OSU Research Matters 2021

Page 24

FACULT Y AUTHORED STORY FROM THE CONVERSATION

How gene editing a person’s brain cells could be used to curb the opioid epidemic

E

ven as the COVID-19 pandemic cripples the economy and kills hundreds of people each day, there is another epidemic that continues to kill tens of thousands of people each year through opioid drug overdose. Opioid analgesic drugs, like morphine and oxycodone, are the classic double-edged swords. They are the very best drugs to stop severe pain but also the class of drugs most likely to kill the person taking them. In a recent journal article, I outlined how a combination of state-of-the-art molecular techniques, such as CRISPR gene editing and brain microinjection methods, could be used to blunt one edge of the sword and make opioid drugs safer. I am a pharmacologist interested in the way opioid drugs such as morphine and fentanyl can blunt pain. I became fascinated in biology at the time when endorphins — natural opioids made by our bodies — were discovered. I have been intrigued by the way opioid drugs work and their targets in the brain, the opioid receptors, for the last 30 years. In my paper, I propose a way to prevent opioid overdoses by modifying an opioid user’s brain cells using advanced technology. OPIOID RECEPTORS STOP BREATHING Opioids kill by stopping a person from breathing (respiratory depression). They do so by acting on a specific set of respiratory nerves, or neurons, found in the lower part of the brain that contain opioid receptors. Opioid receptors are proteins that bind morphine, heroin and other opioid drugs. The binding of an opioid to its receptor triggers a reaction in neurons that reduces their activity. Opioid receptors on pain neurons mediate the pain-killing, or analgesic, effects of opioids. When opioids bind to opioid receptors on respiratory neurons, they slow breathing or, in the case of an opioid overdose, stop it entirely. Respiratory neurons are located in the brainstem, the tail-end part of the brain that continues into the spine as the spinal cord. Animal studies show that opioid receptors on respiratory neurons are responsible for opioid-induced respiratory depression — the cause of opioid overdose. Genetically altered mice born without

22 O S U R E S E A R C H M AT T E R S

opioid receptors do not die from large doses of morphine unlike mice with these receptors present. Unlike laboratory mice, humans cannot be altered when embryos to remove all opioid receptors from the brain and elsewhere. Nor would it be a good idea. Humans need opioid receptors to serve as the targets for our natural opioid substances, the endorphins, which are released into the brain during times of high stress and pain. Also, a total opioid receptor knockout in humans would leave that person unresponsive to the beneficial pain-killing effects of opioids. In my journal article, I argue that what is needed is a selective receptor removal of the opioid receptors on respiratory neurons. Having reviewed the available technology, I believe this can be done by combining CRISPR gene editing and a new neurosurgical microinjection technique. CRISPR TO THE RESCUE: DESTROYING OPIOID RECEPTORS CRISPR, which is an acronym for clustered regularly interspaced short palindromic repeats, is a gene editing method that was discovered in the genome of bacteria. Bacteria get infected by viruses too, and CRISPR is a strategy that bacteria evolved to cut up the viral genes and kill invading pathogens. The CRISPR method allows researchers to target specific genes expressed in cell lines, tissues, or whole organisms, to be cut-up and removed — knocked out — or otherwise altered. There is a commercially available CRISPR kit which knocks out human opioid receptors produced in cells grown in cell cultures in the lab. While this CRISPR kit is formulated for in-vitro use, similar conditional opioid receptor knockout techniques have been demonstrated in live mice. To knockout opioid receptors in human respiratory neurons, a sterile solution containing CRISPR gene-editing molecules would be prepared in the laboratory. Besides the gene-editing components, the solution contains chemical reagents that allow the gene-editing machinery to enter the respiratory neurons and make their way into the nucleus and into the neuron’s genome.

STORY CRAIG W. STEVENS | PHOTO iSTOCK PHOTOS


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.