Ch.1.1

Page 1

 


-1-

Dream Team

WWW.GAMAL-ALSAADI.COM ‫ھـ‬1435/34 (14) ‫اﻟــــﺪﻓـــﻌـــــــﺔ‬

‫ﻤـﻘـﺩﻤــﺔ‬ Introduction

  The Numbers

‫اﻷﻋﺪاد اﻟﺤﻘﯿﻘﯿﺔ‬ R: real numbers

‫اﻷﻋﺪاد اﻟﺘﺨﯿﻠﯿﺔ‬ Imagine numbers ‫ﺍﻟﺠﺫﻭﺭ ﺍﻟﺯﻭﺠﻴﺔ ﻟﻸﻋﺩﺍﺩ ﺍﻟﺴﺎﻟﺒﺔ‬ 4 ,

 5 , 4 16 , .......

*‫* ﻻ ﯾﻨﺘﻤﻲ ﻷي ﺷﻲء ﻣﻦ اﻟﻤﻘﺮر‬

‫ﺍﻷﻋﺩﺍﺩ ﺍﻟﻐﻴﺭ ﻨﺴﺒﻴﺔ‬

‫اﻷﻋﺪاد اﻟﻨﺴﺒﯿﺔ‬ Q: rational numbers

II: irrational numbers

a   : a, b  z , b  0 b 

o

 , e , 2 , 5 , 3 7 , sin 1, ......

∗ * 2  1.4142135 .....

*   3.14159..........

2 = 0.6666. . = 0. 6 3

157 = 0.31717 … = 0.317 495

‫ﺟﺰء ﻣﻦ اﻷرﻗﺎم ﺑﻌﺪ اﻟﻔﺎﺻﻠﺔ ﻣﻜﺮر‬

.‫ﻧﻼﺣﻆ أن اﻷرﻗﺎم ﺑﻌﺪ اﻟﻔﺎﺻﻠﺔ ﻏﯿﺮ ﻣﻜﺮرة‬

R Q



z w N

* N W Z  Q  R

‫اﻷﻋﺪاد اﻟﺼﺤﯿﺤﺔ‬ Z: Integers {...., -2 , -1 , 0 , 1 , 2 , ....}

‫اﻷﻋﺪاد اﻟﻜﻠﯿﺔ‬

* II  R P=II

W: whole numbers

{0 , 1 , 2 , .......}

*P∪Q=R

Zero

0566664790 –

‫ﺍﻷﻋﺩﺍﺩ ﺍﻟﻁﺒﻴﻌﻴﺔ‬ N: natural numbers {1 , 2 , 3 , .....}

A L S A A D I


-2-

Dream Team

WWW.GAMAL-ALSAADI.COM ‫ھـ‬1435/34 (14) ‫اﻟــــﺪﻓـــﻌـــــــﺔ‬

Example: 1 Whole number = w is: a)

3

b) 12

8  2

c) 0.5

d) 

2 Whole number = w is : a) -2

b) 

c) -3.2

d)

25  5

3 Integer = z is : a) 4

b)

25  5

2 d) 3

c) 5.3

2

Integer = z is : a) 

b)

c)

2

d) 5.3

3 8   2

5 Irrational number = II is: a)

2 3

b)

c) 0

2

d)

5

25 

5 1

d)

 2

5

6 Rational number = Q is: a)

5

5

b)

c)

 2

3

d)

4

7 Rational number = Q is: a)

5

5

2 3

b) 4 

14 3

c)

3

4

8 Natural number = N is : a) 4

b)

c)

3

4

0566664790 –

d) - 12

A L S A A D I


‫‪WWW.GAMAL-ALSAADI.COM‬‬ ‫اﻟــــﺪﻓـــﻌـــــــﺔ )‪1435/34 (14‬ھـ‬

‫‪-3-‬‬

‫‪Dream Team‬‬

‫‪1.1‬‬

‫‪Basics of sets‬‬ ‫‪ A set is a collection of objects are called members or elements‬‬ ‫‪ : ‬ھﻲ ﺗﺠﻤﻊ ﻣﻦ اﻷﺷﯿﺎء ﺗﺴﻤﻰ أﻋﻀﺎء أو ﻋﻨﺎﺻﺮ‪.‬‬

‫‪ ‬‬

‫‪A‬‬ ‫‪L‬‬ ‫‪S‬‬ ‫‪A‬‬ ‫‪A‬‬ ‫‪D‬‬ ‫‪I‬‬

‫ﺷﺮط أﺳﺎﺳﻲ ﻟﻜﻲ ﺗﻜﻮن اﻟﻌﻨﺎﺻﺮ ﻣﺠﻤﻮﻋﺔ أن ﺗﻜﻮن ﻣﻌﺮوﻓﺔ وﻣﺤﺪودة ﺗﺤﺪﯾﺪاً‬ ‫ﺗﺎﻣﺎً أي ﻻ ﯾﺨﺘﻠﻒ ﻋﻠﯿﮭﺎ‪.‬‬

‫‪ ‬‬ ‫‪ ‬‬

‫‪ ‬أﯾﺎم اﻷﺳﺒﻮع )‪ :(Days of week‬ﺗﻤﺜﻞ ﻣﺠﻤﻮﻋﺔ ﻷﻧﮭﺎ ﻣﺤﺪدة ﺗﺤﺪﯾﺪاً ﺗﺎﻣﺎً‬ ‫وﻻ ﯾﺨﺘﻠﻒ ﻋﻠﯿﮭﺎ‪.‬‬ ‫‪ ‬اﻷﻃﻌﻤﺔ اﻟﻠﺬﯾﺬة )‪ : (the best foods‬ﻻ ﺗﻤﺜﻞ ﻣﺠﻤﻮﻋﺔ ﻷﻧﮭﺎ ﺗﺨﺘﻠﻒ ﻣﻦ‬ ‫ﺷﺨﺺ ﻵﺧﺮ‪.‬‬ ‫‪ ‬اﻟﻤﺠﻤﻮﻋﺔ ﯾﺮﻣﺰ ﻟﮭﺎ ﺑﺎﻟﺤﺮوف اﻟﻜﺒﯿﺮة )ﻛﺎﺑﺘﻞ(‪.‬‬ ‫‪A, B, X, Y ……….‬‬ ‫‪ ‬اﻟﻌﻨﺎﺻﺮ ﯾﺮﻣﺰ ﻟﮭﺎ ﺑﺎﻟﺤﺮوف اﻟﺼﻐﯿﺮة )ﺻﻤﻮل(‬ ‫‪a, b, x, y……….‬‬ ‫} ‪X = { Saturday, Sunday, …. , Friday‬‬ ‫} ‪X = { x : x is a day of the week‬‬

‫‪0566664790 –‬‬


-4-

Dream Team

={

,

WWW.GAMAL-ALSAADI.COM ‫ھـ‬1435/34 (14) ‫اﻟــــﺪﻓـــﻌـــــــﺔ‬

, … ,

}

‫ﻋﻼﻗﺔ ﻋﻨﺼﺭ ﺒﻤﺠﻤﻭﻋﺔ‬

:‫ﺍﻟﻌﻨﺼﺭ ﻴﻨﺘﻤﻲ ﺇﻟﻰ ﺍﻟﻤﺠﻤﻭﻋﺔ‬

∈X

∉X

Example: Saturday

:‫ﺍﻟﻌﻨﺼﺭ ﻻﻴﻨﺘﻤﻲ ﺇﻟﻰ ﺍﻟﻤﺠﻤﻭﻋﺔ‬

Example: Summer ∉ X

∈X

‫ﻋﻼﻗﺔ ﻤﺠﻤﻭﻋﺔ ﺒﻤﺠﻤﻭﻋﺔ ﺁﺨﺭﻯ‬

Y ‫ ﻣﻮﺟﻮده ﻓﻲ اﻟﻤﺠﻤﻮﻋﺔ‬X ‫ﻛﻞ ﻋﻨﺎﺻﺮ اﻟﻤﺠﻤﻮﻋﺔ‬

⊆Y

Subset ⊂ ‫ﺠﺯﺌﻴﺔ‬ Example: Natural number ⊂ lntegers N = {1,2,3,…..} ⊂ Z= {…,-1,0,1,…}

Y ‫ ﻏﻴﺭ ﻤﻭﺠﻭﺩ ﻓﻲ‬X ‫ﻋﻨﺼﺭ ﻋﻠﻰ ﺍﻻﻗل ﻓﻲ‬

⊄Y Not subset ⊄ ‫ﻟﻴﺴﺕ ﺠﺯﺌﻴﺔ‬ Example: Prime numbers ⊄ odd numbers {2,3,5,…..} ⊄ {1,3,5,…..}

0566664790 –

A L S A A D I


‫‪WWW.GAMAL-ALSAADI.COM‬‬ ‫اﻟــــﺪﻓـــﻌـــــــﺔ )‪1435/34 (14‬ھـ‬

‫‪-5-‬‬

‫‪Dream Team‬‬

‫‪‬‬ ‫‪Example:‬‬ ‫}‪X = {1,3,5,6,7,8‬‬ ‫}‪Y = {2,3,4,6,7‬‬

‫‪If :‬‬

‫‪Find :‬‬ ‫ ∩‬

‫‪1‬‬

‫ ∪‬

‫‪2‬‬

‫‪A‬‬ ‫‪3‬‬ ‫ ‪/‬‬ ‫‪L‬‬ ‫‪S‬‬ ‫‪Solution‬‬ ‫‪A‬‬ ‫}‪ = {3,6,7‬ﺍﻟﻌﻨﺼﺭ ﺍﻟﻤﺸﺘﺭﻜﺔ ∩ ‪1 1.‬‬ ‫‪A‬‬ ‫‪D‬‬ ‫ﺍﻟﻜل ﺒﺩﻭﻥ ﺘﻜﺭﺍﺭ ∪ ‪2 2.‬‬ ‫}‪={1,3,5,6,7,8,2.4‬‬ ‫‪I‬‬ ‫‪/‬‬

‫ﺍﻟﻤﻭﺠﻭﺩ ﻓﻲ ‪ X‬ﻭﻏﻴﺭ ﻤﻭﺠﻭﺩ ﻓﻲ ‪Y‬‬ ‫}‪= {1,5,8‬‬

‫‪33.‬‬

‫ﺍﻟﺘﻘﺎﻁﻊ‬

‫∩‬

‫‪1‬‬

‫ﺘﻘﺎﻁﻊ ﻤﺠﻤﻭﻋﺘﻴﻥ ﻫﻲ ﺍﻟﻌﻨﺎﺼﺭ ﺍﻟﻤﺸﺘﺭﻜﺔ ﺒﻴﻥ‬ ‫ﺍﻟﻤﺠﻤﻭﻋﺘﻴﻥ‬

‫} ∈ ‬

‫ ∈ ‪∩ ={ :‬‬

‫ﺍﻻﺘﺤﺎﺩ‬

‫∪‬

‫‪2‬‬

‫ﺍﺘﺤﺎﺩ ﻤﺠﻤﻭﻋﺘﻴﻥ ﻫﻲ ﻜل ﻋﻨﺎﺼﺭ ﺍﻟﻤﺠﻤﻭﻋﺘﻴﻥ‬ ‫ﺒﺩﻭﻥ ﺘﻜﺭﺍﺭ‬ ‫} ∈ ∈ ‪∪ = { :‬‬

‫ﺍﻟﻤﻜﻤﻠﺔ ‪/‬‬

‫‪3‬‬

‫ﻤﻜﻤﻠﺔ ‪ Y‬ﺒﺎﻟﻨﺴﺒﺔ ﻟـ‪X‬‬ ‫‪Complement of Y‬‬ ‫‪with respect to X‬‬ ‫ﺍﻟﻌﻨﺎﺼﺭ ﺍﻟﻤﻭﺠﻭﺩﺓ ﻓﻲ ‪X‬‬ ‫ﻭﻏﻴﺭ ﻤﻭﺠﻭﺩﺓ ﻓﻲ ‪Y‬‬

‫ } ∉ ‬

‫ ∈ ‪/ ={ :‬‬

‫‪0566664790 –‬‬


Dream Team

-6-

WWW.GAMAL-ALSAADI.COM ‫ھـ‬1435/34 (14) ‫اﻟــــﺪﻓـــﻌـــــــﺔ‬

Cartesian Product   X × Y : all ordered pairs obtained from the element of X as the first coordinate and element of Y as the second coordinate. ‫ وﻣﺴﺎﻗﻄﮭﺎ‬X ‫ﻋﺒﺎرة ﻋﻦ ﻛﻞ اﻷزواج اﻟﻤﺮﺗﺒﺔ اﻟﺘﻲ ﻣﺴﺎﻗﻄﮭﺎ اﻷوﻟﻰ ﻋﻨﺎﺻﺮ ﻣﻦ‬ .Y ‫اﻟﺜﺎﻧﯿﺔ ﻋﻨﺎﺻﺮ ﻣﻦ‬

Example: If : = {2 , 3 , 5} ,

= { , }

Find : (1) ×

(2) ×

(3) ×

Solution (1)

×

= {(2, ), (2, ), (3, ), (3, ), (5, ), (5, )}

(2)

×

= {( , 2), ( , 3), ( , 5), ( , 2), ( , 3), ( , 5)}

(3)

×

= {( , ), ( , ), ( , ), ( , )}

0566664790 –

A L S A A D I


Dream Team

-7-

WWW.GAMAL-ALSAADI.COM ‫ھـ‬1435/34 (14) ‫اﻟــــﺪﻓـــﻌـــــــﺔ‬

Types of intervals

1) Finite intervals: ‫ﻓﺘﺮات ﻣﺤﺪودة‬

Notation

Set description

Type

(a , b)

{ x ∈ R / a < x < b}

Open

[a , b]

{ x ∈ R / a ≤ x ≤ b}

Closed

[a , b)

{ x ∈ R / a ≤ x < b}

Half - open

(a , b]

{ x ∈ R / a < x ≤ b}

Half - open

Picture a

b

a

b

a

b

a

b

2) Infinite intervals: ‫ﻓﺘﺮات ﻏﯿﺮ ﻣﺤﺪودة‬

Notation

Set description

Type

(a ,∞)

{ x ∈ R / x > a}

Open

Picture 

a

(-∞, b]

{ x ∈ R / x ≤ b}

Half - Closed 

(-∞,∞)

R: set of all real numbers

open

0566664790 –



b 

A L S A A D I


-8-

Dream Team

WWW.GAMAL-ALSAADI.COM ‫ھـ‬1435/34 (14) ‫اﻟــــﺪﻓـــﻌـــــــﺔ‬

Example: Write the sets as the intervals and show on the real line.

1

{ ∈ /− ≤

< 3}

= [ -3, 3 ) -3

2

{ ∈ /− <

3

A L S A A D I

< 5} -2

5

= (-2 , 5) 3

{ ∈ / ≤ − } = (−∞, − ]

4



{ ∈ / > −2}

-2

= (-2 ,∞)

5

-2

{ ∈ }

= (-∞,∞)

0566664790 –




‫‪-9-‬‬

‫‪WWW.GAMAL-ALSAADI.COM‬‬ ‫اﻟــــﺪﻓـــﻌـــــــﺔ )‪1435/34 (14‬ھـ‬

‫‪Dream Team‬‬

‫‪Example :‬‬ ‫‪1‬‬

‫‪7‬‬

‫]‪(1) (1,7] ∖(4,8) = (1,4‬‬

‫‪4‬‬

‫‪8‬‬

‫]‪(2) (1,7] ∩ (4,8) = (4,7‬‬

‫‪A‬‬ ‫‪L‬‬ ‫‪S‬‬ ‫‪A‬‬ ‫‪A‬‬ ‫‪D‬‬ ‫‪I‬‬

‫ﻤﻥ ﺍﻟﺭﺴﻡ ﻓﻲ )‪ (1‬ﺍﻟﺠﺯﺀ ﺍﻟﻤﺸﺘﺭﻙ ﻓﻲ ﺍﻟﺘﻅﻠﻴل‬

‫)‪(3) (1,7] ∪ (4,8) = (1,8‬‬ ‫ﻤﻥ ﺍﻟﺭﺴﻡ ﻓﻲ )‪ (1‬ﺒﺩﺍﻴﺔ ﺍﻟﺭﺴﻡ ﻟﻨﻬﺎﻴﺘﻪ‬ ‫‪5‬‬

‫‪-2‬‬ ‫‪0‬‬

‫‪-4‬‬

‫]‪(4) [-2,5] ∖(-4,0] = (0,5‬‬

‫]‪(5) [-2,5] ∩ (-4,0] = [-2,0‬‬ ‫ﻤﻥ ﺍﻟﺭﺴﻡ ﻓﻲ )‪ (4‬ﺍﻟﺠﺯﺀ ﺍﻟﻤﺸﺘﺭﻙ ﻓﻲ ﺍﻟﺘﻅﻠﻴل‬

‫]‪(6) [-2, 5] ∪ (-4,0] = (-4,5‬‬ ‫ﻤﻥ ﺍﻟﺭﺴﻡ ﻓﻲ )‪ (4‬ﺒﺩﺍﻴﺔ ﺍﻟﺭﺴﻡ ﻟﻨﻬﺎﻴﺘﻪ‬

‫‪0566664790 –‬‬


‫‪WWW.GAMAL-ALSAADI.COM‬‬ ‫اﻟــــﺪﻓـــﻌـــــــﺔ )‪1435/34 (14‬ھـ‬

‫‪-10-‬‬

‫‪Dream Team‬‬

‫‪ ‬إذا ﻛﺎﻧﺖ اﻟﻔﺘﺮﺗﯿﻦ ﻣﺘﺒﺎﻋﺪﺗﯿﻦ أي ﻟﯿﺲ ﺑﯿﻨﮭﻤﺎ ﺟﺰء ﻣﺸﺘﺮك ﻓﺈن‬

‫‪2‬‬ ‫‪6‬‬

‫‪ ‬ﺍﻟﻤﻜﻤﻠﺔ ﻫﻲ ﺍﻟﻔﺘﺭﺓ ﺍﻷﻭﻟﻰ ﺩﺍﺌﻤﺎﹰ‬

‫‪-1‬‬

‫‪ ‬ﺍﻟﺘﻘﺎﻁﻊ ∅‬

‫‪ ‬ﺍﻻﺘﺤﺎﺩ ﻜﻤﺎ ﻫﻭ‬

‫‪4‬‬

‫ﺍﻟﻤﻭﺠﻭﺩ ﻓﻲ ﺍﻟﻔﺘﺭﺓ ﺍﻷﻭﻟﻰ ] ‪[-1 , 2‬‬

‫‪A‬‬ ‫‪L‬‬ ‫‪S‬‬ ‫‪A‬‬ ‫‪A‬‬ ‫‪D‬‬ ‫‪I‬‬

‫ﻭﻏﻴﺭ ﻤﻭﺠﻭﺩ ﻓﻲ ﺍﻟﻔﺘﺭﺓ ﺍﻟﺜﺎﻨﻴﺔ ] ‪( 4 , 6‬‬

‫ﺍﻟﻤﻭﺠﻭﺩ ﻓﻲ ﺍﻟﻔﺘﺭﺓ ﺍﻷﻭﻟﻰ ] ‪( 4 , 6‬‬ ‫ﻭﻏﻴﺭ ﻤﻭﺠﻭﺩ ﻓﻲ ﺍﻟﻔﺘﺭﺓ ﺍﻟﺜﺎﻨﻴﺔ ] ‪[-1 , 2‬‬

‫ﺍﻟﺘﻘﺎﻁﻊ ‪ :‬ﻻﻴﻭﺠﺩ ﻤﺸﺘﺭﻙ ﺒﻴﻥ ﺍﻟﻔﺘﺭﺘﻴﻥ‬

‫∴ ﺍﻟﺘﻘﺎﻁﻊ ∅‬

‫] ‪∖ ( ,‬‬

‫‪11) – ,‬‬

‫اﻟﻔﺘﺮة اﻷوﻟﻰ ]‪= [−1, 2‬‬

‫] ‪22) ( , ] ∖ [− ,‬‬ ‫اﻟﻔﺘﺮة اﻷوﻟﻰ ] ‪= ( ,‬‬

‫] ‪33) [− , ] ∩ ( ,‬‬ ‫اﻟﻤﺠﻤﻮﻋﺔ اﻟﺨﺎﻟﯿﺔ ∅ =‬

‫] ‪44) [− , ] ∪ ( ,‬‬

‫ﺍﻻﺘﺤﺎﺩ‪ :‬ﻜﻤﺎ ﻫﻭ‬

‫ﺃﻭ ﻤﻤﻜﻥ ﻜﺘﺎﺒﺔ ﺍﻟﻨﺎﺘﺞ ﺒﺎﻟﺸﻜل‬

‫] ‪= [− , ] − ( ,‬‬ ‫] ‪Or [− , ] ∖ ( ,‬‬

‫‪0566664790 –‬‬


‫‪WWW.GAMAL-ALSAADI.COM‬‬ ‫اﻟــــﺪﻓـــﻌـــــــﺔ )‪1435/34 (14‬ھـ‬

‫‪1.1‬‬

‫‪A‬‬ ‫‪L‬‬ ‫‪S‬‬ ‫‪A‬‬ ‫‪A‬‬ ‫‪D‬‬ ‫‪I‬‬

‫‪Exercises‬‬ ‫ﺤل ﺘﻤﺎﺭﻴﻥ ﺍﻟﻜﺘﺎﺏ‬

‫‪Evaluate the following:‬‬

‫‪0‬‬

‫‪7‬‬ ‫‪10‬‬

‫‪-11-‬‬

‫‪1‬‬

‫‪Dream Team‬‬

‫]‪[0,7) ∪ (1,10] = [0,10‬‬

‫‪1‬‬

‫اﻻﺗﺤﺎد ∪‪ :‬ﺑﺪاﯾﺔ اﻟﺮﺳﻢ ﻟﻨﮭﺎﯾﺘﮫ‪.‬‬

‫)‪[0,7) ∩ (1,10) = (1,7‬‬

‫‪2‬‬

‫ﻧﻔﺲ اﻟﺮﺳﻢ ﻓﻲ )‪(1‬‬ ‫‪ ‬اﻟﺘﻘﺎﻃﻊ ∩ ‪ :‬اﻟﺠﺰء اﻟﻤﺸﺘﺮك ﻓﻲ اﻟﺮﺳﻢ‬

‫]‪[0,7) ∖ (1,10] = [0,1‬‬

‫‪3‬‬

‫ﻧﻔﺲ اﻟﺮﺳﻢ ﻓﻲ )‪(1‬‬ ‫‪ ‬اﻟﻤﻜﻤﻠﺔ ∖ اﻟﻤﻮﺟﻮد ﻓﻲ اﻟﻔﺘﺮة اﻷوﻟﻰ وﻏﯿﺮ ﻣﻮﺟﻮد ﻓﻲ اﻟﻔﺘﺮة اﻟﺜﺎﻧﯿﺔ‪.‬‬

‫]‪(1,10] ∖ [0,7) = [7,10‬‬

‫‪4‬‬

‫ﻧﻔﺲ اﻟﺮﺳﻢ ﻓﻲ )‪(1‬‬ ‫‪ ‬اﻟﻤﻜﻤﻠﺔ ∖ اﻟﻤﻮﺟﻮد ﻓﻲ اﻟﻔﺘﺮة اﻷوﻟﻰ ]‪[1,10‬‬ ‫وﻏﯿﺮ ﻣﻮﺟﻮد ﻓﻲ اﻟﻔﺘﺮة اﻟﺜﺎﻧﯿﺔ )‪[0,7‬‬

‫‪0566664790 –‬‬


‫‪WWW.GAMAL-ALSAADI.COM‬‬ ‫اﻟــــﺪﻓـــﻌـــــــﺔ )‪1435/34 (14‬ھـ‬

‫‪-12-‬‬

‫‪0‬‬

‫‪Dream Team‬‬

‫)∞ ‪[0, ∞) ∖{0} = (0,‬‬

‫‪0‬‬

‫‪5‬‬

‫اﻟﻤﻮﺟﻮد ﻓﻲ اﻟﻔﺘﺮة وﻏﯿﺮ ﻣﻮﺟﻮد ﻓﻲ اﻟﻤﺠﻤﻮﻋﺔ‪.‬‬ ‫‪0‬‬ ‫‪2‬‬

‫‪‬‬

‫‪A‬‬ ‫‪L‬‬ ‫‪S‬‬ ‫‪A‬‬ ‫‪A‬‬ ‫‪D‬‬ ‫‪I‬‬

‫}‪[0, ∞) ∖ {1,2‬‬

‫‪1‬‬

‫‪6‬‬

‫اﻟﻤﻜﻤﻠﺔ ∖ ‪ :‬اﻟﻤﻮﺟﻮد ﻓﻲ اﻟﻔﺘﺮة وﻏﯿﺮ ﻣﻮﺟﻮد ﻓﻲ اﻟﻤﺠﻤﻮﻋﺔ أو‬ ‫ﺑﻤﻌﻨﻰ أﺧﺮ اﻟﻐﺎء اﻟﻤﺠﻤﻮﻋﺔ ﻣﻦ اﻟﻔﺘﺮة‬

‫)∞ ‪= [0,1) ∪ (1,2) ∪ (2,‬‬ ‫‪-2‬‬

‫‪3‬‬ ‫‪0‬‬

‫‪‬‬

‫)∞ ‪(-2,3) ∪ (0,‬‬

‫‪7‬‬

‫اﻻﺗﺤﺎد ∪‪ :‬ﻛﻞ اﻟﻤﻨﺎﻃﻖ اﻟﻤﻈﻠﻠﺔ )ﺑﺪاﯾﺔ اﻟﺘﻈﻠﯿﻞ ﻟﻨﮭﺎﯾﺔ(‬

‫)∞ ‪= (-2,‬‬

‫)∞ ‪(-2,3) ∩ (0,‬‬

‫‪8‬‬

‫ﻧﻔﺲ اﻟﺮﺳﻢ ﻓﻲ )‪(7‬‬

‫‪‬‬

‫اﻟﺘﻘﺎﻃﻊ ∩ ‪ :‬اﻟﺠﺰء اﻟﻤﺸﺘﺮك ﻓﻲ اﻟﺘﻈﻠﯿﻞ اﻟﻌﻠﻮي واﻟﺴﻔﻠﻲ ﻟﻠﺨﻂ‪.‬‬

‫)‪= (0,3‬‬

‫‪0566664790 –‬‬


Dream Team

-13-

WWW.GAMAL-ALSAADI.COM ‫ھـ‬1435/34 (14) ‫اﻟــــﺪﻓـــﻌـــــــﺔ‬

9

State: the set of non – negative integers. .‫ اﻷﻋﺪاد اﻟﺼﺤﯿﺤﺔ اﻟﻐﯿﺮ ﺳﺎﻟﺒﺔ‬  Non – negative integers = {0,1,2,3,…}

10 State: the set of non – negative real numbers. .‫اﻷﻋﺪاد اﻟﺤﻘﯿﻘﯿﺔ اﻟﻐﯿﺮ ﺳﺎﻟﺒﺔ‬

 Non – negative real numbers = [0, ∞) 0

11 State: the set of positive real numbers. .‫ اﻷﻋﺪاد اﻟﺤﻘﯿﻘﯿﺔ اﻟﻤﻮﺟﺒﺔ‬  Positive real numbers = (0, ∞) 0

0566664790 –

A L ∞ S A A D I ∞


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.