Late Paleozoic subduction and exhumation of Cambro-Ordovician passive marginand arc rocks

Page 1

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright


Author's personal copy Tectonophysics 495 (2010) 213–229

Contents lists available at ScienceDirect

Tectonophysics j o u r n a l h o m e p a g e : w w w. e l s ev i e r. c o m / l o c a t e / t e c t o

Late Paleozoic subduction and exhumation of Cambro-Ordovician passive margin and arc rocks in the northern Acatlán Complex, southern Mexico: Geochronological constraints J. Duncan Keppie a,⁎, R.D. Nance b, M.A. Ramos-Arias a, J.K.W. Lee c, J. Dostal d, A. Ortega-Rivera e, J.B. Murphy f a

Depto. de Geología Regional, Instituto de Geología, Universidad Nacional Autónoma de México, 04510 México, D.F., Mexico Dept. of Geological Sciences, 316 Clippinger Laboratories, Ohio University, Athens, OH 45701, USA c Dept. of Geology, Queens University, Kingston, Ontario, Canada, K7L3NG d Dept. of Geology, St. Mary's University, Halifax, Nova Scotia, Canada, B3H 3C3 e Instituto de Geología, Universidad Nacional Autónoma de México, Estación Regional del Noroeste, Apartado Postal 1039, Hermosillo, Sonora 83000, Mexico f Dept. of Earth Sciences, St. Francis Xavier U, Antigonish, Nova Scotia, Canada, B2G 2W5 b

a r t i c l e

i n f o

Article history: Received 10 June 2010 Received in revised form 14 September 2010 Accepted 20 September 2010 Available online 24 September 2010 Keywords: Blueschist Acatlán Complex Mexico Mississippian Paleogeography Pangea

a b s t r a c t The origin and age of high pressure (HP) rocks are crucial for paleogeographic reconstructions because they either define an oceanic suture or an extrusion zone within the upper plate. HP rocks in the San Miguel Las Minas area in the northern part of the Acatlán Complex, southern Mexico have been inferred to be of early Paleozoic age and to mark oceanic sutures. However, blueschists in the northern part of the complex have yielded Mississippian 40Ar/39Ar plateau ages of 344 ± 5 Ma for glaucophane and 338 ± 3 Ma and 337 ± 2 Ma for muscovite. These ages are slightly younger than recently published ages: a U–Pb zircon age of 353 ± 1 Ma from associated eclogite, and a 347 ± 3 Ma muscovite age from the tectonically overlying, greenschist facies Las Minas Unit. Taken together, these data indicate rapid cooling between 700° and 340 °C in ca. 17 Myr. On the other hand, associated Ordovician Anacahuite Amphibolite cooled through ca. 500 °C at 299 ± 6 Ma (40Ar/ 39 Ar on hornblende) suggesting a second, Permian phase of exhumation. Protoliths of the high grade rocks include Cambrian–Ordovician, rift-passive margin, psammites, pelites, and tholeiitic dykes, an Ordovician mafic intrusion (Anacahuite Amphibolite dated at 470 ± 10 Ma: U–Pb zircon) and megacrystic granite (dated at 492 ± 12 Ma: U–Pb zircon), and arc-related mafic rocks of unknown age. These rocks are interpreted to have been part of the upper plate rocks that was removed by subduction erosion and taken to depths between 35 and 55 km where they underwent blueschist–eclogite facies metamorphism. This was followed by rapid extrusion along a channel bounded by an easterly dipping, Mississippian, listric normal shear zone, and a thrust modified by a Permian dextral fault. Rocks above and below the extrusion zone are mainly CambroOrdovician rift-passive margin units, but a small vestige of the arc is preserved as dikes cutting rocks lying unconformably beneath the fossiliferous latest Devonian–Lower Permian Patlanoaya Group. Since faunal data indicate that Pangea had begun amalgamation by the Mississippian, at which time the Acatlán Complex lay 1500–2000 km south of the Ouachita collisional orogen between Gondwana and Laurentia, it is inferred that subduction and extrusion of the high pressure rocks occurred on the active western margin of Pangea. © 2010 Elsevier B.V. All rights reserved.

1. Introduction Understanding the origin of high pressure (HP) rocks in the Acatlán Complex of southern Mexico is crucial to Paleozoic paleogeographic reconstructions because they could represent either oceanic sutures or an extrusion zone within the complex (Keppie et al., 2010). There is currently much debate on age and tectonic significance of the HP metamorphism, with ages of HP metamorphism variously assigned to the Ordovician, Silurian and Carboniferous. This contro-

⁎ Corresponding author. Tel.: + 52 555 622 4290; fax: + 52 555 622 4289. E-mail address: duncan@servidor.unam.mx (J.D. Keppie). 0040-1951/$ – see front matter © 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.tecto.2010.09.019

versy has led to the assignment of the HP rocks to a variety of oceans including the Iapetus, Rheic and paleo-Pacific (Ortega-Gutiérrez et al., 1999; Talavera-Mendoza et al., 2005; Nance et al., 2006; Vega-Granillo et al., 2007; Keppie et al., 2008a; Vega-Granillo et al., 2009a,b; D.F. Keppie et al., 2009; J.D. Keppie et al., 2009). Ortega-Gutiérrez et al. (1999 and references therein) proposed that the HP rocks occurred in a nappe that was thrust eastwards over low-grade rocks during the Ordovician. This interpretation was based on the inference that earliest Silurian, megacrystic granitoids associated with the eclogites were the result of decompression melting following the HP metamorphism. The lower intercept, U–Pb zircon age of 440 ± 14 Ma reported for these granitoids by Ortega-Gutiérrez et al. (1999) has since been re-dated at 471 ± 6 Ma (concordant U–Pb analysis:


Author's personal copy 214

J.D. Keppie et al. / Tectonophysics 495 (2010) 213–229

Sánchez-Zavala et al., 2004), implying a pre-Late Ordovician age for the HP metamorphism. This conclusion was apparently confirmed by Talavera-Mendoza et al. (2005) and Vega-Granillo et al. (2007), who proposed an Early Ordovician age (490–477 Ma) for the HP metamorphism at Mimilulco, also in the northern Acatlán Complex (Fig. 1), based on the inference that a 461 ± 9 Ma granitoid post-dates the HP metamorphism. An older age limit for the HP metamorphism was provided by the 691 ± 51 Ma age of the youngest detrital zircon cluster in the associated metasedimentary rocks of the informal El

Rodeo “formation/suite” (Talavera-Mendoza et al., 2005; VegaGranillo et al., 2007). Vega-Granillo et al. (2007) suggested a further two periods of HP metamorphism: (i) Late Ordovician–Early Silurian (ca. 458–443 Ma) at Ixcamilpa (Fig. 1), and (ii) Late Silurian (419– 418 Ma) at Santa Cruz Organal. A 430 ± 10 Ma 40Ar/39Ar, amphibole age at Santa Cruz Organal was inferred to closely post-date the 458–443 Ma phase of HP metamorphism (Vega-Granillo et al., 2007, 2009a,b), however these data are highly discordant, probably the result of excess argon (D.F. Keppie et al., 2009; J.D. Keppie et al., 2009).

(a)

(b)

Fig. 1. Maps of Mexico showing: (a) terranes (modified after Keppie, 2004), and (b) a geological map of the Acatlán Complex (modified after Ortega-Gutiérrez et al., 1999; Keppie et al., 2008a).


Author's personal copy J.D. Keppie et al. / Tectonophysics 495 (2010) 213–229

215

Fig. 2. Geological map of the San Miguel Las Minas area (modified from Barley, 2006; Ramos-Arias et al., 2008).

On the other hand, Elías-Herrera et al. (2007) reported other ages from the Mimilulco area: (a) a 353 ± 1 Ma U–Pb zircon age from retrogressed eclogite; (b) a 342 ± 4 Ma 40Ar/39Ar age for glaucophane; and (c) a 342 ± 3 Ma 40Ar/39Ar age for phengite. These data suggest that the HP metamorphism in the northern part of the Acatlán Complex is Mississippian. However, the data have only been published in abstract form. The latter ages are consistent with a concordant U–Pb zircon age of 346 ± 3 Ma from eclogite at San Francisco de Asis (Middleton et al., 2007; Fig. 1) that is inferred to date the HP metamorphism as Mississippian. Associated migmatites, interpreted as decompression melts, yielded ages between ca. 347 and 330 Ma (U–Pb SHRIMP data). Since this locality lies in the same N–S belt of HP rocks as both Mimilulco and Santa Cruz Organal, it calls into question the Early Paleozoic ages inferred for the HP metamorphism. Likewise, RamosArias et al. (2008) have shown that the HP rocks at San Miguel Las Minas (Fig. 1) lie structurally beneath low-grade rocks that are deformed by Mississippian extensional fabrics, calling into question both the age and thrust geometry of the HP rocks. Uncertainty in their age and tectonic significance has led to a wide variety of models that attribute the HP rocks to convergent zones in the Iapetus (e.g. Ortega-Gutiérrez et al., 1999; Talavera-Mendoza et al., 2005; Vega-Granillo et al., 2007, 2009b), Rheic (Nance et al.,

2006, 2007), or paleo-Pacific (Keppie et al., 2008a) oceans. Resolution of this controversy has first-order implications for Paleozoic paleocontinental reconstructions before and after the formation of Pangea. To clarify this uncertainty, we report new geochronological and geochemical data from blueschists and associated rocks west of San Miguel Las Minas (Fig. 2: Barley, 2006).

Fig. 3. Pressure (P)–Temperature (T) graph showing the P–T paths with ages for the HP rocks in the northern part of the Acatlán Complex. Underlined numbers are U–Pb zircon ages, others are 40Ar/39Ar ages. For sources, see text.


Ar

40

Laser power Isotope volumes

(Watts)

39

Ar

0.237±0.003 0.008±0.000 1.041±0.005 0.034±0.000 9.400±0.024 0.313±0.002 21.249±0.094 0.730±0.004 8.115±0.036 0.276±0.002 3.313±0.014 0.111±0.001 2.278±0.009 0.077±0.001 1.765±0.007 0.058±0.001 1.740±0.012 0.058±0.001 2.465±0.014 0.082±0.001 4.069±0.032 0.136±0.002 55.473±0.112 1.870±0.006 Isotope production ratios (40Ar/39Ar)K = 0.0302 (37Ar/39Ar)Ca = 1416.4306 (36Ar/39Ar)Ca = 0.3952 Ca/K = 1.83 × (37ArCa/39ArK) J = 0.006998 ± 0.000054 Volume 39ArK = 18.7 Integrated date = 336.22 ± 2.69 Plateau date = 343.19 ± 3.27 %39ArK for PA = 27.65 Isotope correlation date = 348.05 ± 25.49 Initial 40Ar/36Ar ratio = − 2337.66 ± − 7450.64 MSWD = 0.34 %39ArK for CA = 27.65

Ar

0.000±0.000 0.001±0.000 0.004±0.000 0.010±0.001 0.004±0.000 0.001±0.000 0.001±0.000 0.001±0.000 0.001±0.000 0.001±0.000 0.002±0.000 0.024±0.001

0.003±0.000 0.012±0.000 0.002±0.000 0.001±0.000 0.002±0.000 0.001±0.000 0.021±0.001

38

0.001±0.000 0.001±0.000 0.001±0.000 0.002±0.000 0.003±0.000 0.002±0.000 0.001±0.000 0.001±0.000 0.002±0.000 0.001±0.000 0.001±0.000 0.240±0.001

0.003±0.000 0.019±0.001 0.004±0.000 0.006±0.000 0.010±0.000 0.007±0.000 1.638±0.001

Ar

37

0.000±0.000 0.001±0.000 0.001±0.000 0.001±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.002±0.000

0.002±0.000 0.002±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.004±0.000

Ar

36

Ar

39

0.41 1.83 16.64 38.8 14.67 5.88 4.07 3.07 3.06 4.37 7.2 100

34.09 39.12 5.15 6.31 8.85 6.47 100

%40Ar atm f

0.007 27 0.031 14.06 0.05 16.23 0.02 11.31 0.02 3.29 0.02 3.93 0.025

Cl/K

0 0.003 23.62 0 0 9.36 0.037 0 2.75 0.1 0 0.91 0.6 0 0.7 0.51 −0 0.54 0.227 −0 0.16 0.239 −0 0.54 0.876 0 −0.13 0.488 0 −0.07 0.099 0 −0.01 0.235 0

2.396 16.503 19.917 30.139 34.851 33.44 15.403

Ca/K

21.74±3.61 27.09±1.00 29.29±0.23 28.97±0.22 29.29±0.24 29.80±0.40 29.63±0.49 30.22±0.56 30.09±0.67 29.93±0.53 30.06±0.48 29.94±0.06

0.000915±0.000068 0.000478±0.000107 0.000552±0.000388 0.000384±0.000365 0.000113±0.000281 0.000134±0.000380

Ar/40Ar

Ar/40Ar

0.027984±0.000279 0.029793±0.000410 0.029004±0.000998 0.031334±0.001103 0.031500±0.000838 0.030341±0.001036

39

Isotope correlation data 36

0.199 0.515 0.392 0.488 0.527 0.55

r

255.5±39.6 0.000800±0.000494 0.035115±0.001222 0.283 313.2±10.6 0.000317±0.000113 0.033452±0.000484 0.094 336.4±2.4 0.000093±0.000013 0.033203±0.000234 0.035 333.0±2.4 0.000031±0.000009 0.034204±0.000252 0.043 336.4±2.6 0.000024±0.000017 0.033903±0.000251 0.074 341.7±4.1 0.000018±0.000034 0.033377±0.000338 0.068 339.9±5.1 0.000005±0.000053 0.033694±0.000374 0.14 346.1±5.9 0.000018±0.000058 0.032915±0.000352 0.079 344.7±7.0 −0.000004±0.000065 0.033282±0.000515 0.09 343.0±5.6 −0.000002±0.000045 0.033441±0.000474 0.077 344.5±5.0 −0.000001±0.000028 0.033268±0.000472 0.025 336.2±1.3

302.5±7.1 331.8±6.4 332.1±33.4 326.1±24.9 351.2±18.1 361.2±25.7 325.1±2.6

Ar*/39ArK Age

26.08±0.66 28.84±0.61 28.88±3.18 28.30±2.36 30.70±1.74 31.66±2.49 28.78±0.23

40

216

AOR-1036: GSV 6 Ms Wr hp 1 0.75 2* 1.25 3* 1.5 4* 2 5* 2.5 6* 3 7* 3.5 8* 4 9* 5 10* 6 11* 7 Total/Average Footnotes:

AOR-1035: LMV-12 Wr 80/100 1 0.75 2.401±0.009 0.067±0.001 2* 1.25 2.573±0.010 0.077±0.001 3* 1.5 0.362±0.003 0.010±0.000 4* 2 0.407±0.003 0.012±0.000 5 3 0.560±0.002 0.017±0.000 6 4 0.429±0.003 0.013±0.000 Total/Average 6.633±0.015 0.196±0.001 Footnotes: Isotope production ratios (40Ar/39Ar)K = 0.0302 (37Ar/39Ar)Ca = 1416.4306 (36Ar/39Ar)Ca = 0.3952 Ca/K = 1.83 × (37ArCa/39ArK) J = 0.007000 ± 0.000052 Volume 39ArK = 1.96 Integrated date = 325.08 ± 5.26 Plateau date = 331.09 ± 7.09 %39ArK for PA = 50.59 Isotope correlation date = ERR Initial 40Ar/36Ar ratio = ERR MSWD = 0 %39ArK for CA = 0

Steps

Table 1 40 Ar/39Ar analyses of glaucophane and muscovite from HP rocks of the Piaxtla Suite in the northern Acatlán Complex, southern Mexico.

Author's personal copy J.D. Keppie et al. / Tectonophysics 495 (2010) 213–229


(Watts)

AOR-1038: GSS#7 Ms hp 1 1 2* 1.25 3* 1.5 4* 2 5* 2.5 6* 3 7* 3.5 8* 4 9* 5 10* 6 11* 7 Total/Average Footnotes:

Ar

39

4.841±0.015 0.177±0.001 4.079±0.019 0.140±0.001 20.981±0.059 0.703±0.004 50.179±0.177 1.676±0.009 17.897±0.060 0.608±0.003 4.203±0.018 0.142±0.001 3.317±0.007 0.111±0.001 4.041±0.013 0.135±0.001 6.472±0.023 0.219±0.002 7.003±0.038 0.234±0.002 7.165±0.024 0.240±0.001 130.003±0.206 4.358±0.011 Isotope production ratios (40Ar/39Ar)K = 0.0302 (37Ar/39Ar)Ca = 1416.4306 (36Ar/39Ar)Ca = 0.3952 Ca/K = 1.83 × (37ArCa/39ArK) J = 0.006993 ± 0.000054 Volume 39ArK = 43.58 Integrated date = 333.02 ± 2.58 Plateau date = 337 ± 2 %39ArK for PA = 21.4 Isotope correlation date = 350.40 ± 7.03 Initial 40Ar/36Ar ratio = − 629.94 ± − 441.29 MSWD = 5.9 %39ArK for CA = 38.52

1.502±0.008 0.018±0.000 2.549±0.011 0.048±0.001 3.927±0.015 0.124±0.001 1.613±0.005 0.052±0.001 0.438±0.003 0.013±0.000 0.222±0.002 0.007±0.000 0.173±0.002 0.005±0.000 0.285±0.002 0.009±0.000 0.347±0.002 0.011±0.000 10.912±0.022 0.284±0.002 Isotope production ratios (40Ar/39Ar)K = 0.0302 (37Ar/39Ar)Ca = 1416.4306 (36Ar/39Ar)Ca = 0.3952 Ca/K = 1.83 × (37ArCa/39ArK) J = 0.006995 ± 0.000054 Volume 39ArK = 2.84 Integrated date = 339.06 ± 4.64 Plateau date = 344.32 ± 4.53 %39ArK for PA = 93.65 Isotope correlation date = 340.22 ± 10.83 Initial 40Ar/36Ar ratio = 330.67 ± 108.87 MSWD = 0.67 %39ArK for CA = 93.65

Ar

40

Laser power Isotope volumes

AOR-1037: GSV 6 Hb hp 1 0.75 2* 2 3* 2.5 4* 3 5* 3.5 6* 4 7* 5 8* 6 9* 7 Total/Average Footnotes:

Steps

Table 1 (continued)

Ar

0.004±0.000 0.002±0.000 0.010±0.001 0.022±0.001 0.008±0.000 0.002±0.000 0.001±0.000 0.002±0.000 0.003±0.000 0.003±0.000 0.004±0.000 0.059±0.002

0.007±0.000 0.008±0.000 0.007±0.000 0.002±0.000 0.001±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.001±0.000 0.025±0.001

38

0.001±0.000 0.001±0.000 0.001±0.000 0.001±0.001 0.001±0.000 0.001±0.000 0.001±0.000 0.001±0.000 0.001±0.000 0.001±0.000 0.001±0.000 0.045±0.001

0.001±0.000 0.004±0.000 0.020±0.001 0.011±0.000 0.006±0.000 0.002±0.000 0.001±0.000 0.002±0.000 0.003±0.000 1.620±0.001

Ar

37

0.003±0.000 0.001±0.000 0.002±0.000 0.004±0.000 0.001±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.001±0.000 0.012±0.001

0.004±0.000 0.004±0.000 0.001±0.000 0.001±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.009±0.000

Ar

36

0.068 0.078 0.021 0.008 0.006 0.014 0 0.039 0.043 0.017 0.034 0.019

1.662 4.687 10.46 13.358 28.023 12.016 9.719 12.962 15.137 10.494

Ca/K

0.002 0 0 0 0 0 0 0 0 0 0 0

0.072 0.03 0.009 0.007 0.011 0.005 0.002 0.008 0.011 0.017

Cl/K

14.01 6.08 3.15 2.45 2.02 1.74 1.46 1.17 0.83 0.89 1.14

73.12 41.59 6.12 4.86 9.41 10.28 10.47 0.87 4.43

Ar

39

4.03 3.19 16.03 38.24 13.87 3.24 2.52 3.07 5 5.34 5.47 100

6.35 16.91 43.3 18.09 4.45 2.38 1.79 3.04 3.71 100

% Ar atm f

40

23.62±0.30 27.44±0.34 29.04±0.22 29.33±0.21 28.95±0.19 29.08±0.33 29.55±0.31 29.73±0.31 29.35±0.26 29.75±0.30 29.61±0.24 29.59±0.05

275.8±3.2 316.7±3.6 333.5±2.3 336.6±2.2 332.6±2.0 334.0±3.4 338.9±3.3 340.7±3.2 336.8±2.7 340.9±3.1 339.5±2.5 333.0±1.3

260.0±27.6 352.7±11.3 343.5±4.2 340.8±6.8 350.0±21.1 317.0±35.7 319.9±52.4 354.0±33.1 346.3±24.4 339.1±2.3

Ar*/ ArK Age

39

22.16±2.53 30.87±1.09 29.99±0.40 29.73±0.66 30.61±2.03 27.46±3.37 27.73±4.95 30.99±3.19 30.25±2.35 30.06±0.19

40

0.000475±0.000027 0.000206±0.000029 0.000107±0.000013 0.000083±0.000009 0.000068±0.000011 0.000059±0.000024 0.000049±0.000032 0.000040±0.000027 0.000028±0.000017 0.000030±0.000015 0.000039±0.000014

0.002477±0.000151 0.001409±0.000091 0.000208±0.000055 0.000165±0.000104 0.000319±0.000306 0.000348±0.000515 0.000355±0.000663 0.000030±0.000434 0.000151±0.000343

Ar/40Ar

Ar/40Ar

0.036394±0.000321 0.034223±0.000316 0.033350±0.000222 0.033254±0.000221 0.033847±0.000202 0.033789±0.000321 0.033350±0.000232 0.033245±0.000273 0.033791±0.000274 0.033318±0.000307 0.033389±0.000237

0.012118±0.000388 0.018916±0.000320 0.031304±0.000335 0.032001±0.000461 0.029593±0.000913 0.032672±0.001363 0.032280±0.001663 0.031985±0.001218 0.031590±0.001024

39

Isotope correlation data 36

0.045 0.076 0.039 0.034 0.065 0.063 0.099 0.097 0.08 0.044 0.051

0.567 0.397 0.319 0.398 0.522 0.485 0.373 0.382 0.445

r

Author's personal copy J.D. Keppie et al. / Tectonophysics 495 (2010) 213–229 217


Author's personal copy 218

J.D. Keppie et al. / Tectonophysics 495 (2010) 213–229

2. Geological setting The Acatlán Complex (synonymous with the Mixteca Terrane) forms the largest exposed area of Paleozoic rocks in Mexico (Fig. 1). It is bounded along its eastern side by a Permian dextral shear zone, the Caltepec shear zone (Elias-Herrera and Ortega-Gutiérrez, 2002), east of which lies the ca. 1.0–1.3 Ga Oaxacan Complex (Keppie et al., 2003; Solari et al., 2003). That the Oaxacan Complex probably also underlies the Acatlán Complex is indicated by abundant ca. 1 Ga inherited zircons in Ordovician granitoids in the Acatlán Complex (TalaveraMendoza et al., 2005; Miller et al., 2007; Keppie et al., 2008a). To the south of the Acatlán Complex lies the Xolapa Complex that appears to represent the roots of a Cenozoic arc built upon an Acatlán–Oaxacan continental margin (Keppie, 2004 and references therein). To the west, the Acatlán Complex is thrust over Cretaceous limestones of the Morelos Platform that probably overlie the Acatlán Complex (Keppie et al., 2008a). The northern boundary of the Acatlán Complex is obscured by the Cenozoic Trans-Mexican Volcanic Belt. Recent multidisciplinary research has led to considerable revision and alternative models of the Paleozoic history of the Acatlán Complex (Keppie et al., 2008a, and references therein; OrtegaObregon et al., 2009). The revised model involves at least two tectonothermal events related to opening and closing of the Rheic Ocean followed by circum-Pacific tectonic events (Fig. 3): (i) Cambrian(?)–Ordovician deposition of rift-passive margin sedimentary rocks on the southern flank of the Rheic Ocean accompanied by intrusion by Ordovician bimodal tholeiites and megacrystic granitoids; (ii) Latest Devonian–Permian deposition of periarc, shallow marinecontinental rocks (Vachard et al., 2000), locally associated with tholeiitic magmatism, that was synchronous with: (a) Mississippian exhumation of HP subduction-related rocks (Middleton et al., 2007), (b) Permian S-vergent thrusting and dextral shearing on N–S shear zones (Malone et al., 2002), and (c) Permian arc magmatism (Keppie et al., 2004). The HP rocks at San Miguel Las Minas lie within the main N–S HP belt in the centre of the Acatlán Complex that is bounded on either side by poly-deformed, greenschist facies, psammite–pelite ± mafic rocks (Fig. 1). The HP rocks are generally assigned to the Piaxtla Suite (Ortega-Gutiérrez et al., 1999; Murphy et al., 2006; Middleton et al., 2007; Vega-Granillo et al., 2007, 2009b). The low-grade rocks have been assigned either to various informal units, such as the Cosoltepec formation (Ortega-Gutiérrez et al., 1999) and the El Rodeo “formation/suite” (Vega-Granillo et al., 2007), or to formal lithodemic units, such as the Las Minas Unit (Ramos-Arias et al., 2008). In the San Miguel Las Minas area, the poly-deformed, HP rocks are bounded by NNE-trending shear zones (Fig. 2). On the eastern side and south of the Tepetate Fault, the contact is an easterly dipping shear zone with down-dip kinematic indicators (Ramos-Arias et al., 2008). The earliest cleavage has been dated at 347 ± 3 Ma (40Ar/39Ar muscovite plateau age from the Las Minas Unit: Ramos-Arias et al., 2008). The Las Minas Unit is intruded by a leucogranite dike (sampled for geochronology—to be discussed below) that is deformed together with the metasedimentary rocks, and is unconformably overlain by the Otate Unit, which is intruded by the 461 ± 2 Ma Palo Liso granite (Miller et al., 2007; Ramos-Arias et al., 2008). The eastern margin of the Palo Liso granite intrudes the Mal Paso Unit, which is overlain by the Ojo de Agua Unit (both units sampled for detrital zircons—to be discussed below). The Ojo de Agua Unit is intruded by dioritic dikes and is unconformably overlain by the latest Devonian—Early Permian Patlanoaya Group (Ramos-Arias et al., 2008). The Las Minas, Otate, Mal Paso and Ojo de Agua units have yielded Neoproterozoic– Ordovician detrital zircons (Keppie et al., 2008b). To the north of the Tepetate normal fault, a NNE-trending listric normal shear zone

separates the HP rocks from the Anacahuite Amphibolite (Fig. 2): a felsic part of the Anacahuite Amphibolite was sampled for U–Pb geochronology. The western margin of the Anacahuite Amphibolite is cut by deformed leucocratic granitic dikes. The western margin of the HP rocks is a steeply dipping shear zone with subhorizontal slickensides and dextral kinematic indicators (Barley, 2006). The HP rocks are unconformably overlain by red beds of presumed Jurassic age that occur in a half graben within the HP rocks (Fig. 2). The HP Piaxtla rocks at San Miguel Las Minas consist of mica schist containing blueschist lenses, bands of amphibolite, and megacrystic granitoids, such as the San Miguel Las Minas granitoid (Barley, 2006). Several of these lithologies were sampled for U–Pb and 40Ar/39Ar geochronology (Fig. 2). The schists are composed of retrogressed garnets (and chlorite pseudomorphs after garnet), muscovite, and quartz. The blueschists are preserved in tectonic lenses that consist of calcic-plagioclase, glaucophane retrogressed to actinolite, lawsonite, garnet retrogressed to chlorite, epidote, muscovite, and quartz. The blueschist assemblage indicates peak temperatures and pressures of ca. 495 °C and ca. 11.5 kb (ca. 38 km depth)(Elias-Herrera et al., 2006), respectively (Fig. 3). On the other hand, the transitional blueschist to eclogite rocks reached ca. 550 °C and 13–13.5 kb (ca. 42 km depth)(Elias-Herrera et al., 2006). The amphibolites contain plagioclase, hornblende retrogressed to actinolite, epidote, chlorite, muscovite, and quartz. The granitoids contain orthoclase phenocrysts (partly replaced by sericite) set in a matrix of quartz, albite, orthoclase, with or without garnet, muscovite, chlorite, calcite veins, and accessory opaque minerals. The Neoproterozoic–Ordovician time of deposition of the Piaxtla Suite is constrained by the youngest detrital zircon and cross-cutting granitoids: (i) 691 ±51 Ma and 461 ± 9 Ma (leucogranite), respectively, at Mimilulco (Talavera-Mendoza et al., 2005); and (ii) 705 ± 8 Ma and ca. 470–420 Ma, respectively, at San Francisco de Asis (Murphy et al., 2006). These high grade rocks exhibit four phases of deformation (Barley, 2006): (i) a first foliation/lineation defined by aligned amphibole in the amphibolites, and aligned glaucophane and lawsonite in the blueschists, indicative of blueschist facies metamorphism; (ii) isoclinal folds accompanied by aligned growth of muscovite, actinolite, and chlorite developed under greenschist facies metamorphic conditions; (iii) a gently dipping, crenulation cleavage that is parallel to the axial planes of shallowly ENE–WNW plunging, tight-isoclinal folds formed under subgreenschist facies conditions; and (iv) NE–SW plunging, upright, chevron folds and kink bands. 3.

40

Ar/39Ar geochronology

Three samples of the HP Piaxtla Suite were collected for 40Ar/39Ar geochronology (Fig. 2). They are: (i) an amphibolite from which glaucophane and muscovite were separated for analysis (GSV 6: N 18 32.639″ W 098 21.441″), (ii) a garnet mica schist from which muscovite separate was separated (GSS 7: N 18 32.225″ W 098 19.984″), and (iii) a garnetiferous, amphibolitic mica schist from which a whole rock and muscovite separate were prepared (LMV 12: N 18 31.604″ W 098 21.209″). 3.1. Analytical methods These minerals were pre-treated and concentrated by standard techniques and later selected by handpicking under a binocular microscope from fractions that ranged in size from 40 to 60 mesh at the mineral separation laboratory at ERNO—Instituto de Geología, Universidad Nacional Autónoma de México, Hermosillo, Sonora, Mexico. Mineral separates were loaded into Al-foil packets and irradiated together with Hb3gr (1072 Ma) as a neutron-fluence monitor at the McMaster Nuclear Reactor (Hamilton, Ontario). 40Ar/ 39 Ar analyses were performed by standard laser step-heating techniques described in detail by Clark et al. (1998) at the


Author's personal copy J.D. Keppie et al. / Tectonophysics 495 (2010) 213–229

219

Muscovite from the same sample yielded a plateau age of 338 ± 3 Ma (MSWD = 5.6) for 98% of the 39Ar released (Fig. 4b, Table 1). A similar result was obtained from muscovite (0.1 × 0.02 mm in size) in the garnet mica schist (sample GSS 7), which gave a plateau age of 337 ± 2 Ma (MSWD = 5.9) for 93% of 39Ar released (Fig. 4c, Table 1). These data indicate cooling through ca. 470 °C for the glaucophane (Harrison et al., 1985), and ca. 340 °C for the muscovite (Hames and Bowring, 1994). Thus the data indicate rapid cooling through these temperatures between ca. 344 and 337 Ma. The muscovite (0.05 × 0.01 mm in size) from the garnetiferous schist (LMV-12) yielded a hump-shaped spectrum with apparent ages defining the hump (steps 3–4) yielding an integrated age of 327 ± 4 Ma (Fig. 4d, Table 1). The whole rock of the same sample yields a staircase-like spectrum with monotonically increasing ages, the upper five steps of which overlap at ca. 335 Ma (Fig. 4e, Table 1). These ages indicate cooling through ca. 320 °C at ca. 335 Ma.

Geochronology Research Laboratory of Queen's University, Kingston, Ontario, Canada. The data are given in Table 1 and plotted in Fig. 4. All data have been corrected for blanks, mass discrimination, and neutron-induced interferences. For the purpose of this paper, a plateau age is obtained when the apparent ages of at least three consecutive steps, comprising a minimum of 50% of the 39Ark released, agree within 2σ error with the integrated age of the plateau segment. Errors shown in Table 1 and on the age spectrum represent the analytical precision at ±2σ (Table 1). 3.2. Results and interpretation Both samples from the Piaxtla Suite gave similar Mississippian plateau ages. Glaucophane (0.1 × 0.03 mm in size) in the amphibolite sample (GSV 6) yielded an excellent plateau age of 344 ± 5 Ma (MSWD = 1.02) for 94% of the 39Ar released (Fig. 4a, Table 1).

a)

d)

e) b)

c) Fig. 4. 40Ar/39Ar spectra in the San Miguel Las Minas area: (a and b) glaucophane and muscovite-whole rock from sample GSV#6: blueschist of the Piaxtla Suite; (c) muscovite from sample GSS#7: garnet mica schist of the Piaxtla Suite; (d) muscovite from sample LMV-12 of the Piaxtla Suite; (e) whole-rock sample LMV#12: amphibolite of the Piaxtla Suite.


Author's personal copy 220

J.D. Keppie et al. / Tectonophysics 495 (2010) 213–229

4. LA-ICPMS U–Pb zircon geochronology Several samples were collected from the San Miguel Las Minas area for LA-ICPMS analysis of zircon (Fig. 2): (i) a deformed megacrystic granite from the San Miguel Las Minas granitoid (SMLM: N18° 31.051′, W98° 19.733′); (ii) a felsic part of the Anacahuite Amphibolite (AH4: N18° 31.977′, W98° 16.440′); (iii) a leucogranite cutting the low-grade Las Minas Unit (LM1: N18° 31.56´, W98° 19.505′); (iv) an arkose in the Mal Paso Unit analyzed to determine if the K-feldspars were derived from the megacrystic granitoids (MLP1: N18° 31.470´, W98°17.012´); and (v) a low-grade arkose from the Ojo de Agua unit (ODA: N18° 30.351´, W98° 17.57´). 4.1. Analytical methods The zircons were extracted using standard procedures for mineral separation (Gehrels et al., 2006). About 100 randomly selected zircons from each sample were mounted in epoxy, sanded and polished to expose the interiors of most zircon grains and also a few crystal terminations. U–Pb isotopic analyses were performed with a Micromass Isoprobe multicollector ICPMS linked to a New Wave DUV193 Excimer laser ablation system (Gehrels et al., 2006) at the University of Arizona LaserChron Center, and one sample (ODA) at the Centro de Geociencias (UNAM) in Juriquilla, Queretaro (Solari et al., 2009). The collectors are configured for simultaneous measurement of 204Pb, 206 Pb, 207Pb, 208Pb, 232Th, and 238U. All isotope masses are measured in static mode Faraday detectors except for 204Pb, which is measured using an ion-counting channel. All analyses were conducted with a laser beam diameter of 35–50 μm operated with an output energy of ca. 32 and pulse rate of 9 Hz to yield ablation pits with a depth of ca. 15–20 μm. Each analysis consisted of one 20-second on peak blank integration with no laser firing (background) and twenty 1-second integrations on peaks with the laser firing. Any Hg contribution to the 204 Pb mass position was removed by subtracting the on-peak background values. The total analysis time per zircon grain was ca. 90 s. Inter-element fractionation was monitored by analyzing fragments of a large concordant zircon crystal from Sri Lanka with a known (ID-TIMS) age of 564 ± 4 Ma (2-sigma error). This reference zircon was analyzed once for every five unknowns. The isotopic ratios were corrected for common Pb, using the measured 204Pb, assuming an initial Pb composition according to Stacey and Kramers (1975) and respective uncertainties of 1.0, 0.3, and 2.0 for 206Pb/204Pb, 207Pb/ 204 Pb, and 208Pb/204Pb. The systematic error (age of standard, calibration correction from standard, composition of common Pb, and decay constant uncertainty) in the session ranged from 1.15 to 1.20% for 206Pb/238U and from 1.07 to 1.33% for 206Pb/207Pb. Uranium and thorium concentrations were monitored by analyzing a NIST 610 glass. Grains for analysis were selected randomly from all sizes and morphologies present in the sample mounts, except for avoidance of grains with visible fractures, inclusions, or compositional zoning. Grains b35 μm in diameter were also avoided to ensure that each ablation pit was entirely located within a single zircon grain. The age probability plots in this paper were constructed from the 206 Pb/238U age for young (b1.3 Ga) zircon grains and the 206Pb/207Pb age for older (N1.3 Ga) zircon grains. In old zircons, analyses with N20% discordance or N10% reverse discordance are considered unreliable and were rejected. Analyses were not rejected for discordance or reverse discordance for grains that have 206Pb/238U ages b 800 Ma because of the low precision of 207Pb measurement, and hence the large errors on the 207Pb/238U age for young grains, making the geological significance of concordance and discordance difficult to assess (Gehrels et al., 2006). The 206Pb/238U age is considered robust if it belongs to a cluster of three or more zircons with similar ages (Gehrels et al., 2006). The resulting U–Pb data are shown on TeraWasserburg diagrams and as relative age probability curves (Fig. 5), which add probability distributions from all analyses from a given

sample into an unique composite probability distribution. Age probability plots were constructed using IsoPlot 3.00 of Ludwig (1991). Table 2 displays a complete set of analytical U–Pb data. 4.2. Results The San Miguel Las Minas megacrystic granite (SMLM) yielded ages ranging from 465 ± 8 Ma to 1454 ± 95 Ma with an age of 492 ± 12 Ma for the youngest coherent group of 7 zircons (Fig. 5a, Table 2). On the other hand, the leucogranite (LM1) gave ages between 400 ± 21 Ma and 818 ± 16 Ma with a mean age of 473 +32/−24 Ma for the youngest coherent group of 5 igneous zircons (Fig. 5b, Table 2). These CambroOrdovician ages are inferred to date the time of intrusion. Given the errors associated with the two granitoid ages, it is possible that they represent the same intrusive event. The Neo- and Meso-proterozoic ages are inferred to be the result of inheritance from the source. The felsic phase of the Anacahuite Amphibolite (AH4) yielded only 3 zircons, 2 of which gave ages (480 ± 17 and 460 ± 9 Ma: Fig. 5b, Table 2) that overlap at 466 ± 3 Ma. The Anacahuite Amphibolite may be slightly younger than the granitoids, however, given the few zircons, it might also be coeval with them (Keppie et al., 2008b). The Mal Paso arkose (MLP1) yielded ages ranging from 785 ± 5 Ma to 1148 ± 41 Ma with most producing populations peaks between 1058 Ma and 1243 Ma (Fig. 5c and d, Table 2), which corresponds to the age range of the Oaxacan Complex (Keppie et al., 2003; Solari et al., 2003). These data indicate that the K-feldspars were not derived from the erosion of the Cambro-Ordovician megacrystic granitoids, but instead were derived from the Oaxacan Complex. Somewhat younger ages were recovered from zircons in another arkose in the Mal Paso Unit (482 ± 25 Ma, mean of three youngest zircons), with older peaks at ca. 520, 750, and 1200 Ma (Keppie et al., 2008b). The different detrital zircon populations suggest varying provenance during deposition of the Mal Paso Unit. Combining the youngest detrital zircon ages with a 440 ± 4 Ma muscovite plateau age from hornfels in the Mal Paso Unit adjacent to the Palo Liso granitoid (Ramos-Arias et al., 2008) constrains deposition of the Mal Paso Unit to the Ordovician. The arkose from the Ojo de Agua Unit (ODA) yielded ages ranging from 453 to 1722 Ma with major population peaks in the CambroOrdovician, the Ediacaran, and the Mesoproterozoic (1100–1150 Ma), and lesser peaks at 730–800 Ma and 900–980 Ma (Fig. 5e and f). The youngest, most concordant zircon with lowest errors has an age of 470 ± 3 Ma, which falls within the mean of the eight youngest zircons at 471 ± 9 Ma (Fig. 5e, Table 2). These data are comparable to those from a nearby sample, which yielded age population peaks at 466 ± 25 Ma, ca. 700 and 1100 Ma (Keppie et al., 2008b). Once again, the somewhat different age populations probably reflect variations in provenance during deposition of the Ojo de Agua Unit. These data constrain the age of deposition of the Ojo de Agua Unit to between 470 and 370 Ma (the latest Devonian base of the unconformably overlying Patlanoaya Group). They also constrain intrusion of the small dioritic intrusions to the same interval, Middle Ordovician–Upper Devonian. 5. Geochemistry Seven representative samples of the dioritic dikes that cut the Ojo de Agua Unit were analyzed for major and selected trace elements (Ba, Sr, Rb, Zr, Nb, Y, Cr, Ni, V, Pb, Zn, and Ga) by X-ray fluorescence at the Regional Geochemical Centre, Saint Mary's University, Nova Scotia. The precision and accuracy of the data have been reported by Dostal et al. (1994). The analytical error of the trace element determinations is 2–10%. Five of these samples were selected for the analysis of rare-earth elements (REE), Th, U, Hf, Zr, Nb, Ta and Y by an inductively-coupled plasma-mass spectrometer at the Memorial University of Newfoundland. The method is described by Longerich et al. (1990). The precision and accuracy of the data have been


Author's personal copy J.D. Keppie et al. / Tectonophysics 495 (2010) 213–229

221

b) a)

d)

c)

f)

e)

Fig. 5. ICPMS U–Pb analyses of zircon separated from samples in the San Miguel Las Minas area plotted on Tera-Wasserburg diagrams and/or histograms: (a) deformed megacrystic granitoid, sample SMLM, San Miguel Las Minas granitoid; (b) leucogranite dike (LM1) cutting the Las Minas Unit; (c and d) arkose (MLP1) of the Mal Paso Unit; (e and f) arkose (ODA) of the Ojo de Agua Unit.

reported by Dostal et al. (1994). The analytical error of the trace element determinations is 2–10%. All of the rocks sampled have been modified under greenschist facies metamorphic conditions during which their chemical composition was affected. Samples yielded elevated LOI values ranging from 3.2 to 4.8, low concentrations of CaO (b1 wt.%) and highly variable Na2O all of which partly reflect these secondary processes. However, the concentrations of most major elements, high-field-strength elements (HFSE) and REE are thought to reflect primary magmatic distributions. The consistency of the compositional trends and their overall similarity to those of modern volcanic rocks suggest that the distribution of these elements reflects the original composition of the rocks. Remobilization during metamorphism is unlikely to produce such consistent results. According to the SiO2 versus Zr/TiO2 plot (Fig. 6) of Winchester and Floyd (1977), which is based upon relatively immobile elements, the rocks are subalkaline with an SiO2 content ranging from 55.7 to 65.7 wt.% (LOI-free) and correspond mostly to andesites and dacites (Fig. 6). A slight decrease of TiO2 (Fig. 7) with the FeO⁎/MgO ratio

(where FeO⁎ equals total iron expressed as FeO) suggests that the samples have calc-alkaline characteristics, although the relatively high contents of Ti and Fe suggest that they are transitional between tholeiitic and calc-alkaline rocks (Table 3). However, their calcalkaline character is shown in the Zr–Y discrimination diagram of Ross and Bedard (2009) where the rocks plot within the calc-alkaline field (Fig. 8). Chondrite-normalized REE patterns in the rocks (Fig. 9) are enriched in light REE (LREE) with slopes that show a range of (La/ Yb)n ratios from 6 to 13 and (La/Sm)n ca. 2.5–3. These patterns are similar to those of calc-alkaline andesites (e.g., USGS standard rock AGV-1, Guano Valley, Oregon in Fig. 9). However, unlike AGV-1, the patterns display small negative Eu anomalies implying fractional crystallization involving plagioclase. The mantle-normalized trace element patterns of the samples (Fig. 10) reveal an enrichment of large-ion-lithophile elements (LILE), such as Th, Ba, and LREE, relative to heavy REE and HFSE, and distinct troughs at Nb–Ta and Ti characteristic of subduction-related magmas. In addition, the profiles of some samples (Fig. 10) have negative


(ppm)

24,940 25,262 19,570 95,232 53,669 32,008 29,383 118,055 64,061 37,506 68,733 19,376 42,637 75,891 44,660 29,036 31,721 8110 18,718 66,679 63,879 30,426 31,472 47,047 27,143 89,933 47,737 5607 44,520 58,072 43,278 53,361 162,918 19,471 45,119 171,133 40,572 48,003 104,391 46,515 91,707 219,415 109,935 24,746 17,888 29,530 17,892 31,780 11,794 16,700 18,370 28,526 18,122 32,944

Pb

204

569 554 195 480 224 188 154 505 194 82 363 128 154 285 224 143 158 36 218 359 285 132 121 167 96 424 173 196 212 216 169 277 400 69 104 641 117 114 254 156 235 740 174 455 422 507 305 426 203 273 357 499 247 541

Pb

206

U

6.1 5.9 13.1 1.7 4.7 2.5 1.3 1.4 1.9 1.5 2.7 3.6 1.2 0.8 2.1 1.6 0.6 1.1 2.1 2.6 3.2 1.0 1.5 1.8 0.8 2.8 2.2 2.0 2.6 1.7 0.9 3.2 2.5 1.9 2.6 2.3 1.3 0.7 2.5 1.3 2.0 6.0 2.1 18.9 9.0 8.3 10.2 13.2 8.6 10.6 9.6 6.8 10.6 5.9

U/Th Pb*

Pb*

17.5441 17.6044 13.9678 15.3738 13.7846 13.6065 13.4434 13.4385 13.4092 13.2140 13.0017 12.9997 12.9599 12.8149 12.8138 12.7252 12.7239 12.6892 12.6837 12.5098 12.5023 12.4879 12.4719 12.4416 12.4137 12.3362 12.2893 12.2260 12.1718 12.1343 11.6174 11.3706 11.1892 11.0364 10.5800 9.8640 9.2833 9.2116 8.8538 8.8173 8.6899 8.3343 6.4510 17.5472 17.2940 17.5306 17.5876 17.3647 17.5059 17.4812 17.4961 17.4180 17.6619 17.4077

207

206

2.3 2.0 2.6 1.4 1.3 1.7 2.0 0.9 1.6 2.5 1.9 4.3 2.2 2.5 2.1 1.3 1.6 4.5 2.5 3.0 2.1 2.3 1.5 1.8 2.3 1.9 1.4 3.3 1.5 0.7 1.1 2.1 1.8 1.9 1.6 1.8 1.8 1.4 1.3 2.1 1.8 2.1 1.2 1.9 2.2 2.0 1.7 1.8 3.7 2.0 1.6 1.3 2.7 1.5

(%)

± U*

Pb*

0.6070 0.5789 1.6320 1.1619 1.6718 1.7536 1.6619 1.7546 1.8128 1.9337 1.9130 1.4767 1.8874 2.1178 2.1393 2.0721 1.9603 2.0213 2.0554 1.7561 2.2610 2.2765 2.2791 2.2154 2.2786 1.9661 2.3172 1.6294 2.3800 2.3704 2.7647 2.7085 2.8329 2.7187 3.2734 3.6796 4.4774 4.6921 4.9604 5.1848 5.3799 5.4024 9.4682 0.5871 0.6001 0.5964 0.6003 0.6153 0.6121 0.6175 0.6228 0.6281 0.6238 0.6378

235

207

4.3 2.8 4.8 1.5 1.9 2.9 2.3 1.5 2.6 2.9 2.8 14.7 3.3 2.6 2.2 1.8 2.3 4.9 2.6 4.2 2.6 2.3 1.9 2.8 2.3 4.5 1.5 5.0 1.6 1.1 2.5 2.2 2.6 3.5 2.1 5.6 2.4 2.2 1.7 4.3 1.9 2.3 1.5 2.6 3.1 2.1 2.0 1.9 4.6 2.4 1.7 1.7 2.8 1.9

(%)

± U

Pb*

0.0772 0.0739 0.1653 0.1296 0.1671 0.1731 0.1620 0.1710 0.1763 0.1853 0.1804 0.1392 0.1774 0.1968 0.1988 0.1912 0.1809 0.1860 0.1891 0.1593 0.2050 0.2062 0.2062 0.1999 0.2051 0.1759 0.2065 0.1445 0.2101 0.2086 0.2329 0.2234 0.2299 0.2176 0.2512 0.2632 0.3015 0.3135 0.3185 0.3316 0.3391 0.3266 0.4430 0.0747 0.0753 0.0758 0.0766 0.0775 0.0777 0.0783 0.0790 0.0793 0.0799 0.0805

238

206

3.6 2.0 4.0 0.7 1.4 2.3 1.2 1.2 2.1 1.4 2.1 14.1 2.4 0.7 0.7 1.3 1.7 1.9 0.5 3.0 1.5 0.7 1.2 2.2 0.5 4.1 0.5 3.7 0.5 0.8 2.3 0.8 1.8 2.9 1.3 5.3 1.6 1.7 1.0 3.8 0.7 0.8 0.9 1.8 2.2 0.6 1.0 0.5 2.7 1.2 0.7 1.1 0.5 1.1

(%)

±

0.84 0.71 0.84 0.46 0.72 0.81 0.51 0.78 0.78 0.50 0.73 0.96 0.73 0.28 0.32 0.70 0.72 0.38 0.20 0.70 0.60 0.28 0.62 0.76 0.22 0.91 0.34 0.75 0.32 0.74 0.91 0.37 0.70 0.83 0.61 0.94 0.67 0.77 0.60 0.88 0.37 0.36 0.62 0.70 0.71 0.27 0.50 0.26 0.59 0.50 0.42 0.66 0.18 0.59

corr.

error U*

Pb*

479.6 459.7 986.3 785.3 996.3 1028.9 968.1 1017.7 1046.7 1095.9 1069.1 840.3 1052.8 1158.3 1169.0 1128.1 1071.9 1099.8 1116.4 953.0 1202.2 1208.5 1208.3 1174.8 1202.9 1044.6 1210.3 870.0 1229.4 1221.4 1349.9 1299.6 1333.9 1269.3 1444.6 1506.4 1698.5 1757.8 1782.5 1846.0 1882.2 1821.7 2364.0 464.5 467.8 471.2 475.7 481.2 482.4 485.9 490.3 492.2 495.6 499.2

238

206

16.7 8.8 36.9 5.2 12.7 21.9 10.4 10.9 20.0 14.4 20.3 110.8 23.0 7.8 7.5 13.0 16.3 19.0 5.1 26.2 16.9 7.2 12.8 23.1 5.7 39.2 5.5 30.4 5.6 9.0 27.8 9.7 21.8 33.4 16.3 70.5 23.7 26.2 15.7 60.8 11.4 13.0 18.2 8.2 9.9 2.5 4.5 2.3 12.7 5.5 3.4 5.4 2.4 5.2

(Ma)

± U

Pb*

481.7 463.8 982.6 782.9 997.9 1028.5 994.1 1028.9 1050.1 1092.8 1085.6 920.9 1076.7 1154.6 1161.6 1139.6 1102.0 1122.7 1134.1 1029.4 1200.2 1205.0 1205.8 1185.9 1205.7 1104.0 1217.6 981.6 1236.6 1233.7 1346.1 1330.8 1364.3 1333.6 1474.8 1567.0 1726.8 1765.8 1812.6 1850.1 1881.7 1885.2 2384.5 469.0 477.3 474.9 477.4 486.9 484.9 488.3 491.6 494.9 492.2 500.9

235

207

16.5 10.4 30.4 8.3 12.1 18.5 14.5 9.7 17.3 19.3 18.8 89.2 21.6 18.0 15.1 12.3 15.5 33.4 17.5 27.3 18.2 16.5 13.2 19.8 16.5 30.2 10.4 31.4 11.2 7.8 18.8 16.5 19.4 25.9 16.0 44.4 19.6 18.6 14.2 36.8 16.4 19.6 13.6 9.9 11.8 7.9 7.5 7.3 17.9 9.1 6.7 6.7 10.8 7.4

(Ma)

± Pb*

Pb*

491.5 484.0 974.4 775.8 1001.2 1027.6 1052.0 1052.7 1057.1 1086.6 1118.9 1119.3 1125.4 1147.7 1147.9 1161.7 1161.9 1167.3 1168.1 1195.4 1196.6 1198.9 1201.4 1206.2 1210.7 1222.9 1230.4 1240.6 1249.2 1255.3 1339.9 1381.3 1412.1 1438.4 1518.5 1649.5 1761.2 1775.3 1847.3 1854.8 1881.1 1956.0 2402.0 491.1 523.1 493.2 486.0 514.1 496.3 499.4 497.5 507.4 476.7 508.7

207

206

51.2 43.8 53.9 28.4 26.8 34.2 39.7 19.0 33.0 50.2 38.3 85.5 44.6 49.7 41.0 25.4 31.7 89.9 49.8 59.4 40.9 44.4 29.0 36.1 44.9 37.1 26.9 64.8 29.2 14.5 20.5 39.8 35.2 36.8 30.8 33.7 32.0 26.1 24.2 37.6 32.1 38.0 19.7 41.6 48.2 44.4 37.4 40.1 82.7 44.8 34.5 28.6 60.0 33.2

(Ma)

±

479.6 459.7 974.4 785.3 1001.2 1027.6 1052.0 1052.7 1057.1 1086.6 1118.9 1119.3 1125.4 1147.7 1147.9 1161.7 1161.9 1167.3 1168.1 1195.4 1196.6 1198.9 1201.4 1206.2 1210.7 1222.9 1230.4 1240.6 1249.2 1255.3 1339.9 1381.3 1412.1 1438.4 1518.5 1649.5 1761.2 1775.3 1847.3 1854.8 1881.1 1956.0 2402.0 464.5 467.8 471.2 475.7 481.2 482.4 485.9 490.3 492.2 495.6 499.2

(Ma)

Best age

16.7 8.8 53.9 5.2 26.8 34.2 39.7 19.0 33.0 50.2 38.3 85.5 44.6 49.7 41.0 25.4 31.7 89.9 49.8 59.4 40.9 44.4 29.0 36.1 44.9 37.1 26.9 64.8 29.2 14.5 20.5 39.8 35.2 36.8 30.8 33.7 32.0 26.1 24.2 37.6 32.1 38.0 19.7 8.2 9.9 2.5 4.5 2.3 12.7 5.5 3.4 5.4 2.4 5.2

(Ma)

±

97.6 95.0 101.2 101.2 99.5 100.1 92.0 96.7 99.0 100.9 95.5 75.1 93.5 100.9 101.8 97.1 92.3 94.2 95.6 79.7 100.5 100.8 100.6 97.4 99.4 85.4 98.4 70.1 98.4 97.3 100.7 94.1 94.5 88.2 95.1 91.3 96.4 99.0 96.5 99.5 100.1 93.1 98.4 94.6 89.4 95.5 97.9 93.6 97.2 97.3 98.5 97.0 104.0 98.1

(%)

Conc

222

AH4-1 AH4-2 AH4-3 MLP1-3 MLP1-8 MLP1-18 MLP1-10 MLP1-5 MLP1-21 MLP1-25 MLP1-41 MLP1-42 MLP1-23 MLP1-46 MLP1-50 MLP1-19 MLP1-14 MLP1-13 MLP1-11 MLP1-39 MLP1-45 MLP1-38 MLP1-16 MLP1-6 MLP1-7 MLP1-29 MLP1-9 MLP1-47 MLP1-44 MLP1-12 MLP1-48 MLP1-37 MLP1-27 MLP1-36 MLP1-22 MLP1-43 MLP1-26 MLP1-4 MLP1-32 MLP1-15 MLP1-31 MLP1-33 MLP1-35 SMLM-36 SMLM-31A SMLM-21 SMLM-50 SMLM-323 SMLM-48 SMLM-30 SMLM-27 SMLM-6 SMLM-12 SMLM-5

Analysis

Table 2 LA-ICPMS analyses of samples from the San Miguel Las Minas area, northern Acatlán Complex, southern Mexico.

Author's personal copy J.D. Keppie et al. / Tectonophysics 495 (2010) 213–229


SMLM-40 SMLM-8 SMLM-42 SMLM-26 SMLM-35A SMLM-9 SMLM-2 SMLM-23 SMLM-4 SMLM-19 SMLM-37 SMLM-49 SMLM-43 SMLM-28 SMLM-34 SMLM-7 SMLM-3 SMLM-22 SMLM-13 SMLM-41 SMLM-51 SMLM-40A SMLM-47 SMLM-44 SMLM-46 SMLM-52 SMLM-25 SMLM-29 SMLM-1 SMLM-39 SMLM-20 SMLM-45 SMLM-35 SMLM-10 LM1-2 LM1-7 LM1-12 LM1-8 LM1-6 LM1-11 LM1-9 LM1-10 LM1-1 LM1-4 LM1-3 LM1-5 ODA_46_061 ODA_30_042 ODA_18_028 ODA_36_050 ODA_20_030 ODA_44_058 ODA_54_070 ODA_37_051 ODA_6_014 ODA_19_029 ODA_17_027 ODA_49_064 ODA_13_022

Analysis

(ppm)

29,510 27,210 21,398 16,890 23,724 23,170 17,290 13,188 12,040 14,798 13,788 18,448 27,454 33,310 45,118 23,032 17,482 35,660 11,792 36,290 39,636 96,176 16,500 40,222 38,812 48,438 64,072 23,888 11,640 11,106 55,090 54,246 53,778 79,008 5948 5024 3612 10,542 18,340 7168 19,584 20,802 15,732 14,582 9558 45,516

Pb

204

450 461 359 250 444 240 213 170 146 136 129 176 253 231 268 161 109 320 86 338 392 763 114 327 336 432 529 143 80 72 345 296 264 522 509 183 75 277 468 496 493 1014 317 218 762 506 134.2840578 325.2938817 325.285666 137.8009393 255.3094626 256.0111947 627.361625 113.1184691 207.5746554 257.6427578 336.6630573 349.3594128 367.0943786

Pb

206

U

Table 2 (continued)

8.8 11.2 35.6 7.4 2.6 7.0 6.5 4.5 4.1 1.8 2.5 1.8 3.7 5.4 8.6 3.5 3.2 3.0 2.6 2.7 3.5 4.9 2.0 6.1 4.0 3.9 3.2 4.1 1.9 2.2 4.6 3.2 2.4 2.1 1.2 1.5 2.0 13.8 11.5 3.8 5.8 0.8 7.4 6.1 7.5 6.4 0.284818329 0.677561861 0.44784809 0.716815047 0.388745053 0.251499566 0.449686793 0.343615453 0.220549477 0.099707558 0.676297138 0.112636332 0.150084573

U/Th Pb*

Pb*

17.3648 17.0989 17.3810 16.2105 16.9879 15.7601 16.1225 15.7010 14.5469 14.8921 14.5194 14.3339 14.4461 14.3316 13.8454 14.1415 14.2517 14.2076 14.2839 13.8259 13.8150 13.5368 13.3539 13.2827 13.1950 13.1872 12.9033 12.4384 12.4115 12.3452 12.0405 11.7940 11.0800 10.9484 16.7074 17.4268 17.5432 17.7383 17.4531 16.9822 17.4684 17.6393 15.6441 15.1513 13.8182 14.9395 0.05897 0.05915 0.05683 0.05724 0.05641 0.05608 0.05649 0.06008 0.06101 0.05884 0.05717 0.06493 0.05748

207

206

1.7 2.8 1.8 10.3 1.5 2.2 1.9 2.5 1.7 3.8 2.1 1.8 1.4 1.3 3.4 2.5 2.3 1.7 3.7 0.8 1.4 1.4 1.3 1.3 1.9 1.1 2.2 1.2 1.8 1.8 1.5 1.5 2.6 1.9 3.8 2.0 6.1 1.8 1.2 3.3 4.5 3.7 1.6 1.5 3.6 3.4 0.00106 0.00089 0.0008 0.00074 0.00073 0.00107 0.00073 0.00102 0.00079 0.00082 0.00069 0.00103 0.00096

(%)

± U*

Pb*

0.6430 0.6648 0.6687 0.7184 0.6892 0.8518 0.8667 0.9213 1.1803 1.2117 1.2716 1.3551 1.3691 1.3861 1.4855 1.6238 1.5446 1.5700 1.5705 1.6808 1.6481 1.8260 1.8489 1.8676 1.5919 1.7327 1.9600 2.2903 2.3414 2.3374 2.5347 2.6925 2.7043 2.9998 0.5288 0.5575 0.5573 0.5600 0.5956 0.6181 0.6017 0.6363 0.8759 1.0853 1.2308 1.2491 0.59227 0.60426 0.58606 0.59331 0.58874 0.59338 0.60226 0.65089 0.68893 0.67646 0.65793 0.76924 0.68225

235

207

1.8 2.8 2.1 10.6 1.6 3.3 2.9 4.8 2.1 4.9 3.4 3.3 2.6 3.2 3.6 2.6 2.6 1.8 4.1 1.7 1.5 2.6 1.4 1.5 3.1 1.9 3.0 1.6 2.7 2.0 1.9 4.9 3.7 2.9 6.5 2.4 6.5 3.4 2.6 3.3 4.9 5.4 4.3 1.6 6.3 3.9 0.01215 0.01024 0.00925 0.0084 0.00861 0.01199 0.00884 0.01197 0.00986 0.01122 0.00895 0.01358 0.01388

(%)

± U

Pb*

0.0810 0.0824 0.0843 0.0845 0.0849 0.0974 0.1013 0.1049 0.1245 0.1309 0.1339 0.1409 0.1434 0.1441 0.1492 0.1665 0.1597 0.1618 0.1627 0.1685 0.1651 0.1793 0.1791 0.1799 0.1523 0.1657 0.1834 0.2066 0.2108 0.2093 0.2213 0.2303 0.2173 0.2382 0.0641 0.0705 0.0709 0.0720 0.0754 0.0761 0.0762 0.0814 0.0994 0.1193 0.1233 0.1353 0.07284 0.07408 0.07476 0.07517 0.07566 0.07674 0.07726 0.07864 0.08177 0.08284 0.08343 0.08593 0.08609

238

206

0.8 0.5 1.0 2.5 0.6 2.5 2.2 4.1 1.2 3.1 2.7 2.7 2.2 3.0 1.3 0.6 1.2 0.6 1.8 1.4 0.5 2.2 0.7 0.7 2.4 1.6 2.1 1.1 2.0 0.7 1.1 4.7 2.7 2.2 5.4 1.5 2.3 2.8 2.3 0.7 1.9 3.9 4.0 0.5 5.3 2.0 0.00049 0.00059 0.00055 0.00042 0.00051 0.00053 0.00053 0.00055 0.00049 0.00074 0.00053 0.00061 0.00078

(%)

±

0.41 0.18 0.47 0.23 0.37 0.75 0.76 0.85 0.58 0.63 0.78 0.84 0.84 0.92 0.35 0.23 0.44 0.30 0.43 0.86 0.33 0.85 0.47 0.50 0.78 0.81 0.69 0.68 0.75 0.37 0.59 0.95 0.72 0.75 0.82 0.60 0.35 0.84 0.89 0.22 0.38 0.72 0.93 0.32 0.83 0.51 0.38 0.46 0.45 0.41 0.47 0.33 0.47 0.38 0.43 0.54 0.46 0.4 0.55

corr.

error U*

Pb*

502.0 510.7 521.7 522.7 525.4 598.9 622.2 643.2 756.6 792.8 810.1 849.6 864.1 867.7 896.3 993.0 954.8 966.7 971.8 1004.1 985.2 1063.0 1061.9 1066.5 914.1 988.5 1085.7 1210.7 1232.9 1225.0 1289.0 1336.1 1267.7 1377.3 400.4 439.0 441.6 448.5 468.6 472.9 473.6 504.5 610.8 726.3 749.8 818.3 453 461 465 467 470 477 480 488 507 513 517 531 532

238

206

3.7 2.5 4.9 12.4 2.9 14.1 12.9 24.8 8.9 23.3 20.3 21.7 17.4 24.2 10.6 5.4 10.2 4.9 15.9 13.3 4.6 22.0 6.7 7.3 20.5 14.5 20.7 12.0 22.6 8.1 13.1 56.5 31.0 26.8 20.8 6.2 9.6 12.2 10.6 3.3 8.5 18.8 23.2 3.6 37.2 15.5 3 4 3 3 3 3 3 3 3 4 3 4 5

(Ma)

± U

Pb*

504.2 517.6 519.9 549.7 532.3 625.6 633.7 663.1 791.5 806.0 833.1 869.8 875.8 883.0 924.5 979.5 948.3 958.4 958.6 1001.3 988.8 1054.8 1063.0 1069.7 967.0 1020.8 1101.9 1209.3 1224.9 1223.7 1282.1 1326.4 1329.6 1407.6 431.0 449.9 449.8 451.5 474.4 488.6 478.3 500.0 638.8 746.2 814.7 823.0 472 480 468 473 470 473 479 509 532 525 513 579 528

235

207

7.3 11.4 8.4 45.1 6.6 15.3 13.5 23.2 11.7 27.4 19.3 19.1 15.0 19.1 21.8 16.1 16.1 11.2 25.5 10.5 9.5 17.2 9.5 9.7 19.2 12.5 20.1 11.4 19.0 13.9 13.9 36.4 27.8 21.8 23.0 8.9 23.6 12.2 10.0 13.0 18.6 21.2 20.3 8.5 35.6 22.2 8 6 6 5 6 8 6 7 6 7 5 8 8

(Ma)

± Pb*

Pb*

514.1 547.9 512.1 663.3 562.1 723.4 675.0 731.4 891.1 842.4 895.0 921.5 905.4 921.8 992.3 949.2 933.3 939.6 928.6 995.2 996.8 1038.0 1065.4 1076.2 1089.4 1090.6 1134.1 1206.7 1211.0 1221.5 1270.5 1310.7 1430.9 1453.6 598.3 506.3 491.6 467.2 503.0 562.8 501.0 479.5 739.0 806.4 996.3 835.8 566 573 485 501 469 456 472 606 640 561 498 772 510

207

206

37.1 60.3 40.1 221.8 32.2 45.8 40.2 53.3 35.9 79.5 43.5 36.8 28.6 26.2 68.2 51.2 48.1 35.3 76.3 17.0 28.9 27.7 25.5 25.5 38.7 22.8 43.0 23.3 34.8 35.7 30.1 29.3 49.8 35.8 81.7 43.0 134.3 40.4 26.6 71.3 99.4 82.1 33.0 31.9 72.4 70.4 39 33 29 28 27 42 29 37 27 29 25 33 34

(Ma)

±

502.0 510.7 521.7 522.7 525.4 598.9 622.2 643.2 756.6 792.8 810.1 849.6 864.1 867.7 896.3 949.2 954.8 966.7 971.8 995.2 996.8 1038.0 1065.4 1076.2 1089.4 1090.6 1134.1 1206.7 1211.0 1221.5 1270.5 1310.7 1430.9 1453.6 400.4 439.0 441.6 448.5 468.6 472.9 473.6 504.5 610.8 726.3 749.8 818.3 453 461 465 467 470 477 480 488 507 513 517 531 532

(Ma)

Best age

97.6 93.2 101.9 78.8 93.5 82.8 92.2 87.9 84.9 94.1 90.5 92.2 95.4 94.1 90.3 104.6 102.3 102.9 104.6 100.9 98.8 102.4 99.7 99.1 83.9 90.6 95.7 100.3 101.8 100.3 101.5 101.9 88.6 94.8 66.9 86.7 89.8 96.0 93.2 84.0 94.5 105.2 82.6 90.1 75.3 97.9 4.025423729 3.958333333 0.641025641 1.268498943 0 −0.84566596 −0.20876827 4.125736739 4.69924812 2.285714286 −0.7797271 8.29015544 −0.75757576

(%)

Conc

J.D. Keppie et al. / Tectonophysics 495 (2010) 213–229 (continued on next page)

3.7 2.5 4.9 12.4 2.9 14.1 12.9 24.8 8.9 23.3 20.3 21.7 17.4 24.2 10.6 51.2 10.2 4.9 15.9 17.0 28.9 27.7 25.5 25.5 38.7 22.8 43.0 23.3 34.8 35.7 30.1 29.3 49.8 35.8 20.8 6.2 9.6 12.2 10.6 3.3 8.5 18.8 23.2 3.6 37.2 15.5 3 4 3 3 3 3 3 3 3 4 3 4 5

(Ma)

±

Author's personal copy 223


Pb

204

(ppm)

163.8261328 1053.245708 202.6087532 218.189494 415.0545158 402.5462602 377.3567425 170.9075417 177.8009356 183.7353624 328.2367483 759.1948481 569.8799328 134.6270157 263.5171976 467.914089 313.9367068 685.2364436 174.5605098 207.516406 115.7844349 532.6542198 185.5516718 184.0030879 105.1918767 185.3010178 883.4745416 181.2048996 350.5061924 149.4750029 259.3485008 171.0360864 109.7252887 104.6336952 736.0129723

Pb

206

U

0.29351077 0.344846612 0.202717633 0.591254168 0.533040516 0.232740001 0.334455991 0.374108686 0.677929333 0.320917053 0.240336664 0.232497041 0.473305566 0.321329533 0.505763171 0.606700399 0.156383904 0.882308826 0.375945503 0.506850079 0.689840716 0.338209182 0.328058158 0.22835221 0.4164515 0.239836336 0.378673129 0.38925955 0.15625 0.37230775 0.268633061 0.381130968 0.66046272 0.611748009 0.28411916

U/Th Pb*

Pb*

0.06251 0.0651 0.06105 0.06027 0.06173 0.05956 0.05956 0.06199 0.06338 0.0627 0.06599 0.06887 0.06607 0.06768 0.0681 0.07256 0.07064 0.07079 0.07212 0.07156 0.07499 0.07586 0.07586 0.07618 0.07689 0.07751 0.07753 0.07758 0.07757 0.07779 0.07807 0.07933 0.08241 0.0864 0.10545

207

206

0.00069 0.00121 0.00098 0.00066 0.00074 0.00077 0.00077 0.00112 0.0007 0.00082 0.00079 0.00078 0.00092 0.00074 0.00105 0.00065 0.00106 0.00071 0.00094 0.00068 0.0009 0.00106 0.00083 0.00089 0.00123 0.00085 0.00068 0.00085 0.0007 0.00074 0.00078 0.00095 0.00107 0.00095 0.00096

(%)

± U*

Pb*

0.75978 0.84659 0.80042 0.80795 0.84216 0.81442 0.81442 0.87283 0.91542 0.91424 1.0905 1.17587 1.1538 1.2384 1.38176 1.51 1.5149 1.5228 1.595 1.6194 1.7977 1.7657 1.7837 1.83351 2.0313 1.8675 2.128 2.1292 1.8776 2.179 2.2475 2.0617 2.3548 2.87 4.334

235

207

0.00979 0.01837 0.01379 0.01012 0.01145 0.01187 0.01187 0.01665 0.01165 0.01354 0.01499 0.02076 0.01896 0.01534 0.02812 0.01712 0.02483 0.0185 0.02363 0.01811 0.0242 0.02733 0.02218 0.02669 0.03556 0.02396 0.02164 0.02668 0.02052 0.02508 0.02743 0.02844 0.03402 0.03758 0.04631

(%)

± U

Pb*

0.08799 0.09432 0.09514 0.09717 0.09888 0.09914 0.09914 0.10231 0.10465 0.10562 0.1199 0.12383 0.1268 0.13266 0.14716 0.151 0.15544 0.1559 0.16047 0.16403 0.17375 0.16875 0.17027 0.17457 0.19156 0.17485 0.19909 0.19894 0.17539 0.2032 0.20859 0.18837 0.20745 0.23965 0.29787

238

206

0.00059 0.00071 0.00061 0.00058 0.00063 0.00065 0.00065 0.00064 0.00067 0.00075 0.0008 0.00129 0.00109 0.00076 0.00116 0.00104 0.00103 0.00108 0.00114 0.00097 0.00106 0.00111 0.00099 0.00124 0.00136 0.00115 0.00102 0.00119 0.00109 0.00132 0.00146 0.00128 0.00131 0.0017 0.00167

(%)

±

0.52 0.39 0.36 0.49 0.47 0.46 0.46 0.32 0.5 0.47 0.49 0.74 0.53 0.47 0.6 0.61 0.4 0.56 0.48 0.53 0.45 0.43 0.48 0.53 0.41 0.52 0.51 0.49 0.56 0.56 0.57 0.5 0.44 0.54 0.52

corr.

error U*

Pb*

544 581 586 598 608 609 609 628 642 647 730 753 770 803 885 907 931 934 959 979 1033 1005 1014 1037 1130 1039 1170 1170 1042 1192 1221 1113 1215 1385 1681

238

206

3 4 4 3 4 4 4 4 4 4 5 7 6 4 6 6 6 6 6 5 6 6 5 7 7 6 5 6 6 7 8 7 7 9 8

(Ma)

± U

Pb*

574 623 597 601 620 605 605 637 660 659 749 789 779 818 881 934 936 940 968 978 1045 1033 1040 1058 1126 1070 1158 1158 1073 1174 1196 1136 1229 1374 1700

235

207

6 10 8 6 6 7 7 9 6 7 7 10 9 7 12 7 10 7 9 7 9 10 8 10 12 8 7 9 7 8 9 9 10 10 9

(Ma)

± Pb*

Pb*

692 778 641 613 665 588 588 674 721 698 806 895 809 859 872 1002 947 951 989 973 1068 1091 1091 1100 1118 1134 1135 1136 1136 1142 1149 1180 1255 1347 1722

207

206

23 39 32 24 26 28 28 39 23 27 24 22 29 22 32 18 30 20 25 19 24 28 21 22 31 20 17 22 18 18 20 22 24 21 17

(Ma)

±

544 581 586 598 608 609 609 628 642 647 730 753 770 803 885 907 931 934 959 979 1068 1091 1091 1100 1118 1134 1135 1136 1136 1142 1149 1180 1255 1347 1722

(Ma)

Best age

3 4 4 3 4 4 4 4 4 4 5 7 6 4 6 6 6 6 6 5 24 28 21 22 31 20 17 22 18 18 20 22 24 21 17

(Ma)

±

5.226480836 6.741573034 1.842546064 0.499168053 1.935483871 −0.66115702 −0.66115702 1.412872841 2.727272727 1.820940819 2.536715621 4.562737643 1.155327343 1.833740831 −0.45402951 2.890792291 0.534188034 0.638297872 0.929752066 −0.10224949 3.277153558 7.882676444 7.057745188 5.727272727 −1.07334526 8.377425044 −3.08370044 −2.99295775 8.274647887 −4.37828371 −6.26631854 5.677966102 3.187250996 −2.82108389 2.380952381

(%)

Conc

224

ODA_31_044 ODA_51_067 ODA_16_026 ODA_5_012 ODA_41_055 ODA_28_040 ODA_29_041 ODA_48_063 ODA_50_065 ODA_7_015 ODA_60_077 ODA_1_2_008 ODA_32_045 ODA_8_016 ODA_3_010 ODA_40_053 ODA_59_076 ODA_4_011 ODA_9_017 ODA_43_057 ODA_26_038 ODA_39_052 ODA_56_073 ODA_23_034 ODA_58_075 ODA_15_024 ODA_27_039 ODA_25_036 ODA_53_069 ODA_21_032 ODA_45_059 ODA_24_035 ODA_11_020 ODA_47_062 ODA_42_056

Analysis

Table 2 (continued)

Author's personal copy J.D. Keppie et al. / Tectonophysics 495 (2010) 213–229


Author's personal copy J.D. Keppie et al. / Tectonophysics 495 (2010) 213–229

225

phengite plateau ages from Santa Cruz Organal (345 ± 2 Ma and 347 ± 6 Ma: Vega-Granillo et al., 2007). Thus, on all occasions where the HP rocks have been dated directly, they have yielded Mississippian crystallization and cooling ages, which provide robust constraints on the age of HP metamorphism. In contrast, the ca. 300 Ma hornblende cooling age for the Anacahuite Amphibolite (Ramos-Arias et al., 2008) indicates that this body was exhumed some 55 Ma later than the rocks to the south of the Tepetate Fault. Ramos-Arias et al. (2008) linked this second phase of uplift and exhumation with deposition of a conglomerate in the Patlanoaya Group. 6.2. Protoliths of the high grade rocks

Fig. 6. Zr/TiO2 versus SiO2 (wt.%) diagram (based on Winchester and Floyd, 1977) for the rocks of the Ojo de Aqua Unit. Field of high-pressure rocks is from Meza-Figueroa (1998).

anomalies for Zr and Hf. Although the rocks appear to be related, the differences in the shape of the REE and trace element patterns indicate that the rocks were not derived from a homogeneous magma source by continuous fractional crystallization. The rocks were likely derived from a heterogeneous subduction-modified source. Such a tectonic environment is also implied by a Th–Hf–Ta discrimination plot of Wood (1980), where the rocks plot within the volcanic arc field (Fig. 11).

6. Discussion 6.1. Time of metamorphism The combined 353 ± 1 Ma U–Pb zircon age reported by Elías-Herrera et al. (2007) from retrogressed eclogite, the 344 ± 5 and 338 ± 3 Ma 40 Ar/39Ar plateau ages for glaucophane and muscovite from associated blueschists, and the 337 ± 2 Ma muscovite plateau age from adjacent garnetiferous schist indicate rapid cooling between ca. 700° and 340 °C for the rocks of the San Miguel Las Minas area (Figs. 3 and 4). These ages are similar to phengite ages in the HP rocks from Mimilulco (336± 4 Ma and 335 ± 2 Ma), and Piaxtla (335 ± 4 Ma) reported by Vega-Granillo et al. (2007). The ca. 344 Ma glaucophane age is identical within error to the muscovite age (347 ± 3 Ma) from the greenschist Las Minas Unit lying above and to the east of the HP rocks (Figs. 2 and 3: Ramos-Arias et al., 2008). It is also similar to the 346 ±3 Ma, concordant U–Pb zircon age from eclogite at San Francisco de Asis (Middleton et al., 2007), and

Fig. 7. FeOt/MgO versus TiO2 (wt.%) for the volcanic rocks of the Ojo de Aqua Unit. The lines discriminating calc-alkaline and tholeiitic evolutionary trends are after Miyashiro (1974).

The zircon data for the San Miguel Las Minas granitoid and the Anacahuite Amphibolite indicate that the both protoliths are of Cambrian–Ordovician age. The bimodal character and geochemistry of these and similar bodies led Keppie et al. (2008b) to infer that they were intruded during a rifting event at the margin of Oaxaquia. On the other hand, limited geochemistry of the eclogitic mafic rocks at Mimilulco suggests these rocks have an arc affinity (Figs. 6 and 11), but their protolith age is uncertain (Meza-Figueroa et al., 2003). The protolith age of the metasedimentary rocks of the Piaxtla Suite is bracketed between 691 ± 51 Ma (youngest detrital zircon: TalaveraMendoza et al., 2005) and a cross-cutting leucogranite dated at 461 ± 9 Ma (Talavera-Mendoza et al., 2005). Thus most, if not all, of these rocks appear to have an upper plate origin. 6.3. Tectonics In the San Miguel Las Minas area, the upper (eastern) contact between the high grade and low-grade rocks is a listric normal shear zone that was active during the Mississippian as is indicated by the ca. 347 Ma muscovite plateau age for the earliest cleavage in the overlying greenschist facies Las Minas Unit (Ramos-Arias et al., 2008). To the west, the contact is a dextral transcurrent shear zone of inferred Permian age (Barley, 2006), the evolution of which may be related to the thermal reheating and exhumation of the Anacahuite Amphibolite at ca. 300 Ma. Such Permian motions are synchronous with dextral motions along the Caltepec Fault that forms the boundary between the Acatlán and Oaxacan complexes (Elias-Herrera and Ortega-Gutiérrez, 2002). Along strike to the south, this Permian structure is superimposed on a W-vergent thrust (Galaz-Escanillo et al., 2009). A zone bounded below by a thrust and above by a normal fault is typical of the extrusion of HP rocks up the subduction channel (Ernst, 1988; Ernst et al., 1997; Liou et al., 2004). However, the same geometry is also present where HP rocks are extruded into the upper plate (Keppie et al., 2010). The distinction between these two scenarios dictates on whether the HP rocks represent a closed ocean and so identify a suture separating different terranes, or whether the rocks are similar on either side of the HP belt (Keppie et al., 2010), in which case no suture is implicated. In the case of the Acatlán Complex, the rocks on either side of the HP belt are similar (Keppie et al., 2008a; Ortega-Obregon et al., 2009) suggesting that the HP rocks were extruded into the upper plate (Fig. 12). The rift and arc protoliths of some of the HP rocks suggest that they were removed from the upper plate by subduction erosion of the leading edge of Oaxaquia. The calcalkaline volcanic rocks of the Agua de Ojo Unit may represent a vestige of the arc that was not removed by subduction erosion. Permian arc volcanism and transtensional dextral motions between the Acatlán and Oaxacan complexes (Elias-Herrera and Ortega-Gutiérrez, 2002; Keppie et al., 2008a; Morales-Gamez et al., 2009) are synchronous with the second phase of exhumation of the high grade Anacahuite Amphibolite, which would have been facilitated by the transtensional regime.


Author's personal copy 226

J.D. Keppie et al. / Tectonophysics 495 (2010) 213–229

Table 3 Major and trace element compositions of the igneous rocks of the Oja de Aqua Unit. Sample SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O P2O5 L.O.I. Totals V Cr Co Zr Ba La Nd Ni Cu Zn Ga Rb Sr Y Nb Pb Th U

% % % % % % % % % % % ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm

CEM-1

CEM-2

CEM-3

CEM-4

CEM-5

CEM-6

CEM-7

53.71 1.52 16.21 14.99 0.18 3.25 0.42 0.98 2.97 0.24 4.54 99.00 160.00 75.00 82.00 162.00 574.00 91.00 95.00 44.00 b4 65.00 25.00 66.00 40.00 21.00 15.00 44.00 25.00 3.00

55.950 1.606 16.620 11.840 0.163 2.800 0.550 0.750 4.510 0.259 4.290 99.338 165.000 76.000 60.000 174.000 941.000 80.000 77.000 43.000 36.000 68.000 21.000 110.000 72.000 24.000 15.000 30.000 19.000 3.000

52.46 1.44 14.99 19.02 0.20 3.59 0.39 0.04 2.14 0.24 4.86 99.37 148.00 70.00 108.00 142.00 401.00 128.00 136.00 60.00 b4 62.00 23.00 42.00 6.00 15.00 11.00 62.00 32.00 4.00

60.84 1.48 14.64 11.40 0.10 1.91 0.52 2.03 3.10 0.29 3.47 99.77 179.00 63.00 64.00 338.00 1513.00 74.00 78.00 46.00 b4 35.00 20.00 66.00 122.00 31.00 18.00 35.00 22.00 4.00

62.160 1.491 15.350 9.980 0.077 1.910 0.420 1.930 3.780 0.207 3.240 100.545 179.000 67.000 53.000 279.000 2487.000 66.000 64.000 60.000 b4 27.000 20.000 86.000 112.000 29.000 34.000 27.000 20.000 3.000

63.15 1.39 13.81 10.54 0.07 1.62 0.59 1.57 3.26 0.28 4.35 100.63 163.00 59.00 58.00 368.00 1191.00 66.00 67.00 44.00 b4 26.00 19.00 80.00 147.00 28.00 37.00 33.00 22.00 4.00

60.74 1.49 17.27 7.42 0.06 2.14 0.30 1.06 4.00 0.12 4.78 99.37 210.00 69.00 42.00 166.00 796.00 57.00 52.00 34.00 118.00 32.00 21.00 149.00 26.00 29.00 18.00 20.00 20.00 4.00

Fig. 8. Y (ppm) versus Zr (ppm) discrimination diagram for the rocks of the Ojo de Aqua showing the boundary between calc-alkaline, transitional and tholeiitic rocks (after Ross and Bedard, 2009).

Fig. 9. Chondrite-normalized REE patterns for the rocks of the Ojo de Aqua Unit. Typical calc-alkaline andesite from the Guano Valley, Oregon (AGV-1–USGS standard rocks; Govindaraju, 1994) is shown for a comparison. Normalizing values after Sun and McDonough (1989).

Fig. 10. Primitive mantle-normalized incompatible trace element abundances in the rocks of the Ojo de Aqua Unit. Typical calc-alkaline andesite from the Guano Valley, Oregon (AGV-1–USGS standard rocks; Govindaraju, 1994) is shown for a comparison. Normalizing values and the element order after Sun and McDonough (1989).

Fig. 11. Th–Hf–Ta discrimination diagram of Wood (1980) for the rocks of the Ojo de Aqua Unit. Fields: A—depleted MORB (i.e. normal MORB or N-MORB); B—enriched MORB and tholeiitic within plate basalts and differentiates; C—alkaline within plate basalts and differentiates; D—volcanic arc basalts and differentiates. Field of highpressure rocks is from Meza-Figueroa (1998).


Author's personal copy J.D. Keppie et al. / Tectonophysics 495 (2010) 213–229

Arc

0 xx

2

Unconformity PL

SMLM

227

(A) Middle-Upper Devonian 0

xx

10 4

Be

6 kb 8

ff Z on

e

20

Uppermost Devonian Early Permian Patlanoaya Group and Zumpango Unit Arc + dikes cutting Agua de Ojo

10 12 14

n io

km 30

blueschist

Cambro-Ordovician granitoid (SMLM=San Miguel Las Minas, PL=Palo Liso, AH=Anacahuite)

xx

40

Cambro-Ordovician Las Minas/Otate/ Mal Paso/Ojo de Agua

(B) Lower Carboniferous

0 2

eclogite

Ne

w

Be n

SMLM

10

TR

8

10

d LT me AU hu LF ex Ma A AH 3 0 0 R M is t a t NO ch IC es blu

e

PL

LIS

Mississippian exhumation

ST

6 kb

xx

RU TH

4

iof fZ on

xx

Ne

12 14

0

w

Be

nio

20 km

SMLM

xx

ff Z on

Piaxtla Group

e

30

AH

40

ec

lo g

ite

Fig. 12. W–E cross-section model showing: (A) subduction erosion of passive margin and arc rocks of the upper plate during the Middle-Upper Devonian; followed by (B) HP metamorphism and extrusion into the upper plate.

7. Conclusions Numerical models (Stöckhert and Gerya, 2005; D.F. Keppie et al., 2009) show that subduction erosion can proceed along an active ocean–continent subduction margin followed by extrusion into the upper plate. In such a setting, the Mississippian HP Piaxtla rocks are inferred to be related to subduction, extrusion and exhumation on the western margin of Pangea because Carboniferous reconstructions indicate that Pangea had begun to be amalgamated by this time (Fig. 13). This scenario is consistent with the presence of shallowmarine, Mid-Continent (USA), Mississippian fauna in Oaxaquia (Navarro-Santillán et al., 2002), which indicates that Pangea had already begun amalgamation by that time. Such reconstructions place the Acatlán Complex ca. 1500–2000 km south of the Ouachita Orogen, which broadly marks the location of the Rheic Ocean suture between southern Laurentia and western Gonwana (Keppie et al., 2008a). The extrusion of HP rocks into the Acatlán Complex is indicated by the presence of the same rocks on either side of the HP belt (Keppie et al., 2008a), which implies that extrusion took place into the upper plate rather than the more common assumption that extrusion took place up along the subduction channel (Ernst et al., 1997; Ernst, 2010). This

interpretation, together with the Mississippian age of extrusion, has important implications for paleogeographic reconstructions of the Acatlán Complex because it indicates that the Mimilulco–Piaxtla HP belt does not mark an oceanic suture. This conclusion simplifies paleogeographic reconstructions as it indicates that extrusion of the HP rocks took place within the continental margin of Pangea rather than involving several Paleozoic oceans. Such a mechanism may be more widespread than is currently recognized in other orogens around the world, and suggests that HP belts should be re-evaluated to determine if they represent extrusion up along the subduction channel or into the upper plate as has been done in the Variscan belt of Europe (Keppie et al., 2010). Acknowledgements We would like to thank Dr. V.A. Ramos and an anonymous reviewer for the constructive comments on the paper. Funding for this project was provided by NSF grant (EAR-0308105) and an Ohio University Baker Award to RDN, PAPIIT grant (IN100108-3) and CONACyT grant (CB-2005-1/24894) to JDK, NSERC Discovery Grants to JBM, JD, and JKWL. JKWL would also like to acknowledge the


Author's personal copy 228

J.D. Keppie et al. / Tectonophysics 495 (2010) 213–229

Fig. 13. Mississippian paleogeographic reconstruction showing the Piaxtla blueschists on the active western margin of Pangea (after Keppie et al., 2008a).

support of an NSERC MRS grant for the Queen's University 40Ar/39Ar laboratory. We are grateful to Brent Barley for supplying some samples for 40Ar/39Ar geochronology. This paper is a contribution to IGCP Project 497. References Barley, J., 2006. Polyphase deformation in San Miguel Las Minas, Northern Acatlan Complex, Southern Mexico. M.Sc. thesis, Faculty of the Arts and Sciences of Ohio University, p. 58. Clark, A.H., Archibald, D.A., Lee, A.W., Farrar, E., Hodgson, C.J., 1998. Laser Probe 40Ar/ 39 Ar ages of early- and late-stage alteration assemblages, Rosario porphyry copper– molybdenum deposit, Collahuasi District, I Region, Chile. Economic Geology 93, 326–337. Dostal, J., Dupuy, C., Caby, R., 1994. Geochemistry of the Neoproterozoic Tilemsi belt of Iforas (Mali, Sahara): a crustal section of an oceanic island arc. Precambrian Research 65, 55–69. Elias-Herrera, M., Ortega-Gutiérrez, 2002. Caltepec fault zone: an Early Permian dextral transpressional boundary between the Proterozoic Oaxacan and Paleozoic Acatlán complexes, southern Mexico, and regional implications. Tectonics 21, 1013–1032. Elias-Herrera, M., Ortega-Gutiérrez, F., Macias-Romo, C., Reyes-Salas, M., SanchezZavala, J.L., Aparicio-Aparicio, D., 2006. Blueschist in the Acatlán Complex, southern Mexico: new insights and tectonothermal impliactions. Geos 26 (1), 190. Elías-Herrera, M., Ortega-Gutiérrez, F., Sánchez Zavala, J.L., Iriondo, A., Ortega-Rivera, A., 2007. Conflicting stratigraphic and geochronological data from the Acatlán Complex: “Ordovician” granite intrude metamorphic and sedimentary rocks of Devonian–Permian age. Eos Transactions AGU 88 (23) Joint Assembly Suppl., Abstract T41A-12. Ernst, W.G., 1988. Tectonic history of subduction zones inferred from retrograde blueschist P–T paths. Geology 16, 1081–1084. Ernst, W.G., 2010. Subduction-zone metamorphism, calc-alkaline magmatism, and convergent-margin crustal evolution. Gondwana Research 18 (1), 8–16. Ernst, W.G., Marayama, S., Wallis, S., 1997. Buoyancy-driven, rapid exhumation of ultrahigh-pressure metamorphosed continental crust. Proceedings of the National Academy of Science of the United States of America 94, 9532–9537.

Galaz-Escanillo, G., Keppie, J.D., Solari, L., 2009. Complejo Acatlán en el area de Tehuitzingo, Estado de Puebla, Sur de Mexico: evidencias de su evolucion tectonic. Geos 29 (1), 48. Gehrels, G., Valencia, V., Pullen, A., 2006. Detrital zircon geochronology by laser ablation multicollector ICPMS at the Arizona LaserChron Center. In: Olszewski, T. (Ed.), Geochronology: Emerging Opportunities: Paleontology Society Papers, 12, pp. 67–76. Govindaraju, K., 1994. 1994 compilation of working values and sample description for 383 geostandards. Geostandards Newsletter 18, 1–158. Hames, W.H., Bowring, S.A., 1994. An empirical evolution of the argon diffusion geometry in muscovite. Earth and Planetary Science Letters 124, 161–167. Harrison, T.M., Duncan, I., McDougall, I., 1985. Diffusion of 40Ar in biotite: temperature, pressure, and compositional effects. Geochimica et Cosmochimica Acta 49, 2461–2468. Keppie, J.D., 2004. Terranes of Mexico revisited: a 1.3 billion year odyssey. International Geology Review 46, 83–100. Keppie, J.D., Dostal, J., Cameron, K.L., Solari, L.A., Ortega-Gutiérrez, F., Lopez, R., 2003. Geochronology and geochemistry of Grenvillian igneous suites in the northern Oaxacan Complex, southern México: tectonic implications. Precambrian Research 120, 365–389. Keppie, J.D., Nance, R.D., Powell, J.T., Mumma, S.A., Dostal, J., Fox, D., Muise, J., OrtegaRivera, A., Miller, B.V., Lee, J.W.K., 2004. Mid-Jurassic tectonothermal event superposed on a Paleozoic geological record in the Acatlán Complex of southern Mexico: hotspot activity during the breakup of Pangea. Gondwana Research 7, 239–260. Keppie, J.D., Dostal, J., Murphy, J.B., Nance, R.D., 2008a. Synthesis and tectonic interpretation of the westernmost Paleozoic Variscan orogen in southern Mexico: from rifted Rheic margin to active Pacific margin. Tectonophysics 461, 277–290. Keppie, J.D., Dostal, J., Ramos-Arias, M.A., Morales-Gamez, M., Miller, B.V., Nance, R.D., Murphy, J.B., Ortega-Rivera, A., Lee, J.W.K., 2008b. Ordovician rift tholeiites in the Acatlán Complex, southern Mexico: evidence of rifting on the southern margin of the Rheic Ocean. Tectonophysics 461, 130–156. Keppie, D.F., Currie, C.A., Warren, C., 2009. Subduction erosion modes: comparing finite element numerical models with the geological record. Earth and Planetary Science Letters 287, 241–254. Keppie, J.D., Nance, R.D., Murphy, J.B., Miller, B.V., Dostal, J., Ortega-Rivera, A., 2009. Pressure–temperature–time evolution of high pressure rocks of the Acatlán Complex (southern Mexico): implications for the evolution of the Iapetus and Rheic oceans: comment. Geological Society of America Bulletin 121, 1456–1459. doi:10.1130/B26356.1; 1.


Author's personal copy J.D. Keppie et al. / Tectonophysics 495 (2010) 213–229 Keppie, J.D., Nance, R.D., Murphy, J.B., Dostal, J., 2010. The high-pressure Iberian–Czech belt in the Variscan orogen: extrusion into the upper (Gondwanan) plate? Gondwana Research 17, 306–316. doi:10.1016/j.gr.2009.08.007. Liou, J.G., Tsujimori, T., Zhang, R.Y., Katayama, I., Maruyama, S., 2004. Global UHP metamorphism and continental subduction/collision: the Himalayan model. International Geology Review 46, 1–27. Longerich, H.P., Jenner, G.A., Fryer, B.J., Jackson, S.E., 1990. Inductively coupled plasmamass spectrometric analysis of geological samples: a critical evaluation based on case studies. Chemical Geology 83, 105–118. Ludwig, K.R., 1991. ISOPLOT; a plotting and regression program for radiogenic-isotope data; version 2.53. Open-File Report, U. S. Geological Survey. Malone, J.W., Nance, R.D., Keppie, J.D., Dostal, J., 2002. Deformational history of part of the Acatlán Complex: Late Ordovician-Early Silurian and Early Permian orogenesis in southern Mexico. Journal of South American Earth Sciences 15, 511–552. Meza-Figueroa, D.M., 1998. Geochemistry and characterization of intermediate temperature eclogites from the Acatlán Complex, southern Mexico. Ph.D. thesis, University of Arizona, USA, 201 p. Meza-Figueroa, D.M., Ruiz, J., Talavera-Mendoza, O., Ortega-Gutiérrez, F., 2003. Tectonometamorphic evolution of the Acatlán Complex eclogites (southern México). Canadian Journal of Earth Sciences 40, 27–44. Middleton, M., Keppie, J.D., Murphy, J.B., Miller, B.V., Nance, R.D., 2007. P−T−t constraints on exhumation following subduction in the Rheic Ocean: eclogitic Asis Lithodeme, Piaxtla Suite, Acatlán Complex, southern Mexico. In: Linnemann, U., Nance, R.D., Zulaf, G., Kraft, P. (Eds.), The Geology of Peri-Gondwana: The Avalonian−Cadomian Belt, Adjoining Cratons and the Rheic Ocean: Geological Society of America, Special Paper, 397, pp. 489–509. Miller, B.V., Dostal, J., Keppie, J.D., Nance, R.D., Ortega-Rivera, A., Lee, J.K.W., 2007. Ordovician calc-alkaline granitoids in the Acatlán Complex, southern Mexico: geochemical and geochronologic evidence for either rifting or subduction along the Gondwanan margin of the Rheic Ocean. In: Linnemann, U., Nance, R.D., Zulaf, G., Kraft, P. (Eds.), The Geology of Peri-Gondwana: The Avalonian−Cadomian Belt, Adjoining Cratons and the Rheic Ocean: Geological Society of America, Special Paper, 423, pp. 465–475. Miyashiro, A., 1974. Volcanic rock series in island arcs and active continental margins. American Journal of Sciences 274, 321–357. Morales-Gamez, M., Keppie, J.D., Lee, J.K.W., Ortega-Rivera, A., 2009. Paleozoic structures in the Xayacatlán area, Acatlán Complex, southern Mexico: transtensional rift- and subduction-related deformation along the margin of Oaxaquia. International Geology Review 51 (4), 279–303. Murphy, J.B., Keppie, J.D., Nance, R.D., Miller, B.V., Dostal, J., Middleton, M., FernandezSuarez, J., Jefferies, T.E., 2006. Geochemistry and U−Pb protolith ages of eclogitic rocks of the Asis Lithodeme, Piaxtla Suite, Acatlán Complex, southern Mexico: tectonothermal activity along the southern margin of the Rheic Ocean. Journal of the Geological Society (London) 163, 683–695. Nance, R.D., Miller, B.V., Keppie, J.D., Murphy, J.B., Dostal, J., 2006. Acatlán Complex, southern Mexico: record spanning the assembly and breakup of Pangea. Geology 34, 857–860. Nance, R.D., Fernández-Suárez, J., Keppie, J.D., Storey, C., Jeffries, T.E., 2007. Provenance of the Granjeno Schist, Ciudad Victoria, Mexico: detrital zircon U−Pb age constraints and implications for Paleozoic paleogeography. In: Linnemann, U., Nance, R.D., Zulaf, G., Kraft, P. (Eds.), The Geology of Peri-Gondwana: The Avalonian−Cadomian Belt, Adjoining Cratons and the Rheic Ocean: Geological Society of America, Special Paper, 423, pp. 437–452. Navarro-Santillán, D., Sour-Tovar, F., Centeno-García, E., 2002. Lower Mississippian (Osagean) barchiopods from the Santiago Formation, Oaxaca, México: stratigraphic and tectonic implications. Journal of South American Earth Sciences 15, 327–336. Ortega-Gutiérrez, F., Elias-Herrera, M., Reyes-Salas, M., Macias-Romo, C., Lopez, R., 1999. Late Ordovician–Early Silurian continental collisional orogeny in southern Mexico and its bearing on Gondwana–Laurentia connections. Geology 27, 719–722.

229

Ortega-Obregon, C., Keppie, J.D., Murphy, J.B., Lee, J.K.W., Ortega-Rivera, A., 2009. Geology and geochronology of Paleozoic rocks in western Acatlán Complex, southern Mexico: evidence for contiguity across an extruded high-pressure belt and constraints on Paleozoic reconstructions. Geological Society of America Bulletin 121, 1678–1694. doi:10.1130/B26597.1. Ramos-Arias, M.A., Keppie, J.D., Ortega-Rivera, A., Lee, J.W.K., 2008. Extensional PermoCarboniferous deformation on the western margin of Pangea, Patlanoaya area, Acatlán Complex, southern Mexico. Tectonphysics 448, 60–76. Ross, P.S., Bedard, J.H., 2009. Magmatic affinity of modern and ancient subalkaline volcanic rocks determined from trace-element discrimination diagrams. Canadian Journal of Earth Sciences 46, 823–839. Sánchez-Zavala, J.L., Ortega-Gutiérrez, F., Keppie, J.D., Jenner, G.A., Belousova, E., Macias-Romo, C., 2004. Ordovician and Mesoproterozoic zircons from the Tecomate Formation and Esperanza granitoids, Acatlán and Oaxacan complexes. International Geology Review 46, 1005–1021. Solari, L.A., Keppie, J.D., Ortega-Gutiérrez, F., Cameron, K.L., Lopez, R., Hames, W.E., 2003. 990 Ma and 1, 100 Ma Grenvillian tectonothermal events in the northern Oaxacan Complex, southern Mexico: roots of an orogen. Tectonophysics 365 (1–4), 257–282. Solari, L.A., Gómez-Tuena, A., Bernal, J.P., Pérez-Arvizu, O., Tanner, M., 2009. U–Pb zircon geochronology with an integrated LA-ICP-MS microanalytical workstation: achievements in precision and accuracy. Geostandards and Geoanalytical Research 34, 5–18. Stacey, J.S., Kramers, J.D., 1975. Aproximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters 26, 207–221. Stöckhert, B., Gerya, T.V., 2005. Pre-collisional high pressure metamorphism and nappe tectonics at active continental margins: a numerical simulation. Terra Nova 17, 102–110. Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J. (Eds.), Magmatism in the Ocean Basins: Geological Society London, Special Publication, 42, pp. 313–345. Talavera-Mendoza, O., Ruiz, J., Gehrels, G.E., Meza-Figueroa, D.M., Vega-Granillo, R., Campa-Uranga, M.F., 2005. U–Pb geochronology of the Acatlán Complex and implications for the Paleozoic paleogeography and tectonic evolution of southern Mexico. Earth and Planetary Science Letters 235, 682–699. Vachard, D., Flores de Dios, A., Buitrón, B.E., Grajales, M., 2000. Biostratigraphie par fusulines des calcaires Carbonifères et Permiens de San Salvador Patlanoaya (Puebla, Mexique). Geobios 33, 5–33. Vega-Granillo, R., Talavera-Mendoza, O., Meza-Figueroa, D., Ruiz, J., Gehrels, G.E., LópezMartínez, M., de La Cruz-Vargas, J.C., 2007. Pressure–temperature–time evolution of Paleozoic high-pressure rocks of the Acatlán Complex (southern Mexico): implications for the evolution of the Iapetus and Rheic Oceans. Geological Society of America Bulletin 119, 1249–1264. Vega-Granillo, R., Talavera-Mendoza, O., Meza-Figueroa, D., Ruiz, J., Gehrels, G.E., LópezMartínez, M., de La Cruz-Vargas, J.C., 2009a. Pressure–temperature–time evolution of Paleozoic high-pressure rocks of the Acatlán Complex (southern Mexico): implications for the evolution of the Iapetus and Rheic Oceans, Reply. Geological Society of America Bulletin 121, 1460–1464. doi:10.1130/B26514.1. Vega-Granillo, R., Calmus, T., Meza-Figueroa, D., Ruiz, J., Talavera-Mendoza, O., LópezMartínez, M., 2009b. Structural and tectonic evolution of the Acatlán Complex, southern Mexico: its role in the collisional history of Laurentia and Gondwana. Tectonics 28, TC4008. doi:10.1029/2007TC002159. Winchester, J.A., Floyd, P.A., 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology 20, 325–343. Wood, D.A., 1980. The application of a Th–Hf–Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth and Planetary Science Letters 50, 11–30.


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.