GREENFALL
Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
Technological book SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca
GROUP 2: Caniato Giorgia Dieterich Murr Alice Korovina Viktoriia Krebs Francesco Nemati Ali
918624 824939 913045 918816 918417
prof. G.Masera
Rotundo Marco Salvatore Saccuman Marta Seyedi Zadeh Fereshteh Sheikhhassani Navid Zohourparvaz Mohamadreza
912788 918641 927160 912843 927401
Table of content
1
LOCATION & CLIMATE ANALYSIS
1.1 1.2
Location information & climate site analysis Conclusions & building concept strategies
2
CASE STUDY
2.1 2.2 2.3 2.4
1. Zero Carbon Building, Hong kong 2. Oasia Hotel Downtown, Singapore 3. Kampung Admiralty, Singapore 4. Shanghai Tower, Shanghai
3
SCHEMATIC DESIGN
3.1 3.2
Masterplan strategies Section strategies
4
CONCEPT SHAPE OPTIMIZATION
4.1
Shape optimization
5
OPTIONEERING
5.1 5.2 5.3 5.4 5.5 5.6
Position Massing Window Shading Daylight Flow chart
6
DAYLIGHT
6.1 6.2 6.3 6.4 6.5
Process Case 1 Case 2 and Case 3 Case 4 Conclusion
TRANSPARENCY
7
Exterior window frames Exterior door frames Interior windows & doors Exterior facade glass General typologies & total transparent area Glass optioneering Glass specifications Specific Typologies & Locations - Residential floors Technical details
7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9
STRUCTURE
8
Structural plans Structural section and 3D
8.1 8.2
OPAQUE
9
Opaque envelope strategies Horizontal stratigraphies Vertical stratigraphies Blow-ups and technical details
9.1 9.2 9.3 9.4
ENERGY
10
Diversity schedules, function and requirements Selcted HVAC system Fan coil optimization- residential Fan coil optimization- public Energy consumption reduction strategies- elevator Indoor air quality strategies Dry bulb comfort analysis- residential Dry bulb comfort analysis- public Operative temperature comfort analysis- residential Operative temperature comfort analysis- public Summary of saving Ashrae baseline- 90.1 appendix G Ashrae baseline vs final proposed project Leed and well certification credits
10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 10.10 10.11 10.12 10.13 10.14
1. CLIMATE ANALYSIS To understand at a general scale the climatic conditions and how they affect the design
CLIMATE ANALYSIS
Location information & climate site analysis
LOCATION INFORMATION
CLIMATE SITE ANALYSIS TEMPERATURE ANALYSIS
PRECIPITATION ANALYSIS
TYPHOON ANALYSIS
Minimum temperature Maximum temperature NEW TERRITORIES
Monthly number of days with typhoons (1980-2018)
35
700
30
600
Annual number of days with typh
10
7
9 8
KOWLOON
25
500
20
400
15
300
6
7 5
6
4
Central, Hong Kong ( Hong Kong island) Gutzlaff St - Wellington St
Coordinates:
22° 16’ N 114° 09’ E
Reference oordinate:
23° 26’ N (Tropic of Cancer)
Köppen climate type:
Cwa (Dry-winter subtropical)
5 0
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Temperature range summer-winter is about 15-16°C
200 100 0
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Majority of rainfall occurs during the summer months
3
3 2
2 Annual total
Location:
10
Precipitation (mm)
HONG KONG ISLAND
Temperature (°C)
LANTAU ISLAND
Precipitation (mm)
5 4
1 0
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
1 0
1980
2018
Probability of typhoon during July and August is 60%, often they are not so powerfull
WIND ANALYSIS
100
100
100
100
90
90
90
90
80
80
80
80
70
70
70
70
60
60
60
60
50
50
50
50
40
40
40
40
30
30
30
30
20
20
20
20
10
10
10
10
Apr - Jun
Jul - Sep
C: warm temperature w: winter dry a: hot summer
Annual wind
Jan - March
Oct - Dec
Wind direction mainly from East, maximum wind speed is between January and March. At 100 m: 8 m/s (29 Km/h). At ground level: 3 m/s (11 Km/h)
SUN PATH ANALYSIS Sun path Project area
SOLAR RADIATION
ILLUMINATION
HOURLY DAYLIGHT MEASURE
Summer limit Winter limit
N
22:00 20:00
Köppen climate type of China
18:00
24:00
16:00
Legend
14:00
18:00
12:00
W
10:00
12:00
E
08:00 06:00
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Time of day
Time of day
06:00
00:00
Dec
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
04:00 02:00 00:00
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
S
Summer Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
GROUP 2:
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
90°C
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
Winter 918816 918417 912788 918641
45°C
Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401
GREENFALL FINAL PRESENTATION_December 20th
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
1.1
CLIMATE ANALYSIS
Conclusions & building concept strategies
CONCLUSIONS
summer MAY - SEPTEMBER
temperature - humidity
Humidity ratio (Kgwater/Kgair)
COMFORT ANALYSIS comfort zone
HEAT PERCEPTION
EXPECTED BEHAVIOR
INDOOR - public spaces behavior
TEMPERATURE PERCEPTION
HUMIDITY PERCEPTION
OUTDOOR
VENTILATION
SHADOW
SUN RADIATION PERCEPTION
Use of the INDOOR space
Covered open public space
EXPECTED BEHAVIOR
OUTDOOR - public spaces behavior
WIND PERCEPTION Temperature (°C)
winter
OCTOBER - APRIL
comfort zone
temperature - humidity
Humidity ratio (Kgwater/Kgair)
COMFORT ANALYSIS
HEAT PERCEPTION TEMPERATURE PERCEPTION
COLD DAYS
HUMIDITY PERCEPTION
OUTDOOR
HOT DAYS
SHADOW
SUN RADIATION PERCEPTION
Use of the OUTDOOR space
Opened air public space
WIND PERCEPTION Temperature (°C)
BUILDING CONCEPT STRATEGIES RELATED TO TEMPERATURE Strategy: Windows sizing according to orientation Sufficient insulation
RELATED TO SOLAR RADIATION Strategy: Use of balconies for shading (during summer) and for personal relaxation (during winter) summer
RELATED TO WIND Strategy: Shading devices as protection from the wind
winter
wind
Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
GROUP 2:
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
918816 918417 912788 918641
Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401
GREENFALL FINAL PRESENTATION_December 20th
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
1.2
2. CASE STUDY For learning from consolidated examples concerning similar aspects
CASE STUDY
Case 1. Zero carbon building, Hong Kong
ZCB INFORMATION
WIND
A zero carbon building is a building with zero net energy consumption or zero net carbon emissions on an annual basis. In recent years, low/zero carbon buildings have attracted much attention in many countries because they are considered as an important strategy to achieve energy conservation and reduce greenhouse gases emissions.
A wind rose diagram shows that the most frequent onsite winds come predominantly from the east-southeast and south-easterly directions, but with south-westerly also common.
north Singapore, 120 Woodlands Avenue 1
Coordinates: 1° 27′ N, 103° 49′ E
HOW WE CAN USE IT Ventilation
SOLAR PATH The Sun has a major effect on environmental conditions. The reception of light and heat generated by the Sun can be controlled. ZCB was planned in such a manner that the sunlight reaching the building can be harnessed to generate electricity, while overheating can also be minimized. Solar patterns give us useful information on temperatures, the potential for solar power, and cooling needs.
HONG KONG
For the Hong Kong climate analysis, refer to the previous chapter.
1. HEAT REFLECTING SHADE 2. INSULATED ROOF 3. HIGH PERFORMANCE GLAZING 4. EXTERNAL SHADING
Ventilation
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
918816 918417 912788 918641
1. INTELLIGENT LIGHTING MANAGEMENT
1. ACTIVE SKYLIGHT
Ventilation
Greenery absorbs solar energy to feed itself while cooling the air through the release of moisture, as well as creating shade. All greenery works as a "carbon sink", absorbing carbon dioxide and pollution while releasing the oxygen. The effect of a location's environmental conditions – the combination of the wind flow, air temperature and humidity – can be assessed by calculating the location's Physiological Equivalent Temperature (PET), a measure of the body temperature felt by users.This Thermal Model shows what the PET experienced throughout the site with the given amount of greenery. GROUP 2:
1. HIGH-VOLUME-LOW-SPEED FANS 2. HIGH TEMPERATURE COOLING SYSTEM
Solar control
COOLING MATERIALS
Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
Solar control
Lighting
The ZCB in Hong Kong generates on-site renewable energy from photovoltaic panels and a tri-generation system using biofuel made of waste cooking oil and target to achieves zero net carbon emissions on an annual basis. Beyond the common definition of a ‘zero carbon building’, ZCB exports surplus energy to offset embodied carbon of its construction process and major structural materials.
1. CROSS-VENTILATED LAYOUT 2. WIND CATCHERS 3. EARTH COOLING TUBE 1. NORTH GLAZING 2. LIGHT SHELVES 3. LIGHT PIPES
NATURA L
CLIMATE SITE ANALYSIS
Lighting
927160 Seyedi Zadeh Fereshteh 912843 Sheikhhassani Navid Zohourparvaz Mohamadreza 927401
GREENFALL FINAL PRESENTATION_December 20th
PLANTI NG
Location:
CONCLUSIONS DESIGN
The cultural centre designed by is located in Hong Kong, a city-state practically on the tropic of Cancer. This means that the usual building tipology had to adapt to the “humid subtropical climate” of the country.
SAME CLIMATE
PASSIVE
HOW IT WORKS
A.
INTRODUCTION
RENEWABLE B . A C T I V E S T R A T E G Y E N E R G Y
LOCATION INFORMATION
1. BIO-DIESEL TRI-GENERATION 2. PHOTOVOLTAICS
HT LIG
S ANT L P
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
2.1
CASE STUDY
Case 2. Oasia Hotel Downtown, Singapore
LOCATION INFORMATION
HOW IT WORKS
The mixed use building designed by WOHA is located in Singapore, a city-state practically on the Equator line. This means that the usual building tipology had to adapt to the “tropical rainforest climate” (Köppen-Geiger climate classification Hong Kong has a “humid subtropical climate”).
The main charateristic of this building is its stratification: this idea to devide the tower in groups or strata, each with its own “ground” level replica, had origin in the client’s need to distinct offices, hotel and club rooms. The four sky gardens allow generous public areas for recreation and social interaction spread throughout the high-rise. Considering the tower location in the dense Central Business District (CBD), WOHA decided to carve out the ususal prismatic volume (see 13th to 20th storey plan). As a result half of the hotel rooms have dynamic views overlooking the sky garden, with a courtain wall made possible by the above strata slab which shades the room glazed facade and the common areas (see picture). Furthermore, the sky terrace open plan (see 12th storey plan) allows a good cross-ventilation, so the public areas become functional and comfortable tropical spaces with greenery and natural light, instead of internalised air conditioned spaces.
Location:
north Singapore, 120 Woodlands Avenue 1
Coordinates: 1° 27′ N, 103° 49′ E
SAME PLOT AREA (20000 m2)
CONCLUSIONS
PRIMARY VOLUME
OPEN COMMON SPACE
N
L SHARED PLAN
N
N
PREVALING WIND
SHADED INTERNAL FACADES DIRECT SOLAR GAINS
Direct solar gains
Primary Volume
Open common space Primary Volume L shaped plan Open Shaded common internal space facades L shaped Analisis plan of theShaded Hong Kong internal sitefacades IdealAnalisis plan of the Hong Ideal shape Kong site with buff
IDEAL SHAPE WITH BUFFER ZONES
According to Climate-Data.org, in Singapore the yearly average temperature is 26,8°C and the rainfall average is above 2300mm of precipitation a year. During the monsoon season (novemberto january) the precipitation goes up to 300mm in one month. Even the driest month of the year has an averege of 163mm of precipitation.
BUF FE
CLIMATE SITE ANALYSIS
HOW WE CAN USE IT
R
EN RE
USE OF
In this way, the spaces that do not overlook the shaded sky garden, are still protected from the solar gains, creating a moderate microclimate.
G
A charateristic of the singaporean project that can be applied to the Hong Kong climate is its ‘second skin’: the aluminium mesh cladding creates a buffer space that forces the hot air to move upwards. The cooling loads are reduced by reducing the surface temperature of the closures (opaque and transparent).
PRECIPITATIONS
NATUR AL
TEMPERATURE
Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
NE ZO
GROUP 2:
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
918816 918417 912788 918641
927160 Seyedi Zadeh Fereshteh 912843 Sheikhhassani Navid Zohourparvaz Mohamadreza 927401
GREENFALL FINAL PRESENTATION_December 20th
ATION NTIL E V
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
2.2
CASE STUDY
Case 3. Kampung Admiralty, Singapore
LOCATION INFORMATION
HOW IT WORKS
HOW WE CAN USE IT
The mixed use building designed by WOHA is located in Singapore, a city-state practically on the Equator line. This means that the usual building tipology had to adapt to the “tropical rainforest climate” (Köppen-Geiger climate classification Hong Kong has a “humid subtropical climate”).
The main charateristic of this building is its mixed-use development. It is divided in three ‘strata’: a Community Plaza in the lower stratum, a Medical Centre in the mid stratum, and a Community Park with apartments for seniors in the upper stratum. The ground floor plaza is capable of hosting a variety of events and programming. This outdoor space is shaded and sheltered by the storey above, meaning that activities can take place regardless of the weather or climatic conditions. on the second level, the medical center is filled with natural daylight thanks to the central courtyard. meanwhile, perimeter windows also ensure that senior patients — who are able to remain on site — feel connected to nature and to other people. The units adopt universal design principles and are designed for natural cross ventilation and optimum daylight.
A charateristic that can be transferred to the building in Hong Kong is the creation of a community place in the ground floor obtained by raising the building on pillars. This creates an area that is covered for the existing street market, and also other activities. The implementation of different functions throughout the building like here can be also transferred to the project in Hong Kong. The addition of gardens on different levels helps creating a microclimate inside the building helping reducing the temperature and the cooling load, also cleaning the air from pollution.
Location:
north Singapore, 120 Woodlands Avenue 1
Coordinates: 1° 27′ N, 103° 49′ E HOW WE CAN USE IT - PICTURES
ar gains
Ideal Winter shape Solstice with buffer (22 dec) zones
Winter SolsticeSummer (22 dec)Solstice (21 jun)
CONCLUSIONS Creation of a community place, this will be achieved by having a platform lifted from the ground. Implement different functions in the building. Create a microclimate with the addition of greenery in the area, which helps purify the air in polluted city.
Summer Solstice (21 jun)
CLIMATE SITE ANALYSIS
NATUR AL
According to Climate-Data.org, in Singapore the yearly average temperature is 26,8°C and the rainfall average is above 2300mm of precipitation a year. During the monsoon season (novemberto january) the precipitation goes up to 300mm in one month. Even the driest month of the year has an averege of 163mm of precipitation.
ATION NTIL E V
NATURA L
PRECIPITATIONS
HT G I L
G
TEMPERATURE
EN RE
USE OF
sal plan
SAME OPEN PUBLIC SPACE
Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
GROUP 2:
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
918816 918417 912788 918641
927160 Seyedi Zadeh Fereshteh 912843 Sheikhhassani Navid Zohourparvaz Mohamadreza 927401
GREENFALL FINAL PRESENTATION_December 20th
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
2.3
CASE STUDY
Case 4. Shanghai Tower, Shanghai
LOCATION INFORMATION
HOW IT WORKS
This mixed use building was designed by the architectural firm Gensler and Jun Xia. It is located in Shanghai, one of the four municipalities of the People's Republic of China.
Incorporating 9 different zones, the building creatively turns a horizontal city into a vertical metropolis. The 127 stories are divided among the nine zones of 12 to 15 floors each and include retail, office and hotel space as well as an observation deck (CIM). Special to the Shanghai Tower is its double-shell design. The exterior glass curtain wall acts as an oversized skin interior skeleton and provides plenty of community green space and common atriums for meetings and socials.
31° 14′ N, 121° 30′ E
CLIMATE SITE ANALYSIS
TYPHOON CONSIDERATIONS
According to Climate-Data.org, in Shanghai the yearly average temperature is 16,1°C and the rainfall average is 1066mm of precipitation a year. The climate here is mild, and generally warm and temperate. The monsoon season is 1 month long from mid June to mid July. This location is classified as Cfa by Köppen and Geiger.
Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
Based on studies performed on the Burj Khalifa and other megatall buildings, wind loads become the controlling factor in a tall building’s design (Zhaoa). Geographically, Shanghai is in southern China where Typhoons are a regular occasion. Typhoons bring with them, fast wind speeds and inches of heavy rainfall. To mitigate the extra wind load factors, the exterior shell was designed to shed as much of the potential wind loads. Previous wind load studies suggest that 90 degree corners of buildings induce the strongest of wind loads (Gargari).After performing the statistical calculations, the design team physically tested a 1:500 scale building model in a wind tunnel (Zhaoa). As a result, engineers gained a more in depth understanding of wind load behaviors for this supertall building. The wind tunnel testing proved several benefits for the building’ s twisted exterior vortex architecture. A 120 degree vortex was considered the best alternative for the structure and aesthetics. This design provided benefits to the project as it saved up to 24% in the necessary structural wind loading design work and construction materials. This contributed to about $50 million in savings from the original design (CIM). GROUP 2:
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
918816 918417 912788 918641
927160 Seyedi Zadeh Fereshteh 912843 Sheikhhassani Navid Zohourparvaz Mohamadreza 927401
BUF FE
Coordinates:
Creation of a secondary layer of facade in the building, in order to have a buffer zone that can mitigate the wind loads. This will be achived having a first facade, with big typhoon glass windows and a second facade with shading elements in order to reduce the force of the wind on the windows behind, for the residential floors. While for the library floor there will be a double layer of glass, in order to use the same strategy. Create a microclimate with the addition of greenery in the area, which helps purify the air in polluted city.
R
SHAPE OP
501 Yincheng Middle Rd, Lujiazui, Pudong, Shanghai
CONCLUSIONS
TYPHOO N
Location:
SAME CLIMATIC THREATS
GREENFALL FINAL PRESENTATION_December 20th
NE ZO
IZATION M I T
ASS L G
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
2.4
3. SCHEMATIC DESIGN To explain the passive and active strategies considered for the entire project design at a general scale
SCHEMATIC DESIGN
Masterplan strategies
URBAN MASTERPLAN
STRATEGIES WIND AND SUN PROTECTION
3 2
PLAN T PLANTS ING
TYPE OF TREES SMALL TREES bring foliage cover to every corner of the site.
ORNAMENTAL TREES create an attractive leisure environment. WOODLAND TREES form an urban forest to cool the main breezes and increase the site's ecological value.
CANOPY TREES provide cool shade to people using the walkways, and shelter the spaces along them. WIND AND SUN PROTECTION
Use of a special type of pavimentation in the opened public spaces (like the piazza and the platform, that can create energy, and also promotes the concept of sustainability, raising awareness among people.
TH PA PAVEGEN
1
Study of a particular disposition and choice of plants, in order to cool the air throught the release of moisture and the creation of shadow. In the picture it is possible to see the trees type and disposition due to the expected wind path (blue arrows) according to the conformation of the city.
Strategy: Connecting communities with people powered energy.
FOOTSTEP
PAVEGEN
EACH FOOTSTEP GENERATE AROUND 5 WATT OF POWER Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
GROUP 2:
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
918816 918417 912788 918641
Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401
GREENFALL FINAL PRESENTATION_December 20th
ENERGY
SMART CITY
DATA
EDUCATIONAL
REWARDS
SPORT
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
3.1
SCHEMATIC DESIGN
2
LATION NTI E V
INSULA TIO
ERGY L EN A M
NATURA L
OLLECTION C R
GEOTH ER
SHADOW
SI HT IN DE G I L
RAINWA TE
DE TSI HOT DAYS U O
NATURA L
2
ION ECT T O
SHADO W
1
E ON
WIND PR
3
STRATEGIES BUFFE RZ
URBAN SECTIONS
Section strategies
N
1 To reduce overheating of the interior spaces
To decrease the wind load on the glass windows surface
To reduce overheating of the outdoor public spaces
To increase natural lighting in large open but covered areas
To avoid the waste of water and reuse the collected one for the building
To use natural elements to produce energy
To have a natural change of air and cooling
SHDOW
To avoid waste of energy to heat or cool the building
VENTILATION
WATER RECOVERY UNIT SECTION 2
SECTION 1 Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
GROUP 2:
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
918816 918417 912788 918641
Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401
GREENFALL FINAL PRESENTATION_December 20th
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
3.2
4. CONCEPT SHAPE OPTIMIZATION To understand the relationship between the shape of the building and the amount of energy consumption
CONCEPT SHAPE OPTIMIZATION
Shape optimization
GEOMETRIC DEVELOPEMENT PROCESS STEP 1
GUIDELINES for geometric developement: STEP 2
STEP 3
71%
N° FLOORS
5
N° FLOORS
SITE COVERAGE
SITE COVERAGE
SITE COVERAGE
10
N° FLOORS
3
21%
27%
36%
SITE COVERAGE
STEP 5
STEP 4
13
1
17
N° FLOORS
21%
SITE COVERAGE
B1: 16 B2: 21 N° FLOORS B3:13
2
SAME TOTAL FLOOR AREA
20000 m2
MAXIMUM SITE COVERAGE ALLOWED HIGHTS
75%
NO HIGHT LIMITS
GUIDELINES for analysis: Maximum site coverage allowed
Half coverage to allow public spaces
Divede the volume in 3 buildings
Volumes reshaped by main axis
Volumes reshaped by main axis whith different hights
U-VALUES considered for the evaluation
Wall: 0.70 W/m2k Roof: 0.22 W/m2k Floor: 0.49 W/m2k CONCLUSIONS During the disigne and the optimization of the shape we took into account some technical data, referred to the general volume of the buildng.
ANALYSIS
The first one is the shape factor, that is the
Shape factor Surface/Volume
SHAPE FACTOR
0
1
2
3
4
st1 = 2,32 5
6
Surface/Volume
SHAPE FACTOR
0
1
2
3
4
st2 = 2,92 5
6
Surface/Volume
SHAPE FACTOR
0
1
2
3
4
st3 = 4,45 5
6
Surface/Volume
SHAPE FACTOR
0
1
2
3
4
st4 = 5,59 5
6
Surface/Volume
SHAPE FACTOR
0
1
2
3
4
st5 = 5,59 5
6
ratio between the volume of the building and the dispersant surfaces (roof, external walls and earth retaining slab). The second one is the amount of energy needed by the building,
st1
st1
st2
st1
st2
st3
st1
st2
st3
st4
in particular we considered the cooling energy (due to the hot climate). The results
Energy Use (kWh/yr)
800k
850k
EUI ENERGY USE INTENSITY
st1 = 51 kWh/m2/yr
900k
950k
1000k
1050k
800k
850k
st1 = 52 kWh/m2/yr
900k
950k
1000k
1050k 800k
EUI ENERGY USE INTENSITY 850k
st1 = 51 kWh/m2/yr
900k
950k
st1
18% of total energy use COOLING ENERGY
st1 = 185,017 kWh/yr
1000k
st1
19% of total energy use COOLING ENERGY
st2 = 193,355 kWh/yr
1050k 800k
EUI ENERGY USE INTENSITY 850k
st1 = 52 kWh/m2/yr
900k
950k
COOLING ENERGY
st3 = 193,187 kWh/yr
1050k 800k
850k
st1 = 52 kWh/m2/yr
900k
950k
st3 st1 st2
st2
19% of total energy use
1000k
EUI ENERGY USE INTENSITY
st4 = 201,314 kWh/yr
1050k
st3 st4 st1 st2
19% of total energy use COOLING ENERGY
1000k
19% of total energy use COOLING ENERGY
st5 = 202,569 kWh/yr
Annual Energy Use (kWh/yr)
of the two analysis must be combined together to make a comparison between the five steps. At the end of the design and the evaluation process we can observe that the energy needs are similar in all the steps. So our final shape (Step 5) will be taken like baseline for the next analysis, where it will be implemented.
PUMPS
5%
PUMPS
5%
PUMPS
4%
PUMPS
5%
PUMPS
5%
HEATING
0%
HEATING
0%
HEATING
0%
HEATING
1%
HEATING
0%
COOLING
18 %
COOLING
19 %
COOLING
19 %
COOLING
19 %
COOLING
19 %
FANS
8%
FANS
8%
FANS
7%
FANS
7%
FANS
7%
INTERIOR
70 %
INTERIOR
69 %
INTERIOR
69 %
INTERIOR
68 %
INTERIOR
68 %
Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
GROUP 2:
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
918816 918417 912788 918641
Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401
GREENFALL FINAL PRESENTATION_December 20th
1
STEP 5
EUI ENERGY USE INTENSITY
2
3
21%
SITE COVERAGE
N° FLOORS
B1: 16 B2: 21 B3:13
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
4.1
5. OPTIONEERING
To improve project performances connected to position, mass, window, shading and daylight analysis
OPTIONEERING
Position
GEOMETRY DEVELOPEMENT PROCESS VARIATION 1
VARIATION 2
3
1
VARIATION 3
3
2
VARIATION 5
VARIATION 4
3 1
2
GUIDELINES for analysis: Solar Exposure Scale (hours)
1
0
3
2
1
2
1
2
1
2
3
4
5
6
7
8
OVERALL FLOOR SURFACE
9
10
11 12
23000 m2
U-VALUES considered for the evaluation
3
Wall: 0.70 W/m2k
SOLAR EXPOSURE ANALYSIS
Roof: 0.22 W/m2k Floor: 0.49 W/m2k
STEP 5
STARTING OPTION for analysis:
21%
1
2
3
SITE COVERAGE
B1: 16 B2: 21 N° FLOORS B3:13
SOLAR EXPOSION ANALYSIS 21st june
21st june
21st june
21st june
21st june
21st june 21st december
21st december
21st december
21st december
21st december
ANALYSIS Energy Use (kWh/yr) EUI ENERGY USE INTENSITY 800k
900k
1000k
v1 = 1267641 kWh/yr 1100k
1200k
1300k 800k
EUI ENERGY USE INTENSITY 900k
1000k
v2 = 1263395 kWh/yr 1100k
1200k
1300k 800k
EUI ENERGY USE INTENSITY 900k
1000k
v3 = 1271141 kWh/yr 1100k
1200k
1300k 800k
EUI ENERGY USE INTENSITY 900k
1000k
v4 = 1258052 kWh/yr 1100k
1200k
1300k 800k
EUI ENERGY USE INTENSITY 900k
1000k
v5 = 1263395 kWh/yr 1100k
1200k
1300k
v3 v1
0.003% COOLING ENERGY 220k
230k
240k
v1 = 266202 kWh/yr 250k
260k
270k 220k
0.006% COOLING ENERGY 230k
240k
v2 = 263143 kWh/yr 250k
260k
270k 220k
COOLING ENERGY 230k
240k
250k
v4 v3
v1 v2
v1 v2
v1 v2
0.006%
0.004%
0.000%
v3 = 266119 kWh/yr 260k
270k 220k
COOLING ENERGY 230k
240k
v4 = 261674 kWh/yr 250k
260k
270k 220k
COOLING ENERGY 230k
240k
v3 v1
0.010% Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
v1 v2
0.013% GROUP 2:
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
0.009% 918816 918417 912788 918641
Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401
21st december
v1 v2
0.007%
GREENFALL FINAL PRESENTATION_December 20th
v5 = 263143 kWh/yr 250k
260k
v4
270k
v3 v1 v2
0.001%
EUI ENERGY USE INTENSITY
COOLING ENERGY
1263513 kWh/yr 263536 kWh/yr
CONCLUSIONS Assuming the analysis provided earlier, the best options (variations 5 and 6) differ from the “starting option” less than 1%. Taking into account this information it has been dedicated to continue analysis using this latter option.
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
5.1
OPTIONEERING
Massing
GEOMETRY DEVELOPEMENT PROCESS VARIATION 1
VARIATION 2
VARIATION 3
3
21%
1
VARIATION 5
VARIATION 4
3
GUIDELINES for analysis: Solar Exposure Scale (hours)
3
21%
2
SITE COVERAGE
2
1
21%
SITE COVERAGE
B1: 24 B2: 18 N° FLOORS B3: 16
1
B1: 13 B2: 28 N° FLOORS B3: 15
3
21%
2
SITE COVERAGE
B1: 18 B2: 15 N° FLOORS B3: 25
1
21%
2
1
SITE COVERAGE
2
0
3
N° FLOORS
2
3
4
5
6
7
8
OVERALL FLOOR SURFACE
9
10
11 12
23000 m2
U-VALUES considered for the evaluation
SITE COVERAGE
B1: 18 B2: 23 N° FLOORS B3: 16
1
B1: 18 B2: 23 B3: 16
Wall: 0.70 W/m2k
SOLAR EXPOSURE ANALYSIS
Roof: 0.22 W/m2k Floor: 0.49 W/m2k Infiltration: 7.2 m3/m2h
STEP 5
STARTING OPTION for analysis:
21%
21st june
21st june
21st june
2
3
SITE COVERAGE
N° FLOORS
21st june
1
B1: 18 B2: 23 B3: 16
SOLAR EXPOSION ANALYSIS
21st june
21st june 21st december
21st december
21st december
21st december
21st december
ANALYSIS Energy Use (kWh/yr) EUI ENERGY USE INTENSITY 1000k
1050k
1100k
v1 = 1080636 kWh/yr 1150k
1200k
EUI ENERGY USE INTENSITY
1250k 1000k
1050k
1100k
v2 = 1106703 kWh/yr 1150k
1200k
EUI ENERGY USE INTENSITY
1250k 1000k
1050k
1100k
v3 = 1197395 kWh/yr 1150k
1200k
EUI ENERGY USE INTENSITY
1250k 1000k
1050k
1100k
v4 = 1204965 kWh/yr 1150k
1200k
EUI ENERGY USE INTENSITY
1250k 1000k
1050k
1100k
v5 = 1201857 kWh/yr 1150k
1200k
1250k
21st december v1
v1
10.998%
v2
v1
8.384%
v2
v3
0.175%
v1
v2
v3 v4
0.454%
0.197%
EUI ENERGY USE INTENSITY
COOLING ENERGY COOLING ENERGY 200k
210k
220k
v1 = 207700 kWh/yr 230k
240k
COOLING ENERGY
250k 200k
210k
220k
v2 = 212664 kWh/yr 230k
240k
COOLING ENERGY
250k 200k
210k
220k
v3 = 229936 kWh/yr 230k
240k
COOLING ENERGY
250k 200k
210k
220k
v4 = 228892 kWh/yr 230k
240k
COOLING ENERGY
250k 200k
210k
220k
v5 = 230802 kWh/yr 230k
240k
250k
10.926% Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
v1
v2
8.337% GROUP 2:
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
v1
0.199% 918816 918417 912788 918641
Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401
v2
v3
v1
v2
0.656%
GREENFALL FINAL PRESENTATION_December 20th
230393 kWh/yr
CONCLUSIONS Through this analysis we understood that managing the heights of the three buildings
v4 v1
1199489 kWh/yr
v3
was giving us better results than reshaping
0.177%
the buildings and so changing the masterplan composition.
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
5.2
OPTIONEERING
Window
1. WINDOW TYPOLOGY COMPARISON
GUIDELINES for analysis:
OPTION A
OPTION C
OPTION B
Window disposition
Window dimensions
Window disposition
Window dimensions
OVERALL FLOOR SURFACE
Window disposition
Window dimensions
23000 m2
SAME WINDOW SURFACE
2,25 m2
U-VALUES considered for the evaluation 1,5 m
1,5 m
3,0 m
3,0 m
1,9 m
1,5 m
1,0 m
Wall: 0.70 W/m2k
1,9 m
Roof: 0.22 W/m2k For the ANALYSIS NUMBER 2
1,2 m
1,0 m
will be considered the option B, creating a difference of window
0,8 m
Energy Use (kWh/yr)
1235k
Infiltration: 7.2 m3/m2h PLAN AND VOLUMETRIC DEVELOPEMENT 3
to wall ratio between north ad
EUI ENERGY USE INTENSITY 1230k
Floor: 0.49 W/m2k
EUI ENERGY USE INTENSITY
oA = 1258862 kWh/yr
1240k
1245k
1250k
1255k
1260k
1230k
1235k
EUI ENERGY USE INTENSITY
oB = 1258325 kWh/yr
1240k
1245k
1250k
1255k
1260k
1230k
1235k
1240k
south facades.
oC = 1258080 kWh/yr 1245k
1250k
1255k
1
1260k
2
oB oA
oA = 260856 kWh/yr
COOLING ENERGY 240k
245k
250k
255k
260k
265k
270k
240k
245k
250k
255k
260k
265k
B1: x B2: x N° FLOORS B3: x
oC = 260405 kWh/yr
COOLING ENERGY
270k
240k
245k
250k
255k
260k
oA
265k
21%
SITE COVERAGE
oA
oB = 261116 kWh/yr
COOLING ENERGY
NORTH FACADE SOUTH FACADE
3,0 m
3,0 m
3
SAME VOLUME FOR BUILDING VOLUME 1, 2 AND 3
270k
oA oB
1
2
0,8 m
2. WINDOW TO WALL RATIO COMPARISON OPTION 1
OPTION 2
25%
OPTION 3
25%
OPTION 4
25%
OPTION 5
25%
OPTION 6
50%
50%
SOUTH FACADE WINDOW/WALL
SOUTH FACADE WINDOW/WALL
SOUTH FACADE WINDOW/WALL
SOUTH FACADE WINDOW/WALL
SOUTH FACADE WINDOW/WALL
SOUTH FACADE WINDOW/WALL
NORTH FACADE WINDOW/WALL
NORTH FACADE WINDOW/WALL
NORTH FACADE WINDOW/WALL
NORTH FACADE WINDOW/WALL
NORTH FACADE WINDOW/WALL
NORTH FACADE WINDOW/WALL
25%
50%
3 1
75%
3 2
2
1
1
90%
3 2
2
3
1
1
50%
3 2
2
3
1
1
3 2
2
3
1
1
CONCLUSIONS
75%
1. WINDOW TYPOLOGY COMPARISON
3 2
2
3
1
1
2
2
3
The window type energetic analysis presents
1
3
us the data, which occurs to have less than 1% difference. Thereby Option B is choosen
SOUTH VIEW
SOUTH VIEW
NORTH VIEW
SOUTH VIEW
NORTH VIEW
SOUTH VIEW
NORTH VIEW
SOUTH VIEW
NORTH VIEW
SOUTH VIEW
NORTH VIEW
to provide the following analysis.
NORTH VIEW
Energy Use (kWh/yr) o1 = 1366527 kWh/yr
o2 = 1400620 kWh/yr
EUI ENERGY USE INTENSITY 1360k
1390k
1420k
1450k
1480k
o3 = 1434197 kWh/yr
EUI ENERGY USE INTENSITY 1360k
1390k
1420k
1450k
1480k
o4 = 1454052 kWh/yr
EUI ENERGY USE INTENSITY 1360k
1390k
1420k
1450k
o5 = 1443065 kWh/yr
EUI ENERGY USE INTENSITY
1480k 1360k
1390k
1420k
1450k
o6 = 1476570 kWh/yr
EUI ENERGY USE INTENSITY
1480k 1360k
1390k
1420k
1450k
1480k
EUI ENERGY USE INTENSITY 1360k
1390k
1420k
1450k
1480k
2. WINDOW TO WALL RATIO COMPARISON According to energetic analysis of window to wall ratio, the energy consumption increases
o1
COOLING ENERGY 270k
290k
o1 = 287393 kWh/yr
310k
330k
350k
o1
COOLING ENERGY 270k
290k
o2 = 301448 kWh/yr 310k
330k
350k
o2
COOLING ENERGY 270k
290k
o1
o3 = 315138 kWh/yr 310k
330k
350k
o2
o3
COOLING ENERGY 270k
290k
o1
o4 = 323167 kWh/yr
310k
330k
350k
o2
o3
COOLING ENERGY 270k
290k
o4
o1
o5 = 322002 kWh/yr
310k
330k
350k
o2
COOLING ENERGY 270k
290k
o6 = 336083 kWh/yr
310k
330k
o5 o1
Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
o1
GROUP 2:
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
o2
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
o1
918816 918417 912788 918641
o2
o3
Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401
o1
o2
o3 o4
o1
o2
GREENFALL FINAL PRESENTATION_December 20th
by 6% with the growth of window to wall ratio.
o3 o5 o4
o3 o4
350k
Despite this fact, since the surrounding area is very dense, the following analysis is provided using this option: North facades 75% window to wall ratio, South facades 50% window to wall ratio.
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
5.3
OPTIONEERING
Shading
TOTAL ANALYSIS VARIATION 1
VARIATION 2 Horizontal shading of 0,5 m depth
VARIATION 3 Horizontal shading of 1,0 m depth
1,3 m
Vertical shading of 1,2 m depth
1,3 m
SOUTH FACADE ANALYSIS
GUIDELINES for analysis:
A. VARIATION 2 B. VARIATION 7 C. COMBINATION OF V2 AND V7
OVERALL FLOOR SURFACE
1,3 m 1,0 m
1,0 m
0,5 m
1,0 m
3,0 m
SAME WINDOW SIZE
1,3 X 3,0 m
U-VALUES considered for the evaluation
1,0 m
Wall: 0.70 W/m2k
1,2 m
3,0 m
23000 m2
Roof: 0.22 W/m2k
3,0 m
Floor: 0.49 W/m2k Infiltration: 7.2 m3/m2h
WINDOW TO WALL RATIO CONSIDERED 6 ON
Energy Use (kWh/yr) v1 = 1788554 kWh/yr
v2 = 1782620 kWh/yr
1770k
1777,5k
1785k
1792,5k
v3 = 1782534 kWh/yr
EUI ENERGY USE INTENSITY
1800k
1770k
1777,5k
1785k
1792,5k
EUI ENERGY USE INTENSITY
1800k
1770k
1777,5k
1785k
v1
1792,5k
v2
390k
420k
COOLING ENERGY 760k
765k
770k
775k
COOLING ENERGY
780k
760k
765k
v2 = 763448 kWh/yr 770k
775k
COOLING ENERGY
780k
760k
v1
VARIATION 4
VARIATION 5
Vertical shading of 0,2 m depth
v2
VARIATION 6
Vertical shading of 0,5 m depth
1,3 m
765k
450k
480k
510k
A B C
1800k
1,3 m
v3 = 762557 kWh/yr 770k
775k
80k
90k
3,0 m
TOTAL ANALYSIS:
120k
EUI ENERGY USE INTENSITY
1797996 kWh/yr
3,0 m
COOLING ENERGY
BUILDING 2
390k
420k
450k
C
1,0 m
3,0 m
772770 kWh/yr
EUI ENERGY USE INTENSITY
Vertical shading of 1,0 m depth
0,7 m
3,0 m
110k
A B C
780k
1,3 m
0,5 m
SOUTH FACADE ANALYSIS: 480k
510k
110k
120k
EUI ENERGY USE INTENSITY
B
3,0 m
COOLING ENERGY 80k
90k
100k
COOLING ENERGY
A B C
BUILDING 3
Energy Use (kWh/yr) v4 = 1792518 kWh/yr
v5 = 1786165 kWh/yr
EUI ENERGY USE INTENSITY 1770k
1777,5k
1785k
1792,5k
1800k
v6 = 1782321 kWh/yr
EUI ENERGY USE INTENSITY 1770k
1777,5k
1785k
1792,5k
1800k
v7 = 1778019 kWh/yr
EUI ENERGY USE INTENSITY 1770k
1777,5k
1785k
1792,5k
1800k
EUI ENERGY USE INTENSITY 1770k
1777,5k
1785k
1792,5k
1800k
v1
COOLING ENERGY 760k
765k
v3 v2
v4 = 769397 kWh/yr
770k
775k
780k
v1
v5 = 765272 kWh/yr
COOLING ENERGY 760k
765k
v3 v2
v4
770k
775k
780k
v5 v1
765k
770k
v5 v3 v2
v1
Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
v3 v2
v1
GROUP 2:
v4
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
v3 v2
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
v1
918816 918417 912788 918641
v3 v2
v6 = 763123 kWh/yr
COOLING ENERGY 760k
v4
775k
780k
390k
760k
765k
v3 v2
Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401
770k
v4
775k
780k
450k
480k
510k
tion of horizontal shading of 1,2 m depth and vertical shading of 1,0 m depth in the south facade. 3
COOLING ENERGY 80k
90k
100k
1,3 m
110k
120k
1
3,0 m
2
A B C
v5 v1
420k
B1 500560 kWh/yr B2 444866 kWh/yr B3 397704 kWh/yr B1 105220 kWh/yr B2 90713 kWh/yr B3 82942 kWh/yr
Option applied in further analysis: combina-
A B C
v7 = 761177 kWh/yr
COOLING ENERGY
v6 v4
v5 v1
CONCLUSIONS
EUI ENERGY USE INTENSITY
v4 v3 v2
NORTH VIEW
STARTING OPTION for analysis: 1,3 m
100k
A 0,2 m
NORTH FACADE WINDOW/WALL
NO SHADING
v1
1,3 m
1
3
SOUTH VIEW
v1
VARIATION 7
Vertical shading of 0,7 m depth
2
2
75%
COOLING ENERGY
v1 = 766008 kWh/yr
1
SOUTH FACADE WINDOW/WALL
EUI ENERGY USE INTENSITY
EUI ENERGY USE INTENSITY
3
50%
OP TI
BUILDING 1
v4
GREENFALL FINAL PRESENTATION_December 20th
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
5.4
OPTIONEERING
Daylight
DAYLIGHT ANALYSIS PREDICTION: HIGHER FLOORS HAVE CRITICAL UNITS IN SOUTH-EAST AND SOUTH-WEST FACADES. LOWER FLOORS HAVE CRITICAL UNITS IN NORTH-EAST AND NORTH-WEST FACADES. BUILDING 1
3
1 2
21%
SITE COVERAGE
B1: 32 B2: 27 N° FLOORS B3: 30
BUILDING 2
3
22 RESIDENTIAL FLOOR SINGLE UNITS ANALYSIS ND
11TH RESIDENTIAL FLOOR DOUBLE UNITS ANALYSIS
1
1ST RESIDENTIAL FLOOR FAMILY UNITS ANALYSIS
3
1 2
21%
2
SITE COVERAGE
3
22ND RESIDENTIAL FLOOR SINGLE UNITS ANALYSIS 11TH RESIDENTIAL FLOOR DOUBLE UNITS ANALYSIS
BUILDING 3
1
2
21%
2
22ND RESIDENTIAL FLOOR SINGLE UNITS ANALYSIS
3
11TH RESIDENTIAL FLOOR DOUBLE UNITS ANALYSIS 1ST RESIDENTIAL FLOOR FAMILY UNITS ANALYSIS
1
SITE COVERAGE
1ST RESIDENTIAL FLOOR DOUBLE UNITS ANALYSIS
B1: 32 B2: 27 N° FLOORS B3: 30
3
1
GUIDELINES for analysis: Percentage of occupied hours where illuminance is at least 300 lux, measured at 0.7 m above the floor plate. 0%
2
25%
22 RESIDENTIAL FLOOR - SINGLE UNITS ANALYSIS
100%
23000 m2
WINDOW TO WALL RATIO CONSIDERED
22 RESIDENTIAL FLOOR - SINGLE UNITS ANALYSIS ND
3
50%
OP TI
22 RESIDENTIAL FLOOR - SINGLE UNITS ANALYSIS
ND
75%
OVERALL FLOOR SURFACE
B1: 32 B2: 27 N° FLOORS B3: 30
6 ON
ND
50%
1
SOUTH FACADE WINDOW/WALL
2
2
75%
1
3
NORTH FACADE WINDOW/WALL
DETAIL 1 SOUTH-WEST FACADE EXPOSURE
SOUTH VIEW
DETAIL 2 NORTH-EAST FACADE EXPOSURE
NORTH VIEW
WINDOWS SIZE CONSIDERED 1,3 m
UNDER-LIT
OVER-LIT
12 %
WELL-LIT UNDER-LIT
UNDER-LIT
OVER-LIT
12 %
23 %
WELL-LIT
65 %
UNDER-LIT
WELL-LIT
OVER-LIT
11 RESIDENTIAL FLOOR - DOUBLE UNITS ANALYSIS
OVER-LIT
13 %
30 %
WELL-LIT
47 %
58 %
UNDER-LIT
40 %
OVER-LIT
11 RESIDENTIAL FLOOR - DOUBLE UNITS ANALYSIS
TH
UNDER-LIT
WELL-LIT
WELL-LIT
ANALYSIS LOCATION
11 RESIDENTIAL FLOOR - DOUBLE UNITS ANALYSIS
TH
3,0 m
OVER-LIT
TH
3
21%
SITE COVERAGE
1 DETAIL 3 NORTH-EAST FACADE EXPOSURE
2
B1: 32 B2: 27 N° FLOORS B3: 30
DETAIL 4 NORTH-EAST AND SOUTH-EAST FACADE EXPOSURE
3
1 2 UNDER-LIT
OVER-LIT
10 %
WELL-LIT UNDER-LIT
UNDER-LIT
OVER-LIT
11 %
16 %
WELL-LIT
74 %
UNDER-LIT
WELL-LIT
OVER-LIT
1ST RESIDENTIAL FLOOR - FAMILY UNITS ANALYSIS
UNDER-LIT
OVER-LIT
10 %
25 %
WELL-LIT
21 %
64 %
UNDER-LIT
69 %
WELL-LIT
OVER-LIT
1ST RESIDENTIAL FLOOR - DOUBLE UNITS ANALYSIS
WELL-LIT
OVER-LIT
The analysis was simplyfied by approximating the analysis for 3 groups of floor depending on the hight and unit typoligy.
1ST RESIDENTIAL FLOOR - FAMILY UNITS ANALYSIS CONCLUSIONS In the analysis it’s possible to notice that most
DETAIL 5 NORTH-WEST AND SOUTH-EAST FACADE EXPOSURE
UNDER-LIT
OVER-LIT
9%
WELL-LIT UNDER-LIT
UNDER-LIT
OVER-LIT
5%
17 %
WELL-LIT
74 %
UNDER-LIT
Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
WELL-LIT
OVER-LIT
GROUP 2:
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
DETAIL 6 NORTH-EAST AND SOUTH-EAST FACADE EXPOSURE
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
918816 918417 912788 918641
OVER-LIT
4%
28 %
WELL-LIT
10 %
67 %
UNDER-LIT
86 %
Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401
to the inclusion in the analysis of the fenctioUNDER-LIT
WELL-LIT
OVER-LIT
of the areas are under-lit. This is mostly due
GREENFALL FINAL PRESENTATION_December 20th
WELL-LIT
OVER-LIT
nal corridors. For this reason in the next page the analysis will be consider just the unit, in order to understand, in the critical parts, how is the situation, more in detail.
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
5.5.1
OPTIONEERING
Daylight
DAYLIGHT ANALYSIS 22 RESIDENTIAL FLOOR ND
DETAIL 2 NORTH-EAST FACADE EXPOSURE
3
3
1
11 RESIDENTIAL FLOOR TH
2
DETAIL 4 NORTH-EAST AND SOUTH-EAST FACADE EXPOSURE
3
3
1 2
1
1
DETAIL 1 SOUTH-WEST FACADE EXPOSUR
2
1 RESIDENTIAL FLOOR ST
2
DETAIL 3 NORTH-EAST FACADE EXPOSURE
2
DETAIL 6 NORTH-EAST AND SOUTH-EAST FACADE EXPOSURE
3
3
1
1
DETAIL 5 NORTH-WEST AND SOUTH-EAST FACADE EXPOSURE
2
GUIDELINES for analysis: Percentage of occupied hours where illuminance is at least 300 lux, measured at 0.7 m above the floor plate. 0%
LIGHTING
25%
50%
Under-lit
BUILDING 1 - DOUBLE UNITS ANALYSIS
DETAIL 1 - SOUTH-WEST FACADE EXPOSURE
ANNUAL DAYLIGHT ANALYSIS
WINDOW
LIGHTING
BUILDING 2 - DOUBLE UNITS ANALYSIS
DETAIL 3 - NORTH-EAST FACADE EXPOSURE
AVERAGE DAYLIGHT FACTOR DF= 2.47 VERIFIED
WINDOW
! 1M HORIZONTAL AND VERTICAL SHADOW CONSIDERED FOR THE ANALYSIS
ANNUAL DAYLIGHT ANALYSIS
AVERAGE DAYLIGHT FACTOR DF= 0.54 NOT VERIFIED
WINDOW
WINDOW
LIGHTING
32 %
WINDOW
AVERAGE DAYLIGHT FACTOR DF= 1.4 NOT VERIFIED
WINDOW
WINDOW
1%
OVER-LIT OVER-LIT
1%
OVER-LIT OVER-LIT
WELL-LIT
58 %
WELL-LIT
16 %
WELL-LIT
49 %
UNDER-LIT
10 %
UNDER-LIT
83 %
UNDER-LIT
50 %
WINDOW
WINDOW
WELL-LIT
OVER-LIT
OVERALL FLOOR SURFACE 6 ON
Spatial Daylight Autonomy (sDA): 17% NOT VERIFIED Annual Sun Exposure (ASE): 1% VERIFIED
Spatial Daylight Autonomy (sDA): 50% NOT VERIFIED Annual Sun Exposure (ASE): 1% VERIFIED
CONCLUSIONS: The room is well-lit, but more energy for cooling will be needed. HOW TO IMPROVE: reduce w/w ratio and reduce window U-value.
CONCLUSIONS: Not enough natural light due to the sorrounding buildings. HOW TO IMPROVE: architectonical adjustments.
CONCLUSIONS: DF needs improvements but sDA and ASE have acceptable values. HOW TO IMPROVE: raise window to wall ratio.
BUILDING 3 - SINGLE UNITS ANALYSIS
BUILDING 3 - DOUBLE UNITS ANALYSIS
BUILDING 3 - FAMILY UNITS ANALYSIS
ANNUAL DAYLIGHT ANALYSIS
DETAIL 4 - NORTH-EAST AND SOUTH-EAST FACADE EXPOSURE
AVERAGE DAYLIGHT FACTOR DF= 2.73 VERIFIED
ANNUAL DAYLIGHT ANALYSIS
AVERAGE DAYLIGHT FACTOR DF= 1.39 NOT VERIFIED
50%
SOUTH FACADE WINDOW/WALL
3 1
2
2
75%
1
3
NORTH FACADE WINDOW/WALL
SOUTH VIEW
NORTH VIEW
WINDOWS SIZE CONSIDERED
DETAIL 6 - NORTH-EAST AND SOUTH-EAST FACADE EXPOSURE
ANNUAL DAYLIGHT ANALYSIS
23000 m2
WINDOW TO WALL RATIO CONSIDERED
Spatial Daylight Autonomy (sDA): 89% VERIFIED Annual Sun Exposure (ASE): 32% NOT VERIFIED
DETAIL 2 - NORTH-EAST FACADE EXPOSURE
To be verified: DF > 2
UNDER-LIT
WELL-LIT
Over-lit
Spatial Daylight Autonomy (sDA) describes how much of a space receives sufficient daylight. To be verified: sDA > 75%
Daylight factor (DF)
UNDER-LIT
WELL-LIT
Well-lit
Annual Sun Exposure (ASE) describes how much of space receives too much direct sunlight, which can cause visual discomfort (glare) or increase cooling loads. To be verified: ASE < 10%
LIGHTING
UNDER-LIT
OVER-LIT
ANNUAL DAYLIGHT ANALYSIS
100%
PARAMETERS EXPLANATION
DETAIL 5 - NORTH-WEST AND SOUTH-EAST FACADE EXPOSURE
OP TI
BUILDING 1 - SINGLE UNITS ANALYSIS
75%
1,3 m
AVERAGE DAYLIGHT FACTOR DF= 1.46 NOT VERIFIED 3,0 m
WINDOW
WINDOW
WINDOW
LIGHTING
LIGHTING
11 %
WELL-LIT
67 %
UNDER-LIT
22 %
WINDOW
ANALYSIS LOCATION
WINDOW
LIGHTING
UNDER-LIT
OVER-LIT
WINDOW
WINDOW
UNDER-LIT
WELL-LIT
OVER-LIT OVER-LIT
WINDOW
3%
WELL-LIT
24 %
UNDER-LIT
73 %
0%
WELL-LIT
OVER-LIT OVER-LIT
UNDER-LIT
OVER-LIT
CONCLUSIONS: In this case we have the best performance among the rooms evaluated. HOW TO IMPROVE: no need to improve.
CONCLUSIONS: Close from having an acceptable result even though only 24% of the unit is well-lit. HOW TO IMPROVE: raise window to wall ratio.
CONCLUSIONS: In this case ALL THE PARAMETERS ARE BELOW ACCEPTED VALUES. HOW TO IMPROVE: architectonic adjustments.
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
918816 918417 912788 918641
Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401
GREENFALL FINAL PRESENTATION_December 20th
N° FLOORS
B1: 32 B2: 27 B3: 30
3 2
Spatial Daylight Autonomy (sDA): 1% NOT VERIFIED Annual Sun Exposure (ASE): 0% VERIFIED
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
2
1
Spatial Daylight Autonomy (sDA): 26% NOT VERIFIED Annual Sun Exposure (ASE): 3% VERIFIED
GROUP 2:
1
99 %
Spatial Daylight Autonomy (sDA): 78% VERIFIED Annual Sun Exposure (ASE): 11% NOT VERIFIED
Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
21%
SITE COVERAGE
WELL-LIT
1%
WELL-LIT
WINDOW
3
UNDER-LIT
The analysis was simplyfied by approximating the analysis for 3 groups of floor depending on the hight and unit typoligy.
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
5.5.2
OPTIONEERING
Optioneering flow chart POSITIONING OPTIMIZATION
MASSING OPTIMIZATION
WINDOWS OPTIMIZATION
SHADING OPTIMIZATION
OPAQUE VOLUME Different: Site coverage Shape factors n° floors
OPAQUE VOLUME Repositioned one building Each building has 3 position options
OPAQUE VOLUME Different hights display Added and subtracted volupes Sky-garden
- Different windw shapes and types - All buildings with some windows
- Horizontal fixed shading - Vertical fixed shading - Different width
ENERGETIC ANALYSIS
DAYLIGHT ANALYSIS
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
START ING REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
Move building 1
3 3
2
1 1
2
N
2
11
3
2
Option 5 Option 0 3
2
3
1 2 1
2
10m
2 3 2
3
1 2 1 1
2
3
22
1 1 2
7%
N
3
Option 4
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
Option 2
2 1
3
1 12
2
6 OptionOption 4 Option 1 3 3 1
2
1 2
3
1 2
N
5
Option 5 Option 2 3 1
2
3
1
2
3
1
3
3
2 1
1 2
10m
Option 5
3
2
1
2
N
6
Option 6 3 2 1
10m
3
1 2
Option 6 Option 3
2
North - East & North - West 75 % window to wall ratio no shading
Option 3
3 3
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
3 1
Option 6 3 OptionOption 1
10m
VARIAT IO
VARIAT IO
33
South - East & South - West 50 % window to wall ratio 1 m shading
ORIENTATION (South or North)
918816 918417 912788 918641
Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401
FLOOR HEIGHT 1 - 10 11 - 20 > 21
UNITE TYPE Single Double Family
< 1%
WINDOW AND SHADING SIZE
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
Option6 3 Option
1
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
GROUP 2:
9%
3 1
5m
5m
B1: 16 B2: 21 N° FLOORS B3:13
2
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
VARIAT IO
3
3
< 1% Move building 3
SITE COVERAGE
1
1
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
21%
6
10m
Option5 2 Option
2
Move building 3 N
2
FACADE ORIENTATION
3
2
10m
Option 5 2 OptionOption 0
3
5m
Option4 1 Option
VARIAT IO
Option 4 Option 1
Move building 2
1
Option 3 1 3
5m
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
5m
Option 4
3 2
2
3
1
5m
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
2 1
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
5
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
N
17
Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
VARIAT IO
VARIAT IO
3
Option 2 1
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
VARIAT IO
3
Option 6
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
SITE COVERAGE
N
Option 0
2
3
2
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
13 21%
N° FLOORS
3 2 1
Move building 1
SITE COVERAGE
N° FLOORS
Option 0
2
1
1
1
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
27%
N
2
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
VARIAT IO
SITE COVERAGE
10
2 1
1
3
N
1. Different window to wall ratio 2. Shading in all facades
3
2
Option 4 Option 5 REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
VARIAT IO
3
3
1
2
Option 1 1
Option 3
3
3
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
VARIAT IO
1
Option 2
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
36%
Option 0
Option 1
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
STEP 2
5 N
TION OP Option 0
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
STEP 3
TION OP
SITE COVERAGE
N° FLOORS
STEP 4
START ING
71%
N° FLOORS
STEP 5
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
STEP 1
CONCEPT SHAPE OPTIMIZATION
GREENFALL FINAL PRESENTATION_December 20th
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
5.6
6. DAYLIGHT
To understand how to manage natural light in indoor environments and reducing energetic consumption
D A Y L I GH TA N A L Y S I S
P r o c e s s
PROCESS THEPROCESSOFF ACADEST ARTEDWI THTHECASE1WHI CHWASTHEBUI L DI NGSWI THOUT ANYSHADI NGEL EMENTS. ANAL YSI SONTHI SCASESHOWEDUSTHA TWESHOUL DTHI NK ABOUTSHADI NGEL EMTNSACCORDI NGT OTHESI TUA TI ONANDAL SOTHEHEGHTOFOUR BUI L DI NGS. THEFI RSTSTEPWAST OSTUDYABOUTFI XEDVERTI CALEL EMENTSTHA TBRI NGSAL SOA STRUCTURALEL EMENTSFORFURTHERSHADI NGP ANNEL SI NCASEOFSOL VI NGOVERL I TSI TUA TI ON. THEANAL YSI SSHOWEDUSTHA TTHEVERTI CALEL EMENTSDONOTHA VEANYEFFECTON DA YL I GHTORPREVENTI NGOVERL I TPROBL EM. THENEXTSTEPWAST OCREA TEBUFFERZONEI NTHESOUTHF ACADE. BYDOI NGTHE BUFFERZONETHEAMOUNTOFL I GHTI NSOUTHF ACADEI NCREASED. THENT OCONTROLTHEDI RECTSUNL I GHTI NTHEROOMSESPECI AL L YI NUPPERFL OORS THEPRESENCEOFSHADI NGP ANNEL SI SESSENTI AL . THEI NSPI RA TI ONOFTHESEPROCESSESCAMEFROMSTUDYI NGABOUTSHADI NGEL EMENTS ANDAL SOSOMECASESTUDI ESFROMTHESI MI L ARPROJ ECTS. ANDTHENTHEPROCESSOFDESI GNI NGSHADI NGP ANNEL SST ARTEDBYPERFORA TED MET ALP ANNEL SWHI CHHAST OBEMOREDENSEI NUPPERP ARTSOFTHEBUI L DI NG.
CASE1
3 1
1
CASESTUDI ES VENTI L A TEDF ACADEONTHEHOTELL ADERA I NSANTI AGO, CHI L E THEI DEAOFBUFFERZONEANDVENTI L A TED F ACADECAMEFROMTHI SPROJ ECT THI SF ACADESYSTEMPROVI DESGREA TER TECHNI CALANDAESTHETI CDURABI L I TYAND PROTECTSAGAI NSTDAMPANDOUTDOOR TEMPERA TURECHANGES, PROVI DI NG ENERGYSA VI NGSANDCREA TI NGAHEAL THI ERENVI RONMENTFORTHEENDUSER. AL SOTHEP A TTERNOFSHADI NGEL EMENTS I NTHEFI RSTSTEPCAMEFROMTHI SP A T TERNWHI CHWASPERFORETEDWI THL ESS DENSI TYI NL OWERFL OORSANDHI GHDENSI TYI NUPPERFL OORS
CASE2 VERTI CALEL EMENTS
3
3
2
2
1
CASESTUDI ES KAI SPEI CHERI NHAMBURGHARBURG THI SCASESTUDYGA VETHEI NSPI RA TI ONT ODESI GN I NCL I NEDSHADI NGP ANEL ST OHA VETHEOPPORTUNI TYOFPREVENTI NGDI RECTSUNL I GHT I NT OROOMS. AL SO, THEKI NDOFSHADI NGP ANEL STHA TI SL I KENET . BYTHESESHADI NG P ANEL SPEOPL EI NSI DECANSEEOUTSI DEBETTERTHANTHEPERFORA TEDP ANEL S.
THEONL YPROBL EMOFTHESE P ANEL SI STHESTRUCTURE, BECAUSEI NHONGKONGWENEED MORESTRONGEL EMENTST O RESI STWI NDANDTYPHOONS
CASE3 BUFFERZONE
L OREMI PSUM
1
3
3
2 1
2
CASE4FI NALSHADI NGP ANEL S
GROUP2:
Ca n i a t oGi o r g i a 9 1 8 6 2 4 Di e t e r i c hMu r rAl i c e8 2 4 9 3 9 1 3 0 4 5 Ko r o v i n aVi k t o r i i a 9
9 1 8 8 1 6 Kr e b sFr a n c e s c o Ne ma t i Al i 9 1 8 4 1 7 1 2 7 8 8 Ro t u n d oMa r c oSa l v a t o r e9 Sa c c u ma nMa r t a 9 1 8 6 4 1
3 2
2
THENORTHF ACADE I NTHENORTHF AÃ&#x2021;ADETHEDECI SI ONWAST OKEEPI TFL A TJ UST VERTI CALEL EMENTSWI L LBE ADDEDT OPRESERVETHEHOMOGENEI TYOFSOUTHF ACADE. THE REASONTHA TWEDI DNOTPUTSHADI NGP ANEL SI NNORTHF ACADESI S
THESESHADI NGP ANEL SDESI GNED T OKEEPTHEBESTCOMBI NA TI ONOF DA YL I GHTAUT ONOMYANDSUN EXPOSUREI NSI DETHEROOMS. THE ONEI NTHEL EFTONEI SFOR FL OORSBEL OWTHEL I BRARYP ART WHI CHI SI NTHEMI DDL EOFEACHBUI L DI NGANDTHERI GHTONEI SUSED I NEVERYOTHERSHADI NGP ANEL S I NUPPERFL OORS.THEREASONI S T OHA VEBETTERCOMFORTANDPREVENTTHEGL AREEFFECTI NUPPER FL OORS.
Po l i t e c n i c od i Mi l a n o , Po l ot e r r i t o r i a l ed i L e c c o Cd Li nAr c h i t e c t u r a l e n g i n e e r i n g Ac a d e mi cy e a r2 0 1 9 / 2 0
1
PRESENCEOFSURROUNDI NGBUI L DI NGVERYCL OSEL YT OTHESEF ACADESAL SOAVERYT AL LBUI L DI NG THA TPRODUCTSSHADOWON NORTHF ACADEOFBUI L DI NG2 .
Se y e d i Za d e hFe r e s h t e h 9 2 7 1 6 0 9 1 2 8 4 3 Sh e i k h h a s s a n i Na v i d Zo h o u r p a r v a zMo h a ma d r e z a9 2 7 4 0 1
GREENFALL FI NALPRESENTATI ON_December20
t h
SUSTAI NABLEBUI LDI NG TECHNOLOGI ES+STUDI O p r o f . M. Br a s c a p r o f . G. Ma s e r a
6 . 1
D A Y L I GH TA N A L Y S I S
B u i l d i n g1C a s e 1
BUI L DI NG1
1
3 2
DA YL I GHTF ACT ORANAL YSI SFOR1 STFL OORBUI L DI NG1ACCORDI NGT OTHESI TUA TI ONOFBUI L DI NGI NCENTRALHONG KONGWEWI L LHA VEL OWERDA YL I GHTF ACT ORI NFI RST FL OORS
3 1
1 N1
2
1 S1
FL OOR1 F AMI L YUNI T
1 N1
1 N2
1 N2
1 S1
1 S2
1 S2
BUI L DI NG1 1
3 2
DA YL I GHTF ACT ORANAL YSI SFOR1 1 THFL OORBUI L DI NG1I N MI DDL EFL OORSWEHA VETHEST ANDARDDA YL I GHTV AL UE FORHONGKONGI NSOUTHP ART .
3 1
2
1 N
FL OOR1 1 DOUBL EROOM
1 N
1 S
1 S
DA YL I GHTF ACT ORANAL YSI SFOR2 2 NDFL OORBUI L DI NG1 GOI NGT OWARDUPPERFL OORSWEHA VEHI GHERDA YL I GHT V AL UEI NTHEROOMS. I TI SNOTTHEONL YWA YT OGETTHE BESTRESUL TOFDA YL I GHT , SOTHEANAL YSI SWI L LBECONTI NUEBYSP A TI ALDA YL I GHTAUT ONOMYANDANNUALSUN EXPOSURE.
BUI L DI NG1
1
3 2
3 1
1 N1
2
FL OOR2 2 SI NGL EROOM
1 S1
1 N2
1 N1
1 S2
1 S1
1 N2
1 S2
SP A TI ALDA YL I GHTAUT ONOMY( SDA)DESCRI BESHOWMUCHOFASP ACERECEI VESSUFFI CI ENTDA YL I GHT . SPECI FI CAL L Y , I TDESCRI BESTHEPERCENT AGEOFFL OORAREATHA T RECEI VESA TL EAST3 0 0L UXFORA TL EAST5 0 %OFTHEANNUALOCCUPI EDHOURS. I NOURCASEL OWERFL OORSGETTHESP A TI ALDA YL I GHTBECAUSEOFSURROUNDI NG BUI L DI NGSF ACADREFL ECTI ON.
Po l i t e c n i c od i Mi l a n o , Po l ot e r r i t o r i a l ed i L e c c o Cd Li nAr c h i t e c t u r a l e n g i n e e r i n g Ac a d e mi cy e a r2 0 1 9 / 2 0
GROUP2:
Ca n i a t oGi o r g i a 9 1 8 6 2 4 Di e t e r i c hMu r rAl i c e8 2 4 9 3 9 1 3 0 4 5 Ko r o v i n aVi k t o r i i a 9
9 1 8 8 1 6 Kr e b sFr a n c e s c o Ne ma t i Al i 9 1 8 4 1 7 1 2 7 8 8 Ro t u n d oMa r c oSa l v a t o r e9 Sa c c u ma nMa r t a 9 1 8 6 4 1
Se y e d i Za d e hFe r e s h t e h 9 2 7 1 6 0 9 1 2 8 4 3 Sh e i k h h a s s a n i Na v i d Zo h o u r p a r v a zMo h a ma d r e z a9 2 7 4 0 1
ANNUALSUNEXPOSURE( ASE)DESCRI BESHOWMUCHOFSP ACERECEI VEST OOMUCHDI RECTSUNL I GHT , WHI CHCANCAUSEVI SUALDI SCOMFORT( GL ARE)ORI NCREASECOOL I NGL OADS. I NL OWERFL OORSTHERESUL TSARENOTVERYBADBUTI NFL OORS ABOVETHEL I BRARYSPECI AL L YI NSOUTHF ACADETHEREI STHE PROBL EMOFGL AREI NTHEROOMS
GREENFALL FI NALPRESENTATI ON_December20
t h
SUSTAI NABLEBUI LDI NG TECHNOLOGI ES+STUDI O p r o f . M. Br a s c a p r o f . G. Ma s e r a
6 . 2 . 1
D A Y L I GH TA N A L Y S I S
b u i l d i n g2c a s e 1
DA YL I GHTF ACT ORANAL YSI SFOR1 STFL OORBUI L DI NG2ACCORDI NGT OTHESI TUA TI ONOFBUI L DI NGI NCENTRALHONGKONGWE WI L LHA VEL OWERDA YL I GHTF ACT ORI NFI RSTFL OORS.
BUI L DI NG2 1
3
2 N1
3
2 1
2 N2
2 N1
2 N2
2 S1
2 S2
2 2 S2
2 S1
FL OOR1 DOUBL EROOM
BUI L DI NG2 1
3
3
2 1
DA YL I GHTF ACT ORANAL YSI SFOR1 1 THFL OORBUI L DI NG2 I NMI DDL EFL OORSSOUTHF ACADEGETSMOREDA YL I GHTBECAUSEOFSI TUA TI ONOFBUI L DI NG.
2 N
2 N
2 2 S
2 S
FL OOR1 1 DOUBL EROOM DA YL I GHTF ACT ORANAL YSI SFOR2 2 NDFL OORBUI L DI NG2GOI NG T OWARDUPPERFL OORSWEHA VEHI GHERDA YL I GHTV AL UEI N THEROOMSSPECI AL L YI NSOUTHF ACADE. I NNORTHF ACADETHE DA YL I GHTF ACT ORI SL OWEVENI NFL OOR1 1BECAUSEOFTHE T AL LBUI L DI NGI NTHEEASTP ARTOFTHI SBUI L DI NG.
BUI L DI NG2 1
3
3
2
2 N2
2 N1
1
2 N2
2 N1
2
2 S1
2 S2
FL OOR2 2 SI BGL EROOM
2 S1
2 S2
ANNUALSUNEXPOSURE( ASE)I SAL MOST0 %I NNORTHF ACADESDUET OTHEPOSI TI ONOFSUN. I NSOUTHP ARTSEVENI N L OWERFL OORSWEHA VEHI GHERAMOUNTOFDI RECTSUNL I GHTWHI CHWI L LBERESUL TI NGL AREEFFECT . FORTHA TWE WI L LGI VESOL UTI ONDURI NGOTHERCASES.
SP A TI ALDA YL I GHTAUT ONOMY( SDA)FORTHEBUI L DI NG2I SVERY CRUCI ALBECAUSEOFL OWDA YL I GHTF ACT OR. AL LOFTHESEL ECTEDROOMSAREAL MOSTI NTHERANGEOF5 5 7 5 %SP A TI AL DA YL I GHTAUT ONOMYEXCEPTTHESI NGL EROOMSI NNORTH F ACADEI N2 2 NDFL OOR. FORTHI SPROBL EMWECANUSEMORE REFL ECTI VEI NTERNALWAL L SI NSI DETHEUNI TSWI THTI L E FL OORT OBRI NGMOREL I GHTI NSI DE
Po l i t e c n i c od i Mi l a n o , Po l ot e r r i t o r i a l ed i L e c c o Cd Li nAr c h i t e c t u r a l e n g i n e e r i n g Ac a d e mi cy e a r2 0 1 9 / 2 0
GROUP2:
Ca n i a t oGi o r g i a 9 1 8 6 2 4 Di e t e r i c hMu r rAl i c e8 2 4 9 3 9 1 3 0 4 5 Ko r o v i n aVi k t o r i i a 9
9 1 8 8 1 6 Kr e b sFr a n c e s c o Ne ma t i Al i 9 1 8 4 1 7 1 2 7 8 8 Ro t u n d oMa r c oSa l v a t o r e9 Sa c c u ma nMa r t a 9 1 8 6 4 1
Se y e d i Za d e hFe r e s h t e h 9 2 7 1 6 0 9 1 2 8 4 3 Sh e i k h h a s s a n i Na v i d Zo h o u r p a r v a zMo h a ma d r e z a9 2 7 4 0 1
GREENFALL FI NALPRESENTATI ON_December20
t h
SUSTAI NABLEBUI LDI NG TECHNOLOGI ES+STUDI O p r o f . M. Br a s c a p r o f . G. Ma s e r a
6 . 2 . 2
D A Y L I GH TA N A L Y S I S
b u i l d i n g3c a s e 1
DA YL I GHTF ACT ORANAL YSI SFOR1 STFL OORBUI L DI NG3THESI TUA TI ON I NL OWERFL OORSOFBUI L DI NG3ARENOTSA TI SFYI NGBECAUSEOF2 T AL LANDVERYCL OSEBUI L DI NGI NNORTHP ART . THESOL UTI ONWI L LBE THEUSI NGOFREFL ECTI VEI NTERNALWAL L SI NSI DETHEUNI TS.
BUI L DI NG3 1
3
3 2
3 N2
1
3 N1
2
FL OOR1 F AMI L YUNI T
3 N2
3 N1
3 S1
3 S2
3 S1
3 S2
BUI L DI NG3 1
3 2
DA YL I GHTF ACT ORANAL YSI SFOR1 1 THFL OORBUI L DI NG3 DA YL I GHTF ACT ORI NMI DDL EFL OORSOFBUI L DI NG3AREI NNORMAL PERCENT AGEMOSTL Y .
3 1
3 N
2
3 N
3 S
FL OOR1 1 DOUBL EUNI T
3 S
DA YL I GHTF ACT ORANAL YSI SFOR2 2 NDFL OORBUI L DI NG3 GOI NGT OWARDUPPERFL OORSWEHA VEHI GHERDA YL I GHTV AL UEI NTHE ROOMSSPECI AL L YI NSOUTHF ACADE. I NNORTHF ACADETHEDA YL I GHT F ACT ORI SNORMAL .
BUI L DI NG3 1
3
3 2
1
3 N1
2
3 S1
FL OOR2 2 SI NGL EROOM
3 N2
3 N1
3 N2
3 S2
3 S1
3 S2
SP A TI ALDA YL I GHTAUT ONOMY( SDA)FORTHEBUI L DI NG3 : MOSTOFTHEROOMSAREHA VI NGNORMALSDAV AL UE BUTSOMEROOMSAREOVERL I T WEWI L LSEEI NTHENEXTSTEPSHOWT OBRI NGTHEM T OTHENORMALSI TUA TI ON
Po l i t e c n i c od i Mi l a n o , Po l ot e r r i t o r i a l ed i L e c c o Cd Li nAr c h i t e c t u r a l e n g i n e e r i n g Ac a d e mi cy e a r2 0 1 9 / 2 0
GROUP2:
Ca n i a t oGi o r g i a 9 1 8 6 2 4 Di e t e r i c hMu r rAl i c e8 2 4 9 3 9 1 3 0 4 5 Ko r o v i n aVi k t o r i i a 9
9 1 8 8 1 6 Kr e b sFr a n c e s c o Ne ma t i Al i 9 1 8 4 1 7 1 2 7 8 8 Ro t u n d oMa r c oSa l v a t o r e9 Sa c c u ma nMa r t a 9 1 8 6 4 1
THEPERCENT AGEOFDI RECTSUNL I GHTI SPRESENTEVENI NTHEFI RST FL OOROFBUI L DI NG1I NTHESOUTHP ART . GOI NGUPTHEFL OORS, ASEI NCREASEST OO. T OBL OCKDI RECTSUNL I GHTTHEPRESENCEOFSHADI NGEL EMENTSARE NECCESSARY .
Se y e d i Za d e hFe r e s h t e h 9 2 7 1 6 0 9 1 2 8 4 3 Sh e i k h h a s s a n i Na v i d Zo h o u r p a r v a zMo h a ma d r e z a9 2 7 4 0 1
GREENFALL FI NALPRESENTATI ON_December20
t h
SUSTAI NABLEBUI LDI NG TECHNOLOGI ES+STUDI O p r o f . M. Br a s c a p r o f . G. Ma s e r a
6 . 2 . 3
D A Y L I GH TA N A L Y S I S
C a s e2a n dC a s e3
CASE2-VERTI CALEL EMENTS DA YL I GHTF ACT OR-CASE2AND3
1
3 2
BYTHEI NST AL L A TI ONOFVERTI CALEL EMENTSTHEREI SNOCHANGEI NDA YL I GHTF ACT ORI NROOMSSI NCETHEDI MENSI ONOFTHEVERTI CALEL EMENTS ARESMAL LACCORDI NGT OTHEF ACADE. WI THBUFFERZONEI NTHESOUTHP ARTWECANSEEHUGEI MP ACTONDA YL I GHTASHI GHL I GHTEDI NTHECHARTS.
CASE3-BUFFERZONE
SP A TI ALDA YL YGHYAUT ONOMY-CASE2AND3
1
3 2
ASDA YL I GHTNOTCHANGI NGWI THVERTI CALEL EMENTS, SP A TI ALDA YL I GHT AUT ONOMYI SNOTCHANGESASWEL L . WI THBUFFERZONETHECHANGESI NSDAARENOTI CABL EASHI GHL I GHTED. SOMEROOMSAREOVERL I TEDSPECI AL L YI NUPPERFL OORSBECAUSEOFABSENCEOFSHADI NGEL EMENTS.
ANNUALSUNEXPOSURE-CASE2AND3 ANNUALSUNEXPOSUREI SGETTI NGWORSE BECAUSEOFPRESENCEOFMORESUNACCURACYT OTHEROOMS. HI GHL I GHTEDREDCOL ORSI NCHARTSHOWS THA TTHEREWI L LBEGL AREEFFECTI NTHE ROOMS.
Po l i t e c n i c od i Mi l a n o , Po l ot e r r i t o r i a l ed i L e c c o Cd Li nAr c h i t e c t u r a l e n g i n e e r i n g Ac a d e mi cy e a r2 0 1 9 / 2 0
GROUP2:
Ca n i a t oGi o r g i a 9 1 8 6 2 4 Di e t e r i c hMu r rAl i c e8 2 4 9 3 9 1 3 0 4 5 Ko r o v i n aVi k t o r i i a 9
9 1 8 8 1 6 Kr e b sFr a n c e s c o Ne ma t i Al i 9 1 8 4 1 7 1 2 7 8 8 Ro t u n d oMa r c oSa l v a t o r e9 Sa c c u ma nMa r t a 9 1 8 6 4 1
Se y e d i Za d e hFe r e s h t e h 9 2 7 1 6 0 9 1 2 8 4 3 Sh e i k h h a s s a n i Na v i d Zo h o u r p a r v a zMo h a ma d r e z a9 2 7 4 0 1
GREENFALL FI NALPRESENTATI ON_December20
t h
SUSTAI NABLEBUI LDI NG TECHNOLOGI ES+STUDI O p r o f . M. Br a s c a p r o f . G. Ma s e r a
6 . 3
D A Y L I GH TA N A L Y S I S BUI L DI NG1 1
3 2
B u i l d i n g1C a s e 4
DA YL I GHTF ACT ORANAL YSI SFOR1 STFL OORBUI L DI NG1 ACCORDI NGT OTHESI TUA TI ONOFBUI L DI NGI NCENTRALHONGKONG WEWI L LHA VEL OWERDA YL I GHTF ACT ORI NFI RSTFL OORS
3 1
1 N1
2
FL OOR1
1 S1
1 N1
1 N2
1 N2
1 S1
1 S2
1 S2
BUI L DI NG1 1
3 2
DA YL I GHTF ACT ORANAL YSI SFOR1 1 THFL OORBUI L DI NG1 I NMI DDL EFL OORSWEHA VETHEST ANDARDDA YL I GHTV AL UEFOR HONGKONGI NSOUTHP ART .
3 1
2
1 N
FL OOR1 1
1 N
1 S
1 S
DA YL I GHTF ACT ORANAL YSI SFOR2 2 NDFL OORBUI L DI NG1 GOI NGT OWARDUPPERFL OORSWEHA VEHI GHERDA YL I GHTV AL UEI N THEROOMS. I TI SNOTTHEONL YWA YT OGETTHEBESTRESUL TOF DA YL I GHT , SOTHEANAL YSI SWI L LBECONTI NUEBYSP A TI ALDA YL I GHT AUT ONOMYANDANNUALSUNEXPOSURE.
BUI L DI NG1 1
3 2
3 1
1 N1
2
FL OOR2 2
1 S1
1 N2
1 N1
1 S2
1 S1
1 N2
1 S2
SP A TI ALDA YL I GHTAUT ONOMY( SDA)DESCRI BESHOWMUCHOFASP ACE RECEI VESSUFFI CI ENTDA YL I GHT . SPECI FI CAL L Y , I TDESCRI BESTHEPERCENT AGEOFFL OORAREATHA TRECEI VESA TL EAST3 0 0L UXFORA T L EAST5 0 %OFTHEANNUALOCCUPI EDHOURS. I NOURCASEL OWERFL OORSGETTHESP A TI ALDA YL I GHTBECAUSEOF SURROUNDI NGBUI L DI NGSF ACADREFL ECTI ON.
Po l i t e c n i c od i Mi l a n o , Po l ot e r r i t o r i a l ed i L e c c o Cd Li nAr c h i t e c t u r a l e n g i n e e r i n g Ac a d e mi cy e a r2 0 1 9 / 2 0
GROUP2:
Ca n i a t oGi o r g i a 9 1 8 6 2 4 Di e t e r i c hMu r rAl i c e8 2 4 9 3 9 1 3 0 4 5 Ko r o v i n aVi k t o r i i a 9
9 1 8 8 1 6 Kr e b sFr a n c e s c o Ne ma t i Al i 9 1 8 4 1 7 1 2 7 8 8 Ro t u n d oMa r c oSa l v a t o r e9 Sa c c u ma nMa r t a 9 1 8 6 4 1
Se y e d i Za d e hFe r e s h t e h 9 2 7 1 6 0 9 1 2 8 4 3 Sh e i k h h a s s a n i Na v i d Zo h o u r p a r v a zMo h a ma d r e z a9 2 7 4 0 1
ANNUALSUNEXPOSURE( ASE)DESCRI BESHOWMUCHOFSP ACERECEI VEST OOMUCHDI RECTSUNL I GHT , WHI CHCANCAUSEVI SUALDI SCOMFORT( GL ARE)ORI NCREASECOOL I NGL OADS. I NL OWERFL OORSTHERESUL TSARENOTVERYBADBUTI NFL OORS ABOVETHEL I BRARYSPECI AL L YI NSOUTHF ACADETHEREI STHE PROBL EMOFGL AREI NTHEROOMS
GREENFALL FI NALPRESENTATI ON_December20
t h
SUSTAI NABLEBUI LDI NG TECHNOLOGI ES+STUDI O p r o f . M. Br a s c a p r o f . G. Ma s e r a
6 . 4 . 1
D A Y L I GH TA N A L Y S I S
B u i l d i n g2C a s e 4
BUI L DI NG2 1
3
2 N1
3
2 1
DA YL I GHTF ACT ORANAL YSI SFOR1 STFL OORBUI L DI NG2ACCORDI NGT O THESI TUA TI ONOFBUI L DI NGI NCENTRALHONGKONG, THERESUL TSARE ACCEPT ABL EACCORDI NGT OTHEF ACTTHA TSDAANDASEAREMOREI MPORT ANTFORUS
2 N2
2 N1
2 N2
2 S1
2 S2
2 2 S2
2 S1
FL OOR1
BUI L DI NG2 1
3
3
2 1
DA YL I GHTF ACT ORANAL YSI SFOR1 1 THFL OORBUI L DI NG2ROOMSHASACCEPT ABL EPERCENT AGEOFDA YL I GHTF ACT ORI NMI DDL EFL OORS. I TI S DECREASEDBECAUSEOFSHADI NGP ANEL S.
2 N
2 N
2 2 S
2 S
FL OOR1 1
BUI L DI NG2 1
3
DA YL I GHTF ACT ORANAL YSI SFOR2 2 NDFL OORBUI L DI NG2 EVENUPPERFL OORSROOMSHA VEANA VERAGEOFDA YL I GHTF ACT OR.
3
2
2 N2
2 N1
1
2 N2
2 N1
2
2 S1
2 S2
FL OOR2 2
2 S1
2 S2
SP A TI ALDA YL I GHTAUT ONOMY( SDA)THERESUL TSARE AL MOSTI NTHERANGEOF5 5T O7 5WHI CHI SACCEPT ABL E FOROURROOMS.
Po l i t e c n i c od i Mi l a n o , Po l ot e r r i t o r i a l ed i L e c c o Cd Li nAr c h i t e c t u r a l e n g i n e e r i n g Ac a d e mi cy e a r2 0 1 9 / 2 0
GROUP2:
Ca n i a t oGi o r g i a 9 1 8 6 2 4 Di e t e r i c hMu r rAl i c e8 2 4 9 3 9 1 3 0 4 5 Ko r o v i n aVi k t o r i i a 9
9 1 8 8 1 6 Kr e b sFr a n c e s c o Ne ma t i Al i 9 1 8 4 1 7 1 2 7 8 8 Ro t u n d oMa r c oSa l v a t o r e9 Sa c c u ma nMa r t a 9 1 8 6 4 1
ANNUALSUNEXPOSURE( ASE)I NSOUTHF ACADEWECANDECREASEANOTI CEABL EAMOUNTOFDI RECTSUNL I GHTASTHEGREEN COL ORI NTHECHARTS. FORROOMSTHA THA VEEVENMOREASE WECANI NST AL LI NTERNALCURT AI NS.
Se y e d i Za d e hFe r e s h t e h 9 2 7 1 6 0 9 1 2 8 4 3 Sh e i k h h a s s a n i Na v i d Zo h o u r p a r v a zMo h a ma d r e z a9 2 7 4 0 1
GREENFALL FI NALPRESENTATI ON_December20
t h
SUSTAI NABLEBUI LDI NG TECHNOLOGI ES+STUDI O p r o f . M. Br a s c a p r o f . G. Ma s e r a
6 . 4 . 2
D A Y L I GH TA N A L Y S I S
B u i l d i n g3C a s e 4
DA YL I GHTF ACT ORANAL YSI SFOR1 STFL OORBUI L DI NG3THESI TUA TI ON I NL OWERFL OORSOFBUI L DI NG3ARENOTSA TI SFYI NGBECAUSEOF2 T AL LANDVERYCL OSEBUI L DI NGI NNORTHP ART . THESOL UTI ONWI L LBE THEUSI NGOFREFL ECTI VEI NTERNALWAL L SI NSI DETHEUNI TS.
BUI L DI NG3 1
3
3 2
3 N2
1
3 N1
2
3 S2
3 S1
3 S2
3 S1
FL OOR1
3 N2
3 N1
DA YL I GHTF ACT ORANAL YSI SFOR1 1 THFL OORBUI L DI NG3THEDA YL I GHT F ACT OROFROOMSI NSOUTHF ACADEAREREDUCEDBECAUSEOFSHADI NGP ANEL S, BUTI NSTEADTHEYAREPROTECTI NGTHEROOMSFROM GL AREEFFECT .
BUI L DI NG3 1
3
3 2
1
3 N
2
3 N
3 S
3 S
FL OOR1 1
DA YL I GHTF ACT ORANAL YSI SFOR2 2 NDFL OORBUI L DI NG3 GOI NGT OWARDUPPERFL OORSWEHA VENORMALDA YL I GHTV AL UEI N THEROOMS. I NSOUTHF ACADETHEDA YL I GHTF ACT ORI SBEL OW NORMALBUTI TI STHEWA YT OREDUCEGL AREEFFECTI NUPPER FL OORS. .
BUI L DI NG3 1
3
3 2
1
3 N1
2
3 S1
FL OOR2 2
3 N2
3 N1
3 N2
3 S2
3 S1
3 S2
THEPERCENT AGEOFDI RECTSUNL I GHTI SPRESENTI SNOW VERYCL OSET OCOMFORTZONEANDWECANSA YTHA TWEGOT THERESUL TSOFOURSHADI NGP ANEL S.
SP A TI ALDA YL I GHTAUT ONOMY( SDA)FORTHEBUI L DI NG3 : MOSTOF THEROOMSAREHA VI NGNORMALSDAV AL UEBUTSOMEROOMS AREOVERL I TI NNORTHP ART . THEROOMSTHA TCANNOTGETT O THERANGECANUSEI NTERNALCURT AI NS.
Po l i t e c n i c od i Mi l a n o , Po l ot e r r i t o r i a l ed i L e c c o Cd Li nAr c h i t e c t u r a l e n g i n e e r i n g Ac a d e mi cy e a r2 0 1 9 / 2 0
GROUP2:
Ca n i a t oGi o r g i a 9 1 8 6 2 4 Di e t e r i c hMu r rAl i c e8 2 4 9 3 9 1 3 0 4 5 Ko r o v i n aVi k t o r i i a 9
9 1 8 8 1 6 Kr e b sFr a n c e s c o Ne ma t i Al i 9 1 8 4 1 7 1 2 7 8 8 Ro t u n d oMa r c oSa l v a t o r e9 Sa c c u ma nMa r t a 9 1 8 6 4 1
Se y e d i Za d e hFe r e s h t e h 9 2 7 1 6 0 9 1 2 8 4 3 Sh e i k h h a s s a n i Na v i d Zo h o u r p a r v a zMo h a ma d r e z a9 2 7 4 0 1
GREENFALL FI NALPRESENTATI ON_December20
t h
SUSTAI NABLEBUI LDI NG TECHNOLOGI ES+STUDI O p r o f . M. Br a s c a p r o f . G. Ma s e r a
6 . 4 . 3
D A Y L I GH TA N A L Y S I S 1
C o n c l u s i o n
3
1
2
2
1
3
1
2
1
3
3 2
3
1
2
3 2
THERESUL TSARESHOWI NGTHA TTHEAPPROACHT OTHESHADI NGP ANEL SAREACCEPT ABL E BYANAL YSI STHA TWEDI DFORTHE3L EVEL SFOREACHBUI L DI NGBYDOI NGTHEANAL YSI SOFTHEROOMSSEP ARETL YWEREACHEDT OTHEPOI NTTHA TWESHOUL D HA VESHADI NGP ANEL S. THEPROCESSOFDESI GNI NGSHADI NGP ANEL SST ARTEDT OPREVENTGL AREEFFECTI NUPPERFL OORS. SOI NL OWERFL OORSWEDONOTNEEDVERYDENSEP ANEL S. THEI NCL I NA TI ONOFP ANEL SAREPRODUCEDI NSEVERALSTEPST OGETTHEBESTRESUL TOFDA YL I GHT , I NTERNALVI EWT OTHEOUTSI DEANDPREVENTI NGGL ARE ANAL YSI S
Po l i t e c n i c od i Mi l a n o , Po l ot e r r i t o r i a l ed i L e c c o Cd Li nAr c h i t e c t u r a l e n g i n e e r i n g Ac a d e mi cy e a r2 0 1 9 / 2 0
GROUP2:
Ca n i a t oGi o r g i a 9 1 8 6 2 4 Di e t e r i c hMu r rAl i c e8 2 4 9 3 9 1 3 0 4 5 Ko r o v i n aVi k t o r i i a 9
9 1 8 8 1 6 Kr e b sFr a n c e s c o Ne ma t i Al i 9 1 8 4 1 7 1 2 7 8 8 Ro t u n d oMa r c oSa l v a t o r e9 Sa c c u ma nMa r t a 9 1 8 6 4 1
Se y e d i Za d e hFe r e s h t e h 9 2 7 1 6 0 9 1 2 8 4 3 Sh e i k h h a s s a n i Na v i d Zo h o u r p a r v a zMo h a ma d r e z a9 2 7 4 0 1
GREENFALL FI NALPRESENTATI ON_December20
t h
SUSTAI NABLEBUI LDI NG TECHNOLOGI ES+STUDI O p r o f . M. Br a s c a p r o f . G. Ma s e r a
6 . 5
7. TRANSPARENCY
For the optimization of materials in relation to building performance and economic sustainability
air pressure
EXTERIOR WINDOW FRAMES
AWS 75.SI+ AWS 75 BS.SI+ AWS 75 WF.SI+ AWS 75 BS.HI+ AWS 70 SL.HI AWS 70 RL.HI AWS 70 ST.HI AWS 70 WF.HI AWS 70 BS.HI AWS 70.HI
Sound Insulation (dB)
Wind Load Resistance
48 45 44 49 43 48 37 45 45 48
C5/B5 C5/B5 C5/B5 C5/B5 C5/B5 C5/B5 C5/B5 C2/B3 C5/B5 C5/B5
1.4
40
DATA ANALYSIS
1.2 0.8 0.4
A
B
C
D
E
F
G
H
I
0
J
WINDOW SPECIFICATIONS
AWS 75.SI+ PRODUCT SPECIFICATIONS MATERIAL ENERGY BASIC DEPTH U VALUE MAX. GLASS THICKNESS OPENING SOUND INSULATION AIR PERMEABILITY WATER TIGHTNESS WIND LOAD RESISTANCE
Aluminum Highly Thermally Insulated 75 mm 0.9 (W/m2 K) 61 mm Inward and Outward; Tilt/Slide 48 dB Class 4 (600 Pa) 9A (600 Pa; 111.54 km/h) C5/B5 (2000 Pa)
C3
C4
C5
C6
Product regulations: EN 1026, EN 12207 C1 Flex arrow (1/300)
124
136,6
145
160
165
178
Product Comparison & Details
C2
C3
C4
C5
C6
Applied pressure (400Pa) (800Pa) (1200Pa) (1500Pa) (2000Pa) (>2000Pa) achieved class A1 A2 A3 A4 AE
:DWHUSURRร QJ 8VHG WR PHDVXUH WKH GHJUHH RI LPSHUPHD
applied pressure 150 Pa 300 Pa 450 Pa 600 Pa >600 Pa
Product regulations: EN 1027, EN 12208 performance achieved 0db <=12db <=24db <=36db <=48db <=60db 1A
2A
3A
(0 Pa)
(50Pa)
(100Pa)
achieved class air pressure
5A
4A
6A
1A
achieved class 7A
8A
9A air
E750 pressure
E900 (0
2A
3A
5A
4A
E1200 (100Pa) E1350 Pa)E1050(50Pa)
E1500 (150Pa)
(150Pa) (200Pa) (250Pa) (300Pa) (450Pa) (600Pa) (750Pa) (900Pa) (1050Pa) (1200Pa) (1350Pa) (1500Pa)
<=1-2
achieved class
C1
C2
C3
C4
C5
Product regulations: EN 10077-2, EN 12412-2 C6
Flex arrow (1/150)
A1
A2
A3
A4
A5
Flex arrow (1/200)
B1
B2
B3
B4
B5
B6
achieved class
C1
C2
C3
C4
Flex arrow (1/300)
C1
C2
C3
C4
C5
C6
Flex arrow (1/150)
A1
A2
A3
A4
Flex arrow (1/200)
B1
B2
B3
B4
A6
performance achieved
A
B
C
D
E
F
G
H
I
J
By considering the technical specifications of the selected product, it is clear this product is well suited to use in the Hong Kong area. Itโ s high thermal insulation and impressive Thermal Transmittance allow for more controlled and comfortable interior spaces. The Water Tightness and Wind Resistance are both in the highest classes available, signifying maximum resistance to possible effects of typhoons. The Air Permeability is also rated in the highest class, which also helps significantly in handling issue of pollution in the city, and maintaining clean interior air. Finally, the Acoustic Insulation is a very attractive feature, allowing for the interior to not be influenced by the sounds of the surrounding city. This selection of window allows for maximum efficiency as well as comfort for the inhabitants.
0db
Noise performance. The value that measures how door or w H[WHUQDO QRLVHV 7KH VLPXODWLRQ WHVW SHUIRUPHG WR GHWHUPLQH W as a whole may not have the same sound insulation value.
<=12db <=24db <=36db <=48db <=60db
Thermal transmittance. 7KH DYHUDJH KHDW ร RZ SHU VTXDUH PHWUH RI VXUIDFH WKDW SDVVHV WKURXJK D VWUXFWXUH WKDW GHOLPLWV WZR HQYLURQPHQWV Product regulations: EN 20140-3, EN ISO 140-3, EN ISO 717-1 DW GLเฉ HUHQW WHPSHUDWXUHV ,Q WKH FDVH RI GRRU DQG ZLQGRZ IUDPHV LW LV XVHG WR PHDVXUH WKH HQHUJ\ Hเฉ FLHQF\ RI WKH SURGXFW ZKHQ LW FRPHV WR PDLQWDLQLQJ WKH WHPSHUDWXUH UHTXLUHG LQ GRPHVWLF HQYLURQPHQWV 7KH FORVHU WR ]HUR WKH WUDQVPLWWDQFH YDOXH WKH JUHDWHU WKH HQHUJ\ VDYLQJ performance achieved 0db <=12db <=24db <=36db <= Product regulations: EN 10077-2, EN 12412-2 performance achieved Uw W/m2K
Low
Medium
High
Top
<=6-8
<=2-4
<=1-2
<=0-1
Thermal transmittance. 7KH DYHUDJH KHDW ร RZ SHU VTXDUH PH DW GLเฉ HUHQW WHPSHUDWXUHV ,Q WKH FDVH RI GRRU DQG ZLQGRZ IUDP WR PDLQWDLQLQJ WKH WHPSHUDWXUH UHTXLUHG LQ GRPHVWLF HQYLURQPH Product regulations: EN 10077-2, EN 12412-2 performance achieved Uw W/m2K
Low
Medium
High
Top
<=6-8
<=2-4
<=1-2
<=0-1
Another important feature of this product is its ability to be customized according to the needs of the project. This can include for example built in sun shading, or even ventilation systems.
Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
GROUP 2:
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
(200Pa
or window frame.
<=0-1
Product regulations: EN 20140-3, EN ISO 140-3, EN ISO 717-1
10
0.2
111,54
C1 C2 C3 C4 Flex arrow (1/300) Noise performance. The value that measures how door or window frames are able toApplied acoustically isolate the home environment from pressure (400Pa) (800Pa) (1200Pa) (1500Pa) (20 H[WHUQDO QRLVHV 7KH VLPXODWLRQ WHVW SHUIRUPHG WR GHWHUPLQH WKLV YDOXH UHODWHV H[FOXVLYHO\ WR WKH GRRU RU ZLQGRZ IUDPH DQG WKH EXLOGLQJ as a whole may not have the same sound insulation value.
20
0.6
96,59
Product regulations: EN 1026, EN 12207 C2
Applied pressure (400Pa) (800Pa) (1200Pa) (1500Pa) (2000Pa) (>2000Pa)
30
1
78,87
C1
Uw W/m2K <=2-4 Product regulations: EN 10077-2,<=6-8 EN 12412-2
50
1.6
72
km/h 0 32,2 45,53 56,67 64,39 Thermal transmittance. 7KH DYHUDJH KHDW ร RZ SHU VTXDUH PHWUH RI VXUIDFH WKDW SDVVHV WKURXJK D VWUXFWXUH WKDW GHOLPLWV WZR HQYLURQPHQWV 160 111,54 165 124 72 178 136,6 78,87 145 96,59 km/h 0 32,2 45,53 56,67 64,39 DW GLเฉ HUHQW WHPSHUDWXUHV ,Q WKH FDVH RI GRRU DQG ZLQGRZ IUDPHV LW LV XVHG WR PHDVXUH WKH HQHUJ\ Hเฉ FLHQF\ RI WKH SURGXFW ZKHQ LW FRPHV WR PDLQWDLQLQJ WKH WHPSHUDWXUH UHTXLUHG LQ GRPHVWLF HQYLURQPHQWV 7KH FORVHU WR ]HUR WKH WUDQVPLWWDQFH YDOXH WKH JUHDWHU WKH HQHUJ\ VDYLQJ Wind load resistance. 7KLV YDOXH LQGLFDWHV WKH GHJUHH RI UHVLVWDQFH WR GHIRUPDWLRQ DQG DFFLGHQWDO RSHQLQJ RI WKH GRRUV ZKHQ VXEMHFWHG Product regulations: EN 10077-2, EN 12412-2 Wind load resistance. 7KLV YDOXH LQGLFDWHV WKH GHJUHH RI UHVLV WR WKH DFWLRQ RI ZLQG 7KLV GDWD LV XVHIXO IRU XQGHUVWDQGLQJ WKH TXDOLW\ RI WKH WRROV DQG WKH PDWHULDOV XVHG LQ WKH FRQVWUXFWLRQ RI WKH GRRU WR WKH DFWLRQ RI ZLQG 7KLV GDWD LV XVHIXO IRU XQGHUVWDQGLQJ WKH performance achieved Low Medium High Top or window frame.
60
1.8
64,39
56,67
Air permeability. 7KLV YDOXH LQGLFDWHV WKH DELOLW\ RI D FORVHG GRRU RU ZLQGRZ IUDPH WR DOORZ DLU WR EH ร OWHUHG ZKHQ VXEMHFWHG WR DQ LQWHULRU H[WHULRU achieved class A1 A2 A3 A4 AE A1 A2 A3 A4 A5 A6 Flex arrow (1/150) SUHVVXUH GLเฉ HUHQFH 7KH ORZHU WKH YROXPHV RI GLVSHUVHG DLU WKH KLJK WKH TXDOLW\ RI WKH GRRU RU ZLQGRZ IUDPH DQG WKH JDVNHWV XVHG WR PDNH LW B1 B2 Flex arrow (1/200) B3 B4 B5 B6 applied pressure 150 Pa 300 Pa 450 Pa 600 Pa >600 Pa
Sound Insula๏ฟฝon (dB)
2
Product standard: UNI EN 14351-1
(150Pa) (200Pa) (250Pa) (300Pa) (450Pa) (600Pa) (750Pa) (900Pa) (1050Pa) (1200Pa) (1350Pa) (1500Pa)
Noise performance. The value that measures how door or windowVXUIDFH RI WKH SURGXFW ZLWK D ZDWHU MHW DQG DW WKH VDPH WLPH frames are able to acoustically isolate the home environment from H[WHUQDO QRLVHV 7KH VLPXODWLRQ WHVW SHUIRUPHG WR GHWHUPLQH WKLV YDOXH UHODWHV H[FOXVLYHO\ WR WKH GRRU RU ZLQGRZ IUDPH DQG WKH EXLOGLQJ :DWHUSURRร QJ 8VHG WR PHDVXUH WKH GHJUHH RI LPSHUPHDELOLW\ RI D GRRU RU ZLQGRZ IUDPH 7KLV YDOXH LV REWDLQHG E\ VSUD\LQJ WKH UDLQ DQG JXVWV RI ZLQG as a VXUIDFH RI WKH SURGXFW ZLWK D ZDWHU MHW DQG DW WKH VDPH WLPH VXEMHFWLQJ LW WR DQ LQWHULRU H[WHULRU SUHVVXUH GLเฉ HUHQFH WR VLPXODWH LQWHQVH whole may not have the same sound insulation value. Water Tightness Classification Product regulations: EN 1027, EN 12208 Product regulations: EN 20140-3, EN ISO 140-3, EN ISO 717-1 UDLQ DQG JXVWV RI ZLQG
Thermal Transmi๏ฟฝance (W/m2 K)
0
45,53
achieved class
TECHNICAL REFERENCES
A B C D E F G H I J
Thermal Transmittance (W/m2 K) 0.9 1.3 1.3 1.5 1.6 1.5 1.6 1.9 1.6 1.5
(100Pa)
32,2
Product regulations: EN 10077-2, EN 12412-2
The selected product AWS 75.SI+ was chosen for its impressive Thermal Transmittance performance as well as Sound and Wind resistance. PRODUCT NAME
(50Pa)
0
Wind load resistance. 7KLV YDOXH LQGLFDWHV WKH GHJUHH RI UHVLVWDQFH WR GHIRUPDWLRQ DQG DFFLGHQWDO RSHQLQJ RI WKH GRRUV ZKHQ VXEMHFWHG WR WKH DFWLRQ RI ZLQG 7KLV GDWD LV XVHIXO IRU XQGHUVWDQGLQJ WKH TXDOLW\ RI WKH WRROV DQG WKH PDWHULDOV XVHG LQ WKH FRQVWUXFWLRQ RI WKH GRRU Air permeability. 7KLV YDOXH LQGLFDWHV WKH DELOLW\ RI D FORVHG GRRU R Product standard: EN 14351-1 Wind Load Resistance Classification SUHVVXUH GLเฉ HUHQFH 7KH ORZHU WKH YROXPHV RI GLVSHUVHG DLU WKH K Air Permeability Classification or window frame.UNI
The following products and their supporting data were provided by Schuco - one of the leading suppliers of high-quality window, door and faรงade systems made from aluminium, PVC-U and steel.
REF.
(0 Pa)
km/h
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
918816 918417 912788 918641
Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401
GREENFALL FINAL PRESENTATION_December 20th
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
7.1
km/h
EXTERIOR DOOR FRAMES
achieved class
6A
7A
50Pa) (300Pa) 72
78,87
9A (600Pa) 111,54
E1200
E1350
(1200Pa) (1350Pa) 160
165
Sound Insulation (dB)
Wind Load Resistance
42 43 43 43 43 43 43
C3/B3 C3 C3 C3 C3 C3 C3
1.7 1.6 2.2 E1500 (1500Pa) 2.3 178 2.2 2.9
FH WR GHIRUPDWLRQ DQG DFFLGHQWDO RSHQLQJ RI WKH GRRUV ZKHQ VXEMHFWHG DOLW\ RI WKH WRROV DQG WKH PDWHULDOV XVHG LQ WKH FRQVWUXFWLRQ RI WKH GRRU
Thermal Transmi๏ฟฝance (W/m2 K)
DATA ANALYSIS
C6
) (>2000Pa)
42.4
1.5
42.2
B
C
D
E
F
41.4
C6
Product regulations: EN 1026, EN 12207 C1 Flex arrow (1/300)
C2
C3
C4
C5
C6
1A
2A
3A
(0 Pa)
(50Pa)
(100Pa)
Uw W/m2K <=2-4 Product regulations: EN 10077-2,<=6-8 EN 12412-2
145
160
165
178
:DWHUSURRร QJ 8VHG WR PHDVXUH WKH GHJUHH RI LPSHUPHDELO
5A
4A
6A
1A
achieved class 7A
8A
9A air
E750 pressure
E900 (0
2A
3A
5A
4A
E1200 (100Pa) E1350 Pa)E1050(50Pa)
E1500 (150Pa)
(150Pa) (200Pa) (250Pa) (300Pa) (450Pa) (600Pa) (750Pa) (900Pa) (1050Pa) (1200Pa) (1350Pa) (1500Pa)
(200Pa)
<=1-2
or window frame.
<=0-1
achieved class
C1
C2
C3
C4
C5
Product regulations: EN 10077-2, EN 12412-2 C6
Flex arrow (1/150)
A1
A2
A3
A4
A5
Flex arrow (1/200)
B1
B2
B3
B4
B5
B6
achieved class
C1
C2
C3
C4
C5
Flex arrow (1/300)
C1
C2
C3
C4
C5
C6
Flex arrow (1/150)
A1
A2
A3
A4
A5
Flex arrow (1/200)
B1
B2
B3
B4
B5
A6
Applied pressure (400Pa) (800Pa) (1200Pa) (1500Pa) (2000Pa) (>2000Pa)
C1 C2 C3 C4 C5 Flex arrow (1/300) Noise performance. The value that measures how door or window frames are able toApplied acoustically isolate the home environment from pressure (400Pa) (800Pa) (1200Pa) (1500Pa) (2000 H[WHUQDO QRLVHV 7KH VLPXODWLRQ WHVW SHUIRUPHG WR GHWHUPLQH WKLV YDOXH UHODWHV H[FOXVLYHO\ WR WKH GRRU RU ZLQGRZ IUDPH DQG WKH EXLOGLQJ as a whole may not have the same sound insulation value. Product regulations: EN 20140-3, EN ISO 140-3, EN ISO 717-1
41.6 G
C5
air pressure
A
B
C
D
E
F
G
performance achieved
0db
Noise performance. The value that measures how door or win H[WHUQDO QRLVHV 7KH VLPXODWLRQ WHVW SHUIRUPHG WR GHWHUPLQH WKL as a whole may not have the same sound insulation value.
<=12db <=24db <=36db <=48db <=60db
Thermal transmittance. 7KH DYHUDJH KHDW ร RZ SHU VTXDUH PHWUH RI VXUIDFH WKDW SDVVHV WKURXJK D VWUXFWXUH WKDW GHOLPLWV WZR HQYLURQPHQWV Product regulations: EN 20140-3, EN ISO 140-3, EN ISO 717-1 DW GLเฉ HUHQW WHPSHUDWXUHV ,Q WKH FDVH RI GRRU DQG ZLQGRZ IUDPHV LW LV XVHG WR PHDVXUH WKH HQHUJ\ Hเฉ FLHQF\ RI WKH SURGXFW ZKHQ LW FRPHV WR PDLQWDLQLQJ WKH WHPSHUDWXUH UHTXLUHG LQ GRPHVWLF HQYLURQPHQWV 7KH FORVHU WR ]HUR WKH WUDQVPLWWDQFH YDOXH WKH JUHDWHU WKH HQHUJ\ VDYLQJ performance achieved 0db <=12db <=24db <=36db <=48 Product regulations: EN 10077-2, EN 12412-2
<=60db
performance achieved Uw W/m2K
RI VXUIDFH WKDW SDVVHV WKURXJK D VWUXFWXUH WKDW GHOLPLWV WZR HQYLURQPHQWV W LV XVHG WR PHDVXUH WKH HQHUJ\ Hเฉ FLHQF\ RI WKH SURGXFW ZKHQ LW FRPHV 7KH FORVHU WR ]HUR WKH WUDQVPLWWDQFH YDOXH WKH JUHDWHU WKH HQHUJ\ VDYLQJ ADS 75.SI PRODUCT
WINDOW SPECIFICATIONS
136,6
km/h 0 32,2 45,53 56,67 64,39 Thermal transmittance. 7KH DYHUDJH KHDW ร RZ SHU VTXDUH PHWUH RI VXUIDFH WKDW SDVVHV WKURXJK D VWUXFWXUH WKDW GHOLPLWV WZR HQYLURQPHQWV 160 111,54 165 124 72 178 136,6 78,87 145 96,59 km/h 0 32,2 45,53 56,67 64,39 DW GLเฉ HUHQW WHPSHUDWXUHV ,Q WKH FDVH RI GRRU DQG ZLQGRZ IUDPHV LW LV XVHG WR PHDVXUH WKH HQHUJ\ Hเฉ FLHQF\ RI WKH SURGXFW ZKHQ LW FRPHV WR PDLQWDLQLQJ WKH WHPSHUDWXUH UHTXLUHG LQ GRPHVWLF HQYLURQPHQWV 7KH FORVHU WR ]HUR WKH WUDQVPLWWDQFH YDOXH WKH JUHDWHU WKH HQHUJ\ VDYLQJ Wind load resistance. 7KLV YDOXH LQGLFDWHV WKH GHJUHH RI UHVLVWDQFH WR GHIRUPDWLRQ DQG DFFLGHQWDO RSHQLQJ RI WKH GRRUV ZKHQ VXEMHFWHG Product regulations: EN 10077-2, EN 12412-2 Wind load resistance. 7KLV YDOXH LQGLFDWHV WKH GHJUHH RI UHVLVWDQ WR WKH DFWLRQ RI ZLQG 7KLV GDWD LV XVHIXO IRU XQGHUVWDQGLQJ WKH TXDOLW\ RI WKH WRROV DQG WKH PDWHULDOV XVHG LQ WKH FRQVWUXFWLRQ RI WKH GRRU WR WKH DFWLRQ RI ZLQG 7KLV GDWD LV XVHIXO IRU XQGHUVWDQGLQJ WKH T performance achieved Low Medium High Top or window frame.
41.8
ow frames are able 0.5 to acoustically isolate the home environment from YDOXH UHODWHV H[FOXVLYHO\ WR WKH GRRU RU ZLQGRZ IUDPH DQG WKH EXLOGLQJ
C4
achieved class
42
1
C3
Product regulations: EN 1027, EN 12208 performance achieved 0db <=12db <=24db <=36db <=48db <=60db
42.6
A
124
Noise performance. The value that measures how door or windowVXUIDFH RI WKH SURGXFW ZLWK D ZDWHU MHW DQG DW WKH VDPH WLPH VX frames are able to acoustically isolate the home environment from H[WHUQDO QRLVHV 7KH VLPXODWLRQ WHVW SHUIRUPHG WR GHWHUPLQH WKLV YDOXH UHODWHV H[FOXVLYHO\ WR WKH GRRU RU ZLQGRZ IUDPH DQG WKH EXLOGLQJ :DWHUSURRร QJ 8VHG WR PHDVXUH WKH GHJUHH RI LPSHUPHDELOLW\ RI D GRRU RU ZLQGRZ IUDPH 7KLV YDOXH LV REWDLQHG E\ VSUD\LQJ WKH UDLQ DQG JXVWV RI ZLQG as a VXUIDFH RI WKH SURGXFW ZLWK D ZDWHU MHW DQG DW WKH VDPH WLPH VXEMHFWLQJ LW WR DQ LQWHULRU H[WHULRU SUHVVXUH GLเฉ HUHQFH WR VLPXODWH LQWHQVH whole may not have the same sound insulation value. Water Tightness Classification Product regulations: EN 1027, EN 12208 Product regulations: EN 20140-3, EN ISO 140-3, EN ISO 717-1 UDLQ DQG JXVWV RI ZLQG
42.8
2
0
111,54
Product regulations: EN 1026, EN 12207 C2
applied pressure 150 Pa 300 Pa 450 Pa 600 Pa >600 Pa
43
2.5
B6
96,59
Applied pressure (400Pa) (800Pa) (1200Pa) (1500Pa) (2000Pa) (>2000Pa) achieved class A1 A2 A3 A4 AE
43.2
3
A6
78,87
Air permeability. 7KLV YDOXH LQGLFDWHV WKH DELOLW\ RI D FORVHG GRRU RU ZLQGRZ IUDPH WR DOORZ DLU WR EH ร OWHUHG ZKHQ VXEMHFWHG WR DQ LQWHULRU H[WHULRU achieved class A1 A2 A3 A4 AE A1 A2 A3 A4 A5 A6 Flex arrow (1/150) SUHVVXUH GLเฉ HUHQFH 7KH ORZHU WKH YROXPHV RI GLVSHUVHG DLU WKH KLJK WKH TXDOLW\ RI WKH GRRU RU ZLQGRZ IUDPH DQG WKH JDVNHWV XVHG WR PDNH LW B1 B2 Flex arrow (1/200) B3 B4 B5 B6 applied pressure 150 Pa 300 Pa 450 Pa 600 Pa >600 Pa
Sound Insula๏ฟฝon (dB)
3.5
C6
72
C1
TECHNICAL REFERENCES
Thermal Transmittance
(W/m2 K) \ RI D GRRU RU ZLQGRZ IUDPH 7KLV YDOXH LV REWDLQHG E\ VSUD\LQJ WKH MHFWLQJ LW WR DQ LQWHULRU H[WHULRU SUHVVXUH GLเฉ HUHQFH WR VLPXODWH LQWHQVH A AD UP 75 1.6 ADS 70.HI ADS 75.SI 75 HD.HI E750ADSE900 E1050 (750Pa)ADS (900Pa) (1050Pa) 70 HD 124 ADS 136,665 145 ADS 65 HD
64,39
56,67
Product regulations: EN 10077-2, EN 12412-2
The selected product ADS 75.SI was chosen for its impressive Thermal Transmittance performance as well as Air and Wind resistance.
B C 8AD (450Pa) E 96,59 F G
45,53
Product Comparison & Details
faรงade systems made from aluminium, PVC-U and steel.
PRODUCT NAME
32,2
Wind load resistance. 7KLV YDOXH LQGLFDWHV WKH GHJUHH RI UHVLVWDQFH WR GHIRUPDWLRQ DQG DFFLGHQWDO RSHQLQJ RI WKH GRRUV ZKHQ VXEMHFWHG WR WKH DFWLRQ RI ZLQG 7KLV GDWD LV XVHIXO IRU XQGHUVWDQGLQJ WKH TXDOLW\ RI WKH WRROV DQG WKH PDWHULDOV XVHG LQ WKH FRQVWUXFWLRQ RI WKH GRRU Air permeability. 7KLV YDOXH LQGLFDWHV WKH DELOLW\ RI D FORVHG GRRU RU Z Product standard: EN 14351-1 Wind Load Resistance Classification SUHVVXUH GLเฉ HUHQFH 7KH ORZHU WKH YROXPHV RI GLVSHUVHG DLU WKH KLJ Air Permeability Classification or window frame.UNI
QGRZ IUDPH WR DOORZ DLU WR EH ร OWHUHG ZKHQ VXEMHFWHG WR DQ LQWHULRU H[WHULRU The following products and their supporting data were provided by Schuco - one of the leading suppliers of high-quality window, door and WKH TXDOLW\ RI WKH GRRU RU ZLQGRZ IUDPH DQG WKH JDVNHWV XVHG WR PDNH LW
REF.
0
MATERIAL ENERGY BASIC DEPTH U VALUE MAX. GLASS THICKNESS OPENING SOUND INSULATION AIR PERMEABILITY WATER TIGHTNESS WIND LOAD RESISTANCE
Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
GROUP 2:
High
Top
<=2-4
<=1-2
<=0-1
exceptional standards for all other areas.
Aluminum Highly Thermally Insulated 75 mm 1.6 (W/m2 K) 57 mm Side Hung; Inward and Outward 43 dB Class 2 (300 Pa) 5A (200 Pa; 64.39 km/h) C3 (1200 Pa)
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
Medium
Thermal transmittance. 7KH DYHUDJH KHDW ร RZ SHU VTXDUH PHWUH DW GLเฉ HUHQW WHPSHUDWXUHV ,Q WKH FDVH RI GRRU DQG ZLQGRZ IUDPHV This product was chosen for its Thermal Transmittance performance. This product also has WR PDLQWDLQLQJ WKH WHPSHUDWXUH UHTXLUHG LQ GRPHVWLF HQYLURQPHQW
SPECIFICATIONS
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
Low <=6-8
918816 918417 912788 918641
Product regulations: EN 10077-2, EN 12412-2 performance achieved
Low
Medium
High
Due to the fact that this product will be used for most exterior entry and exit points, the highest Uw W/m2K <=6-8 <=2-4 <=1-2 priority was safety. This product tested for Burglar Resistance RC3 which is ideal for this situation.
Top <=0-1
The high classification of Water Tightness, as well as respectable grades for air permeability also make this ideal for providing an adequate boundary between the indoor and outdoor zones. The high sound insulation is also ideal in order to maximize the comfort of the residents.
927160 Seyedi Zadeh Fereshteh 912843 Sheikhhassani Navid Zohourparvaz Mohamadreza 927401
GREENFALL FINAL PRESENTATION_December 20th
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
7.2
air pressure
(0 Pa)
(50Pa)
(100Pa)
0
32,2
45,53
km/h
INTERIOR WINDOWS & DOORS
E1350
E1500
MATERIAL 160 111,54 165 124 178 136,6ENERGY 78,87 145 96,59 BASIC DEPTH WR GHIRUPDWLRQ DQG DFFLGHQWDO RSHQLQJ RI WKH GRRUV ZKHQ VXEMHFWHG BURGLAR RESISTANCE W\ RI WKH WRROV DQG WKH PDWHULDOV XVHG LQ WKH FRQVWUXFWLRQ RI WKH GRRU MAX. GLASS THICKNESS OPENING C6 SOUND INSULATION
a) (300Pa) (450Pa) (600Pa) (750Pa) (900Pa) (1050Pa) (1200Pa) (1350Pa) (1500Pa)
A6
Aluminum Non-Insulated 65 mm RC2 39 mm Side Hung; Inward and Outward 44 dB
B6 C6
2000Pa)
124
136,6
160
145
165
178
Product Details
XUIDFH WKDW SDVVHV WKURXJK D VWUXFWXUH WKDW GHOLPLWV WZR HQYLURQPHQWV V XVHG WR PHDVXUH WKH HQHUJ\ Hเฉ FLHQF\ RI WKH SURGXFW ZKHQ LW FRPHV H FORVHU WR ]HUR WKH WUDQVPLWWDQFH YDOXH WKH JUHDWHU WKH HQHUJ\ VDYLQJ
This product was chosen from the Non-Insulated variants offered by Schuco. In comparison to insulated options, there is a limited number of products available for non-insulated practices. This option was ideal due to its Sound Insulation performance. Since these doors seperate only interior areas, sound insulation is paramount in order to maximize the comfort of the residents. This product also comes in a large variety of sizes, and is relatively economical compared to the more advanced thermally insulated options.
A4
A5
achieved class
A6
A1
A2
A3
A4
AE
applied pressure 150 Pa 300 Pa 450 Pa 600 Pa >600 Pa
5A
4A
6A
7A
8A
9A
E750
E900
E1050
E1200
E1350
E1500
(1200Pa) (1350Pa) (600Pa) (750Pa) (50Pa) <=24db (100Pa) <=36db (150Pa) (200Pa) air pressure 0db(0 Pa)<=12db performance achieved <=48db (250Pa) <=60db(300Pa) (450Pa) achieved 1A (1050Pa) 2A 3A (1500Pa) 4A class (900Pa) 160 111,54 165 124 72 178 136,6 78,87 145 96,59 km/h 0 32,2 45,53 56,67 64,39
air pressure
(0 Pa)
(50Pa)
(100Pa)
5A
Product regulations: EN 10077-2, EN 12412-2 performance achieved Low Medium High Top achieved class C1 Uw W/m2K <=6-8 <=2-4 C2<=1-2 C3 <=0-1 C4 A1 A2 A3 A4 Flex arrow (1/150)
C5 A5
Flex arrow (1/200)
B1
B2
B3
B4
B5
Flex arrow (1/300)
C1
C2
C3
C4
C5
6A
7A
64,39
72
78,87
GROUP 2:
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
96,5
Wind load resistance. 7KLV YDOXH LQGLFDWHV WKH GHJUHH RI UHVLVWDQFH WR GHIRUPDWLRQ WR WKH DFWLRQ RI ZLQG 7KLV GDWD LV XVHIXO IRU XQGHUVWDQGLQJ WKH TXDOLW\ RI WKH WRROV C6 orA6window frame. Product regulations: EN 10077-2, EN 12412-2 B6 C6
Applied pressure (400Pa) (800Pa) (1200Pa) (1500Pa) (2000Pa) (>2000Pa)
achieved class
C1
C2
C3
C4
C5
C6
Flex arrow (1/150)
A1
A2
A3
A4
A5
A6
B1home environment B2 Flex arrow (1/200) B3 from B4 B5 B6 Noise performance. The value that measures how door or window frames are able to acoustically isolate the H[WHUQDO QRLVHV 7KH VLPXODWLRQ WHVW SHUIRUPHG WR GHWHUPLQH WKLV YDOXH UHODWHV H[FOXVLYHO\ WR WKH GRRU RU ZLQGRZ IUDPH DQG WKH EXLOGLQJ C1 C2 C3 C4 C5 C6 Flex arrow (1/300) as a whole may not have the same sound insulation value. Applied pressure (400Pa) (800Pa) (1200Pa) (1500Pa) (2000Pa) (>2000Pa) Product regulations: EN 20140-3, EN ISO 140-3, EN ISO 717-1 0db
<=12db <=24db <=36db <=48db <=60db
Noise performance. The value that measures how door or window frames are ab
ECONOMY 50 PRODUCT SPECIFICATIONS Thermal transmittance. 7KH DYHUDJH KHDW ร RZ SHU VTXDUH PHWUH RI VXUIDFH WKDW SDVVHV WKURXJK D VWUXFWXUH WKDW GHOLPLWV WZR HQYLURQPHQWV H[WHUQDO QRLVHV 7KH VLPXODWLRQ WHVW SHUIRUPHG WR GHWHUPLQH WKLV YDOXH UHODWHV H[FO MATERIAL ENERGY BASIC DEPTH U VALUE MAX. GLASS THICKNESS SOUND INSULATION SURFACE FINISH AIR PERMEABILITY WATER TIGHTNESS WIND LOAD RESISTANCE
DW GLเฉ HUHQW WHPSHUDWXUHV ,Q WKH FDVH RI GRRU DQG ZLQGRZ IUDPHV LW LV XVHG WR PHDVXUH WKH HQHUJ\ Hเฉ FLHQF\ RI WKH SURGXFW ZKHQ LW FRPHV as a whole may not have the same sound insulation value. WR PDLQWDLQLQJ WKH WHPSHUDWXUH UHTXLUHG LQ GRPHVWLF HQYLURQPHQWV 7KH FORVHU WR ]HUR WKH WUDQVPLWWDQFH YDOXH WKH JUHDWHU WKH HQHUJ\ VDYLQJ Product regulations: EN 20140-3, EN ISO 140-3, EN ISO 717-1 Product regulations: EN 10077-2, EN 12412-2
Steel performance achieved Low Medium High Top Non-Insulated Uw W/m2K <=6-8 <=2-4 <=1-2 <=0-1 50 mm N/A 35 mm 43 dB Stainless Steel Class 4 (600 Pa) 9A (600 Pa; 111.54 km/h) C3 (1200 Pa)
performance achieved
0db
<=12db <=24db <=36db <=48db <=60db
Thermal transmittance. 7KH DYHUDJH KHDW ร RZ SHU VTXDUH PHWUH RI VXUIDFH WKDW SDV DW GLเฉ HUHQW WHPSHUDWXUHV ,Q WKH FDVH RI GRRU DQG ZLQGRZ IUDPHV LW LV XVHG WR PHDV WR PDLQWDLQLQJ WKH WHPSHUDWXUH UHTXLUHG LQ GRPHVWLF HQYLURQPHQWV 7KH FORVHU WR ]HUR Product regulations: EN 10077-2, EN 12412-2 performance achieved Uw W/m2K
Low
Medium
High
Top
<=6-8
<=2-4
<=1-2
<=0-1
The selected product ECONOMY 50 as chosen for interior use since Thermal Insulation was not required. Differing only from the others due to its fabrication of Stainless Steel, these indoor windows will be used mainly in an โ indoor facadeโ type implementation. Indoor seperations of glass walls will be outfitted with this product, owing mainly to its Sound Insulation capabilities.
PRODUCED BY AN AUTODESK STUDENT VERSION Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
8A
(150Pa) (200Pa) (250Pa) (300Pa) (450P
km/h 0 32,2 45,53 56,67 Thermal transmittance. 7KH DYHUDJH KHDW ร RZ SHU VTXDUH PHWUH RI VXUIDFH WKDW SDVVHV WKURXJK D VWUXFWXUH WKDW GHOLPLWV WZR HQYLURQPHQWV Wind load resistance. 7KLV YDOXH LQGLFDWHV WKH GHJUHH RI UHVLVWDQFH WR GHIRUPDWLRQ DQG DFFLGHQWDO RSHQLQJ RI WKH GRRUV ZKHQ VXEMHFWHG DW GLเฉ HUHQW WHPSHUDWXUHV ,Q WKH FDVH RI GRRU DQG ZLQGRZ IUDPHV LW LV XVHG WR PHDVXUH WKH HQHUJ\ Hเฉ FLHQF\ RI WKH SURGXFW ZKHQ LW FRPHV WR WKH DFWLRQ RI ZLQG 7KLV GDWD LV XVHIXO IRU XQGHUVWDQGLQJ WKH TXDOLW\ RI WKH WRROV DQG WKH PDWHULDOV XVHG LQ WKH FRQVWUXFWLRQ RI WKH GRRU WR PDLQWDLQLQJ WKH WHPSHUDWXUH UHTXLUHG LQ GRPHVWLF HQYLURQPHQWV 7KH FORVHU WR ]HUR WKH WUDQVPLWWDQFH YDOXH WKH JUHDWHU WKH HQHUJ\ VDYLQJ orregulations: window frame. Product EN 10077-2, EN 12412-2
performance achieved
frames are able to acoustically isolate the home environment from XH UHODWHV H[FOXVLYHO\ WR WKH GRRU RU ZLQGRZ IUDPH DQG WKH EXLOGLQJ
<=60db
A3
Product regulations: EN 20140-3, EN ISO 140-3, EN ISO 717-1 1A 2A 3A achieved class
TECHNICAL REFERENCES
E1200
111,54
:DWHUSURRร QJ 8VHG WR PHDVXUH WKH GHJUHH RI LPSHUPHDELOLW\ RI D GRRU RU Z :DWHUSURRร QJ 8VHG WR PHDVXUH WKH GHJUHH RI LPSHUPHDELOLW\ RI D GRRU RU ZLQGRZ IUDPH 7KLV YDOXH LV REWDLQHG E\ VSUD\LQJ WKH Noise performance. The value that measures how door or window frames are able to acoustically isolate the home environment from VXUIDFH RI WKH SURGXFW ZLWK D ZDWHU MHW DQG DW WKH VDPH WLPH VXEMHFWLQJ LW WR DQ LQWHULRU H[WHULRU SUHVVXUH GLเฉ HUHQFH WR VLPXODWH LQWHQVH VXUIDFH RI WKH SURGXFW ZLWK D ZDWHU MHW DQG DW WKH VDPH WLPH VXEMHFWLQJ LW WR DQ LQ Water Tightness Classification H[WHUQDO QRLVHV 7KH VLPXODWLRQ WHVW SHUIRUPHG WR GHWHUPLQH WKLV YDOXH UHODWHV H[FOXVLYHO\ WR WKH GRRU RU ZLQGRZ IUDPH DQG WKH EXLOGLQJ UDLQ DQG JXVWV RI ZLQG UDLQ DQG JXVWV RI ZLQG Product regulations: 1027,the EN same 12208 sound insulation value. as a whole may not EN have Product regulations: EN 1027, EN 12208
ADS 65.NI PRODUCT SPECIFICATIONS E1050
A2
B1 B4 B5 B6 A1 A2 B2 A3 B3 A4 AE C2 450 Pa C3 C4 Pa C5 C6 Flex arrowpressure (1/300) 150C1Pa 300 Pa 600 Pa >600 applied Applied pressure (400Pa) (800Pa) (1200Pa) (1500Pa) (2000Pa) (>2000Pa) Flex achieved arrow (1/200) class
RI D GRRU RU ZLQGRZ IUDPH 7KLV YDOXH LV REWDLQHG E\ VSUD\LQJ WKH WLQJ LW WR DQ LQWHULRU H[WHULRU SUHVVXUH GLเฉ HUHQFH WR VLPXODWH LQWHQVH
E900
96,59
Air permeability. 7KLV YDOXH LQGLFDWHV WKH DELOLW\ RI D FORVHG GRRU RU ZLQGRZ IUDPH WR DOORZ DLU WR EH ร OWHUHG ZKHQ VXEMHFWHG WR DQ LQWHULRU H[WHULRU Product regulations: EN 1026, EN 12207 SUHVVXUH GLเฉ HUHQFH 7KH ORZHU WKH YROXPHV RI GLVSHUVHG DLU WKH KLJK WKH TXDOLW\ RI WKH GRRU RU ZLQGRZ IUDPH DQG WKH JDVNHWV XVHG WR PDNH LW achieved class C1 C2 C3 C4 C5 C6
The selected product ADS 65.NI was chosen for interior use since Thermal Insulation was not required.
E750
78,87
Product regulations: EN 10077-2, EN 12412-2
Product regulations: EN 1026, EN 12207 A1 Flex arrow (1/150)
9A
72
WR WKH DFWLRQ RI ZLQG 7KLV GDWD LV XVHIXO IRU XQGHUVWDQGLQJ WKH TXDOLW\ RI WKH WRROV DQG WKH PDWHULDOV XVHG LQ WKH FRQVWUXFWLRQ RI WKH GRRU Air permeability. 7KLV YDOXH LQGLFDWHV WKH DELOLW\ RI D FORVHG GRRU RU ZLQGRZ IUDPH WR DOOR Air Permeability Classification or window frame. Wind Load Resistance Classification SUHVVXUH GLเฉ HUHQFH 7KH ORZHU WKH YROXPHV RI GLVSHUVHG DLU WKH KLJK WKH TXDOLW\ RI WKH
door and faรงade systems made from aluminium, PVC-U and steel.
8A
64,39
56,67
Product UNI EN 14351-1 Wind standard: load resistance. 7KLV YDOXH LQGLFDWHV WKH GHJUHH RI UHVLVWDQFH WR GHIRUPDWLRQ DQG DFFLGHQWDO RSHQLQJ RI WKH GRRUV ZKHQ VXEMHFWHG
RZ IUDPH WR DOORZ DLU WR EH ร OWHUHG ZKHQ VXEMHFWHG WR DQ LQWHULRU H[WHULRU H TXDOLW\ RI WKH GRRU RU ZLQGRZ IUDPH DQG WKH JDVNHWV XVHG WR PDNH LW The following product and supporting data were provided by Schuco - one of the leading suppliers of high-quality window,
7A
Product standard: UNI EN 14351-1
(150Pa) (200Pa) (250Pa) (300Pa) (450Pa) (600Pa) (750Pa) (900Pa) (1050Pa) (1200Pa) (1350Pa) (1500Pa)
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
918816 918417 912788 918641
927160 Seyedi Zadeh Fereshteh 912843 Sheikhhassani Navid Zohourparvaz Mohamadreza 927401
GREENFALL FINAL PRESENTATION_December 20th
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
7.3
air pressure
EXTERIOR FACADE GLASS
(0 Pa)
(50Pa)
(100Pa)
0
32,2
45,53
km/h
Product standard: UNI EN 14351-1
Product standard: UNI EN 14351-1
(150Pa) (200Pa) (250Pa) (300Pa) (450Pa) (600Pa) (750Pa) (900Pa) (1050Pa) (1200Pa) (1350Pa) (1500Pa) 64,39
56,67
124
136,6
160
145
165
178
Product Details
Product regulations: EN 1026, EN 12207
Product regulations: EN 1026, EN 12207
achieved class
C1
C2
C3
C4
C5
C6
Flexclass arrow (1/150) achieved A1
A1 A2
A2 A3
A4A3
AE A4
A5
A6
B4
B5
B6
C4
C5
C6
B1
Flex arrow (1/200)
B2
B3
applied pressure 150 Pa 300 Pa 450 Pa 600 Pa >600 Pa C1
TECHNICAL REFERENCES
Flex arrow (1/300)
Aluminum Highly Thermally Insulated 1.09 (W/m2 K) 64 mm 52 dB AE 1350 (1350 Pa) RE 1350 (1350 Pa; 165 km/h) 2.0/3.0 kN/m2
111,54
96,59
SUHVVXUH GLเฉ HUHQFH 7KH ORZHU WKH YROXPHV RI GLVSHUVHG DLU WKH KLJK WKH TXDOLW\ RI WKH GRRU RU ZLQGRZ IUDPH DQG WKH JDVNHWV XVHG WR PDNH LW Product regulations: EN 10077-2, EN 12412-2
The selected product AOC 50 TI.HI was chosen for its impressive Thermal Transmittance performance as well as excellent Sound Insullation capabilities.
MATERIAL ENERGY E1200 9A E1350 E750 E1500 E900 E1050 600Pa) (750Pa) (900Pa) (1050Pa) (1200Pa) (1350Pa) (1500Pa) U VALUE 160 111,54 165 124 178 136,6 145 MAX. GLASS THICKNESS SOUND INSULATION G DFFLGHQWDO RSHQLQJ RI WKH GRRUV ZKHQ VXEMHFWHG AIR PERMEABILITY WKH PDWHULDOV XVHG LQ WKH FRQVWUXFWLRQ RI WKH GRRU WATER TIGHTNESS WIND LOAD RESISTANCE
78,87
Wind load resistance. 7KLV YDOXH LQGLFDWHV WKH GHJUHH RI UHVLVWDQFH WR GHIRUPDWLRQ DQG DFFLGHQWDO RSHQLQJ RI WKH GRRUV ZKHQ VXEMHFWHG WR WKH DFWLRQ RI ZLQG 7KLV GDWD LV XVHIXO IRU XQGHUVWDQGLQJ WKH TXDOLW\ RI WKH WRROV DQG WKH PDWHULDOV XVHG LQ WKH FRQVWUXFWLRQ RI WKH GRRU Air permeability. 7KLV YDOXH LQGLFDWHV WKH DELOLW\ RI D FORVHG GRRU RU ZLQGRZ IUDPH WR DOOR Air permeability. 7KLV YDOXH LQGLFDWHV WKH DELOLW\ RI D FORVHG GRRU RU ZLQGRZ IUDPH WR DOORZ DLU WR EH ร OWHUHG ZKHQ VXEMHFWHG WR DQ LQWHULRU H[WHULRU Air Permeability Classification or window frame. Wind Load Resistance Classification SUHVVXUH GLเฉ HUHQFH 7KH ORZHU WKH YROXPHV RI GLVSHUVHG DLU WKH KLJK WKH TXDOLW\ RI WKH
U WR EH ร OWHUHG ZKHQ VXEMHFWHG WR DQ LQWHULRU H[WHULRU The following product was sourced from Schuco - a dynamic and high performance unitised facade implement. U RU ZLQGRZ IUDPH DQG WKH JDVNHWV XVHG WR PDNH LW
RZ IUDPH 7KLV YDOXH LV REWDLQHG E\ VSUD\LQJ WKH RU H[WHULRU SUHVVXUH GLเฉ HUHQFH WR VLPXODWH LQWHQVH AOC 50 TI.HI PRODUCT SPECIFICATIONS
72
C2
C3
achieved class
A1
A2
A3
A4
AE
applied pressure 150 Pa 300 Pa 450 Pa 600 Pa >600 Pa
Applied pressure (400Pa) (800Pa) (1200Pa) (1500Pa) (2000Pa) (>2000Pa)
:DWHUSURRร QJ 8VHG WR PHDVXUH WKH GHJUHH RI LPSHUPHDELOLW\ RI D GRRU RU ZLQGRZ IUDPH 7KLV YDOXH LV REWDLQHG E\ VSUD\LQJ WKH :DWHUSURRร QJ 8VHG WR PHDVXUH WKH GHJUHH RI LPSHUPHDELOLW\ RI D GRRU RU Z VXUIDFH RI WKH SURGXFW ZLWK D ZDWHU MHW DQG DW WKH VDPH WLPH VXEMHFWLQJ LW WR DQ LQWHULRU H[WHULRU SUHVVXUH GLเฉ HUHQFH WR VLPXODWH LQWHQVH Noise performance. The value that measures how door or window frames are able to acoustically isolate the home environment from VXUIDFH RI WKH SURGXFW ZLWK D ZDWHU MHW DQG DW WKH VDPH WLPH VXEMHFWLQJ LW WR DQ LQ Water Tightness Classification UDLQ DQG JXVWV RI ZLQG H[WHUQDO QRLVHV 7KH VLPXODWLRQ WHVW SHUIRUPHG WR GHWHUPLQH WKLV YDOXH UHODWHV H[FOXVLYHO\ WR WKH GRRU RU ZLQGRZ IUDPH DQG WKH EXLOGLQJ
UDLQ DQG JXVWV RI ZLQG
Productasregulations: EN 1027, 12208 a whole may not EN have the same sound insulation value. Product regulations: EN 20140-3, EN ISO 140-3, EN ISO 717-1
1A
achieved class
2A
3A
Product regulations: EN 1027, EN 12208
5A
4A
6A
7A
9A
8A
E750
E900
E1050
E1200
E1350
E1500
performance achieved(0 Pa)0db (50Pa) <=12db <=24db(150Pa) <=36db <=48db <=60db(300Pa) (450Pa)achieved 5A 2A 3A 4A (1500Pa) (1200Pa) (600Pa) class (200Pa) (1350Pa) (750Pa) 1A (250Pa) (900Pa) (1050Pa) (100Pa) air pressure
km/h
0
32,2
45,53
64,39
56,67
72
78,87
96,59
air pressure 111,54 124 (0 Pa) 136,6 (50Pa) 145
(100Pa) 160
6A
7A
8A
(200Pa) (250Pa) (300Pa) (450 (150Pa) 165 178
km/h 0 32,2 45,53 56,67 64,39 Thermal transmittance. 7KH DYHUDJH KHDW ร RZ SHU VTXDUH PHWUH RI VXUIDFH WKDW SDVVHV WKURXJK D VWUXFWXUH WKDW GHOLPLWV WZR HQYLURQPHQWV DW GLเฉ HUHQW WHPSHUDWXUHV ,Q WKH FDVH RI GRRU DQG ZLQGRZ IUDPHV LW LV XVHG WR PHDVXUH WKH HQHUJ\ Hเฉ FLHQF\ RI WKH SURGXFW ZKHQ LW FRPHV WindWR PDLQWDLQLQJ WKH WHPSHUDWXUH UHTXLUHG LQ GRPHVWLF HQYLURQPHQWV 7KH FORVHU WR ]HUR WKH WUDQVPLWWDQFH YDOXH WKH JUHDWHU WKH HQHUJ\ VDYLQJ load resistance. 7KLV YDOXH LQGLFDWHV WKH GHJUHH RI UHVLVWDQFH WR GHIRUPDWLRQ DQG DFFLGHQWDO RSHQLQJ RI WKH GRRUV ZKHQ VXEMHFWHG
72
78,87
96,5
WR WKH DFWLRQ RI ZLQG 7KLV GDWD LV XVHIXO IRU XQGHUVWDQGLQJ WKH TXDOLW\ RI WKH WRROV DQG WKH PDWHULDOV XVHG LQ WKH FRQVWUXFWLRQ RI WKH GRRU Product regulations: EN 10077-2, EN 12412-2 Wind load resistance. 7KLV YDOXH LQGLFDWHV WKH GHJUHH RI UHVLVWDQFH WR GHIRUPDWLRQ or window frame. performance achieved
Low
Medium
High
Top
<=6-8
<=2-4
<=1-2
<=0-1
Product regulations: EN 10077-2, EN 12412-2 Uw W/m2K
WR WKH DFWLRQ RI ZLQG 7KLV GDWD LV XVHIXO IRU XQGHUVWDQGLQJ WKH TXDOLW\ RI WKH WRROV or window frame.
achieved class
C1
C2
C3
C4
C5
Flex arrow (1/150)
A1
A2
A3
A4
A5
C6 Product regulations: EN 10077-2, EN 12412-2
Flex arrow (1/200)
B1
B2
B3
B4
B5
B6
Flex arrow (1/300)
C1
C2
C3
C4
C5
C6
A6
Applied pressure (400Pa) (800Pa) (1200Pa) (1500Pa) (2000Pa) (>2000Pa)
achieved class
C1
C2
C3
C4
C5
C6 A6
Flex arrow (1/150)
A1
A2
A3
A4
A5
Flex arrow (1/200)
B1
B2
B3
B4
B5
B6
Flex arrow (1/300)
C1
C2
C3
C4
C5
C6
(400Pa)the(800Pa) pressure isolate (1500Pa) (2000Pa) (>2000Pa) Noise performance. The value that measures how door or window frames are able Applied to acoustically home (1200Pa) environment from H[WHUQDO QRLVHV 7KH VLPXODWLRQ WHVW SHUIRUPHG WR GHWHUPLQH WKLV YDOXH UHODWHV H[FOXVLYHO\ WR WKH GRRU RU ZLQGRZ IUDPH DQG WKH EXLOGLQJ as a whole may not have the same sound insulation value.
o acoustically isolate the home environment from HO\ WR WKH GRRU RU ZLQGRZ IUDPH DQG WKH EXLOGLQJ
Product regulations: EN 20140-3, EN ISO 140-3, EN ISO 717-1 performance achieved
0db
<=12db <=24db <=36db <=48db
Noise performance. The value that measures how door or window frames are ab H[WHUQDO QRLVHV 7KH VLPXODWLRQ WHVW SHUIRUPHG WR GHWHUPLQH WKLV YDOXH UHODWHV H[FO <=60db as a whole may not have the same sound insulation value. Product regulations: EN 20140-3, EN ISO 140-3, EN ISO 717-1
Thermal transmittance. 7KH DYHUDJH KHDW ร RZ SHU VTXDUH PHWUH RI VXUIDFH WKDW SDVVHV WKURXJK D VWUXFWXUH WKDW GHOLPLWV WZR HQYLURQPHQWV performance achieved 0db <=12db <=24db <=36db <=48db <=60db DW GLเฉ HUHQW WHPSHUDWXUHV ,Q WKH FDVH RI GRRU DQG ZLQGRZ IUDPHV LW LV XVHG WR PHDVXUH WKH HQHUJ\ Hเฉ FLHQF\ RI WKH SURGXFW ZKHQ LW FRPHV WR PDLQWDLQLQJ WKH WHPSHUDWXUH UHTXLUHG LQ GRPHVWLF HQYLURQPHQWV 7KH FORVHU WR ]HUR WKH WUDQVPLWWDQFH YDOXH WKH JUHDWHU WKH HQHUJ\ VDYLQJ Product regulations: EN 10077-2, EN 12412-2
WKURXJK D VWUXFWXUH WKDW GHOLPLWV WZR HQYLURQPHQWV WKH HQHUJ\ Hเฉ FLHQF\ RI WKH SURGXFW ZKHQ LW FRPHV H WUDQVPLWWDQFH YDOXH WKH JUHDWHU WKH HQHUJ\ VDYLQJ
performance achieved Uw W/m2K
Low
Medium
High
Top
<=6-8
<=2-4
<=1-2
<=0-1
Thermal transmittance. 7KH DYHUDJH KHDW ร RZ SHU VTXDUH PHWUH RI VXUIDFH WKDW SD DW GLเฉ HUHQW WHPSHUDWXUHV ,Q WKH FDVH RI GRRU DQG ZLQGRZ IUDPHV LW LV XVHG WR PHDV WR PDLQWDLQLQJ WKH WHPSHUDWXUH UHTXLUHG LQ GRPHVWLF HQYLURQPHQWV 7KH FORVHU WR ]HUR Product regulations: EN 10077-2, EN 12412-2 performance achieved
FACADE SPECIFICATIONS
Uw W/m2K
Low
Medium
High
Top
<=6-8
<=2-4
<=1-2
<=0-1
This product is a more popular one from the Schuco lineup, and is extremely effective as a functioning and high-performing facade glass. High thermal insullation as well as Sound Insulation are both plusses, with Air Permeability and Water Tightness being perfect for the Hong Kong climate. This product also is extremely versatile, adapting to doors and other various implementations such as operable windows.
PRODUCED BY AN AUTODESK STUDENT VERSION Krebs Francesco GROUP 2:
Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
918816 Nemati Ali 918417 Rotundo Marco Salvatore 912788 Saccuman Marta 918641
927160 Seyedi Zadeh Fereshteh 912843 Sheikhhassani Navid Zohourparvaz Mohamadreza 927401
GREENFALL FINAL PRESENTATION_December 20th
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
7.4
GENERAL TYPOLOGIES & TOTAL TRANSPARENT AREA 4.15 1.40 1.40
0.04
The following details show the basic standard transparent typologies used in the design 1.60of the 1.60 1.60 project. Specific variants of these typologies are found in the Double Unit Residential Floors of Building 3, as well as the common floor plan of Building 3, which 0.05 was used for Optimization 0.04 0.05 0.08 0.04 purposes. 0.05 PRODUCED BY AN AUTODESK STUDENT PRODUCED BY AN AUTODESK STUDENT VERSIONVERSION
PRODUCED BY AN AUTODESK STUDENT VERSION PRODUCED BY ANBY AUTODESK STUDENT VERSION PRODUCED AN AUTODESK STUDENT VERSION **All dimensions shown in meters** Drawing Scale = 1:100 1.40
0.05
0.050.05
1.601.60
1.60
0.04
4.15 0.04 0.04
0.04
0.05
4.15
4.154.15
3.30
1.60
0.05
0.050.05 0.05 0.08
0.08
1.62 0.04
1.60
3.30
0.04
0.040.04 0.05
0.08 0.15
B1 - SINGLE B2 - SINGLE EXTERIOR (FIXED) B3 - SINGLE EXTERIOR DOUBLE WINDOW - TYPE A2 B1 - DOUBLE (TILT/SLIDE) WINDOW B2 - DOUBLE B3 - DOUBLE TYPE A3 B1 - FAMILY B3 - FAMILY
0.080.08 0.15
1.60 1.60
0.08
1.60 0.05
0.05 0.05 0.05
0.05
0.15
0.05
3.30
1.60
1.601.60
1.60
2.00 1.62 3.303.30
0.04
3.30
0.040.07 0.15
0.04
0.04 FLOOR TYPE
2.10
0.15 0.04 0.04
0.15 0.15 0.15 0.08
1.60
1.601.60
0.04
1.60 1.60EXTERIOR (FIXED) EXTERIOR EXTERIOR (OPERABLE) EXTERIOR SINGLE EXTERIOR (FIXED) EXTERIOR (OPERABLE) EXTERIOR DOUBLE EXTERIOR (FIXED) EXTERIOR (OPERABLE) EXTERIOR DOUBLEDOUBLE EXTERIOR SINGLE WINDOW TYPE A2 (TILT/SLIDE) WINDOW TYPE A1 EXTERIOR (FIXED) EXTERIOR DOUBLE RABLE) WINDOW - - WINDOW WINDOW - TYPE A2A2 WINDOW - TYPE A1A1 (TILT/SLIDE) WINDOW EXTERIOR (FIXED) EXTERIOR (TILT/SLIDE) DOUBLE R (OPERABLE) WINDOW - TYPE WINDOW - TYPE (TILT/SLIDE) WINDOW EXTERIOR DOUBLE (TILT/SLIDE) WINDOW TYPE A3 WINDOW TYPE A2 (TILT/SLIDE) WINDOW A1 TYPE A4 A3-A3 TYPE WINDOW - TYPE A2 (TILT/SLIDE) WINDOW - TYPE TYPE 0.08 A1 DOOR - TYPE B1 A4 0.05 0.15 TYPE 0.04 TYPE A3TYPE A3 2.00
0.15
0.07
0.10
0.06
2.10 0.07 0.080.08 0.10
0.070.07
0.07 0.08
0.08
0.08 0.10
0.06 0.06
2.10 EXTERIOR EXTERIOR SINGLE EXTERIOR SINGLE SINGLE EXTERIOR (TILT/SLIDE) EXTERIOR SINGLE EXTERIOR DOUBLE (TILT/SLIDE) WINDOW - WINDOW EXTERIOR SINGLE EXTERIOR DOUBLEDOUBLE (TILT/SLIDE) WINDOW SINGLE DOOR -INTERIOR TYPE B1DOUBLE TYPE A4 EXTERIOR DOUBLE (TILT/SLIDE) WINDOW DOOR TYPE B1INTERIOR TYPE A4 EXTERIOR DOUBLE (TILT/SLIDE) WINDOW DOOR - TYPE B1 TYPE -A4 INTERIOR DOUBLE DOOR TYPE DOOR - TYPE B2B3 DOOR - DOOR TYPE B1 TYPE A4 0.07 - TYPE B1 TYPE A4 0.08 DOOR - TYPE B2 2.002.00
1.00
2.00
EXTERIOR DOUBLE DOOR - TYPE B1 1.00 2.10
2.10
0.100.10
0.10 0.06
0.06
SK STUDENT VERSION
2.00
2.00
2.102.10
0.10 0.060.06 0.06 0.06
2.10
3.00 2.10
0.10
0.06 0.10
1.00
1.001.00 1.00
2.102.10
2.10
0.06
2.10 0.10 0.06 0.06 0.100.10 0.060.06 0.05
2.70
3.00 3.00 2.10
0.06
INTERIOR SINGLE DOOR - TYPE B3 3.00
0.06
0.05 0.060.06
3.003.00
3.00
0.06
0.060.06 3.00 2.70
2.70 Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic0.06 year 2019/200.06 0.06 0.06 0.06
0.06
2.70
3.00 EXTERIOR FACADE TYPE C1 3.00 3.00
0.05
2.702.70 0.05
0.05
0.050.05
2.702.70
2.70
2.70 Krebs Francesco Caniato Giorgia Nemati Ali 918624 Dieterich Murr Alice 824939 Rotundo Marco Salvatore 0.05Marta Korovina Viktoriia 9130450.050.05Saccuman
GROUP 2:
0.06
2.70
EXTERIOR FACADE INTERIOR GLASS -3.00 TYPE C1 TYPE C2
3.003.00
0.05
2.70
B3.12
2.70 2.70
TYPE A1 EXTERIOR 0.05 OPERABLE WINDOWS 0.15 0.04 NO. OF UNITS GLASS AREA NO. OF FLOORS TOTALGLASS AREA 4 1.73 11 76.12 6 1.73 12 124.56 EXTERIOR DOUBLE 4 1.73 11 76.12 6 1.73 8 (TILT/SLIDE) WINDOW -83.04 8 1.73 10 138.4 TYPE A3 6 1.73 7 72.66 4 1.73 7 48.44 2.00 4 1.73 6 41.52 TYPE A4 EXTERIOR SINGLE SLIDING WINDOWS NO. OF UNITS GLASS AREA NO. OF FLOORS TOTALGLASS AREA 2.10 1.85 1 7 12.95 1 1.85 6 11.1
TYPE B1 GLASS EXTERIOR DOUBLE DOORS FLOOR TYPE NO. OF UNITS GLASS AREA NO. OF FLOORS TOTALGLASS AREA LEVEL 1 3 2.9 1 8.7 LEVEL 2 2 2.9 1 5.8 EXTERIOR DOUBLE LEVEL 3 3 2.9 1 8.7 LEVEL 4 4 2.9 1 11.6 DOOR - TYPE B1 B1 - SINGLE 2 2.9 11 63.8 B2 - SINGLE 2 2.9 12 69.6 B3 - SINGLE 2 2.9 11 63.8 1.00 B1 - DOUBLE 2 2.9 8 46.4 B2 - DOUBLE 2 2.9 10 58 B3 - DOUBLE 2 2.9 7 40.6 B1 - FAMILY 2 2.9 7 40.6 B3 - FAMILY 2 2.9 6 34.8 B1 - LIBRARY FL. 1 5 2.9 1 14.5 2.10 B2 - LIBRARY FL. 1 2 2.9 1 5.8 B3 - LIBRARY FL. 1 5 2.9 1 14.5 B1 - COMMON 1 2.9 4 11.6 B2 - COMMON 1 2.9 3 8.7 B3 - 0.10 COMMON 0.06 1 2.9 4 11.6 B1 - ROOF 2 2.9 1 5.8 B2 - ROOF 1 2.9 1 2.9 B3 - ROOF 2 2.9 1 5.8
0.07
0.08
0.05 0.05
0.050.05
0.05
918816 918417 912788 918641
INTERIOR SINGLE DOOR - TYPE B3 TYPE C1
1.40
EXTERIOR FAÃ&#x2021;ADE GLASS FLOOR GLASS AREA NO. OF FLOORS TOTALGLASS AREA B3.11 TYPE LEVEL 1 51.8 1 51.8 LEVEL 2 147.8 1 147.8 LEVEL 3 242.6 1 242.6 3.00 LEVEL 4 64 1 64 B1 - SINGLE 50.84 11 559.24 B2 - SINGLE 59.3 12 711.6 B3 - SINGLE 50.84 11 559.24 TYPE A1 B1 - DOUBLE 48.7 8 389.6 0.05 B2 - DOUBLE 75.3 10 753 2.70 B3 - DOUBLE 48.7 7 340.9 B1 - FAMILY 57.3 7 401.1 B3 - FAMILY 57.3 6 343.8 B1 - LIBRARY FL. 1 267 1 267 0.05 B2 - LIBRARY FL. 1 317.6 1 317.6 0.05 B3 - LIBRARY FL. 1 267 1 267 B1 - LIBRARY 0 1 0 TYPEFL. A22 B2 - LIBRARY FL. 2 0 1 0 INTERIOR B3 - LIBRARY FL. 2 GLASS01 0 B1 -TYPE COMMONC2 78.3 4 313.2 B2 - COMMON 91.7 3 275.1 B3.11 B3 - COMMON 78.3 4 313.2 B1 - ROOF 36.3 1 36.3 B2 - ROOF 20 1 20 B3 - ROOF 36.3 1 36.3
2.70
B3.10 LAYOUT
Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401
FLOOR TYPE B1 - SINGLE B2 - SINGLE B3 - SINGLE B1 - DOUBLE B2 - DOUBLE B3 - DOUBLE B1 - FAMILY B3 - FAMILY
FLOOR TYPE B1 - SINGLE B2 - SINGLE B3 - SINGLE B1 - DOUBLE B2 - DOUBLE B3 - DOUBLE B1 - FAMILY B3 - FAMILY
TYPE A2 EXTERIOR FIXED WINDOWS GLASS AREA NO. OF FLOORS TOTALGLASS AREA 10.2 11 112.2 12.7 12 152.4 10.2 11 112.2 7.5 8 60 12.7 10 127 7.5 7 52.5 7.5 7 52.5 7.5 6 45
TYPE A3 EXTERIOR DOUBLE SLIDING WINDOWS NO. OF UNITS GLASS AREA NO. OF FLOORS TOTALGLASS AREA 4 10.5 11 462 6 10.5 12 756 4 10.5 11 462 2 10.5 8 168 3 10.5 10 315 2 10.5 7 147 2 10.5 7 147 2 10.5 6 126
PRODUCED BY AN AUTODESK STU
PRODUCED BY AN AUTODESK STUDENT VERSION PRODUCED BY AN AUTODESK STUDENT VERSION
BASIC TYPOLOGIES
INTERIOR INTERIOR SINGLE INTERIOR SINGLE SINGLE INTERIOR INTERIOR DOUBLE INTERIOR DOUBLEDOUBLE DOOR - TYPE B3 INTERIOR SINGLE DOOR - TYPE B3B3 INTERIOR SINGLE DOOR - TYPE DOOR - TYPE B2 INTERIOR DOUBLEDOUBLE DOOR - TYPE B2B2 INTERIOR DOOR - TYPE DOOR - DOOR TYPE B3 0.06 - TYPE B3 0.06 0.06 0.05 DOOR - DOOR TYPE 0.10 B2 0.06 - 0.06 TYPE B2 0.05
0.06
2.10 2.10
TOTAL TRANSPARENT AREA CALCULATION
PRODUCED BY AN AUTODESK STUDENT VERSION
PRODUCED BY AN AUTODESK STUDENT VERSION PRODUCED BY AN AUTODESK STUDENT VERSION
0.15
0.150.15
2.10
2.102.10
2.10
2.10
0.05
2.00 1.00
2.00
PRODUCED BY AN AUTODESK STUDENT VERSION
1.60
0.050.05
0.15
0.05
1.60
1.601.60
2.00 1.60
2.002.00
PRODUCED BY AN AUTODESK STUDENT VERSION PRODUCED BY AN AUTODESK STUDENT VERSION
0.04
PRODUCED BY AN AUTO
0.10
2.00 DOUBLE (TILT/SLIDE) WINDOW TYPE A3
0.04 0.040.04EXTERIOR
1.62
PRODUCED BY AN AUTODESK STUDENT VERSION
0.05
1.62
2.00
PRODUCED BY AN AUTODESK STUDENT VERSION
RIOR (FIXED) OW - TYPE A2 0.04
1.62
1.621.62
FLOOR TYPE B1 - FAMILY B3 - FAMILY
PRODUCED BY AN AUTODESK STUDENT VERSION
PRODUCED BY AN AUTODESK STUDENT VERSION
0.04
1.60
0.04
0.05 0.05
PRODUCED BY AN AUTODESK STUDENT VERSION
1.60 4.15
0.04
1.60
PRODUCED BY AN AUTODESK STUDENT VERSION
1.40
4.15
PRODUCED BY AN AUTODESK STUDENT VERSION
UTODESK STUDENT VERSION
3.30
The following charts show the transparent glass area for the entire project. (Only exterior glass types were considered 1.60in the area calculations) **All area measurements 1.60are given in m2**
EXTERIOR (OPERABLE) EXTERIOR (FIXED) WINDOW - TYPE A1 WINDOW - TYPE A2
EXTERIOR (OPERABLE) WINDOW - TYPE A1
1.401.40
4.15 3.30
0.04
GREENFALL FINAL PRESENTATION_December 20th
PRODUCED BY AN AUTODESK STUDENT VERSION
TOTAL EXTERIOR GLASS AREA FLOOR TYPE GLASS AREA LEVEL 1 60.5 LEVEL 2 153.6 LEVEL 3 251.3 LEVEL 4 75.6 B1 - SINGLE 1272.92 B2 - SINGLE 1814.16 B3 - SINGLE 1272.92 B1 - DOUBLE 747.04 B2 - DOUBLE 1339.4 B3 - DOUBLE 653.66 B1 - FAMILY 702.59 B3 - FAMILY 602.22 B1 - LIBRARY FL. 1 281.5 B2 - LIBRARY FL. 1 323.4 B3 - LIBRARY FL. 1 281.5 B3.41 B1 - LIBRARY FL. 2 0 B2 - LIBRARY FL. 2 0 B3 - LIBRARY FL. 2 0 B1 - COMMON 324.8 B2 - COMMON 283.8 B3 COMMON 324.8 B3.42 B1 - ROOF 42.1 B2 - ROOF 22.9 B3 - ROOF 42.1
TOTAL EXTERIOR GLASS AREA
10872.81
TOTAL EXTERIOR GLASS AREA / BUILDING BUILDING / AREA GLASS AREA TYPE C1 LEVEL 1 60.5 LEVEL 2 153.6 LEVEL 3 251.3 LEVEL 4 75.6 B3.41 BUILDING 1 3371.39 BUILDING 2 3835.66 BUILDING 3 3177.64
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
B3.40 LAYOU
7.5
GLASS OPTIONEERING
Product Comparison
LU WR EH Ã&#x20AC;OWHUHG ZKHQ VXEMHFWHG WR DQ LQWHULRU H[WHULRU Glass products and data sourced from AGC Asia Pacific Pte Ltd., a Singapore-based U RU ZLQGRZ IUDPH DQG WKH JDVNHWV XVHG WR PDNH LW sales and marketing organization dedicated to provide solutions in the Architectural,
Automotive, Solar and Industrial fields. It is part of the AGC group, a leading glass manufacturer of flat glass in the world
The three highlighted products shown in the chart below were chosen for the Glass Optioneering process. This will combine these three glass types with their corresponding frames from Schuco. By analyzing the performance of each glass, we will be able to determine which combination of glass and frame will give us the best results - meeting both our energy targets as well as being reasonably economical.
RZ IUDPH 7KLV YDOXH LV REWDLQHG E\ VSUD\LQJ WKH RU H[WHULRU SUHVVXUH GLà©&#x201D;HUHQFH WR VLPXODWH LQWHQVH
E750
E900
E1200
E1050
E1350
Thermal Transmittance - Rate of transfer of heat through the material, expressed in W/m2 K
E1500
LIGHT PROPERTIES Light Transmittance External Light 160 111,54 124 145 (%) Reflection (%) 4 / Planibel G A 83 4 / Planibel G fasT B 83 G DFFLGHQWDO RSHQLQJ RI WKH GRRUV ZKHQ VXEMHFWHG SINGLE GLAZE 4 / Planibel Pure Comfort 14 C 84 WKH PDWHULDOV XVHG LQ WKH FRQVWUXFWLRQ RI WKH GRRU 4 / Planibel Pure Comfort 10 D 82 4 - 16 / 4 Planibel G (Air 100%) E 75 4 - 16 / 4 Planibel G fasT (Air 100%) F 75 4 - 16 / 4 Planibel Pure Comfort 14 (Air 100%) G 76 H 4 - 16 / 4 Planibel Pure Comfort 10 (Air 100%) 75 4 - 16 / 4 iplus Top 1.1T (Argon 90%) I 82 DOUBLE GLAZE 4 - 16 / 4 iplus 1.0T (Argon 90%) J 81 4 / 16 / 4 iplus Advanced 1.0T (Argon 90%) + 74 K Planibel Pure Comfort 10 4 / 16 / 4 iplus Advanced 1.0T (Argon 90%) + 75 L Planibel Pure Comfort 14 o acoustically isolate the home environment from M 4 / 14 - 4 / 14 - 4 iplus Top 1.1T (Argon 90%) 75 HO\ WR WKH GRRU RU ZLQGRZ IUDPH DQG WKH EXLOGLQJ TRIPLE GLAZE N 4 / 14 - 4 / 14 - 4 iplus 1.0T (Argon 90%) 73 O 4 / 16 - 4 / 16 - 4 iplus 1.0T (Argon 90%) 73
10 10 11 10 17 17 17 17 12 13
THERMAL PROPERTIES Thermal Transmittance (W/m2 K) 3.7 3.7 3.7 3.5 1.7 1.7 1.7 1.6 1.1 1
16
1
19
57
16
1
17
15 18 18
0.6 0.6 0.5
21 20 20
600Pa) (750Pa) (900Pa) (1050Pa) (1200Pa) (1350Pa) (1500Pa)
165 PRODUCT 178 NAME
CODE 136,6
WKURXJK D VWUXFWXUH WKDW GHOLPLWV WZR HQYLURQPHQWV 3.5 3 WKH HQHUJ\ Hà©&#x2022;FLHQF\ RI WKH SURGXFW ZKHQ LW FRPHV 2.5 H WUDQVPLWWDQFH YDOXH WKH JUHDWHU WKH HQHUJ\ VDYLQJ
H
I
J
K
L
M
N
4
20
2
10
0
0 A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
DATA ANALYSIS
10
72 5
70 68 D
E
F
G
H
I
J
Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
K
L
M
N
O
GROUP 2:
0
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
** 4 / 14 - 4 / 14 - 4 iplus 1.0T (Argon 90%) signifies the following: 4 = 4 mm layer of glass / = layer of iplus 1.0T glazing 14 = 14 mm of space filled with 90% Argon
1 0.8 0.6 0.4 0.2 0
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
K
L
M
N
O
Sound Insula�on (dB)
Shading Coeï¬&#x192;cient
76
** All options were simulated using 4mm Planibel Clearlite glass with Thermal Toughening (product available from ACG)
Selec�vity
33.5
1
15
C
33 33 33
30
80
B
1.4 1.49 1.49
40
20
A
0.62 0.57 0.57
50
84
66
54 49 49
Selectivity - The ratio between light transmission and solar factor of the material.
1.6
Total Energy Absorp�on (%)
74
30
60
25
78
1.33
14
Light Transmi�ance (%)
82
0.65
1.4
O
86
57
1.2
0.5 G
30
70
1
F
1.3
80
6
E
0.65
16
8
D
30 30 30 30 30 30 30 30 30 30
Solar Factor (%)
12
Solar Factor - Percent of the solar energy which is transferred indoors through the material
Sound Insulation (dB)
1.08 1.08 1.11 1.13 1 1 1.01 1 1.25 1.32
18
1.5
C
Selectivity
90
10
B
ACOUSTIC PROPERTIES
20
2
A
ENERGY PROPERTIES Total Energy Shading Solar Factor (%) Absorption (%) Coefficient 15 77 0.88 15 77 0.88 16 75 0.87 19 73 0.84 18 75 0.87 18 75 0.87 19 75 0.86 22 75 0.86 14 66 0.76 13 62 0.71
External Light Reï¬&#x201A;ec�on (%)
Thermal Transmi�ance (W/m2 K) 4
0
External Light Reflection - Percent of exterior light radiation that is reflected off the material
KEY DEFINITIONS
9A
Light Transmittance - Percent of light radiation that can pass through the material
The following chart explores the most suitable product options available through ACG. By analyzing each productâ&#x20AC;&#x2122;s individual capabilities and comparing them, the three best options for the Greenfall project in Hong Kong were chosen.
0.9
33
0.8
32.5
0.7
32
0.6
31.5
0.5
31
0.4
30.5
0.3
30
0.2
29.5
0.1
29
0
28.5 A
B
C
D
E
F
G
H
918816 Krebs Francesco Seyedi Zadeh Fereshteh 927160 Caniato Giorgia Sheikhhassani Navid 912843 Nemati Ali 918624 918417 PRODUCED BY AN AUTODESK PRODUCED BY AN Rotundo AUTODESK STUDENT Dieterich Murr Alice 824939 912788 VERSION Marco Salvatore Zohourparvaz Mohamadreza 927401 Korovina Viktoriia 913045 Saccuman Marta 918641
I
J
K
L
M
N
O
A
B
C
D
E
F
G
H
GREENFALL
STUDENT VERSION
FINAL PRESENTATION_December 20th
I
J
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
7.6.1
GLASS OPTIONEERING
Glass Options GLASS TYPE:
4 - 16 / 4 Planibel Pure Comfort 10 (Air 100%)
Greenfall
4 / 16 / 4 iplus Advanced 1.0T (Argon 90%) + Planibel Pure Comfort 14
) ! * + ,$-
./ ! 0 * 1 ,$-
! 9 : * 8 ,;< 9 =' :-
2 ! 0 * 1 ,$-
/ * 3 ,$-
%
5 .> ?@A * 3B 9 C : , D-
!
$ & ' (
4 % * ,$-
)
./ 0 * 1 ,$-
3 E .> (@
*+
2 0 * 1 ,$-
3 E .> (@
*+
5 * + ,$-
D .> "(
*+
. & * 6 ,$-
. & * 6 ,$-
& * 6 ,$ !" !
D .> (@" & .> " ./& .> (@
*+ ,$ - ,$ *+
# . / > ! * , ; ! * , < =-
!
' ! / & F B ! ( A .> 24G ( ' 2 & % ! %% F H && H H H ' ! % ! / I< D'
GROUP 2:
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
GLASS SPECIFICATIONS (OPTION 2)
GLASS SPECIFICATIONS (OPTION 1)
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
-. " / ) 0 +%,
!" 8 9 ) 7 +:; 8 < 9,
1 " / ) 0 +%,
. ) 2 +%,
%
-. / ) 0 +%,
1 / ) 0 +%,
4 -= >?@ ) 2A 8 B 9 + C,
#
& ' (
) 2 D -= E?
*+
!
2 D -= E?
*+
4 ) * +%,
C -= #E
*+
- ) 5 +%,
C -= E?#
*+
- ) 5 +%, 3" 6 ) 3 7 ) * +%, 3
" # #
& -= # -. -= E?
, - , *+
$ . / = " ) + , : " ) + ; <,
! # !
!" . F A " E @ -= 13G E 1 ' " '' F H H H H !" ' " . I; C
918816 918417 912788 918641
Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401
" #
! ) 5 +%,
! " ! " #
$
( " ) * +%,
3 ' ) +%,
+VIIRJEPP
# $
Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
4
!" "
! !
8 * + ,$-
! !" " # $ % & '
! ! " # $ % & '(
4! 7 * 4
Greenfall
4 / 16 - 4 / 16 - 4 iplus 1.0T (Argon 90%)
GLASS SPECIFICATIONS (OPTION 3)
GLASS TYPE:
PRODUCED BY AN AUTODESK STUDENT VERSION
GLASS TYPE:
$ % &' (")
*+ , % -' (")
7' 8 % 5 (9 7 : 8)
. , % -' (")
+ % / (")
$ %
1 ; * .<! *1 % /= 7 > 8 ( ?)
!
& ' (
0 % (")
)
*+ , % - (")
/ @ ; *A 3B ;
*
. , % - (")
/ @ ; *A 3B ;
*
1 % & (")
? ; *A 3
*
* % 2 (")
? ; *A 3B
*
* % 2 (")
* 3 % 2 3 (")
% 2 (") 4 % 56 % & ' (") '
! !
# ; *A
+ , + , +
*+ ; *A 3B
*
" - .
A C % ( )
9 % (C :)
+ D E = 3 F *A . G ;3 . ; 0 ' 00 ' E D D D ' D 0 ' + H ; ?
GREENFALL FINAL PRESENTATION_December 20th
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
7.6.2
GLASS OPTIONEERING
U-Value Calculation & Residential Typology Layout
After narrowing the glass selection down to three possible options, simulations will be able to dictate which type of glass is optimal for the project. Additionally, we will able to measure if different types of glass should be used on different facades, based on their orientation and exposure to direct sunlight.
Considering the three glass types, as well as the pre-selected frame types, it was necessary to calculate the U-Value which would be used in the simulation process. Since there are three types of glass up for consideration, each with their own unique U-Value, a calculation was required to determine what the new U-Value would be once combined with the respective frame.
For the purposes of this optioneering process, the facade of the building was grouped into two categories: the RED showing the north and east facades (Facade A), and the BLUE showing the south and west facades (Facade B). Based on these groupings, we will be able to determine the best combination of glass types for each group or facade of the building.
This chart shows the calculations of the total Window area, frame area as well as glass area and perimeter correspondig to each Frame type which was previously defined. These values, in combination with the unique U-Values for the glass options as well as the frame itself allow us to calculate the final U-Value to be used.
UNIT 5
UNIT 3
Type A1 Type A2 Type A3 Type A4 Type B1 Type C1
UNIT 1 1.5 x 1.8 m ELEVATOR
ELEVATOR HALL
CLEANING STORAGE
2.24 6.64 5.28 2.59 4.20 8.10
0.51 1.45 1.49 0.71 1.29 1.14
1.73 5.19 3.79 1.88 2.91 6.96
5.27 15.81 16.84 8.40 10.60 26.04
Ψ
0.04 0.04 0.04 0.04 0.04 0.04
GLASS OPTION GLASS OPTION GLASS OPTION FRAME U-VALUE 1 U-VALUE 1 U-VALUE 1 U-VALUE (W/m2 K) (W/m2 K) (W/m2 K) (W/m2 K) 1.60 1.00 0.50 0.90 1.60 1.00 0.50 0.90 1.60 1.00 0.50 0.90 1.60 1.00 0.50 0.90 1.60 1.00 0.50 1.60 1.60 1.00 0.50 1.09
Total U-Value = { [(Glass U-Value x Glass Area) + (Frame Area x Frame U-Value) + (Ψ x Perimeter)] / Window Area }
STAIR
STAIR
FRAME AREA GLASS AREA PERIMETER
The formula used to calculate the final U-Values is as follows:
GARBAGE DISPOSAL
COMMON SPACE
WINDOW AREA
EXTERIOR GARDEN
**Where Ψ is equal to the Linear Heat Transfer Coefficient (W/m K) ; in this case 0.04 was used representing a thermally insulated edge seal of the glass glazing **
UNIT 4
UNIT 2
FACADE B BUILDING 3 DOUBLE UNITS RESIDENTIAL FLOOR PLAN 1:200
SINGLE FLOORS
Type A1 Type A2 Type A3 Type A4 Type B1 Type C1
SINGLE FLOORS
SINGLE FLOORS
SINGLE FLOORS
SINGLE FLOORS
DOUBLE FLOORS
SINGLE FLOORS
FACADE SECTIONS
DOUBLE FLOORS DOUBLE FLOORS
FAMILY FLOORS
FAMILY FLOORS
FAMILY FLOORS DOUBLE FLOORS
U-VALUE CALCULATIONS
DOUBLE FLOORS
FRAME TYPE
SINGLE FLOORS
SINGLE FLOORS
SINGLE FLOORS
OPTION 1 TOTAL OPTION 2 TOTAL OPTION 3 TOTAL U-VALUE U-VALUE U-VALUE (W/m2 K) (W/m2 K) (W/m2 K) 1.53 1.07 0.69 1.54 1.07 0.68 1.53 1.10 0.74 1.54 1.10 0.74 1.70 1.29 0.94 1.66 1.14 0.71
This chart shows the final results for the U-Value calculations. For each glass option, a unique U-Value has been calculated for each specific Frame Type. These values will be used in simulation, following the grouping of Facade A and B, to determine the most optimal combination of glass for maximum efficiency.
PRODUCED BY AN
PRODUCED BY AN AUTODESK STUDENT VERSION Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
GROUP 2:
PRODUCED BY AN AUTODESK STUDENT VERSION
FACADE A
FRAME TYPE
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
927160 918816 Seyedi Zadeh Fereshteh 912843 Sheikhhassani Navid 918417 PRODUCED BY AN AUTODESK 912788 Zohourparvaz Mohamadreza 927401 918641
GREENFALL STUDENT VERSION FINAL PRESENTATION_December 20th
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
7.6.3
GLASS OPTIONEERING
A B C D E F G H I
FAÇADE A
FAÇADE TYPE C1 COOLING EQUIPMENT HEATING EQUIPMENT DESIGN CAPACITY (kW) DESIGN CAPACITY (kW) 15.6 8.6 31.1 8.1 25.1 7.8 22.6 7.5 29.8 8 23.8 7.8 21.4 7.5 29 7.8 23.3 7.6 20.9 7.3
FACACE B
BASE OPTION (ASHRAE) OPTION 1 OPTION 1 OPTION 1 OPTION 2 OPTION 1 OPTION 3 OPTION 2 OPTION 1 OPTION 2 OPTION 2 OPTION 2 OPTION 3 OPTION 3 OPTION 1 OPTION 3 OPTION 2 OPTION 3 OPTION 3
ANNUAL ENERGY COST ($) $1,650.00 $2,050.00 $1,855.00 $1,791.00 $2,005.00 $1,812.00 $1,753.00 $1,942.00 $1,792.00 $1,733.00
EUI (kWh/m2/yr) 62 77 70 68 76 68 66 73 68 65
**ASHRAE values calcualted with a U-Value of 2.27 W/m2 K
COOLING CAPACITY (kW)
HEATING CAPACITY (kW) 9
35 30
A B C
FAÇADE A
FACACE B
BASE OPTION (ASHRAE) OPTION 1 OPTION 1 OPTION 2 OPTION 2 OPTION 3 OPTION 3
DOOR TYPE B1 COOLING EQUIPMENT HEATING EQUIPMENT DESIGN CAPACITY (kW) DESIGN CAPACITY (kW) 15.6 8.6 31.1 8.2 23.8 7.9 21 7.5
8.8 8.6 8.4 8.2 8 7.8 7.6 7.4 7.2 7 6.8
30 25 20 15 10 5 A
B
20
8
15
7.5
10
A
B
C
D
E
F
COOLING EQUIPMENT DESIGN CAPACITY (kW)
C BASE OPTION (ASHRAE)
ANNUAL ENERGY COSTS ($)
EUI (kWh/m2/yr) $2,500.00
80
$2,000.00
70 60
$1,500.00
50 40
$1,000.00
30 $500.00
20 10
$0.00
0
A
B EUI (kWh/m2/yr)
A
C
B
ANNUAL ENERGY COST ($)
BASE OPTION (ASHRAE)
REF. A B C
G
H
I
6.5
A
BASE OPTION (ASHRAE)
B
C
D
E
F
G
HEATING EQUIPMENT DESIGN CAPACITY (kW)
H
FAÇADE A
FACACE B
BASE OPTION (ASHRAE) OPTION 1 OPTION 1 OPTION 2 OPTION 2 OPTION 3 OPTION 3
I
WINDOW TYPE A1 COOLING EQUIPMENT HEATING EQUIPMENT DESIGN CAPACITY (kW) DESIGN CAPACITY (kW) 15.6 8.6 31.1 8 23.8 7.7 20.9 7.3
COOLING CAPACITY (kW)
C BASE OPTION (ASHRAE)
ANNUAL ENERGY COSTS ($)
8.5
80
20
8
15
7.5
10
$2,500.00
90
0
70
7
5
$2,000.00
1
2
3
COOLING EQUIPMENT DESIGN CAPACITY (kW)
60
62 77 68 65
ANNUAL ENERGY COST ($) $1,650.00 $2,049.00 $1,810.00 $1,733.00
9
25
EUI (kWh/m2/yr)
EUI (kWh/m2/yr)
HEATING CAPACITY (kW)
35
BASE OPTION (ASHRAE)
30
6.5
1
BASE OPTION (ASHRAE)
2
3
HEATING EQUIPMENT DESIGN CAPACITY (kW)
BASE OPTION (ASHRAE)
$1,500.00
50 40
$1,000.00
30 20
$500.00
10 $0.00 A
B
C
D
EUI (kWh/m2/yr)
Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
E
F
G
H
BASE OPTION (ASHRAE)
GROUP 2:
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
I
A
B
C
D
E
F
G
H
I
WINDOWS - TYPE A1
FACADE GLASS - TYPE C1
B
HEATING EQUIPMENT DESIGN CAPACITY (kW)
BASE OPTION (ASHRAE)
90
7
5
0
A
C
COOLING EQUIPMENT DESIGN CAPACITY (kW)
62 77 69 66
HEATING CAPACITY (kW)
COOLING CAPACITY (kW) 35
0
ANNUAL ENERGY COST ($) $1,650.00 $2,050.00 $1,815.00 $1,737.00
EUI (kWh/m2/yr)
8.5
25
0
REF.
DOOR GLASS - TYPE B1
REF.
Residential Floor (Building 3 - Double Units)
EUI (kWh/m2/yr)
ANNUAL ENERGY COSTS ($)
90
$2,500.00
80 70
$2,000.00
60 $1,500.00
50 40
PRODUCED BY AN AUTODESK STUDENT VERSION
ANNUAL ENERGY COST ($)
BASE OPTION (ASHRAE)
$1,000.00
30 20
$500.00
10 0
1
2 EUI (kWh/m2/yr)
GREENFALL
3 BASE OPTION (ASHRAE)
918816 Krebs Francesco Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Nemati Ali 918417 Rotundo Marco Salvatore 912788 Zohourparvaz Mohamadreza 927401 FINAL PRESENTATION_December 20th Saccuman Marta 918641 PRODUCED BY AN AUTODESK STUDENT VERSION
$0.00
1 ANNUAL ENERGY COST ($)
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
2
3 BASE OPTION (ASHRAE)
7.6.4
GLASS OPTIONEERING
A B C
FAÇADE A
FACACE B
BASE OPTION (ASHRAE) OPTION 1 OPTION 1 OPTION 2 OPTION 2 OPTION 3 OPTION 3
WINDOW TYPE A2 COOLING EQUIPMENT HEATING EQUIPMENT DESIGN CAPACITY (kW) DESIGN CAPACITY (kW) 15.6 8.6 31.1 8 23.8 7.7 20.9 7.3
62 77 68 65
REF. A B C
30
8.8 8.6
30
8.4 8.2
25
8
20
10
B
A
B
EUI (kWh/m2/yr)
0
C
HEATING EQUIPMENT DESIGN CAPACITY (kW)
BASE OPTION (ASHRAE)
BASE OPTION (ASHRAE)
A
B
$2,000.00
70 60 40
60 40
$500.00
10 B
C BASE OPTION (ASHRAE)
$0.00
A ANNUAL ENERGY COST ($)
After a complete analysis of the Double Units Residential floor for Building 3, the best two options presented themselves as either OPTION 2 (Double Glaze) or OPTION 3 (Triple Glaze) on each facade. These options are highlighted in green. These were selected since the improvement experienced between these two options was not so significant. Therefore, the main factor that needs to be considered is the economic cost between the two options. It is generally considered that Triple Glazed glass costs about 1/3 less than Double Glazed. Based on these numbers, and considering the Annual Costs associated with both, a cost comparison for 50 years was performed. **Assumed intial cost of Triple Glazed glass = $400.00 / m2 **Assumed initial cost of Double Glazed glass = $266.40 / m2 **OPTION 2 average Annual Energy Cost = $1,811.60 **OPTION 3 average Annual Energy Cost = $1,734.00 GROUP 2:
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
B
C BASE OPTION (ASHRAE)
WINDOWS - TYPE A3
20
$1,500.00
50
$1,000.00
30
$2,000.00
70
$1,500.00
50
$2,500.00
80
$1,000.00
30 20
$500.00
10 $0.00
0
A
B EUI (kWh/m2/yr)
C BASE OPTION (ASHRAE)
Triple Glazed vs. Double Glazed Cost Analysis $120,000.00
$100,000.00
$80,000.00
62 77 68 65
ANNUAL ENERGY COST ($) $1,650.00 $2,049.00 $1,811.00 $1,734.00
HEATING CAPACITY (kW)
B
C
HEATING EQUIPMENT DESIGN CAPACITY (kW)
BASE OPTION (ASHRAE)
90
EUI (kWh/m2/yr)
A
C
EUI (kWh/m2/yr)
80
Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
7 6.8 COOLING EQUIPMENT DESIGN CAPACITY (kW)
$2,500.00
EUI (kWh/m2/yr)
7.2
ANNUAL ENERGY COSTS ($)
90
A
7.4
5
C
COOLING EQUIPMENT DESIGN CAPACITY (kW)
7.6
10
6.5 A
7.8
15
7
5
8
20
7.5
15
WINDOWS - TYPE A2
BASE OPTION (ASHRAE) OPTION 1 OPTION 1 OPTION 2 OPTION 2 OPTION 3 OPTION 3
35
8.5
25
CONCLUSION
FACACE B
WINDOW TYPE A3 COOLING EQUIPMENT HEATING EQUIPMENT DESIGN CAPACITY (kW) DESIGN CAPACITY (kW) 15.6 8.6 31.1 8 23.8 7.7 20.9 7.4
COOLING CAPACITY (kW)
9
35
0
FAÇADE A
HEATING CAPACITY (kW)
COOLING CAPACITY (kW)
0
EUI (kWh/m2/yr)
ANNUAL ENERGY COST ($) $1,650.00 $2,049.00 $1,810.00 $1,733.00
PRODUCED BY AN AUTODESK STUDENT VERSION
REF.
Residential Floor (Building 3 - Double Units)
BASE OPTION (ASHRAE)
ANNUAL ENERGY COSTS ($)
A ANNUAL ENERGY COST ($)
B
C BASE OPTION (ASHRAE)
Based on this Cost Analysis of 50 years, it is clear that the Triple Glazed option is much more economical. Although initial costs will be 33.3% higher than Double Glazed, savings in terms of Energy Efficiency would be realized 40 years after construction. Therefore, it is more economical and effective to install triple glazing.
$60,000.00
Therefore, in conclusion, Triple Glazed (Option 3) Glass will be used on all transparent areas with reference to Building 3 Double Unit Residential Plans.
$40,000.00
$20,000.00
PRODUCED BY AN AUTODESK STUDENT VERSION $0.00
0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950 OPTION 2 COST
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
918816 918417 912788 918641
Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401
OPTION 3 COST
GREENFALL FINAL PRESENTATION_December 20th
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
7.6.4
GLASS OPTIONEERING
Multifunctional Floor (Building 3)
REF.
Using a similar organization as the Residential Floor, the Common Floor was also divided into two Facade sections. These were used to simulate the facade glass types. Since the Common Floors have only facade glass on the exterior, it was not necessary to simulate the other frame types for glass selection
FACADE A STORAGE
43.0 m2
MUSIC ROOM 2
17.0 m2
COOLING CAPACITY (kW)
1.5 x 1.8 m ELEVATOR
32.0 m2
ELEVATOR HALL GARBAGE DISPOSAL
THEATRE SETUP
STAIR
STAIR
BASE OPTION (ASHRAE) OPTION 1 OPTION 1 OPTION 1 OPTION 2 OPTION 1 OPTION 3 OPTION 2 OPTION 1 OPTION 2 OPTION 2 OPTION 2 OPTION 3 OPTION 3 OPTION 1 OPTION 3 OPTION 2 OPTION 3 OPTION 3
STUDY ROOM SETUP
CONFERENCE SETUP
35
7
30
6
25
5
20
4
15
3
10
2
5
1
0
A
B
C
D
E
F
COOLING EQUIPMENT DESIGN CAPACITY (kW)
FACADE B
SINGLE FLOORS
DOUBLE FLOORS
FACADE GLASS - TYPE C1
SINGLE FLOORS
SINGLE FLOORS
50
DOUBLE FLOORS
20
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
0
A
B
C
D
EUI (kWh/m2/yr)
E
F
G
H
$0.00
I
BASE OPTION (ASHRAE)
918816 918417 912788 918641
G
H
I
BASE OPTION (ASHRAE)
ANNUAL ENERGY COSTS ($)
B
C
D
E
ANNUAL ENERGY COST ($)
F
G
H
I
BASE OPTION (ASHRAE)
**Assumed intial cost of Triple Glazed glass = $400.00 / m2 **Assumed initial cost of Double Glazed glass = $266.4 / m2 **OPTION 2 average Annual Energy Cost = $2,001.00 **OPTION 3 average Annual Energy Cost = $1,928.00
$40,000.00
Therefore, in conclusion, Double Glazed (Option 2) Glass will be used on all transparent areas with reference to Building 3 Common Plans.
$20,000.00 $0.00
A
Based on this Cost Analysis of 50 years, it is clear that the Double Glazed option is much more economical. No savings in terms of Energy Efficiency would be realized 50 years after construction.
$60,000.00
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
F
$500.00
10
$80,000.00
DOUBLE FLOORS
E
$1,000.00
30
$100,000.00
CONCLUSION
FAMILY FLOORS
D
$1,500.00
FAMILY FLOORS
FAMILY FLOORS
C
40
$120,000.00
PRODUCED BY AN AUTODESK STUDENT VERSION
FACADE SECTIONS
DOUBLE FLOORS
GROUP 2:
$2,000.00
60
Triple Glazed vs. Double Glazed Cost Analysis
DOUBLE FLOORS
B
HEATING EQUIPMENT DESIGN CAPACITY (kW)
$2,500.00
$140,000.00 SINGLE FLOORS
A
BASE OPTION (ASHRAE)
70
SINGLE FLOORS
SINGLE FLOORS
Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
0
I
80
SINGLE FLOORS
SINGLE FLOORS
H
EUI (kWh/m2/yr)
BUILDING 3 COMMON FLOOR PLAN 1:200
SINGLE FLOORS
G
HEATING CAPACITY (kW)
SK STUDENT VERSION
MECHANICAL ROOM
FACACE B
PRODUCED BY AN AUTODESK STUDENT VERSION
A B C D E F G H I
FAÇADE A
FAÇADE TYPE C1 COOLING EQUIPMENT HEATING EQUIPMENT ANNUAL ENERGY EUI (kWh/m2/yr) DESIGN CAPACITY (kW) DESIGN CAPACITY (kW) COST ($) 15.8 6.4 58 $1,786.00 31.7 5.9 72 $2,242.00 25.2 5.7 66 $2,041.00 22.7 5.4 64 $1,980.00 30.4 5.8 71 $2,201.00 23.9 5.6 64 $2,001.00 21.4 5.3 63 $1,939.00 29.9 5.7 71 $2,189.00 23.4 5.5 64 $1,988.00 20.9 5.2 62 $1,928.00
0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950
Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401
OPTION 2 COST
OPTION 3 COST
GREENFALL FINAL PRESENTATION_December 20th
PRODUCED BY ANPRODUCED AUTODESK BY STUDENT VERSIONSTUDENT VERSION AN AUTODESK
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
7.6.5
GLASS SPECIFICATIONS
Option 3 Details This model shows the composition of the selected window type - Triple Glazed option 4 / 14 - 4 / 14 - 4 iplus 1.0T (Argon 90%). 914.00
The modelling and specification data sheet was provided by AGCâ&#x20AC;&#x2122;s Glass Configurator tool.
1.0
CHEMICAL PROPERTIES
1.40
1.40
TEST SPECIMEN
BOLTED SECURELY TO THE FLOOR
2.0
3.0
TYPE C1
According to the standard, 1C3 is capable of withstanding a fall height of 1200 mm. This is the strongest classification, and B3.11 Kong experiences extreme typhoons. In addition, it also specifies the crack type upon very ideal for the design since Hong failure - in this case, the selected glass will disintegrate into small particles. This is ideal for safety in case the glass does break, it will not cause damage or injury in any way.
B3.10 LAYOUT
GROUP 2:
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
918816 918417 912788 918641
iPlus 1.0T GLAZING
(NOT TO SCALE) B3.41
PRODUCED BY AN AUTODESK STUDENT VERSION
PRODUCED BY AN AUTODESK STUDENT VERSION TYPE A2
INTERIOR
TYPE A3
4 mm GLASS 16 mm ARGON 90% 4 mm GLASS 16 mm ARGON 90% 4 mm GLASS
iPlus 1.0T GLAZING
B3.40 LAYOUT
Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401
GREENFALL FINAL PRESENTATION_December 20th
2.00
2.70
0.10
PRODUCED BY AN AUTODESK STUDENT VERSION
2.70
1.60
0.15
EXTERIOR SINGLE (TILT/SLIDE) WINDOW TYPE A4
PRODUCED BY AN AUTODESK STUDENT VERSION
SELECTED GLASS SPECIFICATIONS
TYPE A1 According to EN 12600, the glass specimen dimensions are 0.876 x 1.938 meters. The selected glass is classified as 1C3.
OPTICAL PROPERTIES
0.05
0.06
2.10
INTERIOR DOUBLE DOOR - TYPE B2
EXTERIOR 3.00 PRODUCED BY AN AUTODESK STUDENT VERSION
B3.42
EX W
1.62
B3.41
B3.12
0.04
EXTERIOR (OPERABLE) WINDOW - TYPE A1
6.70
The Pendulum, or Drop Test, is a way of testing and classifying the strength of a certain type of glass. The drawing above outlines how the test is conducted on a specimen.
EXTERIOR (OP EXTER WINDOW TY 0.05 WIND
0.04
B3.11
Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
ELECTRICAL PROPERTIES
MECHANICAL PROPERTIES
1524.00
0.05
1.60
0.05
5.0
0.04 0.05
PRODUCED BY AN AUTODESK STUDENT VERSION
12.70
CENTERLINE OF TEST SPECIMEN
PRODUCED BY AN
THERMAL PROPERTIES
PRODUCED BY AN AUTODESK STUDENT VERSION
DROP HEIGHT
1.40
GLASS STRENGTH ANALYSIS
4.0
PRODUCED BY AN AUTODESK STUDENT VERSION
1524.00
The following outlines the properties for Planibel Clearlite glass:
PRODUCED BY AN AUTODESK STUDENT VERSION
CONCRETE / STURDY CONSTRUCTION FOR SUITABLE ANCHORAGE
STANDARD STEEL CABLE APPROX. 3mm IN DIAMETER
PRODUCED BY AN AUTODESK STUDENT VERSION
PRODUCED BY AN AUTODESK STUDENT VERSION
This selected glass allowed for a very effective Thermal Transmittance, as well as a high Light Transmittance. The Solar Factor and Shading Coefficient are also respectable values, with high performance shown in Acoustic and Safety Properties.
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
0.06
7.7
2.7
SPECIFIC TYPOLOGIES & LOCATIONS
! #J J E & & % % ! & & % ! ! & % % ! E E ! & ' ! & % && % & % & #J ' 2 & 7 5 % % ! % H ! ! #J ! %% % ! % ! ' ! ! & ! & % ! % ! && & E % ! K && ' ! % % & & B & & % ! #J J &' ! 4& E % 8 % ! ! H ! 2>24L# & ! % ! '
!" $J J D ' ' " ' " " ' ' " D D " !" ' ' ' $J 1 6 4 ' & ' " ' H " " $J " '' ' " ' " !" " " ' " ' " D ' " K
% , .
0 / . / ,
1 # $
/ 2 3
1
/ 2 2
/ / # 4
5 % , 2 2 3 3
6 . ,
1 # " ) M N $J J - $ "
$/+ - 0 # . - .
/# + 1 % " . 2 # 3
1 %#
% . ## 2 # 2 # . . 4 5
## $/+ 2 # 2# 3 3 6% # # - #
%#
%
/# + 1 %
AAA ; D
The plan below shows the Double Units Residential Floor of Building 3. Each specific transparency typology has a notation which corresponds to the Layouts in the section shown on the right.
% K L !I I * ! '
=== ; @
The following schemes show the Typology Layouts corresponding to the Double Units Residential Floor of Building 3. Each Layout has a specific location on the plan, shown on the left.
BBB' ' < E
The following page will explore the Section Details of each Layout. **All dimensions shown in meters**
**All dimensions shown in meters** PRODUCED BY AN AUTODESK STUDENT VERSION
Drawing Scale = 1:200
Drawing Scale = 1:100
B3.10 TRANSPARENT TYPE B3.20 TRANSPARENT TYPE
6.70
1.40
UNIT 5
UNIT 3
UNIT 1
PRODUCED BY AN AUTODESK STUDENT VERSION
TYPE A1
2.70 1.5 x 1.8 m ELEVATOR
TYPE A2
TYPE C1
ELEVATOR HALL
GARBAGE DISPOSAL
COMMON SPACE
CLEANING STORAGE
B3.10 LAYOUT
B3.40 LAYOUT
STAIR
STAIR EXTERIOR GARDEN
.70
UNIT 2
5.86
TYPOLOGY LAYOUTS
B3.30 TRANSPARENT TYPE
BUILDING 3 - DOUBLE UNITS RESIDENTIAL FLOOR PLAN 1:200
Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
GROUP 2:
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
2.70
TYPE B1
2.70
TYPE C1
TYPE C1
B3.20 LAYOUT
B3.30 LAYOUT
2.70
TYPE A3
PRODUCED BY AN AUTO
B3.40 TRANSPARENT TYPE
3.56
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
918816 918417 912788 918641
Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401
BUILDING 3 - DOUBLE UNITS RESIDENTIAL FLOOR TRANSPARENT TYPOLOGY LAYOUTS 1:100
PRODUCED BY AN AUTODESK STUDENT VERSION
UNIT 4
TYPOLOGY LOCATIONS
2.70
TYPE A3
PRODUCED BY AN AUTODESK STUDENT VERSION
ENT VERSION
T
Residential Floor (Building 3 - Double Units)
0 0 ' = 0 !I I # @ 0 5 0 D .A. <! 0 '
PRODUCED BY AN AUTODESK STUDENT VERSION
% , .
0 / . / ,
1 ! #
/ 2 3
1
/ 2 2
/ / ! 4
5 % , 2 2 3 3
6 . ,
1 ! & ! * M N #J J . & ' # !
!I I @ ' 0 0 0 ' 0 0 @ @ 0 0 0 !I . 4 1 0 # 0 0 ' D !I ' 00 ' 0 0 C ' 0 0 @ 0 J
!" ' ' A ' " $J J & " 3 D ' 7 ' " " H " 1=13L$ " ' "
GREENFALL FINAL PRESENTATION_December 20th
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
7.8
TECHNICAL DETAILS
B3.10
1.40
DETAIL A2 A1 DETAIL
DETAIL A2
SECTION B3.11 SCALE = 1:10
Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
GROUP 2:
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
B3.10 KEY PLAN
PRODUCED BY AN AUTODESK STUDENT VERSION
PRODUCED BY AN AUTODESK STUDENT VERSION
DETAIL A1
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
B3.11
TYPE A1
SCALE = 1:50
2.70
TYPE A2 FIBER CEMENT BOARD
B3.11
OPAQUE GRC CLADDING INSULATION
B3.10 LAYOUT
AWS 75.SI+ HIGH INSULATED ALUMINUM FRAME (OPERABLE)
CEMENT BOARD FIBERGLASS MESH PRIMER WATER REPELLENT SKIM COAT TRIPLE GLAZED GLASS BOARD FIBER CEMENT 4/16-4/16-4 iPlus 1.0t (Argon 90%)
OPAQUE GRC CLADDING
5.86
INSULATION AWS 75.SI+ HIGH INSULATED ALUMINUM FRAME (OPERABLE)
B3.31
918816 918417 912788 918641
CEMENT BOARD FIBERGLASS MESH PRIMER WATER REPELLENT SKIM COAT TRIPLE GLAZED GLASS 4/16-4/16-4 iPlus 1.0t (Argon 90%)
DETAIL A1 SCALE = 1:5 TYPE B1
Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401
GREENFALL FINAL PRESENTATION_December 20
TYPE C1
B3.31
PRODUCED BY AN AUTODESK STUDENT VERSION
PRODUCED BY AN AUTODESK STUDENT VERSION
PRODUCED BY AN AUTODESK STUDENT VERSION
PRODUCED BY AN AUTODESK STUDENT VERSION
th
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
B3.30 LAYOUT
7.9.1
TECHNICAL DETAILS
B3.10
6.70
1.40
B3.10 KEY PLAN
B3.12
B3.42
TYPE A1
2.70
TYPE A3
OPERATING HANDLE
TRIPLE GLAZED GLASS 4/16-4/16-4 iPlus 1.0t (Argon 90%)
PERLITE GRANULAR AGGREGATE
TYPE A2
TRIPLE GLAZED GLASS 4/16-4/16-4 iPlus 1.0t (Argon 90%)
TYPE C1
CONCRETE BOARD ADHESIVE LAYER
AWS 75.SI+ HIGH INSULATED ALUMINUM FRAME (FIXED)
PORCELAIN STONEWARE
WATER PROOFING
B3.10 LAYOUT
PRODUCED BY AN AUTODESK STUDENT VERSION
RIGID INSULATION WOOD OPAQUE GRC CLADDING
TRIPLE GLAZED GLASS 4/16-4/16-4 iPlus 1.0t (Argon 90%)
FIBER CEMENT BOARD
B3.40 LAYOUT
AWS 75.SI+ HIGH INSULATED ALUMINUM FRAME (OPERABLE) OPERATING HANDLE
TRIPLE GLAZED GLASS 4/16-4/16-4 iPlus 1.0t (Argon 90%) RIGID INSULATION
PERLITE GRANULAR AGGREGATE CONCRETE BOARD
AWS 75.SI+ HIGH INSULATED ALUMINUM FRAME (FIXED) WATER PROOFING
ADHESIVE LAYER PORCELAIN STONEWARE VAPOR BARRIER OSB (WOOD) CORRUGATED SHEET METAL
RIGID INSULATION
5.86
WOOD OPAQUE GRC CLADDING
OPAQUE GRC CLADDING
AWS 75.SI+ HIGH INSULATED ALUMINUM FRAME (OPERABLE)
FIBER CEMENT BOARD
3.56
RIGID INSULATION VAPOR BARRIER OSB (WOOD) CORRUGATED SHEET METAL
B3.22
2.70 DETAIL B3.32 A2
B3.32
SCALE = 1:5
SCALE = 1:5 TYPE B1
Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
GROUP 2:
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
SECTION B3.12 OPAQUE GRC CLADDING
B3.30 LAYOUT 918816 Seyedi Zadeh Fereshteh
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
TYPE C1
PRODUCED BY AN AUTODESK STUDENT VERSION
PRODUCED BY AN AUTODESK STUDENT VERSION
SCALE = 1:50
PRODUCED BY AN AUTODESK STUDENT VERSION
PRODUCED BY AN AUTODESK STUDENT VERSION
918417 912788 918641
927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401
GREENFALL FINAL PRESENTATION_December 20th
T
B3.20 LAYOUT
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
7.9.1
PRODUCED BY AN AUTODESK STUDENT VERSION
TECHNICAL DETAILS
0.06
5.86
B3.21
UDENT VERSION
MULLION TRANSOM
B3.22
B3.22
AOC 50 TI.HI HIGH INSULATED FACADE FRAME
2.70
B3.32
2.70
B3.32 TRIPLE GLAZED GLASS 4/16-4/16-4 iPlus 1.0t (Argon 90%)
TYPE B1
TYPE C1
TYPE C1
B3.31
PRODUCED BY AN AUTODESK STUDENT VERSION
B3.21
B3.30 LAYOUT
B3.20 KEY PLAN B3.20 LAYOUT
STEEL CONNECTION
SCALE = 1:50
TRIPLE GLAZED GLASS 4/16-4/16-4 iPlus 1.0t (Argon 90%) MULLION TRANSOM
PRODUCED BY AN AUTODESK STUDENT VERSION AOC 50 TI.HI HIGH INSULATED FACADE FRAME
THERMAL BREAK
ALUMINIUM COVER
SECTION B3.21
SECTION B3.22
SCALE = 1:5
SCALE = 1:5 OPAQUE GRC CLADDING
Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
GROUP 2:
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
918816 918417 912788 918641
927160 Seyedi Zadeh Fereshteh 912843 Sheikhhassani Navid Zohourparvaz Mohamadreza 927401
GREENFALL FINAL PRESENTATION_December 20th
PRODUCED BY AN AUTODESK STUDENT VERSION
PRODUCED BY AN AUTODESK STUDENT VERSION
PRODUCED BY AN AUTODESK STUDENT VERSION
B3.20
EXTERIOR FACADE TYPE C1
3.56
B3.31
0.06
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
7.9.2
DESK STUDENT VERSION
TECHNICAL DETAILS INTERIOR GLASS TYPE C2
B3.30
5.86
PRODUCED BY AN AUTODESK STUDENT VERSION PRODUCED BY AN AUTODESK STUDENT VERSION PRODUCED ANAN AUTODESK STUDENT VERSION PRODUCED BY AUTODESK STUDENT VERSION PRODUCED BY ANBY AUTODESK STUDENT VERSION SCALE = 1:8
AOC 50 TI.HI HIGH INSULATED FACADE FRAME AOC 50 TI.HI HIGH INSULATED FACADE FRAME
2.70 B3.32
B3.32
TYPE B1
TYPE C1
B3.31
CEMENT BOARD FIBERGLASS MESH PRIMER WATER REPELLENT SKIM COAT CEMENT BOARD FIBERGLASS MESH PRIMER WATER REPELLENT SKIM COAT TRANSOM
B3.30 KEY PLAN B3.30 LAYOUT
TRANSOM
SCALE = 1:50
MULLION ADS 75.SI HIGHLY INSULATED MULLION FRAME ADS 75.SI HIGHLY INSULATED FRAME
TRIPLE GLAZED GLASS 4/16-4/16-4 iPlus 1.0t (Argon 90%)
VAPOUR RESISTANT FOIL
TRIPLE GLAZED GLASS 4/16-4/16-4 iPlus 1.0t (Argon 90%) WOOD
PERLITE GRANULAR VAPOUR RESISTANT FOIL AGGREGATE PERLITE GRANULAR AGGREGATE
WOOD
TRIPLE GLAZED GLASS 4/16-4/16-4 iPlus 1.0t (Argon 90%) TRIPLE GLAZED GLASS 4/16-4/16-4 iPlus 1.0t (Argon 90%)
N AUTODESK STUDENT VERSION SECTION B3.32 SCALE = 1:5 AOC 50 TI.HI HIGH INSULATED FACADE FRAME AOC 50 TI.HI HIGH INSULATED FACADE FRAME
Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
GROUP 2:
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
918816 918417 912788 918641
Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401
ADS 75.SI HIGHLY INSULATED FRAME ADS 75.SI HIGHLY INSULATED FRAME
GREENFALL
PRODUCED BY AN AUTODESK STUDENT VERSION PRODUCED BY AN AUTODESK STUDENT VERSION
PRODUCED BY AN AUTODESK STUDENT VERSION PRODUCED BY AN AUTODESK STUDENT VERSION
PRODUCED BY AN AUTODES
SECTION B3.31
B3.31
PRODUCED BY AN AUTODESK STUDENT VERSION PRODUCED BY AN AUTODESK STUDENT VERSION
PRODUCED BY AN AUTO
INTERIOR EXTERIOR INTERIOR GLASS - -GLASS INTERIOR GLASS EXTERIOR FACADE - FACADE EXTERIOR FACADE TYPE C2 INTERIOR GLASS TYPE C1 TYPE C2 EXTERIOR FACADEFACADE - TYPE INTERIOR GLASSTYPE C2 EXTERIOR -C1C1 TYPE 0.05 C1 TYPE C2TYPE C2 TYPE TYPE0.05 C1
FINAL PRESENTATION_December 20th
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
7.9.3
TECHNICAL DETAILS
B3.40
6.70
1.40 B3.11
B3.41
B3.11
DETAIL D1
B3.41
2.70 DETAIL D2 SECTION B3.41
C1
SCALE = 1:10
B3.40 LAYOUT
OPAQUE GRC CLADDING
AWS 75.SI+ HIGH INSULATED ALUMINUM FRAME (TILT/SLIDE)
5.86
TYPE B1
918816 Krebs Francesco B3.30 NematiLAYOUT Ali 918417
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
WATER REPELLENT SKIM COAT
1.40
Rotundo Marco Salvatore 912788 Saccuman Marta 918641
3.56 OPAQUE GRC CLADDING
B3.21
B3.12 AWS 75.SI+ HIGH INSULATED ALUMINUM FRAME (TILT/SLIDE)
TRIPLE GLAZED GLASS 4/16-4/16-4 iPlus 1.0t (Argon 90%)
2.70
TYPE A1
2.70
CEMENT BOARD FIBERGLASS MESH PRIMER WATER REPELLENT SKIM COAT
TYPE A2
DETAIL D1 SCALE = 1:5
TYPE C1
927160 Seyedi Zadeh Fereshteh 912843 Sheikhhassani Navid Zohourparvaz Mohamadreza 927401
TYPE C1
B3.10 LAYOUT GREENFALL
PRODUCED BY AN AUTODESK STUDENT VERSION
GROUP 2:
CEMENT BOARD FIBERGLASS MESH PRIMER
TRIPLE GLAZED GLASS 4/16-4/16-4 iPlus 1.0t (Argon 90%)
B3.31
Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
B3.40 KEY PLAN SCALE = 1:50
B3.31
B3.22
PRODUCED B
TYPE C1
B3.10 LAYOUT
DETAIL D2
2.70
TYPE A3
ESK STUDENT VERSION
DETAIL D1
2.70
FINAL PRESENTATION_December 20th
B3.21
B3.20 LAYOUT
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
PRODUCED BY AN AUTODESK STUDENT VERSION PRODUCED BY AN AUTODESK STUDENT VERSION
TYPE A2
PRODUCED BY AN AUTODESK STUDENT VERSION
PRODUCED BY AN AUTODESK STUDENT VERSION
70
PRODUCED BY AN AUTODESK STUDENT VERSION
TYPE A1
PRODUCED BY AN AUTODESK STUDENT VERSION
7.9.4
MULLION TRANSOM
TRIPLE GLAZED GLASS TRIPLE GLAZED GLASS MULLION AWS 75.SI+ HIGH INSULATED AWS 75.SI+ HIGH INSULATED 4/16-4/16-4 iPlus 1.0t (Argon 90%) 4/16-4/16-4 iPlus 1.0t (Argon 90%) ALUMINUM FRAME (TILT/SLIDE) ALUMINUM FRAME (TILT/SLIDE)
SCALE = 1:5
OPAQUE GRC CLADDING TRIPLE GLAZED GLASS 4/16-4/16-4 iPlus 1.0t (Argon 90%)
6.70
B3.42
TYPE C1
TRIPLE GLAZED GLASS 4/16-4/16-4 iPlus 1.0t (Argon 90%)
THERMAL BREAK
THERMAL BREAK
WATER PROOFING
RIGID INSULATION
2.70
TYPE A3
RIGID INSULATION
WOOD
WOOD
OPAQUE GRC CLADDING
OPAQUE GRC CLADDING
FIBER CEMENT BOARD
FIBER CEMENT BOARD
PERLITE GRANULAR AGGREGATE
PERLITE GRANULAR AGGREGATE CONCRETE BOARD
ADHESIVE LAYER
ADHESIVE LAYER
PORCELAIN STONEWARE
PORCELAIN STONEWARE
DETAIL D2
SCALE = 1:50
SCALE = 1:5
GROUP 2:
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
918816 918417 912788 918641
927160 Seyedi Zadeh Fereshteh 912843 Sheikhhassani Navid Zohourparvaz Mohamadreza 927401
AOC 50 TI.HI HIGH INSULATED FACADE FRAME
CONCRETE BOARD
B3.40 KEY PLAN
B3.40 LAYOUT Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
AOC 50 TI.HI HIGH INSULATED FACADE FRAME
WATER PROOFING
GREENFALL
PRODUCED BY ANPRODUCED AUTODESK BY STUDENT VERSIONSTUDENT VERSION AN AUTODESK
2.70
AOC 50 TI.HI HIGH INSULATEDAOC 50 TI.HI HIGH INSULATED FACADE FRAME FACADE FRAME
FINAL PRESENTATION_December 20th
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
PRODUCED BY AN AUTODESK STUDENT VERSION
Y AN AUTODESK STUDENT VERSION
OPAQUE GRC CLADDING
B3.40
SECTION B3.42
PRODUCED BY AN AUTOD
PRODUCED BY AN AUTODESK STUDENT VERSION
PRODUCED BY AN AUTODESK STUDENT VERSION
TRANSOM
PRODUCED BY AN AUTO
TECHNICAL DETAILS
7.9.4
8. STRUCTURE Steel structure developement
STRUCTURE
Structural plans
FOUNDATION PLAN D E
3
2.46
1
2
F 7.26
H
G 7.00
I
6.27
J
7.75
7.10
K
L
7.00
O
M
7.05
10.56
6.26
P
R
Q
7.00
7.25
5.13
1
7 8
5.70
12
2
6.29
9
6.27
A
B 6.65
3
6.65
5.78
3.78 2.19
10 6.26
T
S
6.00
6 6.65
A
6.65
B
3.85
C
13
C
4
5
11 2.20
6.27
7.24
E
D
7.00
F
6.26
G
V
O
6.51
7.25
14
2.46
P
Q
R
6
15
7.34
H
U
7.00
7.25
L 15
6.15
4.46
L2
M
16 6.15
6.00
16 17 6.00
6.00
17 18 6.00
6.25
18 19 6.25
5.64
19 2.48
20 2.19
W
3.21
X
5.60
T
20
5.70
Y
Z
0 1m
HEB800 Politecnico di Milano,HEM400
Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20 Politecnico di Milano,
Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
HEM300
GROUP 2:
IPE550
Caniato Giorgia Korovina Viktoriia Krebs Francesco GROUP 2:
918624 913045 918816
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
IPE500
IPE450
Nemati Ali 918417 Rotundo Marco Salvatore 912788 Saccuman Marta 918641 Krebs Francesco 918816
Nemati Ali 918417 Rotundo Marco Salvatore 912788 Saccuman Marta 918641
IPE360
IPE330
Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza Seyedi Zadeh Fereshteh927401
927160 912843 Sheikhhassani Navid Zohourparvaz Mohamadreza 927401
IPE300
IPE270 DESIGN IPE220 ARCHITECTURAL + STUDIO prof. A.Mozzato prof. F.Pagliani
GREENFALL
FINAL PRESENTATION_December 20th
IPE160
5m
10m
GREENFALL
20m
8.1.1
FINAL PRESENTATION _ December 20th SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
STRUCTURE
Structural plans
PLATFORM PLAN
HEM400
7
IPE220
IPE360
6.27
7.00
F
IPE400
HEM300
6.26
G
15
7.34
H
6.15
IPE270
IPE27
0
HEM40
0
0
IPE27
0
IPE300
IPE300
0 0
IPE27
0
IPE27
0 IPE27
0 HEM40
6.25
0
IPE27
IPE330
IPE33
0
IPE330
L2
0 IPE220
IPE220 IPE220
IPE220
IPE220
M
6.00
0
18
HEM40
0
IPE27
IPE300
0 IPE27
0
IPE300
IPE300
4.46
IPE27
0
19
6
17
0
0
0
HEM300
6.00
HEM40
IPE27
HEM40
HEM300 IPE270
0
0
IPE300
0
R
IPE27
HEM40
IPE300
HEM40
0
IPE27
IPE270
IPE300
18
IPE27
IPE300
IPE27
6.00
Q
16
0
0
0
P
6.15
HEM40 IPE27
HEM40
14
2.46
0
0
0
0
10
7.25
IPE27
HEM40
IPE27
HEM40
7.00
0
0
IPE550
IPE360 HEM400
O
6.51
5.78
IPE27
HEM40 6.00
IPE360
L 15
0
0
HEM300
7.25
IPE27
HEM40
17
IPE33 IPE270
IPE270 IPE270
6.26
13
IPE270 HEM400
IPE270
HEM400
IPE27
16
IPE220
IPE220
IPE220
IPE220
IPE220
IPE220
IPE220
IPE220
IPE220
0
IPE330
IPE330
IPE330
IPE330
IPE330
IPE330
IPE330
IPE360
7.24
E
6.29
IPE360
HEM400
IPE330 HEM400
IPE220
HEM400
IPE330
HEM400
11 2.20
12
IPE33
IPE220
8 IPE360
HEM400 IPE220
IPE220
IPE220
IPE220
IPE220
IPE220
IPE220
IPE220
IPE220
IPE220 IPE220
IPE220
IPE220
IPE220
IPE220
IPE220
IPE220
IPE220
IPE220
IPE220
IPE220
IPE220 IPE220
5.13
IPE360
HEM400
IPE330
HEM400
IPE330
HEM400
IPE550
HEM300
V
IPE300
IPE330
HEM300
U
IPE270
HEM300
D
C
IPE550
HEM300
IPE360
HEM300
T
S IPE270
HEM300
3.85
IPE220
IPE220
IPE220
HEM300
IPE300
B
IPE220
IPE220
IPE220
IPE220
IPE220
IPE220
IPE360
IPE300
A
6.65
IPE330
HEM400
R
Q 7.25
IPE330
HEM400
IPE330
IPE400
IPE270
IPE300
6.65
IPE360
HEM300
IPE270
IPE500
IPE330
IPE550
HEM300
P 7.00
IPE330
HEM400
HEM300
HEM400 IPE330
IPE300
IPE450
IPE330
HEM300 IPE270
6.26
IPE550
HEM300
IPE360
HEM300
IPE360
HEM300
HEM300 IPE270
IPE300
6
HEM300
IPE360
HEM300
IPE360
HEM300
IPE220
IPE220
IPE220 HEM400
IPE330
IPE360
IPE400
HEM400
HEM400
HEM300
IPE220
IPE220
IPE220
IPE220
IPE220
IPE220
IPE360
HEM300
10.56
IPE360
HEM300
IPE300
4
IPE400
HEM400
IPE330
HEM400 IPE220
IPE220
IPE220
IPE220
IPE330
HEM400
IPE330
IPE330
IPE330
IPE33
6.00
IPE330
HEM300
3.78 2.19
IPE330
IPE330
HEM300
IPE220
IPE220
IPE360 0
5
IPE330
IPE330
3
6.65
IPE330
6.65
C
IPE330
B
IPE330
HEM400
7.05
IPE360
HEM300
O
M
9 IPE360
IPE33 0
A
IPE330
HEM400
7.00
IPE360
HEM300
L
IPE33 0
6.27
IPE220
IPE360
2
IPE400
HEM400
K
7.10
IPE220
IPE300
IPE330
IPE270
IPE330
HEM400
J
7.75
IPE220
5.70
IPE330
HEM400 IPE220
IPE220
IPE360
6.27
IPE220
1
7.00
IPE220
7.26
IPE220
2.46
IPE220
2
I
H
G
IPE220
IPE220
1
F
IPE330
IPE160
D E
IPE220
3
TYPE “IPE”:
6.25
IPE300
5.64
20
TYPE “HEM”:
HEM300
2.19
W
HEM400
2.48
IPE450
X
3.21
5.60
T
19 20
5.70
Y
Z
0 1m
8.0
HEB800 BOARD Politecnico di Milano,HEM400 Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20 Politecnico di Milano,
Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
HEM300
GROUP 2:
IPE550
Caniato Giorgia Korovina Viktoriia Krebs Francesco GROUP 2:
918624 913045 918816
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
IPE500
IPE450
Nemati Ali 918417 Rotundo Marco Salvatore 912788 Saccuman Marta 918641 Krebs Francesco 918816
Nemati Ali 918417 Rotundo Marco Salvatore 912788 Saccuman Marta 918641
IPE360
IPE330
Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza Seyedi Zadeh Fereshteh927401
927160 912843 Sheikhhassani Navid Zohourparvaz Mohamadreza 927401
IPE300
IPE270 DESIGN IPE220 ARCHITECTURAL + STUDIO prof. A.Mozzato prof. F.Pagliani
GREENFALL
FINAL PRESENTATION_December 20th
IPE160
5m
10m
GREENFALL
20m
8.1.2
FINAL PRESENTATION _ December 20th SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
STRUCTURE
Structural plans
TYPE FLOOR PLAN
IPE330
HEM400
1
5
HEM400 IPE220
IPE220
5.70
IPE330
HEM400
IPE220
IPE360
4.30
IPE330 HEM400
4.30
7.00
IPE330
7.25
IPE330
HEM400
E 5.14
6
IPE360
HEM400
IPE220
6.26
IPE330
IPE220
3.34
6.27
IPE220
1
6.99
D
C
IPE220
7.25
B
IPE220
2.46
A
E
IPE220
IPE220
2
D
C
IPE220
1
A B
IPE220
IPE160
3
IPE220
TYPE “IPE”:
2.19
1.00
A
7.00
B
C
8
HEM400
1.35
A
6.27
D
E
B 5.91
IPE270
HEM400
2.40
IPE270
IPE270 HEM40 0
HEM40
IPE270 HEM40 0
0
HEM40
HEM40
0
HEM40
IPE330
IPE220
IPE220
IPE220
IPE360
IPE220
IPE220
IPE220
IPE220
8
1.00
5.70
IPE360
1.35
7.25
D
C
9
2.46
E
0
IPE270
0
5
3
HEM40
HEM40
IPE270
6.00
IPE270
IPE270
IPE300
IPE300
0
IPE270
HEM400
7.00
B
60
2
0
IPE270
6.00
IPE270
4
HEM40
0
IPE300
IPE270 HEM40 0
6.25
IPE330
E1
6.27
6.15
HEM40
IPE300
IPE270
IPE270
4
HEM400
3.40
IPE270
IPE270
IPE300
IPE300
6.00
IPE330
IP
60
E1
IP
60
E1
IP
1
HEM40
0
IPE550
6.26
A
IPE270
IPE300
IPE270
IPE270
3
HEM400
60
60
IPE270
IPE300
IPE300
0
6.00
3.34
E1
E1
5.54
IPE300
IPE300
IPE270
IPE270 IPE220
HEM400
HEM400
IP
IP
60
IP
IPE270
6.15 IPE220
2
IPE330
IP
IPE360
HEM400 0
6 E1
IPE270 HEM400
IPE270
HEM400
1.00
IPE330
60
E1
60
IPE330
HEM400
5.40
IPE300
IPE500
D
C
5.19
1
IPE450
4 5
IPE300
7.25
HEM400
IPE330
IPE300
5.14
HEM400
3.30
IPE330 IPE220
4
IPE330 7.00
IPE330
E1
IPE220
3.30
2.19 IPE360
3
E1
IPE220
IPE220
IPE220
HEM400
IPE300
IPE330
HEM400 IPE220
IPE220
1.00
IPE220
IPE220
1.00
IPE330
HEM400
IPE220
7
IPE330
IP
IPE220
IP
I
IP
60
E1
60
IPE330
HEM400 60
1 PE
IPE220
E1
IPE330 IPE220
4.90
HEM400 IP E1 60
IPE220
IP
60
E1
IP
4.90
IPE330
IPE220
I
2
IPE270
60
IPE220
IPE360
E1
6
IPE270 IPE270
IPE300
IP
IPE220
IPE330
IP
60
E1
60
IPE360
3
IP
1 PE
IPE270
E1
0
6 E1
HEM400 60
IPE270
IP
60
E1
IP
60
IPE330
IPE330 IPE220
IP
E1
HEM400 IP E1 60
IPE220
IPE220
7.00
60
0
6 E1
IPE220
E1
1.00
IP
IPE220
2
IPE330
HEM400
IPE220
IPE360 IP
IPE220
IPE300
IPE330
IPE270
7
1.00
6.25
IPE300
5.64
6
2.48
IPE450
TYPE “HEM”: 2.19
HEM300
3.21
5.60
5 6
5.70
HEM400
E
F
B
G
H
0 1m
8.1
HEB800 Politecnico di Milano,HEM400 BOARD Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20 Politecnico di Milano,
Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
HEM300
GROUP 2:
IPE550
Caniato Giorgia Korovina Viktoriia Krebs Francesco GROUP 2:
918624 913045 918816
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
IPE500
IPE450
Nemati Ali 918417 Rotundo Marco Salvatore 912788 Saccuman Marta 918641 Krebs Francesco 918816
Nemati Ali 918417 Rotundo Marco Salvatore 912788 Saccuman Marta 918641
IPE360
IPE330
Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza Seyedi Zadeh Fereshteh927401
927160 912843 Sheikhhassani Navid Zohourparvaz Mohamadreza 927401
IPE300
IPE270 DESIGN IPE220 ARCHITECTURAL + STUDIO prof. A.Mozzato prof. F.Pagliani
GREENFALL
FINAL PRESENTATION_December 20th
IPE160
5m
10m
GREENFALL
20m
8.1.3
FINAL PRESENTATION _ December 20th SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
SECTION & 3D DETAILS
STRUCTURE
Structure section and 3D
SECTION 3
3
1 2
1
2
4 5.50
5.50
3 3.47
4.30
4.30
+7.6
2 4.31
3.90
1
1.30 3.20
+0.0
5.59
4.77
2.71
4.29
2.71
3.56
2.71
5.03
2.71
4.37
2.71
4.29
2.71
4.35
0
2.71 4.70
1.30
0.75 2.71
3.56
2.71
4.29
2.71
4.55
8.72
3D STRUCTURAL SCHEME Politecnico di Milano,Milano, Politecnico Polo territoriale di di Lecco CdL in Architectural engineering Polo territoriale di Lecco Academic 2019/20 CdL inyear Architectural engineering
Academic year 2019/20
GROUP 2:
GROUP 2:
Caniato Giorgia 918624 913045 Caniato Giorgia Korovina Viktoriia Krebs FrancescoMurr918816 Dieterich Alice
Korovina Viktoriia
GREENFALL
GREENFALL
ARCHITECTURAL DESIGN 927160 Zadeh Fereshteh SUSTAINABLE BUILDING Seyedi918816 Zadeh Fereshteh Seyedi 927160 Nemati Ali Krebs Francesco 918417 + STUDIO Sheikhhassani Navid 912843 Rotundo Marco Salvatore 912843 Sheikhhassani Navid Nemati Ali 912788 918624 918417 TECHNOLOGIES prof. A.Mozzato Zohourparvaz Mohamadreza 927401 F.Pagliani FINAL PRESENTATION _ December 20th + STUDIO Saccuman Rotundo Marta 918641 Salvatore 912788 824939 Marco Zohourparvaz Mohamadreza prof. 927401 th 913045 FINAL PRESENTATION_December 20 prof. M.Brasca prof. G.Masera Saccuman Marta 918641
BOARD
8.38.2
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
9. OPAQUE
Defining lightweight construction systems with high performance dry layers and understanding it's assembly and connections
OPAQUE
Opaque envelope strategy
PRELIMINARY ANALYSIS OF TECHNOLOGICAL UNITS
In order to design the opaque layers of the project, first the requirements of each technological unit was analysed according to UNI 8290 regulation. The units where subdivided depending ambients it devides (in NC = not conditioned internal ambient).
Class of Requirement Safety Stability Fire safety
Safety of use Comfort and Hygiene Thermal and hygometric
Acoustic Visual Olfactory Tactile Usability Adaptability Aesthetics Of spaces Management Maintanance Economical
Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
H.C. - Horizontal Closures
Requirement
out - in
out - in NC
H.P. - Horizontal Partitions in - in
in NC - in
out - out
V.C. - Vertical Closures out - in
out - in NC
V.P - Vertical Partitions in - in
in NC - in
optional
optional
Mechanical resistant to static actions Mechanical resistant to dynamic actions Impact resistant No emission of harmfull subtances Limited fire spread risks Limited explosion risks Fire resistant Intrusion resistant Solar factor control Impermeability to liquids Thermal insulation Air tightness Acoustic insulation Luminous flux control No emitance of unplesant smells Impermeability to gases Surface asperity control Electrical systems integration Hydraulic systems integration Cooling and Heating systems integration
optional
optional
optional
Anti-hygroscopic (not moisture absorbent) Appearance regularity Condensation control Repairability Cleanability Durability Limit energetic consumptions
GROUP 2:
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
918816 918417 912788 918641
Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401
GREENFALL FINAL PRESENTATION_December 20th
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
9.1
OPAQUE
Horizontal stratigraphies
U = 1.93W/m2K
H.C. 1
Horizontal closure, retaining floor, uninsulated
3
Technical room (in, not heated)
1
Finishing layer, in cement, tk. 3.2cm
2
Soil
U = 0.22W/m2K
Horizontal closure, insulated
Levelling layer, in lean mortar, tk. 10cm
Finishing layer, in porcelain stoneware, tk. 0.9cm, dim. 60x60cm, "FAP Ceramiche, Milano&Floor" Gluing layer, cement-based elastic adhesive, tk. 0.3cm, "SIKA, Minipack Colla Elastica" Infill layer, in reinforced concrete boards, tk. 2.2cm, dim. 60x90cm, "KNAUF Aquapanel Floor". Fixed with polyurethane glue, "Aquapanel Rebate Floor Adhesive PU" and self-tapping screws, "Aquapanel Floor Screws" Acoustic insulation layer, in perlite granular aggregates, tk. 5cm, "KNAUF, Aquapanel Levelling Fill" Vapour barrier, in aluminium sheet, tk. 0.03cm Thermal insulation layer, in extruded polystyrene (XPS), tk. 12cm, dim. 60x125cm, λ=0,034 W/mK, "LAPE, Styrodur 3035 CS" Load-bearing framework: Reinforcement layer, in Portland cement and wood fibers, tk. 2.8cm, dim. 280x125cm, δ=1350 kg/m3 "BETONWOOD, Cementolegno ad alta densità" Self-drilling screw for wood-metal connections, in stainless steel, L=4.5cm, Ø=0.48cm, "Rothoblaas, SBS A2 AISI304" Corrugated sheet, in stainless steel, tk. 0.1cm, h=5.5cm, "SANDRINI METALLI, SANDA55 P600" Sound proof and anti-condensation, high-desity syntetic rubber fabric, tk. 0.3cm, "SANDRINI METALLI, SANDcontrol". Glued to corrugated sheet Structural element, primary beam, IPE 360
80
29,3
Residential floor (in)
Ventilated under-floor cavity layer, in plastic formworks, h=60cm, dim. 57.8x57.8cm, "DALIFORM GROUP, Iglù H60"
H.C.2
Accessible false ceiling "PROMETAL, Clip in tiles": Hanger: clip-in adjustament spring + suspention spring Connector: single clip-in cross connector Double substructrure: clip-in rail "secondary grid + main carrier" Clip-in panel: in steel, tk. 0.05cm, dim. 60x60cm
Platform (out)
Between residential floor (in) and platform (out)
60
H.C.1
Between soil and technical room (in, not heated)
Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
GROUP 2:
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
918816 918417 912788 918641
Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401
GREENFALL FINAL PRESENTATION_December 20th
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
H.C. 2
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
83
Load distribution layer, in concrete reinforced with electrowelded steel mesh, tk. 10cm
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
9.2.1
OPAQUE
Horizontal stratigraphies
U = 0.31 & 0.22W/m2K
H.C. 3
Horizontal closure, insulated from above
3
H.C. 4
U = 0.28W/m2K
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
Gym (in)
Tiles layer, in porcelain stoneware, tk. 2cm, dim. 40X40cm, "BERTOLANI, scout black" Support elements, in polypropilene, h=5-7.5cm, "GANMAR, Sistema Flot SE2" Waterproofing membrane, in tar paper, tk. 0.4 cm, "BITUVER, Membrana bituminosa elastomerica Monover" Slope and thermal insulation layer, in cellular glass, minimum tk. 10cm, dim. 120x60cm, λ=0,041 W/mK, class A1, "FOAMGLAS, Board T4+", slope gradient 1.5%
27,3 78
2
Load-bearing framework: Reinforcement layer, in Portland cement and wood fibers, tk. 2.8cm, dim. 280x125cm, δ=1350 kg/m3 "BETONWOOD, Cementolegno ad alta densità" Self-drilling screw for wood-metal connections, in stainless steel, L=4.5cm, Ø=0.48cm, "Rothoblaas, SBS A2 AISI304" Corrugated sheet, in stainless steel, tk. 0.1cm, h=5.5cm, "SANDRINI METALLI, SANDA55 P600" Sound proof and anti-condensation, high-desity syntetic rubber fabric, tk. 0.3cm, "SANDRINI METALLI, SANDcontrol". Glued to corrugated sheet Structural element, primary beam, IPE 360 Drop ceiling "KANUF, D112": Hangers, tk. 0.4cm, hook with spring, tk. 0.12cm, in steel, span 60cm Double metallic frame, in steel C profiles, tk. 0.06cm, dim. 2.7x5cm, span 60cm Acoustic insulation layer, in mineral wool, tk. 4.5cm, "KNAUF, Ekovetro R" Infill layer, in cement board, tk. 0.8cm, dim. 90x120cm, class A1, "KNAUF Aquapanel SkyLite". Fixed with self-tapping screws, L=2.5cm, Ø=0.35cm, "KNAUF vite V.R." Finishing layer, primer with glass fibre mesh, tk. 0.6cm, "KNAUF Aquapanel Interior Primer + Reinforcing Mesh + Q4 finish" Co-working (in)
Insulated closure, with footpath and slope Roof (out)
1
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
78
27,3
Street market/ Platform (out)
H.C.4
Between roof (out) and residential or common floor (in)
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
Residential Terrace (out)
Hollow profile stave layer, in wood plastic composite, tk. 2.2cm, dim. 14.5x220cm, "NOVOWOOD, Pestige col. Wood". Separator: hidden fastening clips, in nylon, distance 0.3cm Understructure frame, in aluminium hollow profiles, h=3cm, dim. 4x220cm, "NOVOWOOD, Corrente Alluminio" Levelling layer, in compacted sand, maximum tk. 3cm Waterproofing membrane, in tar paper, tk. 0.4 cm, "BITUVER Membrana bituminosa elastomerica Monover" Slope and thermal insulation layer, in cellular glass, minimum tk. 10cm, dim. 120x60cm, λ=0,041 W/mK, class A1, "FOAMGLAS, Board T4+", slope gradient 1.5% Load-bearing framework: Reinforcement layer, in Portland cement and wood fibers, tk. 2.8cm, dim. 280x125cm, δ=1350 kg/m3, "BETONWOOD, Cementolegno ad alta densità" Self-drilling screw for wood-metal connections, in stainless steel, L=4.5cm, Ø=0.48cm, "Rothoblaas, SBS A2 AISI304" Corrugated sheet, in stainless steel, tk. 0.1cm, h=5.5cm, "SANDRINI METALLI, SANDA55 P600" Sound proof and anti-condensation, high-desity syntetic rubber fabric, tk. 0.3cm, "SANDRINI METALLI, SANDcontrol". Glued to corrugated sheet Structural element, primary beam, IPE 360 Drop ceiling "KANUF, D112": Hangers, tk. 0.4cm, hook with spring, tk. 0.12cm, in steel, span 60cm Double metallic frame, in steel C profiles, tk. 0.06cm, dim. 2.7x5cm, span 60cm Fire barrier and infill layer, in gypsum plasterboard reinforced with mineral fibres, tk. 1.25cm, dim. 120x300cm, class A1, "KNAUF lastra F-zero". Fixed with self-tapping screws, L=2.5cm, "KNAUF vite V.R." Finishing layer, in plaster filler and light aggregates, tk. 0.6 cm, "KNAUF Fireboard Spachtel / Q4"
H.C.3
Between gym (in) and street market (out)
Residential floor (in)
Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
Common floor (in)
GROUP 2:
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
918816 918417 912788 918641
Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401
GREENFALL FINAL PRESENTATION_December 20th
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
9.2.2
OPAQUE H.C. 5
Horizontal stratigraphies H.C.5
U = 0.24W/m2K
Insulated closure, with slope, maintenance only
3
U = 1.11W/m2K
External partition, with garden
60
Soil, maximum tk. 20cm Drainage and water storage layer, in plastic (HDPE), filled with expanded clay, h=5cm, dim. 56x56cm, "PANTAROLO, Cupolex WindiDrain" Waterproofing membrane, in tar paper, tk. 0.4 cm, "BITUVER Membrana bituminosa elastomerica Monover" Slope layer, in perlite granular aggregates, minimum tk. 2cm, "KNAUF, Aquapanel Levelling Fill", slope gradient 1.5% Separation layer, in cardboard, tk. 0.3cm, "KNAUF Foglio di cartone ondulato" Load-bearing framework: Reinforcement layer, in Portland cement and wood fibers, tk. 2.8cm, dim. 280x125cm, δ=1350 kg/m3, "BETONWOOD, Cementolegno ad alta densità" Self-drilling screw for wood-metal connections, in stainless steel, L=4.5cm, Ø=0.48cm, "Rothoblaas, SBS A2 AISI304" Corrugated sheet, in stainless steel, tk. 0.1cm, h=5.5cm, "SANDRINI METALLI, SANDA55 P600" Structural element, IPE 550 Accessible false ceiling "PROMETAL, Clip in tiles": Hanger: clip-in adjustament spring + suspention spring Connector: single clip-in cross connector Double substructrure: clip-in rail "secondary grid + main carrier" Clip-in panel: in steel, tk. 0.05cm, dim. 60x60cm
Platform (out)
Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
2
Drop ceiling "KANUF, D112": Hangers, tk. 0.4cm, hook with spring, tk. 0.12cm, in steel, span 60cm Double metallic frame, in steel C profiles, tk. 0.06cm, dim. 2.7x5cm, span 60cm Fire barrier and infill layer, in gypsum plasterboard reinforced with mineral fibres, tk. 1.25cm, dim. 120x300cm, class A1, "KNAUF lastra F-zero". Fixed with self-tapping screws, L=2.5cm, "KNAUF vite V.R." Finishing layer, in plaster filler and light aggregates, tk. 0.6cm, "KNAUF Fireboard Spachtel / Q4"
100
35,1
Platform's roof, not accessible (out)
1
Load-bearing framework: Reinforcement layer, in Portland cement and wood fibers, tk. 2.8cm, dim. 280x125cm, δ=1350 kg/m3, "BETONWOOD, Cementolegno ad alta densità" Self-drilling screw for wood-metal connections, in stainless steel, L=4.5cm, Ø=0.48cm, "Rothoblaas, SBS A2 AISI304" Corrugated sheet, in stainless steel, tk. 0.1cm, h=5.5cm, "SANDRINI METALLI, SANDA55 P600" Sound proof and anti-condensation, high-desity syntetic rubber fabric, tk. 0.3cm, "SANDRINI METALLI, SANDcontrol". Glued to corrugated sheet Structural element, primary beam, IPE 360
H.P.6
Between platform (out) and platform roof (out)
60
GROUP 2:
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
918816 918417 912788 918641
Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401
GREENFALL FINAL PRESENTATION_December 20th
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
H.P. 6
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
Residential floor (in)
Protection layer, in gravel, maximum tk. 5cm Waterproofing membrane, in tar paper, tk. 0.4 cm, "BITUVER Membrana bituminosa elastomerica Monover" Slope and thermal insulation layer, in cellular glass, minimum tk. 8cm, dim. 120x60cm, λ=0,041 W/mK, class A1, FOAMGLAS, Board T4+", slope gradient 1.5% Thermal insulation layer, in extruded polystyrene (XPS), tk. 5cm, dim. 60x125cm, λ=0,034 W/mK, "LAPE, Styrodur 3035 CS"
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
78
27,3
Roof, mantenance only (out)
Between residential floor (in) and roof (out) (maintenance only)
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
9.2.3
OPAQUE
Horizontal stratigraphies
U = 0.67 & 0.54W/m2K
H.P. 7
External partition, with footpath and slope
H.P. 8
U = 0.25W/m2K
Main internal partition
Terraces finishing: Hollow profile stave layer, in wood plastic composite, tk. 2.2cm, dim. 14.5x220cm, "NOVOWOOD, Pestige col. Wood". Joint separator: hidden fastening clips, in nylon, distance 0.3cm Understructure frame, in aluminium hollow profiles, h=3cm, dim. 4x220cm, "NOVOWOOD, Corrente Alluminio" Levelling layer, in compacted sand, maximum tk. 8cm
1
2
Waterproofing membrane, in tar paper, tk. 0.4 cm, "BITUVER Membrana bituminosa elastomerica Monover" Slope screed layer, in expanded perlite, minimum tk. 5cm, "KNAUF, LE350 BIOLITE", slope gradient 1.5% Separation layer, in cardboard, tk. 0.3cm, "KNAUF Foglio di cartone ondulato" Load-bearing framework: Reinforcement layer, in Portland cement and wood fibers, tk. 2.8cm, dim. 280x125cm, δ=1350 kg/m3, "BETONWOOD, Cementolegno ad alta densità" Self-drilling screw for wood-metal connections, in stainless steel, L=4.5cm, Ø=0.48cm, "Rothoblaas, SBS A2 AISI304" Corrugated sheet, in stainless steel, tk. 0.1cm, h=5.5cm, "SANDRINI METALLI, SANDA55 P600" Structural element, primary beam, IPE 360 Accessible false ceiling "PROMETAL, Clip in tiles": Hanger: clip-in adjustament spring + suspention spring Connector: single clip-in cross connector Double substructrure: clip-in rail "secondary grid + main carrier" Clip-in panel: in steel, tk. 0.05cm, dim. 60x60cm
Residential Terrace (out)
Public floor (in)
Finishing layer, in porcelain stoneware, tk. 0.9cm, dim. 60x60cm, "FAP Ceramiche, Milano&Floor Matt R9" Gluing layer, cement-based elastic adhesive, tk. 0.3cm, "SIKA, Minipack Colla Elastica" Infill layer, in reinforced concrete boards, tk. 2.2cm, dim. 60x90cm, "KNAUF Aquapanel Floor". Fixed with polyurethane glue, "Aquapanel Rebate Floor Adhesive PU" and self-tapping screws, "Aquapanel Floor Screws" Acoustic insulation layer and cavity for hydraulic services, in perlite granular aggregates, tk. 17cm, "KNAUF, Aquapanel Levelling Fill" Plumbing tube, total ø=11cm, "GEBERIT PE DN100" Separation layer, in cardboard, tk. 0.3cm, "KNAUF Foglio di cartone ondulato"
PUBLIC accessible false ceiling "PROMETAL, Clip in tiles": Hanger: clip-in adjustament spring + suspention spring Connector: single clip-in cross connector Double substructrure: clip-in rail "secondary grid + main carrier" Clip-in panel: in steel, tk. 0.05cm, dim. 60x60cm
Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
Public floor (in)
GROUP 2:
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
H.P.7
RESIDENTIAL drop ceiling, "KNAUF, D112": Hangers, tk. 0.4cm, hook with spring, tk. 0.12cm, in steel, span 60cm Double metallic frame, in steel C profiles, tk. 0.06cm, dim. 2.7x5cm, span 60cm Fire barrier and infill layer, in gypsum plasterboard reinforced with mineral fibres, tk. 1.25cm, dim. 120x300cm, class A1, "KNAUF lastra F-zero". Fixed with self-tapping screws, L=2.5cm, "KNAUF vite V.R." Finishing layer, in plaster filler and light aggregates, tk. 0.6 cm, "KNAUF Fireboard Spachtel / Q4"
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
918816 918417 912788 918641
Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401
GREENFALL FINAL PRESENTATION_December 20th
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
Residential floor (in)
H.P.8
Between two residential floors (in) or two common floors (in)
Load-bearing framework: Reinforcement layer, in Portland cement and wood fibers, tk. 2.8cm, dim. 280x125cm, δ=1350 kg/m3, "BETONWOOD, Cementolegno ad alta densità" Self-drilling screw for wood-metal connections, in stainless steel, L=4.5cm, Ø=0.48cm, "Rothoblaas, SBS A2 AISI304" Corrugated sheet, in stainless steel, tk. 0.1cm, h=5.5cm, "SANDRINI METALLI, SANDA55 P600" Sound proof and anti-condensation, high-desity syntetic rubber fabric, tk. 0.3cm, "SANDRINI METALLI, SANDcontrol". Glued to corrugated sheet Structural element, primary beam, IPE 360
80
29,3
Residential floor (in)
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
Street Market (out)
Residential Terrace (out)
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
78
27,3
Platform (out)
3
Platform finishing: Tiles layer, in porcelain stoneware, tk. 2cm, dim. 40X40cm, "BERTOLANI, scout black". Joints: 0.4cm Support elements, in polypropilene, h=7.5-12cm, "GANMAR, Sistema Flot SE3"
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
Between platform (out) and street market (out) or two residential terraces
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
9.2.4
OPAQUE
Horizontal stratigraphies
U = 0.23 W/m2K
H.P. 9
Internal partition, insulated from above
3
H.P. 10
Walkway on park
Soil
1
2
Load-bearing framework: Reinforcement layer, in Portland cement and wood fibers, tk. 2.8cm, dim. 280x125cm, δ=1350 kg/m3, "BETONWOOD, Cementolegno ad alta densità" Self-drilling screw for wood-metal connections, in stainless steel, L=4.5cm, Ø=0.48cm, "Rothoblaas, SBS A2 AISI304" Corrugated sheet, in stainless steel, tk. 0.1cm, h=5.5cm, "SANDRINI METALLI, SANDA55 P600" Sound proof and anti-condensation, high-desity syntetic rubber fabric, tk. 0.3cm, "SANDRINI METALLI, SANDcontrol". Glued to corrugated sheet Structural element at sight, IPE 360
External tile layer, in granite, tk. 3cm, dim. 40x60cm, "GRANULATI ZANDOBBIO, G603" Equilizing bed, in compacted sand, tk. 2.5cm
Dranage and backfilling layer, in gravel, tk. 15cm
H.P.10
Between ground floor park and soil
H.P.9
Between technical room and co-working or gym (in)
Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
GROUP 2:
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
918816 918417 912788 918641
Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401
GREENFALL FINAL PRESENTATION_December 20th
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
21
Ground floor Park
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
Technical room (in, not heated)
Finishing layer, in porcelain stoneware, tk. 0.9cm, dim. 60x60cm, "FAP Ceramiche, Milano&Floor Matt R9" Gluing layer, cement-based elastic adhesive, tk. 0.3cm, "SIKA, Minipack Colla Elastica" Infill layer, in reinforced concrete boards, tk. 2.2cm, dim. 60x90cm, "KNAUF Aquapanel Floor". Fixed with polyurethane glue, "Aquapanel Rebate Floor Adhesive PU" and self-tapping screws, "Aquapanel Floor Screws" Thermal insulation and vapour barrier layer, in cellular glass, tk. 10 cm, dim. 120x60cm, λ=0,041 W/mK, class A1, "FOAMGLAS, Board T4+", slope gradient 1.5% Thermal insulation layer, in extruded polystyrene (XPS), tk. 5cm, dim. 60x125cm, λ=0,034 W/mK, "LAPE, Styrodur 3035 CS"
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
63,3
27,3
Co-working/ Gym (in)
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
9.2.5
OPAQUE V.C. 01
U = 0.30 W/m2K
V.C. 02
Retaining wall, load-bearing, insulated
U = 0.23 W/m2K
Retaining wall, load-bearing, insulated, with services cavity
46
66
Gym
Soil
Vertical stratigraphies
Soil
Bathroom
Drainage layer for ventilated crawl space, in gravel, minimum tk. 10 cm
Drainage layer for ventilated crawl space, in gravel, minimum tk. 10 cm
Filter and protection layer, in rot-proof polypropylene geotextile (outside) bonded to a high-density polyethylene drainage (core), total tk. 0,9 cm, "DELTA DRAIN"
Filter and protection layer, in rot-proof polypropylene geotextile (outside) bonded to polyethylene drainage (core), tk. 0.9 cm, "DELTA DRAIN"
Waterproof layer, in bitumen membrane, tk. 0,45 cm, "INDEX - LIGHTFLEX HPCP"
Waterproof layer, in bitumen membrane, tk. 0.45 cm, "INDEX, LightFlex HPCP"
Thermal insulation layer, in cellular glass boards, tk. 12 cm, dim. 120X60 cm, λ= 0,041 W/mK, class A1, "FOAMGLAS, Board T4+"
Insulation layer, in cellular glass boards, tk. 12 cm, dim. 120X60 cm, λ= 0,041 W/mK, Euroclass A1, "FOAMGLAS, Board T4+"
Gluing layer, in cement-based fiber adhesive, tk. 0.3cm, "Fassabortolo, A 96"
Gluing layer, in cement-based fiber adhesive, tk. 0.3 cm, "Fassabortolo A96"
Structural layer, in reinforced concrete, tk. 30 cm
Structural layer, in reinforced concrete, tk. 30 cm
Finishing layer, tk. 2.5 cm: - Base coat, in lime plaster, tk. 2cm, "FASSABORTOLO KB 13"; - Finishing coat, in lime plaster, tk. 0.5cm, "FASSABORTOLO IM 560"
Cavity for hydraulic sevices, tk. 15 cm; with plumbing tube, total ø=11cm, "GEBERIT" Substructure, in DX51 steel, tk. 0.08cm, dim. 5x5x5cm, "KNAUF C stud" Sound absorbing layer, in polyester fiber, tk. 5 cm, w=61cm, "POLYESTER SOLUTIONS, Sound Batts Insulation". Fixed with glue, tk. 0.3cm Infill and water repellent layer, in reinforced cement boards, tk. 1.25cm, dim. 120x90cm, class A1, "KNAUF, Aquapanel Indoor" Self-drilling screw, in corrosion-resistant steel, "KNAUF Maxi Screws TEKS" Gluing layer, cement-based adhesive, tk. 0.4cm, "MAPEI - Karaflex" Tiling layer, in porcelain stoneware tiles, tk. 1 cm, dim. 6x24 cm
V.S.
V.S.
V.C. 03
U = 2.10 W/m2K
V.C. 1
Fireproof wall, uninsulated
V.C. 2
16
Terrace
Stairs Finishing layer, in exterior basecoat, tk. 1cm, with reinforcing mesh, "KNAUF Uniflott Q1"
showers
Stiffening layer, in fibercement panels, tk. 1.25cm, dim. 120x120cm, "KNAUF AQUAPANEL cement board Outdoor" Fixing element, self-drilling screw, in corrosion-resistant steel, "KNAUF, Aquapanel Maxi Screws, TEKS"
gym's changing room
changing room
Air conditioned spaces
Water barrier, in breathable membrane, tk. 0.02cm, "KNAUF -TYVEK StuccoWrap", fixed to substructure with double sided adhesive tape Double substructure, in DX51 steel, tk. 0.08 cm, dim. 5x5x5cm, span 60cm, "KNAUF C stud"
double unit
double unit
double unit
Dead air space to block fire spread, tk. 11cm
hall
Infill and fire control layer, in gypsum boards, tk. 1.25+1.25cm, dim. 120x300cm, "KNAUF, F-Zero". Fixed with self-drilling screw, in black phosfate, L=2.5 or 4.2cm, "KNAUF Jackpoint Self-Drilling Screw"
common space
Finishing coat, in water based paint for plaster board, tk. 0.5cm, "FASSA BORTOLO Gypsopaint"
V.C. 3
Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
double unit
double unit
H.S.
GROUP 2:
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
918816 918417 912788 918641
Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401
GREENFALL FINAL PRESENTATION_December 20th
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
V.S.
terrace
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
9.3.1
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
OPAQUE U = 1.60 W/m2K
V.C. 04
V.C. 05
Ventilataded facade in GFRC, load-bearing
64
Elevator/ Stairs
Cladding, in glassfiber reinforced concrete (GFRC), tk. 1.3 cm, dim. variable, "RIEDER, Fiber C Facade Panels" Fixing elements anchored to panel: - Undercut anchor and ratchet screw, in stainless steel, ø=7mm, "KEIL, KH AA" - Anchoring element, in alumnum alloy, "HILTI, MFT-H 200K" - Adjusting screw, in alumnum, ø=3.5mm "HILTI, MFT-JS" Horizontal hanger profile, in alumnum alloy, tk. 2mm, w=2.15cm, h=6cm, "HILTI, MFT-HP 200". Fixed with self-drilling screw, "HILTI" Vertical L profile, in aluminum alloy, tk. 2mm, dim. 6x4cm, "HILTI, MFT-L". Fixed with self-drilling screw, in aluminum, "HILTI" L bracket with clamping spring, in aluminum alloy, tk. 0.25cm, dim. 4x16cm, "HILTI, MFT-MF L". Fixed with a high-performance collared plastic anchor for frames, ø=1cm, "HILTI, HRD-H" Ventilated cavity, tk. 4.85cm Structural layer, in reinforced concrete, tk. 30 cm
50
1
2
Out
H.S. 9
V.S.
V.C. 06
U = 0.36 W/m2K
Ventilataded facade in GFRC, load-bearing, insulated, with services cavity
Out
22,4
39 9
Vertcial stratigraphies
Bathroom Cladding, in glassfibre reinforced concrete (GFRC), tk. 1.3cm, dim. variable, "RIEDER, Fiber C Façade Panels". Fixed with Undercut System, "KEIL" Horizontal hanger profile, in aluminum alloy, tk. 2mm, w=2.15cm, h=6cm, "HILTI, MFT-HP 200". Fixed with self-drilling screw, "HILTI" Ventilated cavity, tk. 3cm Vertical L profile, in aluminum alloy, tk. 2mm, dim. 4x4cm, "HILTI, MFT-L". Fixed with self-drilling screw, in aluminum, "HILTI" Thermal insulation layer, in mineral wool, tk. 4cm, dim. 60x120cm, λ=0,035 W/mK, class A1, "ROCKWOOL Rainscreen Duo Slab". Fixed with insulation fastener and nail, in HDPE, "HILTI, X-IE-E-6", span 50cm L bracket with clamping spring, in aluminum alloy, dim. 6.5x16cm, hole ø=11mm; with thermal separator in polypropylene, tk. 0.5cm, "HILTI, MFT-MFI L" Fixed with a high-performance collared plastic anchor for frames, ø=1cm, "HILTI, HRD-H"
Structural layer, in reinforced concrete, tk. 30 cm Cavity for hydraulic sevices, tk. 15 cm. Plumbing tube, total ø=11cm, "GEBERIT PE DN100" Substructure, in DX51 steel, tk. 0.08cm, dim. 5x5x5cm, "KNAUF C stud" Sound absorbing layer, in polyester fiber, tk. 5 cm, "POLYESTER SOLUTIONS, Sound Batts Insulation". Fixed with glue, tk. 0.3cm Vapour barrier, in aluminium, tk. 0,03 cm Infill and water repellent layer, in reinforced cement board, tk. 1.25cm, dim. 120x90cm, Euroclass A1, "KNAUF, Aquapanel Indoor". Fixed with self-drilling screw, in corrosion-resistant steel, "KNAUF Maxi Screws TEKS" Gluing layer, cement-based adhesive, tk. 0.4cm, "MAPEI - Karaflex" Tiling layer, in porcelain stoneware tiles, tk. 1 cm, dim. 6x24 cm
V.S.
Cladding
U = 0.11 W/m2K
Main ventilataded facade in GFRC, insulated stud wall 41
Room
50
1
2
Cladding, in glassfibre reinforced concrete (GFRC), tk. 1.3cm, dim. variable, "RIEDER, Fiber C Façade Panels" Fixing elements anchored to GRC panel: - Undercut anchor and locking ratchet, in stainless steel, ø=7mm, "KEIL, KH AA" - Anchoring element, in aluminum alloy, h=6cm, w=4cm, "HILTI, MFT-H 200K" - Adjusting screw, in aluminum, L=2cm, ø=3.5mm "HILTI, MFT-JS" Horizontal hanger profile, in aluminum alloy, tk. 2mm, w=2.15cm, h=6cm, "HILTI, MFT-HP 200". Fixed with self-drilling screw, "HILTI" Ventilated cavity, tk. 4cm Vertical L profile, in aluminum alloy, tk. 0.18cm, dim. 4x6cm, "HILTI, MFT-L". Fixed with self-drilling screw, in aluminum, "HILTI" L bracket with clamping spring, in aluminum alloy, tk. 0.25cm, dim. 15x16cm; with thermal separator in polypropylene, tk. 0.5cm, "HILTI, MFT-MFI L". Fixed with umbrella expansion plug, in polyamide, "HILTI, HLD 4" Thermal insulation layer, in mineral wool, tk. 12cm, dim. 60x120 cm, λ=0,035 W/mK, class A1, "ROCKWOOL Rainscreen Duo slab". Fixed with cement-based adhesive, tk. 0.3cm, "FASSABORTOLO, A96" Insulation fastener, in HDPE, "HILTI, IDP120, fungo per pannelli isolanti"
V.S.
Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
H.S.
GROUP 2:
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
Air conditioned spaces
V.C. 5
Double stiffening layer, in fibercement panels, tk. 1.25+1.25cm, dim. 200x120cm, "KNAUF - ACQUAPANEL cement board Outdoor". Fixed with self drilling screws, "KNAUF Maxi Screws TEKS" Water barrier breathable layer, in fabric, tk. 0.02cm, "KNAUF -TYVEK StuccoWrap". Fixed with adhesive tape Stud frame, in stainless steel, tk. 0.2 cm, dim. 5x10x5cm, span 60cm, "Marcegaglia" Thermal and acoustic insulation layer, in stone wool boards, tk. 10 cm, dim. 120x60 cm, λ=0,033 W/mK, class A1, "ROCKWOOL, Acoustic 225 Plus" Secondary substructure, in DX51 steel, tk. 0.08cm, dim. 5x5x5cm, "KNAUF C stud" Thermo-acoustic insulation layer, in stone wool boards, tk. 5cm, class A1, "ROCKWOOL, Acoustic 225 Plus" Vapour barrier, in aluminum, tk. 0,03 cm Infill and fire control layer, in double gypsum board, tk. 1.25+1.25cm, dim. 120x300cm, "KNAUF, F-Zero". Fixed with self-drilling screws, in black phosfate, L=2.5 or 4.2cm, "KNAUF Jackpoint Self-Drilling Screw" Finishing coat, in water based paint for plaster board, tk. 0.5cm, "FASSA BORTOLO Gypsopaint"
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
918816 918417 912788 918641
Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401
double unit
V.C. 6
V.C. 4
double unit
double unit hall
common space
terrace
GREENFALL FINAL PRESENTATION_December 20th
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
Out
22,4
double unit
double unit
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
9.3.2
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
OPAQUE V.C. 07
U = 0.21 W/m2K
V.P. 08
Insulated wall, with plaster finishing (non load-bearing)
Vertcial stratigraphies
U = 0.20 W/m2K
Fireproof insulated partition
26
26
Terrace
Room
Finishing layer, in exterior basecoat, tk. 1cm, with reinforcing mesh, "KNAUF Aquapanel Outdoor solution"
Stairs
Room Finishing layer, in basecoat plus finishing coat with reinforcing mesh, tk. 1cm, "KNAUF Uniflott Q2"
Stiffening layer, in fibercement panels, tk. 1.25cm, dim. 120x120cm, "KNAUF AQUAPANEL Outdoor". Fixed with self-drilling screws, in corrosion-resistant steel, "KNAUF, Aquapanel Maxi Screws, TEKS"
Infill and water repellent layer, in reinforced cement boards, tk. 1.25cm, dim. 120x90cm, class A1, "KNAUF, Aquapanel Indoor". Fixing with self-drilling screw, in corrosion-resistant steel, "KNAUF, Aquapanel Maxi Screws, TEKS"
Water barrier breathable layer, in fabric, tk. 0.02cm, "KNAUF -TYVEK StuccoWrap", fixed to substructure with double sided adhesive tape
Substructure, in DX51 steel, tk. 0.1cm, dim. 5x10x5cm, span 50cm, "KNAUF C stud"
Substructure, un DX51 steel, tk. 0.1cm, dim. 5x10x5cm, "KNAUF C stud" Thermal insulation layer, in mineral wool, tk. 10 cm, dim. 120x60 cm, λ=0,034 W/mK, class A1, "ROCKWOOL Steel Frame Slab"
Thermal insulation layer, in mineral wool, tk. 10 cm, dim. 120x60 cm, λ=0,034 W/mK, class A1, "ROCKWOOL Steel Frame Slab" Dead air space to block fire spread, tk. 5cm
Dead air space to block fire spread, tk. 5cm
Substructure, C profile in steel, tk. 0.08cm, dim. 5x5x5cm, "KNAUF C stud"
Substructure, in DX51 steel, tk. 0.08cm, dim. 5x5x5cm, "KNAUF C stud" Acustic insulation layer, in mineral wool, tk. 5cm, dim. 120x60cm, λ=0,033 W/mK, class A1, "ROOKWOOL Acoustic 225 Plus"
Acoustic insulation layer, in mineral wool, tk. 5cm, dim. 120x60cm, λ=0,035 W/mK, class A1, "ROOKWOOL Acoustic 225 Plus"
Vapour barrier in alluminium, tk. 0,03 cm Infill and fire control layer, in gypsum boards, tk. 1.25+1.25cm, dim. 120x300cm, "KNAUF, F-Zero". Fixed with self-drilling screws, in black phosfate, L=2.5 or 4.2cm, "KNAUF Jackpoint Self-Drilling Screw" Finishing coat, in water based paint for plaster board, tk. 0.5cm, "FASSA BORTOLO Gypsopaint"
H.S.
V.S.
V.P. 9
Vapour barrier in alluminium, tk. 0,03 cm Infill and fire control layer, in gypsum boards, tk. 1.25+1.25cm, dim. 120x300cm, "KNAUF, F-Zero". Fixed with self-drilling screws, in black phosfate, L=2.5 or 4.2cm, "KNAUF Jackpoint Self-Drilling Screw" Finishing coat, in water based paint for plaster board, tk. 0.5cm, "FASSA BORTOLO Gypsopaint"
V.S.
U = 0.19 W/m2K
Fireproof partition, load-bearing, insulated from inside 43
Stairs
Room Structural layer in reinforced concrete, tk. 30cm Single substructure, in DX51 steel, tk. 0.08cm, dim. 5x10x5cm, "KNAUF C stud". Fixed with self-drilling screw, in black phosfate, L=2.5 or 4.2cm, "KNAUF Jackpoint Self-Drilling Screw"
V.P. 9
Air conditioned spaces
Thermal-acoustic insulation layer, in mineral wool, tk. 10cm, dim. 120x60cm, λ=0,034 W/mK, class A1, "ROCKWOOL Steel Frame"
Vapour barrier, in aluminium, tk. 0.03cm Fire control layer, in calcium silicate board, tk. 1.25cm, dim. 120x280cm, class A1, "Isostyle"
Bathroom
double unit
ROOM finishing layers: Infill layer, in gypsum board, tk. 1.25cm, dim. 120x300cm, "KNAUF, F-Zero". Fixed with self-drilling screw, in black phosfate, L=2.5 or 4.2cm, "KNAUF Jackpoint Self-Drilling Screw" Finishing coat, in water based paint for plaster board, tk. 0.5cm, "FASSA BORTOLO Gypsopaint" BATHROOM finishing layers: Infill and water repellent layer, in reinforced cement boards, tk. 1.25cm, dim. 120x90cm, class A1, "KNAUF, Aquapanel Indoor" Gluing layer, cement-based adhesive, tk. 0.4cm, "MAPEI - Karaflex" Tiling layer, in porcelain stoneware tiles, tk. 1 cm, dim. 6x24 cm
Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
common space
V.P. 8 terrace
V.C. 7
H.S.
GROUP 2:
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
918816 918417 912788 918641
Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401
double unit hall
GREENFALL FINAL PRESENTATION_December 20th
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
V.S.
double unit
double unit
double unit
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
9.3.3
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
OPAQUE V.P. 10
U = 0.50 W/m2K
V.P. 11
Acoustically insulated partition, prefabbricated
Vertical stratigraphies
U = 0.49 W/m2K
Acoustically insulated partition, prefabbricated, with electrical services
17
22
Corridor
Room
Finishing coat, in water based paint for plaster board, tk. 0.5cm, "FASSA BORTOLO Gypsopaint" Infill and fire control layer, in gypsum board, tk. 1.25cm, dim. 120x300cm, "KNAUF, F-Zero". Fixed with self-drilling screw, in black phosfate, L=2.5 or 4.2cm, "KNAUF Jackpoint Self-Drilling Screw" Single substructure, in DX51 steel, tk. 0.08cm, dim. 5x10x5cm, span 60cm, "KNAUF C Stud" Acoustic insulation layer, in mineral wool, tk. 5 cm, dim. 120x60 cm, class A1, "ROCKWOOL ACOUSTIC 225 PLUS" Dead air space, tk. 5cm
Room
Room
Prefabricated partition, "KNAUF - ILR3/13" Acoustic performance: 67 dB Fire resistance: 120:120 Finishing coat, in water based paint for plaster board, tk. 0.5cm, "FASSA BORTOLO Gypsopaint" Infill and fire control layer, in plasterboard, tk. 1.5+1.5cm, dim. 120x300cm, class A1, "KNAUF, Soundshield Plus". Fixed with self-drilling screw, in black phosfate, L=2.5 or 4.2cm, "KNAUF Jackpoint Self-Drilling Screw"
Corridor finishing: - Finishing coat, in water based paint for plaster board, tk. 0.5cm, "FASSA BORTOLO Gypsopaint" - Acoustic and fire barrier, in plasterboard, tk. 1.5+1.5cm, dim. 120x300cm, Euroclass A1, "KNAUF Soundshield Plus" - Fixing element, self-drilling screw, in black phosfate, L=2.5 or 4.2cm, "KNAUF Jackpoint Self-Drilling Screw"
Bathroom
Electrical services, "Knauf Putty Pad" Acoustic insulation layer, in glass mineral wool, tk. 5cm, w=60cm, class A1, "KNAUF Earthwool Acoustic Roll". Fixedwith glue, tk. 0.2cm Double substructure, in DX51 steel, tk. 0.055cm, dim. 3.5x7x3.5cm, span 60cm, "KNAUF C stud"
Bathroom finishing: - Infill and water repellent layer, in reinforced cement boards, tk. 1.25cm, dim. 120x90cm, Euroclass A1, "KNAUF, Aquapanel Indoor". Fixed with self-drilling screw, in corrosion-resistant steel, "KNAUF, Aquapanel Maxi Screws, TEKS" - Gluing layer, cement-based adhesive, tk. 0.5cm, "MAPEI - Karaflex" - Tiling layer, in porcelain stoneware tiles, tk. 1 cm, dim. 6x24 cm
V.S.
V.P. 12
Dead air space, tk 10cm
V.S.
H.S.
H.S.
U = 0.50 W/m2K
Acoustically insulated partition, with services cavity 26
Bathroom
Bathroom Ceramic coating layer, in porcelain stoneware tiles, tk. 1 cm, dim. 6x24 cm Gluing layer, cement-based adhesive, tk. 0.4cm, "MAPEI - Karaflex" Infill and water repellent layer, in reinforced cement boards, tk. 1.25cm, dim. 120x90cm, Euroclass A1, "KNAUF, Aquapanel Indoor" . Fiuxed with self-drilling screws, in corrosion-resistant steel, "KNAUF, Aquapanel Maxi Screws, TEKS"
Air conditioned spaces
Double substructure, in DX51 steel, tk. 0.08cm, dim. 5x5x5cm, span 60cm, "KNAUF C studs" double unit
Separation element, in wood, tk. 1cm, dim. 18x18cm. Fixed with self-tapping screws
V.P. 10
hall
common space
Sound absorbing layer, in polyester fiber, tk. 5+5 cm, w=61cm, "POLYESTER SOLUTIONS, Sound Batts Insulation". Fixed with glue, tk. 0.3cm
V.P. 11 terrace
double unit
double unit
H.S.
GROUP 2:
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
918816 918417 912788 918641
Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401
GREENFALL FINAL PRESENTATION_December 20th
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
double unit
V.P. 12
Cavity for hydraulic sevices, tk. 10 cm Plumbing tube, total ø=11cm, "GEBERIT PE 110" Pipe bracket "Braccialetto Geberit isolato, con dado filettato M8/M10"
V.S.
double unit
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
9.3.4
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
OPAQUE
Blow-up and technical details
BLOW UPS LOCALIZATION SOUTH-EAST
3 1
NORTH-WEST
2
3 1
SOUTH-WEST
NORTH-EAST
2
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
BLOW UP 1
South-est facade, residential floor
BLOW UP 2
External wall residential floors
BLOW UP 3
External walls elevators
Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
GROUP 2:
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
918816 918417 912788 918641
Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401
GREENFALL FINAL PRESENTATION_December 20th
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
9.4
OPAQUE
Shading Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
GROUP 2:
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
918816 918417 912788 918641
Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401
GREENFALL FINAL PRESENTATION_December 20th
Plan 1:20
Facade 1:20
Building
Structure
Conceptual section and scheme for south facade
Section
Section 1:20
B3.40
H.P.8
Blow-up 1
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
9.4.1
OPAQUE
Blow-up 1 - technical details
BUILDING STRUCTURE
SECONDARY BEAM
BUILDING STRUCTURE
BUILDING STRUCTURE
PILLAR
PRIMARY BEAM
SHADING PANELS (7)
TTO AUTODESK VERSIONE PER STUDENTI TTO TTO AUTODESK AUTODESK VERSIONE VERSIONE PER PER STUDENTI STUDENTI TTO AUTODESK VERSIONE PER STUDENTI TTO AUTODESK VERSIONE PER STUDENTI
GRC SLAB PANELS (5) FIXING POINT OF SHADING DEVICE (4) PRIMARY SUPPORT FOR SHADING DEVICES AND VERTICAL ELEMENTS STRUCTURE (2) SUPPORT FOR HORIZONTAL FIXING ELEMENTS FOR ALUMINUM PANELS (3)
REALIZZATO REALIZZATO REALIZZATO REALIZZATO REALIZZATO CON CON CON UN CON CON UN UN PRODOTTO UN PRODOTTO PRODOTTO UNPRODOTTO PRODOTTO AUTODESK AUTODESK AUTODESK AUTODESK AUTODESK VERSIONE VERSIONE VERSIONE VERSIONE VERSIONE PER PER PER STUD PER PER STU ST
LEGEND
WINDOWS AND FIBER CEMENT PANELS SUPPORT SUPPORTING BEAM FOR SHADING AND VERTICAL ELEMENTS STRUCTURE (1) FIXING POINT OF SHADING DEVICE (4)
CORRUGATED ALUMINUM PANELS (6)
PRIMARY SUPPORT FOR SHADING DEVICES AND VERTICAL ELEMENTS STRUCTURE (2)
PANELS PATTERN AND MATERIALS
1. SUPPORTING BEAM FOR SHADING AND VERTICAL ELEMENTS STRUCTURE IPE 120 bolted to the main building structure every 1,75 m. It is the structural support for the window and fiber cement panels, as well as the tubular element used to fix the vertical aluminum profiles, visible in the facade. 2. PRIMARY SUPPORT FOR SHADING DEVICES AND VERTICAL ELEMENTS STRUCTURE Tubular profile bolted to the IPE 120 with the predisposed L+C profiles used to hang the perforated shading panel. Dimensions are 80 x 150 mm with 5 mm thickness.
5. GRC SLAB PANELS Carachteristics: polar white - ferro light colour, 745 x 875 mm and 13 mm thickness. Rieder type: fibre C facade panels.
5
3. SUPPORT FOR HORIZONTAL FIXING ELEMENTS FOR ALUMINUM PANELS Omega profile hooked to the tubular profile. Dimensions are 78 x 25 mm with 2 mm thickness. 4. FIXING POINT OF SHADING DEVICE Vertical C-profile bolted to the tubular using a vertical plate with two wings. Dimensions are 80 x 80 mm with 3 mm thickness. C-profile (not visible in the scheme) used to hang the shading device to C-profile n. 4. (50 x 50 mm with 2 mm thickness). Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
GROUP 2:
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
918816 918417 912788 918641
Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401
6 7
GREENFALL FINAL PRESENTATION_December 20th
6. CORRUGATED ALLUMINUM PANELS Two aluminum cover sheets and mineral-filled polymer core, height of 3500 mm 10 mm thickness. It has a decorative surface that makes it suitable for outdoor use, it is resistant to light and weather. MEG type. 7. STEEL SHADING DEVICES white colour Two perforated steel panels of fixed together and attached to the structure. Dimensions 1450 x 3500 and 3 mm thickness. SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
9.4.2
OPAQUE
Blow-ups and technological details
V.C. 4
V.C. 4
BLOW-UP 1:20 - NORTH FAÃ&#x2021;ADE WITH CONCRETE WALL
Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
GROUP 2:
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
918816 918417 912788 918641
Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401
GREENFALL FINAL PRESENTATION_December 20th
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
9.4.3
OPAQUE
Blow-ups and technological details
GLASSFIBER REINFORCED CONCRETE: GFRC FIXING DETAILS
4
1
Cladding, in glassfibre reinforced concrete (GFRC), tk. 1.3cm, dim. 74x270 & 74x76cm, "RIEDER, Fiber C Façade Panels" Fixed with: - Undercut anchor and locking ratchet, in stainless steel, ø=7mm, "KEIL, KH AA" - Anchoring element, in aluminum alloy, h=6cm, w=4cm, "HILTI, MFT-H 200K" - Adjusting screw, in aluminum, L=2cm, ø=3.5mm "HILTI, MFT-JS"
2
Horizontal hanger profile, in aluminum alloy, tk. 2mm, w=2.15cm, h=6cm, "HILTI, MFT-HP 200" - Fixed with self-drilling screw, "HILTI"
3
Vertical L profile, in aluminum alloy, tk. 0.2cm, dim. 4x6cm, "HILTI, MFT-L" - Fixed with self-drilling screw, "HILTI"
4
Thermal insulation layer, in mineral wool, tk. 12cm, dim. 60x120 cm, λ=0,035 W/mK, class A1, "ROCKWOOL Rainscreen Duo" - Fixed with insulation fastener, in HDPE, "HILTI, IDP120, fungo per pannelli isolanti"
5
L bracket with clamping spring, in aluminum alloy, tk. 0.25cm, dim. 15x16cm; with thermal separator in polypropylene, tk. 0.5cm, "HILTI, MFT-MFI L" - Fixed with umbrella expansion plug, in polyamide, "HILTI, HLD 4"
3
scale 1:5
2
5
3
2
1
1
5
5&3
Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
GROUP 2:
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
918816 918417 912788 918641
Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401
GREENFALL FINAL PRESENTATION_December 20th
1&2
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
9.4.4
OPAQUE
Blow-ups and technological details
H.P. 8
NODE 1:5
V.C. 6
V.C. 6
V.P. 11
BLOW UP 1:20 - NORTH FAÃ&#x2021;ADE WITH STUD WALL
Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
GROUP 2:
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
918816 918417 912788 918641
Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401
GREENFALL FINAL PRESENTATION_December 20th
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
9.4.5
OPAQUE
Blow-ups and technological details
NODE 1:5 - NORTH FAÇADE WITH STUD WALL
Room
Out
H.P. 8 Floor finishing layer, in porcelain stoneware, tk. 0.9cm, dim. 60x60cm, "FAP Ceramiche, Milano&Floor Matt R9" Gluing layer, cement-based elastic adhesive, tk. 0.3cm, "SIKA, Minipack Colla Elastica" Infill layer, in reinforced concrete boards, tk. 2.2cm, dim. 60x90cm, "KNAUF Aquapanel Floor". Fixed with polyurethane glue, "Aquapanel Rebate Floor Adhesive PU" and self-tapping screws, "Aquapanel Floor Screws"
V.C. 6
Acoustic insulation layer and cavity for hydraulic services, in perlite granular aggregates, tk. 17cm, "KNAUF, Aquapanel Levelling Fill"
Vertical element, in two aluminum cover sheets and mineral-filled polymer core, tk. 0.3cm, dim. 90x348cm (unfolded), "ALUCOBOND PLUS"
Separation layer, in cardboard, tk. 0.3cm, "KNAUF Foglio di cartone ondulato"
Cladding, in glassfibre reinforced concrete (GFRC), tk. 1.3cm, w=74cm, h=78 & 270cm, "RIEDER, Fiber C Façade Panels"
Reinforcement layer, in Portland cement and wood fibers, tk. 2.8cm, dim. 280x125cm, "BETONWOOD, Cementolegno ad alta densità"
Fixing elements anchored to GRC panel: Undercut anchor and locking ratchet, in stainless steel, ø=7mm, "KEIL, KH AA" Anchoring element, in aluminium alloy, h=6cm, w=4cm, "HILTI, MFT-H 200K" Adjusting screw, in aluminium, L=2cm, ø=3.5mm "HILTI, MFT-JS"
Self-drilling screw for wood-metal connections, in stainless steel, L=4.5cm, Ø=0.48cm, "Rothoblaas, SBS A2 AISI304" Corrugated sheet, in stainless steel, tk. 0.1cm, h=5.5cm, "SANDRINI METALLI, SANDA55 P600". Glued to sound proof and anti-condensation, high-desity syntetic rubber fabric, tk. 0.3cm, "SANDRINI METALLI, SANDcontrol"
Horizontal hanger profile, in aluminium alloy, tk. 2mm, w=2.15cm, h=6cm, "HILTI, MFT-HP 200". Fixed with self-drilling screw, "HILTI" Ventilated cavity, tk. 4cm
Secondary beam, IPE220 Column, HEM400 Primary beam, IPE360
Vertical L profile, in aluminium alloy, tk. 0.2cm, dim. 4x6cm, "HILTI, MFT-L". Fixed with self-drilling screw, in alluminium, "HILTI" L bracket with clamping spring, in stainless steel, tk. 0.3cm, dim. 30x16cm. Welded to punctual steel element, which is bolted to the structure (IPE360)
Hangers, tk. 0.4cm, L=37.5cm Hook with spring, tk. 0.12cm, in steel, span 60cm
Thermal insulation layer, in mineral wool, tk. 12cm, dim. 60x120 cm, λ=0,035 W/mK, class A1, "ROCKWOOL Rainscreen Duo slab". Fixed with cement-based adhesive, tk. 0.3cm, "FASSABORTOLO, A96"
Double metallic frame, in steel C profiles, tk. 0.06cm, dim. 2.7x5cm, span 60cm Fire barrier and infill layer, in gypsum plasterboard reinforced with mineral fibres, tk. 1.25cm, dim. 120x300cm, class A1, "KNAUF lastra F-zero". Fixed with self-tapping screws, L=2.5cm, "KNAUF vite V.R."
Insulation fastener, in HDPE, "HILTI, IDP120, fungo per pannelli isolanti" Double stiffening layer, in fibercement panels, tk. 1.25+1.25cm, dim. 200x120cm, "KNAUF - ACQUAPANEL cement board Outdoor". Fixed with self drilling screws, "KNAUF Maxi Screws TEKS"
Finishing layer, in plaster filler and light aggregates, tk. 0.6 cm, "KNAUF Fireboard Spachtel / Q4"
Water barrier breathable layer, in fabric, tk. 0.02cm, "KNAUF -TYVEK StuccoWrap". Fixed with adhesive tape U guide of stud frame, in stainless steel, tk. 0.2 cm, dim. 5x10x5cm "Marcegaglia"; and elastic sealer. Fixed with self drilling screws, "KNAUF Maxi Screws TEKS" Thermal and acoustic insulation layer, in stone wool boards, tk. 10 cm, dim. 120x60 cm, λ=0,033 W/mK, class A1, "ROCKWOOL, Acoustic 225 Plus" U guide of secondary substructure, in DX51 steel, tk. 0.08cm, dim. 5x5x5cm, "KNAUF U guide". Fixed with self drilling screws, "KNAUF Maxi Screws TEKS"
Room
Out
Thermo-acoustic insulation layer, in stone wool boards, tk. 5cm, class A1, "ROCKWOOL, Acoustic 225 Plus" Infill and fire control layer, in double gypsum board, tk. 1.25+1.25cm, dim. 120x300cm, "KNAUF, F-Zero". Fixed with self-drilling screws, in black phosfate, "KNAUF Jackpoint Self-Drilling Screw"
Room
Finishing coat, in water based paint for plaster board, tk. 0.5cm, "FASSA BORTOLO Gypsopaint"
GROUP 2:
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
918816 918417 912788 918641
Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401
GREENFALL FINAL PRESENTATION_December 20th
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
REALIZZATO CON UN PRODOTTO AUTODESK VERSIONE PER STUDENTI
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
9.4.6
10. ENERGY Energy consumption analysis and reduction strategies
ENERGY
DIVERSITY SCHEDULES, FUNCTION AND REQUIREMENTS
DIVERSITY SCHEDULE SET UP - RESIDENTIAL 15
15
DIVERSITY SCHEDULE SET UP - PUBLIC
30
50
50
15
15
15
15
15
15
40
60
6a
7a
8a
9a 10a 11a 12
1p
2p
3p
4p
5p
6p 7p
80
80
80
8p 9p
30
30
30
30
30
15
30
50
80
80
80
80
80
80
80
80
10p 11p 00 1a
2a
3a
4a
5a
6a
7a
8a
9a 10a 11a 12
1a
2p
3p
4p
5p
6p 7p
60
30
30
80
80
60
60
40
8p 9p
15
15
15
15
15
10p 11p 00 1a
2a
3a
4a
5a
30
15
HVAC off
HVAC off
COMMON AREAS
FAMILY UNITS
12
12
12
Days schedule: 7 days (Mon-Sun) Peak presence of people: 6-9am/ 5-10pm
Setpoint temp.: 20-25°C Setback temp.: 20-28°C
Occupant density: 8,6 m2/pers. Metabolic rate: 1 Met Summer clothing: 0,3 Clo Winter clothing: 0,5 Clo
Lighting (min): 150 llux Lighting power: 5 W/m2 Equipment power: 5 W/m2
Days schedule: 7 days (Mon-Sun) Peak presence of people: 6-9am/ 5-10pm
Setpoint temp.: 20-25°C Setback temp.: 20-28°C
Occupant density: 7,3 m2/pers. Metabolic rate: 1 Met Summer clothing: 0,3 Clo Winter clothing: 0,5 Clo
Lighting (min): 150 llux Lighting power: 5 W/m2 Equipment power: 5 W/m2
Days schedule: 7 days (Mon-Sun) Peak presence of people: 6-9am/ 5-10pm
Setpoint temp.: 20-25°C Setback temp.: 20-28°C
Occupant density: 5,2 m2/pers. Metabolic rate: 1 Met Summer clothing: 0,3 Clo Winter clothing: 0,5 Clo
Lighting (min): 150 llux Lighting power: 5 W/m2 Equipment power: 5 W/m2
Days schedule: 7 days (Mon-Sun) Peak presence of people: 6-9am/ 5-10pm
Setpoint temp.: 20-25°C Setback temp.: 20-28°C
Occupant density: 10 m2/pers. Metabolic rate: 1 Met Summer clothing: 0,3 Clo Winter clothing: 0,5 Clo
Lighting (min): 150 llux Lighting power: 6 W/m2 Equipment power: 5 W/m2
Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
GROUP 2:
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
918816 918417 912788 918641
CO-WORKING
FUNCTION AND REQUIREMENTS - PUBLIC
12
12
GYM
DOUBLE UNITS
SINGLE UNITS
FUNCTION AND REQUIREMENTS - RESIDENTIAL
12
15
Days schedule: 5 days (Mon-Fri) Peak presence of people: 8am-9pm
Setpoint temp.: 20-25°C Setback temp.: 18-28°C
Occupant density: 10 m2/pers. Metabolic rate: 1,3 Met Summer clothing: 0,3 Clo Winter clothing: 0,5 Clo
Lighting (min): 150 llux Lighting power: 6 W/m2 Equipment power: 8 W/m2
Days schedule: 5 days (Mon-Fri) Peak presence of people: 8am-9pm
Setpoint temp.: 20-25°C Setback temp.: 18-28°C
Occupant density: 4 m2/pers. Metabolic rate: 4 Met Summer clothing: 0,3 Clo Winter clothing: 0,5 Clo
Lighting (min): 150 llux Lighting power: 6 W/m2 Equipment power: 6 W/m2
RESIDENTIAL PARTS
Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401
GREENFALL FINAL PRESENTATION_December 20th
PUBLIC PARTS
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
10.1
ENERGY
SELECTED HVAC SYSTEM
INFORMATION BUILDING 1 33 Floors 12,434.4 mq
COMMON FLOORS
RESIDENTIAL FLOORS
PUBLIC COMMERCIAL FLOORS
88 single units 32 double units 21 family units
236 BUILDING 2 28 Floors 15,313.2 mq
144 single units 60 double units family units
RESIDENTIAL
FC CAV HP FC Radiant
264 88 single units 28 double units 18 family units
RESIDENTIAL
216
FC CAV HP FC Radiant
CONCLUSION
RESIDENTIAL Heating Heating Cooling Cooling Annual Energy Annual Energy COMMON EUI (kWh/m2/yr) ) (kWh/m2/yr) (kWh/m2/yr) (kWh/m2/yr) Cost Cost EUI (kWh/m2/yr) (kWh/m2/yr) 46 46 501 364 FC 2038 2 501 21 50851 50851 73 !"#$% 2139 2139 2048 2048 172190 172190 CAV 1231 7050 +246% 89 85 246 &'$(53 53 830 433 HP FC 2417 +19% 2 830 35 60351 60351 87 #$" 255 255 461 461 53046 53046 Radiant 368 2149 11 19 74 +5%
COMMONCOMMON PUBLIC COMMON EUI (kWh/m2/yr) EUI (kWh/m2/yr) ) Heating ) (kWh/m2/yr) Heating Cooling (kWh/m2/yr) (kWh/m2/yr) Cooling Annual (kWh/m2/yr) Energy Annual Cost Energy Cost FC FC 364 364 5 ENERGY 5 70 70 12109 12109 FC ANNUAL CONSUMPTION CAV CAV 1231 1231 *+%$( *+%$(354 354 344 344 40203 40203 CAV HP FC HP FC 433 433 *,'$' *,'$'6 6 140 140 14502 14502 HP FC ASHRAE theRadiant types Radiant368 368 *'&$% *'&$%29 29 72 72 12196 12196 Radiant 400
kWh/mq/year
According to of HVAC systems which should EUI heating 350 be preferably used in PUBLIC residential PUBLIC PUBLIC cooling +246% building are Fan Coil Unit with EUI (kWh/m2/yr) 300 ) Heating EUI (kWh/m2/yr) ) (kWh/m2/yr) Heating Cooling (kWh/m2/yr) (kWh/m2/yr) Cooling Annual (kWh/m2/yr) Energy Annual Cost Energy Cost Primary Air or Constant FCAir FC 95 95 0 0 17 17 17066 17066 FC 250 Volume(CAV). CAV CAV 205 205 &&#$' &&#$'34 34 58 58 36390 36390 CAV 200 From Sefaira analysis we HP obtain FC HP FC 109 109&"$, &"$, 0 0 32 32 19682 19682 HP FC the results which shows that the Radiant 95 Radiant 95 -$-$- 4 4 17 17 17039 17039 Radiant 150 +19% Fan Coil unit performance is +5% 100 much better than CAV and other 50 considered HVAC systems. To proceed further analysis the Fan Coil system was used. FC CAV HP FC Radiant
Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
GROUP 2:
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
918816 918417 912788 918641
) !"#$% &'$( #$"
Heating (kWh/m2/yr) 46 2139 53 255
COMMON Cooling Annual Energy (kWh/m2/yr) Cost FC 501 50851 CAV 2048 172190 HP FC 830 60351 Radiant 461 53046
) !"#$% &'$( #$"
Heating (kWh/m2/yr) 46 2139 53 255
Cooling Annual Energy (kWh/m2/yr) Cost 501 50851 2048 172190 830 60351 461 53046
EUI (kWh/m2/yr) ) Heating (kWh/m2/yr) Cooling (kWh/m2/yr) Annual Energy Cost 364 5 70 12109 1231 *+%$( 354 344 40203 433 *,'$' 6 140 14502 368 *'&$% 29 72 12196
RESIDENTIAL PUBLIC Heating Cooling Annual Energy EUI Heating Cooling Annual Energy EUI (kWh/m2/yr) ) Heating (kWh/m2/yr) Cooling (kWh/m2/yr) Annual Energy ) Heating (kWh/m2/yr) Cooling (kWh/m2/yr) Annual Energy Cost (kWh/m2/yr) (kWh/m2/yr) Cost (kWh/m2/yr) (kWh/m2/yr) (kWh/m2/yr) Cost Cost 95 0 17 17066 70 12109 46 501 50851 FC 2038 46 501 50851 15 14 CAV 205 &&#$' 34 58 36390 *+%$( 354 344 40203 !"#$% 2139 2048 172190 7050 !"#$% 2139 2048 172190 +238% +116% 71 69 109 &"$, 0 32 19682 *,'$' 6 140 14502 &'$( 830 60351 HP FC 2417 &'$( 53 830 60351 +19% +15% 153 28 Radiant 95 -$4 17 17039 *'&$% 29 72 12196 #$" 255 461 53046 2149 #$" 255 461 53046 +1% +0% 6 14
COMMON EUI (kWh/m2/yr) ) Heating (kWh/m2/yr) Cooling (kWh/m2/yr) Annual Energy Cost 364 50 CONSUMPTION 70 12109 FC ANNUAL ENERGY 95 17 17066 1231 *+%$( 354 344 40203 CAV 205 &&#$' 34 58 36390 433 *,'$' 60 140 14502 HP FC 109 &"$, 32 19682 368 *'&$% 29 72 12196 Radiant 95 -$4 17 17039 400 EUI heating PUBLIC cooling
350
300 EUI (kWh/m2/yr) ) Heating (kWh/m2/yr) Cooling (kWh/m2/yr) Annual Energy Cost 95 0 17 17066 FC +238% 250 205 &&#$' 34 58 36390 CAV 200 109 &"$, 0 32 19682 HP FC 95 -$4 17 17039 Radiant 150 +19%
100
EUI (kWh/m2/yr) ) Heating (kWh/m2/yr) Cooling (kWh/m2/yr) Annual Energy Cost 364 ANNUAL ENERGY5 CONSUMPTION 70 12109 1231 *+%$( 354 344 40203 433 *,'$' 6 140 14502 368 *'&$% 29 72 12196 400 EUI heating cooling
350 kWh/mq/year
RESIDENTIAL RESIDENTIAL Type of Type EUI of EUI system system (kWh/m2/yr) (kWh/m2/yr) ) FC FC 2038 2038 85 CAV CAV 7050 7050 !"#$% 294 HP FC HP FC2417 2417 101&'$( Radiant Radiant2149 2149 89 #$"
EUI (kWh/m2/yr) 2038 7050 2417 2149
kWh/mq/year
BUILDING 3 31 Floors 11,671.5 mq
EUI (kWh/m2/yr) 2038 7050 2417 2149
+1%
50
300 EUI (kWh/m2/yr) ) Heating (kWh/m2/yr) Cooling (kWh/m2/yr) Annual Energy Cost 0 17 17066 250 95 +116% 205 &&#$' 34 58 36390 200109 &"$, 0 32 19682 -$4 17 17039 150 95 +15%
100
+0%
50 FC
Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401
CAV
HP FC
Radiant
GREENFALL FINAL PRESENTATION_December 20th
FC
CAV
HP FC
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
Radiant
10.2
COP heat pump: 4 EER chiller: 7( water-water) Rump up time: 2h 6am-10pm Setpoint: 20°C - 25°C Setback: 18°C - 28°C
Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
! &$%% #$##
Heating (kWh) 40 40 39,9
Cooling (kWh) 75,34 75,4 75,4
Annual 62.900 $ Energy Cost % 62.850 $ 17066 $ 17535 62.800&$*' 17159 62.750#$') $ 62.650 $
FC
FC 1
6am-10pm 6am-10pm 6am-10pm 5am-11pm 5am-11pm
62.950 $
62.700 $
65
1h 2h 3h 2h 3h
COOLING
21
Ramp up 1 Ramp up 3 Ramp up 2 Ramp up 4
1h 2h 3h 2h 3h
FC 2
70.000 $
20
Heating (kWh) 19 EUI (kWh/m2/yr) 6am-10pm 95 40 18 6am-10pm 95 38,5 17 6am-10pm 95 36,9 5am-11pm 97 36 16 5am-11pm 97 32,4 15 1
COP HEAT PUMP OPTIMIZATION
COP 3
95
0,00
39,9
HEAT PUMP 17085CHILLER 0,11 75,4
Boiler (kWh/m2/yr) 0,00 % Heating Cooling Annual 17066 Energy Cost 0,00 % COPCOP 4 EUI 39,9(kWh) 75,4(kWh) 83 95
17055 -0,06 COP 35 95 0,00 39,9 75,4 17085 0,11 82 COP 64 95 0,00 39,7 75,4 17079 0,08 39,9 17066 0,00 81 COP 5 95 0,00 39,9 75,4 17055 -0,06 Chiller % Heating Cooling Annual 17079 Energy Cost 0,08 % COPCOP 6 EUI 95 0,00 39,7(kWh) 75,4(kWh) 80 (kWh/m2/yr) COP 4,5 79 99 4,21 39,9 75,4 17770 4,13 Chiller % Heating Cooling Annual 17066 Energy Cost 0,00 % COP COP 5,5EUI (kWh/m2/yr) 95 0,00 39,9(kWh) 75,4(kWh) COP4,5 6 93 -2,11 16802 -1,55 COP 99 4,21 39,9 75,4 17770 4,13 3 3,5 4 4,5 5 5,5 6 6,5 7 COP5,5 7 91 -4,21 16387 -3,98 COP 95 0,00 39,9 75,4 17066 0,00 WATER COP 6 93 -2,11 39,9 AIR 75,4 16802 -1,55 AIR COP 7 91 -4,21 39,9 WATER 75,4 16387 -3,98 GROUP 2:
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
918816 918417 912788 918641
Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401
2
! "&$+, "+$+, "%'$'' "%-$''
60.000Cost $ Cooling (kWh) Annual Energy % 50.000 $ 75,34 17066 '$)% 75 17102 40.000 $ '$## 74,8 17141 30.050 $ %$+% 74,7 17358 20.000 $ )$'' 74,4 17407 10.000 $
3
4
5
SETPOINT OPTIMIZATION
EUI Heating Cooling Annual % Boiler COP (kWh/m2/yr) % (kWh/m2/yr) (kWh) (kWh/m2/yr) (kWh) Energy Cost EUI Heating Cooling Annual % 83 2 18 +0,6% +5,4% COP 3 2411 0,37 235,7 517 63337 0,60 Boiler % (kWh) (kWh) Energy Cost 0,00 79 1,5 17,4 COPCOP 4 (kWh/m2/yr) 2402 0,00 235,7 517 62960 -0,3% +4,9% 82,7 1,2 17,7 2399 -0,12 62796 -0,26 COP 35 2411 0,37 235,7 517 63337 0,60 82,3 1,2 18 -0,4% +4,4% COP 64 2388 -0,58 235,7 517 62689 -0,43 2402 0,00 62960 0,00 COP 5 2399 -0,12 235,7 517 62796 -0,26 Chiller % Heating (kWh) Cooling Annual 62689 Energy Cost-0,43 % COPCOP 6 EUI (kWh/m2/yr) 2388 -0,58 235,7 517(kWh) EER CHILLER OPTIMIZATION COP 4,5 2522 5,00 235,7 517 66162 5,09 Chiller % Heating (kWh) Cooling Annual 62960 Energy Cost 0,00 % COP COP 5,5EUI (kWh/m2/yr) 2402 0,00 235,7 517(kWh) 83 18 EER 2 +5,4% +5% COP4,5 6 2353 -2,04 62156 -1,28 COP 2522 5,00 235,7 517 66162 5,09 EER 79 17,4 COP5,5 7 2284 -4,91 235,7 517 59870 -4,91 1,5 COP 2402 0,00 62960 0,00 EER 81 16,7 +2,9% -1,3% 1,8 COP 6 2353 -2,04 235,7 517 62156 -1,28 78,8 14,2 1,8 -0,1% -5% COP 7 2284 -4,91 235,7 517 59870 -4,91 EER
Boiler COP EUI (kWh/m2/yr) % Heating (kWh) Cooling (kWh) Annual Energy Cost %
COST
EUI Heating Cooling Annual Cooling Heating (kWh/m2/yr) (kWh/m2/yr) (kWh/m2/yr) kW) % (kW) Energy % EUI Heating Cooling AnnualCost 79 17,4 1,5 Setpoint 20-25 (kWh/m2/yr) 2402 235 517 62960 kW) % (kW) Energy Cost % +2% Setpoint 21-25 2441 291,2 23,91 517 63905 1,50 84 17,9 2,8 + 2,4% Setpoint 20-25 2402 235 517 62960 3,8 +46,55 2,4% +3% Setpoint 2486 344,4 517 65029 3,29 86 17,9 Setpoint 22-25 21-25 2441 291,2 23,91 517 63905 1,50 the setpoint was chosen also according to comfort analysis Setpoint 22-25 2486 344,4 46,55 517 65029 3,29 EUI (kWh/m2/yr)H eating (kW) % Cooling (kW) Annual Energy Cost % SETBACK OPTIMIZATION Setback 18-28 EUI (kWh/m2/yr) 2402 235(kW) 517,00 H eating % Cooling (kW) Annual 62960 Energy Cost % Setback 20-28 2417 186 -20,85 517 63325 0,58 Setback 18-28 2402 235 517,00 62960 17,4 79 1,5 Setback 2452 225,5 -4,04 515,3 63645 1,09 +0,6% Setback 20-27 20-28 2417 186 517 63325 0,58 +-20,85 2,4% 17,9 83 1,8 +-4,04 3,4% 18 85 1,8 Setback 20-27 2452 225,5 515,3 63645 1,09 +1% EUI (kWh/m2/yr)H eating (kW) the%setbackCooling (kW) Annual Energy Cost analysis % was chosen also according to comfort Setpoint 20-25 EUI (kWh/m2/yr) 95 40 (kW) 75,34(kW) H eating % Cooling Annual 17066 Energy Cost % Setpoint 21-25 95 47,9 19,75 75,4 17121 COST COOLING Setpoint 20-25 95 40 75,34 COOLING 17066 COST0,32 21 21 75,4 Setpoint 96 39,75 17208 0,83 Setpoint 22-25 21-25 95 65.000 $ 55,9 47,9 19,75 75,4 17121 0,32 65.000 $ 20 Setpoint 22-25 96 55,9 39,75 20 75,4 17208 0,83 64.500 $ 64.500 $ EUI (kWh/m2/yr) H eating (kW) % Cooling (kW) Annual Energy Cost % 19 19 Setback 18-28 EUI (kWh/m2/yr) 95 64.000 75,34(kW) $ 40 (kW) 64.000 $ H eating % Cooling Annual 17066 Energy Cost % 18 18 Setback 20-28 95 29 -27,50 75,4 17082 0,09 Setback 18-28 95 63.500 $ 40 75,34 17066 63.500 $ Setback 20-27 95 39,9 -0,25 75 17120 0,32 17 17 Setback 20-28 95 63.000 $ 29 -27,50 75,4 17082 0,09 63.000 $ Setback 20-27 95 39,9 -0,25 16 75 17120 0,32 16 62.500 $ 62.500 $ 15 15 62.000 $ 62.000 $ 20-25
21-25
22-25
SETPOINT OPTIMIZATION
GREENFALL FINAL PRESENTATION_December 20th
18-28
20-28
COST ($)
90 FC optimiz EUI 85 (kWh/m2/yr) FC80 95 FC 1 97 75 FC 2 95 70
Ramp up 1 Ramp up 3 Ramp up 2 Ramp up 4
EUI Heating Cooling Annual Cooling Heating ! (kWh/m2/yr) (kWh/m2/yr) (kWh/m2/yr) (kWh) (kWh) Energy Cost % 1,5 79 17 2402 235 517 62960 '$() 1,8 +"#$%& 3,4% +1% 2416 225,3 513,6 63351 83 18 "&&$*( 1,8 63640 84 18,8 2435 220,4 509,6 41640 +2% +"($)% 8,2% &$(' 2 +3% +"+$+# 10,3% 86 19 2492 216,8 512,9 65227 #$'+ 87 20 2 +"%'$,, 12,9% +4% 2509 210,2 511,2 65525
COST ($)
GRAPH DATAEUI(public COST area)
95
RUMP UP TIME OPTIMIZATION
COOLING (kWh/m2/yr)
This optimization process help us to reach the best system for our project:
TEMPERATURE OPTIMIZATION GRAPH DATA (public area) GRAPH DATA (residential) FC optimiz EUI Heating Cooling Annual ! (kWh/m2/yr) (kWh/m2/yr) EUI(kWh/m2/yr) (kWh/m2/yr) Heating (kWh) Cooling (kWh) Annual Energy (kWh) (kWh) Energy CostCost % 79 1,5 17 FC 2402 235 517 62960 95 40 75,34 17066 "#$%& "#$&# &$%% &$*' 82 1,2 17 +4,9% -0,2% FC 1 2399 235 517 62831 97 40 75,4 17535 #$'( "#$)) #$## #$') 83 1,8 19 +5,6% FC 2 2416 235,7 516,1 62681 -0,4% 95 39,9 75,4 17159
FAN COIL OPTIMIZATION - RESIDENTIAL
COST ($)
CONCLUSION
"#$))
COOLING (kWh/m2/yr)
Then we pass to optimaze the COP of chiller and boiler This is the ratio of useful heating or cooling provided to work required. Rump up time indicates how many hours, before the start time, we make the HVAC strive to achieve the setpoint range, on the energy consumption and the design of the equipment. Setpoint temperature is the temperature you have “set” your thermostat to maintain. Setback temperature refers to changing the temperature setting on your thermostat for a period of time when the space will not be occupied or require as much heating or cooling.
62681
COOLING (kWh/m2/yr)
About temperatures we consider three different options: - FC (option which was chosen from HVAC previous board), - FC 1 (option with hot water temperature 40°C - 45°C), - FC 2 (option with chilled water temperature 5°C - 12°C)
516,1
COST ($)
The analysis investigates the impact of different temperature, COP, ramp up time, setpoint and setback.
235,7
EUI (kWh/mq/year)
INFORMATION
#$'(
2416
EUI (kWh/mq/year)
ENERGY
FC 2
20-27
SETBACK OPTIMIZATION SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
10.3
COP heat pump: 5 EER chiller: 7( water-water) Rump up time: 1h 6am-10pm Setpoint: 20°C - 25°C Setback: 18°C - 28°C
&$*' +3% #$') +0,6%
COST
Ramp up 1 Ramp up 3 Ramp up 2 Ramp up 4
1h 2h 3h 2h 3h
6am-10pm 6am-10pm 6am-10pm 5am-11pm 5am-11pm
Boiler COP EUI (kWh/m2/yr) % Heating (kWh) Cooling (kWh) Annual Energy Cost % 95 95 95 95
0,00 0,00 0,00 0,00
HEAT PUMP
39,9 39,9 39,9 39,7
75,4 75,4 75,4 75,4
CHILLER
17085 17066 17055 17079
0,11 0,00 -0,06 0,08
94 (kWh/m2/yr) % Heating (kWh) Chiller COP EUI Cooling (kWh) Annual Energy Cost % COP 4,5 92 COP 5,5 COP 6 COP 7
99 95 93 3 91
4,21 0,00 -2,11 3,5 4 -4,21
39,9 39,9 39,9 5 4,5 39,9
GROUP 2:
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
AIR
75,4 75,4 75,4 6 5,5 75,4
17770 17066 168027 6,5 16387
WATER
Cooling EUI Heating (kWh/m2/yr) EUI (kWh/m2/yr) Heating (kWh) (kWh/m2/yr) (kWh) 17 95 40 2402 235 17 95 38,5 2416 225,3 18 95 36,9 2435 220,4 17 97 36 2492 216,8 97 32,4 18 2509 210,2
! "&$+, "#$%& -0% "+$+, +..% "($)% "%'$'' -0% "+$+# "%-$'' +..% "%'$,,
&$(' 512,9 65227 #$'+ - PUBLIC 511,2FAN COIL 65525OPTIMIZATION
4,13 0,00 -1,55 -3,98
Heating Cooling Annual (kWh/m2/yr) Cooling (kWh) Annual Energy (kWh) Energy CostCost % 0 75,34 17066 517 62960 +0,2% '$)% 0 '$() 75 17102 513,6 63351 '$## 0 +0,4% "&&$*( 74,8 17141 509,6 41640 +1,5% %$+% 0 74,7 17358 &$(' 512,9 65227 )$'' +2% 74,4 17407 0 #$'+ 511,2 65525 COOLING
35
Heating Cooling Annual % Heating (kWh) Cooling (kWh) Annual Energy (kWh) (kWh) Energy CostCost % +0,1% 39,9 75,4 17085 0,11 235,7 517 63337 0,60 Heating (kWh) Cooling (kWh) Annual Energy Cost % 39,9 75,4 17066 0,00 235,7 517 62960 39,9 75,4 17085 0,11 -0,1% 39,9 75,4 17055 -0,06 235,7 517 62796 -0,26 39,9 75,4 17066 0,00 +0,1% 39,7 75,4 17079 0,08 235,7 517 62689 -0,43 39,9 75,4 17055 -0,06 39,7 75,4 17079 0,08 Heating (kWh) Cooling (kWh) Annual Energy Cost % 39,9 75,4 17770 4,13 235,7 517 66162 5,09 Heating (kWh) Cooling (kWh) Annual Energy Cost % 39,9 75,4 17066 235,7 517 62960 0,00 0 21 +4% 39,9 75,4 17770 4,13 39,9 75,4 16802 -1,55 235,7 517 62156 -1,28 0 17 39,9 75,4 17066 0,00 39,9 75,4 16387 -3,98 235,7 517 59870 -4,91 0 16 -2% 39,9 75,4 16802 -1,55 0 13 39,9 75,4 16387 -3,98 -4%
AIR
Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
%
17.500 $ EUI Heating Cooling Annual % 17.400 $ Boiler COP % (kWh) (kWh) Energy Cost 97 (kWh/m2/yr) EUI Heating Cooling Annual 17.300%$ COP96,5 3 2411 0,37 235,7 517 63337 0,60 Boiler COP (kWh/m2/yr) % (kWh) (kWh) Energy Cost COP 4 2402 0,00 235,7 517 62960 17.200 0,00$ COP 396 2411 0,37 235,7 517 63337 0,60 COP 5 2399 -0,12 235,7 517 62796 -0,26 17.100 COP 4 2402 0,00 235,7 517 62960 0,00$ COP95,5 6 2388 -0,58 235,7 517 62689 -0,43 COP 5 2399 -0,12 235,7 517 62796 17.000 -0,26 $ 95 COP 6 2388 -0,58 235,7 517 62689 -0,43 Chiller COP EUI (kWh/m2/yr) % Heating (kWh) Cooling (kWh) Annual Energy Cost 16.900%$ 94,5 COP 4,5 2522 5,00 235,7 517 66162 16.800 5,09$ Chiller COP EUI (kWh/m2/yr) % Heating (kWh) Cooling (kWh) Annual Energy Cost % COP 5,5 0 2402 0,00 235,7 517 62960 0,00 COP 4,5 2522 5,00 235,7 517 66162 5,09 COP 6 2353FC -2,04 235,7 517 FC 2 62156 -1,28 FC 1 COP 5,5 2402 0,00 235,7 517 62960 0,00 COP 7 2284 -4,91 235,7 517 59870 -4,91 COP 6 2353 -2,04 235,7 517 62156 -1,28 COPCOP HEAT OPTIMIZATION 7 PUMP2284 -4,91 235,7 517 59870 -4,91
COP 3 COP 4 100 COP 5 98 COP 6 96
"+$+# "%'$,,
216,8 210,2
COST
14.400 $
30
Heating (kWh) 25 EUI (kWh/m2/yr) 1h 6am-10pm 95 40 EUI Heating 20 Ramp up 1 2h 6am-10pm (kWh/m2/yr) 95 38,5 kW) EUI Heating 15 Setpoint 20-25 2402 235 Ramp up 3 3h 6am-10pm (kWh/m2/yr) 95 36,9 kW) Setpoint 21-25 2441 291,2 Ramp up 2 2h 5am-11pm 97 36 10 Setpoint 20-25 2402 235 Setpoint 22-25 2486 344,4 Ramp up 4 3h 5am-11pm 97 32,4 Setpoint 21-255 2441 291,2 Setpoint 22-250 2486 344,4 EUI (kWh/m2/yr)H eating (kW) 12402 2 235 3 Setback 18-28 EUI (kWh/m2/yr)H eating (kW) SetbackOPTIMIZATION 20-28 2417 186 SETPOINT Setback 18-28 2402 235 Setback 2452 225,5 Setback 20-27 20-28 2417 186 EUI Heating Cooling Setback 20-27 2452 225,5 EUI (kWh/m2/yr)H(kWh/m2/yr) eating (kWh/m2/yr) (kWh)(kW) 17 Setpoint 20-25 95 40 1h 6am-10pm 2402 235 EUI (kWh/m2/yr)H eating (kW) 17 Setpoint 21-25 95 47,9 Ramp up 1 2h 6am-10pm 2416 225,3 Setpoint 20-25 95 40 Setpoint 22-25 96 55,9 17 Ramp up 3 3h 6am-10pm 2435 220,4 Setpoint 21-25 95 47,9 Ramp up 2 2h 5am-11pm 2492 216,8 Setpoint 22-25 96 55,9 EUI (kWh/m2/yr) H eating Ramp up 4 SETBACK 3h 5am-11pm 2509 210,2(kW) OPTIMIZATION Setback 18-28 95 40 EUI (kWh/m2/yr)H eating (kW) Setback 95 29 17 Setback 20-28 18-28 95 40 Setback 20-27 95 39,9 17 Setback 20-28 95 29 17 Setback 20-27 95 39,9 EUI (kWh/m2/yr) Heating (kWh) 1h 6am-10pm 95 40 Ramp up 1 2h 6am-10pm 95 38,5 COST COOLING Ramp up353 3h 6am-10pm 95 36,9 Ramp up302 2h 5am-11pm 97 17.250 $ 36 Ramp up 4 3h 5am-11pm 97 17.200 $ 32,4 25 17.150 $ 20 17.100 $ 15 17.050 $ 10 17.000 $ 5 16.950 $ 0 20-25 21-25 22-25 SETPOINT OPTIMIZATION
17.300 $ Cooling (kWh) Annual Energy Cost % 17.200 $ 75,34 17066 Cooling Annual "&$+, 75 17102 % (kW) Energy Cost$ '$)% % 17.100 Cooling Annual "+$+, '$## 517 62960 74,8 17141 % (kW) Energy Cost$ % 17.000 "%'$'' %$+% 23,91 517 63905 1,50 74,7 17358 517 62960 16.900 $ "%-$'' )$'' 46,55 517 65029 3,29 74,4 17407 23,91 517 63905 1,50 16.800 46,55 517 65029 3,29 % Cooling (kW) Annual Energy Cost % 4 517,00 5 62960 % Cooling (kW) Annual Energy Cost % -20,85 517 63325 0,58 517,00 62960 -4,04 515,3 63645 1,09 -20,85 517 63325 0,58 Cooling Annual Heating -4,04 515,3 63645 1,09 ! (kWh/m2/yr) % Cooling (kW) Annual Energy (kWh) Energy CostCost % 0 75,34 17066 517 62960 % Cooling (kW) Annual Energy Cost % -19,75 0% +0,3% "#$%& '$() 1 75,4 17121 0,32 513,6 63351 75,34 17066 -39,75 0% +0,8% 75,4 17208 0,83 "($)% "&&$*( 1 509,6 41640 19,75 75,4 17121 0,32 the setpoint was chosen also according to comfort analysis "+$+# &$(' 512,9 65227 39,75 75,4 17208 0,83 % Cooling Annual 65525 Energy Cost#$'+ % "%'$,, 511,2(kW) 75,34 17066 % Cooling (kW) Annual Energy Cost % -27,50 75,4 17082 0,09 0 75,34 17066 -0,25 75 17120 0,32 0 -0% +0,1% -27,50 75,4 17082 0,09 0 -0,25 75 17120 0,32 -0% +0,3% Cooling (kWh) Annual Energy Cost analysis % the!setback was chosen also according to comfort 75,34 17066 "&$+, '$)% 75 17102 COST COOLING "+$+, 35 '$## 74,8 17141 17.250 $ "%'$''30 %$+% 74,7 17358 "%-$'' )$'' 17.200 $ 74,4 17407 25 17.150 $ 20 17.100 $ 15 17.050 $ 10 17.000 $ 5 16.950 $ 0 18-28 20-28 20-27 SETBACK OPTIMIZATION !
WATER
918816 918417 912788 918641
Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401
GREENFALL FINAL PRESENTATION_December 20th
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
COST ($)
Heating Cooling Annual Energy Cost (kWh/m2/yr) (kWh) (kWh/m2/yr) (kWh) 0 17 40 75,34 17066 40 17535 0 17 75,4 39,9 75,4 17159 0 18
97,5
EUI EUI (kWh/m2/yr) % Boiler COP (kWh/m2/yr) -0% 95 0,00 COP 3 2411 0,37 Boiler COP EUI (kWh/m2/yr) % 95 0,00 COP 4 2402 COP 3 95 0,00 -0% COP 5 95 0,00 2399 -0,12 COP 4 95 0,00 -0% COP 6 95 0,00 2388 -0,58 COP 5 95 0,00 COP 6 95 0,00 Chiller COP EUI (kWh/m2/yr) % EER CHILLER 99 4,21 COP 4,5 OPTIMIZATION 2522 5,00 Chiller COP EUI (kWh/m2/yr) % 95 COP 5,5 2402 0,00 +4% EER 4,5 COP 99 4,21 93 -2,11 COP 6 2353 -2,04 EER 5,5 COP 95 0,00 91 -4,21 COP 7 2284 -4,91 EER -2% COP 6 93 -2,11 COP 7 91 -4,21 -4% EER
2492 2509
RUMP UP TIME OPTIMIZATION
GRAPH DATA (public area)
EUI
2h 5am-11pm 3h 5am-11pm
COST ($)
&$%% +2% #$## -0%
Ramp up 2 Ramp up 4
COOLING (kWh/m2/yr)
This optimization process help us to reach the best system for our project:
!
"#$))
COST ($)
CONCLUSION
FC FC 1 FC 2
EUI (kWh/m2/yr) 95 97 95
62681
COOLING (kWh/m2/yr)
Then we pass to optimaze the COP of chiller and boiler This is the ratio of useful heating or cooling provided to work required. Rump up time indicates how many hours, before the start time, we make the HVAC strive to achieve the setpoint range, on the energy consumption and the design of the equipment. Setpoint temperature is the temperature you have “set” your thermostat to maintain. Setback temperature refers to changing the temperature setting on your thermostat for a period of time when the space will not be occupied or require as much heating or cooling.
FC optimiz
516,1
COOLING (kWh/m2/yr)
About temperatures we consider three different options: - FC (option which was chosen from HVAC previous board), - FC 1 (option with hot water temperature 40°C - 45°C), - FC 2 (option with chilled water temperature 5°C - 12°C)
TEMPERATURE OPTIMIZATION
235,7
COST ($)
The analysis investigates the impact of different temperature, COP, ramp up time, setpoint and setback.
#$'(
2416
EUI (kWh/mq/year)
INFORMATION
EUI (kWh/mq/year)
ENERGY
FC 2
10.4
ENERGY
Fortunately, new technologies and best practices involving motors, regeneration converters, control software, optimization of counterweights and cabin lighting can yield significant savings. New elevators provide efficiency gains of about 30–40 percent than buildings with older lifts.than buildings with older lifts. CONCLUSION
7.500
-5%
7.000 6.500 6.000
-26%
5.500
gearless MIR traction holeless hydraulic
roped hydraulic
in-ground hydraulic
gearless MRL traction
geared traction
gearless MIR traction
LED
8.000
5.000 regenerative
LED lighting
REGENERATIVE ENERGY SCHEME
uses 60Watt per 10 LED Watt
uses over 5x less energy
last only a few months
last 25x longer
costs $200+ over 20 years
cost 6x less
only a few buying options
endless options
The total consumption of an elevator is the sum-up of dirrerent elements: Cab Exhaust Fan Cab Lightning Machine Room Cooling Elevator
192 kW/yr 1727 kW/yr 204 kW/yr 5336 kW/yr
GENERATE ENERGY
SUPPLY RESCURE POWER
7459 kW/yr
UNI 11570 code
Also it is possible to use a regenerative energy which is produced by an elevator motor operating in what is known as overhaul condition, when the motor acts as a generator. energy is produced on elevator descent when the car is heavier than the counterweight; and it is produced on elevator ascent when the counterweight is heavier than the car. With the use of Regenerative Drives, the energy can be fed back into the building or power grid as clean, safe energy.
FINAL SELECTED ELEVATOR KONE MonoSpace 700®
Cab Exhaust Fan Cab Lightning Machine Room Cooling Elevator
192 kW/yr 1727 kW/yr 92 kW/yr 5064 kW/yr
- 5% 7075 kW/yr
UNI 11570 code
Changing the type of cabin lightning helps to dicrease the total energy consumption. LED lamps have a lifespan many times longer than equivalent incandescent lamps, and are significantly more efficient than most fluorescent lamps. Similar to incandescent lamps (and unlike most fluorescent lamps), LEDs come to full brightness immediately with no Cab Exhaust Fan Cab Lightning Machine Room Cooling Elevator
192 kW/yr 107 kW/yr 92 kW/yr 5064 kW/yr
-26% 5455 kW/yr
UNI 11570 code
Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
INCANDESCENT
EUI (kW/year)
BUILDING HEIGHT (m)
120 100 80 60 40 20 0
LIGHTING CONSUMPTION
TYPICAL USAGE OF ELEVATOR
USING LED LIGHTNING
Thanks to an in-depth study of this issue, we have chosen to use a regenerative elevator with LED lights and presence sensors to reduce the total energy consumption of vertical connections by a total of 26%
COMPARIZATION OF DIFFERENT TYPES OF ELEVATORS
After a specific research on elevator in skysraper we found that for buildings higher than 100 m Gearless or Traction mechanisms are commonly used. Usage of elevator system which includes Variable Voltage Variable Frequency (VVVF) drives provides smooth acceleration and deceleration, excellent speed control and reduced noise levels.
GEARLESS MIR TRACTION
Efficient vertical transportation has the ability to limit or expand our ability to build taller and taller skyscrapers, and recent innovations in elevator design promise to significantly reduce energy consumption. Nowadays the main focus is on reducing energy consumption. Buildings consume about 40% of the world’s energy, and elevators account for 2%–10% of a building’s energy consumption. During peak usage hours, elevators may utilize up to 40% of the building’s energy. Everyday there are more than 7 billion elevator journeys taken in buildings all over the world; and as such, energy-saving elevators will reduce energy consumption significantly.
CONSUMPTION CALCULATIONS
REGENERATIVE ELEVATOR
INFORMATION
ENERGY CONSUMPTION REDUCTION STRATEGIES - ELEVATOR
GROUP 2:
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
918816 918417 912788 918641
Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401
max height: max n°of stops: type:
120m 36 regenerative
KONE collaborate with GBC during the design of their new elevator in the way to satisfy all the features necessary to be used in LEED certified buildings and to be able to reach the following credits: CATEGORIES Energy & atmosphere Materials & resources Indoor air quality (IAQ) Design innovation
CREDITS EAc1: Optimization of energy performance MRc2: Construction waste management IEQ3.1: IAQ management plan - construction IEQ4.1-4.3: Reduced emission materials IDc1: Design innovation
GREENFALL FINAL PRESENTATION_December 20th
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
10.5
ENERGY INFORMATION
INDOOR AIR QUALITY STRATEGIES POLLUTION DATA
INDOOR AIR QUALITY
The sources responsible for indoor pollution are different: the occupants and their activities; the building and its maintenance. Ventilation has an ambiguous role: it brings urban pollutants into the building (in particular CO, NO2, O3 and PM), while it reduces the concentrations of pollutants produced by indoor sources, in particular VOCs. The main strategy is air recycling and The Government " 4 56 7 is working hard to reduce emissions. filtration (the most common filtration systems currently ) * < ) * As of 2018, a comprehensive programme to reduce in use are mechanical filtration systems). @ * # '(( % + % @ * street-level pollution had lowered the roadside levels of A % % nitrogen dioxide, ) * '1 H87I 87 respirable suspended particulates, ) * $ 87 fine suspended particulates and sulphur dioxide by 87
17%, 57%, 54% and 74% respectively compared with @ * @ % 2 1 @ * 1999. To attain the Air Quality Objectives (AQOs), the @ 1 Government has put forward a wide range of air quality ) 0 improvement measures. In addition, the Hong Kong Special Administrative Region (HKSAR) and Guang )
dong Provincial Governments endorsed in November ( & + + $ 2012 a set of regional emission reduction targets/rang % es for 2015 and) * 8 1 2020 respectively with a view to ) * % improving regional air quality.
Hong Kong has been facing two air pollution issues, namely local street-level pollution and regional smog problem. Commercial vehicles are the main source of street-level pollution. Smog, however, is caused by a combination of pollutants from motor vehicles, marine vessels, industry and power plants both in Hong Kong and in the Pearl River Delta (PRD) region. The AQHI estimates the additional short-term health risk caused by heart and respiratory diseases from air pollution that lead to hospital admissions. It makes reference to the short-term World Health Organization Air Quality Guidelines as anchor points to define the level where health risk is high due to short term exposure to air pollution. HEALTH RIK CATEGORIES UNDER THE AQHI SYSTEM
L.- M
.
.
- D
L.- M
L.-. .--M
L.-5M
L.-/M
): ) $ $ 4 86 7 A @ * 7 7 1 $ # % *
WELL CREDITS FOR AIR QUALITY PM10 Region
Country
City/Town
Annual mean, ug/m3
Wpr LMI
China
Hong Kong
49
7 *L.-D .-EM
PM2.5
For WELL certification the selection and installation of adequate media filters is one of the key mechanisms for minimizing exposure to outdoor and indoor air pollution.
Reference
87 - D # 7 A (
Year
Number and type of monitoring stations (PM10)
note on converted PM10
Annual mean, ug/m3
Year
Number and type of monitoring note on converted stations (PM2.5) PM2.5
2013
13 stations, roadside air quality monitoring station for measuring street level air quality
measured data
29
2014
15 stations, roadside air quality monitoring station for measuring street level air quality
Temporal coverage
.E O F P
for air quality
.9 .: O F P measured data
7'<G : >/ 7'<G . 7D
PM10: >75%; China National Environmental Monitoring Center PM2.5:>75% . -5 O F P 7'<G .- 7E
-/ 5 O F P
A12: AIR FILTRATION POINT FOR WELL CERTIFICATION
7'<G ./ A:
We check that the fans inside the AHU had enough power capacity for install this 7'<G .E 7'<G : '. specific filter E O F P / D O F P
7'<G .E '.
>/
A % $ % ' & '((
PURIFIED AIR
FABBRICA DELLâ&#x20AC;&#x2122;ARIA (botanic filtration)
Since plants capture polluting molecules and incorporate them into their biomass, the filter has an indefinite duration and is therefore much more efficient than mechanical filtration. These laboratories for the production of pure air are bio-machines, but also usable places, able to add quality to the architectural space. Positive and negative elements:
Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
GROUP 2:
" * # , 2 K > ? 8 0 % *FF
F F Y F F F F F
Energy equipment of Fabbrica dellâ&#x20AC;&#x2122;aria:
+500W for each fan
8 -E -9:
; 4 - .: ) '(( ! ) < <
X2 Energy consumption:
hour
KW
mq
KWh/mq
MORE ENERGY CONSUMPTION (because of addition of fans)
Working 24/24 every day
8640
1
500
17,28
INCREASE INDOOR AIR QUALITY
Working only in openings day and hours
2880
1
500
5,76
GREEN PRESENCE INCREASE THE QUALITY OF LIFE
Working only in openings day when outside >25ug/m3
1500
1
500
3
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
918816 918417 912788 918641
Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401
GREENFALL FINAL PRESENTATION_December 20th
DIRTY AIR
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
10.6
ENERGY
DRY BULB COMFORT ANALYSIS - RESIDENTIAL
INFORMATION
FAMILY
40 30 20 18 19 20 21 22 23 24 25 26 27 19 20 21 22 23 24 25 26 27 28
SINGLE
FAMILY
40 30 20 18 19 20 21 22 23 24 25 26 27 19 20 21 22 23 24 25 26 27 28
TEMPERATURE (°C)
FAMILY
60
50 40 30 20 10 0
SINGLE
70
60
50
10 0
APRIL
70
60
50
10 0
SINGLE
70
60
MARCH
PROBABILITY (%)
The following rooms are the most critical one in terms of comfort inside our residential buildings.
FAMILY
PROBABILITY (%)
INFORMATION
SINGLE
70 PROBABILITY (%)
The analysis investigates the indoor conditions, in term of temperature frequencies, showing hourly results for each month.
FEBRUARY
PROBABILITY (%)
JANUARY
18 19 20 21 22 23 24 25 26 27 19 20 21 22 23 24 25 26 27 28
TEMPERATURE (°C)
50 40 30 20 10 0
18 19 20 21 22 23 24 25 26 27 19 20 21 22 23 24 25 26 27 28
TEMPERATURE (°C)
TEMPERATURE (°C)
SINGLE UNITS 19°floor JUNE SINGLE
70
FAMILY
40 30 20
>99% Hrs clear pass
18 19 20 21 22 23 24 25 26 27 19 20 21 22 23 24 25 26 27 28
SINGLE
FAMILY
40 30 20 18 19 20 21 22 23 24 25 26 27 19 20 21 22 23 24 25 26 27 28
TEMPERATURE (°C)
FAMILY
60
50 40 30 20 10 0
SINGLE
70
60
50
10 0
AUGUST
70 PROBABILITY (%)
PROBABILITY (%)
PROBABILITY (%)
Hrs within setpoint range
FAMILY
60
50
10 0
SINGLE
70
60
TOT. AREA: 253mq
JULY
PROBABILITY (%)
MAY
18 19 20 21 22 23 24 25 26 27 19 20 21 22 23 24 25 26 27 28
TEMPERATURE (°C)
50 40 30 20 10 0
18 19 20 21 22 23 24 25 26 27 19 20 21 22 23 24 25 26 27 28
TEMPERATURE (°C)
TEMPERATURE (°C)
FAMILY UNITS 1°floor OCTOBER SINGLE
70
FAMILY
SINGLE
Hrs within setpoint range >99% Hrs clear pass
Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
40 30 20 18 19 20 21 22 23 24 25 26 27 19 20 21 22 23 24 25 26 27 28 TEMPERATURE (°C)
GROUP 2:
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
40 30 20
918816 918417 912788 918641
FAMILY
SINGLE
60
50
10 0
DECEMBER SINGLE
PROBABILITY (%)
50
10 0
FAMILY
60 PROBABILITY (%)
PROBABILITY (%)
60
TOT. AREA: 263mq
NOVEMBER
18 19 20 21 22 23 24 25 26 27 19 20 21 22 23 24 25 26 27 28 TEMPERATURE (°C) Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401
50 40 30 20 10 0
FAMILY
60 PROBABILITY (%)
SEPTEMBER
18 19 20 21 22 23 24 25 26 27 19 20 21 22 23 24 25 26 27 28 TEMPERATURE (°C)
GREENFALL FINAL PRESENTATION_December 20th
50 40 30 20 10 0
18 19 20 21 22 23 24 25 26 27 19 20 21 22 23 24 25 26 27 28 TEMPERATURE (°C)
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
10.7
ENERGY
DRY BULB COMFORT ANALYSIS - PUBLIC
INFORMATION FEBRUARY
60
GYM
40 30 20 18 19 20 21 22 23 24 25 26 27 19 20 21 22 23 24 25 26 27 28
CO-WORKING
GYM
40 30 20 18 19 20 21 22 23 24 25 26 27 19 20 21 22 23 24 25 26 27 28
TEMPERATURE (°C)
GYM
60
50 40 30 20 10 0
CO-WORKING
70
60
50
10 0
APRIL
70
60
50
10 0
CO-WORKING
70
PROBABILITY (%)
The following floor are the most critical one in terms of comfort inside our public part of buildings.
GYM
PROBABILITY (%)
INFORMATION
CO-WORKING
70 PROBABILITY (%)
The analysis investigates the indoor conditions, in term of temperature frequencies, showing hourly results for each month.
MARCH
PROBABILITY (%)
JANUARY
18 19 20 21 22 23 24 25 26 27 19 20 21 22 23 24 25 26 27 28
TEMPERATURE (°C)
50 40 30 20 10 0
18 19 20 21 22 23 24 25 26 27 19 20 21 22 23 24 25 26 27 28
TEMPERATURE (°C)
TEMPERATURE (°C)
CO-WORKING JUNE CO-WORKING
70
GYM
>99% Hrs clear pass
40 30 20 18 19 20 21 22 23 24 25 26 27 19 20 21 22 23 24 25 26 27 28 TEMPERATURE (°C)
CO-WORKING
GYM
40 30 20 18 19 20 21 22 23 24 25 26 27 19 20 21 22 23 24 25 26 27 28 TEMPERATURE (°C)
GYM
60
50 40 30 20 10 0
CO-WORKING
70
60
50
10 0
AUGUST
70 PROBABILITY (%)
50
10 0
GYM
60 PROBABILITY (%)
PROBABILITY (%)
Hrs within setpoint range
CO-WORKING
70
60
TOT. AREA: 259mq
JULY
PROBABILITY (%)
MAY
18 19 20 21 22 23 24 25 26 27 19 20 21 22 23 24 25 26 27 28 TEMPERATURE (°C)
50 40 30 20 10 0
18 19 20 21 22 23 24 25 26 27 19 20 21 22 23 24 25 26 27 28 TEMPERATURE (°C)
GYM 1°floor OCTOBER CO-WORKING
70
GYM
70
Hrs within setpoint range >99% Hrs clear pass
Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
GYM
40 30 20 18 19 20 21 22 23 24 25 26 27 19 20 21 22 23 24 25 26 27 28 TEMPERATURE (°C)
GROUP 2:
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
40 30 20
918816 918417 912788 918641
GYM
18 19 20 21 22 23 24 25 26 27 19 20 21 22 23 24 25 26 27 28 TEMPERATURE (°C) Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401
GYM
60
50 40 30 20 10 0
CO-WORKING
70
60
50
10 0
DECEMBER CO-WORKING
70 PROBABILITY (%)
50
10 0
CO-WORKING
60 PROBABILITY (%)
TOT. AREA: 378mq
PROBABILITY (%)
60
NOVEMBER
PROBABILITY (%)
SEPTEMBER
18 19 20 21 22 23 24 25 26 27 19 20 21 22 23 24 25 26 27 28 TEMPERATURE (°C)
GREENFALL FINAL PRESENTATION_December 20th
50 40 30 20 10 0
18 19 20 21 22 23 24 25 26 27 19 20 21 22 23 24 25 26 27 28 TEMPERATURE (°C)
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
10.8
ENERGY
OPERATIVE TEMPERATURE COMFORT ANALYSIS - RESIDENTIAL
INFORMATION
FAMILY
SINGLE
70
FAMILY
20 18 19 20 21 22 23 24 25 26 27 28 19 20 21 22 23 24 25 26 27 28 29
50 40 30 20 10 0
SINGLE
FAMILY
18 19 20 21 22 23 24 25 26 27 28 19 20 21 22 23 24 25 26 27 28 29
TEMPERATURE (°C)
FAMILY
60
50 40 30 20 10 0
SINGLE
70
60 PROBABILITY (%)
40 30
APRIL
70
60
50
10 0
MARCH
PROBABILITY (%)
SINGLE
60
P05: 8% too hot
18 19 20 21 22 23 24 25 26 27 28 19 20 21 22 23 24 25 26 27 28 29
TEMPERATURE (°C)
50 40 30 20 10 0
18 19 20 21 22 23 24 25 26 27 28 19 20 21 22 23 24 25 26 27 28 29
TEMPERATURE (°C)
TEMPERATURE (°C)
TOT. AREA: 253mq
FAMILY UNITS 1°floor
JUNE SINGLE
70
FAMILY
SINGLE
PROBABILITY (%)
60
P03: 7% too hot
40 30 20
TOT. AREA: 263mq
SINGLE
18 19 20 21 22 23 24 25 26 27 28 19 20 21 22 23 24 25 26 27 28 29 TEMPERATURE (°C)
FAMILY
SINGLE
60
50 40 30 20 10 0
AUGUST
FAMILY
60
50
10 0
JULY
18 19 20 21 22 23 24 25 26 27 28 19 20 21 22 23 24 25 26 27 28 29 TEMPERATURE (°C)
50 40 30 20 10 0
FAMILY
60 PROBABILITY (%)
MAY
PROBABILITY (%)
>99% Hrs clear pass >97% Hrs clear fail
PROBABILITY (%)
Hrs within setpoint range
FEBRUARY
70 PROBABILITY (%)
SINGLE UNITS 19°floor
JANUARY
PROBABILITY (%)
The following rooms are the most critical one in terms of comfort inside our residential buildings.
18 19 20 21 22 23 24 25 26 27 28 19 20 21 22 23 24 25 26 27 28 29 TEMPERATURE (°C)
50 40 30 20 10 0
18 19 20 21 22 23 24 25 26 27 28 19 20 21 22 23 24 25 26 27 28 29 TEMPERATURE (°C)
Hrs within setpoint range
SEPTEMBER
OCTOBER SINGLE
70
FAMILY
SINGLE
Adding shading elements on the south facade we can reduce the heating loads. Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
FAMILY
50 40 30 20 18 19 20 21 22 23 24 25 26 27 28 19 20 21 22 23 24 25 26 27 28 29 TEMPERATURE (°C)
GROUP 2:
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
40 30 20
918816 918417 912788 918641
FAMILY
SINGLE
60
50
10 0
DECEMBER SINGLE
60 PROBABILITY (%)
PROBABILITY (%)
60
10 0
NOVEMBER
18 19 20 21 22 23 24 25 26 27 28 19 20 21 22 23 24 25 26 27 28 29 TEMPERATURE (°C) Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401
50 40 30 20 10 0
FAMILY
60 PROBABILITY (%)
POSSIBLE SOLUTIONS
PROBABILITY (%)
>99% Hrs clear pass >97% Hrs clear fail
18 19 20 21 22 23 24 25 26 27 28 19 20 21 22 23 24 25 26 27 28 29 TEMPERATURE (°C)
GREENFALL FINAL PRESENTATION_December 20th
50 40 30 20 10 0
18 19 20 21 22 23 24 25 26 27 28 19 20 21 22 23 24 25 26 27 28 29 TEMPERATURE (°C)
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
10.9
ENERGY
OPERATIVE TEMPERATURE COMFORT ANALYSIS - PUBLIC
INFORMATION
60 40 30 20 18 19 20 21 22 23 24 25 26 27 28 19 20 21 22 23 24 25 26 27 28 29
50 40 30 20 10 0
18 19 20 21 22 23 24 25 26 27 28 19 20 21 22 23 24 25 26 27 28 29
GYM
50 40 30 20 10 0
CO-WORKING
70
GYM
60
18 19 20 21 22 23 24 25 26 27 28 19 20 21 22 23 24 25 26 27 28 29
TEMPERATURE (°C)
50 40 30 20 10 0
18 19 20 21 22 23 24 25 26 27 28 19 20 21 22 23 24 25 26 27 28 29
TEMPERATURE (°C)
TEMPERATURE (°C)
TOT. AREA: 259mq
GYM 1°floor
JUNE CO-WORKING
70
GYM
PROBABILITY (%)
PROBABILITY (%)
40 30 20
TOT. AREA: 378mq
GYM
18 19 20 21 22 23 24 25 26 27 28 19 20 21 22 23 24 25 26 27 28 29 TEMPERATURE (°C)
CO-WORKING
GYM
40 30 20 18 19 20 21 22 23 24 25 26 27 28 19 20 21 22 23 24 25 26 27 28 29 TEMPERATURE (°C)
GYM
60
50 40 30 20 10 0
CO-WORKING
70
60
50
10 0
AUGUST
70
60
50
10 0
CO-WORKING
70
60 P09: 7% too hot
JULY
PROBABILITY (%)
MAY
PROBABILITY (%)
>99% Hrs clear pass >97% Hrs clear fail
CO-WORKING
70 60
TEMPERATURE (°C) Hrs within setpoint range
GYM
60
50
10 0
CO-WORKING
70
APRIL
PROBABILITY (%)
GYM
MARCH
PROBABILITY (%)
P07: 9% too hot
CO-WORKING
70 PROBABILITY (%)
CO-WORKING
FEBRUARY
JANUARY
PROBABILITY (%)
The following floor are the most critical one in terms of comfort inside our public part of buildings.
18 19 20 21 22 23 24 25 26 27 28 19 20 21 22 23 24 25 26 27 28 29 TEMPERATURE (°C)
50 40 30 20 10 0
18 19 20 21 22 23 24 25 26 27 28 19 20 21 22 23 24 25 26 27 28 29 TEMPERATURE (°C)
Hrs within setpoint range
SEPTEMBER
OCTOBER CO-WORKING
70
GYM
70
Adding shading elements on the south facade we can reduce the heating loads. Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
50 40 30 20 10 0
CO-WORKING
GYM
18 19 20 21 22 23 24 25 26 27 28 19 20 21 22 23 24 25 26 27 28 29 TEMPERATURE (°C)
GROUP 2:
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
40 30 20
918816 918417 912788 918641
GYM
18 19 20 21 22 23 24 25 26 27 28 19 20 21 22 23 24 25 26 27 28 29 TEMPERATURE (°C) Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401
GYM
60
50 40 30 20 10 0
CO-WORKING
70
60
50
10 0
DECEMBER CO-WORKING
70
60 PROBABILITY (%)
PROBABILITY (%)
60
NOVEMBER
PROBABILITY (%)
POSSIBLE SOLUTIONS
PROBABILITY (%)
>99% Hrs clear pass >97% Hrs clear fail
18 19 20 21 22 23 24 25 26 27 28 19 20 21 22 23 24 25 26 27 28 29 TEMPERATURE (°C)
GREENFALL FINAL PRESENTATION_December 20th
50 40 30 20 10 0
18 19 20 21 22 23 24 25 26 27 28 19 20 21 22 23 24 25 26 27 28 29 TEMPERATURE (°C)
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
10.10
ENERGY
MID-TERM PPT DESIGN
12
2
FINAL DESIGN.
TRANSP. OPTIMIZ.
OPAQUE OPTIMIZ.
FAN COIL OPTIMIZ.
+20%
1,5
-31% -68%
1 0,5
FINAL DESIGN.
14
+20%
HEATING CONSUMPTION
2,5
TRANSP. OPTIMIZ.
-13%
FINAL DESIGN.
TRANSP. OPTIMIZ.
OPAQUE OPTIMIZ.
FAN COIL OPTIMIZ.
75
16
285.000
OPAQUE OPTIMIZ.
75,5
-18%
18
295.000
MID-TERM PPT DESIGN
76
+6,1%
305.000
FINAL DESIGN.
76,5
COOLING CONSUMPTION
20
TRANSP. OPTIMIZ.
COOLING (kWh/mq/year)
77
-3,8%
FAN COIL OPTIMIZ.
77,5
315.000
FINAL DESIGN.
78
TRANSP. OPTIMIZ.
+0,5%
OPAQUE OPTIMIZ.
-0,9%
OPAQUE OPTIMIZ.
56.000
-4,9% ANNUAL CO2 EMISSION
325.000
MID-TERM PPT DESIGN
58.000
FAN COIL OPTIMIZ.
78,5
-4,9% +5,5%
60.000
FAN COIL OPTIMIZ.
-0,2%
79
-4,9%
62.000
MID-TERM PPT DESIGN
79,5
ANNUAL ENERGY COST
64.000 COSTS ($)
80
MID-TERM PPT DESIGN
Annual energy consumption: -0,5% Annual energy cost : -4,5% Cooling consumption : -14,4% Heating consumption : -82,1% Annual CO2 emission : -2,9%
80,5
EUI (kWh/mq/year)
The charts illustrate the saving of the consumption for the residential part of our building, due to the implementation of opaque and transparent taks and HVAC system optimization. The starting point is the initial project design coming from mid-term presentation and we achieve:
ANNUAL ENERGY CONSUMPTION
HEATING (kWh/mq/year)
RESIDENTIAL
EMISSIONS (KgCO2e)
SUMMARY OF SAVINGS
Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
GROUP 2:
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
918816 918417 912788 918641
Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401
14
GREENFALL FINAL PRESENTATION_December 20th
FINAL DESIGN.
TRANSP. OPTIMIZ.
OPAQUE OPTIMIZ.
FAN COIL OPTIMIZ.
FINAL DESIGN.
-9,4%
12
80.000
HEATING CONSUMPTION
2,5 2 1,5 1 0,5
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
FINAL DESIGN.
FINAL DESIGN.
TRANSP. OPTIMIZ.
OPAQUE OPTIMIZ.
FAN COIL OPTIMIZ.
74
+38%
16
82.000
TRANSP. OPTIMIZ.
76
-24%
18
84.000
OPAQUE OPTIMIZ.
78
ANNUAL CO2 EMISSION
-5,2% +5,2%
FAN COIL OPTIMIZ.
80
COOLING CONSUMPTION
20
MID-TERM PPT DESIGN
COOLING (kWh/mq/year)
82
FINAL DESIGN.
84
TRANSP. OPTIMIZ.
86
TRANSP. OPTIMIZ.
MID-TERM PPT DESIGN
88
OPAQUE OPTIMIZ.
15.000
+4,4%
86.000
MID-TERM PPT DESIGN
16.000
-0,2% +0,9%
OPAQUE OPTIMIZ.
-4,7%
90
17.000
FAN COIL OPTIMIZ.
92
-4%
FAN COIL OPTIMIZ.
94
18.000
-4%
88.000
MID-TERM PPT DESIGN
COSTS ($)
-4,2%
MID-TERM PPT DESIGN
Annual energy consumption: -4,8% Annual energy cost : -3,3% Cooling consumption : -4,1% Heating consumption : -0% Annual CO2 emission : -4,2%
96
EUI (kWh/mq/year)
The charts illustrate the saving of the consumption for the public part of our building, due to the implementation of opaque and transparent taks and HVAC system optimization. The starting point is the initial project design coming from mid-term presentation and we achieve:
ANNUAL ENERGY COST
19.000
HEATING (kWh/mq/year)
ANNUAL ENERGY CONSUMPTION
EMISSIONS (KgCO2e)
PUBLIC
10.11
ENERGY INFORMATION
ASHRAE Standard 90.1: Energy Standard for Buildings Except Low-Rise Residential Buildings is an American National Standard published by ASHRAE and jointly sponsored by the IES that provides minimum requirements for energy efficient designs for buildings except for low-rise residential buildings.
ASHRAE BASELINE - 90.1 APPENDIX G MAIN STEP TO REACH ASHRAE BASELINE
LOCALIZATION
ARCHITECTURAL MODELING
climatic zone definition refered to ASHRAE 90.1
3d modeling thermal zones envelope definition refered to climatic zone choosed definition of schedule
RESIDENTIAL
SPACE USE MODELING definition of occupant density equipment and lighting data entry according to ASHRAE outdoor air flow calculation according to table 6.1
choice of HVAC system choice of HVAC temperatures HVAC data entry according to ASHRAE 62 .1 and 90.1 (COP, EER, limit air flows)
PUBLIC
7% 5%
47%
ANNUAL ENERGY COSTS
6% 16%
28%
25%
MONTHLY ENERGY CONSUMPTION HEATING
COOLING
28%
ANNUAL ENERGY COSTS
13%
We decide to model the baseline according to ASHRAE code in order to reach LEED certification. Comparing the baseline with our project it is possible to optimize the results of the final option and thus reach the possible credits present in the certification according to energy task.
MODELING OF HVAC SYSTEM
25%
MONTHLY ENERGY CONSUMPTION FANS
INTERIORS
PUMPS
HEATING
COOLING
FANS
INTERIORS
PUMPS
An important concept to understand is "percent improvement." The ASHRAE standard and the LEED model compare the annual energy cost of the proposed building vs. the baseline building that just meets code. Annual energy cost is used because it is readily understood by engineers, architects, building owners, executives, accountants, and occupants.
Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
GROUP 2:
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
918816 918417 912788 918641
Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401
GREENFALL FINAL PRESENTATION_December 20th
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
10.12
ENERGY
ASHRAE BASELIVE vs FINAL PROJECT
RESIDENTIAL
ANNUAL ENERGY CONSUMPTION
ANNUAL ENERGY COSTS
HEATING & COOLING CONSUMPTION
ANNUAL CO2e EMISSIONS
74.000
24
365.000
94
72.000
22
360.000
92
70.000
20
355.000
90
68.000
60.000
-0,1%
12 10
340.000 335.000 330.000 325.000
78
56.000
6
320.000
76
54.000
4
ANNUAL ENERGY CONSUMPTION
ANNUAL ENERGY COSTS
ASHRAE BASELINE
FINAL PROPOSED DESIGN
HEATING & COOLING CONSUMPTION HEATING
COOLING
190
34.000
60
160.000
180
32.000
55
150.000
170
30.000
50
140.000
160
28.000
150
26.000
35 30
120
20.000
25
110
18.000
20
100
16.000
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
14.000
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
918816 918417 912788 918641
FINAL PROPOSED DESIGN
10 ASHRAE BASELINE
FINAL PROPOSED DESIGN
ASHRAE BASELINE
90
-173%
15
Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401
120.000 110.000 100.000 90.000
-90%
80.000 70.000 60.000
ASHRAE BASELINE
-127%
-121%
130.000
GREENFALL FINAL PRESENTATION_December 20th
ASHRAE BASELINE
22.000
170.000
EMISSIONS (KgCO2e)
130
24.000
FINAL PROPOSED DESIGN
140
(kWh/mq/year)
65
COSTS ($)
36.000
40
-0,1%
ANNUAL CO2e EMISSIONS
200
45
-18%
315.000
-1623% ASHRAE BASELINE
130m2 14% efficiency
130m2 14% efficiency
ASHRAE BASELINE
PV PANELS
FINAL PROPOSED DESIGN
ASHRAE BASELINE
PUBLIC
-0,1%
PV PANELS
8
-25%
FINAL PROPOSED DESIGN
58.000
We consider also PV pannels in our rooftop of 130mq with 14% efficiency, but because of small saving we decide to donâ&#x20AC;&#x2122;t use it in our design.
EUI (kWh/mq/year)
-25%
14
345.000
130m2 14% efficiency
62.000
-59%
PV PANELS
84
64.000
16
350.000
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
FINAL PROPOSED DESIGN
86
66.000
18
FINAL PROPOSED DESIGN
88
370.000
EMISSIONS (KgCO2e)
96
(kWh/mq/year)
26
80
GROUP 2:
COOLING
76.000
82
Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
HEATING
98
COSTS ($)
EUI (kWh/mq/year)
PV pannels (130mq,14% efficiency)
10.13
ENERGY
LEED AND WELL CERTIFICATIONS CREDITS
CREDITS ACHIEVED
LEED CERTIFICATION
LEED
Comparing the baseline of ASHRAE with our final proposed building we discover a saving of 25% so we can achieve 11/18 credits for the energy performance optimization chapter. 18 7
8
6 11 3 1
4
1 1 1
1
LEED, or Leadership in Energy and Environmental Design, is the most widely used green building rating system in the world. Available for virtually all building, community and home project types, LEED provides a framework to create healthy, highly efficient and cost-saving green buildings. LEED certification is a globally recognized symbol of sustainability achievement. The certification standards are classified according to the type of building:
Instant recognition for your building Faster lease up rates Higher resale value Healthier indoor space Lower use of energy, water and other resources Better for building occupants, the community and the environment Enhances your brand and establishes you as a leader in green building
2 2
Certification grades: 2 1
1
WELL CERTIFICATION
WELL Thanks to the focus made about air quality of Hong Kong and having used special filters in the AHU we can reach the following credits:
3 1 1 1 1
The WELL Building StandardÂŽ is a performance-based system for measuring, certifying, and monitoring features of the built environment that impact human health and wellbeing, through air, water, nourishment, light, fitness, comfort, and mind. WELL is managed and administered by the International WELL Building Institute (IWBI), a public benefit corporation whose mission is to improve human health and wellbeing through the built environment. WELL is grounded in a body of medical research that explores the connection between the buildings where we spend more than 90 percent of our time, and the health and wellness of its occupants. Certification grades:
1 1
Politecnico di Milano, Polo territoriale di Lecco CdL in Architectural engineering Academic year 2019/20
GROUP 2:
Caniato Giorgia 918624 Dieterich Murr Alice 824939 Korovina Viktoriia 913045
Krebs Francesco Nemati Ali Rotundo Marco Salvatore Saccuman Marta
918816 918417 912788 918641
Seyedi Zadeh Fereshteh 927160 Sheikhhassani Navid 912843 Zohourparvaz Mohamadreza 927401
GREENFALL FINAL PRESENTATION_December 20th
SUSTAINABLE BUILDING TECHNOLOGIES + STUDIO prof. M.Brasca prof. G.Masera
10.14