ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
A Comparative Study of PI, Fuzzy and Hybrid PI Fuzzy Controller for Speed Control of Brushless DC Motor Drive ABSTRACT: This paper presents the comparative study between PI, fuzzy and hybrid PI-Fuzzy controller for speed control of brushless dc (BLDC) motor. The control structure of the proposed drive system is described. The simulation results of the drive system for different operation modes are evaluated and compared. A fuzzy controller offers better speed response for start-up while PI controller has good compliance over variation of load torque but has slow settling response. Hybrid controller has an advantage of integrating a superiority of these two controllers for better control performances. Matlab/Simulink is used to carry out the simulation.
KEYWORDS: 1. PI 2. Fuzzy 3. Hybrid Controller 4. BLDC Motor 5. Speed Control
SOFTWARE: MATLAB/SIMULINK
For Simulation Results of the project Contact Us
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245 SIMULINK DIAGRAM:
Figure 1: Simulation model BLDC motor drive
For Simulation Results of the project Contact Us
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245 EXPECTED SIMULATION RESULTS:
Figure 2: PI controller
Figure 3: Fuzzy controller
For Simulation Results of the project Contact Us
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
Figure 4: Hybrid controller
Figure 5: Comparison of speed response
For Simulation Results of the project Contact Us
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
Figure 6: PI controller
Figure 7: Fuzzy controller
For Simulation Results of the project Contact Us
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
Figure 8: Hybrid controller
Figure 9: Comparison of speed response
For Simulation Results of the project Contact Us
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245 CONCLUSION: From simulation results, it was shown that PI controller maintained the steady state accuracy while the fuzzy controller performed well in the case of sufficiently large reference input changes with shorter settling time. The hybrid controller has integrated both fuzzy controller and PI controller. During the large speed error, the fuzzy controller will be selected by switch. When the speed error is less than 0.28 rpm, the PI controller will be selected to maintain the high steady-state accuracy. The simulation results showed that the hybrid controller has incorporated advantage of both fuzzy and PI controller. As a conclusion, the hybrid controller has improved the dynamic performance of BLDC motor.
REFERENCES: [1] F. Farkas, A. Zakharov and S.Z. Varga, “Speed and position controller for dc drives using fuzzy logic”, Studies in Applied Electromagnetics and Mechanics (Vol. 16): Applied Electromagnetics and Computational Technology II, Amsterdam: IOS Press, 2000. [2] Zulkifilie Ibrahim and Emil Levi, "A comparative analysis of fuzzy logic and pi speed control in high-performance ac drives using experimental approach", IEEE Trans. on Industry Applications 38(5): pg 1210-1218, 2002. [3] L.S. Xuefang, F. Morel, A.M. Llor, B. Allard, J.-M. Retif, "Implementation of hybrid control for motor drives", IEEE Trans. Industrial Electronics, vol.38, No. 5, pp. 1210-1218, Sep. 2002. [4] Krishnan R, Permanent magnet synchronous and brushless DC motor drives, Boca Raton: CRC Press, 2010 [5] Lini Mathew and Vivek Kumar Pandey, “Design and deelopment of fuzzy logic controller to control the speed of permanent magnet synchronous motor”, JEEER, vol. 3(3), pp. 52-61, March 2011.
For Simulation Results of the project Contact Us
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245