Sustainable building technologies

Page 1

GREENFALL

Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

Technological book SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca

GROUP 2: Caniato Giorgia Dieterich Murr Alice Korovina Viktoriia Krebs Francesco Nemati Ali

918624 824939 913045 918816 918417

prof. G.Masera

Rotundo Marco Salvatore Saccuman Marta Seyedi Zadeh Fereshteh Sheikhhassani Navid Zohourparvaz Mohamadreza

912788 918641 927160 912843 927401


Table of content

1

LOCATION & CLIMATE ANALYSIS

1.1 1.2

Location information & climate site analysis Conclusions & building concept strategies

2

CASE STUDY

2.1 2.2 2.3 2.4

1. Zero Carbon Building, Hong kong 2. Oasia Hotel Downtown, Singapore 3. Kampung Admiralty, Singapore 4. Shanghai Tower, Shanghai

3

SCHEMATIC DESIGN

3.1 3.2

Masterplan strategies Section strategies

4

CONCEPT SHAPE OPTIMIZATION

4.1

Shape optimization

5

OPTIONEERING

5.1 5.2 5.3 5.4 5.5 5.6

Position Massing Window Shading Daylight Flow chart

6

DAYLIGHT

6.1 6.2 6.3 6.4 6.5

Process Case 1 Case 2 and Case 3 Case 4 Conclusion

TRANSPARENCY

7

Exterior window frames Exterior door frames Interior windows & doors Exterior facade glass General typologies & total transparent area Glass optioneering Glass specifications Specific Typologies & Locations - Residential floors Technical details

7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9

STRUCTURE

8

Structural plans Structural section and 3D

8.1 8.2

OPAQUE

9

Opaque envelope strategies Horizontal stratigraphies Vertical stratigraphies Blow-ups and technical details

9.1 9.2 9.3 9.4

ENERGY

10

Diversity schedules, function and requirements Selcted HVAC system Fan coil optimization- residential Fan coil optimization- public Energy consumption reduction strategies- elevator Indoor air quality strategies Dry bulb comfort analysis- residential Dry bulb comfort analysis- public Operative temperature comfort analysis- residential Operative temperature comfort analysis- public Summary of saving Ashrae baseline- 90.1 appendix G Ashrae baseline vs final proposed project Leed and well certification credits

10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 10.10 10.11 10.12 10.13 10.14


1. CLIMATE ANALYSIS To understand at a general scale the climatic conditions and how they affect the design


CLIMATE ANALYSIS

Location information & climate site analysis

LOCATION INFORMATION

CLIMATE SITE ANALYSIS TEMPERATURE ANALYSIS

PRECIPITATION ANALYSIS

TYPHOON ANALYSIS

Minimum temperature Maximum temperature NEW TERRITORIES

Monthly number of days with typhoons (1980-2018)

35

700

30

600

Annual number of days with typh

10

7

9 8

KOWLOON

25

500

20

400

15

300

6

7 5

6

4

Central, Hong Kong ( Hong Kong island) Gutzlaff St - Wellington St

Coordinates:

22° 16’ N 114° 09’ E

Reference oordinate:

23° 26’ N (Tropic of Cancer)

Köppen climate type:

Cwa (Dry-winter subtropical)

5 0

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

Temperature range summer-winter is about 15-16°C

200 100 0

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

Majority of rainfall occurs during the summer months

3

3 2

2 Annual total

Location:

10

Precipitation (mm)

HONG KONG ISLAND

Temperature (°C)

LANTAU ISLAND

Precipitation (mm)

5 4

1 0

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

1 0

1980

2018

Probability of typhoon during July and August is 60%, often they are not so powerfull

WIND ANALYSIS

100

100

100

100

90

90

90

90

80

80

80

80

70

70

70

70

60

60

60

60

50

50

50

50

40

40

40

40

30

30

30

30

20

20

20

20

10

10

10

10

Apr - Jun

Jul - Sep

C: warm temperature w: winter dry a: hot summer

Annual wind

Jan - March

Oct - Dec

Wind direction mainly from East, maximum wind speed is between January and March. At 100 m: 8 m/s (29 Km/h). At ground level: 3 m/s (11 Km/h)

SUN PATH ANALYSIS Sun path Project area

SOLAR RADIATION

ILLUMINATION

HOURLY DAYLIGHT MEASURE

Summer limit Winter limit

N

22:00 20:00

Köppen climate type of China

18:00

24:00

16:00

Legend

14:00

18:00

12:00

W

10:00

12:00

E

08:00 06:00

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Time of day

Time of day

06:00

00:00

Dec

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

04:00 02:00 00:00

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

S

Summer Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

GROUP 2:

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

90°C

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

Winter 918816 918417 912788 918641

45°C

Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401

GREENFALL FINAL PRESENTATION_December 20th

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

1.1


CLIMATE ANALYSIS

Conclusions & building concept strategies

CONCLUSIONS

summer MAY - SEPTEMBER

temperature - humidity

Humidity ratio (Kgwater/Kgair)

COMFORT ANALYSIS comfort zone

HEAT PERCEPTION

EXPECTED BEHAVIOR

INDOOR - public spaces behavior

TEMPERATURE PERCEPTION

HUMIDITY PERCEPTION

OUTDOOR

VENTILATION

SHADOW

SUN RADIATION PERCEPTION

Use of the INDOOR space

Covered open public space

EXPECTED BEHAVIOR

OUTDOOR - public spaces behavior

WIND PERCEPTION Temperature (°C)

winter

OCTOBER - APRIL

comfort zone

temperature - humidity

Humidity ratio (Kgwater/Kgair)

COMFORT ANALYSIS

HEAT PERCEPTION TEMPERATURE PERCEPTION

COLD DAYS

HUMIDITY PERCEPTION

OUTDOOR

HOT DAYS

SHADOW

SUN RADIATION PERCEPTION

Use of the OUTDOOR space

Opened air public space

WIND PERCEPTION Temperature (°C)

BUILDING CONCEPT STRATEGIES RELATED TO TEMPERATURE Strategy: Windows sizing according to orientation Sufficient insulation

RELATED TO SOLAR RADIATION Strategy: Use of balconies for shading (during summer) and for personal relaxation (during winter) summer

RELATED TO WIND Strategy: Shading devices as protection from the wind

winter

wind

Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

GROUP 2:

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

918816 918417 912788 918641

Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401

GREENFALL FINAL PRESENTATION_December 20th

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

1.2


2. CASE STUDY For learning from consolidated examples concerning similar aspects


CASE STUDY

Case 1. Zero carbon building, Hong Kong

ZCB INFORMATION

WIND

A zero carbon building is a building with zero net energy consumption or zero net carbon emissions on an annual basis. In recent years, low/zero carbon buildings have attracted much attention in many countries because they are considered as an important strategy to achieve energy conservation and reduce greenhouse gases emissions.

A wind rose diagram shows that the most frequent onsite winds come predominantly from the east-southeast and south-easterly directions, but with south-westerly also common.

north Singapore, 120 Woodlands Avenue 1

Coordinates: 1° 27′ N, 103° 49′ E

HOW WE CAN USE IT Ventilation

SOLAR PATH The Sun has a major effect on environmental conditions. The reception of light and heat generated by the Sun can be controlled. ZCB was planned in such a manner that the sunlight reaching the building can be harnessed to generate electricity, while overheating can also be minimized. Solar patterns give us useful information on temperatures, the potential for solar power, and cooling needs.

HONG KONG

For the Hong Kong climate analysis, refer to the previous chapter.

1. HEAT REFLECTING SHADE 2. INSULATED ROOF 3. HIGH PERFORMANCE GLAZING 4. EXTERNAL SHADING

Ventilation

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

918816 918417 912788 918641

1. INTELLIGENT LIGHTING MANAGEMENT

1. ACTIVE SKYLIGHT

Ventilation

Greenery absorbs solar energy to feed itself while cooling the air through the release of moisture, as well as creating shade. All greenery works as a "carbon sink", absorbing carbon dioxide and pollution while releasing the oxygen. The effect of a location's environmental conditions – the combination of the wind flow, air temperature and humidity – can be assessed by calculating the location's Physiological Equivalent Temperature (PET), a measure of the body temperature felt by users.This Thermal Model shows what the PET experienced throughout the site with the given amount of greenery. GROUP 2:

1. HIGH-VOLUME-LOW-SPEED FANS 2. HIGH TEMPERATURE COOLING SYSTEM

Solar control

COOLING MATERIALS

Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

Solar control

Lighting

The ZCB in Hong Kong generates on-site renewable energy from photovoltaic panels and a tri-generation system using biofuel made of waste cooking oil and target to achieves zero net carbon emissions on an annual basis. Beyond the common definition of a ‘zero carbon building’, ZCB exports surplus energy to offset embodied carbon of its construction process and major structural materials.

1. CROSS-VENTILATED LAYOUT 2. WIND CATCHERS 3. EARTH COOLING TUBE 1. NORTH GLAZING 2. LIGHT SHELVES 3. LIGHT PIPES

NATURA L

CLIMATE SITE ANALYSIS

Lighting

927160 Seyedi Zadeh Fereshteh 912843 Sheikhhassani Navid Zohourparvaz Mohamadreza 927401

GREENFALL FINAL PRESENTATION_December 20th

PLANTI NG

Location:

CONCLUSIONS DESIGN

The cultural centre designed by is located in Hong Kong, a city-state practically on the tropic of Cancer. This means that the usual building tipology had to adapt to the “humid subtropical climate” of the country.

SAME CLIMATE

PASSIVE

HOW IT WORKS

A.

INTRODUCTION

RENEWABLE B . A C T I V E S T R A T E G Y E N E R G Y

LOCATION INFORMATION

1. BIO-DIESEL TRI-GENERATION 2. PHOTOVOLTAICS

HT LIG

S ANT L P

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

2.1


CASE STUDY

Case 2. Oasia Hotel Downtown, Singapore

LOCATION INFORMATION

HOW IT WORKS

The mixed use building designed by WOHA is located in Singapore, a city-state practically on the Equator line. This means that the usual building tipology had to adapt to the “tropical rainforest climate” (Köppen-Geiger climate classification Hong Kong has a “humid subtropical climate”).

The main charateristic of this building is its stratification: this idea to devide the tower in groups or strata, each with its own “ground” level replica, had origin in the client’s need to distinct offices, hotel and club rooms. The four sky gardens allow generous public areas for recreation and social interaction spread throughout the high-rise. Considering the tower location in the dense Central Business District (CBD), WOHA decided to carve out the ususal prismatic volume (see 13th to 20th storey plan). As a result half of the hotel rooms have dynamic views overlooking the sky garden, with a courtain wall made possible by the above strata slab which shades the room glazed facade and the common areas (see picture). Furthermore, the sky terrace open plan (see 12th storey plan) allows a good cross-ventilation, so the public areas become functional and comfortable tropical spaces with greenery and natural light, instead of internalised air conditioned spaces.

Location:

north Singapore, 120 Woodlands Avenue 1

Coordinates: 1° 27′ N, 103° 49′ E

SAME PLOT AREA (20000 m2)

CONCLUSIONS

PRIMARY VOLUME

OPEN COMMON SPACE

N

L SHARED PLAN

N

N

PREVALING WIND

SHADED INTERNAL FACADES DIRECT SOLAR GAINS

Direct solar gains

Primary Volume

Open common space Primary Volume L shaped plan Open Shaded common internal space facades L shaped Analisis plan of theShaded Hong Kong internal sitefacades IdealAnalisis plan of the Hong Ideal shape Kong site with buff

IDEAL SHAPE WITH BUFFER ZONES

According to Climate-Data.org, in Singapore the yearly average temperature is 26,8°C and the rainfall average is above 2300mm of precipitation a year. During the monsoon season (novemberto january) the precipitation goes up to 300mm in one month. Even the driest month of the year has an averege of 163mm of precipitation.

BUF FE

CLIMATE SITE ANALYSIS

HOW WE CAN USE IT

R

EN RE

USE OF

In this way, the spaces that do not overlook the shaded sky garden, are still protected from the solar gains, creating a moderate microclimate.

G

A charateristic of the singaporean project that can be applied to the Hong Kong climate is its ‘second skin’: the aluminium mesh cladding creates a buffer space that forces the hot air to move upwards. The cooling loads are reduced by reducing the surface temperature of the closures (opaque and transparent).

PRECIPITATIONS

NATUR AL

TEMPERATURE

Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

NE ZO

GROUP 2:

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

918816 918417 912788 918641

927160 Seyedi Zadeh Fereshteh 912843 Sheikhhassani Navid Zohourparvaz Mohamadreza 927401

GREENFALL FINAL PRESENTATION_December 20th

ATION NTIL E V

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

2.2


CASE STUDY

Case 3. Kampung Admiralty, Singapore

LOCATION INFORMATION

HOW IT WORKS

HOW WE CAN USE IT

The mixed use building designed by WOHA is located in Singapore, a city-state practically on the Equator line. This means that the usual building tipology had to adapt to the “tropical rainforest climate” (Köppen-Geiger climate classification Hong Kong has a “humid subtropical climate”).

The main charateristic of this building is its mixed-use development. It is divided in three ‘strata’: a Community Plaza in the lower stratum, a Medical Centre in the mid stratum, and a Community Park with apartments for seniors in the upper stratum. The ground floor plaza is capable of hosting a variety of events and programming. This outdoor space is shaded and sheltered by the storey above, meaning that activities can take place regardless of the weather or climatic conditions. on the second level, the medical center is filled with natural daylight thanks to the central courtyard. meanwhile, perimeter windows also ensure that senior patients — who are able to remain on site — feel connected to nature and to other people. The units adopt universal design principles and are designed for natural cross ventilation and optimum daylight.

A charateristic that can be transferred to the building in Hong Kong is the creation of a community place in the ground floor obtained by raising the building on pillars. This creates an area that is covered for the existing street market, and also other activities. The implementation of different functions throughout the building like here can be also transferred to the project in Hong Kong. The addition of gardens on different levels helps creating a microclimate inside the building helping reducing the temperature and the cooling load, also cleaning the air from pollution.

Location:

north Singapore, 120 Woodlands Avenue 1

Coordinates: 1° 27′ N, 103° 49′ E HOW WE CAN USE IT - PICTURES

ar gains

Ideal Winter shape Solstice with buffer (22 dec) zones

Winter SolsticeSummer (22 dec)Solstice (21 jun)

CONCLUSIONS Creation of a community place, this will be achieved by having a platform lifted from the ground. Implement different functions in the building. Create a microclimate with the addition of greenery in the area, which helps purify the air in polluted city.

Summer Solstice (21 jun)

CLIMATE SITE ANALYSIS

NATUR AL

According to Climate-Data.org, in Singapore the yearly average temperature is 26,8°C and the rainfall average is above 2300mm of precipitation a year. During the monsoon season (novemberto january) the precipitation goes up to 300mm in one month. Even the driest month of the year has an averege of 163mm of precipitation.

ATION NTIL E V

NATURA L

PRECIPITATIONS

HT G I L

G

TEMPERATURE

EN RE

USE OF

sal plan

SAME OPEN PUBLIC SPACE

Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

GROUP 2:

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

918816 918417 912788 918641

927160 Seyedi Zadeh Fereshteh 912843 Sheikhhassani Navid Zohourparvaz Mohamadreza 927401

GREENFALL FINAL PRESENTATION_December 20th

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

2.3


CASE STUDY

Case 4. Shanghai Tower, Shanghai

LOCATION INFORMATION

HOW IT WORKS

This mixed use building was designed by the architectural firm Gensler and Jun Xia. It is located in Shanghai, one of the four municipalities of the People's Republic of China.

Incorporating 9 different zones, the building creatively turns a horizontal city into a vertical metropolis. The 127 stories are divided among the nine zones of 12 to 15 floors each and include retail, office and hotel space as well as an observation deck (CIM). Special to the Shanghai Tower is its double-shell design. The exterior glass curtain wall acts as an oversized skin interior skeleton and provides plenty of community green space and common atriums for meetings and socials.

31° 14′ N, 121° 30′ E

CLIMATE SITE ANALYSIS

TYPHOON CONSIDERATIONS

According to Climate-Data.org, in Shanghai the yearly average temperature is 16,1°C and the rainfall average is 1066mm of precipitation a year. The climate here is mild, and generally warm and temperate. The monsoon season is 1 month long from mid June to mid July. This location is classified as Cfa by Köppen and Geiger.

Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

Based on studies performed on the Burj Khalifa and other megatall buildings, wind loads become the controlling factor in a tall building’s design (Zhaoa). Geographically, Shanghai is in southern China where Typhoons are a regular occasion. Typhoons bring with them, fast wind speeds and inches of heavy rainfall. To mitigate the extra wind load factors, the exterior shell was designed to shed as much of the potential wind loads. Previous wind load studies suggest that 90 degree corners of buildings induce the strongest of wind loads (Gargari).After performing the statistical calculations, the design team physically tested a 1:500 scale building model in a wind tunnel (Zhaoa). As a result, engineers gained a more in depth understanding of wind load behaviors for this supertall building. The wind tunnel testing proved several benefits for the building’ s twisted exterior vortex architecture. A 120 degree vortex was considered the best alternative for the structure and aesthetics. This design provided benefits to the project as it saved up to 24% in the necessary structural wind loading design work and construction materials. This contributed to about $50 million in savings from the original design (CIM). GROUP 2:

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

918816 918417 912788 918641

927160 Seyedi Zadeh Fereshteh 912843 Sheikhhassani Navid Zohourparvaz Mohamadreza 927401

BUF FE

Coordinates:

Creation of a secondary layer of facade in the building, in order to have a buffer zone that can mitigate the wind loads. This will be achived having a first facade, with big typhoon glass windows and a second facade with shading elements in order to reduce the force of the wind on the windows behind, for the residential floors. While for the library floor there will be a double layer of glass, in order to use the same strategy. Create a microclimate with the addition of greenery in the area, which helps purify the air in polluted city.

R

SHAPE OP

501 Yincheng Middle Rd, Lujiazui, Pudong, Shanghai

CONCLUSIONS

TYPHOO N

Location:

SAME CLIMATIC THREATS

GREENFALL FINAL PRESENTATION_December 20th

NE ZO

IZATION M I T

ASS L G

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

2.4


3. SCHEMATIC DESIGN To explain the passive and active strategies considered for the entire project design at a general scale


SCHEMATIC DESIGN

Masterplan strategies

URBAN MASTERPLAN

STRATEGIES WIND AND SUN PROTECTION

3 2

PLAN T PLANTS ING

TYPE OF TREES SMALL TREES bring foliage cover to every corner of the site.

ORNAMENTAL TREES create an attractive leisure environment. WOODLAND TREES form an urban forest to cool the main breezes and increase the site's ecological value.

CANOPY TREES provide cool shade to people using the walkways, and shelter the spaces along them. WIND AND SUN PROTECTION

Use of a special type of pavimentation in the opened public spaces (like the piazza and the platform, that can create energy, and also promotes the concept of sustainability, raising awareness among people.

TH PA PAVEGEN

1

Study of a particular disposition and choice of plants, in order to cool the air throught the release of moisture and the creation of shadow. In the picture it is possible to see the trees type and disposition due to the expected wind path (blue arrows) according to the conformation of the city.

Strategy: Connecting communities with people powered energy.

FOOTSTEP

PAVEGEN

EACH FOOTSTEP GENERATE AROUND 5 WATT OF POWER Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

GROUP 2:

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

918816 918417 912788 918641

Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401

GREENFALL FINAL PRESENTATION_December 20th

ENERGY

SMART CITY

DATA

EDUCATIONAL

REWARDS

SPORT

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

3.1


SCHEMATIC DESIGN

2

LATION NTI E V

INSULA TIO

ERGY L EN A M

NATURA L

OLLECTION C R

GEOTH ER

SHADOW

SI HT IN DE G I L

RAINWA TE

DE TSI HOT DAYS U O

NATURA L

2

ION ECT T O

SHADO W

1

E ON

WIND PR

3

STRATEGIES BUFFE RZ

URBAN SECTIONS

Section strategies

N

1 To reduce overheating of the interior spaces

To decrease the wind load on the glass windows surface

To reduce overheating of the outdoor public spaces

To increase natural lighting in large open but covered areas

To avoid the waste of water and reuse the collected one for the building

To use natural elements to produce energy

To have a natural change of air and cooling

SHDOW

To avoid waste of energy to heat or cool the building

VENTILATION

WATER RECOVERY UNIT SECTION 2

SECTION 1 Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

GROUP 2:

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

918816 918417 912788 918641

Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401

GREENFALL FINAL PRESENTATION_December 20th

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

3.2


4. CONCEPT SHAPE OPTIMIZATION To understand the relationship between the shape of the building and the amount of energy consumption


CONCEPT SHAPE OPTIMIZATION

Shape optimization

GEOMETRIC DEVELOPEMENT PROCESS STEP 1

GUIDELINES for geometric developement: STEP 2

STEP 3

71%

N° FLOORS

5

N° FLOORS

SITE COVERAGE

SITE COVERAGE

SITE COVERAGE

10

N° FLOORS

3

21%

27%

36%

SITE COVERAGE

STEP 5

STEP 4

13

1

17

N° FLOORS

21%

SITE COVERAGE

B1: 16 B2: 21 N° FLOORS B3:13

2

SAME TOTAL FLOOR AREA

20000 m2

MAXIMUM SITE COVERAGE ALLOWED HIGHTS

75%

NO HIGHT LIMITS

GUIDELINES for analysis: Maximum site coverage allowed

Half coverage to allow public spaces

Divede the volume in 3 buildings

Volumes reshaped by main axis

Volumes reshaped by main axis whith different hights

U-VALUES considered for the evaluation

Wall: 0.70 W/m2k Roof: 0.22 W/m2k Floor: 0.49 W/m2k CONCLUSIONS During the disigne and the optimization of the shape we took into account some technical data, referred to the general volume of the buildng.

ANALYSIS

The first one is the shape factor, that is the

Shape factor Surface/Volume

SHAPE FACTOR

0

1

2

3

4

st1 = 2,32 5

6

Surface/Volume

SHAPE FACTOR

0

1

2

3

4

st2 = 2,92 5

6

Surface/Volume

SHAPE FACTOR

0

1

2

3

4

st3 = 4,45 5

6

Surface/Volume

SHAPE FACTOR

0

1

2

3

4

st4 = 5,59 5

6

Surface/Volume

SHAPE FACTOR

0

1

2

3

4

st5 = 5,59 5

6

ratio between the volume of the building and the dispersant surfaces (roof, external walls and earth retaining slab). The second one is the amount of energy needed by the building,

st1

st1

st2

st1

st2

st3

st1

st2

st3

st4

in particular we considered the cooling energy (due to the hot climate). The results

Energy Use (kWh/yr)

800k

850k

EUI ENERGY USE INTENSITY

st1 = 51 kWh/m2/yr

900k

950k

1000k

1050k

800k

850k

st1 = 52 kWh/m2/yr

900k

950k

1000k

1050k 800k

EUI ENERGY USE INTENSITY 850k

st1 = 51 kWh/m2/yr

900k

950k

st1

18% of total energy use COOLING ENERGY

st1 = 185,017 kWh/yr

1000k

st1

19% of total energy use COOLING ENERGY

st2 = 193,355 kWh/yr

1050k 800k

EUI ENERGY USE INTENSITY 850k

st1 = 52 kWh/m2/yr

900k

950k

COOLING ENERGY

st3 = 193,187 kWh/yr

1050k 800k

850k

st1 = 52 kWh/m2/yr

900k

950k

st3 st1 st2

st2

19% of total energy use

1000k

EUI ENERGY USE INTENSITY

st4 = 201,314 kWh/yr

1050k

st3 st4 st1 st2

19% of total energy use COOLING ENERGY

1000k

19% of total energy use COOLING ENERGY

st5 = 202,569 kWh/yr

Annual Energy Use (kWh/yr)

of the two analysis must be combined together to make a comparison between the five steps. At the end of the design and the evaluation process we can observe that the energy needs are similar in all the steps. So our final shape (Step 5) will be taken like baseline for the next analysis, where it will be implemented.

PUMPS

5%

PUMPS

5%

PUMPS

4%

PUMPS

5%

PUMPS

5%

HEATING

0%

HEATING

0%

HEATING

0%

HEATING

1%

HEATING

0%

COOLING

18 %

COOLING

19 %

COOLING

19 %

COOLING

19 %

COOLING

19 %

FANS

8%

FANS

8%

FANS

7%

FANS

7%

FANS

7%

INTERIOR

70 %

INTERIOR

69 %

INTERIOR

69 %

INTERIOR

68 %

INTERIOR

68 %

Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

GROUP 2:

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

918816 918417 912788 918641

Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401

GREENFALL FINAL PRESENTATION_December 20th

1

STEP 5

EUI ENERGY USE INTENSITY

2

3

21%

SITE COVERAGE

N° FLOORS

B1: 16 B2: 21 B3:13

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

4.1


5. OPTIONEERING

To improve project performances connected to position, mass, window, shading and daylight analysis


OPTIONEERING

Position

GEOMETRY DEVELOPEMENT PROCESS VARIATION 1

VARIATION 2

3

1

VARIATION 3

3

2

VARIATION 5

VARIATION 4

3 1

2

GUIDELINES for analysis: Solar Exposure Scale (hours)

1

0

3

2

1

2

1

2

1

2

3

4

5

6

7

8

OVERALL FLOOR SURFACE

9

10

11 12

23000 m2

U-VALUES considered for the evaluation

3

Wall: 0.70 W/m2k

SOLAR EXPOSURE ANALYSIS

Roof: 0.22 W/m2k Floor: 0.49 W/m2k

STEP 5

STARTING OPTION for analysis:

21%

1

2

3

SITE COVERAGE

B1: 16 B2: 21 N° FLOORS B3:13

SOLAR EXPOSION ANALYSIS 21st june

21st june

21st june

21st june

21st june

21st june 21st december

21st december

21st december

21st december

21st december

ANALYSIS Energy Use (kWh/yr) EUI ENERGY USE INTENSITY 800k

900k

1000k

v1 = 1267641 kWh/yr 1100k

1200k

1300k 800k

EUI ENERGY USE INTENSITY 900k

1000k

v2 = 1263395 kWh/yr 1100k

1200k

1300k 800k

EUI ENERGY USE INTENSITY 900k

1000k

v3 = 1271141 kWh/yr 1100k

1200k

1300k 800k

EUI ENERGY USE INTENSITY 900k

1000k

v4 = 1258052 kWh/yr 1100k

1200k

1300k 800k

EUI ENERGY USE INTENSITY 900k

1000k

v5 = 1263395 kWh/yr 1100k

1200k

1300k

v3 v1

0.003% COOLING ENERGY 220k

230k

240k

v1 = 266202 kWh/yr 250k

260k

270k 220k

0.006% COOLING ENERGY 230k

240k

v2 = 263143 kWh/yr 250k

260k

270k 220k

COOLING ENERGY 230k

240k

250k

v4 v3

v1 v2

v1 v2

v1 v2

0.006%

0.004%

0.000%

v3 = 266119 kWh/yr 260k

270k 220k

COOLING ENERGY 230k

240k

v4 = 261674 kWh/yr 250k

260k

270k 220k

COOLING ENERGY 230k

240k

v3 v1

0.010% Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

v1 v2

0.013% GROUP 2:

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

0.009% 918816 918417 912788 918641

Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401

21st december

v1 v2

0.007%

GREENFALL FINAL PRESENTATION_December 20th

v5 = 263143 kWh/yr 250k

260k

v4

270k

v3 v1 v2

0.001%

EUI ENERGY USE INTENSITY

COOLING ENERGY

1263513 kWh/yr 263536 kWh/yr

CONCLUSIONS Assuming the analysis provided earlier, the best options (variations 5 and 6) differ from the “starting option” less than 1%. Taking into account this information it has been dedicated to continue analysis using this latter option.

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

5.1


OPTIONEERING

Massing

GEOMETRY DEVELOPEMENT PROCESS VARIATION 1

VARIATION 2

VARIATION 3

3

21%

1

VARIATION 5

VARIATION 4

3

GUIDELINES for analysis: Solar Exposure Scale (hours)

3

21%

2

SITE COVERAGE

2

1

21%

SITE COVERAGE

B1: 24 B2: 18 N° FLOORS B3: 16

1

B1: 13 B2: 28 N° FLOORS B3: 15

3

21%

2

SITE COVERAGE

B1: 18 B2: 15 N° FLOORS B3: 25

1

21%

2

1

SITE COVERAGE

2

0

3

N° FLOORS

2

3

4

5

6

7

8

OVERALL FLOOR SURFACE

9

10

11 12

23000 m2

U-VALUES considered for the evaluation

SITE COVERAGE

B1: 18 B2: 23 N° FLOORS B3: 16

1

B1: 18 B2: 23 B3: 16

Wall: 0.70 W/m2k

SOLAR EXPOSURE ANALYSIS

Roof: 0.22 W/m2k Floor: 0.49 W/m2k Infiltration: 7.2 m3/m2h

STEP 5

STARTING OPTION for analysis:

21%

21st june

21st june

21st june

2

3

SITE COVERAGE

N° FLOORS

21st june

1

B1: 18 B2: 23 B3: 16

SOLAR EXPOSION ANALYSIS

21st june

21st june 21st december

21st december

21st december

21st december

21st december

ANALYSIS Energy Use (kWh/yr) EUI ENERGY USE INTENSITY 1000k

1050k

1100k

v1 = 1080636 kWh/yr 1150k

1200k

EUI ENERGY USE INTENSITY

1250k 1000k

1050k

1100k

v2 = 1106703 kWh/yr 1150k

1200k

EUI ENERGY USE INTENSITY

1250k 1000k

1050k

1100k

v3 = 1197395 kWh/yr 1150k

1200k

EUI ENERGY USE INTENSITY

1250k 1000k

1050k

1100k

v4 = 1204965 kWh/yr 1150k

1200k

EUI ENERGY USE INTENSITY

1250k 1000k

1050k

1100k

v5 = 1201857 kWh/yr 1150k

1200k

1250k

21st december v1

v1

10.998%

v2

v1

8.384%

v2

v3

0.175%

v1

v2

v3 v4

0.454%

0.197%

EUI ENERGY USE INTENSITY

COOLING ENERGY COOLING ENERGY 200k

210k

220k

v1 = 207700 kWh/yr 230k

240k

COOLING ENERGY

250k 200k

210k

220k

v2 = 212664 kWh/yr 230k

240k

COOLING ENERGY

250k 200k

210k

220k

v3 = 229936 kWh/yr 230k

240k

COOLING ENERGY

250k 200k

210k

220k

v4 = 228892 kWh/yr 230k

240k

COOLING ENERGY

250k 200k

210k

220k

v5 = 230802 kWh/yr 230k

240k

250k

10.926% Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

v1

v2

8.337% GROUP 2:

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

v1

0.199% 918816 918417 912788 918641

Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401

v2

v3

v1

v2

0.656%

GREENFALL FINAL PRESENTATION_December 20th

230393 kWh/yr

CONCLUSIONS Through this analysis we understood that managing the heights of the three buildings

v4 v1

1199489 kWh/yr

v3

was giving us better results than reshaping

0.177%

the buildings and so changing the masterplan composition.

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

5.2


OPTIONEERING

Window

1. WINDOW TYPOLOGY COMPARISON

GUIDELINES for analysis:

OPTION A

OPTION C

OPTION B

Window disposition

Window dimensions

Window disposition

Window dimensions

OVERALL FLOOR SURFACE

Window disposition

Window dimensions

23000 m2

SAME WINDOW SURFACE

2,25 m2

U-VALUES considered for the evaluation 1,5 m

1,5 m

3,0 m

3,0 m

1,9 m

1,5 m

1,0 m

Wall: 0.70 W/m2k

1,9 m

Roof: 0.22 W/m2k For the ANALYSIS NUMBER 2

1,2 m

1,0 m

will be considered the option B, creating a difference of window

0,8 m

Energy Use (kWh/yr)

1235k

Infiltration: 7.2 m3/m2h PLAN AND VOLUMETRIC DEVELOPEMENT 3

to wall ratio between north ad

EUI ENERGY USE INTENSITY 1230k

Floor: 0.49 W/m2k

EUI ENERGY USE INTENSITY

oA = 1258862 kWh/yr

1240k

1245k

1250k

1255k

1260k

1230k

1235k

EUI ENERGY USE INTENSITY

oB = 1258325 kWh/yr

1240k

1245k

1250k

1255k

1260k

1230k

1235k

1240k

south facades.

oC = 1258080 kWh/yr 1245k

1250k

1255k

1

1260k

2

oB oA

oA = 260856 kWh/yr

COOLING ENERGY 240k

245k

250k

255k

260k

265k

270k

240k

245k

250k

255k

260k

265k

B1: x B2: x N° FLOORS B3: x

oC = 260405 kWh/yr

COOLING ENERGY

270k

240k

245k

250k

255k

260k

oA

265k

21%

SITE COVERAGE

oA

oB = 261116 kWh/yr

COOLING ENERGY

NORTH FACADE SOUTH FACADE

3,0 m

3,0 m

3

SAME VOLUME FOR BUILDING VOLUME 1, 2 AND 3

270k

oA oB

1

2

0,8 m

2. WINDOW TO WALL RATIO COMPARISON OPTION 1

OPTION 2

25%

OPTION 3

25%

OPTION 4

25%

OPTION 5

25%

OPTION 6

50%

50%

SOUTH FACADE WINDOW/WALL

SOUTH FACADE WINDOW/WALL

SOUTH FACADE WINDOW/WALL

SOUTH FACADE WINDOW/WALL

SOUTH FACADE WINDOW/WALL

SOUTH FACADE WINDOW/WALL

NORTH FACADE WINDOW/WALL

NORTH FACADE WINDOW/WALL

NORTH FACADE WINDOW/WALL

NORTH FACADE WINDOW/WALL

NORTH FACADE WINDOW/WALL

NORTH FACADE WINDOW/WALL

25%

50%

3 1

75%

3 2

2

1

1

90%

3 2

2

3

1

1

50%

3 2

2

3

1

1

3 2

2

3

1

1

CONCLUSIONS

75%

1. WINDOW TYPOLOGY COMPARISON

3 2

2

3

1

1

2

2

3

The window type energetic analysis presents

1

3

us the data, which occurs to have less than 1% difference. Thereby Option B is choosen

SOUTH VIEW

SOUTH VIEW

NORTH VIEW

SOUTH VIEW

NORTH VIEW

SOUTH VIEW

NORTH VIEW

SOUTH VIEW

NORTH VIEW

SOUTH VIEW

NORTH VIEW

to provide the following analysis.

NORTH VIEW

Energy Use (kWh/yr) o1 = 1366527 kWh/yr

o2 = 1400620 kWh/yr

EUI ENERGY USE INTENSITY 1360k

1390k

1420k

1450k

1480k

o3 = 1434197 kWh/yr

EUI ENERGY USE INTENSITY 1360k

1390k

1420k

1450k

1480k

o4 = 1454052 kWh/yr

EUI ENERGY USE INTENSITY 1360k

1390k

1420k

1450k

o5 = 1443065 kWh/yr

EUI ENERGY USE INTENSITY

1480k 1360k

1390k

1420k

1450k

o6 = 1476570 kWh/yr

EUI ENERGY USE INTENSITY

1480k 1360k

1390k

1420k

1450k

1480k

EUI ENERGY USE INTENSITY 1360k

1390k

1420k

1450k

1480k

2. WINDOW TO WALL RATIO COMPARISON According to energetic analysis of window to wall ratio, the energy consumption increases

o1

COOLING ENERGY 270k

290k

o1 = 287393 kWh/yr

310k

330k

350k

o1

COOLING ENERGY 270k

290k

o2 = 301448 kWh/yr 310k

330k

350k

o2

COOLING ENERGY 270k

290k

o1

o3 = 315138 kWh/yr 310k

330k

350k

o2

o3

COOLING ENERGY 270k

290k

o1

o4 = 323167 kWh/yr

310k

330k

350k

o2

o3

COOLING ENERGY 270k

290k

o4

o1

o5 = 322002 kWh/yr

310k

330k

350k

o2

COOLING ENERGY 270k

290k

o6 = 336083 kWh/yr

310k

330k

o5 o1

Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

o1

GROUP 2:

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

o2

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

o1

918816 918417 912788 918641

o2

o3

Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401

o1

o2

o3 o4

o1

o2

GREENFALL FINAL PRESENTATION_December 20th

by 6% with the growth of window to wall ratio.

o3 o5 o4

o3 o4

350k

Despite this fact, since the surrounding area is very dense, the following analysis is provided using this option: North facades 75% window to wall ratio, South facades 50% window to wall ratio.

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

5.3


OPTIONEERING

Shading

TOTAL ANALYSIS VARIATION 1

VARIATION 2 Horizontal shading of 0,5 m depth

VARIATION 3 Horizontal shading of 1,0 m depth

1,3 m

Vertical shading of 1,2 m depth

1,3 m

SOUTH FACADE ANALYSIS

GUIDELINES for analysis:

A. VARIATION 2 B. VARIATION 7 C. COMBINATION OF V2 AND V7

OVERALL FLOOR SURFACE

1,3 m 1,0 m

1,0 m

0,5 m

1,0 m

3,0 m

SAME WINDOW SIZE

1,3 X 3,0 m

U-VALUES considered for the evaluation

1,0 m

Wall: 0.70 W/m2k

1,2 m

3,0 m

23000 m2

Roof: 0.22 W/m2k

3,0 m

Floor: 0.49 W/m2k Infiltration: 7.2 m3/m2h

WINDOW TO WALL RATIO CONSIDERED 6 ON

Energy Use (kWh/yr) v1 = 1788554 kWh/yr

v2 = 1782620 kWh/yr

1770k

1777,5k

1785k

1792,5k

v3 = 1782534 kWh/yr

EUI ENERGY USE INTENSITY

1800k

1770k

1777,5k

1785k

1792,5k

EUI ENERGY USE INTENSITY

1800k

1770k

1777,5k

1785k

v1

1792,5k

v2

390k

420k

COOLING ENERGY 760k

765k

770k

775k

COOLING ENERGY

780k

760k

765k

v2 = 763448 kWh/yr 770k

775k

COOLING ENERGY

780k

760k

v1

VARIATION 4

VARIATION 5

Vertical shading of 0,2 m depth

v2

VARIATION 6

Vertical shading of 0,5 m depth

1,3 m

765k

450k

480k

510k

A B C

1800k

1,3 m

v3 = 762557 kWh/yr 770k

775k

80k

90k

3,0 m

TOTAL ANALYSIS:

120k

EUI ENERGY USE INTENSITY

1797996 kWh/yr

3,0 m

COOLING ENERGY

BUILDING 2

390k

420k

450k

C

1,0 m

3,0 m

772770 kWh/yr

EUI ENERGY USE INTENSITY

Vertical shading of 1,0 m depth

0,7 m

3,0 m

110k

A B C

780k

1,3 m

0,5 m

SOUTH FACADE ANALYSIS: 480k

510k

110k

120k

EUI ENERGY USE INTENSITY

B

3,0 m

COOLING ENERGY 80k

90k

100k

COOLING ENERGY

A B C

BUILDING 3

Energy Use (kWh/yr) v4 = 1792518 kWh/yr

v5 = 1786165 kWh/yr

EUI ENERGY USE INTENSITY 1770k

1777,5k

1785k

1792,5k

1800k

v6 = 1782321 kWh/yr

EUI ENERGY USE INTENSITY 1770k

1777,5k

1785k

1792,5k

1800k

v7 = 1778019 kWh/yr

EUI ENERGY USE INTENSITY 1770k

1777,5k

1785k

1792,5k

1800k

EUI ENERGY USE INTENSITY 1770k

1777,5k

1785k

1792,5k

1800k

v1

COOLING ENERGY 760k

765k

v3 v2

v4 = 769397 kWh/yr

770k

775k

780k

v1

v5 = 765272 kWh/yr

COOLING ENERGY 760k

765k

v3 v2

v4

770k

775k

780k

v5 v1

765k

770k

v5 v3 v2

v1

Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

v3 v2

v1

GROUP 2:

v4

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

v3 v2

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

v1

918816 918417 912788 918641

v3 v2

v6 = 763123 kWh/yr

COOLING ENERGY 760k

v4

775k

780k

390k

760k

765k

v3 v2

Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401

770k

v4

775k

780k

450k

480k

510k

tion of horizontal shading of 1,2 m depth and vertical shading of 1,0 m depth in the south facade. 3

COOLING ENERGY 80k

90k

100k

1,3 m

110k

120k

1

3,0 m

2

A B C

v5 v1

420k

B1 500560 kWh/yr B2 444866 kWh/yr B3 397704 kWh/yr B1 105220 kWh/yr B2 90713 kWh/yr B3 82942 kWh/yr

Option applied in further analysis: combina-

A B C

v7 = 761177 kWh/yr

COOLING ENERGY

v6 v4

v5 v1

CONCLUSIONS

EUI ENERGY USE INTENSITY

v4 v3 v2

NORTH VIEW

STARTING OPTION for analysis: 1,3 m

100k

A 0,2 m

NORTH FACADE WINDOW/WALL

NO SHADING

v1

1,3 m

1

3

SOUTH VIEW

v1

VARIATION 7

Vertical shading of 0,7 m depth

2

2

75%

COOLING ENERGY

v1 = 766008 kWh/yr

1

SOUTH FACADE WINDOW/WALL

EUI ENERGY USE INTENSITY

EUI ENERGY USE INTENSITY

3

50%

OP TI

BUILDING 1

v4

GREENFALL FINAL PRESENTATION_December 20th

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

5.4


OPTIONEERING

Daylight

DAYLIGHT ANALYSIS PREDICTION: HIGHER FLOORS HAVE CRITICAL UNITS IN SOUTH-EAST AND SOUTH-WEST FACADES. LOWER FLOORS HAVE CRITICAL UNITS IN NORTH-EAST AND NORTH-WEST FACADES. BUILDING 1

3

1 2

21%

SITE COVERAGE

B1: 32 B2: 27 N° FLOORS B3: 30

BUILDING 2

3

22 RESIDENTIAL FLOOR SINGLE UNITS ANALYSIS ND

11TH RESIDENTIAL FLOOR DOUBLE UNITS ANALYSIS

1

1ST RESIDENTIAL FLOOR FAMILY UNITS ANALYSIS

3

1 2

21%

2

SITE COVERAGE

3

22ND RESIDENTIAL FLOOR SINGLE UNITS ANALYSIS 11TH RESIDENTIAL FLOOR DOUBLE UNITS ANALYSIS

BUILDING 3

1

2

21%

2

22ND RESIDENTIAL FLOOR SINGLE UNITS ANALYSIS

3

11TH RESIDENTIAL FLOOR DOUBLE UNITS ANALYSIS 1ST RESIDENTIAL FLOOR FAMILY UNITS ANALYSIS

1

SITE COVERAGE

1ST RESIDENTIAL FLOOR DOUBLE UNITS ANALYSIS

B1: 32 B2: 27 N° FLOORS B3: 30

3

1

GUIDELINES for analysis: Percentage of occupied hours where illuminance is at least 300 lux, measured at 0.7 m above the floor plate. 0%

2

25%

22 RESIDENTIAL FLOOR - SINGLE UNITS ANALYSIS

100%

23000 m2

WINDOW TO WALL RATIO CONSIDERED

22 RESIDENTIAL FLOOR - SINGLE UNITS ANALYSIS ND

3

50%

OP TI

22 RESIDENTIAL FLOOR - SINGLE UNITS ANALYSIS

ND

75%

OVERALL FLOOR SURFACE

B1: 32 B2: 27 N° FLOORS B3: 30

6 ON

ND

50%

1

SOUTH FACADE WINDOW/WALL

2

2

75%

1

3

NORTH FACADE WINDOW/WALL

DETAIL 1 SOUTH-WEST FACADE EXPOSURE

SOUTH VIEW

DETAIL 2 NORTH-EAST FACADE EXPOSURE

NORTH VIEW

WINDOWS SIZE CONSIDERED 1,3 m

UNDER-LIT

OVER-LIT

12 %

WELL-LIT UNDER-LIT

UNDER-LIT

OVER-LIT

12 %

23 %

WELL-LIT

65 %

UNDER-LIT

WELL-LIT

OVER-LIT

11 RESIDENTIAL FLOOR - DOUBLE UNITS ANALYSIS

OVER-LIT

13 %

30 %

WELL-LIT

47 %

58 %

UNDER-LIT

40 %

OVER-LIT

11 RESIDENTIAL FLOOR - DOUBLE UNITS ANALYSIS

TH

UNDER-LIT

WELL-LIT

WELL-LIT

ANALYSIS LOCATION

11 RESIDENTIAL FLOOR - DOUBLE UNITS ANALYSIS

TH

3,0 m

OVER-LIT

TH

3

21%

SITE COVERAGE

1 DETAIL 3 NORTH-EAST FACADE EXPOSURE

2

B1: 32 B2: 27 N° FLOORS B3: 30

DETAIL 4 NORTH-EAST AND SOUTH-EAST FACADE EXPOSURE

3

1 2 UNDER-LIT

OVER-LIT

10 %

WELL-LIT UNDER-LIT

UNDER-LIT

OVER-LIT

11 %

16 %

WELL-LIT

74 %

UNDER-LIT

WELL-LIT

OVER-LIT

1ST RESIDENTIAL FLOOR - FAMILY UNITS ANALYSIS

UNDER-LIT

OVER-LIT

10 %

25 %

WELL-LIT

21 %

64 %

UNDER-LIT

69 %

WELL-LIT

OVER-LIT

1ST RESIDENTIAL FLOOR - DOUBLE UNITS ANALYSIS

WELL-LIT

OVER-LIT

The analysis was simplyfied by approximating the analysis for 3 groups of floor depending on the hight and unit typoligy.

1ST RESIDENTIAL FLOOR - FAMILY UNITS ANALYSIS CONCLUSIONS In the analysis it’s possible to notice that most

DETAIL 5 NORTH-WEST AND SOUTH-EAST FACADE EXPOSURE

UNDER-LIT

OVER-LIT

9%

WELL-LIT UNDER-LIT

UNDER-LIT

OVER-LIT

5%

17 %

WELL-LIT

74 %

UNDER-LIT

Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

WELL-LIT

OVER-LIT

GROUP 2:

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

DETAIL 6 NORTH-EAST AND SOUTH-EAST FACADE EXPOSURE

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

918816 918417 912788 918641

OVER-LIT

4%

28 %

WELL-LIT

10 %

67 %

UNDER-LIT

86 %

Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401

to the inclusion in the analysis of the fenctioUNDER-LIT

WELL-LIT

OVER-LIT

of the areas are under-lit. This is mostly due

GREENFALL FINAL PRESENTATION_December 20th

WELL-LIT

OVER-LIT

nal corridors. For this reason in the next page the analysis will be consider just the unit, in order to understand, in the critical parts, how is the situation, more in detail.

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

5.5.1


OPTIONEERING

Daylight

DAYLIGHT ANALYSIS 22 RESIDENTIAL FLOOR ND

DETAIL 2 NORTH-EAST FACADE EXPOSURE

3

3

1

11 RESIDENTIAL FLOOR TH

2

DETAIL 4 NORTH-EAST AND SOUTH-EAST FACADE EXPOSURE

3

3

1 2

1

1

DETAIL 1 SOUTH-WEST FACADE EXPOSUR

2

1 RESIDENTIAL FLOOR ST

2

DETAIL 3 NORTH-EAST FACADE EXPOSURE

2

DETAIL 6 NORTH-EAST AND SOUTH-EAST FACADE EXPOSURE

3

3

1

1

DETAIL 5 NORTH-WEST AND SOUTH-EAST FACADE EXPOSURE

2

GUIDELINES for analysis: Percentage of occupied hours where illuminance is at least 300 lux, measured at 0.7 m above the floor plate. 0%

LIGHTING

25%

50%

Under-lit

BUILDING 1 - DOUBLE UNITS ANALYSIS

DETAIL 1 - SOUTH-WEST FACADE EXPOSURE

ANNUAL DAYLIGHT ANALYSIS

WINDOW

LIGHTING

BUILDING 2 - DOUBLE UNITS ANALYSIS

DETAIL 3 - NORTH-EAST FACADE EXPOSURE

AVERAGE DAYLIGHT FACTOR DF= 2.47 VERIFIED

WINDOW

! 1M HORIZONTAL AND VERTICAL SHADOW CONSIDERED FOR THE ANALYSIS

ANNUAL DAYLIGHT ANALYSIS

AVERAGE DAYLIGHT FACTOR DF= 0.54 NOT VERIFIED

WINDOW

WINDOW

LIGHTING

32 %

WINDOW

AVERAGE DAYLIGHT FACTOR DF= 1.4 NOT VERIFIED

WINDOW

WINDOW

1%

OVER-LIT OVER-LIT

1%

OVER-LIT OVER-LIT

WELL-LIT

58 %

WELL-LIT

16 %

WELL-LIT

49 %

UNDER-LIT

10 %

UNDER-LIT

83 %

UNDER-LIT

50 %

WINDOW

WINDOW

WELL-LIT

OVER-LIT

OVERALL FLOOR SURFACE 6 ON

Spatial Daylight Autonomy (sDA): 17% NOT VERIFIED Annual Sun Exposure (ASE): 1% VERIFIED

Spatial Daylight Autonomy (sDA): 50% NOT VERIFIED Annual Sun Exposure (ASE): 1% VERIFIED

CONCLUSIONS: The room is well-lit, but more energy for cooling will be needed. HOW TO IMPROVE: reduce w/w ratio and reduce window U-value.

CONCLUSIONS: Not enough natural light due to the sorrounding buildings. HOW TO IMPROVE: architectonical adjustments.

CONCLUSIONS: DF needs improvements but sDA and ASE have acceptable values. HOW TO IMPROVE: raise window to wall ratio.

BUILDING 3 - SINGLE UNITS ANALYSIS

BUILDING 3 - DOUBLE UNITS ANALYSIS

BUILDING 3 - FAMILY UNITS ANALYSIS

ANNUAL DAYLIGHT ANALYSIS

DETAIL 4 - NORTH-EAST AND SOUTH-EAST FACADE EXPOSURE

AVERAGE DAYLIGHT FACTOR DF= 2.73 VERIFIED

ANNUAL DAYLIGHT ANALYSIS

AVERAGE DAYLIGHT FACTOR DF= 1.39 NOT VERIFIED

50%

SOUTH FACADE WINDOW/WALL

3 1

2

2

75%

1

3

NORTH FACADE WINDOW/WALL

SOUTH VIEW

NORTH VIEW

WINDOWS SIZE CONSIDERED

DETAIL 6 - NORTH-EAST AND SOUTH-EAST FACADE EXPOSURE

ANNUAL DAYLIGHT ANALYSIS

23000 m2

WINDOW TO WALL RATIO CONSIDERED

Spatial Daylight Autonomy (sDA): 89% VERIFIED Annual Sun Exposure (ASE): 32% NOT VERIFIED

DETAIL 2 - NORTH-EAST FACADE EXPOSURE

To be verified: DF > 2

UNDER-LIT

WELL-LIT

Over-lit

Spatial Daylight Autonomy (sDA) describes how much of a space receives sufficient daylight. To be verified: sDA > 75%

Daylight factor (DF)

UNDER-LIT

WELL-LIT

Well-lit

Annual Sun Exposure (ASE) describes how much of space receives too much direct sunlight, which can cause visual discomfort (glare) or increase cooling loads. To be verified: ASE < 10%

LIGHTING

UNDER-LIT

OVER-LIT

ANNUAL DAYLIGHT ANALYSIS

100%

PARAMETERS EXPLANATION

DETAIL 5 - NORTH-WEST AND SOUTH-EAST FACADE EXPOSURE

OP TI

BUILDING 1 - SINGLE UNITS ANALYSIS

75%

1,3 m

AVERAGE DAYLIGHT FACTOR DF= 1.46 NOT VERIFIED 3,0 m

WINDOW

WINDOW

WINDOW

LIGHTING

LIGHTING

11 %

WELL-LIT

67 %

UNDER-LIT

22 %

WINDOW

ANALYSIS LOCATION

WINDOW

LIGHTING

UNDER-LIT

OVER-LIT

WINDOW

WINDOW

UNDER-LIT

WELL-LIT

OVER-LIT OVER-LIT

WINDOW

3%

WELL-LIT

24 %

UNDER-LIT

73 %

0%

WELL-LIT

OVER-LIT OVER-LIT

UNDER-LIT

OVER-LIT

CONCLUSIONS: In this case we have the best performance among the rooms evaluated. HOW TO IMPROVE: no need to improve.

CONCLUSIONS: Close from having an acceptable result even though only 24% of the unit is well-lit. HOW TO IMPROVE: raise window to wall ratio.

CONCLUSIONS: In this case ALL THE PARAMETERS ARE BELOW ACCEPTED VALUES. HOW TO IMPROVE: architectonic adjustments.

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

918816 918417 912788 918641

Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401

GREENFALL FINAL PRESENTATION_December 20th

N° FLOORS

B1: 32 B2: 27 B3: 30

3 2

Spatial Daylight Autonomy (sDA): 1% NOT VERIFIED Annual Sun Exposure (ASE): 0% VERIFIED

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

2

1

Spatial Daylight Autonomy (sDA): 26% NOT VERIFIED Annual Sun Exposure (ASE): 3% VERIFIED

GROUP 2:

1

99 %

Spatial Daylight Autonomy (sDA): 78% VERIFIED Annual Sun Exposure (ASE): 11% NOT VERIFIED

Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

21%

SITE COVERAGE

WELL-LIT

1%

WELL-LIT

WINDOW

3

UNDER-LIT

The analysis was simplyfied by approximating the analysis for 3 groups of floor depending on the hight and unit typoligy.

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

5.5.2


OPTIONEERING

Optioneering flow chart POSITIONING OPTIMIZATION

MASSING OPTIMIZATION

WINDOWS OPTIMIZATION

SHADING OPTIMIZATION

OPAQUE VOLUME Different: Site coverage Shape factors n° floors

OPAQUE VOLUME Repositioned one building Each building has 3 position options

OPAQUE VOLUME Different hights display Added and subtracted volupes Sky-garden

- Different windw shapes and types - All buildings with some windows

- Horizontal fixed shading - Vertical fixed shading - Different width

ENERGETIC ANALYSIS

DAYLIGHT ANALYSIS

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

START ING REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

Move building 1

3 3

2

1 1

2

N

2

11

3

2

Option 5 Option 0 3

2

3

1 2 1

2

10m

2 3 2

3

1 2 1 1

2

3

22

1 1 2

7%

N

3

Option 4

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

Option 2

2 1

3

1 12

2

6 OptionOption 4 Option 1 3 3 1

2

1 2

3

1 2

N

5

Option 5 Option 2 3 1

2

3

1

2

3

1

3

3

2 1

1 2

10m

Option 5

3

2

1

2

N

6

Option 6 3 2 1

10m

3

1 2

Option 6 Option 3

2

North - East & North - West 75 % window to wall ratio no shading

Option 3

3 3

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

3 1

Option 6 3 OptionOption 1

10m

VARIAT IO

VARIAT IO

33

South - East & South - West 50 % window to wall ratio 1 m shading

ORIENTATION (South or North)

918816 918417 912788 918641

Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401

FLOOR HEIGHT 1 - 10 11 - 20 > 21

UNITE TYPE Single Double Family

< 1%

WINDOW AND SHADING SIZE

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

Option6 3 Option

1

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

GROUP 2:

9%

3 1

5m

5m

B1: 16 B2: 21 N° FLOORS B3:13

2

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

VARIAT IO

3

3

< 1% Move building 3

SITE COVERAGE

1

1

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

21%

6

10m

Option5 2 Option

2

Move building 3 N

2

FACADE ORIENTATION

3

2

10m

Option 5 2 OptionOption 0

3

5m

Option4 1 Option

VARIAT IO

Option 4 Option 1

Move building 2

1

Option 3 1 3

5m

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

5m

Option 4

3 2

2

3

1

5m

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

2 1

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

5

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

N

17

Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

VARIAT IO

VARIAT IO

3

Option 2 1

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

VARIAT IO

3

Option 6

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

SITE COVERAGE

N

Option 0

2

3

2

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

13 21%

N° FLOORS

3 2 1

Move building 1

SITE COVERAGE

N° FLOORS

Option 0

2

1

1

1

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

27%

N

2

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

VARIAT IO

SITE COVERAGE

10

2 1

1

3

N

1. Different window to wall ratio 2. Shading in all facades

3

2

Option 4 Option 5 REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

VARIAT IO

3

3

1

2

Option 1 1

Option 3

3

3

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

VARIAT IO

1

Option 2

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

36%

Option 0

Option 1

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

STEP 2

5 N

TION OP Option 0

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

STEP 3

TION OP

SITE COVERAGE

N° FLOORS

STEP 4

START ING

71%

N° FLOORS

STEP 5

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

STEP 1

CONCEPT SHAPE OPTIMIZATION

GREENFALL FINAL PRESENTATION_December 20th

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

5.6


6. DAYLIGHT

To understand how to manage natural light in indoor environments and reducing energetic consumption


D A Y L I GH TA N A L Y S I S

P r o c e s s

PROCESS THEPROCESSOFF ACADEST ARTEDWI THTHECASE1WHI CHWASTHEBUI L DI NGSWI THOUT ANYSHADI NGEL EMENTS. ANAL YSI SONTHI SCASESHOWEDUSTHA TWESHOUL DTHI NK ABOUTSHADI NGEL EMTNSACCORDI NGT OTHESI TUA TI ONANDAL SOTHEHEGHTOFOUR BUI L DI NGS. THEFI RSTSTEPWAST OSTUDYABOUTFI XEDVERTI CALEL EMENTSTHA TBRI NGSAL SOA STRUCTURALEL EMENTSFORFURTHERSHADI NGP ANNEL SI NCASEOFSOL VI NGOVERL I TSI TUA TI ON. THEANAL YSI SSHOWEDUSTHA TTHEVERTI CALEL EMENTSDONOTHA VEANYEFFECTON DA YL I GHTORPREVENTI NGOVERL I TPROBL EM. THENEXTSTEPWAST OCREA TEBUFFERZONEI NTHESOUTHF ACADE. BYDOI NGTHE BUFFERZONETHEAMOUNTOFL I GHTI NSOUTHF ACADEI NCREASED. THENT OCONTROLTHEDI RECTSUNL I GHTI NTHEROOMSESPECI AL L YI NUPPERFL OORS THEPRESENCEOFSHADI NGP ANNEL SI SESSENTI AL . THEI NSPI RA TI ONOFTHESEPROCESSESCAMEFROMSTUDYI NGABOUTSHADI NGEL EMENTS ANDAL SOSOMECASESTUDI ESFROMTHESI MI L ARPROJ ECTS. ANDTHENTHEPROCESSOFDESI GNI NGSHADI NGP ANNEL SST ARTEDBYPERFORA TED MET ALP ANNEL SWHI CHHAST OBEMOREDENSEI NUPPERP ARTSOFTHEBUI L DI NG.

CASE1

3 1

1

CASESTUDI ES VENTI L A TEDF ACADEONTHEHOTELL ADERA I NSANTI AGO, CHI L E THEI DEAOFBUFFERZONEANDVENTI L A TED F ACADECAMEFROMTHI SPROJ ECT THI SF ACADESYSTEMPROVI DESGREA TER TECHNI CALANDAESTHETI CDURABI L I TYAND PROTECTSAGAI NSTDAMPANDOUTDOOR TEMPERA TURECHANGES, PROVI DI NG ENERGYSA VI NGSANDCREA TI NGAHEAL THI ERENVI RONMENTFORTHEENDUSER. AL SOTHEP A TTERNOFSHADI NGEL EMENTS I NTHEFI RSTSTEPCAMEFROMTHI SP A T TERNWHI CHWASPERFORETEDWI THL ESS DENSI TYI NL OWERFL OORSANDHI GHDENSI TYI NUPPERFL OORS

CASE2 VERTI CALEL EMENTS

3

3

2

2

1

CASESTUDI ES KAI SPEI CHERI NHAMBURGHARBURG THI SCASESTUDYGA VETHEI NSPI RA TI ONT ODESI GN I NCL I NEDSHADI NGP ANEL ST OHA VETHEOPPORTUNI TYOFPREVENTI NGDI RECTSUNL I GHT I NT OROOMS. AL SO, THEKI NDOFSHADI NGP ANEL STHA TI SL I KENET . BYTHESESHADI NG P ANEL SPEOPL EI NSI DECANSEEOUTSI DEBETTERTHANTHEPERFORA TEDP ANEL S.

THEONL YPROBL EMOFTHESE P ANEL SI STHESTRUCTURE, BECAUSEI NHONGKONGWENEED MORESTRONGEL EMENTST O RESI STWI NDANDTYPHOONS

CASE3 BUFFERZONE

L OREMI PSUM

1

3

3

2 1

2

CASE4FI NALSHADI NGP ANEL S

GROUP2:

Ca n i a t oGi o r g i a 9 1 8 6 2 4 Di e t e r i c hMu r rAl i c e8 2 4 9 3 9 1 3 0 4 5 Ko r o v i n aVi k t o r i i a 9

9 1 8 8 1 6 Kr e b sFr a n c e s c o Ne ma t i Al i 9 1 8 4 1 7 1 2 7 8 8 Ro t u n d oMa r c oSa l v a t o r e9 Sa c c u ma nMa r t a 9 1 8 6 4 1

3 2

2

THENORTHF ACADE I NTHENORTHF AÇADETHEDECI SI ONWAST OKEEPI TFL A TJ UST VERTI CALEL EMENTSWI L LBE ADDEDT OPRESERVETHEHOMOGENEI TYOFSOUTHF ACADE. THE REASONTHA TWEDI DNOTPUTSHADI NGP ANEL SI NNORTHF ACADESI S

THESESHADI NGP ANEL SDESI GNED T OKEEPTHEBESTCOMBI NA TI ONOF DA YL I GHTAUT ONOMYANDSUN EXPOSUREI NSI DETHEROOMS. THE ONEI NTHEL EFTONEI SFOR FL OORSBEL OWTHEL I BRARYP ART WHI CHI SI NTHEMI DDL EOFEACHBUI L DI NGANDTHERI GHTONEI SUSED I NEVERYOTHERSHADI NGP ANEL S I NUPPERFL OORS.THEREASONI S T OHA VEBETTERCOMFORTANDPREVENTTHEGL AREEFFECTI NUPPER FL OORS.

Po l i t e c n i c od i Mi l a n o , Po l ot e r r i t o r i a l ed i L e c c o Cd Li nAr c h i t e c t u r a l e n g i n e e r i n g Ac a d e mi cy e a r2 0 1 9 / 2 0

1

PRESENCEOFSURROUNDI NGBUI L DI NGVERYCL OSEL YT OTHESEF ACADESAL SOAVERYT AL LBUI L DI NG THA TPRODUCTSSHADOWON NORTHF ACADEOFBUI L DI NG2 .

Se y e d i Za d e hFe r e s h t e h 9 2 7 1 6 0 9 1 2 8 4 3 Sh e i k h h a s s a n i Na v i d Zo h o u r p a r v a zMo h a ma d r e z a9 2 7 4 0 1

GREENFALL FI NALPRESENTATI ON_December20

t h

SUSTAI NABLEBUI LDI NG TECHNOLOGI ES+STUDI O p r o f . M. Br a s c a p r o f . G. Ma s e r a

6 . 1


D A Y L I GH TA N A L Y S I S

B u i l d i n g1C a s e 1

BUI L DI NG1

1

3 2

DA YL I GHTF ACT ORANAL YSI SFOR1 STFL OORBUI L DI NG1ACCORDI NGT OTHESI TUA TI ONOFBUI L DI NGI NCENTRALHONG KONGWEWI L LHA VEL OWERDA YL I GHTF ACT ORI NFI RST FL OORS

3 1

1 N1

2

1 S1

FL OOR1 F AMI L YUNI T

1 N1

1 N2

1 N2

1 S1

1 S2

1 S2

BUI L DI NG1 1

3 2

DA YL I GHTF ACT ORANAL YSI SFOR1 1 THFL OORBUI L DI NG1I N MI DDL EFL OORSWEHA VETHEST ANDARDDA YL I GHTV AL UE FORHONGKONGI NSOUTHP ART .

3 1

2

1 N

FL OOR1 1 DOUBL EROOM

1 N

1 S

1 S

DA YL I GHTF ACT ORANAL YSI SFOR2 2 NDFL OORBUI L DI NG1 GOI NGT OWARDUPPERFL OORSWEHA VEHI GHERDA YL I GHT V AL UEI NTHEROOMS. I TI SNOTTHEONL YWA YT OGETTHE BESTRESUL TOFDA YL I GHT , SOTHEANAL YSI SWI L LBECONTI NUEBYSP A TI ALDA YL I GHTAUT ONOMYANDANNUALSUN EXPOSURE.

BUI L DI NG1

1

3 2

3 1

1 N1

2

FL OOR2 2 SI NGL EROOM

1 S1

1 N2

1 N1

1 S2

1 S1

1 N2

1 S2

SP A TI ALDA YL I GHTAUT ONOMY( SDA)DESCRI BESHOWMUCHOFASP ACERECEI VESSUFFI CI ENTDA YL I GHT . SPECI FI CAL L Y , I TDESCRI BESTHEPERCENT AGEOFFL OORAREATHA T RECEI VESA TL EAST3 0 0L UXFORA TL EAST5 0 %OFTHEANNUALOCCUPI EDHOURS. I NOURCASEL OWERFL OORSGETTHESP A TI ALDA YL I GHTBECAUSEOFSURROUNDI NG BUI L DI NGSF ACADREFL ECTI ON.

Po l i t e c n i c od i Mi l a n o , Po l ot e r r i t o r i a l ed i L e c c o Cd Li nAr c h i t e c t u r a l e n g i n e e r i n g Ac a d e mi cy e a r2 0 1 9 / 2 0

GROUP2:

Ca n i a t oGi o r g i a 9 1 8 6 2 4 Di e t e r i c hMu r rAl i c e8 2 4 9 3 9 1 3 0 4 5 Ko r o v i n aVi k t o r i i a 9

9 1 8 8 1 6 Kr e b sFr a n c e s c o Ne ma t i Al i 9 1 8 4 1 7 1 2 7 8 8 Ro t u n d oMa r c oSa l v a t o r e9 Sa c c u ma nMa r t a 9 1 8 6 4 1

Se y e d i Za d e hFe r e s h t e h 9 2 7 1 6 0 9 1 2 8 4 3 Sh e i k h h a s s a n i Na v i d Zo h o u r p a r v a zMo h a ma d r e z a9 2 7 4 0 1

ANNUALSUNEXPOSURE( ASE)DESCRI BESHOWMUCHOFSP ACERECEI VEST OOMUCHDI RECTSUNL I GHT , WHI CHCANCAUSEVI SUALDI SCOMFORT( GL ARE)ORI NCREASECOOL I NGL OADS. I NL OWERFL OORSTHERESUL TSARENOTVERYBADBUTI NFL OORS ABOVETHEL I BRARYSPECI AL L YI NSOUTHF ACADETHEREI STHE PROBL EMOFGL AREI NTHEROOMS

GREENFALL FI NALPRESENTATI ON_December20

t h

SUSTAI NABLEBUI LDI NG TECHNOLOGI ES+STUDI O p r o f . M. Br a s c a p r o f . G. Ma s e r a

6 . 2 . 1


D A Y L I GH TA N A L Y S I S

b u i l d i n g2c a s e 1

DA YL I GHTF ACT ORANAL YSI SFOR1 STFL OORBUI L DI NG2ACCORDI NGT OTHESI TUA TI ONOFBUI L DI NGI NCENTRALHONGKONGWE WI L LHA VEL OWERDA YL I GHTF ACT ORI NFI RSTFL OORS.

BUI L DI NG2 1

3

2 N1

3

2 1

2 N2

2 N1

2 N2

2 S1

2 S2

2 2 S2

2 S1

FL OOR1 DOUBL EROOM

BUI L DI NG2 1

3

3

2 1

DA YL I GHTF ACT ORANAL YSI SFOR1 1 THFL OORBUI L DI NG2 I NMI DDL EFL OORSSOUTHF ACADEGETSMOREDA YL I GHTBECAUSEOFSI TUA TI ONOFBUI L DI NG.

2 N

2 N

2 2 S

2 S

FL OOR1 1 DOUBL EROOM DA YL I GHTF ACT ORANAL YSI SFOR2 2 NDFL OORBUI L DI NG2GOI NG T OWARDUPPERFL OORSWEHA VEHI GHERDA YL I GHTV AL UEI N THEROOMSSPECI AL L YI NSOUTHF ACADE. I NNORTHF ACADETHE DA YL I GHTF ACT ORI SL OWEVENI NFL OOR1 1BECAUSEOFTHE T AL LBUI L DI NGI NTHEEASTP ARTOFTHI SBUI L DI NG.

BUI L DI NG2 1

3

3

2

2 N2

2 N1

1

2 N2

2 N1

2

2 S1

2 S2

FL OOR2 2 SI BGL EROOM

2 S1

2 S2

ANNUALSUNEXPOSURE( ASE)I SAL MOST0 %I NNORTHF ACADESDUET OTHEPOSI TI ONOFSUN. I NSOUTHP ARTSEVENI N L OWERFL OORSWEHA VEHI GHERAMOUNTOFDI RECTSUNL I GHTWHI CHWI L LBERESUL TI NGL AREEFFECT . FORTHA TWE WI L LGI VESOL UTI ONDURI NGOTHERCASES.

SP A TI ALDA YL I GHTAUT ONOMY( SDA)FORTHEBUI L DI NG2I SVERY CRUCI ALBECAUSEOFL OWDA YL I GHTF ACT OR. AL LOFTHESEL ECTEDROOMSAREAL MOSTI NTHERANGEOF5 5 7 5 %SP A TI AL DA YL I GHTAUT ONOMYEXCEPTTHESI NGL EROOMSI NNORTH F ACADEI N2 2 NDFL OOR. FORTHI SPROBL EMWECANUSEMORE REFL ECTI VEI NTERNALWAL L SI NSI DETHEUNI TSWI THTI L E FL OORT OBRI NGMOREL I GHTI NSI DE

Po l i t e c n i c od i Mi l a n o , Po l ot e r r i t o r i a l ed i L e c c o Cd Li nAr c h i t e c t u r a l e n g i n e e r i n g Ac a d e mi cy e a r2 0 1 9 / 2 0

GROUP2:

Ca n i a t oGi o r g i a 9 1 8 6 2 4 Di e t e r i c hMu r rAl i c e8 2 4 9 3 9 1 3 0 4 5 Ko r o v i n aVi k t o r i i a 9

9 1 8 8 1 6 Kr e b sFr a n c e s c o Ne ma t i Al i 9 1 8 4 1 7 1 2 7 8 8 Ro t u n d oMa r c oSa l v a t o r e9 Sa c c u ma nMa r t a 9 1 8 6 4 1

Se y e d i Za d e hFe r e s h t e h 9 2 7 1 6 0 9 1 2 8 4 3 Sh e i k h h a s s a n i Na v i d Zo h o u r p a r v a zMo h a ma d r e z a9 2 7 4 0 1

GREENFALL FI NALPRESENTATI ON_December20

t h

SUSTAI NABLEBUI LDI NG TECHNOLOGI ES+STUDI O p r o f . M. Br a s c a p r o f . G. Ma s e r a

6 . 2 . 2


D A Y L I GH TA N A L Y S I S

b u i l d i n g3c a s e 1

DA YL I GHTF ACT ORANAL YSI SFOR1 STFL OORBUI L DI NG3THESI TUA TI ON I NL OWERFL OORSOFBUI L DI NG3ARENOTSA TI SFYI NGBECAUSEOF2 T AL LANDVERYCL OSEBUI L DI NGI NNORTHP ART . THESOL UTI ONWI L LBE THEUSI NGOFREFL ECTI VEI NTERNALWAL L SI NSI DETHEUNI TS.

BUI L DI NG3 1

3

3 2

3 N2

1

3 N1

2

FL OOR1 F AMI L YUNI T

3 N2

3 N1

3 S1

3 S2

3 S1

3 S2

BUI L DI NG3 1

3 2

DA YL I GHTF ACT ORANAL YSI SFOR1 1 THFL OORBUI L DI NG3 DA YL I GHTF ACT ORI NMI DDL EFL OORSOFBUI L DI NG3AREI NNORMAL PERCENT AGEMOSTL Y .

3 1

3 N

2

3 N

3 S

FL OOR1 1 DOUBL EUNI T

3 S

DA YL I GHTF ACT ORANAL YSI SFOR2 2 NDFL OORBUI L DI NG3 GOI NGT OWARDUPPERFL OORSWEHA VEHI GHERDA YL I GHTV AL UEI NTHE ROOMSSPECI AL L YI NSOUTHF ACADE. I NNORTHF ACADETHEDA YL I GHT F ACT ORI SNORMAL .

BUI L DI NG3 1

3

3 2

1

3 N1

2

3 S1

FL OOR2 2 SI NGL EROOM

3 N2

3 N1

3 N2

3 S2

3 S1

3 S2

SP A TI ALDA YL I GHTAUT ONOMY( SDA)FORTHEBUI L DI NG3 : MOSTOFTHEROOMSAREHA VI NGNORMALSDAV AL UE BUTSOMEROOMSAREOVERL I T WEWI L LSEEI NTHENEXTSTEPSHOWT OBRI NGTHEM T OTHENORMALSI TUA TI ON

Po l i t e c n i c od i Mi l a n o , Po l ot e r r i t o r i a l ed i L e c c o Cd Li nAr c h i t e c t u r a l e n g i n e e r i n g Ac a d e mi cy e a r2 0 1 9 / 2 0

GROUP2:

Ca n i a t oGi o r g i a 9 1 8 6 2 4 Di e t e r i c hMu r rAl i c e8 2 4 9 3 9 1 3 0 4 5 Ko r o v i n aVi k t o r i i a 9

9 1 8 8 1 6 Kr e b sFr a n c e s c o Ne ma t i Al i 9 1 8 4 1 7 1 2 7 8 8 Ro t u n d oMa r c oSa l v a t o r e9 Sa c c u ma nMa r t a 9 1 8 6 4 1

THEPERCENT AGEOFDI RECTSUNL I GHTI SPRESENTEVENI NTHEFI RST FL OOROFBUI L DI NG1I NTHESOUTHP ART . GOI NGUPTHEFL OORS, ASEI NCREASEST OO. T OBL OCKDI RECTSUNL I GHTTHEPRESENCEOFSHADI NGEL EMENTSARE NECCESSARY .

Se y e d i Za d e hFe r e s h t e h 9 2 7 1 6 0 9 1 2 8 4 3 Sh e i k h h a s s a n i Na v i d Zo h o u r p a r v a zMo h a ma d r e z a9 2 7 4 0 1

GREENFALL FI NALPRESENTATI ON_December20

t h

SUSTAI NABLEBUI LDI NG TECHNOLOGI ES+STUDI O p r o f . M. Br a s c a p r o f . G. Ma s e r a

6 . 2 . 3


D A Y L I GH TA N A L Y S I S

C a s e2a n dC a s e3

CASE2-VERTI CALEL EMENTS DA YL I GHTF ACT OR-CASE2AND3

1

3 2

BYTHEI NST AL L A TI ONOFVERTI CALEL EMENTSTHEREI SNOCHANGEI NDA YL I GHTF ACT ORI NROOMSSI NCETHEDI MENSI ONOFTHEVERTI CALEL EMENTS ARESMAL LACCORDI NGT OTHEF ACADE. WI THBUFFERZONEI NTHESOUTHP ARTWECANSEEHUGEI MP ACTONDA YL I GHTASHI GHL I GHTEDI NTHECHARTS.

CASE3-BUFFERZONE

SP A TI ALDA YL YGHYAUT ONOMY-CASE2AND3

1

3 2

ASDA YL I GHTNOTCHANGI NGWI THVERTI CALEL EMENTS, SP A TI ALDA YL I GHT AUT ONOMYI SNOTCHANGESASWEL L . WI THBUFFERZONETHECHANGESI NSDAARENOTI CABL EASHI GHL I GHTED. SOMEROOMSAREOVERL I TEDSPECI AL L YI NUPPERFL OORSBECAUSEOFABSENCEOFSHADI NGEL EMENTS.

ANNUALSUNEXPOSURE-CASE2AND3 ANNUALSUNEXPOSUREI SGETTI NGWORSE BECAUSEOFPRESENCEOFMORESUNACCURACYT OTHEROOMS. HI GHL I GHTEDREDCOL ORSI NCHARTSHOWS THA TTHEREWI L LBEGL AREEFFECTI NTHE ROOMS.

Po l i t e c n i c od i Mi l a n o , Po l ot e r r i t o r i a l ed i L e c c o Cd Li nAr c h i t e c t u r a l e n g i n e e r i n g Ac a d e mi cy e a r2 0 1 9 / 2 0

GROUP2:

Ca n i a t oGi o r g i a 9 1 8 6 2 4 Di e t e r i c hMu r rAl i c e8 2 4 9 3 9 1 3 0 4 5 Ko r o v i n aVi k t o r i i a 9

9 1 8 8 1 6 Kr e b sFr a n c e s c o Ne ma t i Al i 9 1 8 4 1 7 1 2 7 8 8 Ro t u n d oMa r c oSa l v a t o r e9 Sa c c u ma nMa r t a 9 1 8 6 4 1

Se y e d i Za d e hFe r e s h t e h 9 2 7 1 6 0 9 1 2 8 4 3 Sh e i k h h a s s a n i Na v i d Zo h o u r p a r v a zMo h a ma d r e z a9 2 7 4 0 1

GREENFALL FI NALPRESENTATI ON_December20

t h

SUSTAI NABLEBUI LDI NG TECHNOLOGI ES+STUDI O p r o f . M. Br a s c a p r o f . G. Ma s e r a

6 . 3


D A Y L I GH TA N A L Y S I S BUI L DI NG1 1

3 2

B u i l d i n g1C a s e 4

DA YL I GHTF ACT ORANAL YSI SFOR1 STFL OORBUI L DI NG1 ACCORDI NGT OTHESI TUA TI ONOFBUI L DI NGI NCENTRALHONGKONG WEWI L LHA VEL OWERDA YL I GHTF ACT ORI NFI RSTFL OORS

3 1

1 N1

2

FL OOR1

1 S1

1 N1

1 N2

1 N2

1 S1

1 S2

1 S2

BUI L DI NG1 1

3 2

DA YL I GHTF ACT ORANAL YSI SFOR1 1 THFL OORBUI L DI NG1 I NMI DDL EFL OORSWEHA VETHEST ANDARDDA YL I GHTV AL UEFOR HONGKONGI NSOUTHP ART .

3 1

2

1 N

FL OOR1 1

1 N

1 S

1 S

DA YL I GHTF ACT ORANAL YSI SFOR2 2 NDFL OORBUI L DI NG1 GOI NGT OWARDUPPERFL OORSWEHA VEHI GHERDA YL I GHTV AL UEI N THEROOMS. I TI SNOTTHEONL YWA YT OGETTHEBESTRESUL TOF DA YL I GHT , SOTHEANAL YSI SWI L LBECONTI NUEBYSP A TI ALDA YL I GHT AUT ONOMYANDANNUALSUNEXPOSURE.

BUI L DI NG1 1

3 2

3 1

1 N1

2

FL OOR2 2

1 S1

1 N2

1 N1

1 S2

1 S1

1 N2

1 S2

SP A TI ALDA YL I GHTAUT ONOMY( SDA)DESCRI BESHOWMUCHOFASP ACE RECEI VESSUFFI CI ENTDA YL I GHT . SPECI FI CAL L Y , I TDESCRI BESTHEPERCENT AGEOFFL OORAREATHA TRECEI VESA TL EAST3 0 0L UXFORA T L EAST5 0 %OFTHEANNUALOCCUPI EDHOURS. I NOURCASEL OWERFL OORSGETTHESP A TI ALDA YL I GHTBECAUSEOF SURROUNDI NGBUI L DI NGSF ACADREFL ECTI ON.

Po l i t e c n i c od i Mi l a n o , Po l ot e r r i t o r i a l ed i L e c c o Cd Li nAr c h i t e c t u r a l e n g i n e e r i n g Ac a d e mi cy e a r2 0 1 9 / 2 0

GROUP2:

Ca n i a t oGi o r g i a 9 1 8 6 2 4 Di e t e r i c hMu r rAl i c e8 2 4 9 3 9 1 3 0 4 5 Ko r o v i n aVi k t o r i i a 9

9 1 8 8 1 6 Kr e b sFr a n c e s c o Ne ma t i Al i 9 1 8 4 1 7 1 2 7 8 8 Ro t u n d oMa r c oSa l v a t o r e9 Sa c c u ma nMa r t a 9 1 8 6 4 1

Se y e d i Za d e hFe r e s h t e h 9 2 7 1 6 0 9 1 2 8 4 3 Sh e i k h h a s s a n i Na v i d Zo h o u r p a r v a zMo h a ma d r e z a9 2 7 4 0 1

ANNUALSUNEXPOSURE( ASE)DESCRI BESHOWMUCHOFSP ACERECEI VEST OOMUCHDI RECTSUNL I GHT , WHI CHCANCAUSEVI SUALDI SCOMFORT( GL ARE)ORI NCREASECOOL I NGL OADS. I NL OWERFL OORSTHERESUL TSARENOTVERYBADBUTI NFL OORS ABOVETHEL I BRARYSPECI AL L YI NSOUTHF ACADETHEREI STHE PROBL EMOFGL AREI NTHEROOMS

GREENFALL FI NALPRESENTATI ON_December20

t h

SUSTAI NABLEBUI LDI NG TECHNOLOGI ES+STUDI O p r o f . M. Br a s c a p r o f . G. Ma s e r a

6 . 4 . 1


D A Y L I GH TA N A L Y S I S

B u i l d i n g2C a s e 4

BUI L DI NG2 1

3

2 N1

3

2 1

DA YL I GHTF ACT ORANAL YSI SFOR1 STFL OORBUI L DI NG2ACCORDI NGT O THESI TUA TI ONOFBUI L DI NGI NCENTRALHONGKONG, THERESUL TSARE ACCEPT ABL EACCORDI NGT OTHEF ACTTHA TSDAANDASEAREMOREI MPORT ANTFORUS

2 N2

2 N1

2 N2

2 S1

2 S2

2 2 S2

2 S1

FL OOR1

BUI L DI NG2 1

3

3

2 1

DA YL I GHTF ACT ORANAL YSI SFOR1 1 THFL OORBUI L DI NG2ROOMSHASACCEPT ABL EPERCENT AGEOFDA YL I GHTF ACT ORI NMI DDL EFL OORS. I TI S DECREASEDBECAUSEOFSHADI NGP ANEL S.

2 N

2 N

2 2 S

2 S

FL OOR1 1

BUI L DI NG2 1

3

DA YL I GHTF ACT ORANAL YSI SFOR2 2 NDFL OORBUI L DI NG2 EVENUPPERFL OORSROOMSHA VEANA VERAGEOFDA YL I GHTF ACT OR.

3

2

2 N2

2 N1

1

2 N2

2 N1

2

2 S1

2 S2

FL OOR2 2

2 S1

2 S2

SP A TI ALDA YL I GHTAUT ONOMY( SDA)THERESUL TSARE AL MOSTI NTHERANGEOF5 5T O7 5WHI CHI SACCEPT ABL E FOROURROOMS.

Po l i t e c n i c od i Mi l a n o , Po l ot e r r i t o r i a l ed i L e c c o Cd Li nAr c h i t e c t u r a l e n g i n e e r i n g Ac a d e mi cy e a r2 0 1 9 / 2 0

GROUP2:

Ca n i a t oGi o r g i a 9 1 8 6 2 4 Di e t e r i c hMu r rAl i c e8 2 4 9 3 9 1 3 0 4 5 Ko r o v i n aVi k t o r i i a 9

9 1 8 8 1 6 Kr e b sFr a n c e s c o Ne ma t i Al i 9 1 8 4 1 7 1 2 7 8 8 Ro t u n d oMa r c oSa l v a t o r e9 Sa c c u ma nMa r t a 9 1 8 6 4 1

ANNUALSUNEXPOSURE( ASE)I NSOUTHF ACADEWECANDECREASEANOTI CEABL EAMOUNTOFDI RECTSUNL I GHTASTHEGREEN COL ORI NTHECHARTS. FORROOMSTHA THA VEEVENMOREASE WECANI NST AL LI NTERNALCURT AI NS.

Se y e d i Za d e hFe r e s h t e h 9 2 7 1 6 0 9 1 2 8 4 3 Sh e i k h h a s s a n i Na v i d Zo h o u r p a r v a zMo h a ma d r e z a9 2 7 4 0 1

GREENFALL FI NALPRESENTATI ON_December20

t h

SUSTAI NABLEBUI LDI NG TECHNOLOGI ES+STUDI O p r o f . M. Br a s c a p r o f . G. Ma s e r a

6 . 4 . 2


D A Y L I GH TA N A L Y S I S

B u i l d i n g3C a s e 4

DA YL I GHTF ACT ORANAL YSI SFOR1 STFL OORBUI L DI NG3THESI TUA TI ON I NL OWERFL OORSOFBUI L DI NG3ARENOTSA TI SFYI NGBECAUSEOF2 T AL LANDVERYCL OSEBUI L DI NGI NNORTHP ART . THESOL UTI ONWI L LBE THEUSI NGOFREFL ECTI VEI NTERNALWAL L SI NSI DETHEUNI TS.

BUI L DI NG3 1

3

3 2

3 N2

1

3 N1

2

3 S2

3 S1

3 S2

3 S1

FL OOR1

3 N2

3 N1

DA YL I GHTF ACT ORANAL YSI SFOR1 1 THFL OORBUI L DI NG3THEDA YL I GHT F ACT OROFROOMSI NSOUTHF ACADEAREREDUCEDBECAUSEOFSHADI NGP ANEL S, BUTI NSTEADTHEYAREPROTECTI NGTHEROOMSFROM GL AREEFFECT .

BUI L DI NG3 1

3

3 2

1

3 N

2

3 N

3 S

3 S

FL OOR1 1

DA YL I GHTF ACT ORANAL YSI SFOR2 2 NDFL OORBUI L DI NG3 GOI NGT OWARDUPPERFL OORSWEHA VENORMALDA YL I GHTV AL UEI N THEROOMS. I NSOUTHF ACADETHEDA YL I GHTF ACT ORI SBEL OW NORMALBUTI TI STHEWA YT OREDUCEGL AREEFFECTI NUPPER FL OORS. .

BUI L DI NG3 1

3

3 2

1

3 N1

2

3 S1

FL OOR2 2

3 N2

3 N1

3 N2

3 S2

3 S1

3 S2

THEPERCENT AGEOFDI RECTSUNL I GHTI SPRESENTI SNOW VERYCL OSET OCOMFORTZONEANDWECANSA YTHA TWEGOT THERESUL TSOFOURSHADI NGP ANEL S.

SP A TI ALDA YL I GHTAUT ONOMY( SDA)FORTHEBUI L DI NG3 : MOSTOF THEROOMSAREHA VI NGNORMALSDAV AL UEBUTSOMEROOMS AREOVERL I TI NNORTHP ART . THEROOMSTHA TCANNOTGETT O THERANGECANUSEI NTERNALCURT AI NS.

Po l i t e c n i c od i Mi l a n o , Po l ot e r r i t o r i a l ed i L e c c o Cd Li nAr c h i t e c t u r a l e n g i n e e r i n g Ac a d e mi cy e a r2 0 1 9 / 2 0

GROUP2:

Ca n i a t oGi o r g i a 9 1 8 6 2 4 Di e t e r i c hMu r rAl i c e8 2 4 9 3 9 1 3 0 4 5 Ko r o v i n aVi k t o r i i a 9

9 1 8 8 1 6 Kr e b sFr a n c e s c o Ne ma t i Al i 9 1 8 4 1 7 1 2 7 8 8 Ro t u n d oMa r c oSa l v a t o r e9 Sa c c u ma nMa r t a 9 1 8 6 4 1

Se y e d i Za d e hFe r e s h t e h 9 2 7 1 6 0 9 1 2 8 4 3 Sh e i k h h a s s a n i Na v i d Zo h o u r p a r v a zMo h a ma d r e z a9 2 7 4 0 1

GREENFALL FI NALPRESENTATI ON_December20

t h

SUSTAI NABLEBUI LDI NG TECHNOLOGI ES+STUDI O p r o f . M. Br a s c a p r o f . G. Ma s e r a

6 . 4 . 3


D A Y L I GH TA N A L Y S I S 1

C o n c l u s i o n

3

1

2

2

1

3

1

2

1

3

3 2

3

1

2

3 2

THERESUL TSARESHOWI NGTHA TTHEAPPROACHT OTHESHADI NGP ANEL SAREACCEPT ABL E BYANAL YSI STHA TWEDI DFORTHE3L EVEL SFOREACHBUI L DI NGBYDOI NGTHEANAL YSI SOFTHEROOMSSEP ARETL YWEREACHEDT OTHEPOI NTTHA TWESHOUL D HA VESHADI NGP ANEL S. THEPROCESSOFDESI GNI NGSHADI NGP ANEL SST ARTEDT OPREVENTGL AREEFFECTI NUPPERFL OORS. SOI NL OWERFL OORSWEDONOTNEEDVERYDENSEP ANEL S. THEI NCL I NA TI ONOFP ANEL SAREPRODUCEDI NSEVERALSTEPST OGETTHEBESTRESUL TOFDA YL I GHT , I NTERNALVI EWT OTHEOUTSI DEANDPREVENTI NGGL ARE ANAL YSI S

Po l i t e c n i c od i Mi l a n o , Po l ot e r r i t o r i a l ed i L e c c o Cd Li nAr c h i t e c t u r a l e n g i n e e r i n g Ac a d e mi cy e a r2 0 1 9 / 2 0

GROUP2:

Ca n i a t oGi o r g i a 9 1 8 6 2 4 Di e t e r i c hMu r rAl i c e8 2 4 9 3 9 1 3 0 4 5 Ko r o v i n aVi k t o r i i a 9

9 1 8 8 1 6 Kr e b sFr a n c e s c o Ne ma t i Al i 9 1 8 4 1 7 1 2 7 8 8 Ro t u n d oMa r c oSa l v a t o r e9 Sa c c u ma nMa r t a 9 1 8 6 4 1

Se y e d i Za d e hFe r e s h t e h 9 2 7 1 6 0 9 1 2 8 4 3 Sh e i k h h a s s a n i Na v i d Zo h o u r p a r v a zMo h a ma d r e z a9 2 7 4 0 1

GREENFALL FI NALPRESENTATI ON_December20

t h

SUSTAI NABLEBUI LDI NG TECHNOLOGI ES+STUDI O p r o f . M. Br a s c a p r o f . G. Ma s e r a

6 . 5


7. TRANSPARENCY

For the optimization of materials in relation to building performance and economic sustainability


air pressure

EXTERIOR WINDOW FRAMES

AWS 75.SI+ AWS 75 BS.SI+ AWS 75 WF.SI+ AWS 75 BS.HI+ AWS 70 SL.HI AWS 70 RL.HI AWS 70 ST.HI AWS 70 WF.HI AWS 70 BS.HI AWS 70.HI

Sound Insulation (dB)

Wind Load Resistance

48 45 44 49 43 48 37 45 45 48

C5/B5 C5/B5 C5/B5 C5/B5 C5/B5 C5/B5 C5/B5 C2/B3 C5/B5 C5/B5

1.4

40

DATA ANALYSIS

1.2 0.8 0.4

A

B

C

D

E

F

G

H

I

0

J

WINDOW SPECIFICATIONS

AWS 75.SI+ PRODUCT SPECIFICATIONS MATERIAL ENERGY BASIC DEPTH U VALUE MAX. GLASS THICKNESS OPENING SOUND INSULATION AIR PERMEABILITY WATER TIGHTNESS WIND LOAD RESISTANCE

Aluminum Highly Thermally Insulated 75 mm 0.9 (W/m2 K) 61 mm Inward and Outward; Tilt/Slide 48 dB Class 4 (600 Pa) 9A (600 Pa; 111.54 km/h) C5/B5 (2000 Pa)

C3

C4

C5

C6

Product regulations: EN 1026, EN 12207 C1 Flex arrow (1/300)

124

136,6

145

160

165

178

Product Comparison & Details

C2

C3

C4

C5

C6

Applied pressure (400Pa) (800Pa) (1200Pa) (1500Pa) (2000Pa) (>2000Pa) achieved class A1 A2 A3 A4 AE

:DWHUSURRร QJ 8VHG WR PHDVXUH WKH GHJUHH RI LPSHUPHD

applied pressure 150 Pa 300 Pa 450 Pa 600 Pa >600 Pa

Product regulations: EN 1027, EN 12208 performance achieved 0db <=12db <=24db <=36db <=48db <=60db 1A

2A

3A

(0 Pa)

(50Pa)

(100Pa)

achieved class air pressure

5A

4A

6A

1A

achieved class 7A

8A

9A air

E750 pressure

E900 (0

2A

3A

5A

4A

E1200 (100Pa) E1350 Pa)E1050(50Pa)

E1500 (150Pa)

(150Pa) (200Pa) (250Pa) (300Pa) (450Pa) (600Pa) (750Pa) (900Pa) (1050Pa) (1200Pa) (1350Pa) (1500Pa)

<=1-2

achieved class

C1

C2

C3

C4

C5

Product regulations: EN 10077-2, EN 12412-2 C6

Flex arrow (1/150)

A1

A2

A3

A4

A5

Flex arrow (1/200)

B1

B2

B3

B4

B5

B6

achieved class

C1

C2

C3

C4

Flex arrow (1/300)

C1

C2

C3

C4

C5

C6

Flex arrow (1/150)

A1

A2

A3

A4

Flex arrow (1/200)

B1

B2

B3

B4

A6

performance achieved

A

B

C

D

E

F

G

H

I

J

By considering the technical specifications of the selected product, it is clear this product is well suited to use in the Hong Kong area. Itโ s high thermal insulation and impressive Thermal Transmittance allow for more controlled and comfortable interior spaces. The Water Tightness and Wind Resistance are both in the highest classes available, signifying maximum resistance to possible effects of typhoons. The Air Permeability is also rated in the highest class, which also helps significantly in handling issue of pollution in the city, and maintaining clean interior air. Finally, the Acoustic Insulation is a very attractive feature, allowing for the interior to not be influenced by the sounds of the surrounding city. This selection of window allows for maximum efficiency as well as comfort for the inhabitants.

0db

Noise performance. The value that measures how door or w H[WHUQDO QRLVHV 7KH VLPXODWLRQ WHVW SHUIRUPHG WR GHWHUPLQH W as a whole may not have the same sound insulation value.

<=12db <=24db <=36db <=48db <=60db

Thermal transmittance. 7KH DYHUDJH KHDW ร RZ SHU VTXDUH PHWUH RI VXUIDFH WKDW SDVVHV WKURXJK D VWUXFWXUH WKDW GHOLPLWV WZR HQYLURQPHQWV Product regulations: EN 20140-3, EN ISO 140-3, EN ISO 717-1 DW GLเฉ HUHQW WHPSHUDWXUHV ,Q WKH FDVH RI GRRU DQG ZLQGRZ IUDPHV LW LV XVHG WR PHDVXUH WKH HQHUJ\ Hเฉ FLHQF\ RI WKH SURGXFW ZKHQ LW FRPHV WR PDLQWDLQLQJ WKH WHPSHUDWXUH UHTXLUHG LQ GRPHVWLF HQYLURQPHQWV 7KH FORVHU WR ]HUR WKH WUDQVPLWWDQFH YDOXH WKH JUHDWHU WKH HQHUJ\ VDYLQJ performance achieved 0db <=12db <=24db <=36db <= Product regulations: EN 10077-2, EN 12412-2 performance achieved Uw W/m2K

Low

Medium

High

Top

<=6-8

<=2-4

<=1-2

<=0-1

Thermal transmittance. 7KH DYHUDJH KHDW ร RZ SHU VTXDUH PH DW GLเฉ HUHQW WHPSHUDWXUHV ,Q WKH FDVH RI GRRU DQG ZLQGRZ IUDP WR PDLQWDLQLQJ WKH WHPSHUDWXUH UHTXLUHG LQ GRPHVWLF HQYLURQPH Product regulations: EN 10077-2, EN 12412-2 performance achieved Uw W/m2K

Low

Medium

High

Top

<=6-8

<=2-4

<=1-2

<=0-1

Another important feature of this product is its ability to be customized according to the needs of the project. This can include for example built in sun shading, or even ventilation systems.

Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

GROUP 2:

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

(200Pa

or window frame.

<=0-1

Product regulations: EN 20140-3, EN ISO 140-3, EN ISO 717-1

10

0.2

111,54

C1 C2 C3 C4 Flex arrow (1/300) Noise performance. The value that measures how door or window frames are able toApplied acoustically isolate the home environment from pressure (400Pa) (800Pa) (1200Pa) (1500Pa) (20 H[WHUQDO QRLVHV 7KH VLPXODWLRQ WHVW SHUIRUPHG WR GHWHUPLQH WKLV YDOXH UHODWHV H[FOXVLYHO\ WR WKH GRRU RU ZLQGRZ IUDPH DQG WKH EXLOGLQJ as a whole may not have the same sound insulation value.

20

0.6

96,59

Product regulations: EN 1026, EN 12207 C2

Applied pressure (400Pa) (800Pa) (1200Pa) (1500Pa) (2000Pa) (>2000Pa)

30

1

78,87

C1

Uw W/m2K <=2-4 Product regulations: EN 10077-2,<=6-8 EN 12412-2

50

1.6

72

km/h 0 32,2 45,53 56,67 64,39 Thermal transmittance. 7KH DYHUDJH KHDW ร RZ SHU VTXDUH PHWUH RI VXUIDFH WKDW SDVVHV WKURXJK D VWUXFWXUH WKDW GHOLPLWV WZR HQYLURQPHQWV 160 111,54 165 124 72 178 136,6 78,87 145 96,59 km/h 0 32,2 45,53 56,67 64,39 DW GLเฉ HUHQW WHPSHUDWXUHV ,Q WKH FDVH RI GRRU DQG ZLQGRZ IUDPHV LW LV XVHG WR PHDVXUH WKH HQHUJ\ Hเฉ FLHQF\ RI WKH SURGXFW ZKHQ LW FRPHV WR PDLQWDLQLQJ WKH WHPSHUDWXUH UHTXLUHG LQ GRPHVWLF HQYLURQPHQWV 7KH FORVHU WR ]HUR WKH WUDQVPLWWDQFH YDOXH WKH JUHDWHU WKH HQHUJ\ VDYLQJ Wind load resistance. 7KLV YDOXH LQGLFDWHV WKH GHJUHH RI UHVLVWDQFH WR GHIRUPDWLRQ DQG DFFLGHQWDO RSHQLQJ RI WKH GRRUV ZKHQ VXEMHFWHG Product regulations: EN 10077-2, EN 12412-2 Wind load resistance. 7KLV YDOXH LQGLFDWHV WKH GHJUHH RI UHVLV WR WKH DFWLRQ RI ZLQG 7KLV GDWD LV XVHIXO IRU XQGHUVWDQGLQJ WKH TXDOLW\ RI WKH WRROV DQG WKH PDWHULDOV XVHG LQ WKH FRQVWUXFWLRQ RI WKH GRRU WR WKH DFWLRQ RI ZLQG 7KLV GDWD LV XVHIXO IRU XQGHUVWDQGLQJ WKH performance achieved Low Medium High Top or window frame.

60

1.8

64,39

56,67

Air permeability. 7KLV YDOXH LQGLFDWHV WKH DELOLW\ RI D FORVHG GRRU RU ZLQGRZ IUDPH WR DOORZ DLU WR EH ร OWHUHG ZKHQ VXEMHFWHG WR DQ LQWHULRU H[WHULRU achieved class A1 A2 A3 A4 AE A1 A2 A3 A4 A5 A6 Flex arrow (1/150) SUHVVXUH GLเฉ HUHQFH 7KH ORZHU WKH YROXPHV RI GLVSHUVHG DLU WKH KLJK WKH TXDOLW\ RI WKH GRRU RU ZLQGRZ IUDPH DQG WKH JDVNHWV XVHG WR PDNH LW B1 B2 Flex arrow (1/200) B3 B4 B5 B6 applied pressure 150 Pa 300 Pa 450 Pa 600 Pa >600 Pa

Sound Insula๏ฟฝon (dB)

2

Product standard: UNI EN 14351-1

(150Pa) (200Pa) (250Pa) (300Pa) (450Pa) (600Pa) (750Pa) (900Pa) (1050Pa) (1200Pa) (1350Pa) (1500Pa)

Noise performance. The value that measures how door or windowVXUIDFH RI WKH SURGXFW ZLWK D ZDWHU MHW DQG DW WKH VDPH WLPH frames are able to acoustically isolate the home environment from H[WHUQDO QRLVHV 7KH VLPXODWLRQ WHVW SHUIRUPHG WR GHWHUPLQH WKLV YDOXH UHODWHV H[FOXVLYHO\ WR WKH GRRU RU ZLQGRZ IUDPH DQG WKH EXLOGLQJ :DWHUSURRร QJ 8VHG WR PHDVXUH WKH GHJUHH RI LPSHUPHDELOLW\ RI D GRRU RU ZLQGRZ IUDPH 7KLV YDOXH LV REWDLQHG E\ VSUD\LQJ WKH UDLQ DQG JXVWV RI ZLQG as a VXUIDFH RI WKH SURGXFW ZLWK D ZDWHU MHW DQG DW WKH VDPH WLPH VXEMHFWLQJ LW WR DQ LQWHULRU H[WHULRU SUHVVXUH GLเฉ HUHQFH WR VLPXODWH LQWHQVH whole may not have the same sound insulation value. Water Tightness Classification Product regulations: EN 1027, EN 12208 Product regulations: EN 20140-3, EN ISO 140-3, EN ISO 717-1 UDLQ DQG JXVWV RI ZLQG

Thermal Transmi๏ฟฝance (W/m2 K)

0

45,53

achieved class

TECHNICAL REFERENCES

A B C D E F G H I J

Thermal Transmittance (W/m2 K) 0.9 1.3 1.3 1.5 1.6 1.5 1.6 1.9 1.6 1.5

(100Pa)

32,2

Product regulations: EN 10077-2, EN 12412-2

The selected product AWS 75.SI+ was chosen for its impressive Thermal Transmittance performance as well as Sound and Wind resistance. PRODUCT NAME

(50Pa)

0

Wind load resistance. 7KLV YDOXH LQGLFDWHV WKH GHJUHH RI UHVLVWDQFH WR GHIRUPDWLRQ DQG DFFLGHQWDO RSHQLQJ RI WKH GRRUV ZKHQ VXEMHFWHG WR WKH DFWLRQ RI ZLQG 7KLV GDWD LV XVHIXO IRU XQGHUVWDQGLQJ WKH TXDOLW\ RI WKH WRROV DQG WKH PDWHULDOV XVHG LQ WKH FRQVWUXFWLRQ RI WKH GRRU Air permeability. 7KLV YDOXH LQGLFDWHV WKH DELOLW\ RI D FORVHG GRRU R Product standard: EN 14351-1 Wind Load Resistance Classification SUHVVXUH GLเฉ HUHQFH 7KH ORZHU WKH YROXPHV RI GLVSHUVHG DLU WKH K Air Permeability Classification or window frame.UNI

The following products and their supporting data were provided by Schuco - one of the leading suppliers of high-quality window, door and faรงade systems made from aluminium, PVC-U and steel.

REF.

(0 Pa)

km/h

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

918816 918417 912788 918641

Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401

GREENFALL FINAL PRESENTATION_December 20th

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

7.1


km/h

EXTERIOR DOOR FRAMES

achieved class

6A

7A

50Pa) (300Pa) 72

78,87

9A (600Pa) 111,54

E1200

E1350

(1200Pa) (1350Pa) 160

165

Sound Insulation (dB)

Wind Load Resistance

42 43 43 43 43 43 43

C3/B3 C3 C3 C3 C3 C3 C3

1.7 1.6 2.2 E1500 (1500Pa) 2.3 178 2.2 2.9

FH WR GHIRUPDWLRQ DQG DFFLGHQWDO RSHQLQJ RI WKH GRRUV ZKHQ VXEMHFWHG DOLW\ RI WKH WRROV DQG WKH PDWHULDOV XVHG LQ WKH FRQVWUXFWLRQ RI WKH GRRU

Thermal Transmi๏ฟฝance (W/m2 K)

DATA ANALYSIS

C6

) (>2000Pa)

42.4

1.5

42.2

B

C

D

E

F

41.4

C6

Product regulations: EN 1026, EN 12207 C1 Flex arrow (1/300)

C2

C3

C4

C5

C6

1A

2A

3A

(0 Pa)

(50Pa)

(100Pa)

Uw W/m2K <=2-4 Product regulations: EN 10077-2,<=6-8 EN 12412-2

145

160

165

178

:DWHUSURRร QJ 8VHG WR PHDVXUH WKH GHJUHH RI LPSHUPHDELO

5A

4A

6A

1A

achieved class 7A

8A

9A air

E750 pressure

E900 (0

2A

3A

5A

4A

E1200 (100Pa) E1350 Pa)E1050(50Pa)

E1500 (150Pa)

(150Pa) (200Pa) (250Pa) (300Pa) (450Pa) (600Pa) (750Pa) (900Pa) (1050Pa) (1200Pa) (1350Pa) (1500Pa)

(200Pa)

<=1-2

or window frame.

<=0-1

achieved class

C1

C2

C3

C4

C5

Product regulations: EN 10077-2, EN 12412-2 C6

Flex arrow (1/150)

A1

A2

A3

A4

A5

Flex arrow (1/200)

B1

B2

B3

B4

B5

B6

achieved class

C1

C2

C3

C4

C5

Flex arrow (1/300)

C1

C2

C3

C4

C5

C6

Flex arrow (1/150)

A1

A2

A3

A4

A5

Flex arrow (1/200)

B1

B2

B3

B4

B5

A6

Applied pressure (400Pa) (800Pa) (1200Pa) (1500Pa) (2000Pa) (>2000Pa)

C1 C2 C3 C4 C5 Flex arrow (1/300) Noise performance. The value that measures how door or window frames are able toApplied acoustically isolate the home environment from pressure (400Pa) (800Pa) (1200Pa) (1500Pa) (2000 H[WHUQDO QRLVHV 7KH VLPXODWLRQ WHVW SHUIRUPHG WR GHWHUPLQH WKLV YDOXH UHODWHV H[FOXVLYHO\ WR WKH GRRU RU ZLQGRZ IUDPH DQG WKH EXLOGLQJ as a whole may not have the same sound insulation value. Product regulations: EN 20140-3, EN ISO 140-3, EN ISO 717-1

41.6 G

C5

air pressure

A

B

C

D

E

F

G

performance achieved

0db

Noise performance. The value that measures how door or win H[WHUQDO QRLVHV 7KH VLPXODWLRQ WHVW SHUIRUPHG WR GHWHUPLQH WKL as a whole may not have the same sound insulation value.

<=12db <=24db <=36db <=48db <=60db

Thermal transmittance. 7KH DYHUDJH KHDW ร RZ SHU VTXDUH PHWUH RI VXUIDFH WKDW SDVVHV WKURXJK D VWUXFWXUH WKDW GHOLPLWV WZR HQYLURQPHQWV Product regulations: EN 20140-3, EN ISO 140-3, EN ISO 717-1 DW GLเฉ HUHQW WHPSHUDWXUHV ,Q WKH FDVH RI GRRU DQG ZLQGRZ IUDPHV LW LV XVHG WR PHDVXUH WKH HQHUJ\ Hเฉ FLHQF\ RI WKH SURGXFW ZKHQ LW FRPHV WR PDLQWDLQLQJ WKH WHPSHUDWXUH UHTXLUHG LQ GRPHVWLF HQYLURQPHQWV 7KH FORVHU WR ]HUR WKH WUDQVPLWWDQFH YDOXH WKH JUHDWHU WKH HQHUJ\ VDYLQJ performance achieved 0db <=12db <=24db <=36db <=48 Product regulations: EN 10077-2, EN 12412-2

<=60db

performance achieved Uw W/m2K

RI VXUIDFH WKDW SDVVHV WKURXJK D VWUXFWXUH WKDW GHOLPLWV WZR HQYLURQPHQWV W LV XVHG WR PHDVXUH WKH HQHUJ\ Hเฉ FLHQF\ RI WKH SURGXFW ZKHQ LW FRPHV 7KH FORVHU WR ]HUR WKH WUDQVPLWWDQFH YDOXH WKH JUHDWHU WKH HQHUJ\ VDYLQJ ADS 75.SI PRODUCT

WINDOW SPECIFICATIONS

136,6

km/h 0 32,2 45,53 56,67 64,39 Thermal transmittance. 7KH DYHUDJH KHDW ร RZ SHU VTXDUH PHWUH RI VXUIDFH WKDW SDVVHV WKURXJK D VWUXFWXUH WKDW GHOLPLWV WZR HQYLURQPHQWV 160 111,54 165 124 72 178 136,6 78,87 145 96,59 km/h 0 32,2 45,53 56,67 64,39 DW GLเฉ HUHQW WHPSHUDWXUHV ,Q WKH FDVH RI GRRU DQG ZLQGRZ IUDPHV LW LV XVHG WR PHDVXUH WKH HQHUJ\ Hเฉ FLHQF\ RI WKH SURGXFW ZKHQ LW FRPHV WR PDLQWDLQLQJ WKH WHPSHUDWXUH UHTXLUHG LQ GRPHVWLF HQYLURQPHQWV 7KH FORVHU WR ]HUR WKH WUDQVPLWWDQFH YDOXH WKH JUHDWHU WKH HQHUJ\ VDYLQJ Wind load resistance. 7KLV YDOXH LQGLFDWHV WKH GHJUHH RI UHVLVWDQFH WR GHIRUPDWLRQ DQG DFFLGHQWDO RSHQLQJ RI WKH GRRUV ZKHQ VXEMHFWHG Product regulations: EN 10077-2, EN 12412-2 Wind load resistance. 7KLV YDOXH LQGLFDWHV WKH GHJUHH RI UHVLVWDQ WR WKH DFWLRQ RI ZLQG 7KLV GDWD LV XVHIXO IRU XQGHUVWDQGLQJ WKH TXDOLW\ RI WKH WRROV DQG WKH PDWHULDOV XVHG LQ WKH FRQVWUXFWLRQ RI WKH GRRU WR WKH DFWLRQ RI ZLQG 7KLV GDWD LV XVHIXO IRU XQGHUVWDQGLQJ WKH T performance achieved Low Medium High Top or window frame.

41.8

ow frames are able 0.5 to acoustically isolate the home environment from YDOXH UHODWHV H[FOXVLYHO\ WR WKH GRRU RU ZLQGRZ IUDPH DQG WKH EXLOGLQJ

C4

achieved class

42

1

C3

Product regulations: EN 1027, EN 12208 performance achieved 0db <=12db <=24db <=36db <=48db <=60db

42.6

A

124

Noise performance. The value that measures how door or windowVXUIDFH RI WKH SURGXFW ZLWK D ZDWHU MHW DQG DW WKH VDPH WLPH VX frames are able to acoustically isolate the home environment from H[WHUQDO QRLVHV 7KH VLPXODWLRQ WHVW SHUIRUPHG WR GHWHUPLQH WKLV YDOXH UHODWHV H[FOXVLYHO\ WR WKH GRRU RU ZLQGRZ IUDPH DQG WKH EXLOGLQJ :DWHUSURRร QJ 8VHG WR PHDVXUH WKH GHJUHH RI LPSHUPHDELOLW\ RI D GRRU RU ZLQGRZ IUDPH 7KLV YDOXH LV REWDLQHG E\ VSUD\LQJ WKH UDLQ DQG JXVWV RI ZLQG as a VXUIDFH RI WKH SURGXFW ZLWK D ZDWHU MHW DQG DW WKH VDPH WLPH VXEMHFWLQJ LW WR DQ LQWHULRU H[WHULRU SUHVVXUH GLเฉ HUHQFH WR VLPXODWH LQWHQVH whole may not have the same sound insulation value. Water Tightness Classification Product regulations: EN 1027, EN 12208 Product regulations: EN 20140-3, EN ISO 140-3, EN ISO 717-1 UDLQ DQG JXVWV RI ZLQG

42.8

2

0

111,54

Product regulations: EN 1026, EN 12207 C2

applied pressure 150 Pa 300 Pa 450 Pa 600 Pa >600 Pa

43

2.5

B6

96,59

Applied pressure (400Pa) (800Pa) (1200Pa) (1500Pa) (2000Pa) (>2000Pa) achieved class A1 A2 A3 A4 AE

43.2

3

A6

78,87

Air permeability. 7KLV YDOXH LQGLFDWHV WKH DELOLW\ RI D FORVHG GRRU RU ZLQGRZ IUDPH WR DOORZ DLU WR EH ร OWHUHG ZKHQ VXEMHFWHG WR DQ LQWHULRU H[WHULRU achieved class A1 A2 A3 A4 AE A1 A2 A3 A4 A5 A6 Flex arrow (1/150) SUHVVXUH GLเฉ HUHQFH 7KH ORZHU WKH YROXPHV RI GLVSHUVHG DLU WKH KLJK WKH TXDOLW\ RI WKH GRRU RU ZLQGRZ IUDPH DQG WKH JDVNHWV XVHG WR PDNH LW B1 B2 Flex arrow (1/200) B3 B4 B5 B6 applied pressure 150 Pa 300 Pa 450 Pa 600 Pa >600 Pa

Sound Insula๏ฟฝon (dB)

3.5

C6

72

C1

TECHNICAL REFERENCES

Thermal Transmittance

(W/m2 K) \ RI D GRRU RU ZLQGRZ IUDPH 7KLV YDOXH LV REWDLQHG E\ VSUD\LQJ WKH MHFWLQJ LW WR DQ LQWHULRU H[WHULRU SUHVVXUH GLเฉ HUHQFH WR VLPXODWH LQWHQVH A AD UP 75 1.6 ADS 70.HI ADS 75.SI 75 HD.HI E750ADSE900 E1050 (750Pa)ADS (900Pa) (1050Pa) 70 HD 124 ADS 136,665 145 ADS 65 HD

64,39

56,67

Product regulations: EN 10077-2, EN 12412-2

The selected product ADS 75.SI was chosen for its impressive Thermal Transmittance performance as well as Air and Wind resistance.

B C 8AD (450Pa) E 96,59 F G

45,53

Product Comparison & Details

faรงade systems made from aluminium, PVC-U and steel.

PRODUCT NAME

32,2

Wind load resistance. 7KLV YDOXH LQGLFDWHV WKH GHJUHH RI UHVLVWDQFH WR GHIRUPDWLRQ DQG DFFLGHQWDO RSHQLQJ RI WKH GRRUV ZKHQ VXEMHFWHG WR WKH DFWLRQ RI ZLQG 7KLV GDWD LV XVHIXO IRU XQGHUVWDQGLQJ WKH TXDOLW\ RI WKH WRROV DQG WKH PDWHULDOV XVHG LQ WKH FRQVWUXFWLRQ RI WKH GRRU Air permeability. 7KLV YDOXH LQGLFDWHV WKH DELOLW\ RI D FORVHG GRRU RU Z Product standard: EN 14351-1 Wind Load Resistance Classification SUHVVXUH GLเฉ HUHQFH 7KH ORZHU WKH YROXPHV RI GLVSHUVHG DLU WKH KLJ Air Permeability Classification or window frame.UNI

QGRZ IUDPH WR DOORZ DLU WR EH ร OWHUHG ZKHQ VXEMHFWHG WR DQ LQWHULRU H[WHULRU The following products and their supporting data were provided by Schuco - one of the leading suppliers of high-quality window, door and WKH TXDOLW\ RI WKH GRRU RU ZLQGRZ IUDPH DQG WKH JDVNHWV XVHG WR PDNH LW

REF.

0

MATERIAL ENERGY BASIC DEPTH U VALUE MAX. GLASS THICKNESS OPENING SOUND INSULATION AIR PERMEABILITY WATER TIGHTNESS WIND LOAD RESISTANCE

Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

GROUP 2:

High

Top

<=2-4

<=1-2

<=0-1

exceptional standards for all other areas.

Aluminum Highly Thermally Insulated 75 mm 1.6 (W/m2 K) 57 mm Side Hung; Inward and Outward 43 dB Class 2 (300 Pa) 5A (200 Pa; 64.39 km/h) C3 (1200 Pa)

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

Medium

Thermal transmittance. 7KH DYHUDJH KHDW ร RZ SHU VTXDUH PHWUH DW GLเฉ HUHQW WHPSHUDWXUHV ,Q WKH FDVH RI GRRU DQG ZLQGRZ IUDPHV This product was chosen for its Thermal Transmittance performance. This product also has WR PDLQWDLQLQJ WKH WHPSHUDWXUH UHTXLUHG LQ GRPHVWLF HQYLURQPHQW

SPECIFICATIONS

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

Low <=6-8

918816 918417 912788 918641

Product regulations: EN 10077-2, EN 12412-2 performance achieved

Low

Medium

High

Due to the fact that this product will be used for most exterior entry and exit points, the highest Uw W/m2K <=6-8 <=2-4 <=1-2 priority was safety. This product tested for Burglar Resistance RC3 which is ideal for this situation.

Top <=0-1

The high classification of Water Tightness, as well as respectable grades for air permeability also make this ideal for providing an adequate boundary between the indoor and outdoor zones. The high sound insulation is also ideal in order to maximize the comfort of the residents.

927160 Seyedi Zadeh Fereshteh 912843 Sheikhhassani Navid Zohourparvaz Mohamadreza 927401

GREENFALL FINAL PRESENTATION_December 20th

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

7.2


air pressure

(0 Pa)

(50Pa)

(100Pa)

0

32,2

45,53

km/h

INTERIOR WINDOWS & DOORS

E1350

E1500

MATERIAL 160 111,54 165 124 178 136,6ENERGY 78,87 145 96,59 BASIC DEPTH WR GHIRUPDWLRQ DQG DFFLGHQWDO RSHQLQJ RI WKH GRRUV ZKHQ VXEMHFWHG BURGLAR RESISTANCE W\ RI WKH WRROV DQG WKH PDWHULDOV XVHG LQ WKH FRQVWUXFWLRQ RI WKH GRRU MAX. GLASS THICKNESS OPENING C6 SOUND INSULATION

a) (300Pa) (450Pa) (600Pa) (750Pa) (900Pa) (1050Pa) (1200Pa) (1350Pa) (1500Pa)

A6

Aluminum Non-Insulated 65 mm RC2 39 mm Side Hung; Inward and Outward 44 dB

B6 C6

2000Pa)

124

136,6

160

145

165

178

Product Details

XUIDFH WKDW SDVVHV WKURXJK D VWUXFWXUH WKDW GHOLPLWV WZR HQYLURQPHQWV V XVHG WR PHDVXUH WKH HQHUJ\ Hเฉ FLHQF\ RI WKH SURGXFW ZKHQ LW FRPHV H FORVHU WR ]HUR WKH WUDQVPLWWDQFH YDOXH WKH JUHDWHU WKH HQHUJ\ VDYLQJ

This product was chosen from the Non-Insulated variants offered by Schuco. In comparison to insulated options, there is a limited number of products available for non-insulated practices. This option was ideal due to its Sound Insulation performance. Since these doors seperate only interior areas, sound insulation is paramount in order to maximize the comfort of the residents. This product also comes in a large variety of sizes, and is relatively economical compared to the more advanced thermally insulated options.

A4

A5

achieved class

A6

A1

A2

A3

A4

AE

applied pressure 150 Pa 300 Pa 450 Pa 600 Pa >600 Pa

5A

4A

6A

7A

8A

9A

E750

E900

E1050

E1200

E1350

E1500

(1200Pa) (1350Pa) (600Pa) (750Pa) (50Pa) <=24db (100Pa) <=36db (150Pa) (200Pa) air pressure 0db(0 Pa)<=12db performance achieved <=48db (250Pa) <=60db(300Pa) (450Pa) achieved 1A (1050Pa) 2A 3A (1500Pa) 4A class (900Pa) 160 111,54 165 124 72 178 136,6 78,87 145 96,59 km/h 0 32,2 45,53 56,67 64,39

air pressure

(0 Pa)

(50Pa)

(100Pa)

5A

Product regulations: EN 10077-2, EN 12412-2 performance achieved Low Medium High Top achieved class C1 Uw W/m2K <=6-8 <=2-4 C2<=1-2 C3 <=0-1 C4 A1 A2 A3 A4 Flex arrow (1/150)

C5 A5

Flex arrow (1/200)

B1

B2

B3

B4

B5

Flex arrow (1/300)

C1

C2

C3

C4

C5

6A

7A

64,39

72

78,87

GROUP 2:

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

96,5

Wind load resistance. 7KLV YDOXH LQGLFDWHV WKH GHJUHH RI UHVLVWDQFH WR GHIRUPDWLRQ WR WKH DFWLRQ RI ZLQG 7KLV GDWD LV XVHIXO IRU XQGHUVWDQGLQJ WKH TXDOLW\ RI WKH WRROV C6 orA6window frame. Product regulations: EN 10077-2, EN 12412-2 B6 C6

Applied pressure (400Pa) (800Pa) (1200Pa) (1500Pa) (2000Pa) (>2000Pa)

achieved class

C1

C2

C3

C4

C5

C6

Flex arrow (1/150)

A1

A2

A3

A4

A5

A6

B1home environment B2 Flex arrow (1/200) B3 from B4 B5 B6 Noise performance. The value that measures how door or window frames are able to acoustically isolate the H[WHUQDO QRLVHV 7KH VLPXODWLRQ WHVW SHUIRUPHG WR GHWHUPLQH WKLV YDOXH UHODWHV H[FOXVLYHO\ WR WKH GRRU RU ZLQGRZ IUDPH DQG WKH EXLOGLQJ C1 C2 C3 C4 C5 C6 Flex arrow (1/300) as a whole may not have the same sound insulation value. Applied pressure (400Pa) (800Pa) (1200Pa) (1500Pa) (2000Pa) (>2000Pa) Product regulations: EN 20140-3, EN ISO 140-3, EN ISO 717-1 0db

<=12db <=24db <=36db <=48db <=60db

Noise performance. The value that measures how door or window frames are ab

ECONOMY 50 PRODUCT SPECIFICATIONS Thermal transmittance. 7KH DYHUDJH KHDW ร RZ SHU VTXDUH PHWUH RI VXUIDFH WKDW SDVVHV WKURXJK D VWUXFWXUH WKDW GHOLPLWV WZR HQYLURQPHQWV H[WHUQDO QRLVHV 7KH VLPXODWLRQ WHVW SHUIRUPHG WR GHWHUPLQH WKLV YDOXH UHODWHV H[FO MATERIAL ENERGY BASIC DEPTH U VALUE MAX. GLASS THICKNESS SOUND INSULATION SURFACE FINISH AIR PERMEABILITY WATER TIGHTNESS WIND LOAD RESISTANCE

DW GLเฉ HUHQW WHPSHUDWXUHV ,Q WKH FDVH RI GRRU DQG ZLQGRZ IUDPHV LW LV XVHG WR PHDVXUH WKH HQHUJ\ Hเฉ FLHQF\ RI WKH SURGXFW ZKHQ LW FRPHV as a whole may not have the same sound insulation value. WR PDLQWDLQLQJ WKH WHPSHUDWXUH UHTXLUHG LQ GRPHVWLF HQYLURQPHQWV 7KH FORVHU WR ]HUR WKH WUDQVPLWWDQFH YDOXH WKH JUHDWHU WKH HQHUJ\ VDYLQJ Product regulations: EN 20140-3, EN ISO 140-3, EN ISO 717-1 Product regulations: EN 10077-2, EN 12412-2

Steel performance achieved Low Medium High Top Non-Insulated Uw W/m2K <=6-8 <=2-4 <=1-2 <=0-1 50 mm N/A 35 mm 43 dB Stainless Steel Class 4 (600 Pa) 9A (600 Pa; 111.54 km/h) C3 (1200 Pa)

performance achieved

0db

<=12db <=24db <=36db <=48db <=60db

Thermal transmittance. 7KH DYHUDJH KHDW ร RZ SHU VTXDUH PHWUH RI VXUIDFH WKDW SDV DW GLเฉ HUHQW WHPSHUDWXUHV ,Q WKH FDVH RI GRRU DQG ZLQGRZ IUDPHV LW LV XVHG WR PHDV WR PDLQWDLQLQJ WKH WHPSHUDWXUH UHTXLUHG LQ GRPHVWLF HQYLURQPHQWV 7KH FORVHU WR ]HUR Product regulations: EN 10077-2, EN 12412-2 performance achieved Uw W/m2K

Low

Medium

High

Top

<=6-8

<=2-4

<=1-2

<=0-1

The selected product ECONOMY 50 as chosen for interior use since Thermal Insulation was not required. Differing only from the others due to its fabrication of Stainless Steel, these indoor windows will be used mainly in an โ indoor facadeโ type implementation. Indoor seperations of glass walls will be outfitted with this product, owing mainly to its Sound Insulation capabilities.

PRODUCED BY AN AUTODESK STUDENT VERSION Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

8A

(150Pa) (200Pa) (250Pa) (300Pa) (450P

km/h 0 32,2 45,53 56,67 Thermal transmittance. 7KH DYHUDJH KHDW ร RZ SHU VTXDUH PHWUH RI VXUIDFH WKDW SDVVHV WKURXJK D VWUXFWXUH WKDW GHOLPLWV WZR HQYLURQPHQWV Wind load resistance. 7KLV YDOXH LQGLFDWHV WKH GHJUHH RI UHVLVWDQFH WR GHIRUPDWLRQ DQG DFFLGHQWDO RSHQLQJ RI WKH GRRUV ZKHQ VXEMHFWHG DW GLเฉ HUHQW WHPSHUDWXUHV ,Q WKH FDVH RI GRRU DQG ZLQGRZ IUDPHV LW LV XVHG WR PHDVXUH WKH HQHUJ\ Hเฉ FLHQF\ RI WKH SURGXFW ZKHQ LW FRPHV WR WKH DFWLRQ RI ZLQG 7KLV GDWD LV XVHIXO IRU XQGHUVWDQGLQJ WKH TXDOLW\ RI WKH WRROV DQG WKH PDWHULDOV XVHG LQ WKH FRQVWUXFWLRQ RI WKH GRRU WR PDLQWDLQLQJ WKH WHPSHUDWXUH UHTXLUHG LQ GRPHVWLF HQYLURQPHQWV 7KH FORVHU WR ]HUR WKH WUDQVPLWWDQFH YDOXH WKH JUHDWHU WKH HQHUJ\ VDYLQJ orregulations: window frame. Product EN 10077-2, EN 12412-2

performance achieved

frames are able to acoustically isolate the home environment from XH UHODWHV H[FOXVLYHO\ WR WKH GRRU RU ZLQGRZ IUDPH DQG WKH EXLOGLQJ

<=60db

A3

Product regulations: EN 20140-3, EN ISO 140-3, EN ISO 717-1 1A 2A 3A achieved class

TECHNICAL REFERENCES

E1200

111,54

:DWHUSURRร QJ 8VHG WR PHDVXUH WKH GHJUHH RI LPSHUPHDELOLW\ RI D GRRU RU Z :DWHUSURRร QJ 8VHG WR PHDVXUH WKH GHJUHH RI LPSHUPHDELOLW\ RI D GRRU RU ZLQGRZ IUDPH 7KLV YDOXH LV REWDLQHG E\ VSUD\LQJ WKH Noise performance. The value that measures how door or window frames are able to acoustically isolate the home environment from VXUIDFH RI WKH SURGXFW ZLWK D ZDWHU MHW DQG DW WKH VDPH WLPH VXEMHFWLQJ LW WR DQ LQWHULRU H[WHULRU SUHVVXUH GLเฉ HUHQFH WR VLPXODWH LQWHQVH VXUIDFH RI WKH SURGXFW ZLWK D ZDWHU MHW DQG DW WKH VDPH WLPH VXEMHFWLQJ LW WR DQ LQ Water Tightness Classification H[WHUQDO QRLVHV 7KH VLPXODWLRQ WHVW SHUIRUPHG WR GHWHUPLQH WKLV YDOXH UHODWHV H[FOXVLYHO\ WR WKH GRRU RU ZLQGRZ IUDPH DQG WKH EXLOGLQJ UDLQ DQG JXVWV RI ZLQG UDLQ DQG JXVWV RI ZLQG Product regulations: 1027,the EN same 12208 sound insulation value. as a whole may not EN have Product regulations: EN 1027, EN 12208

ADS 65.NI PRODUCT SPECIFICATIONS E1050

A2

B1 B4 B5 B6 A1 A2 B2 A3 B3 A4 AE C2 450 Pa C3 C4 Pa C5 C6 Flex arrowpressure (1/300) 150C1Pa 300 Pa 600 Pa >600 applied Applied pressure (400Pa) (800Pa) (1200Pa) (1500Pa) (2000Pa) (>2000Pa) Flex achieved arrow (1/200) class

RI D GRRU RU ZLQGRZ IUDPH 7KLV YDOXH LV REWDLQHG E\ VSUD\LQJ WKH WLQJ LW WR DQ LQWHULRU H[WHULRU SUHVVXUH GLเฉ HUHQFH WR VLPXODWH LQWHQVH

E900

96,59

Air permeability. 7KLV YDOXH LQGLFDWHV WKH DELOLW\ RI D FORVHG GRRU RU ZLQGRZ IUDPH WR DOORZ DLU WR EH ร OWHUHG ZKHQ VXEMHFWHG WR DQ LQWHULRU H[WHULRU Product regulations: EN 1026, EN 12207 SUHVVXUH GLเฉ HUHQFH 7KH ORZHU WKH YROXPHV RI GLVSHUVHG DLU WKH KLJK WKH TXDOLW\ RI WKH GRRU RU ZLQGRZ IUDPH DQG WKH JDVNHWV XVHG WR PDNH LW achieved class C1 C2 C3 C4 C5 C6

The selected product ADS 65.NI was chosen for interior use since Thermal Insulation was not required.

E750

78,87

Product regulations: EN 10077-2, EN 12412-2

Product regulations: EN 1026, EN 12207 A1 Flex arrow (1/150)

9A

72

WR WKH DFWLRQ RI ZLQG 7KLV GDWD LV XVHIXO IRU XQGHUVWDQGLQJ WKH TXDOLW\ RI WKH WRROV DQG WKH PDWHULDOV XVHG LQ WKH FRQVWUXFWLRQ RI WKH GRRU Air permeability. 7KLV YDOXH LQGLFDWHV WKH DELOLW\ RI D FORVHG GRRU RU ZLQGRZ IUDPH WR DOOR Air Permeability Classification or window frame. Wind Load Resistance Classification SUHVVXUH GLเฉ HUHQFH 7KH ORZHU WKH YROXPHV RI GLVSHUVHG DLU WKH KLJK WKH TXDOLW\ RI WKH

door and faรงade systems made from aluminium, PVC-U and steel.

8A

64,39

56,67

Product UNI EN 14351-1 Wind standard: load resistance. 7KLV YDOXH LQGLFDWHV WKH GHJUHH RI UHVLVWDQFH WR GHIRUPDWLRQ DQG DFFLGHQWDO RSHQLQJ RI WKH GRRUV ZKHQ VXEMHFWHG

RZ IUDPH WR DOORZ DLU WR EH ร OWHUHG ZKHQ VXEMHFWHG WR DQ LQWHULRU H[WHULRU H TXDOLW\ RI WKH GRRU RU ZLQGRZ IUDPH DQG WKH JDVNHWV XVHG WR PDNH LW The following product and supporting data were provided by Schuco - one of the leading suppliers of high-quality window,

7A

Product standard: UNI EN 14351-1

(150Pa) (200Pa) (250Pa) (300Pa) (450Pa) (600Pa) (750Pa) (900Pa) (1050Pa) (1200Pa) (1350Pa) (1500Pa)

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

918816 918417 912788 918641

927160 Seyedi Zadeh Fereshteh 912843 Sheikhhassani Navid Zohourparvaz Mohamadreza 927401

GREENFALL FINAL PRESENTATION_December 20th

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

7.3


air pressure

EXTERIOR FACADE GLASS

(0 Pa)

(50Pa)

(100Pa)

0

32,2

45,53

km/h

Product standard: UNI EN 14351-1

Product standard: UNI EN 14351-1

(150Pa) (200Pa) (250Pa) (300Pa) (450Pa) (600Pa) (750Pa) (900Pa) (1050Pa) (1200Pa) (1350Pa) (1500Pa) 64,39

56,67

124

136,6

160

145

165

178

Product Details

Product regulations: EN 1026, EN 12207

Product regulations: EN 1026, EN 12207

achieved class

C1

C2

C3

C4

C5

C6

Flexclass arrow (1/150) achieved A1

A1 A2

A2 A3

A4A3

AE A4

A5

A6

B4

B5

B6

C4

C5

C6

B1

Flex arrow (1/200)

B2

B3

applied pressure 150 Pa 300 Pa 450 Pa 600 Pa >600 Pa C1

TECHNICAL REFERENCES

Flex arrow (1/300)

Aluminum Highly Thermally Insulated 1.09 (W/m2 K) 64 mm 52 dB AE 1350 (1350 Pa) RE 1350 (1350 Pa; 165 km/h) 2.0/3.0 kN/m2

111,54

96,59

SUHVVXUH GLเฉ HUHQFH 7KH ORZHU WKH YROXPHV RI GLVSHUVHG DLU WKH KLJK WKH TXDOLW\ RI WKH GRRU RU ZLQGRZ IUDPH DQG WKH JDVNHWV XVHG WR PDNH LW Product regulations: EN 10077-2, EN 12412-2

The selected product AOC 50 TI.HI was chosen for its impressive Thermal Transmittance performance as well as excellent Sound Insullation capabilities.

MATERIAL ENERGY E1200 9A E1350 E750 E1500 E900 E1050 600Pa) (750Pa) (900Pa) (1050Pa) (1200Pa) (1350Pa) (1500Pa) U VALUE 160 111,54 165 124 178 136,6 145 MAX. GLASS THICKNESS SOUND INSULATION G DFFLGHQWDO RSHQLQJ RI WKH GRRUV ZKHQ VXEMHFWHG AIR PERMEABILITY WKH PDWHULDOV XVHG LQ WKH FRQVWUXFWLRQ RI WKH GRRU WATER TIGHTNESS WIND LOAD RESISTANCE

78,87

Wind load resistance. 7KLV YDOXH LQGLFDWHV WKH GHJUHH RI UHVLVWDQFH WR GHIRUPDWLRQ DQG DFFLGHQWDO RSHQLQJ RI WKH GRRUV ZKHQ VXEMHFWHG WR WKH DFWLRQ RI ZLQG 7KLV GDWD LV XVHIXO IRU XQGHUVWDQGLQJ WKH TXDOLW\ RI WKH WRROV DQG WKH PDWHULDOV XVHG LQ WKH FRQVWUXFWLRQ RI WKH GRRU Air permeability. 7KLV YDOXH LQGLFDWHV WKH DELOLW\ RI D FORVHG GRRU RU ZLQGRZ IUDPH WR DOOR Air permeability. 7KLV YDOXH LQGLFDWHV WKH DELOLW\ RI D FORVHG GRRU RU ZLQGRZ IUDPH WR DOORZ DLU WR EH ร OWHUHG ZKHQ VXEMHFWHG WR DQ LQWHULRU H[WHULRU Air Permeability Classification or window frame. Wind Load Resistance Classification SUHVVXUH GLเฉ HUHQFH 7KH ORZHU WKH YROXPHV RI GLVSHUVHG DLU WKH KLJK WKH TXDOLW\ RI WKH

U WR EH ร OWHUHG ZKHQ VXEMHFWHG WR DQ LQWHULRU H[WHULRU The following product was sourced from Schuco - a dynamic and high performance unitised facade implement. U RU ZLQGRZ IUDPH DQG WKH JDVNHWV XVHG WR PDNH LW

RZ IUDPH 7KLV YDOXH LV REWDLQHG E\ VSUD\LQJ WKH RU H[WHULRU SUHVVXUH GLเฉ HUHQFH WR VLPXODWH LQWHQVH AOC 50 TI.HI PRODUCT SPECIFICATIONS

72

C2

C3

achieved class

A1

A2

A3

A4

AE

applied pressure 150 Pa 300 Pa 450 Pa 600 Pa >600 Pa

Applied pressure (400Pa) (800Pa) (1200Pa) (1500Pa) (2000Pa) (>2000Pa)

:DWHUSURRร QJ 8VHG WR PHDVXUH WKH GHJUHH RI LPSHUPHDELOLW\ RI D GRRU RU ZLQGRZ IUDPH 7KLV YDOXH LV REWDLQHG E\ VSUD\LQJ WKH :DWHUSURRร QJ 8VHG WR PHDVXUH WKH GHJUHH RI LPSHUPHDELOLW\ RI D GRRU RU Z VXUIDFH RI WKH SURGXFW ZLWK D ZDWHU MHW DQG DW WKH VDPH WLPH VXEMHFWLQJ LW WR DQ LQWHULRU H[WHULRU SUHVVXUH GLเฉ HUHQFH WR VLPXODWH LQWHQVH Noise performance. The value that measures how door or window frames are able to acoustically isolate the home environment from VXUIDFH RI WKH SURGXFW ZLWK D ZDWHU MHW DQG DW WKH VDPH WLPH VXEMHFWLQJ LW WR DQ LQ Water Tightness Classification UDLQ DQG JXVWV RI ZLQG H[WHUQDO QRLVHV 7KH VLPXODWLRQ WHVW SHUIRUPHG WR GHWHUPLQH WKLV YDOXH UHODWHV H[FOXVLYHO\ WR WKH GRRU RU ZLQGRZ IUDPH DQG WKH EXLOGLQJ

UDLQ DQG JXVWV RI ZLQG

Productasregulations: EN 1027, 12208 a whole may not EN have the same sound insulation value. Product regulations: EN 20140-3, EN ISO 140-3, EN ISO 717-1

1A

achieved class

2A

3A

Product regulations: EN 1027, EN 12208

5A

4A

6A

7A

9A

8A

E750

E900

E1050

E1200

E1350

E1500

performance achieved(0 Pa)0db (50Pa) <=12db <=24db(150Pa) <=36db <=48db <=60db(300Pa) (450Pa)achieved 5A 2A 3A 4A (1500Pa) (1200Pa) (600Pa) class (200Pa) (1350Pa) (750Pa) 1A (250Pa) (900Pa) (1050Pa) (100Pa) air pressure

km/h

0

32,2

45,53

64,39

56,67

72

78,87

96,59

air pressure 111,54 124 (0 Pa) 136,6 (50Pa) 145

(100Pa) 160

6A

7A

8A

(200Pa) (250Pa) (300Pa) (450 (150Pa) 165 178

km/h 0 32,2 45,53 56,67 64,39 Thermal transmittance. 7KH DYHUDJH KHDW ร RZ SHU VTXDUH PHWUH RI VXUIDFH WKDW SDVVHV WKURXJK D VWUXFWXUH WKDW GHOLPLWV WZR HQYLURQPHQWV DW GLเฉ HUHQW WHPSHUDWXUHV ,Q WKH FDVH RI GRRU DQG ZLQGRZ IUDPHV LW LV XVHG WR PHDVXUH WKH HQHUJ\ Hเฉ FLHQF\ RI WKH SURGXFW ZKHQ LW FRPHV WindWR PDLQWDLQLQJ WKH WHPSHUDWXUH UHTXLUHG LQ GRPHVWLF HQYLURQPHQWV 7KH FORVHU WR ]HUR WKH WUDQVPLWWDQFH YDOXH WKH JUHDWHU WKH HQHUJ\ VDYLQJ load resistance. 7KLV YDOXH LQGLFDWHV WKH GHJUHH RI UHVLVWDQFH WR GHIRUPDWLRQ DQG DFFLGHQWDO RSHQLQJ RI WKH GRRUV ZKHQ VXEMHFWHG

72

78,87

96,5

WR WKH DFWLRQ RI ZLQG 7KLV GDWD LV XVHIXO IRU XQGHUVWDQGLQJ WKH TXDOLW\ RI WKH WRROV DQG WKH PDWHULDOV XVHG LQ WKH FRQVWUXFWLRQ RI WKH GRRU Product regulations: EN 10077-2, EN 12412-2 Wind load resistance. 7KLV YDOXH LQGLFDWHV WKH GHJUHH RI UHVLVWDQFH WR GHIRUPDWLRQ or window frame. performance achieved

Low

Medium

High

Top

<=6-8

<=2-4

<=1-2

<=0-1

Product regulations: EN 10077-2, EN 12412-2 Uw W/m2K

WR WKH DFWLRQ RI ZLQG 7KLV GDWD LV XVHIXO IRU XQGHUVWDQGLQJ WKH TXDOLW\ RI WKH WRROV or window frame.

achieved class

C1

C2

C3

C4

C5

Flex arrow (1/150)

A1

A2

A3

A4

A5

C6 Product regulations: EN 10077-2, EN 12412-2

Flex arrow (1/200)

B1

B2

B3

B4

B5

B6

Flex arrow (1/300)

C1

C2

C3

C4

C5

C6

A6

Applied pressure (400Pa) (800Pa) (1200Pa) (1500Pa) (2000Pa) (>2000Pa)

achieved class

C1

C2

C3

C4

C5

C6 A6

Flex arrow (1/150)

A1

A2

A3

A4

A5

Flex arrow (1/200)

B1

B2

B3

B4

B5

B6

Flex arrow (1/300)

C1

C2

C3

C4

C5

C6

(400Pa)the(800Pa) pressure isolate (1500Pa) (2000Pa) (>2000Pa) Noise performance. The value that measures how door or window frames are able Applied to acoustically home (1200Pa) environment from H[WHUQDO QRLVHV 7KH VLPXODWLRQ WHVW SHUIRUPHG WR GHWHUPLQH WKLV YDOXH UHODWHV H[FOXVLYHO\ WR WKH GRRU RU ZLQGRZ IUDPH DQG WKH EXLOGLQJ as a whole may not have the same sound insulation value.

o acoustically isolate the home environment from HO\ WR WKH GRRU RU ZLQGRZ IUDPH DQG WKH EXLOGLQJ

Product regulations: EN 20140-3, EN ISO 140-3, EN ISO 717-1 performance achieved

0db

<=12db <=24db <=36db <=48db

Noise performance. The value that measures how door or window frames are ab H[WHUQDO QRLVHV 7KH VLPXODWLRQ WHVW SHUIRUPHG WR GHWHUPLQH WKLV YDOXH UHODWHV H[FO <=60db as a whole may not have the same sound insulation value. Product regulations: EN 20140-3, EN ISO 140-3, EN ISO 717-1

Thermal transmittance. 7KH DYHUDJH KHDW ร RZ SHU VTXDUH PHWUH RI VXUIDFH WKDW SDVVHV WKURXJK D VWUXFWXUH WKDW GHOLPLWV WZR HQYLURQPHQWV performance achieved 0db <=12db <=24db <=36db <=48db <=60db DW GLเฉ HUHQW WHPSHUDWXUHV ,Q WKH FDVH RI GRRU DQG ZLQGRZ IUDPHV LW LV XVHG WR PHDVXUH WKH HQHUJ\ Hเฉ FLHQF\ RI WKH SURGXFW ZKHQ LW FRPHV WR PDLQWDLQLQJ WKH WHPSHUDWXUH UHTXLUHG LQ GRPHVWLF HQYLURQPHQWV 7KH FORVHU WR ]HUR WKH WUDQVPLWWDQFH YDOXH WKH JUHDWHU WKH HQHUJ\ VDYLQJ Product regulations: EN 10077-2, EN 12412-2

WKURXJK D VWUXFWXUH WKDW GHOLPLWV WZR HQYLURQPHQWV WKH HQHUJ\ Hเฉ FLHQF\ RI WKH SURGXFW ZKHQ LW FRPHV H WUDQVPLWWDQFH YDOXH WKH JUHDWHU WKH HQHUJ\ VDYLQJ

performance achieved Uw W/m2K

Low

Medium

High

Top

<=6-8

<=2-4

<=1-2

<=0-1

Thermal transmittance. 7KH DYHUDJH KHDW ร RZ SHU VTXDUH PHWUH RI VXUIDFH WKDW SD DW GLเฉ HUHQW WHPSHUDWXUHV ,Q WKH FDVH RI GRRU DQG ZLQGRZ IUDPHV LW LV XVHG WR PHDV WR PDLQWDLQLQJ WKH WHPSHUDWXUH UHTXLUHG LQ GRPHVWLF HQYLURQPHQWV 7KH FORVHU WR ]HUR Product regulations: EN 10077-2, EN 12412-2 performance achieved

FACADE SPECIFICATIONS

Uw W/m2K

Low

Medium

High

Top

<=6-8

<=2-4

<=1-2

<=0-1

This product is a more popular one from the Schuco lineup, and is extremely effective as a functioning and high-performing facade glass. High thermal insullation as well as Sound Insulation are both plusses, with Air Permeability and Water Tightness being perfect for the Hong Kong climate. This product also is extremely versatile, adapting to doors and other various implementations such as operable windows.

PRODUCED BY AN AUTODESK STUDENT VERSION Krebs Francesco GROUP 2:

Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

918816 Nemati Ali 918417 Rotundo Marco Salvatore 912788 Saccuman Marta 918641

927160 Seyedi Zadeh Fereshteh 912843 Sheikhhassani Navid Zohourparvaz Mohamadreza 927401

GREENFALL FINAL PRESENTATION_December 20th

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

7.4


GENERAL TYPOLOGIES & TOTAL TRANSPARENT AREA 4.15 1.40 1.40

0.04

The following details show the basic standard transparent typologies used in the design 1.60of the 1.60 1.60 project. Specific variants of these typologies are found in the Double Unit Residential Floors of Building 3, as well as the common floor plan of Building 3, which 0.05 was used for Optimization 0.04 0.05 0.08 0.04 purposes. 0.05 PRODUCED BY AN AUTODESK STUDENT PRODUCED BY AN AUTODESK STUDENT VERSIONVERSION

PRODUCED BY AN AUTODESK STUDENT VERSION PRODUCED BY ANBY AUTODESK STUDENT VERSION PRODUCED AN AUTODESK STUDENT VERSION **All dimensions shown in meters** Drawing Scale = 1:100 1.40

0.05

0.050.05

1.601.60

1.60

0.04

4.15 0.04 0.04

0.04

0.05

4.15

4.154.15

3.30

1.60

0.05

0.050.05 0.05 0.08

0.08

1.62 0.04

1.60

3.30

0.04

0.040.04 0.05

0.08 0.15

B1 - SINGLE B2 - SINGLE EXTERIOR (FIXED) B3 - SINGLE EXTERIOR DOUBLE WINDOW - TYPE A2 B1 - DOUBLE (TILT/SLIDE) WINDOW B2 - DOUBLE B3 - DOUBLE TYPE A3 B1 - FAMILY B3 - FAMILY

0.080.08 0.15

1.60 1.60

0.08

1.60 0.05

0.05 0.05 0.05

0.05

0.15

0.05

3.30

1.60

1.601.60

1.60

2.00 1.62 3.303.30

0.04

3.30

0.040.07 0.15

0.04

0.04 FLOOR TYPE

2.10

0.15 0.04 0.04

0.15 0.15 0.15 0.08

1.60

1.601.60

0.04

1.60 1.60EXTERIOR (FIXED) EXTERIOR EXTERIOR (OPERABLE) EXTERIOR SINGLE EXTERIOR (FIXED) EXTERIOR (OPERABLE) EXTERIOR DOUBLE EXTERIOR (FIXED) EXTERIOR (OPERABLE) EXTERIOR DOUBLEDOUBLE EXTERIOR SINGLE WINDOW TYPE A2 (TILT/SLIDE) WINDOW TYPE A1 EXTERIOR (FIXED) EXTERIOR DOUBLE RABLE) WINDOW - - WINDOW WINDOW - TYPE A2A2 WINDOW - TYPE A1A1 (TILT/SLIDE) WINDOW EXTERIOR (FIXED) EXTERIOR (TILT/SLIDE) DOUBLE R (OPERABLE) WINDOW - TYPE WINDOW - TYPE (TILT/SLIDE) WINDOW EXTERIOR DOUBLE (TILT/SLIDE) WINDOW TYPE A3 WINDOW TYPE A2 (TILT/SLIDE) WINDOW A1 TYPE A4 A3-A3 TYPE WINDOW - TYPE A2 (TILT/SLIDE) WINDOW - TYPE TYPE 0.08 A1 DOOR - TYPE B1 A4 0.05 0.15 TYPE 0.04 TYPE A3TYPE A3 2.00

0.15

0.07

0.10

0.06

2.10 0.07 0.080.08 0.10

0.070.07

0.07 0.08

0.08

0.08 0.10

0.06 0.06

2.10 EXTERIOR EXTERIOR SINGLE EXTERIOR SINGLE SINGLE EXTERIOR (TILT/SLIDE) EXTERIOR SINGLE EXTERIOR DOUBLE (TILT/SLIDE) WINDOW - WINDOW EXTERIOR SINGLE EXTERIOR DOUBLEDOUBLE (TILT/SLIDE) WINDOW SINGLE DOOR -INTERIOR TYPE B1DOUBLE TYPE A4 EXTERIOR DOUBLE (TILT/SLIDE) WINDOW DOOR TYPE B1INTERIOR TYPE A4 EXTERIOR DOUBLE (TILT/SLIDE) WINDOW DOOR - TYPE B1 TYPE -A4 INTERIOR DOUBLE DOOR TYPE DOOR - TYPE B2B3 DOOR - DOOR TYPE B1 TYPE A4 0.07 - TYPE B1 TYPE A4 0.08 DOOR - TYPE B2 2.002.00

1.00

2.00

EXTERIOR DOUBLE DOOR - TYPE B1 1.00 2.10

2.10

0.100.10

0.10 0.06

0.06

SK STUDENT VERSION

2.00

2.00

2.102.10

0.10 0.060.06 0.06 0.06

2.10

3.00 2.10

0.10

0.06 0.10

1.00

1.001.00 1.00

2.102.10

2.10

0.06

2.10 0.10 0.06 0.06 0.100.10 0.060.06 0.05

2.70

3.00 3.00 2.10

0.06

INTERIOR SINGLE DOOR - TYPE B3 3.00

0.06

0.05 0.060.06

3.003.00

3.00

0.06

0.060.06 3.00 2.70

2.70 Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic0.06 year 2019/200.06 0.06 0.06 0.06

0.06

2.70

3.00 EXTERIOR FACADE TYPE C1 3.00 3.00

0.05

2.702.70 0.05

0.05

0.050.05

2.702.70

2.70

2.70 Krebs Francesco Caniato Giorgia Nemati Ali 918624 Dieterich Murr Alice 824939 Rotundo Marco Salvatore 0.05Marta Korovina Viktoriia 9130450.050.05Saccuman

GROUP 2:

0.06

2.70

EXTERIOR FACADE INTERIOR GLASS -3.00 TYPE C1 TYPE C2

3.003.00

0.05

2.70

B3.12

2.70 2.70

TYPE A1 EXTERIOR 0.05 OPERABLE WINDOWS 0.15 0.04 NO. OF UNITS GLASS AREA NO. OF FLOORS TOTALGLASS AREA 4 1.73 11 76.12 6 1.73 12 124.56 EXTERIOR DOUBLE 4 1.73 11 76.12 6 1.73 8 (TILT/SLIDE) WINDOW -83.04 8 1.73 10 138.4 TYPE A3 6 1.73 7 72.66 4 1.73 7 48.44 2.00 4 1.73 6 41.52 TYPE A4 EXTERIOR SINGLE SLIDING WINDOWS NO. OF UNITS GLASS AREA NO. OF FLOORS TOTALGLASS AREA 2.10 1.85 1 7 12.95 1 1.85 6 11.1

TYPE B1 GLASS EXTERIOR DOUBLE DOORS FLOOR TYPE NO. OF UNITS GLASS AREA NO. OF FLOORS TOTALGLASS AREA LEVEL 1 3 2.9 1 8.7 LEVEL 2 2 2.9 1 5.8 EXTERIOR DOUBLE LEVEL 3 3 2.9 1 8.7 LEVEL 4 4 2.9 1 11.6 DOOR - TYPE B1 B1 - SINGLE 2 2.9 11 63.8 B2 - SINGLE 2 2.9 12 69.6 B3 - SINGLE 2 2.9 11 63.8 1.00 B1 - DOUBLE 2 2.9 8 46.4 B2 - DOUBLE 2 2.9 10 58 B3 - DOUBLE 2 2.9 7 40.6 B1 - FAMILY 2 2.9 7 40.6 B3 - FAMILY 2 2.9 6 34.8 B1 - LIBRARY FL. 1 5 2.9 1 14.5 2.10 B2 - LIBRARY FL. 1 2 2.9 1 5.8 B3 - LIBRARY FL. 1 5 2.9 1 14.5 B1 - COMMON 1 2.9 4 11.6 B2 - COMMON 1 2.9 3 8.7 B3 - 0.10 COMMON 0.06 1 2.9 4 11.6 B1 - ROOF 2 2.9 1 5.8 B2 - ROOF 1 2.9 1 2.9 B3 - ROOF 2 2.9 1 5.8

0.07

0.08

0.05 0.05

0.050.05

0.05

918816 918417 912788 918641

INTERIOR SINGLE DOOR - TYPE B3 TYPE C1

1.40

EXTERIOR FAÇADE GLASS FLOOR GLASS AREA NO. OF FLOORS TOTALGLASS AREA B3.11 TYPE LEVEL 1 51.8 1 51.8 LEVEL 2 147.8 1 147.8 LEVEL 3 242.6 1 242.6 3.00 LEVEL 4 64 1 64 B1 - SINGLE 50.84 11 559.24 B2 - SINGLE 59.3 12 711.6 B3 - SINGLE 50.84 11 559.24 TYPE A1 B1 - DOUBLE 48.7 8 389.6 0.05 B2 - DOUBLE 75.3 10 753 2.70 B3 - DOUBLE 48.7 7 340.9 B1 - FAMILY 57.3 7 401.1 B3 - FAMILY 57.3 6 343.8 B1 - LIBRARY FL. 1 267 1 267 0.05 B2 - LIBRARY FL. 1 317.6 1 317.6 0.05 B3 - LIBRARY FL. 1 267 1 267 B1 - LIBRARY 0 1 0 TYPEFL. A22 B2 - LIBRARY FL. 2 0 1 0 INTERIOR B3 - LIBRARY FL. 2 GLASS01 0 B1 -TYPE COMMONC2 78.3 4 313.2 B2 - COMMON 91.7 3 275.1 B3.11 B3 - COMMON 78.3 4 313.2 B1 - ROOF 36.3 1 36.3 B2 - ROOF 20 1 20 B3 - ROOF 36.3 1 36.3

2.70

B3.10 LAYOUT

Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401

FLOOR TYPE B1 - SINGLE B2 - SINGLE B3 - SINGLE B1 - DOUBLE B2 - DOUBLE B3 - DOUBLE B1 - FAMILY B3 - FAMILY

FLOOR TYPE B1 - SINGLE B2 - SINGLE B3 - SINGLE B1 - DOUBLE B2 - DOUBLE B3 - DOUBLE B1 - FAMILY B3 - FAMILY

TYPE A2 EXTERIOR FIXED WINDOWS GLASS AREA NO. OF FLOORS TOTALGLASS AREA 10.2 11 112.2 12.7 12 152.4 10.2 11 112.2 7.5 8 60 12.7 10 127 7.5 7 52.5 7.5 7 52.5 7.5 6 45

TYPE A3 EXTERIOR DOUBLE SLIDING WINDOWS NO. OF UNITS GLASS AREA NO. OF FLOORS TOTALGLASS AREA 4 10.5 11 462 6 10.5 12 756 4 10.5 11 462 2 10.5 8 168 3 10.5 10 315 2 10.5 7 147 2 10.5 7 147 2 10.5 6 126

PRODUCED BY AN AUTODESK STU

PRODUCED BY AN AUTODESK STUDENT VERSION PRODUCED BY AN AUTODESK STUDENT VERSION

BASIC TYPOLOGIES

INTERIOR INTERIOR SINGLE INTERIOR SINGLE SINGLE INTERIOR INTERIOR DOUBLE INTERIOR DOUBLEDOUBLE DOOR - TYPE B3 INTERIOR SINGLE DOOR - TYPE B3B3 INTERIOR SINGLE DOOR - TYPE DOOR - TYPE B2 INTERIOR DOUBLEDOUBLE DOOR - TYPE B2B2 INTERIOR DOOR - TYPE DOOR - DOOR TYPE B3 0.06 - TYPE B3 0.06 0.06 0.05 DOOR - DOOR TYPE 0.10 B2 0.06 - 0.06 TYPE B2 0.05

0.06

2.10 2.10

TOTAL TRANSPARENT AREA CALCULATION

PRODUCED BY AN AUTODESK STUDENT VERSION

PRODUCED BY AN AUTODESK STUDENT VERSION PRODUCED BY AN AUTODESK STUDENT VERSION

0.15

0.150.15

2.10

2.102.10

2.10

2.10

0.05

2.00 1.00

2.00

PRODUCED BY AN AUTODESK STUDENT VERSION

1.60

0.050.05

0.15

0.05

1.60

1.601.60

2.00 1.60

2.002.00

PRODUCED BY AN AUTODESK STUDENT VERSION PRODUCED BY AN AUTODESK STUDENT VERSION

0.04

PRODUCED BY AN AUTO

0.10

2.00 DOUBLE (TILT/SLIDE) WINDOW TYPE A3

0.04 0.040.04EXTERIOR

1.62

PRODUCED BY AN AUTODESK STUDENT VERSION

0.05

1.62

2.00

PRODUCED BY AN AUTODESK STUDENT VERSION

RIOR (FIXED) OW - TYPE A2 0.04

1.62

1.621.62

FLOOR TYPE B1 - FAMILY B3 - FAMILY

PRODUCED BY AN AUTODESK STUDENT VERSION

PRODUCED BY AN AUTODESK STUDENT VERSION

0.04

1.60

0.04

0.05 0.05

PRODUCED BY AN AUTODESK STUDENT VERSION

1.60 4.15

0.04

1.60

PRODUCED BY AN AUTODESK STUDENT VERSION

1.40

4.15

PRODUCED BY AN AUTODESK STUDENT VERSION

UTODESK STUDENT VERSION

3.30

The following charts show the transparent glass area for the entire project. (Only exterior glass types were considered 1.60in the area calculations) **All area measurements 1.60are given in m2**

EXTERIOR (OPERABLE) EXTERIOR (FIXED) WINDOW - TYPE A1 WINDOW - TYPE A2

EXTERIOR (OPERABLE) WINDOW - TYPE A1

1.401.40

4.15 3.30

0.04

GREENFALL FINAL PRESENTATION_December 20th

PRODUCED BY AN AUTODESK STUDENT VERSION

TOTAL EXTERIOR GLASS AREA FLOOR TYPE GLASS AREA LEVEL 1 60.5 LEVEL 2 153.6 LEVEL 3 251.3 LEVEL 4 75.6 B1 - SINGLE 1272.92 B2 - SINGLE 1814.16 B3 - SINGLE 1272.92 B1 - DOUBLE 747.04 B2 - DOUBLE 1339.4 B3 - DOUBLE 653.66 B1 - FAMILY 702.59 B3 - FAMILY 602.22 B1 - LIBRARY FL. 1 281.5 B2 - LIBRARY FL. 1 323.4 B3 - LIBRARY FL. 1 281.5 B3.41 B1 - LIBRARY FL. 2 0 B2 - LIBRARY FL. 2 0 B3 - LIBRARY FL. 2 0 B1 - COMMON 324.8 B2 - COMMON 283.8 B3 COMMON 324.8 B3.42 B1 - ROOF 42.1 B2 - ROOF 22.9 B3 - ROOF 42.1

TOTAL EXTERIOR GLASS AREA

10872.81

TOTAL EXTERIOR GLASS AREA / BUILDING BUILDING / AREA GLASS AREA TYPE C1 LEVEL 1 60.5 LEVEL 2 153.6 LEVEL 3 251.3 LEVEL 4 75.6 B3.41 BUILDING 1 3371.39 BUILDING 2 3835.66 BUILDING 3 3177.64

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

B3.40 LAYOU

7.5


GLASS OPTIONEERING

Product Comparison

LU WR EH ÀOWHUHG ZKHQ VXEMHFWHG WR DQ LQWHULRU H[WHULRU Glass products and data sourced from AGC Asia Pacific Pte Ltd., a Singapore-based U RU ZLQGRZ IUDPH DQG WKH JDVNHWV XVHG WR PDNH LW sales and marketing organization dedicated to provide solutions in the Architectural,

Automotive, Solar and Industrial fields. It is part of the AGC group, a leading glass manufacturer of flat glass in the world

The three highlighted products shown in the chart below were chosen for the Glass Optioneering process. This will combine these three glass types with their corresponding frames from Schuco. By analyzing the performance of each glass, we will be able to determine which combination of glass and frame will give us the best results - meeting both our energy targets as well as being reasonably economical.

RZ IUDPH 7KLV YDOXH LV REWDLQHG E\ VSUD\LQJ WKH RU H[WHULRU SUHVVXUH GLà©”HUHQFH WR VLPXODWH LQWHQVH

E750

E900

E1200

E1050

E1350

Thermal Transmittance - Rate of transfer of heat through the material, expressed in W/m2 K

E1500

LIGHT PROPERTIES Light Transmittance External Light 160 111,54 124 145 (%) Reflection (%) 4 / Planibel G A 83 4 / Planibel G fasT B 83 G DFFLGHQWDO RSHQLQJ RI WKH GRRUV ZKHQ VXEMHFWHG SINGLE GLAZE 4 / Planibel Pure Comfort 14 C 84 WKH PDWHULDOV XVHG LQ WKH FRQVWUXFWLRQ RI WKH GRRU 4 / Planibel Pure Comfort 10 D 82 4 - 16 / 4 Planibel G (Air 100%) E 75 4 - 16 / 4 Planibel G fasT (Air 100%) F 75 4 - 16 / 4 Planibel Pure Comfort 14 (Air 100%) G 76 H 4 - 16 / 4 Planibel Pure Comfort 10 (Air 100%) 75 4 - 16 / 4 iplus Top 1.1T (Argon 90%) I 82 DOUBLE GLAZE 4 - 16 / 4 iplus 1.0T (Argon 90%) J 81 4 / 16 / 4 iplus Advanced 1.0T (Argon 90%) + 74 K Planibel Pure Comfort 10 4 / 16 / 4 iplus Advanced 1.0T (Argon 90%) + 75 L Planibel Pure Comfort 14 o acoustically isolate the home environment from M 4 / 14 - 4 / 14 - 4 iplus Top 1.1T (Argon 90%) 75 HO\ WR WKH GRRU RU ZLQGRZ IUDPH DQG WKH EXLOGLQJ TRIPLE GLAZE N 4 / 14 - 4 / 14 - 4 iplus 1.0T (Argon 90%) 73 O 4 / 16 - 4 / 16 - 4 iplus 1.0T (Argon 90%) 73

10 10 11 10 17 17 17 17 12 13

THERMAL PROPERTIES Thermal Transmittance (W/m2 K) 3.7 3.7 3.7 3.5 1.7 1.7 1.7 1.6 1.1 1

16

1

19

57

16

1

17

15 18 18

0.6 0.6 0.5

21 20 20

600Pa) (750Pa) (900Pa) (1050Pa) (1200Pa) (1350Pa) (1500Pa)

165 PRODUCT 178 NAME

CODE 136,6

WKURXJK D VWUXFWXUH WKDW GHOLPLWV WZR HQYLURQPHQWV 3.5 3 WKH HQHUJ\ Hà©•FLHQF\ RI WKH SURGXFW ZKHQ LW FRPHV 2.5 H WUDQVPLWWDQFH YDOXH WKH JUHDWHU WKH HQHUJ\ VDYLQJ

H

I

J

K

L

M

N

4

20

2

10

0

0 A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

DATA ANALYSIS

10

72 5

70 68 D

E

F

G

H

I

J

Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

K

L

M

N

O

GROUP 2:

0

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

** 4 / 14 - 4 / 14 - 4 iplus 1.0T (Argon 90%) signifies the following: 4 = 4 mm layer of glass / = layer of iplus 1.0T glazing 14 = 14 mm of space filled with 90% Argon

1 0.8 0.6 0.4 0.2 0

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

K

L

M

N

O

Sound Insula�on (dB)

Shading Coefficient

76

** All options were simulated using 4mm Planibel Clearlite glass with Thermal Toughening (product available from ACG)

Selec�vity

33.5

1

15

C

33 33 33

30

80

B

1.4 1.49 1.49

40

20

A

0.62 0.57 0.57

50

84

66

54 49 49

Selectivity - The ratio between light transmission and solar factor of the material.

1.6

Total Energy Absorp�on (%)

74

30

60

25

78

1.33

14

Light Transmi�ance (%)

82

0.65

1.4

O

86

57

1.2

0.5 G

30

70

1

F

1.3

80

6

E

0.65

16

8

D

30 30 30 30 30 30 30 30 30 30

Solar Factor (%)

12

Solar Factor - Percent of the solar energy which is transferred indoors through the material

Sound Insulation (dB)

1.08 1.08 1.11 1.13 1 1 1.01 1 1.25 1.32

18

1.5

C

Selectivity

90

10

B

ACOUSTIC PROPERTIES

20

2

A

ENERGY PROPERTIES Total Energy Shading Solar Factor (%) Absorption (%) Coefficient 15 77 0.88 15 77 0.88 16 75 0.87 19 73 0.84 18 75 0.87 18 75 0.87 19 75 0.86 22 75 0.86 14 66 0.76 13 62 0.71

External Light Reflec�on (%)

Thermal Transmi�ance (W/m2 K) 4

0

External Light Reflection - Percent of exterior light radiation that is reflected off the material

KEY DEFINITIONS

9A

Light Transmittance - Percent of light radiation that can pass through the material

The following chart explores the most suitable product options available through ACG. By analyzing each product’s individual capabilities and comparing them, the three best options for the Greenfall project in Hong Kong were chosen.

0.9

33

0.8

32.5

0.7

32

0.6

31.5

0.5

31

0.4

30.5

0.3

30

0.2

29.5

0.1

29

0

28.5 A

B

C

D

E

F

G

H

918816 Krebs Francesco Seyedi Zadeh Fereshteh 927160 Caniato Giorgia Sheikhhassani Navid 912843 Nemati Ali 918624 918417 PRODUCED BY AN AUTODESK PRODUCED BY AN Rotundo AUTODESK STUDENT Dieterich Murr Alice 824939 912788 VERSION Marco Salvatore Zohourparvaz Mohamadreza 927401 Korovina Viktoriia 913045 Saccuman Marta 918641

I

J

K

L

M

N

O

A

B

C

D

E

F

G

H

GREENFALL

STUDENT VERSION

FINAL PRESENTATION_December 20th

I

J

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

7.6.1


GLASS OPTIONEERING

Glass Options GLASS TYPE:

4 - 16 / 4 Planibel Pure Comfort 10 (Air 100%)

Greenfall

4 / 16 / 4 iplus Advanced 1.0T (Argon 90%) + Planibel Pure Comfort 14

) ! * + ,$-

./ ! 0 * 1 ,$-

! 9 : * 8 ,;< 9 =' :-

2 ! 0 * 1 ,$-

/ * 3 ,$-

%

5 .> ?@A * 3B 9 C : , D-

!

$ & ' (

4 % * ,$-

)

./ 0 * 1 ,$-

3 E .> (@

*+

2 0 * 1 ,$-

3 E .> (@

*+

5 * + ,$-

D .> "(

*+

. & * 6 ,$-

. & * 6 ,$-

& * 6 ,$ !" !

D .> (@" & .> " ./& .> (@

*+ ,$ - ,$ *+

# . / > ! * , ; ! * , < =-

!

' ! / & F B ! ( A .> 24G ( ' 2 & % ! %% F H && H H H ' ! % ! / I< D'

GROUP 2:

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

GLASS SPECIFICATIONS (OPTION 2)

GLASS SPECIFICATIONS (OPTION 1)

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

-. " / ) 0 +%,

!" 8 9 ) 7 +:; 8 < 9,

1 " / ) 0 +%,

. ) 2 +%,

%

-. / ) 0 +%,

1 / ) 0 +%,

4 -= >?@ ) 2A 8 B 9 + C,

#

& ' (

) 2 D -= E?

*+

!

2 D -= E?

*+

4 ) * +%,

C -= #E

*+

- ) 5 +%,

C -= E?#

*+

- ) 5 +%, 3" 6 ) 3 7 ) * +%, 3

" # #

& -= # -. -= E?

, - , *+

$ . / = " ) + , : " ) + ; <,

! # !

!" . F A " E @ -= 13G E 1 ' " '' F H H H H !" ' " . I; C

918816 918417 912788 918641

Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401

" #

! ) 5 +%,

! " ! " #

$

( " ) * +%,

3 ' ) +%,

+VIIRJEPP

# $

Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

4

!" "

! !

8 * + ,$-

! !" " # $ % & '

! ! " # $ % & '(

4! 7 * 4

Greenfall

4 / 16 - 4 / 16 - 4 iplus 1.0T (Argon 90%)

GLASS SPECIFICATIONS (OPTION 3)

GLASS TYPE:

PRODUCED BY AN AUTODESK STUDENT VERSION

GLASS TYPE:

$ % &' (")

*+ , % -' (")

7' 8 % 5 (9 7 : 8)

. , % -' (")

+ % / (")

$ %

1 ; * .<! *1 % /= 7 > 8 ( ?)

!

& ' (

0 % (")

)

*+ , % - (")

/ @ ; *A 3B ;

*

. , % - (")

/ @ ; *A 3B ;

*

1 % & (")

? ; *A 3

*

* % 2 (")

? ; *A 3B

*

* % 2 (")

* 3 % 2 3 (")

% 2 (") 4 % 56 % & ' (") '

! !

# ; *A

+ , + , +

*+ ; *A 3B

*

" - .

A C % ( )

9 % (C :)

+ D E = 3 F *A . G ;3 . ; 0 ' 00 ' E D D D ' D 0 ' + H ; ?

GREENFALL FINAL PRESENTATION_December 20th

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

7.6.2


GLASS OPTIONEERING

U-Value Calculation & Residential Typology Layout

After narrowing the glass selection down to three possible options, simulations will be able to dictate which type of glass is optimal for the project. Additionally, we will able to measure if different types of glass should be used on different facades, based on their orientation and exposure to direct sunlight.

Considering the three glass types, as well as the pre-selected frame types, it was necessary to calculate the U-Value which would be used in the simulation process. Since there are three types of glass up for consideration, each with their own unique U-Value, a calculation was required to determine what the new U-Value would be once combined with the respective frame.

For the purposes of this optioneering process, the facade of the building was grouped into two categories: the RED showing the north and east facades (Facade A), and the BLUE showing the south and west facades (Facade B). Based on these groupings, we will be able to determine the best combination of glass types for each group or facade of the building.

This chart shows the calculations of the total Window area, frame area as well as glass area and perimeter correspondig to each Frame type which was previously defined. These values, in combination with the unique U-Values for the glass options as well as the frame itself allow us to calculate the final U-Value to be used.

UNIT 5

UNIT 3

Type A1 Type A2 Type A3 Type A4 Type B1 Type C1

UNIT 1 1.5 x 1.8 m ELEVATOR

ELEVATOR HALL

CLEANING STORAGE

2.24 6.64 5.28 2.59 4.20 8.10

0.51 1.45 1.49 0.71 1.29 1.14

1.73 5.19 3.79 1.88 2.91 6.96

5.27 15.81 16.84 8.40 10.60 26.04

Ψ

0.04 0.04 0.04 0.04 0.04 0.04

GLASS OPTION GLASS OPTION GLASS OPTION FRAME U-VALUE 1 U-VALUE 1 U-VALUE 1 U-VALUE (W/m2 K) (W/m2 K) (W/m2 K) (W/m2 K) 1.60 1.00 0.50 0.90 1.60 1.00 0.50 0.90 1.60 1.00 0.50 0.90 1.60 1.00 0.50 0.90 1.60 1.00 0.50 1.60 1.60 1.00 0.50 1.09

Total U-Value = { [(Glass U-Value x Glass Area) + (Frame Area x Frame U-Value) + (Ψ x Perimeter)] / Window Area }

STAIR

STAIR

FRAME AREA GLASS AREA PERIMETER

The formula used to calculate the final U-Values is as follows:

GARBAGE DISPOSAL

COMMON SPACE

WINDOW AREA

EXTERIOR GARDEN

**Where Ψ is equal to the Linear Heat Transfer Coefficient (W/m K) ; in this case 0.04 was used representing a thermally insulated edge seal of the glass glazing **

UNIT 4

UNIT 2

FACADE B BUILDING 3 DOUBLE UNITS RESIDENTIAL FLOOR PLAN 1:200

SINGLE FLOORS

Type A1 Type A2 Type A3 Type A4 Type B1 Type C1

SINGLE FLOORS

SINGLE FLOORS

SINGLE FLOORS

SINGLE FLOORS

DOUBLE FLOORS

SINGLE FLOORS

FACADE SECTIONS

DOUBLE FLOORS DOUBLE FLOORS

FAMILY FLOORS

FAMILY FLOORS

FAMILY FLOORS DOUBLE FLOORS

U-VALUE CALCULATIONS

DOUBLE FLOORS

FRAME TYPE

SINGLE FLOORS

SINGLE FLOORS

SINGLE FLOORS

OPTION 1 TOTAL OPTION 2 TOTAL OPTION 3 TOTAL U-VALUE U-VALUE U-VALUE (W/m2 K) (W/m2 K) (W/m2 K) 1.53 1.07 0.69 1.54 1.07 0.68 1.53 1.10 0.74 1.54 1.10 0.74 1.70 1.29 0.94 1.66 1.14 0.71

This chart shows the final results for the U-Value calculations. For each glass option, a unique U-Value has been calculated for each specific Frame Type. These values will be used in simulation, following the grouping of Facade A and B, to determine the most optimal combination of glass for maximum efficiency.

PRODUCED BY AN

PRODUCED BY AN AUTODESK STUDENT VERSION Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

GROUP 2:

PRODUCED BY AN AUTODESK STUDENT VERSION

FACADE A

FRAME TYPE

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

927160 918816 Seyedi Zadeh Fereshteh 912843 Sheikhhassani Navid 918417 PRODUCED BY AN AUTODESK 912788 Zohourparvaz Mohamadreza 927401 918641

GREENFALL STUDENT VERSION FINAL PRESENTATION_December 20th

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

7.6.3


GLASS OPTIONEERING

A B C D E F G H I

FAÇADE A

FAÇADE TYPE C1 COOLING EQUIPMENT HEATING EQUIPMENT DESIGN CAPACITY (kW) DESIGN CAPACITY (kW) 15.6 8.6 31.1 8.1 25.1 7.8 22.6 7.5 29.8 8 23.8 7.8 21.4 7.5 29 7.8 23.3 7.6 20.9 7.3

FACACE B

BASE OPTION (ASHRAE) OPTION 1 OPTION 1 OPTION 1 OPTION 2 OPTION 1 OPTION 3 OPTION 2 OPTION 1 OPTION 2 OPTION 2 OPTION 2 OPTION 3 OPTION 3 OPTION 1 OPTION 3 OPTION 2 OPTION 3 OPTION 3

ANNUAL ENERGY COST ($) $1,650.00 $2,050.00 $1,855.00 $1,791.00 $2,005.00 $1,812.00 $1,753.00 $1,942.00 $1,792.00 $1,733.00

EUI (kWh/m2/yr) 62 77 70 68 76 68 66 73 68 65

**ASHRAE values calcualted with a U-Value of 2.27 W/m2 K

COOLING CAPACITY (kW)

HEATING CAPACITY (kW) 9

35 30

A B C

FAÇADE A

FACACE B

BASE OPTION (ASHRAE) OPTION 1 OPTION 1 OPTION 2 OPTION 2 OPTION 3 OPTION 3

DOOR TYPE B1 COOLING EQUIPMENT HEATING EQUIPMENT DESIGN CAPACITY (kW) DESIGN CAPACITY (kW) 15.6 8.6 31.1 8.2 23.8 7.9 21 7.5

8.8 8.6 8.4 8.2 8 7.8 7.6 7.4 7.2 7 6.8

30 25 20 15 10 5 A

B

20

8

15

7.5

10

A

B

C

D

E

F

COOLING EQUIPMENT DESIGN CAPACITY (kW)

C BASE OPTION (ASHRAE)

ANNUAL ENERGY COSTS ($)

EUI (kWh/m2/yr) $2,500.00

80

$2,000.00

70 60

$1,500.00

50 40

$1,000.00

30 $500.00

20 10

$0.00

0

A

B EUI (kWh/m2/yr)

A

C

B

ANNUAL ENERGY COST ($)

BASE OPTION (ASHRAE)

REF. A B C

G

H

I

6.5

A

BASE OPTION (ASHRAE)

B

C

D

E

F

G

HEATING EQUIPMENT DESIGN CAPACITY (kW)

H

FAÇADE A

FACACE B

BASE OPTION (ASHRAE) OPTION 1 OPTION 1 OPTION 2 OPTION 2 OPTION 3 OPTION 3

I

WINDOW TYPE A1 COOLING EQUIPMENT HEATING EQUIPMENT DESIGN CAPACITY (kW) DESIGN CAPACITY (kW) 15.6 8.6 31.1 8 23.8 7.7 20.9 7.3

COOLING CAPACITY (kW)

C BASE OPTION (ASHRAE)

ANNUAL ENERGY COSTS ($)

8.5

80

20

8

15

7.5

10

$2,500.00

90

0

70

7

5

$2,000.00

1

2

3

COOLING EQUIPMENT DESIGN CAPACITY (kW)

60

62 77 68 65

ANNUAL ENERGY COST ($) $1,650.00 $2,049.00 $1,810.00 $1,733.00

9

25

EUI (kWh/m2/yr)

EUI (kWh/m2/yr)

HEATING CAPACITY (kW)

35

BASE OPTION (ASHRAE)

30

6.5

1

BASE OPTION (ASHRAE)

2

3

HEATING EQUIPMENT DESIGN CAPACITY (kW)

BASE OPTION (ASHRAE)

$1,500.00

50 40

$1,000.00

30 20

$500.00

10 $0.00 A

B

C

D

EUI (kWh/m2/yr)

Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

E

F

G

H

BASE OPTION (ASHRAE)

GROUP 2:

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

I

A

B

C

D

E

F

G

H

I

WINDOWS - TYPE A1

FACADE GLASS - TYPE C1

B

HEATING EQUIPMENT DESIGN CAPACITY (kW)

BASE OPTION (ASHRAE)

90

7

5

0

A

C

COOLING EQUIPMENT DESIGN CAPACITY (kW)

62 77 69 66

HEATING CAPACITY (kW)

COOLING CAPACITY (kW) 35

0

ANNUAL ENERGY COST ($) $1,650.00 $2,050.00 $1,815.00 $1,737.00

EUI (kWh/m2/yr)

8.5

25

0

REF.

DOOR GLASS - TYPE B1

REF.

Residential Floor (Building 3 - Double Units)

EUI (kWh/m2/yr)

ANNUAL ENERGY COSTS ($)

90

$2,500.00

80 70

$2,000.00

60 $1,500.00

50 40

PRODUCED BY AN AUTODESK STUDENT VERSION

ANNUAL ENERGY COST ($)

BASE OPTION (ASHRAE)

$1,000.00

30 20

$500.00

10 0

1

2 EUI (kWh/m2/yr)

GREENFALL

3 BASE OPTION (ASHRAE)

918816 Krebs Francesco Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Nemati Ali 918417 Rotundo Marco Salvatore 912788 Zohourparvaz Mohamadreza 927401 FINAL PRESENTATION_December 20th Saccuman Marta 918641 PRODUCED BY AN AUTODESK STUDENT VERSION

$0.00

1 ANNUAL ENERGY COST ($)

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

2

3 BASE OPTION (ASHRAE)

7.6.4


GLASS OPTIONEERING

A B C

FAÇADE A

FACACE B

BASE OPTION (ASHRAE) OPTION 1 OPTION 1 OPTION 2 OPTION 2 OPTION 3 OPTION 3

WINDOW TYPE A2 COOLING EQUIPMENT HEATING EQUIPMENT DESIGN CAPACITY (kW) DESIGN CAPACITY (kW) 15.6 8.6 31.1 8 23.8 7.7 20.9 7.3

62 77 68 65

REF. A B C

30

8.8 8.6

30

8.4 8.2

25

8

20

10

B

A

B

EUI (kWh/m2/yr)

0

C

HEATING EQUIPMENT DESIGN CAPACITY (kW)

BASE OPTION (ASHRAE)

BASE OPTION (ASHRAE)

A

B

$2,000.00

70 60 40

60 40

$500.00

10 B

C BASE OPTION (ASHRAE)

$0.00

A ANNUAL ENERGY COST ($)

After a complete analysis of the Double Units Residential floor for Building 3, the best two options presented themselves as either OPTION 2 (Double Glaze) or OPTION 3 (Triple Glaze) on each facade. These options are highlighted in green. These were selected since the improvement experienced between these two options was not so significant. Therefore, the main factor that needs to be considered is the economic cost between the two options. It is generally considered that Triple Glazed glass costs about 1/3 less than Double Glazed. Based on these numbers, and considering the Annual Costs associated with both, a cost comparison for 50 years was performed. **Assumed intial cost of Triple Glazed glass = $400.00 / m2 **Assumed initial cost of Double Glazed glass = $266.40 / m2 **OPTION 2 average Annual Energy Cost = $1,811.60 **OPTION 3 average Annual Energy Cost = $1,734.00 GROUP 2:

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

B

C BASE OPTION (ASHRAE)

WINDOWS - TYPE A3

20

$1,500.00

50

$1,000.00

30

$2,000.00

70

$1,500.00

50

$2,500.00

80

$1,000.00

30 20

$500.00

10 $0.00

0

A

B EUI (kWh/m2/yr)

C BASE OPTION (ASHRAE)

Triple Glazed vs. Double Glazed Cost Analysis $120,000.00

$100,000.00

$80,000.00

62 77 68 65

ANNUAL ENERGY COST ($) $1,650.00 $2,049.00 $1,811.00 $1,734.00

HEATING CAPACITY (kW)

B

C

HEATING EQUIPMENT DESIGN CAPACITY (kW)

BASE OPTION (ASHRAE)

90

EUI (kWh/m2/yr)

A

C

EUI (kWh/m2/yr)

80

Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

7 6.8 COOLING EQUIPMENT DESIGN CAPACITY (kW)

$2,500.00

EUI (kWh/m2/yr)

7.2

ANNUAL ENERGY COSTS ($)

90

A

7.4

5

C

COOLING EQUIPMENT DESIGN CAPACITY (kW)

7.6

10

6.5 A

7.8

15

7

5

8

20

7.5

15

WINDOWS - TYPE A2

BASE OPTION (ASHRAE) OPTION 1 OPTION 1 OPTION 2 OPTION 2 OPTION 3 OPTION 3

35

8.5

25

CONCLUSION

FACACE B

WINDOW TYPE A3 COOLING EQUIPMENT HEATING EQUIPMENT DESIGN CAPACITY (kW) DESIGN CAPACITY (kW) 15.6 8.6 31.1 8 23.8 7.7 20.9 7.4

COOLING CAPACITY (kW)

9

35

0

FAÇADE A

HEATING CAPACITY (kW)

COOLING CAPACITY (kW)

0

EUI (kWh/m2/yr)

ANNUAL ENERGY COST ($) $1,650.00 $2,049.00 $1,810.00 $1,733.00

PRODUCED BY AN AUTODESK STUDENT VERSION

REF.

Residential Floor (Building 3 - Double Units)

BASE OPTION (ASHRAE)

ANNUAL ENERGY COSTS ($)

A ANNUAL ENERGY COST ($)

B

C BASE OPTION (ASHRAE)

Based on this Cost Analysis of 50 years, it is clear that the Triple Glazed option is much more economical. Although initial costs will be 33.3% higher than Double Glazed, savings in terms of Energy Efficiency would be realized 40 years after construction. Therefore, it is more economical and effective to install triple glazing.

$60,000.00

Therefore, in conclusion, Triple Glazed (Option 3) Glass will be used on all transparent areas with reference to Building 3 Double Unit Residential Plans.

$40,000.00

$20,000.00

PRODUCED BY AN AUTODESK STUDENT VERSION $0.00

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950 OPTION 2 COST

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

918816 918417 912788 918641

Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401

OPTION 3 COST

GREENFALL FINAL PRESENTATION_December 20th

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

7.6.4


GLASS OPTIONEERING

Multifunctional Floor (Building 3)

REF.

Using a similar organization as the Residential Floor, the Common Floor was also divided into two Facade sections. These were used to simulate the facade glass types. Since the Common Floors have only facade glass on the exterior, it was not necessary to simulate the other frame types for glass selection

FACADE A STORAGE

43.0 m2

MUSIC ROOM 2

17.0 m2

COOLING CAPACITY (kW)

1.5 x 1.8 m ELEVATOR

32.0 m2

ELEVATOR HALL GARBAGE DISPOSAL

THEATRE SETUP

STAIR

STAIR

BASE OPTION (ASHRAE) OPTION 1 OPTION 1 OPTION 1 OPTION 2 OPTION 1 OPTION 3 OPTION 2 OPTION 1 OPTION 2 OPTION 2 OPTION 2 OPTION 3 OPTION 3 OPTION 1 OPTION 3 OPTION 2 OPTION 3 OPTION 3

STUDY ROOM SETUP

CONFERENCE SETUP

35

7

30

6

25

5

20

4

15

3

10

2

5

1

0

A

B

C

D

E

F

COOLING EQUIPMENT DESIGN CAPACITY (kW)

FACADE B

SINGLE FLOORS

DOUBLE FLOORS

FACADE GLASS - TYPE C1

SINGLE FLOORS

SINGLE FLOORS

50

DOUBLE FLOORS

20

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

0

A

B

C

D

EUI (kWh/m2/yr)

E

F

G

H

$0.00

I

BASE OPTION (ASHRAE)

918816 918417 912788 918641

G

H

I

BASE OPTION (ASHRAE)

ANNUAL ENERGY COSTS ($)

B

C

D

E

ANNUAL ENERGY COST ($)

F

G

H

I

BASE OPTION (ASHRAE)

**Assumed intial cost of Triple Glazed glass = $400.00 / m2 **Assumed initial cost of Double Glazed glass = $266.4 / m2 **OPTION 2 average Annual Energy Cost = $2,001.00 **OPTION 3 average Annual Energy Cost = $1,928.00

$40,000.00

Therefore, in conclusion, Double Glazed (Option 2) Glass will be used on all transparent areas with reference to Building 3 Common Plans.

$20,000.00 $0.00

A

Based on this Cost Analysis of 50 years, it is clear that the Double Glazed option is much more economical. No savings in terms of Energy Efficiency would be realized 50 years after construction.

$60,000.00

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

F

$500.00

10

$80,000.00

DOUBLE FLOORS

E

$1,000.00

30

$100,000.00

CONCLUSION

FAMILY FLOORS

D

$1,500.00

FAMILY FLOORS

FAMILY FLOORS

C

40

$120,000.00

PRODUCED BY AN AUTODESK STUDENT VERSION

FACADE SECTIONS

DOUBLE FLOORS

GROUP 2:

$2,000.00

60

Triple Glazed vs. Double Glazed Cost Analysis

DOUBLE FLOORS

B

HEATING EQUIPMENT DESIGN CAPACITY (kW)

$2,500.00

$140,000.00 SINGLE FLOORS

A

BASE OPTION (ASHRAE)

70

SINGLE FLOORS

SINGLE FLOORS

Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

0

I

80

SINGLE FLOORS

SINGLE FLOORS

H

EUI (kWh/m2/yr)

BUILDING 3 COMMON FLOOR PLAN 1:200

SINGLE FLOORS

G

HEATING CAPACITY (kW)

SK STUDENT VERSION

MECHANICAL ROOM

FACACE B

PRODUCED BY AN AUTODESK STUDENT VERSION

A B C D E F G H I

FAÇADE A

FAÇADE TYPE C1 COOLING EQUIPMENT HEATING EQUIPMENT ANNUAL ENERGY EUI (kWh/m2/yr) DESIGN CAPACITY (kW) DESIGN CAPACITY (kW) COST ($) 15.8 6.4 58 $1,786.00 31.7 5.9 72 $2,242.00 25.2 5.7 66 $2,041.00 22.7 5.4 64 $1,980.00 30.4 5.8 71 $2,201.00 23.9 5.6 64 $2,001.00 21.4 5.3 63 $1,939.00 29.9 5.7 71 $2,189.00 23.4 5.5 64 $1,988.00 20.9 5.2 62 $1,928.00

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950

Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401

OPTION 2 COST

OPTION 3 COST

GREENFALL FINAL PRESENTATION_December 20th

PRODUCED BY ANPRODUCED AUTODESK BY STUDENT VERSIONSTUDENT VERSION AN AUTODESK

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

7.6.5


GLASS SPECIFICATIONS

Option 3 Details This model shows the composition of the selected window type - Triple Glazed option 4 / 14 - 4 / 14 - 4 iplus 1.0T (Argon 90%). 914.00

The modelling and specification data sheet was provided by AGC’s Glass Configurator tool.

1.0

CHEMICAL PROPERTIES

1.40

1.40

TEST SPECIMEN

BOLTED SECURELY TO THE FLOOR

2.0

3.0

TYPE C1

According to the standard, 1C3 is capable of withstanding a fall height of 1200 mm. This is the strongest classification, and B3.11 Kong experiences extreme typhoons. In addition, it also specifies the crack type upon very ideal for the design since Hong failure - in this case, the selected glass will disintegrate into small particles. This is ideal for safety in case the glass does break, it will not cause damage or injury in any way.

B3.10 LAYOUT

GROUP 2:

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

918816 918417 912788 918641

iPlus 1.0T GLAZING

(NOT TO SCALE) B3.41

PRODUCED BY AN AUTODESK STUDENT VERSION

PRODUCED BY AN AUTODESK STUDENT VERSION TYPE A2

INTERIOR

TYPE A3

4 mm GLASS 16 mm ARGON 90% 4 mm GLASS 16 mm ARGON 90% 4 mm GLASS

iPlus 1.0T GLAZING

B3.40 LAYOUT

Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401

GREENFALL FINAL PRESENTATION_December 20th

2.00

2.70

0.10

PRODUCED BY AN AUTODESK STUDENT VERSION

2.70

1.60

0.15

EXTERIOR SINGLE (TILT/SLIDE) WINDOW TYPE A4

PRODUCED BY AN AUTODESK STUDENT VERSION

SELECTED GLASS SPECIFICATIONS

TYPE A1 According to EN 12600, the glass specimen dimensions are 0.876 x 1.938 meters. The selected glass is classified as 1C3.

OPTICAL PROPERTIES

0.05

0.06

2.10

INTERIOR DOUBLE DOOR - TYPE B2

EXTERIOR 3.00 PRODUCED BY AN AUTODESK STUDENT VERSION

B3.42

EX W

1.62

B3.41

B3.12

0.04

EXTERIOR (OPERABLE) WINDOW - TYPE A1

6.70

The Pendulum, or Drop Test, is a way of testing and classifying the strength of a certain type of glass. The drawing above outlines how the test is conducted on a specimen.

EXTERIOR (OP EXTER WINDOW TY 0.05 WIND

0.04

B3.11

Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

ELECTRICAL PROPERTIES

MECHANICAL PROPERTIES

1524.00

0.05

1.60

0.05

5.0

0.04 0.05

PRODUCED BY AN AUTODESK STUDENT VERSION

12.70

CENTERLINE OF TEST SPECIMEN

PRODUCED BY AN

THERMAL PROPERTIES

PRODUCED BY AN AUTODESK STUDENT VERSION

DROP HEIGHT

1.40

GLASS STRENGTH ANALYSIS

4.0

PRODUCED BY AN AUTODESK STUDENT VERSION

1524.00

The following outlines the properties for Planibel Clearlite glass:

PRODUCED BY AN AUTODESK STUDENT VERSION

CONCRETE / STURDY CONSTRUCTION FOR SUITABLE ANCHORAGE

STANDARD STEEL CABLE APPROX. 3mm IN DIAMETER

PRODUCED BY AN AUTODESK STUDENT VERSION

PRODUCED BY AN AUTODESK STUDENT VERSION

This selected glass allowed for a very effective Thermal Transmittance, as well as a high Light Transmittance. The Solar Factor and Shading Coefficient are also respectable values, with high performance shown in Acoustic and Safety Properties.

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

0.06

7.7

2.7


SPECIFIC TYPOLOGIES & LOCATIONS

! #J J E & & % % ! & & % ! ! & % % ! E E ! & ' ! & % && % & % & #J ' 2 & 7 5 % % ! % H ! ! #J ! %% % ! % ! ' ! ! & ! & % ! % ! && & E % ! K && ' ! % % & & B & & % ! #J J &' ! 4& E % 8 % ! ! H ! 2>24L# & ! % ! '

!" $J J D ' ' " ' " " ' ' " D D " !" ' ' ' $J 1 6 4 ' & ' " ' H " " $J " '' ' " ' " !" " " ' " ' " D ' " K

% , .

0 / . / ,

1 # $

/ 2 3

1

/ 2 2

/ / # 4

5 % , 2 2 3 3

6 . ,

1 # " ) M N $J J - $ "

$/+ - 0 # . - .

/# + 1 % " . 2 # 3

1 %#

% . ## 2 # 2 # . . 4 5

## $/+ 2 # 2# 3 3 6% # # - #

%#

%

/# + 1 %

AAA ; D

The plan below shows the Double Units Residential Floor of Building 3. Each specific transparency typology has a notation which corresponds to the Layouts in the section shown on the right.

% K L !I I * ! '

=== ; @

The following schemes show the Typology Layouts corresponding to the Double Units Residential Floor of Building 3. Each Layout has a specific location on the plan, shown on the left.

BBB' ' < E

The following page will explore the Section Details of each Layout. **All dimensions shown in meters**

**All dimensions shown in meters** PRODUCED BY AN AUTODESK STUDENT VERSION

Drawing Scale = 1:200

Drawing Scale = 1:100

B3.10 TRANSPARENT TYPE B3.20 TRANSPARENT TYPE

6.70

1.40

UNIT 5

UNIT 3

UNIT 1

PRODUCED BY AN AUTODESK STUDENT VERSION

TYPE A1

2.70 1.5 x 1.8 m ELEVATOR

TYPE A2

TYPE C1

ELEVATOR HALL

GARBAGE DISPOSAL

COMMON SPACE

CLEANING STORAGE

B3.10 LAYOUT

B3.40 LAYOUT

STAIR

STAIR EXTERIOR GARDEN

.70

UNIT 2

5.86

TYPOLOGY LAYOUTS

B3.30 TRANSPARENT TYPE

BUILDING 3 - DOUBLE UNITS RESIDENTIAL FLOOR PLAN 1:200

Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

GROUP 2:

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

2.70

TYPE B1

2.70

TYPE C1

TYPE C1

B3.20 LAYOUT

B3.30 LAYOUT

2.70

TYPE A3

PRODUCED BY AN AUTO

B3.40 TRANSPARENT TYPE

3.56

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

918816 918417 912788 918641

Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401

BUILDING 3 - DOUBLE UNITS RESIDENTIAL FLOOR TRANSPARENT TYPOLOGY LAYOUTS 1:100

PRODUCED BY AN AUTODESK STUDENT VERSION

UNIT 4

TYPOLOGY LOCATIONS

2.70

TYPE A3

PRODUCED BY AN AUTODESK STUDENT VERSION

ENT VERSION

T

Residential Floor (Building 3 - Double Units)

0 0 ' = 0 !I I # @ 0 5 0 D .A. <! 0 '

PRODUCED BY AN AUTODESK STUDENT VERSION

% , .

0 / . / ,

1 ! #

/ 2 3

1

/ 2 2

/ / ! 4

5 % , 2 2 3 3

6 . ,

1 ! & ! * M N #J J . & ' # !

!I I @ ' 0 0 0 ' 0 0 @ @ 0 0 0 !I . 4 1 0 # 0 0 ' D !I ' 00 ' 0 0 C ' 0 0 @ 0 J

!" ' ' A ' " $J J & " 3 D ' 7 ' " " H " 1=13L$ " ' "

GREENFALL FINAL PRESENTATION_December 20th

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

7.8


TECHNICAL DETAILS

B3.10

1.40

DETAIL A2 A1 DETAIL

DETAIL A2

SECTION B3.11 SCALE = 1:10

Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

GROUP 2:

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

B3.10 KEY PLAN

PRODUCED BY AN AUTODESK STUDENT VERSION

PRODUCED BY AN AUTODESK STUDENT VERSION

DETAIL A1

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

B3.11

TYPE A1

SCALE = 1:50

2.70

TYPE A2 FIBER CEMENT BOARD

B3.11

OPAQUE GRC CLADDING INSULATION

B3.10 LAYOUT

AWS 75.SI+ HIGH INSULATED ALUMINUM FRAME (OPERABLE)

CEMENT BOARD FIBERGLASS MESH PRIMER WATER REPELLENT SKIM COAT TRIPLE GLAZED GLASS BOARD FIBER CEMENT 4/16-4/16-4 iPlus 1.0t (Argon 90%)

OPAQUE GRC CLADDING

5.86

INSULATION AWS 75.SI+ HIGH INSULATED ALUMINUM FRAME (OPERABLE)

B3.31

918816 918417 912788 918641

CEMENT BOARD FIBERGLASS MESH PRIMER WATER REPELLENT SKIM COAT TRIPLE GLAZED GLASS 4/16-4/16-4 iPlus 1.0t (Argon 90%)

DETAIL A1 SCALE = 1:5 TYPE B1

Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401

GREENFALL FINAL PRESENTATION_December 20

TYPE C1

B3.31

PRODUCED BY AN AUTODESK STUDENT VERSION

PRODUCED BY AN AUTODESK STUDENT VERSION

PRODUCED BY AN AUTODESK STUDENT VERSION

PRODUCED BY AN AUTODESK STUDENT VERSION

th

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

B3.30 LAYOUT

7.9.1


TECHNICAL DETAILS

B3.10

6.70

1.40

B3.10 KEY PLAN

B3.12

B3.42

TYPE A1

2.70

TYPE A3

OPERATING HANDLE

TRIPLE GLAZED GLASS 4/16-4/16-4 iPlus 1.0t (Argon 90%)

PERLITE GRANULAR AGGREGATE

TYPE A2

TRIPLE GLAZED GLASS 4/16-4/16-4 iPlus 1.0t (Argon 90%)

TYPE C1

CONCRETE BOARD ADHESIVE LAYER

AWS 75.SI+ HIGH INSULATED ALUMINUM FRAME (FIXED)

PORCELAIN STONEWARE

WATER PROOFING

B3.10 LAYOUT

PRODUCED BY AN AUTODESK STUDENT VERSION

RIGID INSULATION WOOD OPAQUE GRC CLADDING

TRIPLE GLAZED GLASS 4/16-4/16-4 iPlus 1.0t (Argon 90%)

FIBER CEMENT BOARD

B3.40 LAYOUT

AWS 75.SI+ HIGH INSULATED ALUMINUM FRAME (OPERABLE) OPERATING HANDLE

TRIPLE GLAZED GLASS 4/16-4/16-4 iPlus 1.0t (Argon 90%) RIGID INSULATION

PERLITE GRANULAR AGGREGATE CONCRETE BOARD

AWS 75.SI+ HIGH INSULATED ALUMINUM FRAME (FIXED) WATER PROOFING

ADHESIVE LAYER PORCELAIN STONEWARE VAPOR BARRIER OSB (WOOD) CORRUGATED SHEET METAL

RIGID INSULATION

5.86

WOOD OPAQUE GRC CLADDING

OPAQUE GRC CLADDING

AWS 75.SI+ HIGH INSULATED ALUMINUM FRAME (OPERABLE)

FIBER CEMENT BOARD

3.56

RIGID INSULATION VAPOR BARRIER OSB (WOOD) CORRUGATED SHEET METAL

B3.22

2.70 DETAIL B3.32 A2

B3.32

SCALE = 1:5

SCALE = 1:5 TYPE B1

Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

GROUP 2:

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

SECTION B3.12 OPAQUE GRC CLADDING

B3.30 LAYOUT 918816 Seyedi Zadeh Fereshteh

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

TYPE C1

PRODUCED BY AN AUTODESK STUDENT VERSION

PRODUCED BY AN AUTODESK STUDENT VERSION

SCALE = 1:50

PRODUCED BY AN AUTODESK STUDENT VERSION

PRODUCED BY AN AUTODESK STUDENT VERSION

918417 912788 918641

927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401

GREENFALL FINAL PRESENTATION_December 20th

T

B3.20 LAYOUT

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

7.9.1


PRODUCED BY AN AUTODESK STUDENT VERSION

TECHNICAL DETAILS

0.06

5.86

B3.21

UDENT VERSION

MULLION TRANSOM

B3.22

B3.22

AOC 50 TI.HI HIGH INSULATED FACADE FRAME

2.70

B3.32

2.70

B3.32 TRIPLE GLAZED GLASS 4/16-4/16-4 iPlus 1.0t (Argon 90%)

TYPE B1

TYPE C1

TYPE C1

B3.31

PRODUCED BY AN AUTODESK STUDENT VERSION

B3.21

B3.30 LAYOUT

B3.20 KEY PLAN B3.20 LAYOUT

STEEL CONNECTION

SCALE = 1:50

TRIPLE GLAZED GLASS 4/16-4/16-4 iPlus 1.0t (Argon 90%) MULLION TRANSOM

PRODUCED BY AN AUTODESK STUDENT VERSION AOC 50 TI.HI HIGH INSULATED FACADE FRAME

THERMAL BREAK

ALUMINIUM COVER

SECTION B3.21

SECTION B3.22

SCALE = 1:5

SCALE = 1:5 OPAQUE GRC CLADDING

Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

GROUP 2:

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

918816 918417 912788 918641

927160 Seyedi Zadeh Fereshteh 912843 Sheikhhassani Navid Zohourparvaz Mohamadreza 927401

GREENFALL FINAL PRESENTATION_December 20th

PRODUCED BY AN AUTODESK STUDENT VERSION

PRODUCED BY AN AUTODESK STUDENT VERSION

PRODUCED BY AN AUTODESK STUDENT VERSION

B3.20

EXTERIOR FACADE TYPE C1

3.56

B3.31

0.06

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

7.9.2


DESK STUDENT VERSION

TECHNICAL DETAILS INTERIOR GLASS TYPE C2

B3.30

5.86

PRODUCED BY AN AUTODESK STUDENT VERSION PRODUCED BY AN AUTODESK STUDENT VERSION PRODUCED ANAN AUTODESK STUDENT VERSION PRODUCED BY AUTODESK STUDENT VERSION PRODUCED BY ANBY AUTODESK STUDENT VERSION SCALE = 1:8

AOC 50 TI.HI HIGH INSULATED FACADE FRAME AOC 50 TI.HI HIGH INSULATED FACADE FRAME

2.70 B3.32

B3.32

TYPE B1

TYPE C1

B3.31

CEMENT BOARD FIBERGLASS MESH PRIMER WATER REPELLENT SKIM COAT CEMENT BOARD FIBERGLASS MESH PRIMER WATER REPELLENT SKIM COAT TRANSOM

B3.30 KEY PLAN B3.30 LAYOUT

TRANSOM

SCALE = 1:50

MULLION ADS 75.SI HIGHLY INSULATED MULLION FRAME ADS 75.SI HIGHLY INSULATED FRAME

TRIPLE GLAZED GLASS 4/16-4/16-4 iPlus 1.0t (Argon 90%)

VAPOUR RESISTANT FOIL

TRIPLE GLAZED GLASS 4/16-4/16-4 iPlus 1.0t (Argon 90%) WOOD

PERLITE GRANULAR VAPOUR RESISTANT FOIL AGGREGATE PERLITE GRANULAR AGGREGATE

WOOD

TRIPLE GLAZED GLASS 4/16-4/16-4 iPlus 1.0t (Argon 90%) TRIPLE GLAZED GLASS 4/16-4/16-4 iPlus 1.0t (Argon 90%)

N AUTODESK STUDENT VERSION SECTION B3.32 SCALE = 1:5 AOC 50 TI.HI HIGH INSULATED FACADE FRAME AOC 50 TI.HI HIGH INSULATED FACADE FRAME

Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

GROUP 2:

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

918816 918417 912788 918641

Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401

ADS 75.SI HIGHLY INSULATED FRAME ADS 75.SI HIGHLY INSULATED FRAME

GREENFALL

PRODUCED BY AN AUTODESK STUDENT VERSION PRODUCED BY AN AUTODESK STUDENT VERSION

PRODUCED BY AN AUTODESK STUDENT VERSION PRODUCED BY AN AUTODESK STUDENT VERSION

PRODUCED BY AN AUTODES

SECTION B3.31

B3.31

PRODUCED BY AN AUTODESK STUDENT VERSION PRODUCED BY AN AUTODESK STUDENT VERSION

PRODUCED BY AN AUTO

INTERIOR EXTERIOR INTERIOR GLASS - -GLASS INTERIOR GLASS EXTERIOR FACADE - FACADE EXTERIOR FACADE TYPE C2 INTERIOR GLASS TYPE C1 TYPE C2 EXTERIOR FACADEFACADE - TYPE INTERIOR GLASSTYPE C2 EXTERIOR -C1C1 TYPE 0.05 C1 TYPE C2TYPE C2 TYPE TYPE0.05 C1

FINAL PRESENTATION_December 20th

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

7.9.3


TECHNICAL DETAILS

B3.40

6.70

1.40 B3.11

B3.41

B3.11

DETAIL D1

B3.41

2.70 DETAIL D2 SECTION B3.41

C1

SCALE = 1:10

B3.40 LAYOUT

OPAQUE GRC CLADDING

AWS 75.SI+ HIGH INSULATED ALUMINUM FRAME (TILT/SLIDE)

5.86

TYPE B1

918816 Krebs Francesco B3.30 NematiLAYOUT Ali 918417

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

WATER REPELLENT SKIM COAT

1.40

Rotundo Marco Salvatore 912788 Saccuman Marta 918641

3.56 OPAQUE GRC CLADDING

B3.21

B3.12 AWS 75.SI+ HIGH INSULATED ALUMINUM FRAME (TILT/SLIDE)

TRIPLE GLAZED GLASS 4/16-4/16-4 iPlus 1.0t (Argon 90%)

2.70

TYPE A1

2.70

CEMENT BOARD FIBERGLASS MESH PRIMER WATER REPELLENT SKIM COAT

TYPE A2

DETAIL D1 SCALE = 1:5

TYPE C1

927160 Seyedi Zadeh Fereshteh 912843 Sheikhhassani Navid Zohourparvaz Mohamadreza 927401

TYPE C1

B3.10 LAYOUT GREENFALL

PRODUCED BY AN AUTODESK STUDENT VERSION

GROUP 2:

CEMENT BOARD FIBERGLASS MESH PRIMER

TRIPLE GLAZED GLASS 4/16-4/16-4 iPlus 1.0t (Argon 90%)

B3.31

Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

B3.40 KEY PLAN SCALE = 1:50

B3.31

B3.22

PRODUCED B

TYPE C1

B3.10 LAYOUT

DETAIL D2

2.70

TYPE A3

ESK STUDENT VERSION

DETAIL D1

2.70

FINAL PRESENTATION_December 20th

B3.21

B3.20 LAYOUT

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

PRODUCED BY AN AUTODESK STUDENT VERSION PRODUCED BY AN AUTODESK STUDENT VERSION

TYPE A2

PRODUCED BY AN AUTODESK STUDENT VERSION

PRODUCED BY AN AUTODESK STUDENT VERSION

70

PRODUCED BY AN AUTODESK STUDENT VERSION

TYPE A1

PRODUCED BY AN AUTODESK STUDENT VERSION

7.9.4


MULLION TRANSOM

TRIPLE GLAZED GLASS TRIPLE GLAZED GLASS MULLION AWS 75.SI+ HIGH INSULATED AWS 75.SI+ HIGH INSULATED 4/16-4/16-4 iPlus 1.0t (Argon 90%) 4/16-4/16-4 iPlus 1.0t (Argon 90%) ALUMINUM FRAME (TILT/SLIDE) ALUMINUM FRAME (TILT/SLIDE)

SCALE = 1:5

OPAQUE GRC CLADDING TRIPLE GLAZED GLASS 4/16-4/16-4 iPlus 1.0t (Argon 90%)

6.70

B3.42

TYPE C1

TRIPLE GLAZED GLASS 4/16-4/16-4 iPlus 1.0t (Argon 90%)

THERMAL BREAK

THERMAL BREAK

WATER PROOFING

RIGID INSULATION

2.70

TYPE A3

RIGID INSULATION

WOOD

WOOD

OPAQUE GRC CLADDING

OPAQUE GRC CLADDING

FIBER CEMENT BOARD

FIBER CEMENT BOARD

PERLITE GRANULAR AGGREGATE

PERLITE GRANULAR AGGREGATE CONCRETE BOARD

ADHESIVE LAYER

ADHESIVE LAYER

PORCELAIN STONEWARE

PORCELAIN STONEWARE

DETAIL D2

SCALE = 1:50

SCALE = 1:5

GROUP 2:

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

918816 918417 912788 918641

927160 Seyedi Zadeh Fereshteh 912843 Sheikhhassani Navid Zohourparvaz Mohamadreza 927401

AOC 50 TI.HI HIGH INSULATED FACADE FRAME

CONCRETE BOARD

B3.40 KEY PLAN

B3.40 LAYOUT Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

AOC 50 TI.HI HIGH INSULATED FACADE FRAME

WATER PROOFING

GREENFALL

PRODUCED BY ANPRODUCED AUTODESK BY STUDENT VERSIONSTUDENT VERSION AN AUTODESK

2.70

AOC 50 TI.HI HIGH INSULATEDAOC 50 TI.HI HIGH INSULATED FACADE FRAME FACADE FRAME

FINAL PRESENTATION_December 20th

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

PRODUCED BY AN AUTODESK STUDENT VERSION

Y AN AUTODESK STUDENT VERSION

OPAQUE GRC CLADDING

B3.40

SECTION B3.42

PRODUCED BY AN AUTOD

PRODUCED BY AN AUTODESK STUDENT VERSION

PRODUCED BY AN AUTODESK STUDENT VERSION

TRANSOM

PRODUCED BY AN AUTO

TECHNICAL DETAILS

7.9.4


8. STRUCTURE Steel structure developement


STRUCTURE

Structural plans

FOUNDATION PLAN D E

3

2.46

1

2

F 7.26

H

G 7.00

I

6.27

J

7.75

7.10

K

L

7.00

O

M

7.05

10.56

6.26

P

R

Q

7.00

7.25

5.13

1

7 8

5.70

12

2

6.29

9

6.27

A

B 6.65

3

6.65

5.78

3.78 2.19

10 6.26

T

S

6.00

6 6.65

A

6.65

B

3.85

C

13

C

4

5

11 2.20

6.27

7.24

E

D

7.00

F

6.26

G

V

O

6.51

7.25

14

2.46

P

Q

R

6

15

7.34

H

U

7.00

7.25

L 15

6.15

4.46

L2

M

16 6.15

6.00

16 17 6.00

6.00

17 18 6.00

6.25

18 19 6.25

5.64

19 2.48

20 2.19

W

3.21

X

5.60

T

20

5.70

Y

Z

0 1m

HEB800 Politecnico di Milano,HEM400

Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20 Politecnico di Milano,

Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

HEM300

GROUP 2:

IPE550

Caniato Giorgia Korovina Viktoriia Krebs Francesco GROUP 2:

918624 913045 918816

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

IPE500

IPE450

Nemati Ali 918417 Rotundo Marco Salvatore 912788 Saccuman Marta 918641 Krebs Francesco 918816

Nemati Ali 918417 Rotundo Marco Salvatore 912788 Saccuman Marta 918641

IPE360

IPE330

Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza Seyedi Zadeh Fereshteh927401

927160 912843 Sheikhhassani Navid Zohourparvaz Mohamadreza 927401

IPE300

IPE270 DESIGN IPE220 ARCHITECTURAL + STUDIO prof. A.Mozzato prof. F.Pagliani

GREENFALL

FINAL PRESENTATION_December 20th

IPE160

5m

10m

GREENFALL

20m

8.1.1

FINAL PRESENTATION _ December 20th SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera


STRUCTURE

Structural plans

PLATFORM PLAN

HEM400

7

IPE220

IPE360

6.27

7.00

F

IPE400

HEM300

6.26

G

15

7.34

H

6.15

IPE270

IPE27

0

HEM40

0

0

IPE27

0

IPE300

IPE300

0 0

IPE27

0

IPE27

0 IPE27

0 HEM40

6.25

0

IPE27

IPE330

IPE33

0

IPE330

L2

0 IPE220

IPE220 IPE220

IPE220

IPE220

M

6.00

0

18

HEM40

0

IPE27

IPE300

0 IPE27

0

IPE300

IPE300

4.46

IPE27

0

19

6

17

0

0

0

HEM300

6.00

HEM40

IPE27

HEM40

HEM300 IPE270

0

0

IPE300

0

R

IPE27

HEM40

IPE300

HEM40

0

IPE27

IPE270

IPE300

18

IPE27

IPE300

IPE27

6.00

Q

16

0

0

0

P

6.15

HEM40 IPE27

HEM40

14

2.46

0

0

0

0

10

7.25

IPE27

HEM40

IPE27

HEM40

7.00

0

0

IPE550

IPE360 HEM400

O

6.51

5.78

IPE27

HEM40 6.00

IPE360

L 15

0

0

HEM300

7.25

IPE27

HEM40

17

IPE33 IPE270

IPE270 IPE270

6.26

13

IPE270 HEM400

IPE270

HEM400

IPE27

16

IPE220

IPE220

IPE220

IPE220

IPE220

IPE220

IPE220

IPE220

IPE220

0

IPE330

IPE330

IPE330

IPE330

IPE330

IPE330

IPE330

IPE360

7.24

E

6.29

IPE360

HEM400

IPE330 HEM400

IPE220

HEM400

IPE330

HEM400

11 2.20

12

IPE33

IPE220

8 IPE360

HEM400 IPE220

IPE220

IPE220

IPE220

IPE220

IPE220

IPE220

IPE220

IPE220

IPE220 IPE220

IPE220

IPE220

IPE220

IPE220

IPE220

IPE220

IPE220

IPE220

IPE220

IPE220

IPE220 IPE220

5.13

IPE360

HEM400

IPE330

HEM400

IPE330

HEM400

IPE550

HEM300

V

IPE300

IPE330

HEM300

U

IPE270

HEM300

D

C

IPE550

HEM300

IPE360

HEM300

T

S IPE270

HEM300

3.85

IPE220

IPE220

IPE220

HEM300

IPE300

B

IPE220

IPE220

IPE220

IPE220

IPE220

IPE220

IPE360

IPE300

A

6.65

IPE330

HEM400

R

Q 7.25

IPE330

HEM400

IPE330

IPE400

IPE270

IPE300

6.65

IPE360

HEM300

IPE270

IPE500

IPE330

IPE550

HEM300

P 7.00

IPE330

HEM400

HEM300

HEM400 IPE330

IPE300

IPE450

IPE330

HEM300 IPE270

6.26

IPE550

HEM300

IPE360

HEM300

IPE360

HEM300

HEM300 IPE270

IPE300

6

HEM300

IPE360

HEM300

IPE360

HEM300

IPE220

IPE220

IPE220 HEM400

IPE330

IPE360

IPE400

HEM400

HEM400

HEM300

IPE220

IPE220

IPE220

IPE220

IPE220

IPE220

IPE360

HEM300

10.56

IPE360

HEM300

IPE300

4

IPE400

HEM400

IPE330

HEM400 IPE220

IPE220

IPE220

IPE220

IPE330

HEM400

IPE330

IPE330

IPE330

IPE33

6.00

IPE330

HEM300

3.78 2.19

IPE330

IPE330

HEM300

IPE220

IPE220

IPE360 0

5

IPE330

IPE330

3

6.65

IPE330

6.65

C

IPE330

B

IPE330

HEM400

7.05

IPE360

HEM300

O

M

9 IPE360

IPE33 0

A

IPE330

HEM400

7.00

IPE360

HEM300

L

IPE33 0

6.27

IPE220

IPE360

2

IPE400

HEM400

K

7.10

IPE220

IPE300

IPE330

IPE270

IPE330

HEM400

J

7.75

IPE220

5.70

IPE330

HEM400 IPE220

IPE220

IPE360

6.27

IPE220

1

7.00

IPE220

7.26

IPE220

2.46

IPE220

2

I

H

G

IPE220

IPE220

1

F

IPE330

IPE160

D E

IPE220

3

TYPE “IPE”:

6.25

IPE300

5.64

20

TYPE “HEM”:

HEM300

2.19

W

HEM400

2.48

IPE450

X

3.21

5.60

T

19 20

5.70

Y

Z

0 1m

8.0

HEB800 BOARD Politecnico di Milano,HEM400 Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20 Politecnico di Milano,

Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

HEM300

GROUP 2:

IPE550

Caniato Giorgia Korovina Viktoriia Krebs Francesco GROUP 2:

918624 913045 918816

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

IPE500

IPE450

Nemati Ali 918417 Rotundo Marco Salvatore 912788 Saccuman Marta 918641 Krebs Francesco 918816

Nemati Ali 918417 Rotundo Marco Salvatore 912788 Saccuman Marta 918641

IPE360

IPE330

Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza Seyedi Zadeh Fereshteh927401

927160 912843 Sheikhhassani Navid Zohourparvaz Mohamadreza 927401

IPE300

IPE270 DESIGN IPE220 ARCHITECTURAL + STUDIO prof. A.Mozzato prof. F.Pagliani

GREENFALL

FINAL PRESENTATION_December 20th

IPE160

5m

10m

GREENFALL

20m

8.1.2

FINAL PRESENTATION _ December 20th SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera


STRUCTURE

Structural plans

TYPE FLOOR PLAN

IPE330

HEM400

1

5

HEM400 IPE220

IPE220

5.70

IPE330

HEM400

IPE220

IPE360

4.30

IPE330 HEM400

4.30

7.00

IPE330

7.25

IPE330

HEM400

E 5.14

6

IPE360

HEM400

IPE220

6.26

IPE330

IPE220

3.34

6.27

IPE220

1

6.99

D

C

IPE220

7.25

B

IPE220

2.46

A

E

IPE220

IPE220

2

D

C

IPE220

1

A B

IPE220

IPE160

3

IPE220

TYPE “IPE”:

2.19

1.00

A

7.00

B

C

8

HEM400

1.35

A

6.27

D

E

B 5.91

IPE270

HEM400

2.40

IPE270

IPE270 HEM40 0

HEM40

IPE270 HEM40 0

0

HEM40

HEM40

0

HEM40

IPE330

IPE220

IPE220

IPE220

IPE360

IPE220

IPE220

IPE220

IPE220

8

1.00

5.70

IPE360

1.35

7.25

D

C

9

2.46

E

0

IPE270

0

5

3

HEM40

HEM40

IPE270

6.00

IPE270

IPE270

IPE300

IPE300

0

IPE270

HEM400

7.00

B

60

2

0

IPE270

6.00

IPE270

4

HEM40

0

IPE300

IPE270 HEM40 0

6.25

IPE330

E1

6.27

6.15

HEM40

IPE300

IPE270

IPE270

4

HEM400

3.40

IPE270

IPE270

IPE300

IPE300

6.00

IPE330

IP

60

E1

IP

60

E1

IP

1

HEM40

0

IPE550

6.26

A

IPE270

IPE300

IPE270

IPE270

3

HEM400

60

60

IPE270

IPE300

IPE300

0

6.00

3.34

E1

E1

5.54

IPE300

IPE300

IPE270

IPE270 IPE220

HEM400

HEM400

IP

IP

60

IP

IPE270

6.15 IPE220

2

IPE330

IP

IPE360

HEM400 0

6 E1

IPE270 HEM400

IPE270

HEM400

1.00

IPE330

60

E1

60

IPE330

HEM400

5.40

IPE300

IPE500

D

C

5.19

1

IPE450

4 5

IPE300

7.25

HEM400

IPE330

IPE300

5.14

HEM400

3.30

IPE330 IPE220

4

IPE330 7.00

IPE330

E1

IPE220

3.30

2.19 IPE360

3

E1

IPE220

IPE220

IPE220

HEM400

IPE300

IPE330

HEM400 IPE220

IPE220

1.00

IPE220

IPE220

1.00

IPE330

HEM400

IPE220

7

IPE330

IP

IPE220

IP

I

IP

60

E1

60

IPE330

HEM400 60

1 PE

IPE220

E1

IPE330 IPE220

4.90

HEM400 IP E1 60

IPE220

IP

60

E1

IP

4.90

IPE330

IPE220

I

2

IPE270

60

IPE220

IPE360

E1

6

IPE270 IPE270

IPE300

IP

IPE220

IPE330

IP

60

E1

60

IPE360

3

IP

1 PE

IPE270

E1

0

6 E1

HEM400 60

IPE270

IP

60

E1

IP

60

IPE330

IPE330 IPE220

IP

E1

HEM400 IP E1 60

IPE220

IPE220

7.00

60

0

6 E1

IPE220

E1

1.00

IP

IPE220

2

IPE330

HEM400

IPE220

IPE360 IP

IPE220

IPE300

IPE330

IPE270

7

1.00

6.25

IPE300

5.64

6

2.48

IPE450

TYPE “HEM”: 2.19

HEM300

3.21

5.60

5 6

5.70

HEM400

E

F

B

G

H

0 1m

8.1

HEB800 Politecnico di Milano,HEM400 BOARD Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20 Politecnico di Milano,

Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

HEM300

GROUP 2:

IPE550

Caniato Giorgia Korovina Viktoriia Krebs Francesco GROUP 2:

918624 913045 918816

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

IPE500

IPE450

Nemati Ali 918417 Rotundo Marco Salvatore 912788 Saccuman Marta 918641 Krebs Francesco 918816

Nemati Ali 918417 Rotundo Marco Salvatore 912788 Saccuman Marta 918641

IPE360

IPE330

Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza Seyedi Zadeh Fereshteh927401

927160 912843 Sheikhhassani Navid Zohourparvaz Mohamadreza 927401

IPE300

IPE270 DESIGN IPE220 ARCHITECTURAL + STUDIO prof. A.Mozzato prof. F.Pagliani

GREENFALL

FINAL PRESENTATION_December 20th

IPE160

5m

10m

GREENFALL

20m

8.1.3

FINAL PRESENTATION _ December 20th SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera


SECTION & 3D DETAILS

STRUCTURE

Structure section and 3D

SECTION 3

3

1 2

1

2

4 5.50

5.50

3 3.47

4.30

4.30

+7.6

2 4.31

3.90

1

1.30 3.20

+0.0

5.59

4.77

2.71

4.29

2.71

3.56

2.71

5.03

2.71

4.37

2.71

4.29

2.71

4.35

0

2.71 4.70

1.30

0.75 2.71

3.56

2.71

4.29

2.71

4.55

8.72

3D STRUCTURAL SCHEME Politecnico di Milano,Milano, Politecnico Polo territoriale di di Lecco CdL in Architectural engineering Polo territoriale di Lecco Academic 2019/20 CdL inyear Architectural engineering

Academic year 2019/20

GROUP 2:

GROUP 2:

Caniato Giorgia 918624 913045 Caniato Giorgia Korovina Viktoriia Krebs FrancescoMurr918816 Dieterich Alice

Korovina Viktoriia

GREENFALL

GREENFALL

ARCHITECTURAL DESIGN 927160 Zadeh Fereshteh SUSTAINABLE BUILDING Seyedi918816 Zadeh Fereshteh Seyedi 927160 Nemati Ali Krebs Francesco 918417 + STUDIO Sheikhhassani Navid 912843 Rotundo Marco Salvatore 912843 Sheikhhassani Navid Nemati Ali 912788 918624 918417 TECHNOLOGIES prof. A.Mozzato Zohourparvaz Mohamadreza 927401 F.Pagliani FINAL PRESENTATION _ December 20th + STUDIO Saccuman Rotundo Marta 918641 Salvatore 912788 824939 Marco Zohourparvaz Mohamadreza prof. 927401 th 913045 FINAL PRESENTATION_December 20 prof. M.Brasca prof. G.Masera Saccuman Marta 918641

BOARD

8.38.2


REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

9. OPAQUE

Defining lightweight construction systems with high performance dry layers and understanding it's assembly and connections


OPAQUE

Opaque envelope strategy

PRELIMINARY ANALYSIS OF TECHNOLOGICAL UNITS

In order to design the opaque layers of the project, first the requirements of each technological unit was analysed according to UNI 8290 regulation. The units where subdivided depending ambients it devides (in NC = not conditioned internal ambient).

Class of Requirement Safety Stability Fire safety

Safety of use Comfort and Hygiene Thermal and hygometric

Acoustic Visual Olfactory Tactile Usability Adaptability Aesthetics Of spaces Management Maintanance Economical

Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

H.C. - Horizontal Closures

Requirement

out - in

out - in NC

H.P. - Horizontal Partitions in - in

in NC - in

out - out

V.C. - Vertical Closures out - in

out - in NC

V.P - Vertical Partitions in - in

in NC - in

optional

optional

Mechanical resistant to static actions Mechanical resistant to dynamic actions Impact resistant No emission of harmfull subtances Limited fire spread risks Limited explosion risks Fire resistant Intrusion resistant Solar factor control Impermeability to liquids Thermal insulation Air tightness Acoustic insulation Luminous flux control No emitance of unplesant smells Impermeability to gases Surface asperity control Electrical systems integration Hydraulic systems integration Cooling and Heating systems integration

optional

optional

optional

Anti-hygroscopic (not moisture absorbent) Appearance regularity Condensation control Repairability Cleanability Durability Limit energetic consumptions

GROUP 2:

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

918816 918417 912788 918641

Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401

GREENFALL FINAL PRESENTATION_December 20th

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

9.1


OPAQUE

Horizontal stratigraphies

U = 1.93W/m2K

H.C. 1

Horizontal closure, retaining floor, uninsulated

3

Technical room (in, not heated)

1

Finishing layer, in cement, tk. 3.2cm

2

Soil

U = 0.22W/m2K

Horizontal closure, insulated

Levelling layer, in lean mortar, tk. 10cm

Finishing layer, in porcelain stoneware, tk. 0.9cm, dim. 60x60cm, "FAP Ceramiche, Milano&Floor" Gluing layer, cement-based elastic adhesive, tk. 0.3cm, "SIKA, Minipack Colla Elastica" Infill layer, in reinforced concrete boards, tk. 2.2cm, dim. 60x90cm, "KNAUF Aquapanel Floor". Fixed with polyurethane glue, "Aquapanel Rebate Floor Adhesive PU" and self-tapping screws, "Aquapanel Floor Screws" Acoustic insulation layer, in perlite granular aggregates, tk. 5cm, "KNAUF, Aquapanel Levelling Fill" Vapour barrier, in aluminium sheet, tk. 0.03cm Thermal insulation layer, in extruded polystyrene (XPS), tk. 12cm, dim. 60x125cm, λ=0,034 W/mK, "LAPE, Styrodur 3035 CS" Load-bearing framework: Reinforcement layer, in Portland cement and wood fibers, tk. 2.8cm, dim. 280x125cm, δ=1350 kg/m3 "BETONWOOD, Cementolegno ad alta densità" Self-drilling screw for wood-metal connections, in stainless steel, L=4.5cm, Ø=0.48cm, "Rothoblaas, SBS A2 AISI304" Corrugated sheet, in stainless steel, tk. 0.1cm, h=5.5cm, "SANDRINI METALLI, SANDA55 P600" Sound proof and anti-condensation, high-desity syntetic rubber fabric, tk. 0.3cm, "SANDRINI METALLI, SANDcontrol". Glued to corrugated sheet Structural element, primary beam, IPE 360

80

29,3

Residential floor (in)

Ventilated under-floor cavity layer, in plastic formworks, h=60cm, dim. 57.8x57.8cm, "DALIFORM GROUP, Iglù H60"

H.C.2

Accessible false ceiling "PROMETAL, Clip in tiles": Hanger: clip-in adjustament spring + suspention spring Connector: single clip-in cross connector Double substructrure: clip-in rail "secondary grid + main carrier" Clip-in panel: in steel, tk. 0.05cm, dim. 60x60cm

Platform (out)

Between residential floor (in) and platform (out)

60

H.C.1

Between soil and technical room (in, not heated)

Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

GROUP 2:

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

918816 918417 912788 918641

Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401

GREENFALL FINAL PRESENTATION_December 20th

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

H.C. 2

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

83

Load distribution layer, in concrete reinforced with electrowelded steel mesh, tk. 10cm

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

9.2.1


OPAQUE

Horizontal stratigraphies

U = 0.31 & 0.22W/m2K

H.C. 3

Horizontal closure, insulated from above

3

H.C. 4

U = 0.28W/m2K

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

Gym (in)

Tiles layer, in porcelain stoneware, tk. 2cm, dim. 40X40cm, "BERTOLANI, scout black" Support elements, in polypropilene, h=5-7.5cm, "GANMAR, Sistema Flot SE2" Waterproofing membrane, in tar paper, tk. 0.4 cm, "BITUVER, Membrana bituminosa elastomerica Monover" Slope and thermal insulation layer, in cellular glass, minimum tk. 10cm, dim. 120x60cm, λ=0,041 W/mK, class A1, "FOAMGLAS, Board T4+", slope gradient 1.5%

27,3 78

2

Load-bearing framework: Reinforcement layer, in Portland cement and wood fibers, tk. 2.8cm, dim. 280x125cm, δ=1350 kg/m3 "BETONWOOD, Cementolegno ad alta densità" Self-drilling screw for wood-metal connections, in stainless steel, L=4.5cm, Ø=0.48cm, "Rothoblaas, SBS A2 AISI304" Corrugated sheet, in stainless steel, tk. 0.1cm, h=5.5cm, "SANDRINI METALLI, SANDA55 P600" Sound proof and anti-condensation, high-desity syntetic rubber fabric, tk. 0.3cm, "SANDRINI METALLI, SANDcontrol". Glued to corrugated sheet Structural element, primary beam, IPE 360 Drop ceiling "KANUF, D112": Hangers, tk. 0.4cm, hook with spring, tk. 0.12cm, in steel, span 60cm Double metallic frame, in steel C profiles, tk. 0.06cm, dim. 2.7x5cm, span 60cm Acoustic insulation layer, in mineral wool, tk. 4.5cm, "KNAUF, Ekovetro R" Infill layer, in cement board, tk. 0.8cm, dim. 90x120cm, class A1, "KNAUF Aquapanel SkyLite". Fixed with self-tapping screws, L=2.5cm, Ø=0.35cm, "KNAUF vite V.R." Finishing layer, primer with glass fibre mesh, tk. 0.6cm, "KNAUF Aquapanel Interior Primer + Reinforcing Mesh + Q4 finish" Co-working (in)

Insulated closure, with footpath and slope Roof (out)

1

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

78

27,3

Street market/ Platform (out)

H.C.4

Between roof (out) and residential or common floor (in)

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

Residential Terrace (out)

Hollow profile stave layer, in wood plastic composite, tk. 2.2cm, dim. 14.5x220cm, "NOVOWOOD, Pestige col. Wood". Separator: hidden fastening clips, in nylon, distance 0.3cm Understructure frame, in aluminium hollow profiles, h=3cm, dim. 4x220cm, "NOVOWOOD, Corrente Alluminio" Levelling layer, in compacted sand, maximum tk. 3cm Waterproofing membrane, in tar paper, tk. 0.4 cm, "BITUVER Membrana bituminosa elastomerica Monover" Slope and thermal insulation layer, in cellular glass, minimum tk. 10cm, dim. 120x60cm, λ=0,041 W/mK, class A1, "FOAMGLAS, Board T4+", slope gradient 1.5% Load-bearing framework: Reinforcement layer, in Portland cement and wood fibers, tk. 2.8cm, dim. 280x125cm, δ=1350 kg/m3, "BETONWOOD, Cementolegno ad alta densità" Self-drilling screw for wood-metal connections, in stainless steel, L=4.5cm, Ø=0.48cm, "Rothoblaas, SBS A2 AISI304" Corrugated sheet, in stainless steel, tk. 0.1cm, h=5.5cm, "SANDRINI METALLI, SANDA55 P600" Sound proof and anti-condensation, high-desity syntetic rubber fabric, tk. 0.3cm, "SANDRINI METALLI, SANDcontrol". Glued to corrugated sheet Structural element, primary beam, IPE 360 Drop ceiling "KANUF, D112": Hangers, tk. 0.4cm, hook with spring, tk. 0.12cm, in steel, span 60cm Double metallic frame, in steel C profiles, tk. 0.06cm, dim. 2.7x5cm, span 60cm Fire barrier and infill layer, in gypsum plasterboard reinforced with mineral fibres, tk. 1.25cm, dim. 120x300cm, class A1, "KNAUF lastra F-zero". Fixed with self-tapping screws, L=2.5cm, "KNAUF vite V.R." Finishing layer, in plaster filler and light aggregates, tk. 0.6 cm, "KNAUF Fireboard Spachtel / Q4"

H.C.3

Between gym (in) and street market (out)

Residential floor (in)

Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

Common floor (in)

GROUP 2:

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

918816 918417 912788 918641

Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401

GREENFALL FINAL PRESENTATION_December 20th

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

9.2.2


OPAQUE H.C. 5

Horizontal stratigraphies H.C.5

U = 0.24W/m2K

Insulated closure, with slope, maintenance only

3

U = 1.11W/m2K

External partition, with garden

60

Soil, maximum tk. 20cm Drainage and water storage layer, in plastic (HDPE), filled with expanded clay, h=5cm, dim. 56x56cm, "PANTAROLO, Cupolex WindiDrain" Waterproofing membrane, in tar paper, tk. 0.4 cm, "BITUVER Membrana bituminosa elastomerica Monover" Slope layer, in perlite granular aggregates, minimum tk. 2cm, "KNAUF, Aquapanel Levelling Fill", slope gradient 1.5% Separation layer, in cardboard, tk. 0.3cm, "KNAUF Foglio di cartone ondulato" Load-bearing framework: Reinforcement layer, in Portland cement and wood fibers, tk. 2.8cm, dim. 280x125cm, δ=1350 kg/m3, "BETONWOOD, Cementolegno ad alta densità" Self-drilling screw for wood-metal connections, in stainless steel, L=4.5cm, Ø=0.48cm, "Rothoblaas, SBS A2 AISI304" Corrugated sheet, in stainless steel, tk. 0.1cm, h=5.5cm, "SANDRINI METALLI, SANDA55 P600" Structural element, IPE 550 Accessible false ceiling "PROMETAL, Clip in tiles": Hanger: clip-in adjustament spring + suspention spring Connector: single clip-in cross connector Double substructrure: clip-in rail "secondary grid + main carrier" Clip-in panel: in steel, tk. 0.05cm, dim. 60x60cm

Platform (out)

Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

2

Drop ceiling "KANUF, D112": Hangers, tk. 0.4cm, hook with spring, tk. 0.12cm, in steel, span 60cm Double metallic frame, in steel C profiles, tk. 0.06cm, dim. 2.7x5cm, span 60cm Fire barrier and infill layer, in gypsum plasterboard reinforced with mineral fibres, tk. 1.25cm, dim. 120x300cm, class A1, "KNAUF lastra F-zero". Fixed with self-tapping screws, L=2.5cm, "KNAUF vite V.R." Finishing layer, in plaster filler and light aggregates, tk. 0.6cm, "KNAUF Fireboard Spachtel / Q4"

100

35,1

Platform's roof, not accessible (out)

1

Load-bearing framework: Reinforcement layer, in Portland cement and wood fibers, tk. 2.8cm, dim. 280x125cm, δ=1350 kg/m3, "BETONWOOD, Cementolegno ad alta densità" Self-drilling screw for wood-metal connections, in stainless steel, L=4.5cm, Ø=0.48cm, "Rothoblaas, SBS A2 AISI304" Corrugated sheet, in stainless steel, tk. 0.1cm, h=5.5cm, "SANDRINI METALLI, SANDA55 P600" Sound proof and anti-condensation, high-desity syntetic rubber fabric, tk. 0.3cm, "SANDRINI METALLI, SANDcontrol". Glued to corrugated sheet Structural element, primary beam, IPE 360

H.P.6

Between platform (out) and platform roof (out)

60

GROUP 2:

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

918816 918417 912788 918641

Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401

GREENFALL FINAL PRESENTATION_December 20th

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

H.P. 6

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

Residential floor (in)

Protection layer, in gravel, maximum tk. 5cm Waterproofing membrane, in tar paper, tk. 0.4 cm, "BITUVER Membrana bituminosa elastomerica Monover" Slope and thermal insulation layer, in cellular glass, minimum tk. 8cm, dim. 120x60cm, λ=0,041 W/mK, class A1, FOAMGLAS, Board T4+", slope gradient 1.5% Thermal insulation layer, in extruded polystyrene (XPS), tk. 5cm, dim. 60x125cm, λ=0,034 W/mK, "LAPE, Styrodur 3035 CS"

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

78

27,3

Roof, mantenance only (out)

Between residential floor (in) and roof (out) (maintenance only)

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

9.2.3


OPAQUE

Horizontal stratigraphies

U = 0.67 & 0.54W/m2K

H.P. 7

External partition, with footpath and slope

H.P. 8

U = 0.25W/m2K

Main internal partition

Terraces finishing: Hollow profile stave layer, in wood plastic composite, tk. 2.2cm, dim. 14.5x220cm, "NOVOWOOD, Pestige col. Wood". Joint separator: hidden fastening clips, in nylon, distance 0.3cm Understructure frame, in aluminium hollow profiles, h=3cm, dim. 4x220cm, "NOVOWOOD, Corrente Alluminio" Levelling layer, in compacted sand, maximum tk. 8cm

1

2

Waterproofing membrane, in tar paper, tk. 0.4 cm, "BITUVER Membrana bituminosa elastomerica Monover" Slope screed layer, in expanded perlite, minimum tk. 5cm, "KNAUF, LE350 BIOLITE", slope gradient 1.5% Separation layer, in cardboard, tk. 0.3cm, "KNAUF Foglio di cartone ondulato" Load-bearing framework: Reinforcement layer, in Portland cement and wood fibers, tk. 2.8cm, dim. 280x125cm, δ=1350 kg/m3, "BETONWOOD, Cementolegno ad alta densità" Self-drilling screw for wood-metal connections, in stainless steel, L=4.5cm, Ø=0.48cm, "Rothoblaas, SBS A2 AISI304" Corrugated sheet, in stainless steel, tk. 0.1cm, h=5.5cm, "SANDRINI METALLI, SANDA55 P600" Structural element, primary beam, IPE 360 Accessible false ceiling "PROMETAL, Clip in tiles": Hanger: clip-in adjustament spring + suspention spring Connector: single clip-in cross connector Double substructrure: clip-in rail "secondary grid + main carrier" Clip-in panel: in steel, tk. 0.05cm, dim. 60x60cm

Residential Terrace (out)

Public floor (in)

Finishing layer, in porcelain stoneware, tk. 0.9cm, dim. 60x60cm, "FAP Ceramiche, Milano&Floor Matt R9" Gluing layer, cement-based elastic adhesive, tk. 0.3cm, "SIKA, Minipack Colla Elastica" Infill layer, in reinforced concrete boards, tk. 2.2cm, dim. 60x90cm, "KNAUF Aquapanel Floor". Fixed with polyurethane glue, "Aquapanel Rebate Floor Adhesive PU" and self-tapping screws, "Aquapanel Floor Screws" Acoustic insulation layer and cavity for hydraulic services, in perlite granular aggregates, tk. 17cm, "KNAUF, Aquapanel Levelling Fill" Plumbing tube, total ø=11cm, "GEBERIT PE DN100" Separation layer, in cardboard, tk. 0.3cm, "KNAUF Foglio di cartone ondulato"

PUBLIC accessible false ceiling "PROMETAL, Clip in tiles": Hanger: clip-in adjustament spring + suspention spring Connector: single clip-in cross connector Double substructrure: clip-in rail "secondary grid + main carrier" Clip-in panel: in steel, tk. 0.05cm, dim. 60x60cm

Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

Public floor (in)

GROUP 2:

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

H.P.7

RESIDENTIAL drop ceiling, "KNAUF, D112": Hangers, tk. 0.4cm, hook with spring, tk. 0.12cm, in steel, span 60cm Double metallic frame, in steel C profiles, tk. 0.06cm, dim. 2.7x5cm, span 60cm Fire barrier and infill layer, in gypsum plasterboard reinforced with mineral fibres, tk. 1.25cm, dim. 120x300cm, class A1, "KNAUF lastra F-zero". Fixed with self-tapping screws, L=2.5cm, "KNAUF vite V.R." Finishing layer, in plaster filler and light aggregates, tk. 0.6 cm, "KNAUF Fireboard Spachtel / Q4"

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

918816 918417 912788 918641

Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401

GREENFALL FINAL PRESENTATION_December 20th

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

Residential floor (in)

H.P.8

Between two residential floors (in) or two common floors (in)

Load-bearing framework: Reinforcement layer, in Portland cement and wood fibers, tk. 2.8cm, dim. 280x125cm, δ=1350 kg/m3, "BETONWOOD, Cementolegno ad alta densità" Self-drilling screw for wood-metal connections, in stainless steel, L=4.5cm, Ø=0.48cm, "Rothoblaas, SBS A2 AISI304" Corrugated sheet, in stainless steel, tk. 0.1cm, h=5.5cm, "SANDRINI METALLI, SANDA55 P600" Sound proof and anti-condensation, high-desity syntetic rubber fabric, tk. 0.3cm, "SANDRINI METALLI, SANDcontrol". Glued to corrugated sheet Structural element, primary beam, IPE 360

80

29,3

Residential floor (in)

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

Street Market (out)

Residential Terrace (out)

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

78

27,3

Platform (out)

3

Platform finishing: Tiles layer, in porcelain stoneware, tk. 2cm, dim. 40X40cm, "BERTOLANI, scout black". Joints: 0.4cm Support elements, in polypropilene, h=7.5-12cm, "GANMAR, Sistema Flot SE3"

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

Between platform (out) and street market (out) or two residential terraces

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

9.2.4


OPAQUE

Horizontal stratigraphies

U = 0.23 W/m2K

H.P. 9

Internal partition, insulated from above

3

H.P. 10

Walkway on park

Soil

1

2

Load-bearing framework: Reinforcement layer, in Portland cement and wood fibers, tk. 2.8cm, dim. 280x125cm, δ=1350 kg/m3, "BETONWOOD, Cementolegno ad alta densità" Self-drilling screw for wood-metal connections, in stainless steel, L=4.5cm, Ø=0.48cm, "Rothoblaas, SBS A2 AISI304" Corrugated sheet, in stainless steel, tk. 0.1cm, h=5.5cm, "SANDRINI METALLI, SANDA55 P600" Sound proof and anti-condensation, high-desity syntetic rubber fabric, tk. 0.3cm, "SANDRINI METALLI, SANDcontrol". Glued to corrugated sheet Structural element at sight, IPE 360

External tile layer, in granite, tk. 3cm, dim. 40x60cm, "GRANULATI ZANDOBBIO, G603" Equilizing bed, in compacted sand, tk. 2.5cm

Dranage and backfilling layer, in gravel, tk. 15cm

H.P.10

Between ground floor park and soil

H.P.9

Between technical room and co-working or gym (in)

Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

GROUP 2:

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

918816 918417 912788 918641

Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401

GREENFALL FINAL PRESENTATION_December 20th

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

21

Ground floor Park

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

Technical room (in, not heated)

Finishing layer, in porcelain stoneware, tk. 0.9cm, dim. 60x60cm, "FAP Ceramiche, Milano&Floor Matt R9" Gluing layer, cement-based elastic adhesive, tk. 0.3cm, "SIKA, Minipack Colla Elastica" Infill layer, in reinforced concrete boards, tk. 2.2cm, dim. 60x90cm, "KNAUF Aquapanel Floor". Fixed with polyurethane glue, "Aquapanel Rebate Floor Adhesive PU" and self-tapping screws, "Aquapanel Floor Screws" Thermal insulation and vapour barrier layer, in cellular glass, tk. 10 cm, dim. 120x60cm, λ=0,041 W/mK, class A1, "FOAMGLAS, Board T4+", slope gradient 1.5% Thermal insulation layer, in extruded polystyrene (XPS), tk. 5cm, dim. 60x125cm, λ=0,034 W/mK, "LAPE, Styrodur 3035 CS"

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

63,3

27,3

Co-working/ Gym (in)

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

9.2.5


OPAQUE V.C. 01

U = 0.30 W/m2K

V.C. 02

Retaining wall, load-bearing, insulated

U = 0.23 W/m2K

Retaining wall, load-bearing, insulated, with services cavity

46

66

Gym

Soil

Vertical stratigraphies

Soil

Bathroom

Drainage layer for ventilated crawl space, in gravel, minimum tk. 10 cm

Drainage layer for ventilated crawl space, in gravel, minimum tk. 10 cm

Filter and protection layer, in rot-proof polypropylene geotextile (outside) bonded to a high-density polyethylene drainage (core), total tk. 0,9 cm, "DELTA DRAIN"

Filter and protection layer, in rot-proof polypropylene geotextile (outside) bonded to polyethylene drainage (core), tk. 0.9 cm, "DELTA DRAIN"

Waterproof layer, in bitumen membrane, tk. 0,45 cm, "INDEX - LIGHTFLEX HPCP"

Waterproof layer, in bitumen membrane, tk. 0.45 cm, "INDEX, LightFlex HPCP"

Thermal insulation layer, in cellular glass boards, tk. 12 cm, dim. 120X60 cm, λ= 0,041 W/mK, class A1, "FOAMGLAS, Board T4+"

Insulation layer, in cellular glass boards, tk. 12 cm, dim. 120X60 cm, λ= 0,041 W/mK, Euroclass A1, "FOAMGLAS, Board T4+"

Gluing layer, in cement-based fiber adhesive, tk. 0.3cm, "Fassabortolo, A 96"

Gluing layer, in cement-based fiber adhesive, tk. 0.3 cm, "Fassabortolo A96"

Structural layer, in reinforced concrete, tk. 30 cm

Structural layer, in reinforced concrete, tk. 30 cm

Finishing layer, tk. 2.5 cm: - Base coat, in lime plaster, tk. 2cm, "FASSABORTOLO KB 13"; - Finishing coat, in lime plaster, tk. 0.5cm, "FASSABORTOLO IM 560"

Cavity for hydraulic sevices, tk. 15 cm; with plumbing tube, total ø=11cm, "GEBERIT" Substructure, in DX51 steel, tk. 0.08cm, dim. 5x5x5cm, "KNAUF C stud" Sound absorbing layer, in polyester fiber, tk. 5 cm, w=61cm, "POLYESTER SOLUTIONS, Sound Batts Insulation". Fixed with glue, tk. 0.3cm Infill and water repellent layer, in reinforced cement boards, tk. 1.25cm, dim. 120x90cm, class A1, "KNAUF, Aquapanel Indoor" Self-drilling screw, in corrosion-resistant steel, "KNAUF Maxi Screws TEKS" Gluing layer, cement-based adhesive, tk. 0.4cm, "MAPEI - Karaflex" Tiling layer, in porcelain stoneware tiles, tk. 1 cm, dim. 6x24 cm

V.S.

V.S.

V.C. 03

U = 2.10 W/m2K

V.C. 1

Fireproof wall, uninsulated

V.C. 2

16

Terrace

Stairs Finishing layer, in exterior basecoat, tk. 1cm, with reinforcing mesh, "KNAUF Uniflott Q1"

showers

Stiffening layer, in fibercement panels, tk. 1.25cm, dim. 120x120cm, "KNAUF AQUAPANEL cement board Outdoor" Fixing element, self-drilling screw, in corrosion-resistant steel, "KNAUF, Aquapanel Maxi Screws, TEKS"

gym's changing room

changing room

Air conditioned spaces

Water barrier, in breathable membrane, tk. 0.02cm, "KNAUF -TYVEK StuccoWrap", fixed to substructure with double sided adhesive tape Double substructure, in DX51 steel, tk. 0.08 cm, dim. 5x5x5cm, span 60cm, "KNAUF C stud"

double unit

double unit

double unit

Dead air space to block fire spread, tk. 11cm

hall

Infill and fire control layer, in gypsum boards, tk. 1.25+1.25cm, dim. 120x300cm, "KNAUF, F-Zero". Fixed with self-drilling screw, in black phosfate, L=2.5 or 4.2cm, "KNAUF Jackpoint Self-Drilling Screw"

common space

Finishing coat, in water based paint for plaster board, tk. 0.5cm, "FASSA BORTOLO Gypsopaint"

V.C. 3

Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

double unit

double unit

H.S.

GROUP 2:

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

918816 918417 912788 918641

Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401

GREENFALL FINAL PRESENTATION_December 20th

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

V.S.

terrace

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

9.3.1

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI


OPAQUE U = 1.60 W/m2K

V.C. 04

V.C. 05

Ventilataded facade in GFRC, load-bearing

64

Elevator/ Stairs

Cladding, in glassfiber reinforced concrete (GFRC), tk. 1.3 cm, dim. variable, "RIEDER, Fiber C Facade Panels" Fixing elements anchored to panel: - Undercut anchor and ratchet screw, in stainless steel, ø=7mm, "KEIL, KH AA" - Anchoring element, in alumnum alloy, "HILTI, MFT-H 200K" - Adjusting screw, in alumnum, ø=3.5mm "HILTI, MFT-JS" Horizontal hanger profile, in alumnum alloy, tk. 2mm, w=2.15cm, h=6cm, "HILTI, MFT-HP 200". Fixed with self-drilling screw, "HILTI" Vertical L profile, in aluminum alloy, tk. 2mm, dim. 6x4cm, "HILTI, MFT-L". Fixed with self-drilling screw, in aluminum, "HILTI" L bracket with clamping spring, in aluminum alloy, tk. 0.25cm, dim. 4x16cm, "HILTI, MFT-MF L". Fixed with a high-performance collared plastic anchor for frames, ø=1cm, "HILTI, HRD-H" Ventilated cavity, tk. 4.85cm Structural layer, in reinforced concrete, tk. 30 cm

50

1

2

Out

H.S. 9

V.S.

V.C. 06

U = 0.36 W/m2K

Ventilataded facade in GFRC, load-bearing, insulated, with services cavity

Out

22,4

39 9

Vertcial stratigraphies

Bathroom Cladding, in glassfibre reinforced concrete (GFRC), tk. 1.3cm, dim. variable, "RIEDER, Fiber C Façade Panels". Fixed with Undercut System, "KEIL" Horizontal hanger profile, in aluminum alloy, tk. 2mm, w=2.15cm, h=6cm, "HILTI, MFT-HP 200". Fixed with self-drilling screw, "HILTI" Ventilated cavity, tk. 3cm Vertical L profile, in aluminum alloy, tk. 2mm, dim. 4x4cm, "HILTI, MFT-L". Fixed with self-drilling screw, in aluminum, "HILTI" Thermal insulation layer, in mineral wool, tk. 4cm, dim. 60x120cm, λ=0,035 W/mK, class A1, "ROCKWOOL Rainscreen Duo Slab". Fixed with insulation fastener and nail, in HDPE, "HILTI, X-IE-E-6", span 50cm L bracket with clamping spring, in aluminum alloy, dim. 6.5x16cm, hole ø=11mm; with thermal separator in polypropylene, tk. 0.5cm, "HILTI, MFT-MFI L" Fixed with a high-performance collared plastic anchor for frames, ø=1cm, "HILTI, HRD-H"

Structural layer, in reinforced concrete, tk. 30 cm Cavity for hydraulic sevices, tk. 15 cm. Plumbing tube, total ø=11cm, "GEBERIT PE DN100" Substructure, in DX51 steel, tk. 0.08cm, dim. 5x5x5cm, "KNAUF C stud" Sound absorbing layer, in polyester fiber, tk. 5 cm, "POLYESTER SOLUTIONS, Sound Batts Insulation". Fixed with glue, tk. 0.3cm Vapour barrier, in aluminium, tk. 0,03 cm Infill and water repellent layer, in reinforced cement board, tk. 1.25cm, dim. 120x90cm, Euroclass A1, "KNAUF, Aquapanel Indoor". Fixed with self-drilling screw, in corrosion-resistant steel, "KNAUF Maxi Screws TEKS" Gluing layer, cement-based adhesive, tk. 0.4cm, "MAPEI - Karaflex" Tiling layer, in porcelain stoneware tiles, tk. 1 cm, dim. 6x24 cm

V.S.

Cladding

U = 0.11 W/m2K

Main ventilataded facade in GFRC, insulated stud wall 41

Room

50

1

2

Cladding, in glassfibre reinforced concrete (GFRC), tk. 1.3cm, dim. variable, "RIEDER, Fiber C Façade Panels" Fixing elements anchored to GRC panel: - Undercut anchor and locking ratchet, in stainless steel, ø=7mm, "KEIL, KH AA" - Anchoring element, in aluminum alloy, h=6cm, w=4cm, "HILTI, MFT-H 200K" - Adjusting screw, in aluminum, L=2cm, ø=3.5mm "HILTI, MFT-JS" Horizontal hanger profile, in aluminum alloy, tk. 2mm, w=2.15cm, h=6cm, "HILTI, MFT-HP 200". Fixed with self-drilling screw, "HILTI" Ventilated cavity, tk. 4cm Vertical L profile, in aluminum alloy, tk. 0.18cm, dim. 4x6cm, "HILTI, MFT-L". Fixed with self-drilling screw, in aluminum, "HILTI" L bracket with clamping spring, in aluminum alloy, tk. 0.25cm, dim. 15x16cm; with thermal separator in polypropylene, tk. 0.5cm, "HILTI, MFT-MFI L". Fixed with umbrella expansion plug, in polyamide, "HILTI, HLD 4" Thermal insulation layer, in mineral wool, tk. 12cm, dim. 60x120 cm, λ=0,035 W/mK, class A1, "ROCKWOOL Rainscreen Duo slab". Fixed with cement-based adhesive, tk. 0.3cm, "FASSABORTOLO, A96" Insulation fastener, in HDPE, "HILTI, IDP120, fungo per pannelli isolanti"

V.S.

Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

H.S.

GROUP 2:

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

Air conditioned spaces

V.C. 5

Double stiffening layer, in fibercement panels, tk. 1.25+1.25cm, dim. 200x120cm, "KNAUF - ACQUAPANEL cement board Outdoor". Fixed with self drilling screws, "KNAUF Maxi Screws TEKS" Water barrier breathable layer, in fabric, tk. 0.02cm, "KNAUF -TYVEK StuccoWrap". Fixed with adhesive tape Stud frame, in stainless steel, tk. 0.2 cm, dim. 5x10x5cm, span 60cm, "Marcegaglia" Thermal and acoustic insulation layer, in stone wool boards, tk. 10 cm, dim. 120x60 cm, λ=0,033 W/mK, class A1, "ROCKWOOL, Acoustic 225 Plus" Secondary substructure, in DX51 steel, tk. 0.08cm, dim. 5x5x5cm, "KNAUF C stud" Thermo-acoustic insulation layer, in stone wool boards, tk. 5cm, class A1, "ROCKWOOL, Acoustic 225 Plus" Vapour barrier, in aluminum, tk. 0,03 cm Infill and fire control layer, in double gypsum board, tk. 1.25+1.25cm, dim. 120x300cm, "KNAUF, F-Zero". Fixed with self-drilling screws, in black phosfate, L=2.5 or 4.2cm, "KNAUF Jackpoint Self-Drilling Screw" Finishing coat, in water based paint for plaster board, tk. 0.5cm, "FASSA BORTOLO Gypsopaint"

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

918816 918417 912788 918641

Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401

double unit

V.C. 6

V.C. 4

double unit

double unit hall

common space

terrace

GREENFALL FINAL PRESENTATION_December 20th

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

Out

22,4

double unit

double unit

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

9.3.2

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI


OPAQUE V.C. 07

U = 0.21 W/m2K

V.P. 08

Insulated wall, with plaster finishing (non load-bearing)

Vertcial stratigraphies

U = 0.20 W/m2K

Fireproof insulated partition

26

26

Terrace

Room

Finishing layer, in exterior basecoat, tk. 1cm, with reinforcing mesh, "KNAUF Aquapanel Outdoor solution"

Stairs

Room Finishing layer, in basecoat plus finishing coat with reinforcing mesh, tk. 1cm, "KNAUF Uniflott Q2"

Stiffening layer, in fibercement panels, tk. 1.25cm, dim. 120x120cm, "KNAUF AQUAPANEL Outdoor". Fixed with self-drilling screws, in corrosion-resistant steel, "KNAUF, Aquapanel Maxi Screws, TEKS"

Infill and water repellent layer, in reinforced cement boards, tk. 1.25cm, dim. 120x90cm, class A1, "KNAUF, Aquapanel Indoor". Fixing with self-drilling screw, in corrosion-resistant steel, "KNAUF, Aquapanel Maxi Screws, TEKS"

Water barrier breathable layer, in fabric, tk. 0.02cm, "KNAUF -TYVEK StuccoWrap", fixed to substructure with double sided adhesive tape

Substructure, in DX51 steel, tk. 0.1cm, dim. 5x10x5cm, span 50cm, "KNAUF C stud"

Substructure, un DX51 steel, tk. 0.1cm, dim. 5x10x5cm, "KNAUF C stud" Thermal insulation layer, in mineral wool, tk. 10 cm, dim. 120x60 cm, λ=0,034 W/mK, class A1, "ROCKWOOL Steel Frame Slab"

Thermal insulation layer, in mineral wool, tk. 10 cm, dim. 120x60 cm, λ=0,034 W/mK, class A1, "ROCKWOOL Steel Frame Slab" Dead air space to block fire spread, tk. 5cm

Dead air space to block fire spread, tk. 5cm

Substructure, C profile in steel, tk. 0.08cm, dim. 5x5x5cm, "KNAUF C stud"

Substructure, in DX51 steel, tk. 0.08cm, dim. 5x5x5cm, "KNAUF C stud" Acustic insulation layer, in mineral wool, tk. 5cm, dim. 120x60cm, λ=0,033 W/mK, class A1, "ROOKWOOL Acoustic 225 Plus"

Acoustic insulation layer, in mineral wool, tk. 5cm, dim. 120x60cm, λ=0,035 W/mK, class A1, "ROOKWOOL Acoustic 225 Plus"

Vapour barrier in alluminium, tk. 0,03 cm Infill and fire control layer, in gypsum boards, tk. 1.25+1.25cm, dim. 120x300cm, "KNAUF, F-Zero". Fixed with self-drilling screws, in black phosfate, L=2.5 or 4.2cm, "KNAUF Jackpoint Self-Drilling Screw" Finishing coat, in water based paint for plaster board, tk. 0.5cm, "FASSA BORTOLO Gypsopaint"

H.S.

V.S.

V.P. 9

Vapour barrier in alluminium, tk. 0,03 cm Infill and fire control layer, in gypsum boards, tk. 1.25+1.25cm, dim. 120x300cm, "KNAUF, F-Zero". Fixed with self-drilling screws, in black phosfate, L=2.5 or 4.2cm, "KNAUF Jackpoint Self-Drilling Screw" Finishing coat, in water based paint for plaster board, tk. 0.5cm, "FASSA BORTOLO Gypsopaint"

V.S.

U = 0.19 W/m2K

Fireproof partition, load-bearing, insulated from inside 43

Stairs

Room Structural layer in reinforced concrete, tk. 30cm Single substructure, in DX51 steel, tk. 0.08cm, dim. 5x10x5cm, "KNAUF C stud". Fixed with self-drilling screw, in black phosfate, L=2.5 or 4.2cm, "KNAUF Jackpoint Self-Drilling Screw"

V.P. 9

Air conditioned spaces

Thermal-acoustic insulation layer, in mineral wool, tk. 10cm, dim. 120x60cm, λ=0,034 W/mK, class A1, "ROCKWOOL Steel Frame"

Vapour barrier, in aluminium, tk. 0.03cm Fire control layer, in calcium silicate board, tk. 1.25cm, dim. 120x280cm, class A1, "Isostyle"

Bathroom

double unit

ROOM finishing layers: Infill layer, in gypsum board, tk. 1.25cm, dim. 120x300cm, "KNAUF, F-Zero". Fixed with self-drilling screw, in black phosfate, L=2.5 or 4.2cm, "KNAUF Jackpoint Self-Drilling Screw" Finishing coat, in water based paint for plaster board, tk. 0.5cm, "FASSA BORTOLO Gypsopaint" BATHROOM finishing layers: Infill and water repellent layer, in reinforced cement boards, tk. 1.25cm, dim. 120x90cm, class A1, "KNAUF, Aquapanel Indoor" Gluing layer, cement-based adhesive, tk. 0.4cm, "MAPEI - Karaflex" Tiling layer, in porcelain stoneware tiles, tk. 1 cm, dim. 6x24 cm

Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

common space

V.P. 8 terrace

V.C. 7

H.S.

GROUP 2:

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

918816 918417 912788 918641

Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401

double unit hall

GREENFALL FINAL PRESENTATION_December 20th

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

V.S.

double unit

double unit

double unit

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

9.3.3

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI


OPAQUE V.P. 10

U = 0.50 W/m2K

V.P. 11

Acoustically insulated partition, prefabbricated

Vertical stratigraphies

U = 0.49 W/m2K

Acoustically insulated partition, prefabbricated, with electrical services

17

22

Corridor

Room

Finishing coat, in water based paint for plaster board, tk. 0.5cm, "FASSA BORTOLO Gypsopaint" Infill and fire control layer, in gypsum board, tk. 1.25cm, dim. 120x300cm, "KNAUF, F-Zero". Fixed with self-drilling screw, in black phosfate, L=2.5 or 4.2cm, "KNAUF Jackpoint Self-Drilling Screw" Single substructure, in DX51 steel, tk. 0.08cm, dim. 5x10x5cm, span 60cm, "KNAUF C Stud" Acoustic insulation layer, in mineral wool, tk. 5 cm, dim. 120x60 cm, class A1, "ROCKWOOL ACOUSTIC 225 PLUS" Dead air space, tk. 5cm

Room

Room

Prefabricated partition, "KNAUF - ILR3/13" Acoustic performance: 67 dB Fire resistance: 120:120 Finishing coat, in water based paint for plaster board, tk. 0.5cm, "FASSA BORTOLO Gypsopaint" Infill and fire control layer, in plasterboard, tk. 1.5+1.5cm, dim. 120x300cm, class A1, "KNAUF, Soundshield Plus". Fixed with self-drilling screw, in black phosfate, L=2.5 or 4.2cm, "KNAUF Jackpoint Self-Drilling Screw"

Corridor finishing: - Finishing coat, in water based paint for plaster board, tk. 0.5cm, "FASSA BORTOLO Gypsopaint" - Acoustic and fire barrier, in plasterboard, tk. 1.5+1.5cm, dim. 120x300cm, Euroclass A1, "KNAUF Soundshield Plus" - Fixing element, self-drilling screw, in black phosfate, L=2.5 or 4.2cm, "KNAUF Jackpoint Self-Drilling Screw"

Bathroom

Electrical services, "Knauf Putty Pad" Acoustic insulation layer, in glass mineral wool, tk. 5cm, w=60cm, class A1, "KNAUF Earthwool Acoustic Roll". Fixedwith glue, tk. 0.2cm Double substructure, in DX51 steel, tk. 0.055cm, dim. 3.5x7x3.5cm, span 60cm, "KNAUF C stud"

Bathroom finishing: - Infill and water repellent layer, in reinforced cement boards, tk. 1.25cm, dim. 120x90cm, Euroclass A1, "KNAUF, Aquapanel Indoor". Fixed with self-drilling screw, in corrosion-resistant steel, "KNAUF, Aquapanel Maxi Screws, TEKS" - Gluing layer, cement-based adhesive, tk. 0.5cm, "MAPEI - Karaflex" - Tiling layer, in porcelain stoneware tiles, tk. 1 cm, dim. 6x24 cm

V.S.

V.P. 12

Dead air space, tk 10cm

V.S.

H.S.

H.S.

U = 0.50 W/m2K

Acoustically insulated partition, with services cavity 26

Bathroom

Bathroom Ceramic coating layer, in porcelain stoneware tiles, tk. 1 cm, dim. 6x24 cm Gluing layer, cement-based adhesive, tk. 0.4cm, "MAPEI - Karaflex" Infill and water repellent layer, in reinforced cement boards, tk. 1.25cm, dim. 120x90cm, Euroclass A1, "KNAUF, Aquapanel Indoor" . Fiuxed with self-drilling screws, in corrosion-resistant steel, "KNAUF, Aquapanel Maxi Screws, TEKS"

Air conditioned spaces

Double substructure, in DX51 steel, tk. 0.08cm, dim. 5x5x5cm, span 60cm, "KNAUF C studs" double unit

Separation element, in wood, tk. 1cm, dim. 18x18cm. Fixed with self-tapping screws

V.P. 10

hall

common space

Sound absorbing layer, in polyester fiber, tk. 5+5 cm, w=61cm, "POLYESTER SOLUTIONS, Sound Batts Insulation". Fixed with glue, tk. 0.3cm

V.P. 11 terrace

double unit

double unit

H.S.

GROUP 2:

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

918816 918417 912788 918641

Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401

GREENFALL FINAL PRESENTATION_December 20th

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

double unit

V.P. 12

Cavity for hydraulic sevices, tk. 10 cm Plumbing tube, total ø=11cm, "GEBERIT PE 110" Pipe bracket "Braccialetto Geberit isolato, con dado filettato M8/M10"

V.S.

double unit

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

9.3.4

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI


OPAQUE

Blow-up and technical details

BLOW UPS LOCALIZATION SOUTH-EAST

3 1

NORTH-WEST

2

3 1

SOUTH-WEST

NORTH-EAST

2

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

BLOW UP 1

South-est facade, residential floor

BLOW UP 2

External wall residential floors

BLOW UP 3

External walls elevators

Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

GROUP 2:

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

918816 918417 912788 918641

Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401

GREENFALL FINAL PRESENTATION_December 20th

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

9.4


OPAQUE

Shading Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

GROUP 2:

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

918816 918417 912788 918641

Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401

GREENFALL FINAL PRESENTATION_December 20th

Plan 1:20

Facade 1:20

Building

Structure

Conceptual section and scheme for south facade

Section

Section 1:20

B3.40

H.P.8

Blow-up 1

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

9.4.1


OPAQUE

Blow-up 1 - technical details

BUILDING STRUCTURE

SECONDARY BEAM

BUILDING STRUCTURE

BUILDING STRUCTURE

PILLAR

PRIMARY BEAM

SHADING PANELS (7)

TTO AUTODESK VERSIONE PER STUDENTI TTO TTO AUTODESK AUTODESK VERSIONE VERSIONE PER PER STUDENTI STUDENTI TTO AUTODESK VERSIONE PER STUDENTI TTO AUTODESK VERSIONE PER STUDENTI

GRC SLAB PANELS (5) FIXING POINT OF SHADING DEVICE (4) PRIMARY SUPPORT FOR SHADING DEVICES AND VERTICAL ELEMENTS STRUCTURE (2) SUPPORT FOR HORIZONTAL FIXING ELEMENTS FOR ALUMINUM PANELS (3)

REALIZZATO REALIZZATO REALIZZATO REALIZZATO REALIZZATO CON CON CON UN CON CON UN UN PRODOTTO UN PRODOTTO PRODOTTO UNPRODOTTO PRODOTTO AUTODESK AUTODESK AUTODESK AUTODESK AUTODESK VERSIONE VERSIONE VERSIONE VERSIONE VERSIONE PER PER PER STUD PER PER STU ST

LEGEND

WINDOWS AND FIBER CEMENT PANELS SUPPORT SUPPORTING BEAM FOR SHADING AND VERTICAL ELEMENTS STRUCTURE (1) FIXING POINT OF SHADING DEVICE (4)

CORRUGATED ALUMINUM PANELS (6)

PRIMARY SUPPORT FOR SHADING DEVICES AND VERTICAL ELEMENTS STRUCTURE (2)

PANELS PATTERN AND MATERIALS

1. SUPPORTING BEAM FOR SHADING AND VERTICAL ELEMENTS STRUCTURE IPE 120 bolted to the main building structure every 1,75 m. It is the structural support for the window and fiber cement panels, as well as the tubular element used to fix the vertical aluminum profiles, visible in the facade. 2. PRIMARY SUPPORT FOR SHADING DEVICES AND VERTICAL ELEMENTS STRUCTURE Tubular profile bolted to the IPE 120 with the predisposed L+C profiles used to hang the perforated shading panel. Dimensions are 80 x 150 mm with 5 mm thickness.

5. GRC SLAB PANELS Carachteristics: polar white - ferro light colour, 745 x 875 mm and 13 mm thickness. Rieder type: fibre C facade panels.

5

3. SUPPORT FOR HORIZONTAL FIXING ELEMENTS FOR ALUMINUM PANELS Omega profile hooked to the tubular profile. Dimensions are 78 x 25 mm with 2 mm thickness. 4. FIXING POINT OF SHADING DEVICE Vertical C-profile bolted to the tubular using a vertical plate with two wings. Dimensions are 80 x 80 mm with 3 mm thickness. C-profile (not visible in the scheme) used to hang the shading device to C-profile n. 4. (50 x 50 mm with 2 mm thickness). Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

GROUP 2:

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

918816 918417 912788 918641

Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401

6 7

GREENFALL FINAL PRESENTATION_December 20th

6. CORRUGATED ALLUMINUM PANELS Two aluminum cover sheets and mineral-filled polymer core, height of 3500 mm 10 mm thickness. It has a decorative surface that makes it suitable for outdoor use, it is resistant to light and weather. MEG type. 7. STEEL SHADING DEVICES white colour Two perforated steel panels of fixed together and attached to the structure. Dimensions 1450 x 3500 and 3 mm thickness. SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

9.4.2


OPAQUE

Blow-ups and technological details

V.C. 4

V.C. 4

BLOW-UP 1:20 - NORTH FAÇADE WITH CONCRETE WALL

Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

GROUP 2:

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

918816 918417 912788 918641

Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401

GREENFALL FINAL PRESENTATION_December 20th

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

9.4.3


OPAQUE

Blow-ups and technological details

GLASSFIBER REINFORCED CONCRETE: GFRC FIXING DETAILS

4

1

Cladding, in glassfibre reinforced concrete (GFRC), tk. 1.3cm, dim. 74x270 & 74x76cm, "RIEDER, Fiber C Façade Panels" Fixed with: - Undercut anchor and locking ratchet, in stainless steel, ø=7mm, "KEIL, KH AA" - Anchoring element, in aluminum alloy, h=6cm, w=4cm, "HILTI, MFT-H 200K" - Adjusting screw, in aluminum, L=2cm, ø=3.5mm "HILTI, MFT-JS"

2

Horizontal hanger profile, in aluminum alloy, tk. 2mm, w=2.15cm, h=6cm, "HILTI, MFT-HP 200" - Fixed with self-drilling screw, "HILTI"

3

Vertical L profile, in aluminum alloy, tk. 0.2cm, dim. 4x6cm, "HILTI, MFT-L" - Fixed with self-drilling screw, "HILTI"

4

Thermal insulation layer, in mineral wool, tk. 12cm, dim. 60x120 cm, λ=0,035 W/mK, class A1, "ROCKWOOL Rainscreen Duo" - Fixed with insulation fastener, in HDPE, "HILTI, IDP120, fungo per pannelli isolanti"

5

L bracket with clamping spring, in aluminum alloy, tk. 0.25cm, dim. 15x16cm; with thermal separator in polypropylene, tk. 0.5cm, "HILTI, MFT-MFI L" - Fixed with umbrella expansion plug, in polyamide, "HILTI, HLD 4"

3

scale 1:5

2

5

3

2

1

1

5

5&3

Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

GROUP 2:

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

918816 918417 912788 918641

Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401

GREENFALL FINAL PRESENTATION_December 20th

1&2

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

9.4.4


OPAQUE

Blow-ups and technological details

H.P. 8

NODE 1:5

V.C. 6

V.C. 6

V.P. 11

BLOW UP 1:20 - NORTH FAÇADE WITH STUD WALL

Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

GROUP 2:

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

918816 918417 912788 918641

Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401

GREENFALL FINAL PRESENTATION_December 20th

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

9.4.5


OPAQUE

Blow-ups and technological details

NODE 1:5 - NORTH FAÇADE WITH STUD WALL

Room

Out

H.P. 8 Floor finishing layer, in porcelain stoneware, tk. 0.9cm, dim. 60x60cm, "FAP Ceramiche, Milano&Floor Matt R9" Gluing layer, cement-based elastic adhesive, tk. 0.3cm, "SIKA, Minipack Colla Elastica" Infill layer, in reinforced concrete boards, tk. 2.2cm, dim. 60x90cm, "KNAUF Aquapanel Floor". Fixed with polyurethane glue, "Aquapanel Rebate Floor Adhesive PU" and self-tapping screws, "Aquapanel Floor Screws"

V.C. 6

Acoustic insulation layer and cavity for hydraulic services, in perlite granular aggregates, tk. 17cm, "KNAUF, Aquapanel Levelling Fill"

Vertical element, in two aluminum cover sheets and mineral-filled polymer core, tk. 0.3cm, dim. 90x348cm (unfolded), "ALUCOBOND PLUS"

Separation layer, in cardboard, tk. 0.3cm, "KNAUF Foglio di cartone ondulato"

Cladding, in glassfibre reinforced concrete (GFRC), tk. 1.3cm, w=74cm, h=78 & 270cm, "RIEDER, Fiber C Façade Panels"

Reinforcement layer, in Portland cement and wood fibers, tk. 2.8cm, dim. 280x125cm, "BETONWOOD, Cementolegno ad alta densità"

Fixing elements anchored to GRC panel: Undercut anchor and locking ratchet, in stainless steel, ø=7mm, "KEIL, KH AA" Anchoring element, in aluminium alloy, h=6cm, w=4cm, "HILTI, MFT-H 200K" Adjusting screw, in aluminium, L=2cm, ø=3.5mm "HILTI, MFT-JS"

Self-drilling screw for wood-metal connections, in stainless steel, L=4.5cm, Ø=0.48cm, "Rothoblaas, SBS A2 AISI304" Corrugated sheet, in stainless steel, tk. 0.1cm, h=5.5cm, "SANDRINI METALLI, SANDA55 P600". Glued to sound proof and anti-condensation, high-desity syntetic rubber fabric, tk. 0.3cm, "SANDRINI METALLI, SANDcontrol"

Horizontal hanger profile, in aluminium alloy, tk. 2mm, w=2.15cm, h=6cm, "HILTI, MFT-HP 200". Fixed with self-drilling screw, "HILTI" Ventilated cavity, tk. 4cm

Secondary beam, IPE220 Column, HEM400 Primary beam, IPE360

Vertical L profile, in aluminium alloy, tk. 0.2cm, dim. 4x6cm, "HILTI, MFT-L". Fixed with self-drilling screw, in alluminium, "HILTI" L bracket with clamping spring, in stainless steel, tk. 0.3cm, dim. 30x16cm. Welded to punctual steel element, which is bolted to the structure (IPE360)

Hangers, tk. 0.4cm, L=37.5cm Hook with spring, tk. 0.12cm, in steel, span 60cm

Thermal insulation layer, in mineral wool, tk. 12cm, dim. 60x120 cm, λ=0,035 W/mK, class A1, "ROCKWOOL Rainscreen Duo slab". Fixed with cement-based adhesive, tk. 0.3cm, "FASSABORTOLO, A96"

Double metallic frame, in steel C profiles, tk. 0.06cm, dim. 2.7x5cm, span 60cm Fire barrier and infill layer, in gypsum plasterboard reinforced with mineral fibres, tk. 1.25cm, dim. 120x300cm, class A1, "KNAUF lastra F-zero". Fixed with self-tapping screws, L=2.5cm, "KNAUF vite V.R."

Insulation fastener, in HDPE, "HILTI, IDP120, fungo per pannelli isolanti" Double stiffening layer, in fibercement panels, tk. 1.25+1.25cm, dim. 200x120cm, "KNAUF - ACQUAPANEL cement board Outdoor". Fixed with self drilling screws, "KNAUF Maxi Screws TEKS"

Finishing layer, in plaster filler and light aggregates, tk. 0.6 cm, "KNAUF Fireboard Spachtel / Q4"

Water barrier breathable layer, in fabric, tk. 0.02cm, "KNAUF -TYVEK StuccoWrap". Fixed with adhesive tape U guide of stud frame, in stainless steel, tk. 0.2 cm, dim. 5x10x5cm "Marcegaglia"; and elastic sealer. Fixed with self drilling screws, "KNAUF Maxi Screws TEKS" Thermal and acoustic insulation layer, in stone wool boards, tk. 10 cm, dim. 120x60 cm, λ=0,033 W/mK, class A1, "ROCKWOOL, Acoustic 225 Plus" U guide of secondary substructure, in DX51 steel, tk. 0.08cm, dim. 5x5x5cm, "KNAUF U guide". Fixed with self drilling screws, "KNAUF Maxi Screws TEKS"

Room

Out

Thermo-acoustic insulation layer, in stone wool boards, tk. 5cm, class A1, "ROCKWOOL, Acoustic 225 Plus" Infill and fire control layer, in double gypsum board, tk. 1.25+1.25cm, dim. 120x300cm, "KNAUF, F-Zero". Fixed with self-drilling screws, in black phosfate, "KNAUF Jackpoint Self-Drilling Screw"

Room

Finishing coat, in water based paint for plaster board, tk. 0.5cm, "FASSA BORTOLO Gypsopaint"

GROUP 2:

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

918816 918417 912788 918641

Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401

GREENFALL FINAL PRESENTATION_December 20th

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

9.4.6


10. ENERGY Energy consumption analysis and reduction strategies


ENERGY

DIVERSITY SCHEDULES, FUNCTION AND REQUIREMENTS

DIVERSITY SCHEDULE SET UP - RESIDENTIAL 15

15

DIVERSITY SCHEDULE SET UP - PUBLIC

30

50

50

15

15

15

15

15

15

40

60

6a

7a

8a

9a 10a 11a 12

1p

2p

3p

4p

5p

6p 7p

80

80

80

8p 9p

30

30

30

30

30

15

30

50

80

80

80

80

80

80

80

80

10p 11p 00 1a

2a

3a

4a

5a

6a

7a

8a

9a 10a 11a 12

1a

2p

3p

4p

5p

6p 7p

60

30

30

80

80

60

60

40

8p 9p

15

15

15

15

15

10p 11p 00 1a

2a

3a

4a

5a

30

15

HVAC off

HVAC off

COMMON AREAS

FAMILY UNITS

12

12

12

Days schedule: 7 days (Mon-Sun) Peak presence of people: 6-9am/ 5-10pm

Setpoint temp.: 20-25°C Setback temp.: 20-28°C

Occupant density: 8,6 m2/pers. Metabolic rate: 1 Met Summer clothing: 0,3 Clo Winter clothing: 0,5 Clo

Lighting (min): 150 llux Lighting power: 5 W/m2 Equipment power: 5 W/m2

Days schedule: 7 days (Mon-Sun) Peak presence of people: 6-9am/ 5-10pm

Setpoint temp.: 20-25°C Setback temp.: 20-28°C

Occupant density: 7,3 m2/pers. Metabolic rate: 1 Met Summer clothing: 0,3 Clo Winter clothing: 0,5 Clo

Lighting (min): 150 llux Lighting power: 5 W/m2 Equipment power: 5 W/m2

Days schedule: 7 days (Mon-Sun) Peak presence of people: 6-9am/ 5-10pm

Setpoint temp.: 20-25°C Setback temp.: 20-28°C

Occupant density: 5,2 m2/pers. Metabolic rate: 1 Met Summer clothing: 0,3 Clo Winter clothing: 0,5 Clo

Lighting (min): 150 llux Lighting power: 5 W/m2 Equipment power: 5 W/m2

Days schedule: 7 days (Mon-Sun) Peak presence of people: 6-9am/ 5-10pm

Setpoint temp.: 20-25°C Setback temp.: 20-28°C

Occupant density: 10 m2/pers. Metabolic rate: 1 Met Summer clothing: 0,3 Clo Winter clothing: 0,5 Clo

Lighting (min): 150 llux Lighting power: 6 W/m2 Equipment power: 5 W/m2

Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

GROUP 2:

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

918816 918417 912788 918641

CO-WORKING

FUNCTION AND REQUIREMENTS - PUBLIC

12

12

GYM

DOUBLE UNITS

SINGLE UNITS

FUNCTION AND REQUIREMENTS - RESIDENTIAL

12

15

Days schedule: 5 days (Mon-Fri) Peak presence of people: 8am-9pm

Setpoint temp.: 20-25°C Setback temp.: 18-28°C

Occupant density: 10 m2/pers. Metabolic rate: 1,3 Met Summer clothing: 0,3 Clo Winter clothing: 0,5 Clo

Lighting (min): 150 llux Lighting power: 6 W/m2 Equipment power: 8 W/m2

Days schedule: 5 days (Mon-Fri) Peak presence of people: 8am-9pm

Setpoint temp.: 20-25°C Setback temp.: 18-28°C

Occupant density: 4 m2/pers. Metabolic rate: 4 Met Summer clothing: 0,3 Clo Winter clothing: 0,5 Clo

Lighting (min): 150 llux Lighting power: 6 W/m2 Equipment power: 6 W/m2

RESIDENTIAL PARTS

Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401

GREENFALL FINAL PRESENTATION_December 20th

PUBLIC PARTS

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

10.1


ENERGY

SELECTED HVAC SYSTEM

INFORMATION BUILDING 1 33 Floors 12,434.4 mq

COMMON FLOORS

RESIDENTIAL FLOORS

PUBLIC COMMERCIAL FLOORS

88 single units 32 double units 21 family units

236 BUILDING 2 28 Floors 15,313.2 mq

144 single units 60 double units family units

RESIDENTIAL

FC CAV HP FC Radiant

264 88 single units 28 double units 18 family units

RESIDENTIAL

216

FC CAV HP FC Radiant

CONCLUSION

RESIDENTIAL Heating Heating Cooling Cooling Annual Energy Annual Energy COMMON EUI (kWh/m2/yr) ) (kWh/m2/yr) (kWh/m2/yr) (kWh/m2/yr) Cost Cost EUI (kWh/m2/yr) (kWh/m2/yr) 46 46 501 364 FC 2038 2 501 21 50851 50851 73 !"#$% 2139 2139 2048 2048 172190 172190 CAV 1231 7050 +246% 89 85 246 &'$(53 53 830 433 HP FC 2417 +19% 2 830 35 60351 60351 87 #$" 255 255 461 461 53046 53046 Radiant 368 2149 11 19 74 +5%

COMMONCOMMON PUBLIC COMMON EUI (kWh/m2/yr) EUI (kWh/m2/yr) ) Heating ) (kWh/m2/yr) Heating Cooling (kWh/m2/yr) (kWh/m2/yr) Cooling Annual (kWh/m2/yr) Energy Annual Cost Energy Cost FC FC 364 364 5 ENERGY 5 70 70 12109 12109 FC ANNUAL CONSUMPTION CAV CAV 1231 1231 *+%$( *+%$(354 354 344 344 40203 40203 CAV HP FC HP FC 433 433 *,'$' *,'$'6 6 140 140 14502 14502 HP FC ASHRAE theRadiant types Radiant368 368 *'&$% *'&$%29 29 72 72 12196 12196 Radiant 400

kWh/mq/year

According to of HVAC systems which should EUI heating 350 be preferably used in PUBLIC residential PUBLIC PUBLIC cooling +246% building are Fan Coil Unit with EUI (kWh/m2/yr) 300 ) Heating EUI (kWh/m2/yr) ) (kWh/m2/yr) Heating Cooling (kWh/m2/yr) (kWh/m2/yr) Cooling Annual (kWh/m2/yr) Energy Annual Cost Energy Cost Primary Air or Constant FCAir FC 95 95 0 0 17 17 17066 17066 FC 250 Volume(CAV). CAV CAV 205 205 &&#$' &&#$'34 34 58 58 36390 36390 CAV 200 From Sefaira analysis we HP obtain FC HP FC 109 109&"$, &"$, 0 0 32 32 19682 19682 HP FC the results which shows that the Radiant 95 Radiant 95 -$-$- 4 4 17 17 17039 17039 Radiant 150 +19% Fan Coil unit performance is +5% 100 much better than CAV and other 50 considered HVAC systems. To proceed further analysis the Fan Coil system was used. FC CAV HP FC Radiant

Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

GROUP 2:

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

918816 918417 912788 918641

) !"#$% &'$( #$"

Heating (kWh/m2/yr) 46 2139 53 255

COMMON Cooling Annual Energy (kWh/m2/yr) Cost FC 501 50851 CAV 2048 172190 HP FC 830 60351 Radiant 461 53046

) !"#$% &'$( #$"

Heating (kWh/m2/yr) 46 2139 53 255

Cooling Annual Energy (kWh/m2/yr) Cost 501 50851 2048 172190 830 60351 461 53046

EUI (kWh/m2/yr) ) Heating (kWh/m2/yr) Cooling (kWh/m2/yr) Annual Energy Cost 364 5 70 12109 1231 *+%$( 354 344 40203 433 *,'$' 6 140 14502 368 *'&$% 29 72 12196

RESIDENTIAL PUBLIC Heating Cooling Annual Energy EUI Heating Cooling Annual Energy EUI (kWh/m2/yr) ) Heating (kWh/m2/yr) Cooling (kWh/m2/yr) Annual Energy ) Heating (kWh/m2/yr) Cooling (kWh/m2/yr) Annual Energy Cost (kWh/m2/yr) (kWh/m2/yr) Cost (kWh/m2/yr) (kWh/m2/yr) (kWh/m2/yr) Cost Cost 95 0 17 17066 70 12109 46 501 50851 FC 2038 46 501 50851 15 14 CAV 205 &&#$' 34 58 36390 *+%$( 354 344 40203 !"#$% 2139 2048 172190 7050 !"#$% 2139 2048 172190 +238% +116% 71 69 109 &"$, 0 32 19682 *,'$' 6 140 14502 &'$( 830 60351 HP FC 2417 &'$( 53 830 60351 +19% +15% 153 28 Radiant 95 -$4 17 17039 *'&$% 29 72 12196 #$" 255 461 53046 2149 #$" 255 461 53046 +1% +0% 6 14

COMMON EUI (kWh/m2/yr) ) Heating (kWh/m2/yr) Cooling (kWh/m2/yr) Annual Energy Cost 364 50 CONSUMPTION 70 12109 FC ANNUAL ENERGY 95 17 17066 1231 *+%$( 354 344 40203 CAV 205 &&#$' 34 58 36390 433 *,'$' 60 140 14502 HP FC 109 &"$, 32 19682 368 *'&$% 29 72 12196 Radiant 95 -$4 17 17039 400 EUI heating PUBLIC cooling

350

300 EUI (kWh/m2/yr) ) Heating (kWh/m2/yr) Cooling (kWh/m2/yr) Annual Energy Cost 95 0 17 17066 FC +238% 250 205 &&#$' 34 58 36390 CAV 200 109 &"$, 0 32 19682 HP FC 95 -$4 17 17039 Radiant 150 +19%

100

EUI (kWh/m2/yr) ) Heating (kWh/m2/yr) Cooling (kWh/m2/yr) Annual Energy Cost 364 ANNUAL ENERGY5 CONSUMPTION 70 12109 1231 *+%$( 354 344 40203 433 *,'$' 6 140 14502 368 *'&$% 29 72 12196 400 EUI heating cooling

350 kWh/mq/year

RESIDENTIAL RESIDENTIAL Type of Type EUI of EUI system system (kWh/m2/yr) (kWh/m2/yr) ) FC FC 2038 2038 85 CAV CAV 7050 7050 !"#$% 294 HP FC HP FC2417 2417 101&'$( Radiant Radiant2149 2149 89 #$"

EUI (kWh/m2/yr) 2038 7050 2417 2149

kWh/mq/year

BUILDING 3 31 Floors 11,671.5 mq

EUI (kWh/m2/yr) 2038 7050 2417 2149

+1%

50

300 EUI (kWh/m2/yr) ) Heating (kWh/m2/yr) Cooling (kWh/m2/yr) Annual Energy Cost 0 17 17066 250 95 +116% 205 &&#$' 34 58 36390 200109 &"$, 0 32 19682 -$4 17 17039 150 95 +15%

100

+0%

50 FC

Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401

CAV

HP FC

Radiant

GREENFALL FINAL PRESENTATION_December 20th

FC

CAV

HP FC

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

Radiant

10.2


COP heat pump: 4 EER chiller: 7( water-water) Rump up time: 2h 6am-10pm Setpoint: 20°C - 25°C Setback: 18°C - 28°C

Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

! &$%% #$##

Heating (kWh) 40 40 39,9

Cooling (kWh) 75,34 75,4 75,4

Annual 62.900 $ Energy Cost % 62.850 $ 17066 $ 17535 62.800&$*' 17159 62.750#$') $ 62.650 $

FC

FC 1

6am-10pm 6am-10pm 6am-10pm 5am-11pm 5am-11pm

62.950 $

62.700 $

65

1h 2h 3h 2h 3h

COOLING

21

Ramp up 1 Ramp up 3 Ramp up 2 Ramp up 4

1h 2h 3h 2h 3h

FC 2

70.000 $

20

Heating (kWh) 19 EUI (kWh/m2/yr) 6am-10pm 95 40 18 6am-10pm 95 38,5 17 6am-10pm 95 36,9 5am-11pm 97 36 16 5am-11pm 97 32,4 15 1

COP HEAT PUMP OPTIMIZATION

COP 3

95

0,00

39,9

HEAT PUMP 17085CHILLER 0,11 75,4

Boiler (kWh/m2/yr) 0,00 % Heating Cooling Annual 17066 Energy Cost 0,00 % COPCOP 4 EUI 39,9(kWh) 75,4(kWh) 83 95

17055 -0,06 COP 35 95 0,00 39,9 75,4 17085 0,11 82 COP 64 95 0,00 39,7 75,4 17079 0,08 39,9 17066 0,00 81 COP 5 95 0,00 39,9 75,4 17055 -0,06 Chiller % Heating Cooling Annual 17079 Energy Cost 0,08 % COPCOP 6 EUI 95 0,00 39,7(kWh) 75,4(kWh) 80 (kWh/m2/yr) COP 4,5 79 99 4,21 39,9 75,4 17770 4,13 Chiller % Heating Cooling Annual 17066 Energy Cost 0,00 % COP COP 5,5EUI (kWh/m2/yr) 95 0,00 39,9(kWh) 75,4(kWh) COP4,5 6 93 -2,11 16802 -1,55 COP 99 4,21 39,9 75,4 17770 4,13 3 3,5 4 4,5 5 5,5 6 6,5 7 COP5,5 7 91 -4,21 16387 -3,98 COP 95 0,00 39,9 75,4 17066 0,00 WATER COP 6 93 -2,11 39,9 AIR 75,4 16802 -1,55 AIR COP 7 91 -4,21 39,9 WATER 75,4 16387 -3,98 GROUP 2:

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

918816 918417 912788 918641

Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401

2

! "&$+, "+$+, "%'$'' "%-$''

60.000Cost $ Cooling (kWh) Annual Energy % 50.000 $ 75,34 17066 '$)% 75 17102 40.000 $ '$## 74,8 17141 30.050 $ %$+% 74,7 17358 20.000 $ )$'' 74,4 17407 10.000 $

3

4

5

SETPOINT OPTIMIZATION

EUI Heating Cooling Annual % Boiler COP (kWh/m2/yr) % (kWh/m2/yr) (kWh) (kWh/m2/yr) (kWh) Energy Cost EUI Heating Cooling Annual % 83 2 18 +0,6% +5,4% COP 3 2411 0,37 235,7 517 63337 0,60 Boiler % (kWh) (kWh) Energy Cost 0,00 79 1,5 17,4 COPCOP 4 (kWh/m2/yr) 2402 0,00 235,7 517 62960 -0,3% +4,9% 82,7 1,2 17,7 2399 -0,12 62796 -0,26 COP 35 2411 0,37 235,7 517 63337 0,60 82,3 1,2 18 -0,4% +4,4% COP 64 2388 -0,58 235,7 517 62689 -0,43 2402 0,00 62960 0,00 COP 5 2399 -0,12 235,7 517 62796 -0,26 Chiller % Heating (kWh) Cooling Annual 62689 Energy Cost-0,43 % COPCOP 6 EUI (kWh/m2/yr) 2388 -0,58 235,7 517(kWh) EER CHILLER OPTIMIZATION COP 4,5 2522 5,00 235,7 517 66162 5,09 Chiller % Heating (kWh) Cooling Annual 62960 Energy Cost 0,00 % COP COP 5,5EUI (kWh/m2/yr) 2402 0,00 235,7 517(kWh) 83 18 EER 2 +5,4% +5% COP4,5 6 2353 -2,04 62156 -1,28 COP 2522 5,00 235,7 517 66162 5,09 EER 79 17,4 COP5,5 7 2284 -4,91 235,7 517 59870 -4,91 1,5 COP 2402 0,00 62960 0,00 EER 81 16,7 +2,9% -1,3% 1,8 COP 6 2353 -2,04 235,7 517 62156 -1,28 78,8 14,2 1,8 -0,1% -5% COP 7 2284 -4,91 235,7 517 59870 -4,91 EER

Boiler COP EUI (kWh/m2/yr) % Heating (kWh) Cooling (kWh) Annual Energy Cost %

COST

EUI Heating Cooling Annual Cooling Heating (kWh/m2/yr) (kWh/m2/yr) (kWh/m2/yr) kW) % (kW) Energy % EUI Heating Cooling AnnualCost 79 17,4 1,5 Setpoint 20-25 (kWh/m2/yr) 2402 235 517 62960 kW) % (kW) Energy Cost % +2% Setpoint 21-25 2441 291,2 23,91 517 63905 1,50 84 17,9 2,8 + 2,4% Setpoint 20-25 2402 235 517 62960 3,8 +46,55 2,4% +3% Setpoint 2486 344,4 517 65029 3,29 86 17,9 Setpoint 22-25 21-25 2441 291,2 23,91 517 63905 1,50 the setpoint was chosen also according to comfort analysis Setpoint 22-25 2486 344,4 46,55 517 65029 3,29 EUI (kWh/m2/yr)H eating (kW) % Cooling (kW) Annual Energy Cost % SETBACK OPTIMIZATION Setback 18-28 EUI (kWh/m2/yr) 2402 235(kW) 517,00 H eating % Cooling (kW) Annual 62960 Energy Cost % Setback 20-28 2417 186 -20,85 517 63325 0,58 Setback 18-28 2402 235 517,00 62960 17,4 79 1,5 Setback 2452 225,5 -4,04 515,3 63645 1,09 +0,6% Setback 20-27 20-28 2417 186 517 63325 0,58 +-20,85 2,4% 17,9 83 1,8 +-4,04 3,4% 18 85 1,8 Setback 20-27 2452 225,5 515,3 63645 1,09 +1% EUI (kWh/m2/yr)H eating (kW) the%setbackCooling (kW) Annual Energy Cost analysis % was chosen also according to comfort Setpoint 20-25 EUI (kWh/m2/yr) 95 40 (kW) 75,34(kW) H eating % Cooling Annual 17066 Energy Cost % Setpoint 21-25 95 47,9 19,75 75,4 17121 COST COOLING Setpoint 20-25 95 40 75,34 COOLING 17066 COST0,32 21 21 75,4 Setpoint 96 39,75 17208 0,83 Setpoint 22-25 21-25 95 65.000 $ 55,9 47,9 19,75 75,4 17121 0,32 65.000 $ 20 Setpoint 22-25 96 55,9 39,75 20 75,4 17208 0,83 64.500 $ 64.500 $ EUI (kWh/m2/yr) H eating (kW) % Cooling (kW) Annual Energy Cost % 19 19 Setback 18-28 EUI (kWh/m2/yr) 95 64.000 75,34(kW) $ 40 (kW) 64.000 $ H eating % Cooling Annual 17066 Energy Cost % 18 18 Setback 20-28 95 29 -27,50 75,4 17082 0,09 Setback 18-28 95 63.500 $ 40 75,34 17066 63.500 $ Setback 20-27 95 39,9 -0,25 75 17120 0,32 17 17 Setback 20-28 95 63.000 $ 29 -27,50 75,4 17082 0,09 63.000 $ Setback 20-27 95 39,9 -0,25 16 75 17120 0,32 16 62.500 $ 62.500 $ 15 15 62.000 $ 62.000 $ 20-25

21-25

22-25

SETPOINT OPTIMIZATION

GREENFALL FINAL PRESENTATION_December 20th

18-28

20-28

COST ($)

90 FC optimiz EUI 85 (kWh/m2/yr) FC80 95 FC 1 97 75 FC 2 95 70

Ramp up 1 Ramp up 3 Ramp up 2 Ramp up 4

EUI Heating Cooling Annual Cooling Heating ! (kWh/m2/yr) (kWh/m2/yr) (kWh/m2/yr) (kWh) (kWh) Energy Cost % 1,5 79 17 2402 235 517 62960 '$() 1,8 +"#$%& 3,4% +1% 2416 225,3 513,6 63351 83 18 "&&$*( 1,8 63640 84 18,8 2435 220,4 509,6 41640 +2% +"($)% 8,2% &$(' 2 +3% +"+$+# 10,3% 86 19 2492 216,8 512,9 65227 #$'+ 87 20 2 +"%'$,, 12,9% +4% 2509 210,2 511,2 65525

COST ($)

GRAPH DATAEUI(public COST area)

95

RUMP UP TIME OPTIMIZATION

COOLING (kWh/m2/yr)

This optimization process help us to reach the best system for our project:

TEMPERATURE OPTIMIZATION GRAPH DATA (public area) GRAPH DATA (residential) FC optimiz EUI Heating Cooling Annual ! (kWh/m2/yr) (kWh/m2/yr) EUI(kWh/m2/yr) (kWh/m2/yr) Heating (kWh) Cooling (kWh) Annual Energy (kWh) (kWh) Energy CostCost % 79 1,5 17 FC 2402 235 517 62960 95 40 75,34 17066 "#$%& "#$&# &$%% &$*' 82 1,2 17 +4,9% -0,2% FC 1 2399 235 517 62831 97 40 75,4 17535 #$'( "#$)) #$## #$') 83 1,8 19 +5,6% FC 2 2416 235,7 516,1 62681 -0,4% 95 39,9 75,4 17159

FAN COIL OPTIMIZATION - RESIDENTIAL

COST ($)

CONCLUSION

"#$))

COOLING (kWh/m2/yr)

Then we pass to optimaze the COP of chiller and boiler This is the ratio of useful heating or cooling provided to work required. Rump up time indicates how many hours, before the start time, we make the HVAC strive to achieve the setpoint range, on the energy consumption and the design of the equipment. Setpoint temperature is the temperature you have “set” your thermostat to maintain. Setback temperature refers to changing the temperature setting on your thermostat for a period of time when the space will not be occupied or require as much heating or cooling.

62681

COOLING (kWh/m2/yr)

About temperatures we consider three different options: - FC (option which was chosen from HVAC previous board), - FC 1 (option with hot water temperature 40°C - 45°C), - FC 2 (option with chilled water temperature 5°C - 12°C)

516,1

COST ($)

The analysis investigates the impact of different temperature, COP, ramp up time, setpoint and setback.

235,7

EUI (kWh/mq/year)

INFORMATION

#$'(

2416

EUI (kWh/mq/year)

ENERGY

FC 2

20-27

SETBACK OPTIMIZATION SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

10.3


COP heat pump: 5 EER chiller: 7( water-water) Rump up time: 1h 6am-10pm Setpoint: 20°C - 25°C Setback: 18°C - 28°C

&$*' +3% #$') +0,6%

COST

Ramp up 1 Ramp up 3 Ramp up 2 Ramp up 4

1h 2h 3h 2h 3h

6am-10pm 6am-10pm 6am-10pm 5am-11pm 5am-11pm

Boiler COP EUI (kWh/m2/yr) % Heating (kWh) Cooling (kWh) Annual Energy Cost % 95 95 95 95

0,00 0,00 0,00 0,00

HEAT PUMP

39,9 39,9 39,9 39,7

75,4 75,4 75,4 75,4

CHILLER

17085 17066 17055 17079

0,11 0,00 -0,06 0,08

94 (kWh/m2/yr) % Heating (kWh) Chiller COP EUI Cooling (kWh) Annual Energy Cost % COP 4,5 92 COP 5,5 COP 6 COP 7

99 95 93 3 91

4,21 0,00 -2,11 3,5 4 -4,21

39,9 39,9 39,9 5 4,5 39,9

GROUP 2:

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

AIR

75,4 75,4 75,4 6 5,5 75,4

17770 17066 168027 6,5 16387

WATER

Cooling EUI Heating (kWh/m2/yr) EUI (kWh/m2/yr) Heating (kWh) (kWh/m2/yr) (kWh) 17 95 40 2402 235 17 95 38,5 2416 225,3 18 95 36,9 2435 220,4 17 97 36 2492 216,8 97 32,4 18 2509 210,2

! "&$+, "#$%& -0% "+$+, +..% "($)% "%'$'' -0% "+$+# "%-$'' +..% "%'$,,

&$(' 512,9 65227 #$'+ - PUBLIC 511,2FAN COIL 65525OPTIMIZATION

4,13 0,00 -1,55 -3,98

Heating Cooling Annual (kWh/m2/yr) Cooling (kWh) Annual Energy (kWh) Energy CostCost % 0 75,34 17066 517 62960 +0,2% '$)% 0 '$() 75 17102 513,6 63351 '$## 0 +0,4% "&&$*( 74,8 17141 509,6 41640 +1,5% %$+% 0 74,7 17358 &$(' 512,9 65227 )$'' +2% 74,4 17407 0 #$'+ 511,2 65525 COOLING

35

Heating Cooling Annual % Heating (kWh) Cooling (kWh) Annual Energy (kWh) (kWh) Energy CostCost % +0,1% 39,9 75,4 17085 0,11 235,7 517 63337 0,60 Heating (kWh) Cooling (kWh) Annual Energy Cost % 39,9 75,4 17066 0,00 235,7 517 62960 39,9 75,4 17085 0,11 -0,1% 39,9 75,4 17055 -0,06 235,7 517 62796 -0,26 39,9 75,4 17066 0,00 +0,1% 39,7 75,4 17079 0,08 235,7 517 62689 -0,43 39,9 75,4 17055 -0,06 39,7 75,4 17079 0,08 Heating (kWh) Cooling (kWh) Annual Energy Cost % 39,9 75,4 17770 4,13 235,7 517 66162 5,09 Heating (kWh) Cooling (kWh) Annual Energy Cost % 39,9 75,4 17066 235,7 517 62960 0,00 0 21 +4% 39,9 75,4 17770 4,13 39,9 75,4 16802 -1,55 235,7 517 62156 -1,28 0 17 39,9 75,4 17066 0,00 39,9 75,4 16387 -3,98 235,7 517 59870 -4,91 0 16 -2% 39,9 75,4 16802 -1,55 0 13 39,9 75,4 16387 -3,98 -4%

AIR

Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

%

17.500 $ EUI Heating Cooling Annual % 17.400 $ Boiler COP % (kWh) (kWh) Energy Cost 97 (kWh/m2/yr) EUI Heating Cooling Annual 17.300%$ COP96,5 3 2411 0,37 235,7 517 63337 0,60 Boiler COP (kWh/m2/yr) % (kWh) (kWh) Energy Cost COP 4 2402 0,00 235,7 517 62960 17.200 0,00$ COP 396 2411 0,37 235,7 517 63337 0,60 COP 5 2399 -0,12 235,7 517 62796 -0,26 17.100 COP 4 2402 0,00 235,7 517 62960 0,00$ COP95,5 6 2388 -0,58 235,7 517 62689 -0,43 COP 5 2399 -0,12 235,7 517 62796 17.000 -0,26 $ 95 COP 6 2388 -0,58 235,7 517 62689 -0,43 Chiller COP EUI (kWh/m2/yr) % Heating (kWh) Cooling (kWh) Annual Energy Cost 16.900%$ 94,5 COP 4,5 2522 5,00 235,7 517 66162 16.800 5,09$ Chiller COP EUI (kWh/m2/yr) % Heating (kWh) Cooling (kWh) Annual Energy Cost % COP 5,5 0 2402 0,00 235,7 517 62960 0,00 COP 4,5 2522 5,00 235,7 517 66162 5,09 COP 6 2353FC -2,04 235,7 517 FC 2 62156 -1,28 FC 1 COP 5,5 2402 0,00 235,7 517 62960 0,00 COP 7 2284 -4,91 235,7 517 59870 -4,91 COP 6 2353 -2,04 235,7 517 62156 -1,28 COPCOP HEAT OPTIMIZATION 7 PUMP2284 -4,91 235,7 517 59870 -4,91

COP 3 COP 4 100 COP 5 98 COP 6 96

"+$+# "%'$,,

216,8 210,2

COST

14.400 $

30

Heating (kWh) 25 EUI (kWh/m2/yr) 1h 6am-10pm 95 40 EUI Heating 20 Ramp up 1 2h 6am-10pm (kWh/m2/yr) 95 38,5 kW) EUI Heating 15 Setpoint 20-25 2402 235 Ramp up 3 3h 6am-10pm (kWh/m2/yr) 95 36,9 kW) Setpoint 21-25 2441 291,2 Ramp up 2 2h 5am-11pm 97 36 10 Setpoint 20-25 2402 235 Setpoint 22-25 2486 344,4 Ramp up 4 3h 5am-11pm 97 32,4 Setpoint 21-255 2441 291,2 Setpoint 22-250 2486 344,4 EUI (kWh/m2/yr)H eating (kW) 12402 2 235 3 Setback 18-28 EUI (kWh/m2/yr)H eating (kW) SetbackOPTIMIZATION 20-28 2417 186 SETPOINT Setback 18-28 2402 235 Setback 2452 225,5 Setback 20-27 20-28 2417 186 EUI Heating Cooling Setback 20-27 2452 225,5 EUI (kWh/m2/yr)H(kWh/m2/yr) eating (kWh/m2/yr) (kWh)(kW) 17 Setpoint 20-25 95 40 1h 6am-10pm 2402 235 EUI (kWh/m2/yr)H eating (kW) 17 Setpoint 21-25 95 47,9 Ramp up 1 2h 6am-10pm 2416 225,3 Setpoint 20-25 95 40 Setpoint 22-25 96 55,9 17 Ramp up 3 3h 6am-10pm 2435 220,4 Setpoint 21-25 95 47,9 Ramp up 2 2h 5am-11pm 2492 216,8 Setpoint 22-25 96 55,9 EUI (kWh/m2/yr) H eating Ramp up 4 SETBACK 3h 5am-11pm 2509 210,2(kW) OPTIMIZATION Setback 18-28 95 40 EUI (kWh/m2/yr)H eating (kW) Setback 95 29 17 Setback 20-28 18-28 95 40 Setback 20-27 95 39,9 17 Setback 20-28 95 29 17 Setback 20-27 95 39,9 EUI (kWh/m2/yr) Heating (kWh) 1h 6am-10pm 95 40 Ramp up 1 2h 6am-10pm 95 38,5 COST COOLING Ramp up353 3h 6am-10pm 95 36,9 Ramp up302 2h 5am-11pm 97 17.250 $ 36 Ramp up 4 3h 5am-11pm 97 17.200 $ 32,4 25 17.150 $ 20 17.100 $ 15 17.050 $ 10 17.000 $ 5 16.950 $ 0 20-25 21-25 22-25 SETPOINT OPTIMIZATION

17.300 $ Cooling (kWh) Annual Energy Cost % 17.200 $ 75,34 17066 Cooling Annual "&$+, 75 17102 % (kW) Energy Cost$ '$)% % 17.100 Cooling Annual "+$+, '$## 517 62960 74,8 17141 % (kW) Energy Cost$ % 17.000 "%'$'' %$+% 23,91 517 63905 1,50 74,7 17358 517 62960 16.900 $ "%-$'' )$'' 46,55 517 65029 3,29 74,4 17407 23,91 517 63905 1,50 16.800 46,55 517 65029 3,29 % Cooling (kW) Annual Energy Cost % 4 517,00 5 62960 % Cooling (kW) Annual Energy Cost % -20,85 517 63325 0,58 517,00 62960 -4,04 515,3 63645 1,09 -20,85 517 63325 0,58 Cooling Annual Heating -4,04 515,3 63645 1,09 ! (kWh/m2/yr) % Cooling (kW) Annual Energy (kWh) Energy CostCost % 0 75,34 17066 517 62960 % Cooling (kW) Annual Energy Cost % -19,75 0% +0,3% "#$%& '$() 1 75,4 17121 0,32 513,6 63351 75,34 17066 -39,75 0% +0,8% 75,4 17208 0,83 "($)% "&&$*( 1 509,6 41640 19,75 75,4 17121 0,32 the setpoint was chosen also according to comfort analysis "+$+# &$(' 512,9 65227 39,75 75,4 17208 0,83 % Cooling Annual 65525 Energy Cost#$'+ % "%'$,, 511,2(kW) 75,34 17066 % Cooling (kW) Annual Energy Cost % -27,50 75,4 17082 0,09 0 75,34 17066 -0,25 75 17120 0,32 0 -0% +0,1% -27,50 75,4 17082 0,09 0 -0,25 75 17120 0,32 -0% +0,3% Cooling (kWh) Annual Energy Cost analysis % the!setback was chosen also according to comfort 75,34 17066 "&$+, '$)% 75 17102 COST COOLING "+$+, 35 '$## 74,8 17141 17.250 $ "%'$''30 %$+% 74,7 17358 "%-$'' )$'' 17.200 $ 74,4 17407 25 17.150 $ 20 17.100 $ 15 17.050 $ 10 17.000 $ 5 16.950 $ 0 18-28 20-28 20-27 SETBACK OPTIMIZATION !

WATER

918816 918417 912788 918641

Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401

GREENFALL FINAL PRESENTATION_December 20th

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

COST ($)

Heating Cooling Annual Energy Cost (kWh/m2/yr) (kWh) (kWh/m2/yr) (kWh) 0 17 40 75,34 17066 40 17535 0 17 75,4 39,9 75,4 17159 0 18

97,5

EUI EUI (kWh/m2/yr) % Boiler COP (kWh/m2/yr) -0% 95 0,00 COP 3 2411 0,37 Boiler COP EUI (kWh/m2/yr) % 95 0,00 COP 4 2402 COP 3 95 0,00 -0% COP 5 95 0,00 2399 -0,12 COP 4 95 0,00 -0% COP 6 95 0,00 2388 -0,58 COP 5 95 0,00 COP 6 95 0,00 Chiller COP EUI (kWh/m2/yr) % EER CHILLER 99 4,21 COP 4,5 OPTIMIZATION 2522 5,00 Chiller COP EUI (kWh/m2/yr) % 95 COP 5,5 2402 0,00 +4% EER 4,5 COP 99 4,21 93 -2,11 COP 6 2353 -2,04 EER 5,5 COP 95 0,00 91 -4,21 COP 7 2284 -4,91 EER -2% COP 6 93 -2,11 COP 7 91 -4,21 -4% EER

2492 2509

RUMP UP TIME OPTIMIZATION

GRAPH DATA (public area)

EUI

2h 5am-11pm 3h 5am-11pm

COST ($)

&$%% +2% #$## -0%

Ramp up 2 Ramp up 4

COOLING (kWh/m2/yr)

This optimization process help us to reach the best system for our project:

!

"#$))

COST ($)

CONCLUSION

FC FC 1 FC 2

EUI (kWh/m2/yr) 95 97 95

62681

COOLING (kWh/m2/yr)

Then we pass to optimaze the COP of chiller and boiler This is the ratio of useful heating or cooling provided to work required. Rump up time indicates how many hours, before the start time, we make the HVAC strive to achieve the setpoint range, on the energy consumption and the design of the equipment. Setpoint temperature is the temperature you have “set” your thermostat to maintain. Setback temperature refers to changing the temperature setting on your thermostat for a period of time when the space will not be occupied or require as much heating or cooling.

FC optimiz

516,1

COOLING (kWh/m2/yr)

About temperatures we consider three different options: - FC (option which was chosen from HVAC previous board), - FC 1 (option with hot water temperature 40°C - 45°C), - FC 2 (option with chilled water temperature 5°C - 12°C)

TEMPERATURE OPTIMIZATION

235,7

COST ($)

The analysis investigates the impact of different temperature, COP, ramp up time, setpoint and setback.

#$'(

2416

EUI (kWh/mq/year)

INFORMATION

EUI (kWh/mq/year)

ENERGY

FC 2

10.4


ENERGY

Fortunately, new technologies and best practices involving motors, regeneration converters, control software, optimization of counterweights and cabin lighting can yield significant savings. New elevators provide efficiency gains of about 30–40 percent than buildings with older lifts.than buildings with older lifts. CONCLUSION

7.500

-5%

7.000 6.500 6.000

-26%

5.500

gearless MIR traction holeless hydraulic

roped hydraulic

in-ground hydraulic

gearless MRL traction

geared traction

gearless MIR traction

LED

8.000

5.000 regenerative

LED lighting

REGENERATIVE ENERGY SCHEME

uses 60Watt per 10 LED Watt

uses over 5x less energy

last only a few months

last 25x longer

costs $200+ over 20 years

cost 6x less

only a few buying options

endless options

The total consumption of an elevator is the sum-up of dirrerent elements: Cab Exhaust Fan Cab Lightning Machine Room Cooling Elevator

192 kW/yr 1727 kW/yr 204 kW/yr 5336 kW/yr

GENERATE ENERGY

SUPPLY RESCURE POWER

7459 kW/yr

UNI 11570 code

Also it is possible to use a regenerative energy which is produced by an elevator motor operating in what is known as overhaul condition, when the motor acts as a generator. energy is produced on elevator descent when the car is heavier than the counterweight; and it is produced on elevator ascent when the counterweight is heavier than the car. With the use of Regenerative Drives, the energy can be fed back into the building or power grid as clean, safe energy.

FINAL SELECTED ELEVATOR KONE MonoSpace 700®

Cab Exhaust Fan Cab Lightning Machine Room Cooling Elevator

192 kW/yr 1727 kW/yr 92 kW/yr 5064 kW/yr

- 5% 7075 kW/yr

UNI 11570 code

Changing the type of cabin lightning helps to dicrease the total energy consumption. LED lamps have a lifespan many times longer than equivalent incandescent lamps, and are significantly more efficient than most fluorescent lamps. Similar to incandescent lamps (and unlike most fluorescent lamps), LEDs come to full brightness immediately with no Cab Exhaust Fan Cab Lightning Machine Room Cooling Elevator

192 kW/yr 107 kW/yr 92 kW/yr 5064 kW/yr

-26% 5455 kW/yr

UNI 11570 code

Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

INCANDESCENT

EUI (kW/year)

BUILDING HEIGHT (m)

120 100 80 60 40 20 0

LIGHTING CONSUMPTION

TYPICAL USAGE OF ELEVATOR

USING LED LIGHTNING

Thanks to an in-depth study of this issue, we have chosen to use a regenerative elevator with LED lights and presence sensors to reduce the total energy consumption of vertical connections by a total of 26%

COMPARIZATION OF DIFFERENT TYPES OF ELEVATORS

After a specific research on elevator in skysraper we found that for buildings higher than 100 m Gearless or Traction mechanisms are commonly used. Usage of elevator system which includes Variable Voltage Variable Frequency (VVVF) drives provides smooth acceleration and deceleration, excellent speed control and reduced noise levels.

GEARLESS MIR TRACTION

Efficient vertical transportation has the ability to limit or expand our ability to build taller and taller skyscrapers, and recent innovations in elevator design promise to significantly reduce energy consumption. Nowadays the main focus is on reducing energy consumption. Buildings consume about 40% of the world’s energy, and elevators account for 2%–10% of a building’s energy consumption. During peak usage hours, elevators may utilize up to 40% of the building’s energy. Everyday there are more than 7 billion elevator journeys taken in buildings all over the world; and as such, energy-saving elevators will reduce energy consumption significantly.

CONSUMPTION CALCULATIONS

REGENERATIVE ELEVATOR

INFORMATION

ENERGY CONSUMPTION REDUCTION STRATEGIES - ELEVATOR

GROUP 2:

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

918816 918417 912788 918641

Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401

max height: max n°of stops: type:

120m 36 regenerative

KONE collaborate with GBC during the design of their new elevator in the way to satisfy all the features necessary to be used in LEED certified buildings and to be able to reach the following credits: CATEGORIES Energy & atmosphere Materials & resources Indoor air quality (IAQ) Design innovation

CREDITS EAc1: Optimization of energy performance MRc2: Construction waste management IEQ3.1: IAQ management plan - construction IEQ4.1-4.3: Reduced emission materials IDc1: Design innovation

GREENFALL FINAL PRESENTATION_December 20th

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

10.5


ENERGY INFORMATION

INDOOR AIR QUALITY STRATEGIES POLLUTION DATA

INDOOR AIR QUALITY

The sources responsible for indoor pollution are different: the occupants and their activities; the building and its maintenance. Ventilation has an ambiguous role: it brings urban pollutants into the building (in particular CO, NO2, O3 and PM), while it reduces the concentrations of pollutants produced by indoor sources, in particular VOCs. The main strategy is air recycling and The Government " 4 56 7 is working hard to reduce emissions. filtration (the most common filtration systems currently ) * < ) * As of 2018, a comprehensive programme to reduce in use are mechanical filtration systems). @ * # '(( % + % @ * street-level pollution had lowered the roadside levels of A % % nitrogen dioxide, ) * '1 H87I 87 respirable suspended particulates, ) * $ 87 fine suspended particulates and sulphur dioxide by 87

17%, 57%, 54% and 74% respectively compared with @ * @ % 2 1 @ * 1999. To attain the Air Quality Objectives (AQOs), the @ 1 Government has put forward a wide range of air quality ) 0 improvement measures. In addition, the Hong Kong Special Administrative Region (HKSAR) and Guang )

dong Provincial Governments endorsed in November ( & + + $ 2012 a set of regional emission reduction targets/rang % es for 2015 and) * 8 1 2020 respectively with a view to ) * % improving regional air quality.

Hong Kong has been facing two air pollution issues, namely local street-level pollution and regional smog problem. Commercial vehicles are the main source of street-level pollution. Smog, however, is caused by a combination of pollutants from motor vehicles, marine vessels, industry and power plants both in Hong Kong and in the Pearl River Delta (PRD) region. The AQHI estimates the additional short-term health risk caused by heart and respiratory diseases from air pollution that lead to hospital admissions. It makes reference to the short-term World Health Organization Air Quality Guidelines as anchor points to define the level where health risk is high due to short term exposure to air pollution. HEALTH RIK CATEGORIES UNDER THE AQHI SYSTEM

L.- M

.

.

- D

L.- M

L.-. .--M

L.-5M

L.-/M

): ) $ $ 4 86 7 A @ * 7 7 1 $ # % *

WELL CREDITS FOR AIR QUALITY PM10 Region

Country

City/Town

Annual mean, ug/m3

Wpr LMI

China

Hong Kong

49

7 *L.-D .-EM

PM2.5

For WELL certification the selection and installation of adequate media filters is one of the key mechanisms for minimizing exposure to outdoor and indoor air pollution.

Reference

87 - D # 7 A (

Year

Number and type of monitoring stations (PM10)

note on converted PM10

Annual mean, ug/m3

Year

Number and type of monitoring note on converted stations (PM2.5) PM2.5

2013

13 stations, roadside air quality monitoring station for measuring street level air quality

measured data

29

2014

15 stations, roadside air quality monitoring station for measuring street level air quality

Temporal coverage

.E O F P

for air quality

.9 .: O F P measured data

7'<G : >/ 7'<G . 7D

PM10: >75%; China National Environmental Monitoring Center PM2.5:>75% . -5 O F P 7'<G .- 7E

-/ 5 O F P

A12: AIR FILTRATION POINT FOR WELL CERTIFICATION

7'<G ./ A:

We check that the fans inside the AHU had enough power capacity for install this 7'<G .E 7'<G : '. specific filter E O F P / D O F P

7'<G .E '.

>/

A % $ % ' & '((

PURIFIED AIR

FABBRICA DELL’ARIA (botanic filtration)

Since plants capture polluting molecules and incorporate them into their biomass, the filter has an indefinite duration and is therefore much more efficient than mechanical filtration. These laboratories for the production of pure air are bio-machines, but also usable places, able to add quality to the architectural space. Positive and negative elements:

Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

GROUP 2:

" * # , 2 K > ? 8 0 % *FF

F F Y F F F F F

Energy equipment of Fabbrica dell’aria:

+500W for each fan

8 -E -9:

; 4 - .: ) '(( ! ) < <

X2 Energy consumption:

hour

KW

mq

KWh/mq

MORE ENERGY CONSUMPTION (because of addition of fans)

Working 24/24 every day

8640

1

500

17,28

INCREASE INDOOR AIR QUALITY

Working only in openings day and hours

2880

1

500

5,76

GREEN PRESENCE INCREASE THE QUALITY OF LIFE

Working only in openings day when outside >25ug/m3

1500

1

500

3

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

918816 918417 912788 918641

Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401

GREENFALL FINAL PRESENTATION_December 20th

DIRTY AIR

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

10.6


ENERGY

DRY BULB COMFORT ANALYSIS - RESIDENTIAL

INFORMATION

FAMILY

40 30 20 18 19 20 21 22 23 24 25 26 27 19 20 21 22 23 24 25 26 27 28

SINGLE

FAMILY

40 30 20 18 19 20 21 22 23 24 25 26 27 19 20 21 22 23 24 25 26 27 28

TEMPERATURE (°C)

FAMILY

60

50 40 30 20 10 0

SINGLE

70

60

50

10 0

APRIL

70

60

50

10 0

SINGLE

70

60

MARCH

PROBABILITY (%)

The following rooms are the most critical one in terms of comfort inside our residential buildings.

FAMILY

PROBABILITY (%)

INFORMATION

SINGLE

70 PROBABILITY (%)

The analysis investigates the indoor conditions, in term of temperature frequencies, showing hourly results for each month.

FEBRUARY

PROBABILITY (%)

JANUARY

18 19 20 21 22 23 24 25 26 27 19 20 21 22 23 24 25 26 27 28

TEMPERATURE (°C)

50 40 30 20 10 0

18 19 20 21 22 23 24 25 26 27 19 20 21 22 23 24 25 26 27 28

TEMPERATURE (°C)

TEMPERATURE (°C)

SINGLE UNITS 19°floor JUNE SINGLE

70

FAMILY

40 30 20

>99% Hrs clear pass

18 19 20 21 22 23 24 25 26 27 19 20 21 22 23 24 25 26 27 28

SINGLE

FAMILY

40 30 20 18 19 20 21 22 23 24 25 26 27 19 20 21 22 23 24 25 26 27 28

TEMPERATURE (°C)

FAMILY

60

50 40 30 20 10 0

SINGLE

70

60

50

10 0

AUGUST

70 PROBABILITY (%)

PROBABILITY (%)

PROBABILITY (%)

Hrs within setpoint range

FAMILY

60

50

10 0

SINGLE

70

60

TOT. AREA: 253mq

JULY

PROBABILITY (%)

MAY

18 19 20 21 22 23 24 25 26 27 19 20 21 22 23 24 25 26 27 28

TEMPERATURE (°C)

50 40 30 20 10 0

18 19 20 21 22 23 24 25 26 27 19 20 21 22 23 24 25 26 27 28

TEMPERATURE (°C)

TEMPERATURE (°C)

FAMILY UNITS 1°floor OCTOBER SINGLE

70

FAMILY

SINGLE

Hrs within setpoint range >99% Hrs clear pass

Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

40 30 20 18 19 20 21 22 23 24 25 26 27 19 20 21 22 23 24 25 26 27 28 TEMPERATURE (°C)

GROUP 2:

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

40 30 20

918816 918417 912788 918641

FAMILY

SINGLE

60

50

10 0

DECEMBER SINGLE

PROBABILITY (%)

50

10 0

FAMILY

60 PROBABILITY (%)

PROBABILITY (%)

60

TOT. AREA: 263mq

NOVEMBER

18 19 20 21 22 23 24 25 26 27 19 20 21 22 23 24 25 26 27 28 TEMPERATURE (°C) Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401

50 40 30 20 10 0

FAMILY

60 PROBABILITY (%)

SEPTEMBER

18 19 20 21 22 23 24 25 26 27 19 20 21 22 23 24 25 26 27 28 TEMPERATURE (°C)

GREENFALL FINAL PRESENTATION_December 20th

50 40 30 20 10 0

18 19 20 21 22 23 24 25 26 27 19 20 21 22 23 24 25 26 27 28 TEMPERATURE (°C)

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

10.7


ENERGY

DRY BULB COMFORT ANALYSIS - PUBLIC

INFORMATION FEBRUARY

60

GYM

40 30 20 18 19 20 21 22 23 24 25 26 27 19 20 21 22 23 24 25 26 27 28

CO-WORKING

GYM

40 30 20 18 19 20 21 22 23 24 25 26 27 19 20 21 22 23 24 25 26 27 28

TEMPERATURE (°C)

GYM

60

50 40 30 20 10 0

CO-WORKING

70

60

50

10 0

APRIL

70

60

50

10 0

CO-WORKING

70

PROBABILITY (%)

The following floor are the most critical one in terms of comfort inside our public part of buildings.

GYM

PROBABILITY (%)

INFORMATION

CO-WORKING

70 PROBABILITY (%)

The analysis investigates the indoor conditions, in term of temperature frequencies, showing hourly results for each month.

MARCH

PROBABILITY (%)

JANUARY

18 19 20 21 22 23 24 25 26 27 19 20 21 22 23 24 25 26 27 28

TEMPERATURE (°C)

50 40 30 20 10 0

18 19 20 21 22 23 24 25 26 27 19 20 21 22 23 24 25 26 27 28

TEMPERATURE (°C)

TEMPERATURE (°C)

CO-WORKING JUNE CO-WORKING

70

GYM

>99% Hrs clear pass

40 30 20 18 19 20 21 22 23 24 25 26 27 19 20 21 22 23 24 25 26 27 28 TEMPERATURE (°C)

CO-WORKING

GYM

40 30 20 18 19 20 21 22 23 24 25 26 27 19 20 21 22 23 24 25 26 27 28 TEMPERATURE (°C)

GYM

60

50 40 30 20 10 0

CO-WORKING

70

60

50

10 0

AUGUST

70 PROBABILITY (%)

50

10 0

GYM

60 PROBABILITY (%)

PROBABILITY (%)

Hrs within setpoint range

CO-WORKING

70

60

TOT. AREA: 259mq

JULY

PROBABILITY (%)

MAY

18 19 20 21 22 23 24 25 26 27 19 20 21 22 23 24 25 26 27 28 TEMPERATURE (°C)

50 40 30 20 10 0

18 19 20 21 22 23 24 25 26 27 19 20 21 22 23 24 25 26 27 28 TEMPERATURE (°C)

GYM 1°floor OCTOBER CO-WORKING

70

GYM

70

Hrs within setpoint range >99% Hrs clear pass

Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

GYM

40 30 20 18 19 20 21 22 23 24 25 26 27 19 20 21 22 23 24 25 26 27 28 TEMPERATURE (°C)

GROUP 2:

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

40 30 20

918816 918417 912788 918641

GYM

18 19 20 21 22 23 24 25 26 27 19 20 21 22 23 24 25 26 27 28 TEMPERATURE (°C) Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401

GYM

60

50 40 30 20 10 0

CO-WORKING

70

60

50

10 0

DECEMBER CO-WORKING

70 PROBABILITY (%)

50

10 0

CO-WORKING

60 PROBABILITY (%)

TOT. AREA: 378mq

PROBABILITY (%)

60

NOVEMBER

PROBABILITY (%)

SEPTEMBER

18 19 20 21 22 23 24 25 26 27 19 20 21 22 23 24 25 26 27 28 TEMPERATURE (°C)

GREENFALL FINAL PRESENTATION_December 20th

50 40 30 20 10 0

18 19 20 21 22 23 24 25 26 27 19 20 21 22 23 24 25 26 27 28 TEMPERATURE (°C)

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

10.8


ENERGY

OPERATIVE TEMPERATURE COMFORT ANALYSIS - RESIDENTIAL

INFORMATION

FAMILY

SINGLE

70

FAMILY

20 18 19 20 21 22 23 24 25 26 27 28 19 20 21 22 23 24 25 26 27 28 29

50 40 30 20 10 0

SINGLE

FAMILY

18 19 20 21 22 23 24 25 26 27 28 19 20 21 22 23 24 25 26 27 28 29

TEMPERATURE (°C)

FAMILY

60

50 40 30 20 10 0

SINGLE

70

60 PROBABILITY (%)

40 30

APRIL

70

60

50

10 0

MARCH

PROBABILITY (%)

SINGLE

60

P05: 8% too hot

18 19 20 21 22 23 24 25 26 27 28 19 20 21 22 23 24 25 26 27 28 29

TEMPERATURE (°C)

50 40 30 20 10 0

18 19 20 21 22 23 24 25 26 27 28 19 20 21 22 23 24 25 26 27 28 29

TEMPERATURE (°C)

TEMPERATURE (°C)

TOT. AREA: 253mq

FAMILY UNITS 1°floor

JUNE SINGLE

70

FAMILY

SINGLE

PROBABILITY (%)

60

P03: 7% too hot

40 30 20

TOT. AREA: 263mq

SINGLE

18 19 20 21 22 23 24 25 26 27 28 19 20 21 22 23 24 25 26 27 28 29 TEMPERATURE (°C)

FAMILY

SINGLE

60

50 40 30 20 10 0

AUGUST

FAMILY

60

50

10 0

JULY

18 19 20 21 22 23 24 25 26 27 28 19 20 21 22 23 24 25 26 27 28 29 TEMPERATURE (°C)

50 40 30 20 10 0

FAMILY

60 PROBABILITY (%)

MAY

PROBABILITY (%)

>99% Hrs clear pass >97% Hrs clear fail

PROBABILITY (%)

Hrs within setpoint range

FEBRUARY

70 PROBABILITY (%)

SINGLE UNITS 19°floor

JANUARY

PROBABILITY (%)

The following rooms are the most critical one in terms of comfort inside our residential buildings.

18 19 20 21 22 23 24 25 26 27 28 19 20 21 22 23 24 25 26 27 28 29 TEMPERATURE (°C)

50 40 30 20 10 0

18 19 20 21 22 23 24 25 26 27 28 19 20 21 22 23 24 25 26 27 28 29 TEMPERATURE (°C)

Hrs within setpoint range

SEPTEMBER

OCTOBER SINGLE

70

FAMILY

SINGLE

Adding shading elements on the south facade we can reduce the heating loads. Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

FAMILY

50 40 30 20 18 19 20 21 22 23 24 25 26 27 28 19 20 21 22 23 24 25 26 27 28 29 TEMPERATURE (°C)

GROUP 2:

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

40 30 20

918816 918417 912788 918641

FAMILY

SINGLE

60

50

10 0

DECEMBER SINGLE

60 PROBABILITY (%)

PROBABILITY (%)

60

10 0

NOVEMBER

18 19 20 21 22 23 24 25 26 27 28 19 20 21 22 23 24 25 26 27 28 29 TEMPERATURE (°C) Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401

50 40 30 20 10 0

FAMILY

60 PROBABILITY (%)

POSSIBLE SOLUTIONS

PROBABILITY (%)

>99% Hrs clear pass >97% Hrs clear fail

18 19 20 21 22 23 24 25 26 27 28 19 20 21 22 23 24 25 26 27 28 29 TEMPERATURE (°C)

GREENFALL FINAL PRESENTATION_December 20th

50 40 30 20 10 0

18 19 20 21 22 23 24 25 26 27 28 19 20 21 22 23 24 25 26 27 28 29 TEMPERATURE (°C)

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

10.9


ENERGY

OPERATIVE TEMPERATURE COMFORT ANALYSIS - PUBLIC

INFORMATION

60 40 30 20 18 19 20 21 22 23 24 25 26 27 28 19 20 21 22 23 24 25 26 27 28 29

50 40 30 20 10 0

18 19 20 21 22 23 24 25 26 27 28 19 20 21 22 23 24 25 26 27 28 29

GYM

50 40 30 20 10 0

CO-WORKING

70

GYM

60

18 19 20 21 22 23 24 25 26 27 28 19 20 21 22 23 24 25 26 27 28 29

TEMPERATURE (°C)

50 40 30 20 10 0

18 19 20 21 22 23 24 25 26 27 28 19 20 21 22 23 24 25 26 27 28 29

TEMPERATURE (°C)

TEMPERATURE (°C)

TOT. AREA: 259mq

GYM 1°floor

JUNE CO-WORKING

70

GYM

PROBABILITY (%)

PROBABILITY (%)

40 30 20

TOT. AREA: 378mq

GYM

18 19 20 21 22 23 24 25 26 27 28 19 20 21 22 23 24 25 26 27 28 29 TEMPERATURE (°C)

CO-WORKING

GYM

40 30 20 18 19 20 21 22 23 24 25 26 27 28 19 20 21 22 23 24 25 26 27 28 29 TEMPERATURE (°C)

GYM

60

50 40 30 20 10 0

CO-WORKING

70

60

50

10 0

AUGUST

70

60

50

10 0

CO-WORKING

70

60 P09: 7% too hot

JULY

PROBABILITY (%)

MAY

PROBABILITY (%)

>99% Hrs clear pass >97% Hrs clear fail

CO-WORKING

70 60

TEMPERATURE (°C) Hrs within setpoint range

GYM

60

50

10 0

CO-WORKING

70

APRIL

PROBABILITY (%)

GYM

MARCH

PROBABILITY (%)

P07: 9% too hot

CO-WORKING

70 PROBABILITY (%)

CO-WORKING

FEBRUARY

JANUARY

PROBABILITY (%)

The following floor are the most critical one in terms of comfort inside our public part of buildings.

18 19 20 21 22 23 24 25 26 27 28 19 20 21 22 23 24 25 26 27 28 29 TEMPERATURE (°C)

50 40 30 20 10 0

18 19 20 21 22 23 24 25 26 27 28 19 20 21 22 23 24 25 26 27 28 29 TEMPERATURE (°C)

Hrs within setpoint range

SEPTEMBER

OCTOBER CO-WORKING

70

GYM

70

Adding shading elements on the south facade we can reduce the heating loads. Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

50 40 30 20 10 0

CO-WORKING

GYM

18 19 20 21 22 23 24 25 26 27 28 19 20 21 22 23 24 25 26 27 28 29 TEMPERATURE (°C)

GROUP 2:

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

40 30 20

918816 918417 912788 918641

GYM

18 19 20 21 22 23 24 25 26 27 28 19 20 21 22 23 24 25 26 27 28 29 TEMPERATURE (°C) Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401

GYM

60

50 40 30 20 10 0

CO-WORKING

70

60

50

10 0

DECEMBER CO-WORKING

70

60 PROBABILITY (%)

PROBABILITY (%)

60

NOVEMBER

PROBABILITY (%)

POSSIBLE SOLUTIONS

PROBABILITY (%)

>99% Hrs clear pass >97% Hrs clear fail

18 19 20 21 22 23 24 25 26 27 28 19 20 21 22 23 24 25 26 27 28 29 TEMPERATURE (°C)

GREENFALL FINAL PRESENTATION_December 20th

50 40 30 20 10 0

18 19 20 21 22 23 24 25 26 27 28 19 20 21 22 23 24 25 26 27 28 29 TEMPERATURE (°C)

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

10.10


ENERGY

MID-TERM PPT DESIGN

12

2

FINAL DESIGN.

TRANSP. OPTIMIZ.

OPAQUE OPTIMIZ.

FAN COIL OPTIMIZ.

+20%

1,5

-31% -68%

1 0,5

FINAL DESIGN.

14

+20%

HEATING CONSUMPTION

2,5

TRANSP. OPTIMIZ.

-13%

FINAL DESIGN.

TRANSP. OPTIMIZ.

OPAQUE OPTIMIZ.

FAN COIL OPTIMIZ.

75

16

285.000

OPAQUE OPTIMIZ.

75,5

-18%

18

295.000

MID-TERM PPT DESIGN

76

+6,1%

305.000

FINAL DESIGN.

76,5

COOLING CONSUMPTION

20

TRANSP. OPTIMIZ.

COOLING (kWh/mq/year)

77

-3,8%

FAN COIL OPTIMIZ.

77,5

315.000

FINAL DESIGN.

78

TRANSP. OPTIMIZ.

+0,5%

OPAQUE OPTIMIZ.

-0,9%

OPAQUE OPTIMIZ.

56.000

-4,9% ANNUAL CO2 EMISSION

325.000

MID-TERM PPT DESIGN

58.000

FAN COIL OPTIMIZ.

78,5

-4,9% +5,5%

60.000

FAN COIL OPTIMIZ.

-0,2%

79

-4,9%

62.000

MID-TERM PPT DESIGN

79,5

ANNUAL ENERGY COST

64.000 COSTS ($)

80

MID-TERM PPT DESIGN

Annual energy consumption: -0,5% Annual energy cost : -4,5% Cooling consumption : -14,4% Heating consumption : -82,1% Annual CO2 emission : -2,9%

80,5

EUI (kWh/mq/year)

The charts illustrate the saving of the consumption for the residential part of our building, due to the implementation of opaque and transparent taks and HVAC system optimization. The starting point is the initial project design coming from mid-term presentation and we achieve:

ANNUAL ENERGY CONSUMPTION

HEATING (kWh/mq/year)

RESIDENTIAL

EMISSIONS (KgCO2e)

SUMMARY OF SAVINGS

Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

GROUP 2:

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

918816 918417 912788 918641

Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401

14

GREENFALL FINAL PRESENTATION_December 20th

FINAL DESIGN.

TRANSP. OPTIMIZ.

OPAQUE OPTIMIZ.

FAN COIL OPTIMIZ.

FINAL DESIGN.

-9,4%

12

80.000

HEATING CONSUMPTION

2,5 2 1,5 1 0,5

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

FINAL DESIGN.

FINAL DESIGN.

TRANSP. OPTIMIZ.

OPAQUE OPTIMIZ.

FAN COIL OPTIMIZ.

74

+38%

16

82.000

TRANSP. OPTIMIZ.

76

-24%

18

84.000

OPAQUE OPTIMIZ.

78

ANNUAL CO2 EMISSION

-5,2% +5,2%

FAN COIL OPTIMIZ.

80

COOLING CONSUMPTION

20

MID-TERM PPT DESIGN

COOLING (kWh/mq/year)

82

FINAL DESIGN.

84

TRANSP. OPTIMIZ.

86

TRANSP. OPTIMIZ.

MID-TERM PPT DESIGN

88

OPAQUE OPTIMIZ.

15.000

+4,4%

86.000

MID-TERM PPT DESIGN

16.000

-0,2% +0,9%

OPAQUE OPTIMIZ.

-4,7%

90

17.000

FAN COIL OPTIMIZ.

92

-4%

FAN COIL OPTIMIZ.

94

18.000

-4%

88.000

MID-TERM PPT DESIGN

COSTS ($)

-4,2%

MID-TERM PPT DESIGN

Annual energy consumption: -4,8% Annual energy cost : -3,3% Cooling consumption : -4,1% Heating consumption : -0% Annual CO2 emission : -4,2%

96

EUI (kWh/mq/year)

The charts illustrate the saving of the consumption for the public part of our building, due to the implementation of opaque and transparent taks and HVAC system optimization. The starting point is the initial project design coming from mid-term presentation and we achieve:

ANNUAL ENERGY COST

19.000

HEATING (kWh/mq/year)

ANNUAL ENERGY CONSUMPTION

EMISSIONS (KgCO2e)

PUBLIC

10.11


ENERGY INFORMATION

ASHRAE Standard 90.1: Energy Standard for Buildings Except Low-Rise Residential Buildings is an American National Standard published by ASHRAE and jointly sponsored by the IES that provides minimum requirements for energy efficient designs for buildings except for low-rise residential buildings.

ASHRAE BASELINE - 90.1 APPENDIX G MAIN STEP TO REACH ASHRAE BASELINE

LOCALIZATION

ARCHITECTURAL MODELING

climatic zone definition refered to ASHRAE 90.1

3d modeling thermal zones envelope definition refered to climatic zone choosed definition of schedule

RESIDENTIAL

SPACE USE MODELING definition of occupant density equipment and lighting data entry according to ASHRAE outdoor air flow calculation according to table 6.1

choice of HVAC system choice of HVAC temperatures HVAC data entry according to ASHRAE 62 .1 and 90.1 (COP, EER, limit air flows)

PUBLIC

7% 5%

47%

ANNUAL ENERGY COSTS

6% 16%

28%

25%

MONTHLY ENERGY CONSUMPTION HEATING

COOLING

28%

ANNUAL ENERGY COSTS

13%

We decide to model the baseline according to ASHRAE code in order to reach LEED certification. Comparing the baseline with our project it is possible to optimize the results of the final option and thus reach the possible credits present in the certification according to energy task.

MODELING OF HVAC SYSTEM

25%

MONTHLY ENERGY CONSUMPTION FANS

INTERIORS

PUMPS

HEATING

COOLING

FANS

INTERIORS

PUMPS

An important concept to understand is "percent improvement." The ASHRAE standard and the LEED model compare the annual energy cost of the proposed building vs. the baseline building that just meets code. Annual energy cost is used because it is readily understood by engineers, architects, building owners, executives, accountants, and occupants.

Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

GROUP 2:

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

918816 918417 912788 918641

Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401

GREENFALL FINAL PRESENTATION_December 20th

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

10.12


ENERGY

ASHRAE BASELIVE vs FINAL PROJECT

RESIDENTIAL

ANNUAL ENERGY CONSUMPTION

ANNUAL ENERGY COSTS

HEATING & COOLING CONSUMPTION

ANNUAL CO2e EMISSIONS

74.000

24

365.000

94

72.000

22

360.000

92

70.000

20

355.000

90

68.000

60.000

-0,1%

12 10

340.000 335.000 330.000 325.000

78

56.000

6

320.000

76

54.000

4

ANNUAL ENERGY CONSUMPTION

ANNUAL ENERGY COSTS

ASHRAE BASELINE

FINAL PROPOSED DESIGN

HEATING & COOLING CONSUMPTION HEATING

COOLING

190

34.000

60

160.000

180

32.000

55

150.000

170

30.000

50

140.000

160

28.000

150

26.000

35 30

120

20.000

25

110

18.000

20

100

16.000

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

14.000

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

918816 918417 912788 918641

FINAL PROPOSED DESIGN

10 ASHRAE BASELINE

FINAL PROPOSED DESIGN

ASHRAE BASELINE

90

-173%

15

Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401

120.000 110.000 100.000 90.000

-90%

80.000 70.000 60.000

ASHRAE BASELINE

-127%

-121%

130.000

GREENFALL FINAL PRESENTATION_December 20th

ASHRAE BASELINE

22.000

170.000

EMISSIONS (KgCO2e)

130

24.000

FINAL PROPOSED DESIGN

140

(kWh/mq/year)

65

COSTS ($)

36.000

40

-0,1%

ANNUAL CO2e EMISSIONS

200

45

-18%

315.000

-1623% ASHRAE BASELINE

130m2 14% efficiency

130m2 14% efficiency

ASHRAE BASELINE

PV PANELS

FINAL PROPOSED DESIGN

ASHRAE BASELINE

PUBLIC

-0,1%

PV PANELS

8

-25%

FINAL PROPOSED DESIGN

58.000

We consider also PV pannels in our rooftop of 130mq with 14% efficiency, but because of small saving we decide to don’t use it in our design.

EUI (kWh/mq/year)

-25%

14

345.000

130m2 14% efficiency

62.000

-59%

PV PANELS

84

64.000

16

350.000

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

FINAL PROPOSED DESIGN

86

66.000

18

FINAL PROPOSED DESIGN

88

370.000

EMISSIONS (KgCO2e)

96

(kWh/mq/year)

26

80

GROUP 2:

COOLING

76.000

82

Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

HEATING

98

COSTS ($)

EUI (kWh/mq/year)

PV pannels (130mq,14% efficiency)

10.13


ENERGY

LEED AND WELL CERTIFICATIONS CREDITS

CREDITS ACHIEVED

LEED CERTIFICATION

LEED

Comparing the baseline of ASHRAE with our final proposed building we discover a saving of 25% so we can achieve 11/18 credits for the energy performance optimization chapter. 18 7

8

6 11 3 1

4

1 1 1

1

LEED, or Leadership in Energy and Environmental Design, is the most widely used green building rating system in the world. Available for virtually all building, community and home project types, LEED provides a framework to create healthy, highly efficient and cost-saving green buildings. LEED certification is a globally recognized symbol of sustainability achievement. The certification standards are classified according to the type of building:

Instant recognition for your building Faster lease up rates Higher resale value Healthier indoor space Lower use of energy, water and other resources Better for building occupants, the community and the environment Enhances your brand and establishes you as a leader in green building

2 2

Certification grades: 2 1

1

WELL CERTIFICATION

WELL Thanks to the focus made about air quality of Hong Kong and having used special filters in the AHU we can reach the following credits:

3 1 1 1 1

The WELL Building StandardÂŽ is a performance-based system for measuring, certifying, and monitoring features of the built environment that impact human health and wellbeing, through air, water, nourishment, light, fitness, comfort, and mind. WELL is managed and administered by the International WELL Building Institute (IWBI), a public benefit corporation whose mission is to improve human health and wellbeing through the built environment. WELL is grounded in a body of medical research that explores the connection between the buildings where we spend more than 90 percent of our time, and the health and wellness of its occupants. Certification grades:

1 1

Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20

GROUP 2:

Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045

Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta

918816 918417 912788 918641

Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401

GREENFALL FINAL PRESENTATION_December 20th

SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera

10.14


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.