6 minute read

Acknowledgments

Iwould like to thank Griffin McCombs for his tireless work and good cheer. I could not have attempted this book without the dedicated assistance of the ACCESS Health US team: Courtney Biggs, Koloman Rath, Amara Thomas, Roberto Patarca, and Kim Hazel.

I would also like to thank my Boston area colleagues at Mass CPR; the Variants Group; and the Vaccine Group.

This work is supported by ACCESS Health International (www.accessh.org).

Reference s

AstraZenecatosupplytheUSwithup to halfa millionadditional dosesofthepotentialCOVID-19antibodytreatment AZD7442 . (n.d.).

Bafna, K., White, K., Harish, B., Rosales, R., Ramelot, T. A., Acton, T. B., Moreno, E., Kehrer, T., Miorin, L., Royer, C. A., García-Sastre, A., Krug, R. M., & Montelione, G. T. (2021). Hepatitis C virus drugs that inhibit SARS-CoV-2 papain-like protease synergize with remdesivir to suppress viral replication in cell culture. CellReports , 35(7), 109133–109133.

https://doi.org/10.1016/j.celrep.2021.109133 https://doi.org/10.3389/FIMMU.2021.808932/BIBTEX

Bahnan, W., Wrighton, S., Sundwall, M., Bläckberg, A., Larsson, O., Höglund, U., Khakzad, H., Godzwon, M., Walle, M., Elder, E., Strand, A. S., Happonen, L., André, O., Ahnlide, J. K., Hellmark, T., Wendel-Hansen, V., Wallin, R. P. A., Malmstöm, J., Malmström, L., … Nordenfelt, P. (2022). SpikeDependent Opsonization Indicates Both Dose-Dependent Inhibition of Phagocytosis and That Non-Neutralizing Antibodies Can Confer Protection to SARS-CoV-2. Frontiers inImmunology , 12 , 5853–5853.

Bastard, P., Rosen, L. B., Zhang, Q., Michailidis, E., Hoffmann, H. H., Zhang, Y., Dorgham, K., Philippot, Q., Rosain, J., Béziat, V., Manry, J., Shaw, E., Haljasmägi, L., Peterson, P., Lorenzo, L., Bizien, L., Trouillet-Assant, S., Dobbs, K., de Jesus, A. A., … Casanovaa, J. L. (2020). Autoantibodies against

MonoclonalAntibodies:TheOnceandFutureCureforCovid-19 type I IFNs in patients with life-threatening COVID-19. Science , 370(6515). https://doi.org/10.1126/SCIENCE.ABD4585/SUPPL_FILE/A BD4585_MDAR-REPRODUCIBILITYCHECKLIST.PDF https://doi.org/10.1080/19420862.2018.1490119 https://doi.org/10.1093/INFDIS/JIV449 https://doi.org/10.1016/j.celrep.2023.112014

Bidenofficialsseeka backup,as Covidvariants test Evusheld’s effectiveness (n.d.).

Booth, B. J., Ramakrishnan, B., Narayan, K., Wollacott, A. M., Babcock, G. J., Shriver, Z., & Viswanathan, K. (2018). Extending human IgG half-life using structure-guided design. mAbs , 10(7), 1098–1098.

Borisevich, V., Lee, B., Hickey, A., Debuysscher, B., Broder, C. C., Feldmann, H., & Rockx, B. (2016). Escape From Monoclonal Antibody Neutralization Affects Henipavirus Fitness In Vitro and In Vivo. TheJournalofInfectious Diseases , 213(3), 448–455.

Callaway, H. M., Hastie, K. M., Schendel, S. L., Li, H., Yu, X., Shek, J., Buck, T., Hui, S., Bedinger, D., Troup, C., Dennison, S. M., Li, K., Alpert, M. D., Bailey, C. C., Benzeno, S., Bonnevier, J. L., Chen, J. Q., Chen, C., Cho, H., … Saphire, E. O. (2023). Bivalent intra-spike binding provides durability against emergent Omicron lineages: Results from a global consortium. CellReports , 42(1), 112014–112014.

Cameroni, E., Saliba, C., Bowen, J. E., Rosen, L. E., Culap, K., Pinto, D., VanBlargan, L. A., Marco, A. D., Zepeda, S. K., Iulio, J. di, Zatta, F., Kaiser, H., Noack, J., Farhat, N.,

Czudnochowski, N., Havenar-Daughton, C., Sprouse, K. R., Dillen, J. R., Powell, A. E., … Corti, D. (2021). Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. bioRxiv , 14 , 2021.12.12.4722692021.12.12.472269. https://doi.org/10.1101/2021.12.12.472269 bioRxiv , 2021.03.09.434607-2021.03.09.434607. https://doi.org/10.1101/2021.03.09.434607 https://doi.org/10.3389/FIMMU.2018.00460/BIBTEX https://doi.org/10.1038/s41423-020-0426-7 https://doi.org/10.1126/SCIENCE.ABQ3773/SUPPL_FILE/S CIENCE.ABQ3773_MDAR_REPRODUCIBILITY_CHECK LIST.PDF https://doi.org/10.1101/2021.01.27.428529

Cathcart, A. L., Havenar-Daughton, C., Lempp, F. A., Ma, D., Schmid, M., Agostini, M. L., Guarino, B., iulio, J. D., Rosen, L., Tucker, H., Dillen, J., Subramanian, S., Sloan, B., Bianchi, S., Wojcechowskyj, J., Zhou, J., Kaiser, H., Chase, A., MontielRuiz, M., Hebner, C. M. (2021). The dual function monoclonal antibodies VIR-7831 and VIR-7832 demonstrate potent in vitro and in vivo activity against SARS-CoV-2.

Chen, W. C., & Murawsky, C. M. (2018). Strategies for generating diverse antibody repertoires using transgenic animals expressing human antibodies. Frontiers inImmunology , 9(MAR), 460–460.

Chen, X., Li, R., Pan, Z., Qian, C., Yang, Y., You, R., Zhao, J., Liu, P., Gao, L., Li, Z., Huang, Q., Xu, L., Tang, J., Tian, Q., Yao, W., Hu, L., Yan, X., Zhou, X., Wu, Y., … Ye, L. (2020). Human monoclonal antibodies block the binding of SARSCoV-2 spike protein to angiotensin converting enzyme 2 receptor. Cellular&MolecularImmunology , 17–17.

Coronavirus(COVID-19)|Drugs|FDA . (n.d.).

Dacon, C., Tucker, C., Peng, L., Lee, C. C. D., Lin, T. H., Yuan, M., Cong, Y., Wang, L., Purser, L., Williams, J. K., Pyo, C. W., Kosik, I., Hu, Z., Zhao, M., Mohan, D., Cooper, A. J. R., Peterson, M., Skinner, J., Dixit, S., … Tan, J. (2022). Broadly neutralizing antibodies target the coronavirus fusion peptide. Science , 377(6607).

Dong, J., Zost, S. J., Greaney, A. J., Starr, T. N., Dingens, A. S., Chen, E. C., Chen, R. E., Case, J. B., Sutton, R. E., Gilchuk, P., Rodriguez, J., Armstrong, E., Gainza, C., Nargi, R. S., Binshtein, E., Xie, X., Zhang, X., Shi, P.-Y., Logue, J., … Crowe, J. E. (2021). Genetic and structural basis for recognition of SARS-CoV-2 spike protein by a two-antibody cocktail. bioRxiv , 2021.01.27.428529-2021.01.27.428529.

Du, Y., Shi, R., Zhang, Y., Duan, X., Li, L., Zhang, J., Wang, F., Zhang, R., Shen, H., Wang, Y., Wu, Z., Peng, Q., Pan, T., Sun, W., Huang, W., Feng, Y., Feng, H., Xiao, J., Tan, W., … Yan, J. (2021). A broadly neutralizing humanized ACE2targeting antibody against SARS-CoV-2 variants. Nature Communications , 12(1). https://doi.org/10.1038/S41467-02125331-X

Durie, I. A., Tehrani, Z. R., Karaaslan, E., Sorvillo, T. E., McGuire, J., Golden, J. W., Welch, S. R., Kainulainen, M. H., Harmon, J. R., Mousa, J. J., Gonzalez, D., Enos, S., Koksal, I., Yilmaz, G., Karakoc, H. N., Hamidi, S., Albay, C., Spengler, J. R., Spiropoulou, C. F., Pegan, S. D. (2022). Structural characterization of protective non-neutralizing antibodies targeting Crimean-Congo hemorrhagic fever virus. Nature Communications202213:1 , 13(1), 1–12. https://doi.org/10.1038/s41467-022-34923-0 https://doi.org/10.1101/2020.12.17.423313 https://doi.org/10.1101/2022.09.02.506305 https://doi.org/10.1073/PNAS.2217590120/SUPPL_FILE/PNA

Eguia, R., Crawford, K. H. D., Stevens-Ayers, T., KelnhoferMillevolte, L., Greninger, A. L., Englund, J. A., Boeckh, M. J., & Bloom, J. D. (2020). A human coronavirus evolves antigenically to escape antibody immunity. bioRxiv , 2020.12.17.423313-2020.12.17.423313.

Ishimaru, H., Nishimura, M., Tjan, L. H., Sutandhio, S., Marini, M. I., Effendi, G. B., Shigematsu, H., Kato, K., Hasegawa, N., Aoki, K., Kurahashi, Y., Furukawa, K., Shinohara, M., Nakamura, T., Arii, J., Nagano, T., Nakamura, S., Sano, S., Iwata, S., & Mori, Y. (2022). Novel monoclonal antibodies showing broad neutralizing activity for SARS-CoV-2 variants including Omicrons BA.5 and BA.2.75. bioRxiv , 2022.09.02.506305-2022.09.02.506305.

Izadi, A., Hailu, A., Godzwon, M., Wrighton, S., Olofsson, B., Schmidt, T., Söderlund-Strand, A., Elder, E., Appelberg, S., Valsjö, M., Larsson, O., Wendel-Hansen, V., Ohlin, M., Bahnan, W., & Nordenfelt, P. (2023). Subclass-switched antispike IgG3 oligoclonal cocktails strongly enhance Fc-mediated opsonization. ProceedingsoftheNationalAcademyof SciencesoftheUnitedStatesofAmerica , 120(15), e2217590120–e2217590120.

S.2217590120.SM04.MP4 https://doi.org/10.1126/SCITRANSLMED.ABF1906/SUPPL_ FILE/ABF1906_SM.PDF https://doi.org/10.2139/SSRN.3652322 https://doi.org/10.1056/NEJMOA2206966/SUPPL_FILE/NEJ MOA2206966_DATA-SHARING.PDF https://doi.org/10.1038/NM.4512 https://doi.org/10.1146/ANNUREV.IMMUNOL.23.021704.11

Jones, B. E., Brown-Augsburger, P. L., Corbett, K. S., Westendorf, K., Davies, J., Cujec, T. P., Wiethoff, C. M., Blackbourne, J. L., Heinz, B. A., Foster, D., Higgs, R. E., Balasubramaniam, D., Wang, L., Zhang, Y., Yang, E. S., Bidshahri, R., Kraft, L., Hwang, Y., Žentelis, S., … Falconer, E. (2021). The neutralizing antibody, LY-CoV555, protects against SARSCoV-2 infection in nonhuman primates. Science Translational Medicine , 13(593), 1906–1906.

Kaneko, N., Kuo, H.-H., Boucau, J., Farmer, J. R., AllardChamard, H., Mahajan, V. S., Piechocka-Trocha, A., Lefteri, K., Osborn, M., Bals, J., Bartsch, Y. C., Bonheur, N., Caradonna, T. M., Chevalier, J., Chowdhury, F., Diefenbach, T. J., Einkauf, K., Fallon, J., Feldman, J., Group, M. C. on P. R. S. W. (2020). The loss of Bcl-6 expressing T follicular helper cells and the absence of germinal centers in COVID19. SocialScienceResearchNetwork .

Kayentao, K., Ongoiba, A., Preston, A. C., Healy, S. A., Doumbo, S., Doumtabe, D., Traore, A., Traore, H., Djiguiba, A., Li, S., Peterson, M. E., Telscher, S., Idris, A. H., Kisalu, N. K., Carlton, K., Serebryannyy, L., Narpala, S., McDermott, A. B., Gaudinski, M., … Crompton, P. D. (2022). Safety and Efficacy of a Monoclonal Antibody against Malaria in Mali. NewEnglandJournalofMedicine , 387(20), 1833–1842.

Kisalu, N. K., Idris, A. H., Weidle, C., Flores-Garcia, Y., Flynn, B. J., Sack, B. K., Murphy, S., Schön, A., Freire, E., Francica, J. R., Miller, A. B., Gregory, J., March, S., Liao, H. X., Haynes, B. F., Wiehe, K., Trama, A. M., Saunders, K. O., Gladden, M. A., … Seder, R. A. (2018). A human monoclonal antibody prevents malaria infection and defines a new site of vulnerability on Plasmodium falciparum circumsporozoite protein. NatureMedicine , 24(4), 408–408.

Kishimoto, T. (2005). Interleukin-6: from basic science to medicine 40 years in immunology. AnnualReview of Immunology , 23 , 1–21.

5806 https://doi.org/10.1126/SCIENCE.ABE6230/SUPPL_FILE/A BE6230_S9.MP4 https://doi.org/10.1101/2021.10.24.465418

Koenig, P. A., Das, H., Liu, H., Kümmerer, B. M., Gohr, F. N., Jenster, L. M., Schiffelers, L. D. J., Tesfamariam, Y. M., Uchima, M., Wuerth, J. D., Gatterdam, K., Ruetalo, N., Christensen, M. H., Fandrey, C. I., Normann, S., Tödtmann, J. M. P., Pritzl, S., Hanke, L., Boos, J., … Schmidt, F. I. (2021). Structure-guided multivalent nanobodies block SARSCoV-2 infection and suppress mutational escape. Science , 371(6530).

Kourelis, J., Marchal, C., & Kamoun, S. (2021). NLR immune receptor-nanobody fusions confer plant disease resistance. bioRxiv , 2021.10.24.465418-2021.10.24.465418.

MonoclonalAntibodies:TheOnceandFutureCureforCovid-19 https://doi.org/10.1016/j.celrep.2021.110210 https://doi.org/10.1101/2023.04.08.536123 https://doi.org/10.1126/SCIENCE.ABQ2679/SUPPL_FILE/S

Li, W., Chen, Y., Prévost, J., Ullah, I., Lu, M., Yu Gong, S., Tauzin, A., Gasser, R., Vézina, D., Priya Anand, S., Goyette, G., Chaterjee, D., Ding, S., Tolbert, W. D., Grunst, M. W., Bo, Y., Zhang, S., Richard, J., Zhou, F., … Mothes, W. (2022).

Structural basis and mode of action for two broadly neutralizing antibodies against SARS-CoV-2 emerging variants of concern. CellReports , 38 , 110210–110210.

LillyStatementon theNIAIDDecision to Pause Enrollmentin ACTIV-3ClinicalTrial|EliLillyandCompany (n.d.).

Liu, L., Casner, R. G., Guo, Y., Wang, Q., Iketani, S., Chan, J. F.W., Yu, J., Dadonaite, B., Nair, M. S., Mohri, H., Reddem, E. R., Yuan, S., Poon, V. K.-M., Chan, C. C.-S., Yuen, K.-Y., Sheng, Z., Huang, Y., Bloom, J. D., Shapiro, L., & Ho, D. D. (2023). Antibodies that neutralize all current SARS-CoV-2 variants of concern by conformational locking. bioRxiv , 2023.04.08.536123-2023.04.08.536123.

Long-HaulersAreRedefiningCOVID-19 - TheAtlantic . (n.d.).

Low, J. S., Jerak, J., Tortorici, M. A., McCallum, M., Pinto, D., Cassotta, A., Foglierini, M., Mele, F., Abdelnabi, R., Weynand, B., Noack, J., Montiel-Ruiz, M., Bianchi, S., Benigni, F., Sprugasci, N., Joshi, A., Bowen, J. E., Stewart, C., Rexhepaj, M., Sallusto, F. (2022). ACE2-binding exposes the SARS-CoV-2 fusion peptide to broadly neutralizing coronavirus antibodies. Science , 377(6607), 735–742.

This article is from: