polynuclear aromatic compounds

Page 1

Polynuclear Hydrocarbons


Classification of Polynuclear Hydrocarbons Polynuclear Hydrocarbons may be divided into two groups,


Polynuclear Hydrocarbons

Benzenoid

Isolated

Non- Benzenoid

Fused rings

Linear

Azulene

Angular

Biphenyl

Naphthalene

Phenanthrene


I. I.

Isolated Isolated Ring Ring Polynuclear Polynuclear Hydrocarbons Hydrocarbons

Biphenyl Biphenyl (diphenyl): (diphenyl):


Preparation of Biphenyl a) Fittig reaction 2Ph-Br + 2Na

ether soln

Ph-Ph + 2NaBr

b) From benzene diazonium sulphate N=N HSO4

Cu EtOH

+ N2 + CuHSO4 Biphenyl

c) From benzidine H2N

NH2

Benzidine H3PO4

Biphenyl

NaNO2 HCl

Cl N=N

N=N Cl


d) Ulmann diaryl synthesis 2 Ph-I

2 Cu

2 H3C

I

Ph-Ph + 2CuI 2 Cu

H3C

sealed tube

CH3

4,4'- Dimethyl-biphenyl NO2

NO2

2

I

2 Cu

sealed tube O2N

2,2'- Dinitro-biphenyl

e) By using Arylmagnesium halide C OC l PhMgBr + PhBr

2

Ph-Ph + MgBr2


Reactions of biphenyl Biphenyl undergoes substitution reactions,


• In biphenyl one ring act as electron donating group and the other act as electron withdrawing group


Resonance shows that O- and P- are the most reactive positions towards electrophilic substitution. The electrophilic substitution occurs in 4- position (major) and 2- position (minor) due to steric effect of other benzene ring. The 2nd substitution occurs in the empty ring in 2 or 4- position. e.g. NO2 conc HNO3 conc H2SO4

+ 2-Nitro-biphenyl

NO2 4-Nitro-biphenyl conc HNO3 conc H2SO4

NO2 O2N

NO2 + 4,4'-Dinitro-biphenyl

NO2 NO2 +

2,4'-Dinitro-biphenyl

O2N 2,2'-Dinitro-biphenyl


Problem: Explain the products formed when biphenyl is mononitrated and .when it is dinitrated


Biphenyl derivatives (1) Benzidine (4, 4`-diaminobiphenyl) H2N

(2) Diphenic acid

NH2

COOH COOH

(3) Diphenyl methane CH2


(1) Benzidine (4, 4' diaminobiphenyl) Methods of preparation


From dihydrazo benzene NH-NH Hydrazano-benzene

HCl

H2N

NH2 Benzidine


Q. Show how could you prepare benzidine from benzene?  Answer I

I conc. HNO3

I2

conc. H2SO4

HNO3

NO2

I Cu

2

O 2N

NO2

NO2

H2N

NH2 Benzidine

Zn/HCl


Uses of Benzidine  preparation of Congo red H2N

NH2 NH2

2

NaNO2/HCl

Cl N N

N N Cl

NH2

NH2 NN

SO3H

N N

SO3H

SO3H Congo Red


Diphenic acid) 2(

Methods of preparation


From anthranilic acid NH2

COOH COOH

COOH

COOH NaNO2 HCl

N N

∆ Cu

biphenyl- 2,2'- dicarboxylic acid (Diphenic acid)


Ulmann diaryl synthesis COOEt COOEt

COOEt 2

I

∆ Cu

COOH COOH HCl

biphenyl- 2,2'- dicarboxylic acid (Diphenic acid)


oxidation of Phenanthrene or phenanthraquinone COOH 50% H2O2 AcOH, ∆

phenanthrene

COOH

Diphenic acid

O K2Cr2O7 H2SO4

O

phenanthraquinone


Chemical Reactions


with acetic anhydride. 1 O COOH

Ac2O

O

COOH O Diphenic acid

Diphenic anhydride


2. Conversion of diphenic acid to dflourenone COOH COOH Diphenic acid

Ca(OH)2

O C O C O O Ca diphenate

Ca

∆ 80-200°C -CaCO3

O

9- fluorenone


3. with conc. H2SO4 COOH COOH

Diphenic acid

Free rotation

O

O OH

conc. H2SO4 HOOC OH

-H2O

O

9- fluorenone- 4carboxylic acid


4. Oxidation of KMnO4 COOH COOH Diphenic acid

KMnO4

COOH COOH pthalic acid


5. with sodalime COOH

Sodalime

COOH Diphenic acid

biphenyl


Atropisomers of biphenyl  Optical isomers produced due to restricted rotation is called atropisomers  Restricted rotation produce when 0position contains two different bulky groups and hence molecule is optically active.. for example


CO2H NO2

NO2 A

Mirror

CO2H

NO2 CO2H

CO2H NO2

Optically active

NO2

Cl

H

H

Cl

Mirror

H

Cl

H2N

H

B

CO2H Cl

CO2H CO2H Optically active no plane of symmetry

Optically active

NO2

CO2H NO 2 Optically active no plane of symmetry


 When o- position contains two similar groups, the molecule is optically inactive due to presence of plane of symmetry .. for example HO2C

CO2H

H3OC

CO2H

H3OC

NO2

Plane of symmetry

O 2N

CO2H

Optically inactive due to presence of plane of symmetry

COOH

O2 N

HO2C

NO2

Optically active free rotation is possible

NO2

F Optically active F is a small atom so permit by free rotation


(3) Diphenyl methane

Methods of preparation


1. Friedel- Crafte CH2Cl +

AlCl3

Benzyl chloride

2

+

CH2

Diphenyl methane

CH2Cl2

AlCl3

CH2

Diphenyl methane


From benzophenone. 2 O HI/ P ∆ or Zn Hg/ HCl or NH2NH2/ NaOEt Benzophenone

CH2

Diphenyl methane


Chemical Reactions


1. Nitration CH2

conc. HNO2 conc. H2SO4

Diphenyl methane

conc. HNO2 conc. H2SO4

CH2

NO2

1-benzyl-4-nitrobenzene

O2 N

CH2

bis(4- nitrophenyl)methane

NO2


2. Halogenation Br CH2 Diphenyl methane

Br2 hv

C H Diphenylmethylbromide


3. Oxidation O CH2 Diphenyl methane

[O] K2Cr2O7 H2SO4

C benzophenone


II. Fused System


a) Naphthalene OH

α

α

8

1

β

7

2

β

β

6

3

β

4

5 α

α

1-Naphthol or α-Naphthol Br

OH

2-Naphthol or β -Naphthol Br

HO3S

1,8- Dibromo-naphthalene

SO3H

Naphthalene-2,7- disulfonic acid


Structure elucidation of naphthalene 1- Molecular Formula: C10H8 COOH

2- Naphthalene

O COOH

Phthalic acid C

So naphthalene contain the skeleton C


NO2 COOH

3-

Naphthalene

nitration

Nitronaphthalene

O COOH

Nitrophthalic acid

So nitro group is present in benzene ring


Naphthalene nitration

4-

Nitronaphthalene

redn.

aminonaphthalene

O COOH

COOH

Phthalic acid

The benzene ring in phthalic acid produced by oxidation of aminonaphthalene is not the same ring is that obtained by oxidation of nitronaphthalene.


i.e. Naphthalene contains two benzene rings and we can explain this by this equation A

B

HNO3 NH2

NO2

NO2

COOH

HOOC B HOOC

O

A

B

redn.

A

B

O

A COOH


The structure of naphthalene is confirmed by method of its analysis

1- Howarth method O

O

+

O

AlCl3

Zn-Hg/HCl

HO

R

R

Zn-Hg/HCl

R

R

O

O

O

O Succinic anhydride

conc.H2SO4 -H2O

HO

R

Se ∆

R


Other way of cyclization O

O

+

O

SOCl2

AlCl3 HO

R

R

Zn-Hg/HCl

intramoluclar Friedel Craft R

R O

O

O

O Succinic anhydride

AlCl3

Cl

R

Se ∆

R


 The reaction occurs if R is o- or p- directing group such as NH2, NHR, OH, OR, R, halogen.  If R is m- directing group (e.g. NO2, CN, COOH, COCH3, SO3H) no reaction occur.  The above reaction gives β -substituted naphthalene.


Synthesis of 1-alkyl naphthalene O

O

+

AlCl3

O

Zn-Hg/HCl

COOH O benzene Succinic anhydride

4-oxo-4-phenylbutanic acid

COOH

4-phenylbutanoic acid

1) RMgX 2) HOH

conc. H2SO4 -H2O O

1-tetralone

HO

R

R

1- Alkyl naphthalene


2- From β -benzylidene – propenoic acid conc. H2SO4 -H2O

OH O

β-Benzylidene-3-propenpoic acid Zn -ZnO naphthalene

O

OH


Chemical Reactions of naphthalene


1. Reduction Na EtOH

1,4- dihydronaphthalene

Na isoamyl alc.

1,2,3,4-tetrahydronaphthalene

Naphthalene

Tetralene

H2 Ni

decahydronaphthalene

Decalene


2. Oxidation O

CrO3 AcOH

O 1,4- naphthoquinone CHO 1) O3 2) H2O/Zn

Naphthalene

CHO Phthaldehyde O

O2 V2O3

O O Phthalic anhydride COOH

KMnO4 H

COOH Phthalic acid


3. Addition of Cl2 Cl Cl2

Cl 1,4- dichloro- 1,4- dihydronaphthalene

Naphthalene Cl excess

Cl

Cl2

Cl Cl 1,2,3,4- tetrachloro- 1,2,3,4-tetrahydronaphthalene


4. Electrophilic substitution reaction Q:

Naphthalene udergoes electrophilic substitution at position 1 not 2. Explain

At position 1; carbocation intermediate stabilize by two resonance E

E E 1 Naphthalene

E

E

Naphthalene

one resonance structure

So carbocation is more stable position 1 than 2


Examples of electrophilic substitution


NO2 conc. HNO3 conc. H2SO4

1- nitronaphthalene SO3H

Cl2 conc. H2SO4 40째C

naphthalene-1- sulfonic acid SO3H

conc. H2SO4 180째C

naphthalene-2- sulfonic acid Cl

Naphthalene Cl2

FeCl3

1- chloronaphthalene COCH3 CH3COCl AlCl3 CS2

1- Acetylnaphthalene CH3COCl AlCl3 PhNO2

COCH3

2- Acetylnaphthalene


Substituted naphthalene  Activating groups direct the electrophile to the same ring, while deactivating groups direct it to the other ring. Elctrodonating group (EDG): NH2, OH, OR, alkyl

Electrowithdrawing group (EWG): NO2, CO, COOH, CN, SO3H


Homonuclear attack Minor EDG

E

E EDG

E

Major


Heteronuclear attack E

E EWG EWG

E

Major

E

Major


Examples:

OH

OH

OH

NO2 conc. HNO3

+

conc. H2SO4

NO2 OH

NO2 Major

OH

conc. HNO3 conc. H2SO4

NO2

NO2 conc. HNO3

NO2

NO2

+

conc. H2SO4

NO2 Minor

Major

NO2

NO2

conc. HNO3

+

conc. H2SO4

O2N NO2

NO2


Naphthalene derivatives


1. Nitronaphthalene  1. naphthalene is prepared by direct nitration NO2 conc. HNO3 conc. H2SO4

Naphthalene

1- nitronaphthalene

2. naphthalene is prepared by indirect method N=N

NH2 NaNO2 HBF4

2- Aminonaphthalene

BF4 CuNO2 ∆ -N2

NO2


2. Naphthols  Preparation: OH

SO3H conc. H2SO4 40°C

NaOH 300°C

Naphthalene-1- sulfonic acid

Naphthalene

conc. H2SO4 180°C

1- Naphthol

OH

SO3H

NaOH 300°C

Naphthalene-2- sulfonic acid

2- Naphthol


 Properties: 1- Reaction of α and β- naphthols with aryl diazonium salt OH

O

H

N

Ph

O

N

H

N

Ph

N

Ph-N=N-Cl NaOH

2- phenylazo-1- Naphthol Azo form

Ph

Ph

N

N

N OH Ph-N=N-Cl

hydrazo form stable by intermol. H.B

H O

NaOH

2- phenylazo-2- Naphthol

N

H O


2- Reaction of α and β- naphthols with nitrous acid OH

OH

O

2- nitroso-1- naphthol

[1,2]naphthoquinone-2-oxime

O N

N OH

O N

O OH

H

N

HONO

1- Naphthol

O

H O

HONO

2- Naphthol

2- nitroso-2- naphthol

[1,2]naphthoquinone-1-oxime


3- Conversion of α and β- naphthols to naphthyl ether OR RI

OH

NaOH

OR 1- Naphthol

ROH conc. H2SO4

RI

OR

NaOH

OH

1- Naphthol

OR ROH conc. H2SO4


3. Naphthylamine

 Preparation: 1- Naphthylamine NO2

NH2 Zn/HCl

conc. HNO3 conc. H2SO4

1- Nitronaphthalene

1- aminonaphthalene


 Preparation: 2- Naphthylamine Bucherer reaction

OH NH3

NH2

NH4HSO3

β- Naphthol

β- naphthylamine


Mechanism H OH

OH

O

H

H

SO3NH4

SO3NH4

NH4HSO3

β- Naphthol NH

NH2

NH3

NH2

-NH4HSO3

H

H

SO3NH4

SO3NH4

β- naphthylamine


4. Halogenated naphthalene  A) Preparation of 1- halogented naphthalene

Br Br2 FeBr3

1- bromonaphthalene


 B) Preparation of 2- halogenated naphthalene via Sandemeyer

NH2 NaNO2 HCl 0°C

2- Naphthylamine

N

Cl

N CuBr ∆, -N2

Br


Questions: Convert 2- naphthol to:    

A) 2- bromonaphthol b) Naphthalene -2- carboxylic acid C) 1,2- naphthaquinone-1- oxime D) Ethyl β–naphthyl ether


5. Alkyl naphthalene  Synthesis of 1- alkyl naphthalene O

O + Benzene

O

O Succinic anhydride

Zn-Hg/ HCl

COOH

AlCl3

4- oxo-4-phenylbutanoic acid

COOH

4-phenylbutanoic acid


 Synthesis of 2- alkyl naphthalene O

O +

Zn-Hg/HCl

AlCl3

O

H3C

H3C Toluene

O Succinic anhydride

HO

O

Zn-Hg/HCl

conc. H2SO4 -H2O

H3 C

H3C

HO

H3C O

O

Se ∆

H3C 2- methyl naphthalene


6. Naphthaquinones  There are six possible naphthaquinones, but only common are 1,2; 1,4; 2,6- naphthaquinones O

O O

O

1,2- Naphthaquinone

O 1,4- Naphthaquinone

O 2,6- Naphthaquinone


Preparation of naphthaquinones


:Naphthaquinone- 1,4 O CrO3 AcOH

O Naphthalene

1,4- Naphthaquinone


:Naphthaquinone- 1,2 NH2

O OH

O

K2Cr2O7 H2SO4 or PbO2

1- Amino- 2-naphthol

1,2- Naphthaquinone


:Naphthaquinone- 2,6 OH

O PbO2

HO 2,6- dihydroxynaphthalenel

benzene

O 2,6- Naphthaquinone


7. Naphthoic acid COOH

1- Naphthoic acid or α- Naphthoic acid

COOH

2- Naphthoic acid or β- Naphthoic acid


Preparation of 1-naphthoic acid


From bromonaphthalene Br Mg dry ether 1- bromonaphthalene

COOH

MgBr 1) CO2 2) H

1- naphthyl magnesium bromide

1- Naphthoic acid


From 1- naphthylamine Cl

NH2

N NaNO2

CN CuCN

HCl

1- Naphthylamine

N

COOH

H2O H

1- Naphthoic acid

1- naphthonitrile


From 1- acetylacetophenone COOH

COCH3 I2/NaOH

1- Acetylacetophenone

1- Naphthoic acid

2- Naphthoic acid can be prepared by the same above methods


Anthracene 1

9

8

2

7

3

6 4

10

5


 Anthracene has 4 isomers:

I

II

Resonance I, II are more stable, contain 2 benzene rings.


Synthesis of anthracene  1. Friedl Crafts CH2Cl + ClH2C Benzyl chloride

AlCl3

-2H

Anthracene


 2. Elbe reaction

O Pyrolysis

CH3 o- Methyl- benzenophenone or o- Benzoyl- toluene

Anthracene


 3. From 1,4- Naphthoquinone O

O +

O 1,4- Naphthaquinone

1,3- Butadiene

O

O CrO3 AcOH

Zn

O 9,10- anthraquinone

Anthracene

The above method shows presence of naphthalene in anthracene


 4. From benzene and phthalic anhydride O +

O

O AlCl3 HOOC

O Phthalic anhydride O H2SO4

Zn

-H2O

O anthraquinone

Anthracene


Chemical reactions


 1) Diels Alder

O +

Anthracene

O O Maleic anhydride

O ∆

O O Endo- anthracene- maleic anhydride adduct


 2) Addition of one molecule of O2

+

Anthracene

O2

O O

Anthracene epoxide


 3) Halogenation of anthracene

X

X X2

-HX

X= Cl or Br

Anthracene

X


 4) Oxidation of anthracene

O Dil HNO3

O Anthracene

9, 10- Anthraquinone

In using dil. HNO3 only to obtain 9,10- anthraquinone


 4) Reduction of anthracene

Na isopropanol

Anthracene

9, 10- Dihydroanthracene


Anthraquinone O

O


Preparation


O Dil HNO3 K2Cr2O7

O Anthracene

9, 10- Anthraquinone

O +

O

O

AlCl3 HOOC

O Phthalic anhydride O H2SO4 -H2O

O anthraquinone


Chemical Reactions


Zn/ ∆ Distillation or Zn/H/150°C

Anthracene

O

O Sn/HCl/AcOH

O

9- Anthrone OH Zn/ NaOH

OH Anthraquinol


 Nitration O

O

O

NO2

O

HNO3

HNO3

H2SO4

H2SO4

O 1- nitro-9,10- anthraquinone

Major NO2

NO2

O

1,5- dinitroanthraquinone +

NO2

O

NO2

O 1,8- dinitroanthraquinone


 Sulphonation O

O

O

SO3H

SO3H

Oleum

+

160°C

O

O

O

Anthraquinone-2-sulfonic acid

small

Major

Anthraquinone does not undergo Friedl Craft reaction •Preparation of 2-amino-anthraquinone O

O

NH2

SO3H NH3

O Anthraquinone-2-sulfonic acid

O 2- amino-anthraquinone


Alizarin O

OH OH

O

1,2-dihydroxyanthraquinone Alizarine


Preparation O

O SO3H Oleum, H2SO4 160°C

O Anthraquinone

O 9,10- anthraquinone-2- sulfonic acid 1)NaOH, ∆ 2) [O]

O

OH OH

O Alizarine


Preparation of Alizarine Blue O

OH

O OH

OH OH

1) conc. HNO3 conc. H2SO4 2) [H]

NH2

O Alizarine

O O

OH OH

1) Glycerol/ H2SO4 2) PhNO2

N O Alizarine Blue

Alizarine blue is used for dyeing wool by blue color


Phenanthrene 6 5

1

10

9

4

2 3 7 11

1

10

9

8

6

2 5

14

13

7

8

3 12

14 13

4

11

12


Position of double bond

The most stable 3 benzenoid rings


Preparation of phenanthrene  1) Howrth method O O COOH +

Naphthalene

O

AlCl3

Zn-Hg/HCl

O Succinic anhydride

COOH conc.H2SO4

O Zn-Hg/HCl


Preparation of 1- alkyl phenanthrene: R O 1) RMgX

OH

R Se

2) HOH

 Preparation of 2- alkyl phenanthrene: O

R

O COOH

R +

O

Naphthalene R

R

COOH

O Zn-Hg/HCl

conc.H2SO4

R

Se

Zn-Hg/HCl

AlCl3

O

R


 2) Posher synthesis COOH

CH2COONa

CHO NO2

+

Ac2O

Zn-Hg/HCl

NO2 COOH

COOH

NaNO2/H2SO4

NH2

N2HSO4

Cu

Phenanthrene


Chemical Reactions


Na/EtOH

9,10-dihydro-phenanthrene

1) O2 2) H2O

CHO CHO

Biphenyl-2,2'-dicarbaldehyde

Br2

Br

Br 9,10-dibromo-9,10-dihydro-phenanthrene

Br Br2 FeBr3

9-bromo-9,10-dihydro-phenanthrene

H2O2 AcOH

COOH COOH

Diphenic acid


Benzil-Benzilic rearrangement COONa Ph C O

NaOH

Ph C O

Ph

C

OH

Ph Benzilic acid salt

Benzil

Mechanism Ph C O Ph C O

OH HO

OH

Ph C O

C O

Ph C O

Ph C O Ph

O Proton transfer

C O Ph C OH Ph


COOH

O

NaOH

OH

H

O

9-hydroxy-9H-flourene-9-carboxylic acid

Phenanthraquinone

Mechanism O

OH HO

O

O

O

COO Proton transfer

OH

COOH O


Phenanthraquinone  Preparation

O K2Cr2O7 H2SO4

Phenanthrene

O

Phenanthraquinone


Condition necessary for aromaticity Any compound to be aromatic, it must be;  1. Cyclic  2. Planner  3. All atoms must be SP2  4. All double bonds must be conjugated  5. Obey Huckle rule which state that any aromatic compound must contain 4n+2 pi electrons where n 0,1,2,3,…


Examples

n=1 6 π electron

n=2 10 π electron

n=3 14 π electron


Examples of non- benzenoid aromatic cmpound

All are aromatic( cyclic, planner,1, and agree with Huckle rule: 4n+2= 6 (n=1)


Examples of non- aromatic

Not aromatic; both contain Sp3


Not aromatic

Not aromatic

Aromatic; cyclic, planner,

Does not obey Huckel rule

Does not obey Huckel rule

obey Huckel rule

4n+2=8; n=1.5

4n+2=4; n=0.5

4n+2=2; n=0

Aromatic

Not Aromatic

Aromatic

4n+2=10; n=2

8 pi electrons

4n+2=14; n=3

Aromatic

Aromatic

4n+2=10; n=2

4n+2=10; n=2


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.