Composición de los ácidos nucleicos Son biopolímeros formados por unidades llamadas monómeros, que son los nucleótidos. Los nucleótidos están formados por la unión de: a) Una pentosa, que puede ser la D-ribosa en el ARN; o la D-2- desoxirribosa en el ADN
b) Una base nitrogenada, que puede ser: - Púrica, como la Guanina (G) y la Adenina (A) - Pirimidínica, como la Timina (T), Citosina (C) y Uracilo (U)
C) Ácido fosfórico, que en la cadena de ácido nucleico une dos pentosas a través de una unión fosfodiester. Esta unión se hace entre el C-3´de la pentosa, con el C-5´de la segunda.
A la unión de una pentosa con una base nitrogenada se le llama nucleósido. Esta unión se hace mediante un enlace -glucosídico. - Si la pentosa es una ribosa, tenemos un ribonucleósido. Estos tienen como bases nitrogenadas la adenina, guanina, citosina y uracilo.
- Si la pentosa es un desoxirribosa, tenemos un desoxirribonucleósido. Estos tienen como bases nitrogenadas la adenina, citosina, guanina y timina.
El enlace -glucosídico se hace entre el a) C-1´de la pentosa y el N-9 de la base púrica, como la guanina y la adenina. b) C-1´de la pentosa y el N-1 de la base pìrimidínica, como la timina y citosina.
Ácido Desoxirribonucleico o ADN o DNA A.- ESTRUCTURA. Está formado por la unión de muchos desoxirribonucleótidos. La mayoría de las moléculas de ADN poseen dos cadenas antiparalelas ( una 5´-3´y la otra 3´-5´) unidas entre sí mediante las bases nitrogenadas, por medio de puentes de hidrógeno.
La adenina enlaza con la timina, mediante dos puentes de hidrógeno, mientras que la citosina enlaza con la guanina, mediante tres puentes de hidrógeno. El ADN es el portador de la informacion genética, se puede decir por tanto, que los genes están compuestos por ADN. ESTRUCTURA PRIMARIA DEL ADN Se trata de la secuencia de desoxirribonucleótidos de una de las cadenas. La información genética está contenida en el orden exacto de los nucleótidos. ESTRUCTURA SECUNDARIA DEL ADN Es una estructura en doble hélice. Permite explicar el almacenamiento de la información genética y el mecanismo de duplicación del ADN. Fué postulada por Watson y Crick,basandose en: - La difracción de rayos X que habían realizado Franklin y Wilkins
Es una cadena doble, dextrógira o levógira, según el tipo de ADN. Ambas cadenas son complementarias, pues la adenina de una se une a la timina de la otra, y la guanina de una a la citosina de la otra. Ambas cadenas son antiparalelas, pues el extremo 3´de una se enfrenta al extremo 5´de la otra. Existen tres modelos de ADN. El ADN de tipo B es el más abundante y es el descubierto por Watson y Crick. ESTRUCTURA TERCIARIA DEL ADN. Se refiere a como se almacena el ADN en un volumen reducido. Varía según se trate de organismos procariontes o eucariontes: a) En procariontes se pliega como una super-hélice en forma, generalmente, circular y asociada a una pequeña cantidad de proteinas. Lo mismo ocurre en la mitocondrias y en los plastos.
b) En eucariontes el empaquetamiento ha de ser más complejo y compacto y para esto necesita la presencia de proteinas, como son las histonas y otras de naturaleza no histona (en los espermatozoides las proteinas son las protaminas). A esta unión de ADN y proteinas se conoce como cromatina, en la cual se distinguen diferentes niveles de organización: - Nucleosoma - Collar de perlas - Fibra cromatínica - Bucles radiales - Cromosoma. B.- DESNATURALIZACIÓN DEL ADN. Cuando la temperatura alcanza el punto de fusión del ADN, la agitación térmica es capaz de separar las dos hebras y producir una desnaturalización. Este es un proceso reversible, ya que al bajar la temperatura se puede producir una renaturalización. En este proceso se rompen los puentes de hidrógeno que unen las cadenas y se produce la separación de las mismas, pero no se rompen los enlaces fosfodiester covalentes que forman la secuencia de la cadena. La desnaturalización del ADN puede ocurrir, también, por variaciones en el pH.
Al enfriar lentamente puede renaturalizarse.
ARN o ácidos ribonucleico o RNA A.- ESTRUCTURA Está formado por la unión de muchos ribonucleótidos, los cuales se unen entre ellos mediante enlaces fosfodiester en sentido 5´-3´( igual que en el ADN ).
Están formados por una sola cadena, a excepción del ARN bicatenario de los reovirus. ESTRUCTURA PRIMARIA DEL ARN Al igual que el ADN, se refiere a la secuencia de las bases nitrogenadas que constituyen sus nucleótidos.
ESTRUCTURA SECUNDARIA DEL ARN Alguna vez, en una misma cadena, existen regiones con secuencias complementarias capaces de aparearse.
ESTRUCTURA TERCIARIA DE ARN Es un plegamiento, complicado, sobre al estructura secundaria.
B.- CLASIFICACIÓN DE LOS ARN. Para clasificarlos se adopta la masa molecular media de sus cadenas, cuyo valor se deduce de la velocidad de sedimentación. La masa molecular y por tanto sus dimensiones se miden en svedberg (S). Según esto tenemos: ARN MENSAJERO (ARNm) Sus características son la siguientes: - Cadenas de largo tamaño con estructura primaria. - Se le llama mensajero porque transporta la información necesaria para la síntesis proteica. - Cada ARNm tiene información para sintetizar una proteina determinada. - Su vida media es corta. a) En procariontes el extremo 5´posee un grupo trifosfato b) En eucariontes en el extremo 5´posee un grupo metil-guanosina unido al trifosfato, y el el extremo 3´posee una cola de poli-A
En los eucariontes se puede distinguir también: - Exones, secuencias de bases que codifican proteinas - Intrones, secuencias sin información. Un ARNm de este tipo ha de madurar (eliminación de intrones) antes de hacerse funcional. Antes de madurar, el ARNm recibe el nombre de ARN heterogeneonuclear (ARNhn ). ARN RIBOSÓMICO (ARNr) Sus principales características son: - Cada ARNr presenta cadena de diferente tamaño, con estructura secundaria y terciaria. - Forma parte de las subunidades ribosómicas cuando se une con muchas proteinas. - Están vinculados con la síntesis de proteinas. ARN NUCLEOLAR (ARNn) Sus características principales son: - Se sintetiza en el nucleolo. - Posee una masa molecular de 45 S, que actua como recursor de parte del ARN r, concretamente de los ARNr 28 S (de la subunidad mayor), los ARNr 5,8 S (de la subunidad mayor) y los ARNr 18 S (de la subunidad menor) ARNu Sus principales características son: - Son moléculas de pequeño tamaño - Se les denomina de esta manera por poseer mucho uracilo en su composición - Se asocia a proteinas del núcleo y forma ribonucleoproteinas pequeño nucleares (RNP pn) que intervienen en: a) Corte y empalme de ARN b) Maduración en los ARNm de los eucariontes c) Obtención de ARNr a partir de ARNn 45 S. ARN TRANSFERENTE (ARNt) Sus principales características son. - Son moléculas de pequeño tamaño - Poseen en algunas zonas estructura secundaria, lo que va hacer que en las zonas donde no hay bases complementarias adquieran un aspecto de bucles, como una hoja de trebol. - Los plegamientos se llegan a hacer tan complejos que adquieren una estructura terciaria - Su misión es unir aminoácidos y transportarlos hasta el ARN m para sintetizar proteinas.
El lugar exacto para colocarse en el ARNm lo hace gracias a tres bases, a cuyo conjunto se llaman anticodón (las complementarias en el ARNm se llaman codón). C.- SINTESIS Y LOCALIZACIÓN DE LOS ARN En la célula eucarionte los ARN se sintetizan gracias a tres tipos de enzimas: - ARN polimerasa I, localizada en el nucleolo y se encarga de la sinteis de los ARN r 18 S, 5,8 S y 28 S. - ARN polimerasa II, localizada en el nucleoplasma y se encarga de la síntesis de los ARN hn, es decir de los precursores de los ARNm - ARN polimerasa III, localizada en el nucleoplasma y se encarga de sintetizar los ARN r 5 S y los ARNm.
Funciones de los ácidos nucleicos - Duplicación del ADN - Expresión del mensaje genético: - Transcripción del ADN para formar ARNm y otros - Traducción, en los ribosomas, del mensaje contenido en el ARNm a proteinas.
Duplicación del AD
La vida de los seres vivos es muy variable , por tanto para que esta no se extinga ha de haber un momento en s progenitor o progenitores . Se dieron muchas hipótesis sobre como se dupllicaba el ADN hasta que Watson y Crick propusieron la hipótesis se según la cual, las nuevas moléculas de ADN formadas a partir de otra antigua, tienen una hebra antigua y otra nueva
MECANISMO DE DUPLICACIÓN DEL ADN EN PR
Hay que recordar que es circular y ocurre en tres etapas: 1ª ETAPA: DESENRROLLAMIENTO Y APERTURA DE LA DOBLE HÉLICE. Intervienen un grupo de enzimas y proteinas, a cuyo conjunto se denomina replisoma * Primero: intervienen las helicasas que facilitan en desenrrollamiento * Segundo: actuan las girasas y topoisomerasas que eliminan la tensión generada por la torsión en el desenrrollamien * Tercero: Actuan las proteinas SSBP que se unen a las hebras molde para que no vuelva a enrollarse.
2ª ETAPA. SÍNTESIS DE DOS NUEVAS HEBRAS DE ADN.
* Actuan las ADN polimerasas para sintetizar las nuevas hebras en sentido 5´-3´, ya que la lectura se hace en el senti * Intervienen las ADN polimerass I y III, que se encargan de la replicación y corrección de errores. La que lleva la m * Actua la ADN polimerasa II, corrigiendo daños causados por agentes físicos. La cadena 3´-5´es leida por la ADN polimerasa III sin ningún tipo de problemas ( cadena conductora). En la cadena fragmentos ( fragmentos de Okazaki ) que crecen en el sentido 5´-3´y que más tarde se unen . Esta es la hebra retard
La ADN polimerasa III es incapaz de iniciar la síntesis por sí sola, para esto necesita un cebador (ARN) que es sintet posteriormente. 3ª ETAPA: CORRECCIÓN DE ERRRORES. El enzima principal que actua como comadrona (R. Shapiro) es la ADN polimerasa III, que corrige todos los errores * Endonucleasas que cortan el segmento erroneo. * ADN polimerasas I que rellenan correctamente el hueco. * ADN ligasas que unen los extremos corregidos.
DUPLICACIÓN DEL ADN EN EUCARIO Es similar a la de los procariontes, es decir, semiconservativa y bidireccional. Existe una hebra conductora y una heb replicación (puede haber unas 100 a la vez)
Intervienen enzimas similares a los que actuan en las células procariontes y otros enzimas que han de duplicar las his permanecen en la hebra conductora.
Expresión del mensaje genético. La información contenida en la secuencia de nucleótidos del ADN podía generar proteinas; sin embargo el ADN está en el núcleo y las proteinas se sintetizan en los ribosomas, los cuales están situados en el citoplasma. El intermediario resultó ser un ARN m.
TRANSCRIPCIÓN EN PROCARIONTES. En ella podemos distinguir las siguientes fases: a) Iniciación: la ARN polimerasa se une a un cofactor que permite su unión a una región del ADN llamada promotor, la cual posee una secuenciaa TATAAT ó TTGACA. b) Elongación: la ARN polimerasa recorre la hebra de ADN hacia su extremo 5´ sintetizando una hebra de ARNm en dirección 5´-3´ c) Finalización: presenta dos variantes. En una interviene un cofactor "p" y en otra no interviene dicho cofactor. El proceso fiinaliza al llegar a una secuencia rica en G y C (zona llamada operador). El ADN vuelve a su forma normal y el ARN m queda libre. d) Maduración: si lo que se forma es un ARNm no hay maduración, pero si se trata de un ARNt o ARNr hay procesos de corte y empalme.
TRANSCRIPCIÓN EN EUCARIONTES Hay que tener en cuenta dos cosas: - Existen tres tipos de ARN polimerasa I, II y III. - Los genes están fragmentados en zonas sin sentido o intrones y zonas con sentido o exones. Antes ha de madurar y eliminar los intrones. - Desempaquetamiento de las histonas. En la trascripción de eucariontes se distinguen las siguientes fases: a) Iniciación: la ARN polimerasa II se une a una zona del ADN llamada promotor (posee secuencias CAAT y TATA) b) Elongación: la síntesis continua en sentido 5´-3´. Al poco se añade una caperuza (metilguanosín trifosfato) al extremo 5´. c) Finalización: parece que está relacionado con la secuencia TTATTT. Ahora interviene un poli-A polimerasa que añade una cola de poli-A al pre-ARN m (ARNhn). d) Maduración: se produce en el núcleo y la hace un enzima llamada RNPpn, que elimina los nuevos intrones (I) formados. Posteriormente las ARN ligasas empalman los exones (E) y forman el ARN m.
El núcleo célular El núcleo es la estructura más destacada de la célula eucarionte, tanto por su morfología como por sus funciones. Su tamaño es variable (5 a 10 mm) al igual que su ubicación siendo en la mayoría de los tipos celulares central. El núcleo tiene tres funciones primarias, todas ellas relacionadas con su contenido de ADN. Ellas son: 1. Almacenar la información genética en el ADN. 2. Recuperar la información almacenada en el ADN en la forma de ARN. 3. Ejecutar, dirigir y regular las actividades citoplasmáticas, a través del producto de la expresión de los genes: las proteínas. En el núcleo se localizan los procesos a través de lo cuales se llevan a cabo dichas funciones. Estos procesos son: 1. La duplicación del ADN y su ensamblado con proteínas (histonas) para formar la cromatina. 2. La transcripción de los genes a ARN y el procesamiento de éstos a sus formas maduras, muchas de las cuales son transportadas al citoplasma para su traducción y 3. La regulación de la expresión genética. ESTRUCTURA DEL NÚCLEO
El núcleo está rodeado por la envoltura nuclear, una doble membrana interrumpida por numerosos poros nucleares. Los poros actúan como una compuerta selectiva a través de la cual ciertas proteínas ingresan desde el citoplasma, como también permiten la salida de los distintos ARN y sus proteínas asociadas. La envoltura nuclear es sostenida desde el exterior por una red de filamentos intermedios dependientes del citoesqueleto, mientras que la lámina nuclear, la cual se localiza adyacente a la superficie interna de la envoltura nuclear, provee soporte interno. El núcleo también tiene un nucleoplasma, en el cual están disueltos sus solutos y un esqueleto filamentoso, la matriz nuclear la cual provee soporte a los cromosomas y a los grandes complejos proteicos que intervienen en la replicación y transcripción del ADN.
Los cromosomas aparecen ocupando lugares específicos. Los genes que codifican productos relacionados, aunque estén localizados en diferentes cromosomas, pueden estar ubicados próximos en el núcleo interfásico. Por ejemplo, los cromosomas humanos 13, 14, 15, 21 y 22 poseen un gran número de genes que codifican para ARNr. Dichos cromosomas están agrupados de tal forma que los genes de los ARNr están todos juntos y confinados en el nucléolo, el lugar donde se sintetizan, procesan y ensamblan los ARNr. Esta separación física asegura que los ARNr puedan ser eficientemente ensamblados dentro de las subunidades ribosomales. En el núcleo, los genes transcripcionalmente activos tienden a estar separados de los inactivos. Los activos se encuentran ubicados centralmente, mientras que los silentes están confinados próximos a la envoltura nuclear. Tan pronto como las células entran en mitosis o meiosis, los fragmentos de la matriz nuclear dirigen la condensación de los cromosomas, constituyéndose en la parte central de los mismos.
LA ENVOLTURA NUCLEAR La envoltura está formada por dos membranas concéntricas interrumpidas por poros nucleares y por la lámina nuclear. Las membranas delimitan un espacio de 10 a 50 nm, el espacio o cisterna perinuclear. La membrana externa en contacto con el citoplasma tiene ribosomas adheridos, que sintetizan las proteínas que se vuelcan al espacio perinuclear. El espacio perinuclear se continua con el REG. La membrana interna posee proteínas integrales que le son propias, que se unen a la lámina nuclear y a los cromosomas. La lámina nuclear, capa fibrosa de 10 a 15 nm en la que apoya la membrana interna, está formada por proteínas del tipo de los filamentos intermedios, polímeros de lamina o laminina nuclear. Ellas se unen a las proteínas integrales de membrana. La aparición de la envoltura nuclear permitió que los eucariontes aislaran los procesos genéticos principales, como la autoduplicación del ADN o la síntesis de ARN. Además esto posibilitó que el ARNm se modifique dentro del núcleo antes de ser traducido en los ribosomas. Estas modificaciones no ocurren en los procariontes, ya que a medida que la ARN polimerasa sintetiza el ARN, simultáneamente el extremo 5’ se une al ribosoma y comienza la traducción.
Fases de la mitosis La mitosis comprende cuatro fases: profase, metafase, anafase y telofase. 1.- Profase, en esta primera etapa, el material cromosómico llamado cromatina se condensa y aparece gradualmente como barras cortas y los cromosomas pueden comenzar a observarse con el microscopio.
La Profase I de la meiosis, es un período largo en el cual los cromosomas presentan un comportamiento particular, esencialmente diferentes del observado en mitosis. Por otro lado, al igual que en esa división , la envoltura nuclear y el nucleolo se desorganizan, los centriolos en el caso de los animales migran hacia los polos opuestos, duplicándose durante ese movimiento, y se ordena el huso acromático. Para un mejor estudio esta profase se ha subdividido en cinco etapas: a) Leptonema: Los cromosomas comienzan a condensarse a partir de la cromatina. b) Cigonema: Los cromosomas homólogos comienzan a aparearse. Este contacto, que se denomina sinapsis, es muy exacto, ya que las cromátidas que se asocian lo hacen específicamente punto por punto. La estructura resultante se denomina bivalente (porque está constituida por dos cromosomas). Continua la condensación de los cromosomas. c) Paquinema: Los cromosomas homólogos completan su apareamiento: aunque no hay fusión entre cromátidas, el contacto es sumamente estrecho. Los cromosomas se hallan enrollados más apretadamente y las cromátidas se hacen visibles; el par homólogo recibe ahora el nombre de tetrada (constituido por cuatro cromátidas). Uno de los fenómenos más notorio que ocurre en esta etapa es el entrecruzamiento.
d) Diplonema: Los cromosomas homólogos comienzan a repelerse, aunque sin separarse por completo. Quedan unidos por ciertos puntos denominados quiasmas, que parecen ser la expresión morfológica del entrecruzamiento. e) Diacinensis: Mientras continúa la condensación de los cromosomas, los quiasmas se deplazan hacia los extremos de los mismos, los cromosomas homólogos sólo quedan ligados por esos puntos.
A medida que los cromosomas se hacen más visibles ocurren dos eventos dentro de la célula, la membrana del núcleo y una porción contenida en él llamada nucléolo se desintegran y aparece una nueva estructura tridimensional en forma de balón de futbol americano denominada huso mitótico. Consiste de microtúbulos que se extienden por la célula. Las fibras del huso mitótico guían a los cromosomas en sus movimientos durante la mitosis.
2.- Metafase, es la segunda etapa de la mitosis durante la cual los pares de cromátidas se mueven hacia el centro o ecuador de la célula. Las cromátidas se disponen en una fila formando ángulos rectos con las fibras del huso mitótico.
El centrómero de cada par de cromátidas se pega a una fibra del huso mitótico. 3.- Anafase, es la tercera etapa de la mitosis; al comienzo, el centrómero de cada par se divide y los cromosomas separados son jalados hacia los polos o extremos del huso mitótico por las fibras del huso que se han pegado al cinetocoro.
4.- Telofase es la última etapa de la mitosis, los cromosomas toman la forma de hilos, se alargan y quedan como estaban al comienzo de la profase.
El huso mitótico se rompe, reaparece el nucléolo y se forma una membrana nuclear alrededor de los cromosomas, los cuales pasan a un estado no condensado o cromatina. En la telofase se forman dos núcleos hijos (cariocinesis) y el citoplasma también completa su división (citocinesis) mediante un plegamiento de la membrana que comienza desde la periferia en la parte media y progresa hacia el centro de la célula, de tal manera que finalmente se obtienen dos células hijas con igual dotación de cromosomas y citoplasma (división ecuatorial).
Fases de la meiosis I 1.- Profase, I en esta primera etapa, el material cromosómico llamado cromatina se condensa y aparece gradualmente como barras cortas y los cromosomas pueden comenzar a observarse con el microscopio. Cada cromosoma consta de dos hebras llamadas cromáticas, las cuales se mantienen unidas por una parte llamada centrómero, poseen además, una zona externa llamada cinetocoro.
A medida que los cromosomas se hacen más visibles ocurren dos eventos dentro de la célula, la membrana del núcleo y una porción contenida en él llamada nucléolo se desintegran y aparece una nueva estructura tridimensional en forma de balón de futbol americano denominada huso mitótico. Consiste de microtúbulos que se extienden por la célula. Las fibras del huso mitótico guían a los cromosomas en sus movimientos durante la mitosis.
2.- Metafase, I es la segunda etapa de la mitosis durante la cual los pares de cromátidas se mueven hacia el centro o ecuador de la célula. Las cromátidas se disponen en una fila formando ángulos rectos con las fibras del huso mitótico. El centrómero de cada par de cromátidas se pega a una fibra del huso mitótico.
3.- Anafase I, es la tercera etapa de la mitosis; al comienzo, el centrómero de cada par se divide y los comosomas separados son jalados hacia los polos o extremos del huso mitótico por las fibras del huso que se han pegado al cinetocoro. 4.- Telofase I es la última etapa de la mitosis, los cromosomas toman la forma de hilos, se alargan y quedan como estaban al comienzo de la profase. El huso mitótico se rompe, reaparece el nucléolo y se forma una membrana nuclear alrededor de los cromosomas, los cuales pasan a un estado no condensado o cromatina.
Meiosis II La meiosis II es similar a la mitosis. Las cromatidas de cada cromosoma ya no son idénticas en razón de la recombinación. La meiosis II separa las cromatidas produciendo dos células hijas, cada una con 23 cromosomas (haploide), y cada cromosoma tiene solamente una cromatida. Profase II Comienza a desaparecer la envoltura nuclear y el nucleolo. Se hacen evidentes largos cuerpos filamentosos de cromatina, y comienzan a condensarse como cromosomas visibles.Los cromosomas continúan acortándose y engrosándose. Se forma el huso entre los centríolos, que se han desplazado a los polos de la célula.
Metafase II Las fibras del huso se unen a los cinetocóros de los cromosomas. Éstos últimos se alinean a lo largo del plano ecuatorial de la célula. La primera y segunda metafase pueden distinguirse con facilidad, en la metafase I las cromatides se disponen en haces de cuatro (tétrada) y en la metafase II lo hacen en grupos de dos (como en la metafase mitótica). Esto no es siempre tan evidente en las células vivas.
Anafase II
Las cromátidas se separan en sus centrómeros, y un juego de cromosomas se desplaza hacia cada polo. Durante la Anafase II las cromatidas, unidas a fibras del huso en sus cinetocóros, se separan y se desplazan a polos opuestos, como lo hacen en la anafase mitótica. Como en la
mitosis, cada cromátida se denomina ahora cromosoma.
Telofase II
En la telofase II hay un miembro de cada par homologo en cada polo. Cada uno es un cromosoma no duplicado. Se reensamblan las envolturas nucleares, desaparece el huso acromático, los cromosomas se alargan en forma gradual para formar hilos de cromatina, y ocurre la citocinesis. Los acontecimientos de la profase se invierten al formarse de nuevo los nucleolos, y la división celular se completa cuando la citocinesis ha producidos dos células hijas. Las dos divisiones sucesivas producen cuatro núcleos haploide, cada uno con un cromosoma de cada tipo. Cada célula resultante haploide tiene una combinación de genes distinta. Esta variación genética tiene dos fuentes: 1.- Durante la meiosis, los cromosomas maternos y paternos se barajan, de modo que cada uno de cada par se distribuye al azar en los polos de la anafase I. 2.- Se intercambian segmentos de ADN.
Gametogénesis: Espermatogénesis y Ovogénesis
Gametogénesis es la formación de gametos por medio de la MEIOSIS a partir de células germinales. Mediante este proceso el material genético de cada célula se reduce a la mitad. Así, el número de cromosomas que existe en las células germinales se reduce de diploide (doble) a haploide (único). Si el proceso tiene como resultado producir espermatozoides se le denomina espermatogénesis. Si el resultado son óvulos se denomina ovogénesis.
La espermatogénesis, es la gametogénesis en el hombre: el mecanismo encargado de la producción de espermatozoides. Este proceso se desarrolla en las testículos, aunque la maduración final de los espermatozoides se produce en el epidídimo. La espermatogénesis (transformación de espermatogonias hasta espermatozoides) tiene una duración aproximada de 64 a 75 días y consta de varias etapas. Las espermatogonias permanecen en mitosis durante 16 días, dando lugar a los espermatocitos primarios. Estos invierten 24 días en completar la primera meiosis y dar lugar a los espermatocitos secundarios que tardarán horas en convertirse en espermátides. Las espermátides se diferencian, empleando otros 24 días en este proceso. Las espermátidas se convierten en espermatozoides: se produce una reducción del citoplasma, el núcleo se alarga y se sitúa en la cabeza del espermatozoide, las mitocondrias se colocan en el cuello y los centriolos originan un flagelo o cola. Antes de salir por el pene para realizar la fecundación, pasan por el epidídimo del testículo, donde se realiza la espermiohistogénesis y obtienen el acrosoma, una especie de casco hecho de enzimas (vital para la fecundación) y una capa que lo protege del pH de la
vagina (glicolema), la cual desaparecerá antes de llegar al óvulo para lograr entrar en él con la fuerza del acrosoma. El proceso que incluye la serie de cambios que experimentan las espermátides para su transformación en espermatozoide se denomina espermiogénesis. Cuando termina todo el proceso, los espermatozoides presentan zonas bien diferenciadas: la cabeza, el cuello y la cola. La cabeza, contiene los cromosomas de la herencia y lleva en su parte anterior un pequeño saliente o acrosoma, cuya misión es perforar las envolturas del óvulo. En el cuello o segmento se localiza el centrosoma y las mitocondrias, que garantizan el aporte energético. La cola o flagelo es el filamento que se encarga de generar la movilidad que le permite al espermatozoide "moverse" hasta el óvulo para poder fecundarlo. Los espermatozoides son células haploides, con la mitad de los cromosomas que una célula somática, son móviles y muy diferenciadas. La reducción en ellas se produce mediante una división celular, la meiosis, donde una célula diploide (2n) experimentará dos divisiones celulares sucesivas sin un paso de duplicación del ADN entre dichas divisiones, con la capacidad de generar cuatro células haploides (n). La ovogénesis es la gametogénesis femenina, es decir, el desarrollo y diferenciación del gameto femenino u óvulo mediante una división meiótica y se lleva a cabo en los ovarios. Este proceso se produce a partir de una célula diploide y se forman como productos una célula haploide funcional (el óvulo) y tres células haploides no funcionales (los cuerpos polares). Las células del organismo poseen una dotación genética compuesta por 46 cromosomas. Las células germinales poseen sólo 23. Al unirse tras la fecundación un ovocito con 23 cromosomas y un espermatozoide con 23 cromosomas darán lugar a un EMBRIÓN con células de 46 cromosomas.
ESPERMATOGÉNESIS Proceso por el cual se obtienen gametos masculinos, se lleva a cabo en el epitelio de los túbulos semíniferos. De ahí salen cuatro funcionales haploides. *Apartir de la pubertad* 1. Espermatogonia, antes hay una fase de multiplicación. • Tipo A: división y origen a las de tipo B • Tipo B: duplicación de material genético y son los espermatocitos primarios descendientes de los de tipo A. Dan origen al resto. ESPERMATOCITO: Existen dos tipos de espermatocitos: *profase I, meiosis*
º Espermatocitos primarios: El espermatocito de primer orden mediante una división meiótica origina dos esperma -tocitos de segundo orden. º Espermatocitos secundarios: Los espermatocitos de segundo orden al entrar a la segunda división meiótica originan cuatro células aploides llamadas espermátidas. ESPERMATIDA: Cada espermátida entra a un proceso de diferenciación llamado espermiogénesis y se convierten en espermatozoides. El paso de espermatocito primario hasta espermatozoide maduro requiere de 48 días. ESPERMATOZOIDE: Espermatozoide es la célula reproductora sexual masculina o gameto masculino encargada de fecundar al óvulo, aportando la información genética complementaria a la de la célula femenina. Los espermatozoides de alimentan de fructosa en gran cantidad.
OVOGÉNESIS * Gametogénsis, formación de gametos. • •
Gónadas. Ovarios. Estrógenos y progesterona. 1. Folículo primordial. comienza a generarse el proceso después de haber salido de una. 400.000 folículos de los cuales sólo llegan 400. 2. Folículo primario. contiene a un óvulo revestido por: * La zona pelúcida (aquí se inicia su síntesis y aparece por primera vez) * Una o más capas de células granulosas * Externamente está limitada por la Teca Conectiva * Es llamado también folículo en crecimiento 3. Folículo secundario. homocíto secundario. Las células granulosas empiezan a sintetizar el líquido folicular * Entre las células granulosas aparecen cavidades llenas de líquido folicular * La Teca Conectiva se diferencia en: Teca Interna y Teca Externa. · La Teca Interna contiene a las Células de la teca interna que, empiezan a sintetizar estrógenos, y entre ellas hay numerosos capilares · La Teca Externa contiene: fibroblastos, fibrocitos y fibras colágenas 4. Folículo de Graaf. las células granulosas han crecido y van formando un espacio lleno de líquido. Ya van a mantener un óvulo de tipo primordial. Primera célula: Ovogonia (diploide, 2n). poliferación, mitosis. se da en el desarrollo prenatal. *Fase embrionaria* Ovocito primario (2n, diploide) fase de crecimiento se da antes del nacimiento como tal. Ovocito secundario (n, hapliode) *meiosis I* de aquí sale un cuerpo polar del cual se desprenden dos más los cuales no tienen gran importancia, también se desprende en Olvulo (n) en donde se presenta la meiosis II. SEMEJANZAS ENTRE OVOGÉNESIS Y ESPERMATOGÉNESIS • generar células sexuales • se llevan a cabo en glándulas sexuales • son exclusivamente de organismos superiores • de células diploides se generan células haploides • procesos de mitosis y meiosis • siempre se comienza en mitosis y se termina en meiosis DIFERENCIAS * Ovogénesis • se lleva a cabo en los ovarios • la mujer nace con 400.000 ovocitos primarios • se inicia en una ovogonia
• •
cada ovogonia genera un ovocito primario en la meiosis I es mayor el material celular que pasa a una de las células hijas (óvulo) * Espermatogénesis • se realizan en los testículos • el hombre nace sin espermatozoides • se incia en una espermatogonia • cada espermatogonia produce cuatro espermatozoides • en la meiosis I el material celular se reparte de manera equitativa