4 minute read

MARKETS

cause damage that compromises the integrity and safety of these devices. External sources of heat, such as open flames or heaters, as well as temperatures exceeding 55 degrees Celsius, can accelerate the deterioration of devices with damaged cells or those with manufacturing defects.

Similarly, charging lithium-ion batteries at temperatures below freezing can lead to the formation of a permanent metal coating of lithium on the anode. This coating increases the risk of battery failure and, consequently, fire incidents.

Therefore, adhering to the manufacturer’s instructions for charging devices and batteries is crucial in preventing damage to these devices. To reduce the risk, some chargers employ a cyclic power supply mechanism to avoid overcharging, while fast chargers often lack this feature, making user vigilance crucial in such cases. Nevertheless, the industry recommendation is to use chargers according to the manufacturer’s instructions to maintain battery safety.

How to Prevent Thermal Runaway?

Essentially, it is crucial to avoid putting the battery in a “faulty” state. However, what if this has already happened without the user’s awareness of the problem?

In the case of battery failure, the heat generated during the operating process can damage nearby cells, triggering a chain reaction known as a thermal runaway. The high energy density of lithium batteries makes them more prone to such reactions. Depending on factors such as the battery’s chemical composition, size, design, types of components, and stored energy capacity, failures in lithium cells can result in chemical reactions and the initiation of combustion, leading to heat release and excessive pressure. The chemical reactions inside the battery can raise this pressure to a point where the cell walls expand and byproducts leak from the solution. These byproducts include carbon monoxide, carbon dioxide, hydrogen, and hydrocarbons, which are highly flammable and contribute to fire outbreaks and even explosions in lithiumion batteries.

As an exacerbating factor in battery ignition, combustion can also cause the separation of fluorine from lithium salts in the battery. When mixed with water vapor, fluorine can produce hydrofluoric acid, a highly dangerous substance that can have long-term but initially unnoticeable effects on human health.

Given all the above, it is clear that a comprehensive understanding of these processes and incorporating knowledge of their mechanics is imperative in developing guidelines and best practices for safely handling these devices.

The Ecological Transition and Affordability Fuel the Fires

Seemingly unrelated global events have also had an impact on shifting the spotlight toward lithium-ion batteries as a security risk. After the outbreak of the Covid-19 pandemic, the use of scooters and e-bikes significantly increased, especially in the segment of delivery services and commuting. This sudden surge led to a spike in the price of these transportation devices, prompting individuals to seek manufacturers with lower quality control standards for their battery systems. Once the market stabilized, the demand for lithium-ion batteries continued to experience significant and rapid growth, primarily driven by the needs of the ecological transition. Li-Bridge, an organization dedicated to the development of a supply chain for lithium-based batteries, states that the global demand for lithium-ion bat- teries is expected to increase more than fivefold by 2030.

This demand is closely followed by the rising number of associated fire incidents.

According to insurance company Zurich, in 2021 alone, there was an increase of nearly 150% in the number of fires caused by lithium-ion battery explosions in e-scooters and e-bikes. Simultaneously, the number of such fires continued to rise by an additional 28% by the end of September 2022 compared to the monthly average in 2021.

The city of New York can serve as a litmus test for dominant safety trends in this market. In 2019, there were 30 fires attributed to the use of batteries in electric bikes or scooters in New York. A year later, this number increased to over 40. By 2021, the frequency of fires more than doubled, reaching a total of 104 incidents in just this city.

Ultimately, by the end of 2022, lithiumion batteries were identified as the cause of 220 fires in New York, resulting in six fatalities and 147 injuries. These figures have prompted emergency services to seek professional assistance in identifying the causes of these occurrences to reduce their frequency.

Delayed Fires as a Unique Firefighting Challenge

One of the major causes of fires in electric vehicles and scooters is traffic accidents that result in battery damage. They can lead to the rupture of battery cells, causing internal short circuits and accompanying fires. Unlike vehicles with

The Sinking of the Felicity Ace: Did Electric Vehicles Hinder Firefighting Efforts?

It’s not just trucks and logistical infrastructure that are at risk from the specific fire hazards associated with lithium-ion battery vehicles. On March 1, 2022, the cargo ship Felicity Ace sank near the Azores in the Atlantic Ocean, resulting in the loss of approximately 3,965 automobiles. It is estimated that around 300 electric vehicles were found among them which presented an additional challenge in firefighting efforts because suppressing flames on lithium-ion batteries requires the use of large quantities of dry chemicals such as ABC powder, carbon dioxide, powdered graphite, and sodium carbonate. The crew had to abandon the ship as the attempts to extinguish the fire with water alone proved ineffective. At the same time, cargo ships and ferries are particularly susceptible to such fires due to their internal configuration i.e. the lack of internal compartments which facilitates the rapid spread of fire to other vehicles.

conventional engines, electric vehicles experience a unique phenomenon of “delayed” fires after a collision, which poses a specific risk for emergency services that are only just becoming familiar with this occurrence. Pioneering research in this field was conducted by the National Transportation Safety Board (NTSB) in the United States. The Board investigated several incidents involving delayed ignition of lithium-ion batteries in electric vehicles. Instead of the expected battery ignition during or immediately after the collision, it was observed that the vehicles caught fire several hours or even several days after the incident. For example, in Lake Forest, California, an electric SUV crashed into a residential garage and caught fire. Firefighters initially had to use an unusually large amount of water (over 70,000 liters) on the fire, which continued to burn for at least two hours. It was only when they lifted the vehicle to directly extinguish the flaming battery that the temperature dropped sufficiently to safely remove the vehicle from the scene. However, during transportation on a semi-trailer truck, the battery

This article is from: