1 minute read

Researchers at Feinstein publish in the journal Brain Stimulation

Researchers at e Feinstein Institutes for Medical Research, in collaboration with GE Research, have harnessed ultrasound technology to non-invasively reduce in ammation in the body. Results from human studies point to the possibility of using bioelectronic medicine and neuromodulation to treat in ammatory diseases traditionally treated only with drugs.

Led by Feinstein Institutes’ Sangeeta S. Chavan, PhD, and Stavros Zanos, MD, PhD, along with GE Research’s Christopher Puleo, PhD, senior principal engineer and Jeff Ashe, MS, principal engineer in biomedical electronics, delivered spleen-focused ultrasound stimulation (FUS) or sham stimulation, to 70 healthy participants. Through careful blood analyses and measurements, they investigated the levels of endotoxin-induced tumor necrosis factor (TNF), an inflammatory protein that is released by white blood cells and circulates in the bloodstream. They found that spleen FUS has an anti-inflammatory effect, lowering TNF production from blood cells for more than 2 hours, with TNF returning to baseline levels by 24 hours after stimulation.

Advertisement

“From diabetes and obesity to cardiovascular diseases and cancer, inflammation is a major pathogenic mechanism in many diseases,” said Dr. Zanos, associate professor at the Feinstein Institutes’ Institute of Bioelectronic Medicine. “These first-in-human results are exciting because they demonstrate the potential ultrasound stimulation therapy holds to treat diseases, non-invasively, with existing technology.”

Preclinical research previously conducted by the Feinstein Institutes and others has shown that FUS targeting the spleen activates anti-inflammatory responses; this new study demonstrates these effects for the first time in humans. In 2021, the Feinstein Institutes and GE Research team showed the anti-inflammatory effects of liver-focused ultrasound on obesity in preclinical models. In 2022, Drs. Chavan and Zanos, along with GE Research and other collaborators, showed the ability of ultrasound to reverse diabetes in preclinical studies. “The idea that we can use non-invasive ultrasound stimulation rather than drugs to treat inflammatory diseases is exciting,” said Dr. Chavan, professor at the Institute of Bioelectronic Medicine at the Feinstein Institutes. Our body’s immune response to infection and disease is controlled through neural mechanisms mediated via the vagus nerve. Discovered in the lab of Kevin J. Tracey, MD, the Feinstein Institutes’ president and CEO, they dubbed this communication pathway the “inflammatory reflex,” which helped create the field of bioelectronic medicine.

“We are at a tipping point because it is increasingly becoming clear that new technology, new devices and new stimulation can treat inflammatory diseases,” said Dr. Tracey, Karches Family Distinguished Chair in Medical Research. “Drs. Chavan and Zanos’ work with GE Research is a major advance in the field of bioelectronic medicine.”

—Submitted by Feinstein Institutes For Medical Research

This article is from: