
4 minute read
MARKETS
reignited spontaneously. A similar case occurred in Mountain View in the same region, except that the vehicle’s battery caused a delayed fire at the disposal site five days after the accident.
While there is no clear evidence indicating that electric vehicles are more prone to fires compared to conventional vehicles, the associated thermal runaway process in lithium-ion batteries can be delayed or slowed down to the point of being literally imperceptible. In fact, the initial impact and battery damage can trigger a slow but inevitable chain reaction, ultimately leading to unexpected fires after prolonged intervals, particularly in locations such as salvage yards or vehicle storage areas.
Equally important is the risk faced by truck drivers transporting vehicles with damaged lithium-ion batteries. They are exposed to the possibility of sudden and delayed fires, which can easily spread to other vehicles and further complicate the task for firefighters.
Underground Garages and Landfills Are at an Increased Risk
The increasing use of lithium-ion batteries in transport vehicles such as e-bikes and e-scooters has caused real concern among safety professionals due to frequent fire incidents caused by these products. Furthermore, as the global transition to zero-emission vehicles gains
Illegal Vehicle Modifications as a Complicating Factor
In the midst of the authentic boom in the use of scooters with lithium-ion batteries, emergency services face a new challenge in the form of illegal activities associated with this trend. An illustrative example is a tragic incident that occurred on January 1, 2023, in a residential block in the British city of Bristol, resulting in the death of one person and the hospitalization of eight others. The investigation revealed that a fire broke out in the hallway of an apartment, with an amateurishly modified e-bike with a lithium battery identified as the cause. Local authorities attributed this to the growing trend of using conversion kits, which allow for retrofitting electric motors onto standard bicycles. These kits often lack proper batteries, tempting consumers to purchase cheaper alternatives and unverified chargers online that do not always adhere to industrial safety standards. Due to the increased likelihood of malfunctions in these non-standard batteries, the risk of fire is significantly heightened.
momentum, there are concerns about the potential risks posed by underground parking lots. These locations are now filled with electric cars and chargers and are not always easily accessible for firefighting operations. Alarms have been raised in some countries: after a significant increase in the number of fires caused by e-bikes and escooters in London (from eight to 59 cases in just two years), the local transport regulator has called for a ban on the use of private e-vehicles on subway and buses. At the same time, the Environmental Services Association (ESA) warned that these batteries are dangerous even when they are not in active use, as they can be damaged during disposal in landfills or preparation for recycling. This is primarily associated with the risk of lithium-ion bat- teries being crushed, broken, or exposed to weather conditions, which facilitates self-ignition or explosions.
At the same time, lithium-ion batteries have become prevalent enough in everyday life that users now dispose of them together with regular waste and other recyclable materials, even though they are essentially ticking fire bombs in this state. Experts emphasize the importance of separate and proper recycling of lithium-ion batteries, along with their safe disposal outside inhabited areas and adequate protection from weather conditions. Damaged batteries are a particular source of risk as they must be disposed of separately and stored in containers filled with sand or other inert materials such as vermiculite.
The Industry Responds: A Regulatory or Technological Offensive?
At this moment, it seems that government regulators and the industry are competing to find a universal solution to the “inflammatory” issue of lithium-ion batteries. The solution appears to lie in a fusion of both approaches, with pioneering steps being taken by countries with the highest number of users and, consequently, incidents related to these devices. For example, in the United States, there is an initiative underway to pass consumer standards legislation for lithium-ion batteries. The goal is to establish safety standards for batteries in electric scooters and bicycles, including guidelines for consumer protection. Regulators have emphasized the need for global regulation of the distribution of these batteries from different countries, including those from China, which is undoubtedly yet another echo of the ongoing trade war between the US and China. Unlike regulation, the user education segment has likely made the most progress in fire prevention. Best practices for protection are generally well-known and include avoiding exposing lithium-

Data Centers Are Seeking Solutions in the Redesign of Their Facilities
Lithium-ion batteries have been identified as the main suspect in several devastating fires in data centers. One such incident occurred in early 2021 when OVHcloud, a major European cloud service provider, lost one of its centers in Strasbourg due to a fire. It is also believed that the destructive fire at the Maxnod center in France in March was caused by the ignition of a lithium-ion battery. In light of the potential risks associated with lithium-ion batteries in these facilities, experts emphasize the importance of their functional redesign. This primarily involves relocating lithiumion batteries to dedicated rooms equipped with fire-resistant walls and ceilings. Simultaneously, fire suppression systems using foam would be introduced instead of water-based systems.
ion batteries to extreme temperatures and minimizing overnight and continuous charging. Choosing reputable brands and using original charging devices is another important step in mitigating fire risks. During charging, experts believe that it is crucial to ensure adequate air circulation to prevent heat buildup. It is also advisable to keep and charge electric vehicles outside enclosed spaces, ideally in a dedicated isolated area that local authorities should allocate for this purpose. Government efforts aimed at preventing loss of life and property can also involve enacting standardized storage and han- dling procedures for lithium-ion batteries, especially during transit on ships or trucks following traffic accidents. Lastly, the security industry itself has almost unlimited potential to offer solutions for various risks, including new or lesser-known ones. Early detection of unexpected and delayed battery fires can be ensured through 24/7 monitoring of device transportation, aided by thermal scanners, gas detectors, heat and smoke sensors, and CCTV cameras. Additionally, the industry can provide specialized training for personnel involved in battery handling and fire suppression procedures based on previous experiences with such incidents. It is clear to everyone that if we want the technological torch of lithium-ion batteries to continue to illuminate the path ahead, we must take their countless benefits as seriously as the safety of all user groups that want to tread on it. n