ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
Modelling and Simulation of Standalone PV Systems with Battery supercapacitor Hybrid Energy Storage System for a Rural Household ABSTRACT: This paper presents the comparison between the standalone photovoltaic (PV) system with battery-supercapacitor hybrid energy storage system (BS-HESS) and the conventional standalone PV system with battery-only storage system for a rural household. Standalone PV system with passive BS-HESS and semi-active BS-HESS are presented in this study. Two control strategies, Rule Based Controller (RBC) and Filtration Based Controller (FBC), are developed for the standalone PV system with semi-active BS-HESS with the aim to reduce the battery stress and to extend the battery lifespan. The simulation results show that the system with semi-active BSHESS prolongs the battery lifespan by significantly reducing the battery peak current up to 8.607% and improving the average SOC of the battery up to 0.34% as compared to the system with battery only system.
KEYWORDS: 1. Renewable energy 2. PV 3. Hybrid energy storage system 4. Supercapacitor 5. Battery 6. Control strategy SOFTWARE: MATLAB/SIMULINK For Simulation Results of the project Contact Us
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245 BLOCK DIAGRAM:
Fig. 1. Simulink Models. (a) Standalone PV system with Battery-only Storage. (b) Standalone PV System with Passive BS-HESS. (c) Standalone PV system with Semi-Active BS-HESS.
EXPERIMENTAL RESULTS:
Fig. 2. 24-hours Profiles. (a) Solar Irradiation Profile. (b) Load Demand (c) PV Power Output.
For Simulation Results of the project Contact Us
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
Fig. 3. Battery Current. (a) Battery-only (b) Passive BS-HESS. (c) Semi-active BS-HESS (RBC). (d) Semi-active BS-HESS (Moving Average).
Fig. 4. Supercapacitor Current. (a) Passive BS-HESS. (b) Semi-active BS-HESS (RBC). (c) Semi-active BS-HESS (Moving Average).
For Simulation Results of the project Contact Us
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245
ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245 CONCLUSION: The BS-HESS shows the positive impact to the battery and the overall system. The passive BS HESS is easy to be implemented, but the improvement is not significant as it cannot be controlled. Therefore, semi-active BS-HESS is a better configuration that improves the battery lifespan and maximizes the level of utilization of the supercapacitor. The system with semiactive BS-HESS (moving average filter) has significantly smoothened the battery current. The system with semi-active BS-HESS (RBC) shows a great capability in battery peak current reduction and the prevention of battery deep discharge by reducing the peak power demand by 8.607% and improving the average SOC of the battery by 0.34% as compared to the system with battery-only system.
REFERENCES: [1] Kan SY, Verwaal M, and Broekhuizen H, The use of battery-capacitor combinations in photovoltaic powered products, J. Power Sources 2006, 162: 971–974. [2] Chong LW, Wong YW, Rajkumar RK, Rajkumar RK, and Isa D, Hybrid energy storage systems and control strategies for stand-alone renewable energy power systems, Renew. Sustain. Energy Rev. 2016, 66, pp: 174–189. [3] Kuperman A and Aharon I, Battery-ultracapacitor hybrids for pulsed current loads: A review, Renew. Sustain. Energy Rev. 2011, 15: 981– 992. [4] Dougal RA, Liu S, and White RE, Power and life extension of battery-ultracapacitor hybrids, IEEE Trans. Components Packag. Technol 2002., 25: 120–131. [5] Kuperman A, Aharon I, Malki S, and Kara A, Design of a semiactive battery-ultracapacitor hybrid energy source, IEEE Trans. Power Electron.2013, 28: 806–815.
For Simulation Results of the project Contact Us
Gmail: asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in
0-9347143789/9949240245