Chemical Elements In Plant And Soil: Parameters Controlling Essentiality
DOWNLOAD HERE
Introduction.- 1. The biological System of Elements. - 1.1. Principles of Element Distribution in Plants.1.1.1. Distribution Patterns of Chemical Elements in Plants.- 1.1.2. Biochemical Essentiality of Elements in the Light of Enzymatic Reactions.- 1.1.3. Soil and Geochemistry: Support and Storage/Buffer System for Biology.- 1.2. Methodology of Inquiries into the Biological System of Elements.- 1.2.1. Correlation Analysis of Element Distribution in multiple Plant Species.- 1.2.2. Fundamentals of the Correlation-Chemical Analysis of Element Abundances.- 1.2.2.1. Stoichiometric Network Analysis.1.2.2.2. Biophysical Implication of Gibbs s Phase Rule.- 1.2.2.3. Aqueous Coordination Chemistry related to Metal Uptake.- 2. Autocatalytic Processes and the Role of Essential Elements in Plant Growth.- 2.1. Biomass Stability in the Light of Gibbs s Phase Rule.- 2.2. Coordination-Chemical Control of Element Uptake.- 2.2.1. Electrochemical parameters of Biologically relevant Ligands.- 2.2.2. A Method to Calculate Metal-Ligand Association Equilibria.- 2.2.3. How does the Electrochemical Ligand Parameter influence real vs. possible Hapticity of some Polydentate Ligand?.- 2.2.4. Translating Complex Stabilities into BCF Data: the k Term of Element Fractionation.- 2.2.5. Binding Stability of Substrates and Products in Catalytic Cycles: How does Ligand Sensitivity influence Reaction Kinetics?.- 2.2.6. The Electrochemical Ligand Parameter, Metal Affinities and Chemical Ecology.- 2.2.7. Implication of Some Theoremes from Stoichiometric Network Analysis (SNA) with respect to Stability and Functions of Biochemical Systems.-
2.2.8. Matter (Flow) Balance and Estimation of Loss Processes (exit order) Within Autocatalytic Biochemical Cycles.- 2.2.9. The Topology of Autocatalytic Feedback Patterns in Living Systems.- 2.2.10. SNA and Metal Transport in Terrestrial Plants.- 2.2.11. Stoichiometry of Terrestrial Plants and its Implications according to SNA.- 2.2.12. A Comprehensive Analysis of Autocatalytic Processes within Some Photosynthetic Plant.- 2.3. Some Remarks on Chemical Ecology.- 2.3.1. Constraints of Essentiality caused by Consumers.- 2.3.2. Trophic Nets.- 2.3.3. Different Kinds of Energy Metabolism and C/N plus C/Metal, Intermetal Ratios.- 2.3.4. Succession and Ecological Stoichiometry in Certain Biotopes.- 3. A Causal Model of Biochemical Essentiality.- 3.1. Influence of Intrinsic Bonding Stability and Ligand Sensitivity on the Biocatalytic Properties of Metal Ions.- 3.2. Complex Stability in Relation to other Bioorganic Parameters.- 3.3. Scope of the Essentiality Model.- 4. The Evolution of Essentiality.- 4.1. Evolution and Biochemical Catalysis.- 4.2. The Three-Function-Rule as a Controlling Factor in the Origins of Essentiality.- 4.3. Biogeochemical Fractionation Processes and essentiality Patterns in Different Taxa under Changing Biogeochemical Boundary Conditions.- References. EAN/ISBN : 9789048127528 Publisher(s): Springer Netherlands Discussed keywords: Boden, Pflanzen Format: ePub/PDF Author(s): Frnzle, Stefan
DOWNLOAD HERE
Similar manuals: