![](https://assets.isu.pub/document-structure/200508081607-3270b81abab56d3b4fd0c471fc039ef9/v1/1a9db0fd1c82a1aff00396f8f5926dd7.jpg?width=720&quality=85%2C50)
22 minute read
Cut-Throat Science
Cut-Throat Science: The Less Documented Cases of Scientific Malpractice
Anonymous anecdotes reveal harassment, bullying and sabotage in academia.
Advertisement
Science attracts many bright, young minds. PhD applications describe enthusiastic and curious graduate students who enjoyed their undergraduate studies and, with vocational intent, are passionate about studying the natural world around them. Why is it, that despite this intention, around 70% of PhD students quit academia and do not continue to pursue academic roles? In this article, we cover one of the causes of this disillusionment: competitive research laboratory cultures that can foster toxic behaviours such as bullying and sabotage.
While these issues range in severity, there have been several instances of laboratory arguments resulting in high profile court cases. In 2014, a Stanford laboratory student was charged with four counts of felony for poisoning. She filled her colleagues’ drinking water bottles with a toxic, clear paraformaldehyde solution. Similarly, in 2009, a coffee machine in Harvard University was filled with water containing a high concentration of a toxic chemical which can be fatal in high doses. One professor openly told the press that he believed it was 'not an accident'. These rather extreme cases point to an underlying problem that stems from academia's competitive culture.
Unfortunately, less extreme cases of sabotage and dishonesty often go unnoticed. These incidents can range from experimental sabotage (e.g. mysterious alterations of laboratory equipment settings) to verbal threats. The statistics show clearly that harassment, bullying, and misconduct is far from uncommon. A recent survey by Wellcome found that 61% of researchers have witnessed bullying or harassment, with 43% experiencing it themselves. Often, laboratory members are reluctant to speak up about such occurrences, wary of lengthy complaints processes and potential repercussions. In other cases, issues were raised with a person of higher authority but little was done to address the problem.
In our experience, everyone working in science knows at least one person who has been affected by these issues. At BlueSci, we have collected several anonymous anecdotes to illustrate the range of experiences researchers can have.
One researcher told us: 'Halfway through my PhD, I realised that a colleague was coming into the lab at night to destroy existing data and disturb experiments. Although my supervisor was initially shocked and supportive, once I gathered video evidence, a senior figure in the department warned me that I would face consequences if I chose to formally complain. My supervisor also suddenly changed their mind — they further threatened they would try to have a negative impact on my career if I spoke up. I had no choice but to leave the lab. Luckily, I managed to change supervisors while keeping my PhD funding and staying in the same university. These events affected my productivity and have taken an emotional toll on me that I have struggled with throughout the rest of my PhD'.
For others, PhDs become a time of emotionally stressful detective work. In one anecdote, a PhD student had problems with the communal microscope. After months of struggling, and loss of many important samples, she discovered that a senior lab member was placing a post-it in front of the laser source before her imaging sessions. In another instance, a PhD student continued to find their experimental worms mysteriously dying over the weekends with no obvious cause. To test their suspicions, the student labelled only half of their experimental animals. As expected, they found that only the worms explicitly labelled with their name were found dead the following Monday. When the student went to their supervisor for support, the mysterious acts were dismissed and rather, the student was told to come in on the weekends to take better care of their experiments. 'I didn’t feel comfortable escalating the issue to human resources, but I also couldn’t feasibly continue my work. I discontinued animal work for the rest of my PhD'.
Listening to such anecdotes, it is not difficult to see why PhD students often suffer mental health problems. One researcher explains this constant
distrust and paranoia. 'Imagine worrying about losing months of hard work every time you store away your samples to go home, imagine having to work side-by-side and small talk with people who would not blink twice before sabotaging your work'.
A common thread across these stories is institutional silence. This silence not only hurts victims, but also leaves harassers unpunished. In prioritising strategies to prevent these incidents from happening, a key step that universities and funding agencies can take is to set up robust reporting systems for victims of bullying and harassment. If these troubling actions continue going unpunished, there will be little incentive for the perpetrators to stop targeting more people.
Although such reporting mechanisms exist, at least in theory, they are often ineffective. Many research institutions have a strong culture of silence aimed at limiting reputational damage. This is best exemplified by a BBC investigation which found that UK universities had devoted in excess of £87 million to funding non-disclosure agreements between 2017 and 2019 to keep stories of bullying and harassment from entering the public domain.
Even in the extremely rare cases where institutions take action, consequences are short-lived. Just take the case of Prof Nazneen Rahman, CBE. Once a prominent researcher at the Institute for Cancer Research in London, she resigned due to bullying allegations and had £3.5 million in funding from the Wellcome Trust revoked. However, shortly after she was appointed as a Non-Executive Director of AstraZeneca.
As funding bodies rely on university-level reporting systems, they often do not handle misconduct cases relating to people they fund, and explicitly decline to be involved. However, this may soon change. Wellcome, a major UK-based funding body, has recently changed its policy regarding bullying, According to the Wellcome website, institutions receiving Wellcome funding will now 'be required to tell [Wellcome] of allegations when they decide to investigate'. This policy has been welcomed as a step in the right direction, but some scientists think more could still be done. For example, funding bodies may take the whole reporting system into their own hands, since the university systems are often marred by conflicts of interest and a desire to maintain pristine reputations.
There are other areas, however, that funders can directly influence. When reflecting about what drove people to extreme behaviours in the lab, victims often cite skewed incentives and a toxic work culture. Data seems to corroborate this account — a recent survey by Wellcome found that 78% of researchers believed that high levels of competition had created unkind and aggressive working conditions. To ease this problem, Wellcome recently launched a campaign, Reimagine Research Culture, aiming to raise awareness about the issue and to foster local, grassroots discussion across UK research institutes through a so-called 'Café Culture'. Hopefully, initiatives like Café Culture will help raise awareness of this growing issue, and empower people to speak up.
Be it through changing reporting policies or research culture itself, the widespread problem of toxic academic practices is slowly being tackled. With a problem of such overwhelming scale, it can be difficult to even begin to think about how to improve the situation. Even with new initiatives in place, we must all do our best to push for systemic changes to research culture and university misconduct reporting systems. The bright young minds walking into our universities deserve better
This opinion piece was written by PhD students at several different universities, who wish to remain anonymous. This article was commissioned by Alex Bates and Laia Serratosa Capdevila. Artwork by Mariadaria Ianni-Ravn
Liam Ives investigates the spread of fake science
In 1975, the American physicist and mathematician Jack H. Hetherington named his cat a co-author on one of his papers. He did this to avoid having to correct his accidental use of 'we' instead of 'I'. While this fake feline author was harmless, fake authors and papers are an emerging problem in the scientific world.
A growing number of papers have been discovered in which images are manipulated or even completely faked — the scientific equivalent of photoshopping your photos to make yourself look better. While the very nature of science is to criticise research methods and findings, we don’t often consider the scandalous possibility that the results are entirely fabricated.
In response to this, a group of eagle-eyed researchers are dedicating their time and effort to investigating the problem and exposing the guilty parties.
One of the biggest sleuths is microbiologist and scientific integrity consultant Elisabeth Bik. Bik is a distinguished author in the field of gut bacteria, and founded a blog that compiles scientific papers on microbiomes. After receiving her PhD at Utrecht University, Bik became the Science Editor at a biotechnology company, and then joined a medical company as their Director of Science. But beyond all of this, Bik is working hard to maintain the integrity of the scientific community.
Bik first stumbled upon the issue of plagiarism in science when reading an online book. She noticed that the book had plagiarised phrases from other scientific papers, including her own! After this incident, Bik kept a closer eye on the literature for similar cases.
When she began to look through peer-reviewed papers instead of just online books, Bik discovered that, in several papers, microscope images of protein gels and biological tissues had been manipulated to steer the results in a certain direction. These edits might have been easily overlooked, as such images are complex in nature. However, Bik noticed that the features from one area of a figure had been copied and pasted into another area. Many studies use images as a main source of data, so the fact that such image manipulation could be happening in many other fields is a big concern for research integrity.
As the list of offending papers lengthened, a formal study was launched. In 2016 Elisabeth Bik, Arturo Casadevall and Ferric C. Fang examined over 20,000 papers. As many as 4% of these papers were deemed suspicious. Examples of figure manipulation included cropping, cutting and pasting sections of an image, and duplicating data. Such plagiarism turned out to be so widespread that Bik has recently peeled herself away from her research to investigate papers with ‘suspicious figures’ in a full-time capacity.
After reading a potentially offending paper, Bik contacts the journal in which it is published. In most cases, however, the journal does not respond and no changes are made to the publication. This shows that the journals are neglecting their responsibilities of ensuring effective, transparent peer-review and taking action if its quality is brought into question.
Bik has taken to voicing her findings on Twitter (@MicrobiomDigest) or PubPeer, an online forum for peer-reviewing published papers, highlighting the problematic images. Other users can discuss the research with her, find more papers with suspicious features and, importantly, drum up attention by encouraging conversations with academics and the journals themselves. Given the severity of these offences, it is surprising that the papers were successfully published in the first place.
More disturbingly, what Bik initially thought were unrelated incidents turned out to belong to a network of deception connecting multiple suspicious papers. Digging further, Bik and a group of online collaborators unearthed a ‘paper mill’ run from China. This service allows users to pay to have their name on a paper published in a seemingly reputable journal. The results are photoshopped, the text is stolen, and the
paper is rushed through peer-review via the collusion of corrupt editors. Bik and others noticed this connection from the observation that many published papers seemed to be replicas of one another, and the ‘authors’ were not contactable. More recently, Bik’s group found advertisements online for 'your name on a peer-reviewed paper', presumably by a similar paper mill.
This is not where the fraud ends. Predatory conferences convince scientists, usually those who are young and inexperienced, to pay registration fees and give presentations. When the attendees arrive, however, the conference itself turns out to be a sham event. There is no clear management, the alleged guest speakers often do not show up, and the presentation topics have little consistency both in content and intended audience. The wrongdoing is not only on the part of the organisers: sometimes researchers intentionally attend these conferences. A record of attendance at these events both raises their profile and makes them seem more experienced without any effort on their part.
There are a number of potential causes for all of these types of misconduct. In any research environment there is pressure to publish. Sometimes, quantity is favoured over quality. A high volume of research output can lead to greater opportunities, higher paid jobs, and a greater profile for those tied up in these scams. For some, these schemes are a quick and dirty way of having a more impressive publication list. Other causes include a general lack of control, rigour, or peer-review within the journal.
It is also important to think about how scientific literature is consumed by modern researchers. The publishing industry has changed dramatically in recent times. There used to be fewer journals, and one could receive these in print and be assured of their reliability. Now, there are more papers being published than ever. New journals have been established all over the world with different peer-review regulations. Literature aggregators and search engines such as Mendeley and Google Scholar are becoming more popular, so scientists often do not pay attention to the actual journals in which these papers are published. Furthermore, up-and-coming methods of distributing scientific findings such as preprints are competing with the main journals. Preprints are versions of scientific papers that are available online but precede peer-review and publication, making them more susceptible to false information. Overall, with readers interacting with the publications in a range of new ways, and research being published at increasing rates, it is difficult but more important than ever to sort the real from the fake.
Bik has made a number of suggestions to try and resolve the situation. Firstly, every journal should employ their own forensic image analyst, or artificial intelligence should be developed that can detect misleading figure manipulations and similarities between papers. Secondly, on a wider scale, national and international scientific policy must clamp down on fraudulent publications. Furthermore, scientists should be encouraged to do their own post-publication peer-review, just as Bik does, to reinforce the culture of mutual criticism which the scientific community strives to have.
Despite these problems, Bik stresses that science is still good at its core. ‘Don't get fooled into thinking that science is broken’, she says on Twitter. ‘Always ask critical questions. If someone claims that vaccines kill more lives than save lives, don't just shrug or walk away. Teach, convince, give evidence. Be a beacon of knowledge in your environment’
Liam Ives is a 1st year PhD student in Material Science and Metallurgy at Selwyn College. Artwork by Erin Slatery
Navigating the Next Step
Susannah McLaren and Anna Yakovleva discuss their experiences as in2science mentors
At the beginning of our final year as PhD students, we sat down for a mid-experiment Chelsea bun break at Cambridge’s iconic Fitzbillies to discuss our time volunteering as mentors on the in2science UK scheme. The programme pairs up secondary school students from underrepresented backgrounds with mentors from research labs to provide an insight into what STEM research is like. Intriguingly, we found many similarities in the challenges facing us in our final stages of the PhD and those of our students, thinking of the first steps along their career paths.
Our motivation to take part in the in2science UK scheme stemmed from our experiences of pursuing lab summer projects as undergraduates, which ultimately influenced our decision to embark on PhDs. For us, those experiences gave us the information we needed to make informed decisions to follow a research-focussed path. We felt it was important that similar opportunities to the ones we had were available to students in the process of deciding their next steps.
Now coming to the end of our PhDs, we realise that there is uncertainty at all stages along a career path, making support and mentorship just as important at later career stages. It is crucial as a community that we increase our efforts in supporting the next generation by learning from our mistakes and making sure the difficulties we faced aren’t passed on.
For us, taking part in the in2science UK scheme provided many benefits. The most rewarding part was seeing the enthusiasm of our students when they discovered the beauty of transparent zebrafish embryos, or the visualisation of fluorescently tagged proteins in cells. Seeing our work from a fresh perspective uncovered a lost appreciation for our research, and also reminded us that the science we get to do on a daily basis is a privilege.
We spoke to the founder of in2science UK , Dr. Rebecca McKelvey, about navigating your interests and making a difference at work. The former teacher and Head of Science at a school in East London, who founded the scheme upon a return to academia to pursue a PhD, was committed to addressing the problems she observed during her teaching position — inaccessibility to STEM research. Rebecca explains that 'as a member of the local community, I didn’t realise that the world of research existed, and I was amazed at how many smart and brilliant PhD students and researchers were at my doorstep'. Keen to put this brain power to use in training the next generation, and promoting social mobility and diversity in science, Dr. McKelvey set up the in2science UK scheme. Over the next four years of her PhD, in2science UK grew and adapted to involve more scientists and reach more students. The charity holds two aims for the future: 'To continue expansion of the programme nationally, and to ensure the programme is relevant and develops the skills that young people in the workplace need'. When it comes to addressing inequality, Dr. McKelvey explains that 'degrees from top universities, which are dominated by private school students, are a crucial step towards entering a top level profession'. One of the steps we should be taking in order to see improvement in the levels of inequality we see in research is to advocate and participate in increasing access to the highest ranking university education.
When asked to give some advice to researchers wanting to contribute, Dr. McKelvey said 'in addition to getting involved with in2science UK (...) finding ways to open your doors to the local community is a good place to start. I believe in getting young people in rather than researchers going out. It’s the research that’s inspiring, seeing is believing!'
Susannah McLaren is a PhD student studying developmental biology at King's College and Anna Yakovleva is a PhD student studying virology at Fitzwilliam College. Artwork by Susannah McLaren and Maria Yakovleva
![](https://assets.isu.pub/document-structure/200508081607-3270b81abab56d3b4fd0c471fc039ef9/v1/780815b08607ad7a69ae4cc0054406fa.jpg?width=720&quality=85%2C50)
The Student's Perspective
Students Aleena Paul, Matthew Kwok, and Autumn Goddard discuss their experience of the programme
Aleena and Matthew write: 'During the summer, we were lucky to have the opportunity to complete a 2-week placement at the University of Cambridge via the in2science UK programme'.
Aleena and Matthew shadowed PhD students trying to understand how an embryo transforms from a single cell into an organism with complex body shape. They studied different model organisms (non-human species used in the lab to study biological processes) to gain insights into the mechanisms of embryonic development. They explain, 'We worked with zebrafish embryos, using gene expression to tag different cell types'.
Aleena writes of her experience: 'At university, I wish to study Medicine and although I gained hospital-based work experience, I wanted to understand the research aspect of biological sciences, outside of a school laboratory. The placement gave me an opportunity to delve deeper into the research I was reading about in my school textbooks. But more importantly, I got an insight into the life of a scientist and discovered that it wasn’t a strict, repetitive routine. In fact, every day there’s something new to learn and at the end, there’s the exciting prospect of contributing to the scientific community, something the world has never known about!'
Matthew explains: 'Having never been in a proper lab before I had no idea what our experience would be like. Our placement gave me the opportunity to experience the life of a researcher and see what a job in science is like. The skills I learnt will prove to be very useful as I aim to go to University to study Biochemistry. Most importantly I felt at home in the lab and can see myself as a PhD student in the future, something I did not consider prior to this placement'. 'We both thoroughly enjoyed our experience and managed to pick up essential lab skills as well as being able to work with more advanced equipment not accessible in school. Being in a lab also gave us the chance to see what science is like outside of school and allowed us to explore our scientific interests. We would highly recommend all students to partake in any summer schools or lab placements you can as they not only look excellent on your personal statement, but it will also provide a fresh perspective on science as a whole'.
Autumn wondered:
'How does a virus hijack its host, and how does a virus make the host ill?
I am curious about diseases and how we can best fight against them, so I wanted to learn more about the life of scientists. I was thrilled to start my placement at the University of Cambridge, where I discovered the field of noroviruses. I was shocked to learn that these tiny viruses are capable of shutting down hospital wards and cause many deaths each year among patients whose immune systems are not as strong, for example the elderly and young children. Yet when a patient is infected with norovirus, there’s not much a doctor can do. There are no cures or drugs available. I learned that to solve such a big problem we need to focus on the molecular level. The first step is to understand what the viral proteins do - which I tried out in the lab, particularly identifying proteins’ cellular localisation using the green fluorescent protein and western blotting. This experience has really shaped my understanding of the medical field, and how important scientific advancements are in developing new technologies'.
If you are interested in getting involved and hosting a student this summer, contact the team at in2scienceUK.org
![](https://assets.isu.pub/document-structure/200508081607-3270b81abab56d3b4fd0c471fc039ef9/v1/e072d68abcf56d4ced537874f5fc888d.jpg?width=720&quality=85%2C50)
Let’s Talk Baby Talk
Why is it that whenever we see a baby, our voices morph into a strange, overly exaggerated, almost comical version of our regular voices? It seems near impossible to speak to an infant as we would to anyone else. Globally, speech and language varies in a wonderfully diverse way, but in spite of this, communication has one thing in common — the way we speak to children. Recognised and documented since the 1960s, this ‘parentese’, or child-directed speech (CDS), is characterised by higher and broader pitch variations, coupled with a slower tempo and vowel exaggeration. It may be a common sight, but we rarely consider how speaking this way affects children’s development in their early years. In a recent study undertaken at the University of Washington, researchers have done just that. Families with children aged six to fourteen months old were randomly assigned to two groups where parents’ interactions with their children were monitored; however, only one group was actively coached to increase levels of CDS. Amongst other benefits, the children whose parents were coached were seen to have an average vocabulary almost double that of the control group. With this intriguing discovery in mind, we can rest assured that whenever we talk to infants in this way, however amusing it may look, we are giving them a head start in life. JL
![](https://assets.isu.pub/document-structure/200508081607-3270b81abab56d3b4fd0c471fc039ef9/v1/00f6a5d1b27691490c508848c8148f75.jpg?width=720&quality=85%2C50)
Genealogy Through Genitals
Across nature there are an abundance of species that are virtually indistinguishable from one another. This can be because they are closely related, or because a certain appearance has been selected for in separate species by evolutionary pressures. In some of these cases, we can use modern genetic techniques to determine species identity, however, this is not always feasible. In these cases, some of the old-school techniques can still be valuable. One of which being the careful examination of the genitals of individuals from each population. Genitals change very fast in evolutionary time as there is strong evolutionary pressure to prevent mating with similarly appearing species. This is because mating with a member of a different species won’t lead to the production of offspring, and is at best a waste of time and energy. What better way to ensure this can’t happen than to be physically incapable of the act? Due to this, genitals can often provide handy clues. Even in the 21st century this technique has revealed new insights, for example separating the Cryptic Wood White from the Wood White butterfly in 2001. With anthropogenic stressors driving species loss and biodiversity changes, an accurate knowledge of current species and their distributions is vital. Genital morphology is still an appreciable tool in our technical belt to accomplish this task. BM
Disrupting Language
Artwork by Rita Sasidharan
The near magical ability of each portion of the neocortex to encode one aspect of the full range of perceptual experiences is well known, but few recognise the unseen role of the broad bands of association fibers connecting the neocortex. Consider, for instance, their importance in language. Each word is but a label, linking its perception or generation to the contexts in which it might apply. Association fibers are uniquely suited for this, as they form numerous, yet localised connections to allow the faithful, long distance sharing of cortical activity, contextualising the information that they represent. Without association fibers, the brain’s capacity for language is diminished. Disrupt the arcuate fasciculus, and gone is the synchronisation between meaning and pronunciation, preventing fluent speech. Disrupt the inferior longitudinal fasciculus, and individual concepts are dissociated from their underlying form, colour, and shape, creating an inability to label reality in concrete or abstract terms. Finally, disrupt the occipitofrontal fasciculus, and you separate the abstract features that underlie language from their underlying somatosensory and syntactic representations, completely disrupting language. CS
![](https://assets.isu.pub/document-structure/200508081607-3270b81abab56d3b4fd0c471fc039ef9/v1/1151e5542ce35aa2f662f2b804c7cb9f.jpg?width=720&quality=85%2C50)
![](https://assets.isu.pub/document-structure/200508081607-3270b81abab56d3b4fd0c471fc039ef9/v1/8d1f785431e9c232e49cdae593895fc0.jpg?width=720&quality=85%2C50)