1 minute read
Liquid Tectonics
This project seeks to reveal modes in which heat triggers geological change. Rocks, often perceived as solid and static, can be melted and transformed by heated groundwater, which, when under pressure, can be aggressive and dynamic.
The Yellowstone caldera, about 40 miles in diameter, was formed over the past two million years as a result of three major super eruptions. It is considered one of the most geologically active places on Earth, as it sits above the Yellowstone hotspot in the Earth’s mantle. Yellowstone’s famous geysers and hot springs are just a few examples of the geothermal activity and geological transformations underway in the area. Here, water and rocks are altered by heat, which causes state changes and morphological transformations. As the Earth’s mantle transfers heat to the surface, it creates layers of rhyolite lava, which contain an abundance of silica and are therefore rigid and impermeable.
The interaction of rocks, heat, and water produces an intricate system of water circulation, which drives geological change and also sustains ecosystems and local ecologies. This inquiry explores how the interaction between thermal conditions and geology might create new scenarios, relationships, materials, and transformations.
Top: Sections of the formation of a geyser showing the penetrations of superheated water through the layers of rhyolite. This transports silica upwards and creates the piping structures formed by the silica precipitations that will eventually channel the hot ground water to the Earth’s surface.