Signals Systems and Transforms 5th Edition Phillips SOLUTIONS MANUAL Full clear download (no formatting errors) at: http://testbanklive.com/download/signals-systems-and-transforms-5th-edition-phillipssolutions-manual/
t I
Chapter 2 solutions 2.1 (a)
(i)
.r(-t/3)
-9 -8 - 7 -G -5 -4 -3 -2 -1
1
2
3
4
5 6
n
7 8
(ii)
-4 -(p
'T
'?:'=- 3t-t,.
-.3 VJ
0
2..
:>
4
�
7
7 l+z.=t
,X.(3t - (p)
3
,
2
-1 0
2
3
t=="'� +2
4
:>t
�. \
7Ro�L61V\.
I
��
�
j
T D"Y\ 1;i 'Au -e A
..
• ...L, !-c
-�
.:r(3
( l,bJ.. )
+
r
+-
i-r-•
.-
t.)
l
5 -l
i
r
I
I
l
-I I
3
-D-8-7-G-5-4-3-2-1
1
2
3
-l
6
5
7
8
D
...
J
f t .
T
I
I
•
T
l f
W-,
/-
1
� I
,. I
+
...•..
!
_..
!
1---l .. J
+
i
+
I
(iv) +
J.'(2 - t) 5
4
r
3
-1
•
.....
1 2 3 -! 5
I
;�
•
X(-6)
J
ti.") Jt (--f:/-=,
=
:ter ')
=;'>
r=
--t-;3
-=)
t
z:
-3 "t'
\
t
-So.
•
(1,c'.) ,x(�t-�) -=?Cli:-\ =l L
=3/:::-t,,
'?
t
=
-z;i:.
?((3t-t, ')
2-
(-2,(.:/')
s
X(3>+ t: ') ::.. ;t:, { ?:' 'J �) 'C"' = t + 3
1.:u-) X (J- t ') ==? T-=
;t-�
�t
= 'Z:""- 3
:;> t- = -1: +- 2X(2-�)
r
-1
2
4
-= 'r-a+2
.3 2
,2
-'i
-�
-3
I
z,
.. l
-27
c��)
')G{:it-h)
= 'X. £ r"\
-=)
c- = 3t-Ct,
�
. 7l(�t.-b ')
3
3
2 1
•
-3
().,. ;.�)
X(:i+t')
t= (-1-s, =-
c/3
+ 2..
.
.. -
t
2
-2. -(
= �(i-') =? T-:-3+t .:ry t z; ,Z--- 3
..---------'A-3 x:...
( 3 + t: )
2.--
-12
(iu-)
-q
-�
q
-3
"X- { 2- t: J -=- x.Jr:)
�
-r:: ;). - t:
\2.
-;> C z: -1: +- 2...
,%(2-t) •
,3
.,2.
-�--+-� ._+---l-1-----+--1 -$ -1.R --4 -1. A,
4
t
(--4---'fl---f--+----....
&
�
JD
12
-
I
i
+
1 I
I
r
VR.DB LE:IV\..
�I?,.
I
(0..\
l
j
I
I
j
I
l
t
I
+
l
1 I
L
I
I [
•
t I
3
l
I
l
1
+ I
l l
I
+ +
+
I
1
+
f I
j
...
I
I
'
t
....
1
�
L
,
l- -'
3
�.ttt.°')+2
"
1
-·
I
i
-3
I +
(1L')
1
-+ 1
j
l
(i ')
I
-3
+
+..
L �
j_ -; I- �-
2.
j -3 -
t
3
r
2. 'X.(�·f)+ 2
(it?)
-4X.1.c')+2 2.
-'3
-1,S
t,5
-4 -i.
1:
j II
J �
-2.
(�i)
-
._.
f l
-
x
4x.Lf::) -z g
JD
G:,
'
'2..
x. (�-i)
4
o
-2
-I
-3 =t»
-z...
.
2 j 4-,1:
�-----lf-----•
-
-- 2.
� ::. ?J(.+ 2..
4,
2.
4
-z..
0
_.,
6
-2.
-z.
q
-2.
. �::: �X.+z.
t
�,
2,x,{-i_€)+2..
'2
D
�2.
2..
-2.
11-
&,
I()
J2
. -t!f14--i-
-4,
ID
-l
8' lp
-,
lo
'-f
-2...
JD
2...
C)
=-112
4
0
2..
�) t
"
e: �
'9 '('"" � �t-
� l t' :: 'A. "K.{2.t)+z.,
(iL�)
2
0
-2.
-1 -lp
t
-
P�.Q(C.') (.i.) j {'t')
=
4 �lt') - 2 "./
=)
'1' z: t 8'
to
.3
c
2..
t 0
7. -2...
-l
-0
�ti;{:)-2..
I
-..}
'.J
&, 4·
,2.
--fti
-3
:>
-2
\
•
l
[.l�)tj(-r)=
';)."i,(-i:-)+-L
3
�
.2...
(p
I
4-
4
2
2.
v-
o
'0 't"" :;. t '4:-t.. 4 2.. �
D
-1
- G:,
(i-i.-l-) �(-r:--'-= J. �[2.t')-1- 2 �
�<LL-tj+Z..
-=)?-=')..t
-3
lLJ
7 t: = "t'/2-
;l.�+-2.
e
3
'B'
2. \
{p'
-t
1
0
2,
"2.
-1
6
"'
-3
{?V-} �('[):: - 4�(t )-tZ.
t, 5
-1,C,
-1()
-(c,
o
-2 2.
3
� 1:-:...t
·-41..lt\ + 2..
-·U'. -t-2
3 z,
J
;t :t(�c. -r-2
-(.p
-3
-z.. -1
-�
-7
-10
3
4,?
-I
-2l·(t)
+2
-2:1:( -2t + 2)
3 .
2 l
-3
1
2
3
-1 -t
•
-2
-2
(a) y(t)
=
-2(i·(-2t + 2))
+2
(b)
t -0.5 -1
y(t) 4 2
1
0.-1
-2t+2 3 -1 0
-2(x(-2t - 1)) + 2 4 2 0.4
+2
•
:So f u+�trvi
(t;t)
P f<.., 4 _
8 (f; ��-�-x.(- f:./2_ -y 3 2.
O
7: :: --t-/2
-z...
+2.� +-4-
+Z,
:.)
i:
�=-22C.+4-
= - 2 t: + 4 v'
z· 4
-1
+z,
�
.
-J
•• +
'
'
• •.'..
I
T
I
'
:jt- i• I+
t
I
_J -
t
1
7-3 _3.
J_L_L__l -��L--
�5
..\. �
0 1- -J,5
+ -
+
--
-
_!X_L�-
+
, -
\
I
4-
·-3
'
l-3
I-
-
j
i
·-
X.l-i)
0
0
2..
I
J 'S
I
l
I
-
1 I I
, . Vex·'L�
l ' - J
;
1
O.c25 0
3/2
-Y2-
c)
D
0
--+ r
�
j
-0,�S
- t
't
[
I
�off)
+
t
-
I
Y2-
1- -
l
1
3/z. 1, � 5 I, 2 5
l
l
.
0
0
I, 5 2
0 L
"La lf)
' -X._e. Lt)
3
Kalt) -t: X-elt') - �(t')'
l
I
�
I
. ., . f· •
I_
j.-+- Al
-
.
j � _._ .
I
+
J_
j �
f 'rO b (e. W\. . t-
I
I
,.
..
t (-t)
� (i)
>9
-2
a:
r
2. 2
3
!
0
-3 -0+ ,
0
.
· tf �e(t)
1-
-+
I
1
j-
I
l
I
-2
I
I
L
.
I
l
-,
C)
0
•
• -_
J
•
--'--_, · �
!
I
I
Lt)
I
I-
i I
+-
l
j
I
4
I
+-
�
- l
�t
l I ·1 I
I
" l
l ·-
+-
l l'.:o
'
f:t) -
'
I +-
I
+
\_
- r..
l
j
t
j
c)
a
I
0 -f
-
l
ts
2.
i ' l •
.
0
0
0
-/
'
j
�D
0
I
I
I
Xel_t1
0
0
{i,�
l
..t
J
• ...
-
; I
-ci
- -r-- -· -�
r
+
(CJ
j
.. -
I
•
'
I
�'1
I
- +
-+
,.
'?GLt1
-+ �
0
3-
;
1
-3+
' '
�
2.. 2
�o[t:}
o_
0
I.
I.
�;5 3 3
f1
�3·
3
3 0
-"-
-X.e(t)
"'i,(-t)
�
3
·-G,+ .
-
2.
0
'
0
2
�-:.
4
. I
'
.
-
- 6 ,ZS'
e
+-
�,5
0,5
J,
- I ;(.a
�I
3
0
0
"le(±)
..J
t:t) -
j I
3
-9
- 4i
j
--3
3
-\
t
â&#x20AC;¢
• I
•'
+ --
I
j 1
l ·- -· r [
t. .
I
Pr-ab.\.QW\_ ?-, 5 Cd')
-t-
t-
z s"
;t{-t_ ')
x {-t)
- 2.
O
�-
l
41
3
3+ 3... .3+
i
3 .3
-1-- 3+-
1
O 3
r
3
0
3
0
3
l
t
jt (/,,
'
5 5
j . �
,5
/� 5 fc5
-1
1
1
--
- !
2
•
=.J. 1 I
O 0 _ I� 'S
L.: .
:
•
1
L�
-
: _'.-
I
- -+-
J
� L I
I
'
l -· : f
1 � .. -
1
.
J
I
'2..
.
I
'
I
t
-4 -3 --8��--1----4----.--4-��-4-��4�-4-�r--7
-,
-2
l .
r I
+
=r-
-, �
J
-+· �- ,
- b.1 js _ -+ I -1--�-
I
I
_1
J +
1
- I �e l-l:)
-
1
-f,'5 -;--,
O, '5
3
l
I,, '5 1
J
t 1-1
0, 5
-- _ .3
_
!
-t
<0,5
-2 1
�
- I
I
0 0
�8....
o
3
-3I
0
1- - i
Xe.{t l. . >le) (t') _
JJ
!
f
I •
I I
J
I
-� ._.J � -
l
.-il�-+-
�
I
t='k;0-6 l:e
I
•
I
•
r
b\ <,:,
VV'l
�I
Ii I
'
l
I
1
�
I
r
1 1 . I �) ;ll-L'\ :: - +t: � ';l{-t) = 4-t .l - j 1· - - i X (-t ') = � C- -t ') .', "i { -t- ') i's o d d · . +l l f -1[b) XC-t) = e-H:\. � 'Jl(-t) =-e-/-t/ = e-/tl I . , , , ++
_j :
1
.. t �-
L · - -, -
� (t) == � Cos 8 i:
(_O') �
�
l .
� !
.-
-l.
'
Ld) . X C.
-t -
:
t
�
.
-= 5,�-3t
')-=-
� lr) ,� _ e
I
�
,
X. C-t")
-:=. �
\
(-t ) .
_
I
1
'f(t)::= - �(ot) , x. (.+") ts e�
(e) X.L-t-)== ult)-u(--t) -=/t..(-t)=u(-t.'J-4(-t') .!1 -=- -[u.lt"> -u.l-t-)] t 1: (:t) X.G-t) : , 1...(t) ls ddd. j
I
=-
...l -
1
r
·- .
=- 5&-o.-.3t
-= �( 3[t+�j)
��t + ��
I 1,
t
� X{-t ') � 5 Cds 3 (-t')
t: {&; =- � (- t) .: ,
I
I
J
!
1'.'. ( t ) = -:t C - t ) :. 'Jl {t ) l :; e treY1 · '. _[ •
l+"i
'X.(t\
-=-·- U.(t-1\ T IA.(-t-i)
")(. (-t) � - it (-t-1) � { - t)
= -'Xli-)
)
-f-
u.(t-1)
r,� O
�
(+) i 5
0
Jd
1
•
-
(e) x0(0)=-Xo(-O)= -x0(0). The only number with a=-a is azO so this implies Xo(O)=O. x(0)9ee(O)+x0(0)9ee(O) .
â&#x20AC;˘
(a) Let z(t) be the sum of two even functions x1(t) and x2(t). To show that .:(t) is even. we need to show that z (t) = z(-t) for all t. This ·is easy to show, since z( t) = xi ( t) + 1·2( t) and .:( -t) = l'i( -t) + :i.•2 (-t) (since to get z(-t) we just plug in -t everywhere fort, which amounts to just plugging in -t in 1·1(t) and 1·2(t)). Xow since 1:i(t) and 1·2(t) are even. by definition xi(t) = x1(-t) and :r2(t) = 1·2(-t) so x1(t) + :r2(t) = x1(-t) + x2(-t) so z(t) = z(-t). {b) Let x1(t) and 1·2(t) he two odd functions. Then 1·1(-t) x2(t)) which shows that 1'1 (t) + J:2(t) is odd.
+ x2(-t) =
-x1(t)
+ (-x2(t)) = -(l'1(t) +
(c) Let z(t) = x1(t) + 1)2(t) as in part a, where now x1(-t) = x1(t) and xz(-t) = -1·2(t). \Ve need to show that z(t) 'F z(-t): z(t) f -z(-t). Consider that z(-t) = xi (-t) + :1·2(-t) = 1·1 (t) - ;1.·2(t). In order to have .:(t) be even: we would therefore need to have 1·1 (t) + 1·2(t) = x1 (t) -1·2(t) for all t . which is equivalent to having 1:2(t) = -1:2(t) for all t, which is not possible for nonzero l'.2(t). Similarly, in order to have :(t) be odd. we would need to have z(t) = -z(t) � xi (t) + 1·2(t) = 1·2(t) - xi (t). which is not possible for nonzero x1(t). So the sum of an even and odd function must be neither even nor odd. (d) Let z(t) = x1(t)x2(t) where :t1(t.) = J:1(-t) and x2(t) x1(t)x2(t) = z(t) which shows that -�(t) is even. (e) Let .:(t) = 1:i(t)x2(t). where X[(t) .:(-t) = :ri(-t)x2(-t) = (-1·i(t)) (-x2(t))
= 1·1(-t)x:?(-t) =
=
Then z(-t) = 1·1(-t.)1·2(-t) =
-xi(-t) and x2(t} = -x2(-t). Clearly .:(t) is even because 1·i(t)1·2(t) = .:(t)� which is the definition of evenness.
(t) = -1·i(-t) and x2(t) = 1·2(-t). Clearly :;(t) is odd because (-x1 (t)) 1·2(t) = -xJ(t).r2(t) = -:(t). which is the definition of oddness.
(f) Let :;(t) = l'1(t):r2(t), where .:(-t)
=
= 1·2(-t).
x1
-x.L+\ i 2.-
�c)
C-t)
=- "l{-t-> - r..C-t"> 2..
x.e : : %l-t \) + 7C (-t) 2:...
••
•
�
I
-
-+
l
'
f
t
J
i
l
T -i j I
t
I-
-,.
I
I
1-L I
I
I
1
l
j- -
_
,.
..
PR.f'-.R> l 6 fl\_
� .. \
o
l . J
1
t-
+--!-
-
- 1
I
�
l-, ---,...
-
t
.!
--'--+
(a) sin(t) = sin(t + n2rr) for any integer n, so 7sin(3t) = 7sin(3t + n2;r) = 7sin {3(t +n2:r)); therefore l'(t) is periodic with fundamental period To=� and fundamental frequency wo = = 3.
t
7-)
(b) sin(8(t + + �O) = sin(8t + 21r + 30) = sin(8t + 30). wo = 8 and To = 7 = ! . (c) eJt = cos(t) + j sin(t) is periodic with fundamental period 2rr: so e121 is periodic with fundamental period � = 1r. and fundamental frequency wo = 2. J
I �-i:+ �Gt JV _ � T -=. TI - 2 - II J 2-
(c\) �
=
Tc;={(l'T\: .. To
c_e')
�'tr -:::.... Ti 5 -t 12,
= .1]: -:= 5J /LCt_:ft o- o-/ ol% '2.. 111fe�
'61'�')) -r�L.) I
� =- z
-J ( D t- -t--11!�' -iv� -d rc, t . . , -J r•'l L � = e e -=- �-rr;� -1��1 e =-(o. '5 + j D�8{.p{p) e-},ot . f
J
T0;:
�:
�
= 1f7'5( �; �&-G,
•
•
'P �, i I c�- -x.. t-t-)
:: �
Cb) ')( C-C)-=
-- C� '\ ld1 (e')
i(..
ot -1- Al-wl5t
�t:;-f � ri-'-6
C--+:) =- � 3-t
+ -� �-6
��n-'-t +
>G(-+') =
n-t) : :
� 47f-l:
+ CKL(St)
�41Ft -!-�$Ji,-t + <2,a,�1Tt
�C'-t)-=: �(Si:-
c+ 1
J
'
+3D0)
+
e a-2-t: +�L3rrr-&')
:hl)-r-.
� { IA••
(a..)
-r,
-=-
ID ::
•
•
;nr �
:> Tl
T2-
J
=
i?.1.1
c,
;nr 5
)
s Tu - -� � ,- , -y·
T,
/� d< 0
_,
.
�=----------------
...
•
l.b)
-l, {+')-=: � � $.:,/!: � 1
P�t- �
Y.2-- Lf:) := .5e�'!:, ·t:;") == � y "'(:" Tj -=.. ;;;?_ Ty T2 ::: .). 'Tt/ r-
//'"{
;;r-Jt-2-·�
�d�
\
-:I'S
J
�ci:'c..-
)
T-�. :::.
t?.5�;() T�3 �
cc J
" _.
S
7/�--
i
.e; diwc<J-Tk-=5
--l -i... :zta
Ti -
:=
b...
�
i-r17�
f..12 �<::: � 'lT'
r;:- ccn. 4rr-t (d,) -n��er {=t::z) ..;(;O
.Lj.
A
2 ::.
°"'Yl.C}
�
+ Y-u..+(
d.e-,
vi
�(t>V't�Tr/lf-) � --r
2-:-
&-z.4,(
.: �
s-� Ylof:-
�� T" ::. �TI' "== f/z
�c
1-vd·t, Tj -;; 0.5
�G
4t "�" l , � z: ri-s :: � -;:, .@a ,, 26, ..)
-=- �-=- 2
T, T
Y..1 (:t \ .,,� �d.Lc
T "2-
•
Cc..J-=:, =. 7
7,
To :::: 5 T, -=- :2. 7Y
•
�
;J_
5.· -
w��i5
•
(
{.,u I::
t.<J({z_ �·�
a:
"!:·�.+
t>"177
Tb =-)Vhf,= -I 44-
:..�
------�
(a) For :q (t) + 1·2(t) to he periodic we need some number T such that x1(t + T) + l'2(t + T) = l'1(t) + 1·2(t.) for all t. This can only be true if 1·1 (t+T) = 1·1 (t) and 1·2(t.+T) = 1·2(t)i which can only be true if T = A·1T1 and T = A·2T2 (T is an integer multiple of hoth the periods). So we need there to he some integers l· 1 and k,2 such that A·1T1 = �·2T2 � � = (b) Put in its most reduced form;; by canceling any common terms in the numerator and denominator;
I
i7·
fi
J
1
then To = nT2 = mTr.
1 f Problem 2. I 4
I j
(a) >> syms t >> xa:::::5*exp(-t/2); >> ezplot(xa), grid (c) >> symst >> xc=5*exp(t/2); >> ezplot(xc),grid
(e)
>> symst >> xe=5*(1-exp(-2*t)); >> ezplot(xe), grid (g) >> symst >> xg=5*exp{-2*t)*2*sin(2*t); >> ezplot(xg),grid
(b) >> syms t >> xb=5*exp(-2*t); >> ezplot(xb),grid
(d) >> syms t >> xd=S*(l-exp(-t/2)); >> ezplot(xd), grid (f) >> symst >> xf=5*2*sin(2*t); >> ezplot(xf),grid (h) >>syms t >> xhz:c5*exp(-0.5*t)*2*sin(2*t); >> ezplot(xh),grid
-l
l. l
J
--- -
---
---------1
t
I
i
Problem 2.15 (b)
(a) t
cos(O+(,) = Re{eJ(o+;>} =
sin(O+(,) = Im{e1<o+;l} = lm{e.fSel'}
Re{e19e1;}
= Re{(cos8+ jsinB)(cos(, + jsin(,)}
= Im{(cosB+ jsin8)(cos(, + jsinf
= Re{cos8cos(, + jsin8cos(,
= Im{(cosBcos(,+ jsinBcos,p
e
+ jcosBsin(,-sinBsin(,}
+ j cos sin t/J - sine sin t/J}
= cos Bsin (, + sin B cos tp
= cosBcos(,-sinBsin(, (c)
cosBcos(,
. eii+e-1;} {eJ(o+;)+e1(0-;)} = Re ---2 2
= Re { e19
= Re{eJ(o+;) + e1(o-;)} = cos(B+tp) + cos(B-(,) 2
2
Ptev BLt rY\ · ?{ ')
2
�,
2
I fu
X(_-t-, =- � � ( ;;t t)-t'1(
c-n = � (e8
•
\
t-
-i
+-
d
"f-Jl� e�2t �(�+J�)e-a2,t
= =
/p 2t - "2r::"" e �7--tJ �k o - e
.L ? 1-,
�(zt)
\/lb'/ti,,' t�l 2
�-t
t»:
l
'
e�2\_ \(io1 �:{f�L tit 2.
t�) =-D, 3� Y-ud. (
t V?;. �
= -f o , � 2.. ya
,;-; -J-0,32. }Zt
� (f-) ::
�I
-==
x c+) ::
:z.f.
e
\ltD'
e
e
d.
+
�l:l. t-o, �7..)
z.
\[io1 � ( "t. -
� 5./0, � (
.� r� 1
+
fJ-0,32 -a Z-t, e. e - it ?..t--o. 3ZJ
e
c) 0
1> 2
rio:
'J-..t - ie . 31°\
J)
,
--------------
•
_..... a
...
'Prob[e'N\ �,[,� ,(Co11t/Y1ue.:!)
(b)
4- � �
=- 4 &r� (4rrt)
1LCt')
ft,
=�ce_,
d,'frT-t:
+e
-Jt1-rr-t) 1-3 (e14TTt-�-o4TT-t) 2-J
2...
z,
=(i-��J) e":" -1--(_;i1-3{Jj
c� - 12-f) = '{c�,-,_� 3
·=::
· 1cC-()
.
=- { e -=-
15
(4-TT-t)
1·
- do ,fa4
e�O,�
e
1
�?_
� t.frr t
e-Q"'l-lT-f:.
/tc:;,.'
+- 5
}(J ,ILf.l - j-4-rT 6
e e
e �6:rr t:-O·h4) +e 'J-.( :i...
R J : = � /t; ,' t--34.J '·HTt: ._ o- b'{.,)
2.
•
'Xl-f') ::_ -5 �(41T'rf:-O,Co4 h({d) b'\
S C&4 { 4-rr i: - 3�,. �'7 °)
'f>Ro°tsL6W\
J: (
.·. 5;
a,-t-b) �2(t-e.) d,t
•
-=
,:,c �
t:
� {
-fJ
�?._(� -�\�(t-b/a_)
(a:-t-hJ�'-(-t-- c.) J-1: =-±-- �{%..-C0 5;c-1:-!r'cJJ-1: -�
-= it_
�2
?Ro B l6'M ':? , I 9
c�-�')
o:,
�Ct)-=
to..) •
,,
�f1::--b/4)�'-{-t-c"'i
1
-�
1
J ( at - b) = 'b ( cJ. ( i: - 6 /�)
-QO
,
l"7
�J
j x(r)�(ns)-.£fr-sl1Jr
-oa % ( l) s (t:-u_) ::: A{_t<. ) � (r--R) �oa /1 , -r �
: · � l + J -== m:Jy..fc .,.sJ
Jr - 1lC "'';,.�A1t -sJ cl 1:'
- t;)a
�l+')-=: %(-5) -
l 6�
j (t\
=�
S
oa
I
'i.{_t;)
��-t 2
X(-t:Je.
-
-
-:J>
�6 (;,>t -3) dt
I
l
I
•
.
..
-+
.-
.
I
t
I
t _J L-1 + •
�
..
--•
+
t
.
-·<
I
_.
_,.
.
.....
I
(c) Recall the rules about integrating delta functions: t�(t) is nonzero only at t = 0. so r(t)6(t) = x(0)6(t). and '5(t.)dt = 1, so .r(t)o(t)dt = :r(0)6(t)dt = x(O) 00 6(t)dt = J'(O). \Ve can time-shift the delta function: J(t- to) is nonzero only at t = to, so J'(t)'5(t-to) = :r(to)o(t - to) and :r(t)'5(t- to)dt = �·(to).
i)
J:.:
1:_:
J�
1�
1::
1� cos(2t)'5(t)dt = cos(2 · 0) 1:: J(t)dt = 1.
ii) o(t -
f) is a time-shifted version of <>(t)i and is nonzero only at t = f
1
: ,:;
-,,
So:
oo. sin(2 · .ii. )o(t - �)dt sin(2t)'5(t - -)dt = -I J-ex· 4 -C\: 4 - sin(f)J"' J(t-f)dt=sin(t)=l ... -00 ... -
------------------------------------· • u.l U-i.i) j�L-;. d .;1 ,1'1
c) ;; (t - %)
=-J" '�c��1 s(t-TT/&Jcu-
t:
-�
�
=-�(:Z) Jb(t-717t,)Ji
�%; = o.scc
-cl'
-=
- -VO
5�{ t-%)1 £-Ct - �)dt
�
.,tJ
(Lil')
-: : �r�lf s� (t -7%) �(-1i _".::f>
-�
•
•
s·
- �
==-
A--{(-1X-)Ut-rg)Jf
�
�(f-•V2.)lt -::: iJ,7o7 �
{:)a
(tr)
z:
;i�Jdt jA-w-(t-'%.)&{i.(t-,v,JL-t - '['"-::I
,.,.
� (%-1TJ,,\ S[:z {t-.IT7,)1 J t" i h..{%) ::-a. ,15
·
1 11
+ -
.
•
l � �
l
(a)u.(2t
+ G) = u(t + 3)
,I
..
I
l.
_J
I
-3-2-1
J
I
I _. 11
I
1 2 3
y
�
1
...
-.--
--
t
(C.)
L{
t� + ., )
i,c[:-B(t-2..")]
f
�
� L{, ( -t-+
2)
�c� l*-
r,t (
I
2 1- �) ")
=
u_Lt+s)
t-,--3"'
-� I
cc1 > u
c� -YL,) �
-
"'
IA
L\ tc-o/2-)J u L-t..-3/2.')
[
= u.
< t -312-)
+-
-41
j u.(-t iL-2.)
•
L
I
I: -+-
U(-3-t-+4') =
l
l
l :
/I
1
.....
1
1
•.•
•
. '. - ; : ( 1 - l L
u. (u...(-t) -
!
I - U
. .
I
1
• [ r
� _ cb) !
. .
• ,
t .
'
u. c- t: �
c\ -
-= t
l . . I t . ' -· l
I .· .
J :- · 1·- ·•l
!
•
� 'I
u. ( - t + 2) ::: u. [-1 (t - 2'}] -l
-t,{
::: Ct-1., c 1
•
-
Ct-2")
�c tL[-, (t.-2-')]
u (t-2) 1
���--+-��---��t_
�
t-
-.
I I
•
...
�·1 I- ·• :I !. :I :i •
t
!-I '� '
I .l , _,
,- .
t
l �
I - U.. ( -l -2.';
Lt-2.'>
2
Cd') (-l-2}u..La-t) -=-
�
T
r,
....
.!.._�
,,..
-
t
t-
. -1: u, (;-t) - � . •
t
t
l
t
�
...
'
I .
..
• ·1
«, (t')
..
.j
l --.
1
;
!
r-�------+----Tt
_ • '. - • •
•
l
'
- · ·\· 1 ;i ·
j
I
i
t ')
1
..
i
)
-t \ ,
.. . I •
:
•••
_,
.
+
-l
t l�.; 1
• • j
:
,.
•
: - · -� l ..
f
-1
1
--<
I
I
l
-,
�
I
2.
x(2t - 4) = 4j.(2t - 2)u(2t - 2) - (2t - 4)u(2t - 4) - u(2t - 6) - (2t - 8)u(2t - 8) - (2t - 9)u(2t - 9) = 4i(2t -2)u(t -1) - (2t -4)u(t -2) - u(t - 3) - (2t - B)u(t -4) - (2t -9)u(t - 4.5)1 (()...\
1:(t)
9 8
·(t - 4) -1-----,
9 8 7 6 5 4 3 2 1
-2-1
1 2 3 4 5 1 2 3 4 5 6
'(b)
.., I
8 9
.1·(2t - 4) D 8
-'
·�
6 5 4
·�
3 ....
1
1
2 :3 4
•
f
�
- - ;
-e -,
I
�ct".> ::: � u..(t:+
..
-•
3
J - u. (t) -F 3 ll(t- 3) - 5 u(t-(o)
i
-
- l
(?t._,')
X,[t') I
I I
f
..
t-
l
i
.
-3
.
1 I
_J
I
- I
�
:e J
I I
I
I
•
. I
f
I
3
t-
-·
. 1 (b') x{�-t.-0) ::: 3 u..( 3t-�+ �')- u.(�-t-'7')+ 3_u..(-a t-l,-3) ' - 5 u. (at: -G,-�) '
zz: 3 Ll.
(*. -"3)- U.( "3t -4,')f 3 (( ( 3t-q) -5 U ( "3-t-f ZJ
-= 3 U..(t-1)-U.(t-2') f3U.(t-3)-5U.(t-4) 'X.( :,t-4>) � I
I
I ,
I
f
I
.
5
l
3
'
-=--�-+--+�-+---f-----t-�+----+-�4-t---�, -2. -{ 2. '"C
i
.
•
I
t
�
j
I
I
•
H-i _1I
I
I - ,_ -
.
I
. .... f'r?,C)S
,-
�'M
•
I
I
t . � -_
I
2, "-�
--
-�
-1 . t
-+
j .....
- ....
+ - •
r- -'-
1
: !
•I
-··
-
- -
I
I
-1· '
, I
f
-j
I
I
_\
b·
.:=- - -·I-=R \ I I
-1 - II
L
t
Ip
Cj
l
'
I
' I
l � ' 2
t
">fa.-> -r j
t 1,;,{.._
l
'
lS
j
a.� d a...mp [, +1{.d. e b-ccn.s £ y L ..L.
1
I
�
I
l
-
I
0
-
2-..
+
'
J
•
-
+
-
4 I
� - -r 2... •
3
I
- !
q
I
j
12...
r
+
t
j j I L lA)
th)
�,/t) • lt1,t.ke)-fli-1) tA.lt-J) .t<D
X, /&)�t)
J
+Zlt.-Z)IA.l�--l.) _
v
b-'Z</ J 'I,�) .::�,,,
J<.i�z.J 7., l:t )= ZZ-.l.J,,Z. ->'I � Jf-�z ..... z-<J J � ,JJJ = J/-l .t. +2z:-JJ.::.t:J.,,.. te) �tzJ .. � :r,£.ihh.7;.} :t,ci�zJi.)
T
=$,
•-M
f,11�
t
i
�r,::_ c ffs L-6 ti\
(4.)
� . ;z (.p
x. 1 ( t-)
r '
I --
-::: 3 [t
-3
L(_ (t.\
rft-2
(tFQ�J'll,(-t) <o (o ci: c 1')) 'X..1 (-t"') -=- st
-E_tl) Ll(t -i) J
Gt(t-2) -�-'3 ')'u(t-3"')]
!=+f-
i-:
. W-,< t �
2.) ; 'k.. 1 Ct-') -= "3 t - 3 t: + 3 -= 3 V (� <i: -c 3 ) °XL (_f-) =: � �+;3 -:3t. +{p (-t2.p )
::
1-, l+, -== p:t-�-r;,!f'-3rf:+_);5 +3-:f::-g-=.
J
-?J-t+9 0 �
I
lb) 't2-l-t J i�
periodic.. wi t:L, � .c,.a
1l:z. (-t ') -=-
e: X,
YI =.-oo
=- £.
+n)
3[-t +-1/-.YT)u.(t-+4->i )-{t-f +4-�k{t-t+4n�
YI --De
-
(t -1-
= "1--
_ "3 [(t- -.2 +4-YJ) u(t-z+-411J-{t-:w1 "h) iA/l.--3t4�
'P�eL;&M 2 9':J I
;z.zt) * J;.[r,C:rtt>J] :, 51s_ttl-=- T:r[T. rtltJJ] )# /:t-)"' Tz rr. r,: u-,JJ "..J, hJ Ts tr. [1! Lt-JJj + )s fl'16>] Ct,� �Ltl= �fTz.fT,r.%(t>]Jj.,.;f{n;n-�.H + i; CT,rtu,J] (A.)
f
j
\�l�L\5C\(t,]]J
j�(t') � 'a 4Ct') -=- LL[14CT5
lC'\
lj5 (� ) � 1r,
� (t) = 1
1
•
j
Gjlt-f)JJl
er� c 1(l+_)JJ
'd 3 {-f) -/- 1j Lf (i:)
"'r
d 5 (-t-)
I
'
'
:: '· ( )
1-
ljfti) � I� LT� [1 � LL(-t) 1J] + T�[T4l_T5 [X-(-t')]J - 1 · f- Ti c._!'='l X.. C-r') ]]
Ld)
�C-t."'1 =- �:il-t ��4(t)t<-�5(��
+
d (-t') ==13LT4 �i{%<:t')]1Jx Til4 Lfs[X- C-t-�1� )(.li C-r�[x (.+)1J -Pre..r.,\"3L5M � v.vJ l-t o
-':" Tz,
�{+_) �
� ('t) =
,28
.(x: {+')- T4[� (t1]}
Crv1 l {)
-l-
T\
(X, {f ')=-1.
T� [-r:z ['x.it\-T4 � (·f'lj ii', tx.Lfll}
?tw�L6M �.2-°J_ 'IV\ L -1:1
-= T�t_,c (-1:) -T:, [�
ct-:ilS- T'+ [� l+)]j
\jl�')= T1L_W\(+1]
d L-{) � 1,11
·lv:
(tl -:'I -T3 �JL·FJJ} T4
�Hl�
-
. I
•
I
•
.
'
;
J-
D t 0
iP 0
� 2.
1-
*)=
I::.
-7..
-I
-1
I
� \ - t: - I) ::: \) 1 ['L.(tt I)
f::..
J
.. .
j
� -
i
+ I
ll
--+
, I
I
I
•I I
I
1 .... I
�
I t
I
•
+
�2
w
-
r
2
1 �
1
{b)ti)�
Lil)
a=� jl«-1l
£:l) J
,.;! ��
liii) CAAA8�
•
lilr) ��bk (Al')�
(.-i)
,J,,. ,
itt� ::f �}
�,.s-1
J
r,+ii.
nd � ...
LC.) Lf,) VV\4 VYO� l.-e s, <;.; . d l.-t ') d.-e fe YW\�Y\ <l. b:'1, �� V-: ve_vrt I v.i p u1:: , Ltlf-) Ylot 1nven:1b1e..: � lf)-== r -Fov- aH ·xtt-} < .t. I ���) O�use:t I, (ltJ-') �to....b 1� � (t \ l � l , {V-") ·rt: irrv e; ;YJlk_yraVL't (U--i1 'riot: lrneo_y-;\ 2[lt:-�-= I
l�
#
Ld) (,,t)
VV\.e Moy� ( 2�
S.
c1
•
If
. �v
,
a-ti i;-aJues
-
i
o.P t.(t-)4.-1.
!
ci-i) nti 111u-eYh�l-e: (-t> =-t-h)'(' t1..l( t(f-; -,2.._, (-iu) tac.z csa.. [ \.iv-') S-cc,_ b ! €. : 'O � � l t \. '=-lf• (_u-) -t1 'me i f\ v-tt. i,-·}a Yl t ( U---i� "'Yi st: J 1'n-eC{_r : � l+1 = 1- +o Y- a: t f ')( l-t) 7 2
9
•
�
i
J
Signals Systems and Transforms 5th Edition Phillips SOLUTIONS MANUAL Full clear download (no formatting errors) at: http://testbanklive.com/download/signals-systemsand-transforms-5th-edition-phillips-solutions-manual/
signals systems and transforms 4th edition solutions manual pdf signals systems and transforms 5th edition solutions manual pdf signals systems and transforms solutions manual pdf signals systems and transforms 5th edition pdf download signals systems and transforms 5th pdf signals systems and transforms 4th edition pdf download signals, systems and transforms 5th edition download signals systems and transforms 4th edition pdf free download