Odpady jądrowe – globalny raport Focus Europe

Page 57

WNWR 2019  —  4. RISKS FOR THE ENVIRONMENT AND HUMAN HEALTH

57

4.7 SUMMARY Nuclear waste constitutes a health hazard for several reasons. First are the reported health impacts from routine gaseous and liquid waste emissions from nuclear facilities. Second are the very large global collective doses from nuclear reprocessing. And third is the unsatisfactory and unstable condition of much of the nuclear waste already created. High-level waste (HLW) in the form of spent nuclear fuel and vitrified waste from reprocessing contains more than 90 percent of the radioactivity in nuclear waste. However, there is no fully operational HLW final disposal site in the world. The continued practise of storing spent nuclear fuel for long periods in pools at most nuclear power plants worldwide constitutes a major risk to the public and to the environment. Spent nuclear fuel contains most of the radioactivity in the world’s nuclear waste, and consists of fission and activation products. Estimates of the impacts of an operational HLW disposal remain speculative, but HLW still poses key questions of intergenerational liability and justice. The very long time-frames involved—the half life of Pu-239 is over 24,000 years—remains the single most important factor distinguishing nuclear waste from other kinds of waste. Reprocessing of nuclear fuel creates more accessible forms of highly dangerous radioactive wastes, proliferation problems, high exposures to workers and the public, and radioactive contamination of the air and seas. Only few countries do publish information, for example, on nuclide inventories in wastes. Such data collection and dissemination are primarily the responsibility of national governments. The data is needed to properly assess risks from nuclear waste and develop hazard rankings which tie observed health effects to exposures. So far, no comprehensive hazard scheme exists for the radionuclides in nuclear waste. Risks may be derived from epidemiological studies, but the few that exist are of limited quality. Some studies suggest increased cancer rates, for example, but are individually too small to give statistically significant results. Meta-analyses could combine smaller studies to generate larger datasets which do produce statistically significant findings. However, meta-analyses on nuclear waste are notable for their virtual absence. The result is that many small studies continue to be criticized for their lack of statistical significance. Finally, in order to assess risks, it is also necessary to have accurate doses, but these are often not measured in epidemiology studies. Even if they do exist they can often be unreliable due to the large uncertainties which surround them.


Turn static files into dynamic content formats.

Create a flipbook

Articles inside

Quantities of waste

2hr
pages 97-148

Summary

1min
page 94

Costs and financing

2min
page 93

Waste management policies and facilities

2min
page 92

Financing schemes for interim storage

2min
page 84

Integrated financing schemes

2min
page 87

6.4 Summary

5min
pages 88-89

Financing schemes for disposal

6min
pages 85-86

Quantities of waste

2min
page 91

Decommissioning costs

6min
pages 80-81

Accumulation of the funds

3min
page 78

Overview and nature of the funds

2min
page 77

5.5 Summary

2min
page 75

Extended storage

4min
pages 73-74

Deep borehole disposal

3min
page 70

LILW-repositories

3min
page 67

Host rocks

2min
page 66

5.1 Historical background

16min
pages 58-62

5.2 The context of nuclear waste management

5min
pages 63-64

4.7 Summary

2min
page 57

4.5 Risks from the reprocessing of spent nuclear fuel

5min
pages 53-54

Risks to nuclear workers

3min
page 51

Uranium mine tailings

3min
page 49

Health risks from exposures to uranium

3min
page 47

4.1 Radiation risks of nuclear waste

2min
page 45

Uranium mining

3min
page 48

4.2 Risks from uranium mining, mine tailings, enrichment, and fuel fabrication

2min
page 46

3.4 Summary

4min
pages 43-44

Decommissioning waste

2min
page 34

Uranium mining, milling, processing and fuel fabrication

1min
page 22

Executive summary

28min
pages 11-20

Operational waste

2min
page 32

2.4 Summary

2min
page 30

2.3.1 The IAEA classification

5min
pages 25-26

2.1 Types of waste: the nuclear fuel chain

2min
page 21

Foreword

5min
pages 3-4

Key Insights

2min
pages 9-10
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.