3. P1   4, 4  and P2   4,8  d  P1 , P2  

 4  4 2  8   4  

2

 0  144  144  12

b. The coordinates of the midpoint are:  x  x y  y2  ( x, y )   1 2 , 1 2   2  4  4 4  8   8 4   ,    ,    4, 2  2  2 2  2

c.

y 8   4  12 slope    , undefined x 44 0

d. An undefined slope means the points lie on a vertical line. There is no change in x.

2( x)  3( y ) 2 2 x  3 y 2 different Therefore, the graph will have x-axis symmetry.

7. x 2 +4 y 2 =16

x-intercepts:

y-intercepts:

x +4  0  =16

 0 2 +4 y 2 =16

x 2  16

4 y 2  16

2

2

x  4

y2  4 y  2 The intercepts are (4, 0), (4, 0), (0, 2), and (0, 2).

Test x-axis symmetry: Let y   y x 2  4   y  =16 2

x 2  4 y 2 =16 same

  x 2  4 y 2 =16

y 





2 x  3( y ) 2 2 x  3 y 2 same Test y-axis symmetry: Let x   x 2( x)  3 y 2

Test y-axis symmetry: Let x   x

4. y  x 2  4



Test x-axis symmetry: Let y   y

2 x  3 y 2 different Test origin symmetry: Let x   x and y   y .

d. For each run of 3, there is a rise of 4.

a.

6. 2 x  3 y 2 x-intercepts: y-intercepts: 2(0)  3 y 2 2 x  3(0) 2 2x  0 0  y2 y0 x0 The only intercept is (0, 0).

x 2  4 y 2 =16 same 

  x 2  4   y 2 =16

 



Test origin symmetry: Let x   x and y   y . x 2 +4 y 2 =16

 x

same

Therefore, the graph will have x-axis, y-axis, and origin symmetry. 8. y  x 4 +2 x 2 +1 57 Copyright © 2020 Pearson Education, Inc.


Chapter 1: Graphs

x-intercepts: 0  x 4 +2 x 2 +1



y-intercepts: y  (0) 4 +2(0) 2 +1 1

0  x2  1 x2  1

x-intercepts: x 2  x  (0) 2  2(0)  0 x2  x  0 x( x  1)  0 x  0, x  1

2

x 1  0

y-intercepts: (0) 2  0  y 2  2 y  0 y2  2 y  0 y ( y  2)  0 y  0, y  2 The intercepts are (1, 0), (0, 0), and (0, 2).

x 2  1 no real solutions The only intercept is (0, 1). Test x-axis symmetry: Let y   y

 y  x4  2 x2  1 y   x 4  2 x 2  1 different

Test x-axis symmetry: Let y   y

Test y-axis symmetry: Let x   x

x 2  x  ( y ) 2  2( y )  0

y  x  2x 1

x 2  x  y 2  2 y  0 different Test y-axis symmetry: Let x   x ( x) 2  ( x)  y 2  2 y  0

4

2

y  x4  2 x2  1

same

Test origin symmetry: Let x   x and y   y .

x 2  x  y 2  2 y  0 different Test origin symmetry: Let x   x and y   y .

 y  x  2x 1 4

2

 y  x4  2 x2  1 y   x4  2 x2  1

( x) 2  ( x)  ( y ) 2  2( y )  0

different

x 2  x  y 2  2 y  0 different The graph has none of the indicated symmetries.

Therefore, the graph will have y-axis symmetry. 9. y  x3  x

x-intercepts: 0  x3  x

11.

y-intercepts: y  (0)3  0 0

0  x x2  1

0  x  x  1 x  1

2

 x  2 2   y  32  16 ( x  h) 2  ( y  k ) 2  r 2

 x   1    y   2    12 2

The intercepts are (1, 0), (0, 0), and (1, 0). Test x-axis symmetry: Let y   y  y  x3  x y   x 3  x different

2

 x  12   y  2 2  1 13. x 2   y  1  4 2

Test y-axis symmetry: Let x   x y  (  x )3  (  x ) y   x3  x

 x   2     y  32  42 12.

x  0, x  1, x  1

( x  h) 2  ( y  k ) 2  r 2

x 2   y  1  22 2

Center: (0,1); Radius = 2

different

Test origin symmetry: Let x   x and y   y .  y  (  x )3  (  x )  y   x3  x y  x3  x same

Therefore, the graph will have origin symmetry. 10. x 2  x  y 2  2 y  0

58 Copyright © 2020 Pearson Education, Inc.


Chapter 1 Review Exercises

x-intercepts: x 2   0  1  4 2

3x 2  3 y 2  6 x  12 y  0

15.

x2  1  4

x2  y2  2 x  4 y  0

x2  3

x2  2x  y2  4 y  0

 x  2 x  1   y  4 y  4  1  4  x  1   y  2    5  2

x 3

y-intercepts: 02   y  1  4 2

2

2

( y  1) 2  4

2

Center: (1, –2) Radius =

y  1  2

2

5

y  1 2 y  3 or y  1

  3, 0 ,  0, 1 ,

The intercepts are  3, 0 , and  0, 3 .

x2  y 2  2 x  4 y  4  0

14.

x2  2 x  y 2  4 y  4

 x  2 x  1   y  4 y  4   4  1  4 2

x-intercepts:  x  1   0  2  

2

2

 x  12   y  2 2  32

2

 5

2

 x  12  4  5  x  12  1

Center: (1, –2) Radius = 3

x  1  1 x  11 x  2 or x  0

y-intercepts:  0  1   y  2   2

2

 5

2

1   y  2  5 2

 y  2 2  4 y  2  2

x-intercepts:  x  1   0  2   32 2

2

y  2  2 y  0 or y  4

 x  1  4  9  x  12  5 2

The intercepts are  0, 0  ,  2, 0  , and  0, 4  .

x 1   5 x  1 5

16. Slope = –2; containing (3,–1) y  y1  m  x  x1 

y-intercepts:  0  1   y  2   3 2

2

2

y  (1)  2  x  3

1   y  2  9 2

y  1  2 x  6

 y  2 2  8

y  2 x  5 or 2 x  y  5

y2  8 y  2  2 2

y  2  2 2

 

The intercepts are 1  5, 0 , 1  5, 0 ,

 0, 2  2 2  , and  0, 2  2 2  .

17. vertical; containing (–3,4) Vertical lines have equations of the form x = a, where a is the x-intercept. Now, a vertical line containing the point (–3, 4) must have an x-intercept of –3, so the equation of the line is x  3. The equation does not have a slopeintercept form.

59 Copyright © 2020 Pearson Education, Inc.


Chapter 1: Graphs 18. y-intercept = –2; containing (5,–3) Points are (5,–3) and (0,–2) 1 1  2  (3) m   05 5 5 y  mx  b 1 y   x  2 or x  5 y  10 5

22. 4 x  5 y   20 5 y  4 x  20 4 y  x4 5 4 slope = ; y-intercept = 4 5

x-intercept: Let y = 0. 4 x  5(0)   20 4 x   20 x  5

19. Containing the points (3,–4) and (2, 1) 1  (4) 5 m   5 23 1 y  y1  m  x  x1  y  ( 4)  5  x  3 y  4  5 x  15 y  5 x  11 or 5 x  y  11

20. Parallel to 2 x  3 y  4 2x  3y   4 3 y  2 x  4 3 y 2 x  4  3 3 2 4 y  x 3 3 2 Slope  ; containing (–5,3) 3

23.

y  y1  m  x  x1  2  x  (5)  3 2 y  3   x  5 3 2 10 y 3  x 3 3 2 19 y  x or 2 x  3 y  19 3 3 y 3 

1 1 1 x y   2 3 6 1 1 1  y  x 3 2 6 3 1 y  x 2 2 3 1 slope = ; y -intercept  2 2 x-intercept: Let y = 0. 1 1 1 x  (0)   2 3 6 1 1 x 2 6 1 x 3

21. Perpendicular to x  y  2 x y  2 y  x  2 The slope of this line is 1 , so the slope of a line perpendicular to it is 1. Slope = 1; containing (4,–3) y  y1  m( x  x1 ) y  (3)  1( x  4) y3 x4 y  x  7 or x  y  7

24. 2 x  3 y  12 x-intercept: 60 Copyright © 2020 Pearson Education, Inc.

y-intercept:


Chapter 1 Review Exercises 2 x  3(0)  12 2 x  12

2(0)  3 y  12

x6

y  4

26. y  x3

3 y  12

The intercepts are  6, 0  and  0, 4  .

25.

1 1 x y  2 2 3 x-intercept: 1 1 x  (0)  2 2 3 1 x2 2 x4

27. y  x

y-intercept: 1 1 (0)  y  2 2 3 1 y2 3 y6

The intercepts are  4, 0  and  0, 6  .

28. slope =

2 , containing the point (1,2) 3

29. Find the distance between each pair of points. d A, B  (1  3) 2  (1  4) 2  4  9  13 d B,C  ( 2  1) 2  (3  1) 2  9  4  13 d A,C  ( 2  3) 2  (3  4) 2  25  1  26

Since AB = BC, triangle ABC is isosceles.

61 Copyright © 2020 Pearson Education, Inc.


Chapter 1: Graphs 30. Given the points A  ( 2, 0), B  ( 4, 4), and C  (8, 5). a.

Find the distance between each pair of points.

Equation:  x  1   y  2   4 2 2

2

2

 x  12   y  2 2  32 1 5  1 62 1  5  1 slope of AC  82 Therefore, the points lie on a line.

32. slope of AB 

d  A, B   ( 4  ( 2)) 2  (4  0) 2  4  16  20  2 5 d  B, C   (8  ( 4)) 2  (5  4) 2  144  1  145 d  A, C   (8  ( 2)) 2  (5  0) 2

Chapter 1 Test

 100  25

1. d ( P1 , P2 ) 

 125  5 5 2

 62   4  2

 d  A, B     d  A, C     d  B, C  

 20    125    145  2

 5  (1) 2   1  32

2

2

 36  16

2

20  125  145 145  145 The Pythagorean Theorem is satisfied, so this is a right triangle.

 52  2 13

2. The coordinates of the midpoint are:  x  x y  y2  ( x, y )   1 2 , 1 2   2  1  5 3  (1)   , 2   2 4 2  ,  2 2   2, 1

b. Find the slopes: mAB 

40 4   2  4  ( 2)  2

mBC 

54 1  8    4  12

mAC 

50 5 1   8    2  10 2

3. a.

1  1 , the sides AB 2 and AC are perpendicular and the triangle is a right triangle.

Since mAB  mAC   2 

2

m

y2  y1 1  3 4 2    x2  x1 5  (1) 6 3

b. If x increases by 3 units, y will decrease by 2 units. 4. y  x 2  9

31. Endpoints of the diameter are (–3, 2) and (5,–6). The center is at the midpoint of the diameter:  3  5 2    6   , Center:    1,  2  2  2 

Radius: r  (1  (3)) 2  ( 2  2) 2  16  16  32  4 2

62 Copyright © 2020 Pearson Education, Inc.


Chapter 1 Test

5. y 2  x

8. ( x  h) 2  ( y  k ) 2  r 2

y

 



 x  4 2   y  (3) 2  52  x  4 2   y  32  25 General form:  x  4 2   y  32  25

 y2  x

x 2  8 x  16  y 2  6 y  9  25

 x

 





x2  y 2  8x  6 y  0 

9.

6. x 2  y  9 x-intercepts: x2  0  9 x2  9

y-intercept: (0) 2  y  9 y9

x  3 The intercepts are  3, 0  ,  3, 0  , and  0,9  .

x2  y2  4 x  2 y  4  0 x2  4 x  y 2  2 y  4 ( x 2  4 x  4)  ( y 2  2 y  1)  4  4  1 ( x  2) 2  ( y  1) 2  32

Center: (–2, 1); Radius = 3 y 

Test x-axis symmetry: Let y   y x   y  9



2

 x



x 2  y  9 different

Test y-axis symmetry: Let x   x

  x 2  y  9



2

x  y  9 same

Test origin symmetry: Let x   x and y   y

  x 2    y   9 x 2  y  9 different

Therefore, the graph will have y-axis symmetry. 7. Slope = 2 ; containing (3, 4) y  y1  m( x  x1 ) y  (4)  2( x  3) y  4  2 x  6 y  2 x  2

10. 2 x  3 y  6 3 y  2 x  6 2 y   x2 3

Parallel line Any line parallel to 2 x  3 y  6 has slope 2 m   . The line contains (1, 1) : 3 y  y1  m( x  x1 ) 2 y  (1)   ( x  1) 3 2 2 y 1   x  3 3 2 1 y   x 3 3

Perpendicular line Any line perpendicular to 2 x  3 y  6 has slope

63 Copyright © 2020 Pearson Education, Inc.


Chapter 1: Graphs

3 . The line contains (0, 3) : 2 y  y1  m( x  x1 )

m

3 ( x  0) 2 3 y 3  x 2 3 y  x3 2 y 3 

Chapter 1 Project Internet-based Project

64 Copyright © 2020 Pearson Education, Inc.


Table of Contents

Chapter 1 Graphs 1.1 The Distance and Midpoint Formulas ......................................................................................... 1 1.2 Graphs of Equations in Two Variables; Intercepts; Symmetry ................................................ 13 1.3 Lines ......................................................................................................................................... 26 1.4 Circles ....................................................................................................................................... 43 Chapter Review................................................................................................................................ 56 Chapter Test ..................................................................................................................................... 62 Chapter Projects ............................................................................................................................... 64

Chapter 2 Functions and Their Graphs 2.1 Functions................................................................................................................................... 65 2.2 The Graph of a Function ........................................................................................................... 83 2.3 Properties of Functions ............................................................................................................. 92 2.4 Library of Functions; Piecewise-defined Functions ............................................................... 109 2.5 Graphing Techniques: Transformations ................................................................................. 121 2.6 Mathematical Models: Building Functions ............................................................................. 139 Chapter Review.............................................................................................................................. 147 Chapter Test ................................................................................................................................... 154 Cumulative Review ....................................................................................................................... 157 Chapter Projects ............................................................................................................................. 161

Chapter 3 Linear and Quadratic Functions 3.1 Properties of Linear Functions and Linear Models ................................................................. 163 3.2 Building Linear Functions from Data ..................................................................................... 174 3.3 Quadratic Functions and Their Properties .............................................................................. 180 3.4 Build Quadratic Models from Verbal Descriptions and from Data ........................................ 203 3.5 Inequalities Involving Quadratic Functions ............................................................................ 211 Chapter Review.............................................................................................................................. 231 Chapter Test ................................................................................................................................... 239 Cumulative Review........................................................................................................................ 241 Chapter Projects ............................................................................................................................. 244

Chapter 4 Polynomial and Rational Functions 4.1 Polynomial Functions ............................................................................................................. 247 4.2 Graphing Polynomial Functions; Models ............................................................................... 257 4.3 Properties of Rational Functions............................................................................................. 273 4.4 The Graph of a Rational Function .......................................................................................... 283 4.5 Polynomial and Rational Inequalities ..................................................................................... 339 4.6 The Real Zeros of a Polynomial Function .............................................................................. 360 4.7 Complex Zeros; Fundamental Theorem of Algebra ............................................................... 391 Chapter Review.............................................................................................................................. 400 Chapter Test ................................................................................................................................... 415 Cumulative Review........................................................................................................................ 419 Chapter Projects ............................................................................................................................. 424

Copyright © 2020 Pearson Education, Inc.


Chapter 5 Exponential and Logarithmic Functions 5.1 Composite Functions .............................................................................................................. 426 5.2 One-to-One Functions; Inverse Functions .............................................................................. 444 5.3 Exponential Functions ............................................................................................................ 466 5.4 Logarithmic Functions ............................................................................................................ 487 5.5 Properties of Logarithms ........................................................................................................ 509 5.6 Logarithmic and Exponential Equations ................................................................................. 518 5.7 Financial Models .................................................................................................................... 538 5.8 Exponential Growth and Decay Models; Newton’s Law; Logistic Growth and Decay Models .................................................................................................................... 546 5.9 Building Exponential, Logarithmic, and Logistic Models from Data..................................... 555 Chapter Review.............................................................................................................................. 561 Chapter Test ................................................................................................................................... 573 Cumulative Review........................................................................................................................ 577 Chapter Projects ............................................................................................................................. 580

Chapter 6 Trigonometric Functions 6.1 Angles, Arc Length, and Circular Motion .............................................................................. 583 6.2 Trigonometric Functions: Unit Circle Approach .................................................................... 592 6.3 Properties of the Trigonometric Functions ............................................................................. 610 6.4 Graphs of the Sine and Cosine Functions ............................................................................... 624 6.5 Graphs of the Tangent, Cotangent, Cosecant, and Secant Functions...................................... 645 6.6 Phase Shift; Sinusoidal Curve Fitting ..................................................................................... 655 Chapter Review.............................................................................................................................. 666 Chapter Test ................................................................................................................................... 674 Cumulative Review........................................................................................................................ 678 Chapter Projects ............................................................................................................................. 682

Chapter 7 Analytic Trigonometry 7.1 The Inverse Sine, Cosine, and Tangent Functions .................................................................. 685 7.2 The Inverse Trigonometric Functions (Continued) ................................................................ 698 7.3 Trigonometric Equations ........................................................................................................ 710 7.4 Trigonometric Identities ......................................................................................................... 731 7.5 Sum and Difference Formulas ................................................................................................ 744 7.6 Double-angle and Half-angle Formulas .................................................................................. 769 7.7 Product-to-Sum and Sum-to-Product Formulas...................................................................... 795 Chapter Review.............................................................................................................................. 808 Chapter Test ................................................................................................................................... 823 Cumulative Review........................................................................................................................ 828 Chapter Projects ............................................................................................................................. 834

Chapter 8 Applications of Trigonometric Functions 8.1 Right Triangle Trigonometry; Applications ........................................................................... 838 8.2 The Law of Sines .................................................................................................................... 852 8.3 The Law of Cosines ................................................................................................................ 867 8.4 Area of a Triangle ................................................................................................................... 879 8.5 Simple Harmonic Motion; Damped Motion; Combining Waves ........................................... 889 Chapter Review.............................................................................................................................. 899 Chapter Test ................................................................................................................................... 905 Cumulative Review........................................................................................................................ 909 Chapter Projects ............................................................................................................................. 915

Copyright © 2020 Pearson Education, Inc.


Chapter 9 Polar Coordinates; Vectors 9.1 Polar Coordinates.................................................................................................................... 919 9.2 Polar Equations and Graphs .................................................................................................... 928 9.3 The Complex Plane; De Moivre’s Theorem ........................................................................... 958 9.4 Vectors .................................................................................................................................... 971 9.5 The Dot Product ...................................................................................................................... 984 9.6 Vectors in Space ..................................................................................................................... 990 9.7 The Cross Product................................................................................................................... 996 Chapter Review............................................................................................................................ 1007 Chapter Test ................................................................................................................................. 1016 Cumulative Review...................................................................................................................... 1020 Chapter Projects ........................................................................................................................... 1023

Chapter 10 Analytic Geometry 10.2 The Parabola ....................................................................................................................... 1026 10.3 The Ellipse .......................................................................................................................... 1041 10.4 The Hyperbola .................................................................................................................... 1058 10.5 Rotation of Axes; General Form of a Conic ....................................................................... 1078 10.6 Polar Equations of Conics ................................................................................................... 1091 10.7 Plane Curves and Parametric Equations ............................................................................. 1100 Chapter Review............................................................................................................................ 1115 Chapter Test ................................................................................................................................. 1124 Cumulative Review...................................................................................................................... 1129 Chapter Projects ........................................................................................................................... 1131

Chapter 11 Systems of Equations and Inequalities 11.1 Systems of Linear Equations: Substitution and Elimination ............................................... 1135 11.2 Systems of Linear Equations: Matrices .............................................................................. 1158 11.3 Systems of Linear Equations: Determinants ....................................................................... 1183 11.4 Matrix Algebra .................................................................................................................... 1197 11.5 Partial Fraction Decomposition .......................................................................................... 1216 11.6 Systems of Nonlinear Equations ......................................................................................... 1235 11.7 Systems of Inequalities ....................................................................................................... 1263 11.8 Linear Programming ........................................................................................................... 1279 Chapter Review............................................................................................................................ 1292 Chapter Test ................................................................................................................................. 1307 Cumulative Review...................................................................................................................... 1316 Chapter Projects ........................................................................................................................... 1319

Chapter 12 Sequences; Induction; the Binomial Theorem 12.1 Sequences............................................................................................................................ 1322 12.2 Arithmetic Sequences ......................................................................................................... 1332 12.3 Geometric Sequences; Geometric Series ............................................................................ 1341 12.4 Mathematical Induction ...................................................................................................... 1353 12.5 The Binomial Theorem ....................................................................................................... 1362 Chapter Review............................................................................................................................ 1369 Chapter Test ................................................................................................................................. 1373 Cumulative Review...................................................................................................................... 1376 Chapter Projects ........................................................................................................................... 1379

Copyright © 2020 Pearson Education, Inc.


Chapter 13 Counting and Probability 13.1 Counting.............................................................................................................................. 1382 13.2 Permutations and Combinations ......................................................................................... 1385 13.3 Probability ........................................................................................................................... 1390 Chapter Review............................................................................................................................ 1397 Chapter Test ................................................................................................................................. 1399 Cumulative Review...................................................................................................................... 1400 Chapter Projects ........................................................................................................................... 1403

Chapter 14 A Preview of Calculus: The Limit, Derivative, and Integral of a Function 14.1 Investigating Limits Using Tables and Graphs ................................................................... 1406 14.2 Algebraic Techniques for Finding Limits ........................................................................... 1412 14.3 One-sided Limits; Continuity.............................................................................................. 1416 14.4 The Tangent Problem; The Derivative................................................................................ 1423 14.5 The Area Problem; The Integral ......................................................................................... 1432 Chapter Review............................................................................................................................ 1446 Chapter Test ................................................................................................................................. 1453 Chapter Projects ........................................................................................................................... 1456

Appendix A Review A.1 Algebra Essentials ................................................................................................................ 1462 A.2 Geometry Essentials ............................................................................................................. 1467 A.3 Polynomials.......................................................................................................................... 1473 A.4 Synthetic Division ................................................................................................................ 1481 A.5 Rational Expressions ............................................................................................................ 1483 A.6 Solving Equations ................................................................................................................ 1488 A.7 Complex Numbers; Quadratic Equations in the Complex Number System ........................ 1502 A.8 Problem Solving: Interest, Mixture, Uniform Motion, Constant Rate Job Applications ..... 1508 A.9 Interval Notation; Solving Inequalities ................................................................................ 1515 A.10 nth Roots; Rational Exponents ............................................................................................ 1527

Appendix B Graphing Utilities B.1 The Viewing Rectangle ........................................................................................................ 1537 B.2 Using a Graphing Utility to Graph Equations ...................................................................... 1538 B.3 Using a Graphing Utility to Locate Intercepts and Check for Symmetry ............................ 1543 B.5 Square Screens ..................................................................................................................... 1545

Copyright © 2020 Pearson Education, Inc.


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.