Odpady jądrowe – globalny raport Focus Europe

Page 88

WNWR 2019  — 6. COSTS AND FINANCING

88

TABLE 8: Integrated funding systems for decommissioning and waste management in Sweden, Switzerland, and the UK as of December 2018

SWEDEN

SWITZERLAND

UK*

FINANCING SCHEME

one external segregated and restricted fund

two external segregated funds (for waste management and for decommissioning)

one external segregated and restricted fund

ACCUMULATION

fee on electricity price (set individually for each plant)

payment by operator

payment by operator

TOTAL COST ESTIMATES

US$ 10.7-11.8 billion

US$ 24.6 billion***

US$ 26.5 billion**

SET ASIDE FUNDS, (IN % OF COST ESTIMATE)

US$ 7.2 billion**** (61-67%)

US$ 7.39 billion (30%)

US$ 12.1 billion (46%)

Source: Notes:

Own depiction. *EDF Energy reactors **as of 2018 ***Estimated total costs for a 50-year operating period as of 2019 ****as of 2017

6.4 SUMMARY Nearly every government claims to apply the polluter-pays-principle, which makes operators liable for the costs of managing, storing, and disposing of nuclear waste. In reality, however, governments fail to apply the polluter-pays-principle consistently. Most countries enforce it only on decommissioning, although there are some cases where the government takes over the liability for decommissioning (for example, for the reactors in former East Germany). Bulgaria, Lithuania, and the Slovak Republic receive EU support for decommissioning in exchange for having closed their older Soviet-era nuclear power plants. Most countries do not enforce the polluter-pays-principle for the disposal costs of nuclear waste. For this, national authorities more or less end up assuming liability as well as the responsibilities for longterm waste management and disposal. The operator is, however, required to contribute to financing the long-term costs. Even in countries in which the polluter-pays-principle is a legal requirement, it is applied incompletely. For instance, a nuclear power plant operator will not be held financially liable for any problems arising once a final disposal facility is closed; this is the case for the German Asse II disposal facility, where the retrieval of large amounts of waste has to be paid for by taxpayers. Governments fail to properly estimate the costs for decommissioning, storage, and disposal of nuclear waste. All cost estimates have underlying uncertainties due to long time-scales, cost increases, and estimated discounting (fund accumulation) rates. A major reason for the uncertainty is the lack of experience in decommissioning and waste disposal projects in particular. Only three countries, the US, Germany and Japan, have completed decommissioning projects including full dismantling and thus generated data. As of mid-2019, of 181 closed power reactors in the world, only 19 had been fully decommissioned, of which only 10 to “green field”. But even these limited experiences show a wide range of uncertainty, up to a factor of five. In the US, decommissioning costs varied between reactors from US$280/ kW to US$1,500/kW. In Germany, one reactor was decommissioned for US$1,900/kW, another one for US$10,500/kW. Many governments base their cost estimates on outdated data. Many countries reviewed here such as France, Germany, and the US base their estimates on studies from the 1970s and 1980s, rather than on the few existing real-data cases. Using outdated data, in most cases drawn up by operators, industry, or state agencies, likely leads to low-cost estimates and overly optimistic conclusions.


Turn static files into dynamic content formats.

Create a flipbook

Articles inside

Quantities of waste

2hr
pages 97-148

Summary

1min
page 94

Costs and financing

2min
page 93

Waste management policies and facilities

2min
page 92

Financing schemes for interim storage

2min
page 84

Integrated financing schemes

2min
page 87

6.4 Summary

5min
pages 88-89

Financing schemes for disposal

6min
pages 85-86

Quantities of waste

2min
page 91

Decommissioning costs

6min
pages 80-81

Accumulation of the funds

3min
page 78

Overview and nature of the funds

2min
page 77

5.5 Summary

2min
page 75

Extended storage

4min
pages 73-74

Deep borehole disposal

3min
page 70

LILW-repositories

3min
page 67

Host rocks

2min
page 66

5.1 Historical background

16min
pages 58-62

5.2 The context of nuclear waste management

5min
pages 63-64

4.7 Summary

2min
page 57

4.5 Risks from the reprocessing of spent nuclear fuel

5min
pages 53-54

Risks to nuclear workers

3min
page 51

Uranium mine tailings

3min
page 49

Health risks from exposures to uranium

3min
page 47

4.1 Radiation risks of nuclear waste

2min
page 45

Uranium mining

3min
page 48

4.2 Risks from uranium mining, mine tailings, enrichment, and fuel fabrication

2min
page 46

3.4 Summary

4min
pages 43-44

Decommissioning waste

2min
page 34

Uranium mining, milling, processing and fuel fabrication

1min
page 22

Executive summary

28min
pages 11-20

Operational waste

2min
page 32

2.4 Summary

2min
page 30

2.3.1 The IAEA classification

5min
pages 25-26

2.1 Types of waste: the nuclear fuel chain

2min
page 21

Foreword

5min
pages 3-4

Key Insights

2min
pages 9-10
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.