2nd civil shear

Page 1

Eng. Ahmed Ali

Design fundamentals of R.C structures

Faculty of Eng., Helwan university

Page No: 1

Steps for check shear in RC beams. 1- Draw shear force diagram.

2- Calculate (Qu) at critical section at distance ( + ) from center line of column.

3- Calculate (qu) :

qu =

u

2 (kg/cm )

where:

(Qu) shear force at critical section. (b) the width of the beam. (d) depth of the beam. 4- calculate the (qumax)

qumax = 2.2

cu

2 (kg/cm )

Ɣc

if (qumax < qu) increase dimensions if (qumax > qu) ok 5- calculate the (qcu):

cu

qcu = 0.75

Ɣ

c

2 (kg/cm )

if (qcu ≥ qu) safe use min. stirrups (5 ɸ8/m) use stirrups or bent bars. if (qcu < qu)

or

use stirrups only.


Eng. Ahmed Ali

Design fundamentals of R.C structures

Faculty of Eng., Helwan university

Page No: 2

Calculate (qus):

cu

qus = qu-

if use stirrups: qus=

st( y Ɣs)

(kg/cm2)

where: Ast= n * Ab

Ab = area of one branch of stirrups b= beam width n= number of branches (if b˂40cm ‌. n=2)(if b≼40cm‌n=4) S= spacing between stirrups (20 ≼ S ≼ 10 cm) Assume Ab then get s No. of stirrups in meter =

if use bent bars: using one raw from bent bars qus=

st( y Ɣs)

where: Ast= n * Ab

sin

Ab = area of one bent bar b= beam width n= number of bent bars in one raw. d= depth of beams Îą= angle of bent bars


Eng. Ahmed Ali

Design fundamentals of R.C structures

Faculty of Eng., Helwan university

Page No: 3

using 2 raw or more from bent bars qus= where: Ast= n * Ab

st( y Ɣs)

(sin + cos )

Ab = area of one bent bar b= beam width n= number of bent bars in one raw. S= spacing between bent bars Îą= angle of bent bars

6- Draw shear force diagram to scale -calculate (Qcu= qcu b d)

The calculated stirrups is provided in the distance y The min. stirrups is provided in the distance x


Eng. Ahmed Ali

Design fundamentals of R.C structures

Faculty of Eng., Helwan university

Page No: 4

Sheet NO.(1) Problem No.(2). For the shown beams It is required to: Calculate the Max. Load (Wmax) according to given data (b=12 cm, t=40cm, ts=12cm)

From flexure (Moment) capacity capacity. + 12 " 72 () + 16 ∗ 12 + 12 " 204 ()

B= min. Of B = 72 cm

Assume (a<ts) 0..67 ∗

,cu ,y ∗ - ∗ . " /s ∗ Ɣc Ɣs

250 3600 0.67 ∗ ∗ 72 ∗ . " (3 ∗ 2) ∗ 1 1.5 1.15 a = 2.43 cm

< ts

ok


Eng. Ahmed Ali

Design fundamentals of R.C structures

Faculty of Eng., Helwan university

Page No: 5

1u ,y ∗ 8 ∗ 3 1u " (3 ∗ 2) ∗ 3600 ∗ 0.826 ∗ 35 " 624456 ((>?. ()) 1u " 6.24 (:. )) 2 ; 2 ∗ 3 1u " " 6.24 " 8 8 2m " 5.55 (:/))<<.(1)

a = 2.43 cm < 0.1 d

at this case ( j =0.826)

/s "

From shear capacity. ( 3 + " 0.2 + 0.175 " 0.375 375 ) 2 2 4"

4"

1.5 5u 1.125

6∗7

5ɸ8/m

case(1)

case(2)

may be used as a min.stirrups

may be calculated to resist shear

qu= qcu

qu= qus+ 0.5*qcu


Eng. Ahmed Ali

Design fundamentals of R.C structures

Faculty of Eng., Helwan university

Page No: 6

@u ≤ @cu

(Case 1)

5u ,cu " 0.75 ∗ C B∗3 Ɣc

@u "

u

@u "

4"

∗ .

.

2"

∗D 7

(Case 2)

" 0.75 ∗

.

∗ 4.066 " 5.42 :

"

∗ .E

<..

5u " 4.066 :

<..

4 " 5.42 :

" 3.61 :/)′ <<2s1 " 3.61 :/)′<<<<(2)

@u " @us + 0.5 ∗ @cu

,y 2 ∗ /b ∗ ( ) 2 ∗ 0.5 ∗ (3600) Ɣs 1.15 " 8.69 >?/()2 @us " " H∗B 20 ∗ 12 250 0.75 ∗

1.5 @u " 8.69 + " 13.53 >?/()2 2 u @u " ∗ " 13.53 >?/()2 <..

4"

.

.

2"

∗D 7

∗ 5.685 " 7.52 :

"

∗J.

<..

5u " 5.685 : 4 " 7.52 :

" 5.05 :/)′ <<2s2 " 5.05 :/)′<<<<(3)

Choose the max. value of load from shear capacity because the two cases are safe (Ws=5.05 t) Choose the min. value of load from shear and moment capacity because the beam will failure first in the small value (W=5.05 t).


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.