Revista I+i 2009

Page 1



Chirinos, Hugo. “Mejora del proceso de transesterificación usando blendas: aceite de ricino y aceites residuales”

EDITORIAL Este año celebramos nuestros 25 años de actividad académica, formativa y de investigación, capacitando y asesorando en tecnología. Tecsup se creó con la convicción de que el desarrollo tecnológico es la base fundamental para la prosperidad del país, y por ello busca enaltecer a los profesionales destacados brindándoles oportunidades dentro de nuestra casa y promueve en ella las planes de progreso de los jóvenes peruanos. Estos 25 años han transcurrido en continuo crecimiento, siempre bajo los principios de la acción de excelencia en el servicio y la articulación con las empresas. Y así, siendo muchas las experiencias vividas con el orbe empresarial tanto en capacitación como en asesoría para el desarrollo de proyectos, desde hace tres años se mantiene el impulso por publicar en Tecsup nuestra revista I+i. Los proyectos han incluido temas tan diversos como procesamiento de minerales, automatización, materiales, gestión del mantenimiento, manejo de energía y organización de recursos humanos. Todos ellos desarrollados desde la perspectiva y las competencias de profesionales de muy alto nivel en una organización de ingeniería aplicada. Compartimos en este número de I+i algunas de las investigaciones y asesorías desarrolladas por nuestra comunidad académica en alianza con las empresas para atender las necesidades reales del sector productivo. Continuaremos, a través de este medio, impulsando la tecnología y la investigación aplicada para beneficio de nuestro país. Finalmente, en este número queremos rendir un sentido homenaje a quien en vida fue un gran impulsor, miembro del Comité Editorial y autor de investigaciones de la revista I+i, el Ing. Adolfo Marchese, quien nos deja grandes enseñanzas. Hasta siempre Adolfo.

Comité Editorial

Invest Apl Innov 3(1), 2009

3


Investigación aplicada de resinas de intercambio iónico para recuperar oro en soluciones cianuradas Applied research of resins ion exchange in order to recover gold from cyanide solutions Adolfo Marchese (†)

Resumen

the possibility of using resins ion exchange in order to recover gold from cyanide solutions.

La investigación aplicada tuvo como objetivo evaluar una nueva opción tecnológica para recuperar el oro disuelto a

The work method included the basic research with strong re-

partir de soluciones provenientes de cianuración de minera-

sins and synthetic solutions contained gold into cyanide, and it

les. Se investigó en el laboratorio, la factibilidad de utilizar re-

showed that resins absorb the complex gold-cyanide and the

sinas de intercambio iónico en la recuperación del oro conte-

performance was close to 99%. Afterwards we evaluated the

nido en las soluciones de lixiviación de minerales auríferos.

of recovery of gold from cyanidation of an auriferous concentrate, through the resin in pulp process (RIP); at the same time

4

La metodología de trabajo incluyó la investigación básica

the absortion in a bed of resins, previous solid-liquid separation.

efectuada con resinas de base fuerte y soluciones sintéti-

Research includes a comparison with the carbon in pulp process

cas de oro disuelto en medio cianuro. Se estableció que las

(CIP).

resinas adsorben el complejo aurocianuro con eficiencias próximas al 99%. A continuación, se evaluó la recuperación

The findings of the investigation showed the potential advan-

del oro disuelto en la cianuración de un concentrado aurífe-

tages of the RIP process over the CIP: the relative insensitivity

ro, mediante su absorción en resinas empleando el sistema

of resins to organic pollution and the better absortion of gold

de resina en pulpa (RIP), y, paralelamente, la adsorción en una

in comparison with activated carbon, therefore suggesting RIP

cama de resinas contenidas en columna, previa separación

process should be used for small plants.

sólido-líquido; se efectuó también la comparación con el sistema carbón en pulpa (CIP).

The conclusions of the experimental work shows is possible to apply the RIP process for cyanide pulp from concentrates, it

Los hallazgos de investigación demostraron que las ventajas potenciales del proceso RIP respecto del CIP, son la relativa insensibilidad de las resinas a contaminantes orgánicos y la

achieving an absorption level over than 98%.

Palabras claves

mejor absorción del oro en comparación con el carbón activado, sugiriéndose el proceso RIP para plantas pequeñas.

Resinas, intercambio iónico, proceso resina en pulpa, proceso carbón en pulpa, cianuración, absorción.

Las conclusiones del trabajo experimental demuestran que para el caso de pulpas cianuradas de concentrados de flota-

Key Words

ción, es factible aplicar el proceso RIP, lográndose niveles de absorción superiores al 98%.

Resins, ion exchange, resin in pulp process, carbon in pulp process, cyanidation, absorption.

Abstract

INTRODUCCIÓN

Applied research had the objective to evaluate a new technology in order to recover dissolved gold from cyanide solu-

En el plano industrial existen aplicaciones de diversos méto-

tions. In the laboratory, the research was oriented to evaluate

dos de recuperación de oro desde soluciones cianuradas, entre ellos el proceso Merril Crowe y el proceso carbón en pulpa. Sin

Invest Apl Innov 3(1), 2009


Marchese, Adolfo.” Investigación aplicada de resinas de intercambio iónico para recuperar oro en soluciones cianuradas”

embargo, estos procesos tienen desventajas conocidas, direc-

La Figura 1 representa la estructura química de resinas de base

tamente relacionadas a la eficiencia de recuperación; en este

fuerte, destacándose la presencia del radical -SO3H en la resina

contexto, es necesario investigar nuevas opciones tecnológi-

catiónica y del grupo -NR2 en la resina aniónica.

cas usando productos alternativos. La tecnología de intercambio iónico que ha sido adaptada al La recuperación del oro en resinas de intercambio iónico es

proceso de cianuración de minerales auríferos, comprende tres

una tecnología emergente en países con mayor adelanto tec-

etapas: cargado, elusión y recuperación [2].

nológico; debido a la gran afinidad de las resinas por los aniones complejos de oro, el mayor problema es la recuperación

La etapa de carga consiste en utilizar una resina aniónica para

del oro de la resina, más que la recuperación en sí de los iones

remover el ión aurocianuro de una solución pregnant, cuando

aurocianuro.

esta solución clarificada es pasada a través de una cama de resina, o si la extracción se realiza directamente en la pulpa

Se tiene referencia acerca del ensayo de aplicación del pro-

cianurada (proceso RIP). Ejemplos de la capacidad de carga de

ceso resina en pulpa (RIP) en Sudáfrica, en una planta piloto,

diferentes resinas se presenta a continuación [3].

que sirvió para demostrar que los requerimientos mecánicos son similares a los del proceso carbón en pulpa (CIP); sin em-

RESINA

CAPACIDAD Kg Au/m3

bargo, en el aspecto químico se señalan ventajas del proceso

Amberlita IRA-400

7.0

RIP sobre CIP, como cinética más rápida, mayor capacidad de

Amberlita IRA-401

4.2

carga de oro, y menor consumo de energía en la elusión y

Dowex 1

5.2

regeneración.

Dowex 2

5.0

El interés de realizar la investigación aplicada se basó en emplear el sistema de resinas como alternativa técnica que compita con el uso de carbón, además se siguieron los siguientes objetivos:

5

1. Menores costos y simplicidad de los procesos de regeneración de las resinas. 2. El proceso de resinas podría mantener su eficiencia cuando entre en contacto con material orgánico que podría estar presente en la pulpa.

FUNDAMENTOS Las resinas de intercambio iónico, compuestas por moléculas polimerizadas a las que se han agregado grupos iónicos adecuados, según el trabajo a realizar. Así, las resinas designadas para intercambiar cationes deberán tener radicales como: -SO3H ó -COOH; y los intercambiadores aniónicos contendrán grupos como -NH2 ó -NR2, además del catión intercambiante.

Figura 1. Estructura química de las resinas

En toda resina debe considerarse las siguientes características [1]: • El producto debe ser completamente insoluble en agua o en el solvente. • Tener resistencia a la degradación por acción química. • Tener la porosidad adecuada que permita el paso de los iones comunes en su forma hidratada.

Invest Apl Innov 3(1), 2009

Mecanismo Químico del proceso de carga En la cianuración, el oro es disuelto formando un complejo aurocianuro aniónico Au(CN)2-, el cual es extraído de la solución por la resina gracias a un mecanismo de intercambio iónico.


Marchese, Adolfo.” Investigación aplicada de resinas de intercambio iónico para recuperar oro en soluciones cianuradas”

La presencia de otros grupos funcionales tiene efecto en la

PROCEDIMIENTO

eficiencia de absorción de la resina. Además, existe un efecto competitivo de algunos complejos de cobre [Cu(CN)4]-3 y

Investigación Básica

complejos de fierro [Fe(CN)6]-3, con el consiguiente desplazamiento del oro, afectando su capacidad de carga [4].

Existen diversas formas de evaluar resinas de intercambio iónico en el laboratorio, aunque la más generalizada es el empleo

La composición de la solución también afecta la carga de la

de columnas. En nuestro trabajo se simuló esta columna prepa-

resina; algunos cationes (Zn, Ni, Co) y aniones (CO3, Cl-, SO4-2)

rando una bureta adecuada.

se cargan en la resina, compitiendo con la extracción del ión complejo Au(CN)2-

Las resinas utilizadas fueron previamente lavadas en una solución de salmuera (10 g/L) durante 30 minutos, y a continuación

Una resina de base fuerte que contiene grupos funcionales

se carga en la columna para ser lavado con agua desionizada.

de aminas cuaternarias, extrae el complejo aurocianuro se-

La cama de resina se prepara manteniendo el nivel de líquido

gún la ecuación (5):

por encima del nivel de resinas, evitando que se puedan secar dentro de la columna.

: - NR3 X + Au(CN)2   :- NR3 Au(CN)2 + X Las resinas utilizadas en el trabajo experimental son aniónicas Donde el símbolo: - denota a la matriz de resina. Una resina de

de base fuerte y se las denomina comercialmente Amberlita

base débil contiene grupos funcionales de amina terciaria, y

IRA-420. La del tipo gel se empleó para la evaluación en colum-

en su forma libre no es cargable, requiere ser protonada pre-

nas, mientras que la de tipo reticular se utilizó para las pruebas

via a la extracción de los iones aurocianuro.

de resinas en pulpa. Ambas resinas tienen base poliestirénica y

Proceso Resina en Pulpa

su matriz catiónica, diferenciándose en el tipo de porosidad. En las pruebas de Investigación Básica las variables estudiadas

6

La técnica de resina en pulpa (RIP) se emplea, por lo general,

fueron: altura de la cama de las resinas, concentración de oro en

cuando se encuentran dificultades para la separación sólido-

solución sintética, flujo de irrigación, pH, medio alcalinizante y

líquido y, en particular, con contenidos muy finos de arcillas.

adición de salmuera.

Dependiendo de la densidad de pulpa, se tiene 2 sistemas:

Las condiciones y resultados de esta etapa se presentan en la Tabla 1.

a. Para pulpas diluidas, se trata de hacer pasar por impulsión a contracorriente la pulpa a través de una cama de resina.

Cianuración Experimental

b. Para pulpas algo más espesas se mezcla la pulpa con la

El mineral que se utilizó en la investigación aplicada es un con-

resina hasta lograr la saturación iónica de la resina, efec-

centrado aurífero obtenido por flotación que está compuesto

tuándose la separación por cribado.

por abundante pirita, marcasita y calcopirita. El oro está en forma nativa en finas inclusiones en la pirita, y además se determi-

El profesor Flemming [5] enumera los casos en que el empleo

nó que la tetrahedrita aporta los valores de plata.

de resinas puede ser atractivo para recuperar el oro en el tratamiento de minerales:

La composición química de este concentrado se presenta en la Tabla 2.

• Para materiales oxidados y/o arcillosos, e incluso en calcinas, por su naturaleza inherente en contenidos finos.

Previamente, se determinaron las condiciones óptimas para obtener las mayores extracciones de valores. Luego, se procedió a

• En el tratamiento de pulpas que contienen materias orgánicas disueltas.

acumular volumen suficiente (pulpa y solución) para las pruebas de absorción con resina.

• El tratamiento de pulpas que provengan de plantas de

La pulpa de cianuración del concentrado aurífero fue filtrada,

flotación y que contienen diversos reactivos en disolu-

obteniéndose una solución clarificada cuya composición quí-

ción (xantatos, espumantes, etc.).

mica es la siguiente: leyes en ppm, NaCN en g/L.

Invest Apl Innov 3(1), 2009


Marchese, Adolfo.” Investigación aplicada de resinas de intercambio iónico para recuperar oro en soluciones cianuradas”

RESINA

% NaCN absorbido

pH final

Concentración inicial

Au (ppm) final

Eficiencia Absorción Au

Carga Resina Au (gr/m3)

Altura (cm)

Peso (gr)

Flujo (cc/min)

1

25.5

10.5

5

97.3

9.5

10.70

0.35

96.7

177.5

2

26.0

10.7

5

96.6

9.6

19.30

0.37

98.1

318.5

3

26.8

10.9

5

96.0

9.5

32.35

0.21

99.3

498.7

4

27.0

11.0

5

97.3

9.5

47.90

0.12

99.7

781.8

5

12.5

5.2

5

98.0

9.4

10.23

0.13

98.7

349.6

6

12.5

5.2

5

94.0

9.5

19.30

0.34

98.2

656.3

7

12.6

5.3

5

93.5

9.6

34.70

0.25

99.3

1170.0

8

12.8

5.4

5

91.7

8.9

47.90

0.25

99.5

1560.0

9*

13.0

5.4

5

98.0

9.7

19.20

0.05

99.7

638.3

10**

12.5

4.8

5

93.4

9.2

91.30

0.12

99.9

3420.0

11

6.0

2.4

5

85.5

9.5

51.70

0.14

99.7

3867.0

12

3.5

1.4

5

69.0

9.8

54.80

0.24

99.6

7015.0

13

12.3

5.5

7.5

96.8

8.8

53.30

0.26

99.5

1735.0

14

12.5

5.4

10

96.0

8.9

49.10

0.13

99.7

1663.0

15

11.8

5.0

15

92.0

9.3

49.9

0.11

99.8

1792.0

16***

12.6

5.2

5

96.0

9.2

49.9

0.05

99.9

1724.0

Prueba

Observaciones: (*) No se lavó la resina con salmuera (**) La solución sintética se contaminó con reactivo orgánico (***) El medio alcalinizante de la solución sintética utilizado fue NaOH Tabla 1. Efecto de variables en la carga de oro en resinas a partir de soluciones sintéticas (nacn = 0.75 G/l) (ph: 10.5 Cal)

Cabeza Experimental (Leyes %, Ag y Au en Oz/TC)

7

Au

Ag

Cu

Cuox

7.30

17.35

2.84

0.07

As

Sb

Bi

Fe

0.28

0.007

0.16

37.60

Cianuración del concentrado aurífero: Condiciones

Concentrado (kg)

:

25.0

Granulometría

:

original

Sólidos (%)

:

30

Concentración NaCN (%)

:

0.15

Tiempo (horas)

:

48

Rango pH

:

11 – 10.7

Resultados

Au

:

90.9

Ag

:

25.4

:

3.26

:

3.67

Extracciones (%)

NaCN

Consumos (Kg/TM)

Cal

Tabla 2. Composición química y cianuración del concentrado aurífero

Invest Apl Innov 3(1), 2009


Marchese, Adolfo.” Investigación aplicada de resinas de intercambio iónico para recuperar oro en soluciones cianuradas”

Au

Ag

Cu

Zn

As

95.5 103.2 297.5 460 9.55

Donde R es la estructura catiónica de la resina cargada del ión

Cianuro

Fe

pH

8.0

10.1 0.60 1.50

Libre Total

La solución clarificada sirvió para realizar pruebas de absorción en columna y los resultados se presentan en la Tabla 3.

Con el objetivo de investigar la recuperación de oro a partir de las pulpas de cianuración aplicando el proceso resina en pulpa, se efectuaron pruebas que simularon este proceso, estudiando inicialmente el efecto de la concentración de resina y el tiempo de contacto más adecuado. Las condiciones y resultados se presentan en la Tabla 4. Adicionalmente se realizaron pruebas comparativas entre los procesos CIP y RIP. Las condiciones y resultados se presentan en la Tabla 5.

químico de cobre, zinc y cianuro libre. Los resultados se presentan en la Tabla 3, del que se puede extraer las siguientes con-

• La resina de base fuerte utilizada no tiene selectividad para la extracción de oro, ya que por su fuerte cambio iónico tiene capacidad para absorber otros iones presentes. • La absorción de valores se incrementa con la mayor concentración de resina (mixtura de columna). • El flujo de irrigación, que representa el tiempo de contacto cidad de extracción de iones. • El efecto de la temperatura es significativo: a mayor tempe-

Investigación básica

ratura corresponde mayor carga.

Los resultados se presentan en la Tabla 1 y nos demuestran niveles de eficiencia de extracción de oro entre 98 y 99%. Se pueden establecer las siguientes observaciones:

• Al comparar las pruebas 3 y 10, se comprueba que la resina mantiene su eficiencia de carga, al trabajar con una solución con fuerte contenido de reactivos de flotación.

• La altura de cama de resina no influye en la absorción de oro, pero a menor altura se extrae menos cianuro de sodio.

• El pH de trabajo (pH = 10.2) no tiene incidencia en la carga de oro, lo que era predecible tratándose de una resina de base fuerte.

• La resina evaluada extrae el oro disuelto, tanto en concentraciones altas (100 ppm) como en concentraciones bajas (10 ppm).

Investigación Aplicada del Proceso RIP Los resultados de la Tabla 4, en cuanto a rendimiento de absor-

• La absorción del oro es independiente del flujo de irrigación; sin embargo, esta variable sí afecta la absorción del cianuro libre.

ción de oro, son destacables: La eficiencia se incrementa con un mayor nivel de adición de resina y alcanza un máximo de 98% con una concentración de resina de 17.5 g/L; en cuanto al tiempo de retención, los resultados demuestran que en 3 horas

• Respecto a la alcalinidad, la eficiencia es alta utilizando Cal o NaOH como medios alcalinizantes; con relación al pH, su valor decrece, dependiendo de la altura de resina y/o flujo de irrigación.

de contacto se obtienen una alta eficiencia de absorción de oro. Los resultados son tabulados y presentados en las Figuras 2 y 3. En la Tabla 5 se plantea una comparación entre los procesos RIP y CIP, respecto de la recuperación de valores con pruebas

• Para la absorción del cianuro libre se ha propuesto que ocurre la siguiente reacción genérica.

Invest Apl Innov 3(1), 2009

absorción en columna, además de oro y plata, se efectuó análisis

de la solución con la resina, influye inversamente en la capa-

RESULTADOS

NaCN + R Cl

Con la solución clarificada que sirvió para realizar pruebas de

clusiones:

Proceso Resina en pulpa

8

cloro.

➜ NaCl

+ R

CN

realizadas en condiciones muy similares; de la interpretación de resultados se generan las siguientes conclusiones:


MArChEsE, Adolfo.” Investigación aplicada de resinas de intercambio iónico para recuperar oro en soluciones cianuradas”

• Con bajo nivel de adición de extractante, existe un rendi-

• La capacidad de carga de oro en la resina es mayor que en

miento similar de extracción, pero se establecen diferen-

el carbón activado, lo que es más notable cuando se trabaja

cias para una concentración de resina de 17.5 g/L y, en 3

con concentraciones altas.

horas de contacto, se observa una diferencia de 5% de eficiencia en favor de la resina de base fuerte.

• No se efectuó control sobre la absorción de plata en la resina, pero se estima que su eficiencia es mayor o igual que en

• Para altas concentraciones de cada extractante, los rendi-

el carbón activado.

mientos de absorción en oro son similares.

Figura 2. Proceso de resina en pulpa. Efecto de la concentración de resina

Figura 3. Proceso de resina en pulpa. cinética de absorción de oro

Invest Apl Innov 3(1), 2009

9


Marchese, Adolfo.” Investigación aplicada de resinas de intercambio iónico para recuperar oro en soluciones cianuradas”

CONCLUSIONES

[4] Deschenes, G. (1986). “Literature survey on the recovery of gold from thiourea solutions and the comparison with cyanidation”. CIM Bulletin, Volume 79, No 895

• La información disponible en la literatura técnica sobre el tema y del análisis de los resultados obtenidos en el trabajo experimental, permite destacar la opción de re-

[5] Fleming , C.A. (1982). “Some aspects of the chemistry of

cuperar oro de soluciones cianuradas con el empleo de

carbon-in-pulp and resin-in-pulp processes”. The Australian

resinas de intercambio iónico. La investigación realizada

I.M.M. Carbon-In-Pulp Seminar.

ha demostrado que resinas de base fuerte tienen una alta capacidad de absorción, pero baja selectividad para

[6] Ryan, Bredon. (1987). “Mintek researching RIP as an alternative to CIP”. Engineering and Mining Journal.

el oro, lo que hace posible la recuperación de otros elementos metálicos y la del cianuro alcalino, el cual podría ser recirculado a la lixiviación.

[7] Rohm and Haas Ion Exchange Resins. Laboratory Guide. Catalogue 1987.

• Al determinar la resina adecuada para cada caso específico, se estaría en presencia de un proceso que ofrece me-

[8] Banco Minero del Perú.

jores ventajas sobre el carbón activado, como la menor

“Cianuración por agitación de un concentrado aurífero

friabilidad y menor consumo energético en la elusión y

Informe 2162-LMC”. (Informe privado) octubre 1989.

regeneración. Para encontrar su total desarrollo y aceptación, es imprescindible demostrar una alta eficiencia de

ACERCA DEL AUTOR

elusión y solucionar el problema creado por el pequeño Adolfo Marchese García fue ingeniero

tamaño de las resinas.

metalúrgico. Magíster en Gestión Ambiental por la Universidad Politécnica

• El sistema de resinas al compararlo con el carbón activa-

de Madrid. Destacaba por su experien-

do, tiene algunas ventajas en favor de las resinas:

cia en el diseño del procesamiento de minerales auríferos y polimetalicos.

a) Las resinas pueden cargar 70% de su peso, mientras

10

que el carbón sólo 1.5% de su peso; por lo tanto, resulta menos costoso el transporte, manejo, inventario

Autor de veinticinco artículos técnicos

y almacenamiento.

sobre Mineralurgia, tecnología ambiental, coyuntura minera y capacitación en minería. Participó

b) Por su fuerte cambio iónico, las resinas extraen oro y plata más rápido que el carbón, lo que reduce las pér-

como ponente en seminarios y congresos sobre Mineralurgia y Metalurgia Extractiva, en el ámbito nacional e internacional.

didas de valores por competencia con otras materias carboníferas dentro del mineral.

Hasta hace muy poco se desempeñaba como Jefe del departamento de Química y Metalurgia de Tecsup y dirigía la carre-

REFERENCIAS

ra profesional Procesos Químicos y Metalúrgicos. Su reciente muerte es una gran pérdida para la comunidad académica

[1] Newell, Jaime (1959). “Introducción al Intercambio Iónico”. Revista Minería 30. Instituto de Ingenieros de Minas del Perú. [2] Jha, M.C. (1984). Recovery of gold and silver from cyanide solutions: A comparative study of various processes. Congreso I.S.P.M.R. Reno – Nevada. [3] Jarufe K., y Mucha N. (1980). “Avances en los métodos de recuperación de oro y plata de minerales auríferos”. XV Convención de Ingenieros de Minas – Trujillo.

Invest Apl Innov 3(1), 2009

nacional.


Desarrollo y aplicación de un programa de entrenamiento basado en computador para operadores y mantenedores de una planta de electrorefinación Development and application of Computer Based training for operators and maintenance of a electroretinery plant personnel Víctor Salinas

Resumen

mación en visitas a terreno. Como KPI se utiliza un diagnóstico situacional de competencia, antes y después del entrenamiento.

El entrenamiento basado en computador (CBT) o también llamado instrucción asistida por computador (CAI), es un mé-

Este es considerado un proyecto piloto y el resultado será útil

todo de enseñanza alternativo y, algunas veces, más efectivo

para instituir el uso del CBT en otras unidades mineras.

que las prácticas de enseñanza-aprendizaje presencial, debido a que el estudiante puede trabajar solo, y puede determi-

Abstract

nar su propia velocidad de aprendizaje usando una amplia variedad de herramientas y métodos para la transferencia del

Computer Based Training (CBT), also named Computer Assisted

conocimiento. Dentro de las principales características del CBT

Instruction (CAI), is an alternative method for teaching and is

podemos mencionar que la enseñanza se torna personaliza-

sometimes more effective than face to face teaching learning

da y con realimentación inmediata, lo que permite prevenir

sessions, due to hta fact that the student can work alone and

errores en la dirección del aprendizaje, además permite una

can determine his own learning speed, using a broad variety of

cerrada colaboración entre las empresas, los entrenadores y

tools and methods for the knowledge transfer. The main cha-

los desarrolladores del CBT y una reducción significativa en

racteristics of CBT is that the teaching process is personalized

los costos, lo que permite el entrenamiento en tiempo justo,

with immediate feedback; this avoids mistakes in the learning

eliminando el gasto y perdida de horas de los trabajadores a

direction, furthermore allowing a closed collaboration between

consecuencia de los traslados al lugar de enseñanza; por otro

companies, trainers and CBT developers; not to mention and a

lado, la información generada es sostenible en el tiempo.

significant reduction in costs, that allows training just in time, rand eliminates the cost and waste of time that transportation

El uso del CBT hace posible una disminución del tiempo de

in movement to the training place involves. On the other hand,

entrenamiento a, aproximadamente, 70% de lo que llevaría

the generated is sustainable in time.

un entrenamiento presencial. Además, se da una ganancia de aprendizaje por encima del 50%.

Besides, the use of CBT allows a decreasing on the training time to nearly 70% of presence training with a learning gain of over 50%.

El objetivo del presente artículo es describir y presentar el desarrollo de un Programa de Entrenamiento Basado en Com-

The objective of this paper is to describe and show the deve-

putador para una Planta de Electrorefinación, aplicado a tra-

lopment of a Computer-Based Training Program for electro-

bajadores de 8 especialidades; lo que involucra el desarrollo

retinery Plant applied to workers of 8 specialties. This involves

de módulos de entrenamiento para el personal de operacio-

the development of training modules for this operations and

nes y mantenimiento. Para la elaboración de los descriptores

maintenance personnel. In order to design the curriculum of

de contenidos de dichos módulos, se realiza un análisis de los

modules, we realize an analysis of standards of competences,

estándares de competencia, tomando en cuenta el aporte de

taking into account suggestions from the head of each special-

las jefaturas de cada especialidad y el levantamiento de infor-

ty and information collected in place. As KPI, we use situational diagnoses of competences before and after the training.

Invest Apl Innov 3(1), 2009

11


sALInAs, Víctor. “Desarrollo y aplicación de un programa de entrenamiento basado en computador para operadores y mantenedores de una planta de electrorefinación”

This is considered a pilot project and the outcomes will be

que el entrenamiento con videos interactivos hace posible una

useful to establish the use of TBC in other miner units.

mejoría en el nivel de comprensión por encima del 50%, finalmente, y reduce los costos hasta en un 35%.

Palabras claves

La Gerencia de la Planta de Electrorefinación ha realizado una CBT (Entrenamiento basado en computador), CAI (Instruc-

importante inversión en tecnología y equipamiento, y a pesar

ción asistida por computador), KPI (Indicador clave de des-

de sus múltiples esfuerzos por mejorar sus indicadores de ren-

empeño), Ds (hoja de datos), PoE (Procedimiento operacio-

dimiento y producción, se ha percibido que existe un problema

nal Estándar).

en las competencias de su recurso humano. se ha identificado aspectos como el conocimiento o experiencia en sus procesos,

Key words

impiden un estándar de competencia. En tal sentido, las labores de operación o mantenimiento tienen cargado un fuerte

CBT (Computer based training), CAI (Computer Assisted Ins-

aspecto subjetivo, según el trabajador. A causa de esto, se hizo

truction), KPI (Key Perfomance Indicator), Ds (Datasheet), PoE

necesario identificar las competencias claves de los trabajado-

(satndard operating procedures).

res, elaborar procedimientos operacionales y de mantenimiento estándares, además de y elaborar árboles de decisión para

INTRODUCCIÓN

atender fallas en procesos críticos; así como también, desarrollar escenarios preconfigurados para simular áreas criticas de

La metodología del Entrenamiento Basado en Computador

operación de su planta. Todo esto lleva a la Gerencia de Planta a

permite gozar de los beneficios de la interactividad de la mul-

asumir el reto de encargar a Tecsup un entrenamiento del Per-

timedia, de tal forma que los alumnos pueden leer, escribir,

sonal de la Planta de Electrorefinación usando Entrenamiento

escuchar, ver, debatir y hasta ejecutar tareas a través de entor-

Basado en Computador (CBT)

nos simulados. De acuerdo a los estudios realizados en CBTs multimedia interactivos, se ha registrado entre el 20 y 40% de

DESCRIPCIÓN DEL PROYECTO

mejoría en la consistencia de entrega de la información y en-

12

tre el 50 y 60% de mejoría en la consistencia del aprendizaje,

A continuación se describe cada una de las etapas de

en torno al área de comprensión se logran registros de 38%

desarrollo.

a 70% de aumento en la velocidad de comprensión, mientras

ETAPAS DEL PROYECTO 1. Recopilación de información 2. Análisis preliminar 3. Elaboración de módulos del sistema CBT básicos TRAINING PROJECT

4. Elaboración de módulos del sistema CBT avanzados 5. Elaboración del Entorno Interactivo del Sistema CBT 6. Aplicación del sistema CBT 7. Entrenamiento simulado y análisis de fallas Figura 1. Etapas del proyecto.

Invest Apl Innov 3(1), 2009


sALInAs, Víctor. “Desarrollo y aplicación de un programa de entrenamiento basado en computador para operadores y mantenedores de una planta de electrorefinación”

1. Recopilación de información

miento en el “conocimiento básico estándar” del proceso y es transversal para operadores de campo y operadores de

En esta etapa se recopiló información, consistente en

sala de control de la nave de Er (electrorefinación).

diagramas de flujo e instrumentación y manuales de operación del proceso, manuales de equipos principales,

La elaboración de los módulos de competencias básicas

tareas operacionales, descriptores de puesto, manual del

estándar se basó en los diagramas de flujo e instrumenta-

sistema sCADA e histórico de fallas.

ción de la nave, los manuales de operación de la planta y manuales de los equipos principales. (Ver figura 2).

2. Análisis preliminar se realizó el análisis funcional del proceso, de los equipos

5. Elaboración de Módulos Avanzados del Sistema CBT

principales, del control de proceso y de las tareas principales. Los módulos del sistema CBT para competencias específi-

3. Elaboración de Procedimientos Operacionales y de Mantenimiento Estándares

cas tienen por finalidad servir de herramienta de entrenamiento en el “conocimiento específico” del proceso, en lo referente al control del proceso y a las tareas operacionales. se desarrollaron módulos específicos para operadores

Los Procedimientos operacionales Estándar (PoE) fueron

de campo y para operadores de sala de control de la nave

elaborados previamente, tomando como referencia las

de Er, teniendo en cuenta el nivel de responsabilidad del

tareas de operación de la nave, entrevistas a operadores

puesto, las coordinaciones e interacción necesaria y los

clave sobre mejores prácticas operacionales y observa-

riesgos involucrados.

ciones “in situ”.

4. Elaboración de Módulos Básicos del Sistema CBT

La elaboración de los módulos de competencias específicas se basó en los manuales de los sistemas respecto a los procesos automáticos y a los Procedimientos operacionales Estándar (PoE) elaborados previamente para tal fin, tomando

Los módulos del sistema CBT para competencias básicas

como referencia las tareas de operación de la nave, entrevistas

tienen por finalidad servir de herramienta de entrena-

a operadores clave y observaciones “in situ”. (Ver Figura 3).

Figura 2. Módulos básicos del sistema CBT. Invest Apl Innov 3(1), 2009

13


sALInAs, Víctor. “Desarrollo y aplicación de un programa de entrenamiento basado en computador para operadores y mantenedores de una planta de electrorefinación”

Figura 3. Módulos avanzados del sistema CBT.

6. Elaboración del Entorno Interactivo del Sistema CBT

• Paseo Virtual 3D narrado de toda la planta, lo que permite que el personal a entrenarse identifique los equipos que participan del proceso y el flujo de los materiales principales.

se elaboró el sistema de entrenamiento basado en com-

(Ver Figura 4).

putador (CBT) que muestra de manera objetiva y gráfi-

14

ca la información del proceso y sirve como herramienta

• Módulos Básicos y avanzados, que explican los procesos,

principal para el entrenamiento. ha sido desarrollado con

el principio de funcionamiento de los equipos así como la

una interfase de uso amigable que permite el acceso a la

descripción de sus sistemas y subsistemas. (Ver figura 5).

información de manera fácil y rápida, y ha sido diseñado para poder ser instalado y ejecutarse en la Intranet de la

• hoja de descripción del equipo, mostrando de forma gráfica

empresa con restricciones de usuario, asimismo, incluye

los riesgos asociados al equipo, sus especificaciones y docu-

un banco de preguntas referidas a los Módulos Básicos

mentando su información a través de las preguntas: ¿qué es

y Avanzados que permiten al usuario aplicar auto eva-

el equipo? ¿De qué consta ? ¿Cómo funciona? (Ver figura 6).

luaciones aleatorias para medir el nivel de avance en su entrenamiento (realimentación inmediata), permitiendo, según el resultado, el repaso de los contenidos.

• Hojas de datos, que muestran las características principales del equipo y fotos e imágenes de sus sistemas, partes y cuando es necesario cortes y secciones. (Ver figura 7).

Los ambientes del sistema se basan en los escenarios y pantallas de sala de control. El entorno interactivo de entrenamiento permite acceder a: • Los módulos del sistema CBT en competencias básicas y avanzadas. • Unidades de repaso en competencias básicas y avanzadas. • Data sheet de equipos principales (DS). • Hoja de descripción estándar de equipos (HDE). • Procedimientos operacionales estándar (POE).

APLICACIÓN DEL SISTEMA CBT El sistema CBT posee las siguientes opciones:

Invest Apl Innov 3(1), 2009

Figura 4. Paseo virtual de la planta.


Salinas, Víctor. “Desarrollo y aplicación de un programa de entrenamiento basado en computador para operadores y mantenedores de una planta de electrorefinación”

Figura 5. Módulos de entrenamiento.

15

Figura 6. Hoja de descripción del equipo.

Invest Apl Innov 3(1), 2009


Salinas, Víctor. “Desarrollo y aplicación de un programa de entrenamiento basado en computador para operadores y mantenedores de una planta de electrorefinación”

Figura 7. Hoja de datos.

16

Figura 8. Procedimientos de operación.

Invest Apl Innov 3(1), 2009


Salinas, Víctor. “Desarrollo y aplicación de un programa de entrenamiento basado en computador para operadores y mantenedores de una planta de electrorefinación”

Figura 9. Animaciones

• Procedimientos de operación estándar, construidos a partir de flowsheets. (Ver figura 8). • Animaciones narradas que muestran el principio de fun-

• Planos. (Ver figura 11).

7. Entrenamiento simulado y análisis de fallas

cionamiento de instrumentos, equipos y sistemas y el circuito del flujo de materiales. (Ver figura 9).

Los escenarios se trabajaron a partir de las pantallas de la sala de control y del software SCADA. Ver Figura 12.

• Videos que muestran el principio de funcionamiento de algún equipo, o la operación del equipo en el proceso

DISCUSIÓN

con detalles, tales como calibraciones, ajustes, lubricaciones y otros. (Ver figura 10).

El entrenamiento estuvo dirigido al conocimiento del proceso y a la operación y mantenimiento de los equipos principales, incluyendo sistemas y subsistemas, así como también a la revisión de los procedimientos de trabajo y a la toma de decisiones en situaciones críticas para escenarios preconfigurados. Uno de los principales inconvenientes de esta tecnología es que, si bien se adapta para la transferencia de conocimientos (saber), encuentra serias restricciones para lograr el desarrollo de habilidades (saber-hacer); desventaja que pretende salvarse con el uso de simulaciones (escenarios preconfigurados), pero estos entornos simulados pueden resultar insuficientes y, como consecuencia, se hace necesario recurrir a prácticas en el lugar de trabajo. Por ejemplo, en el uso de una herramienta; lo mismo ocurre en la verificación de competencias a través de evaluaciones de desempeño.

Figura 10. Video.

Invest Apl Innov 3(1), 2009

17


Salinas, Víctor. “Desarrollo y aplicación de un programa de entrenamiento basado en computador para operadores y mantenedores de una planta de electrorefinación”

Figura 11. Planos.

18

Figura 12. Simulaciones.

Invest Apl Innov 3(1), 2009


Salinas, Víctor. “Desarrollo y aplicación de un programa de entrenamiento basado en computador para operadores y mantenedores de una planta de electrorefinación”

El mérito de la aceptación de este programa de entrenamien-

• El entrenamiento en escenarios simulados preconfigura-

to está compartido por el uso del CBT y las clases presenciales,

dos permite la familiarización con el proceso y las tareas

ya que las encuestas de aceptación no discriminaron entre el

principales realizadas con los equipos; así como también,

uso de estos dos métodos, por lo que su uso combinado pue-

resolver acciones de emergencia en condiciones de proce-

de ser una buena alternativa para alcanzar velocidad y grados

so anormales.

de comprensión significativos.

RESULTADOS

• Cuando el entrenamiento está dirigido a un número considerable de personas, el costo de elaboración del CBT se justifica en comparación con los costos de un entrenamiento

El entrenamiento basado en computador fue aplicado a un

presencial.

total de 559 trabajadores entre Operadores y Personal de Mantenimiento y, como resultado, el diagnóstico situacional

• El entrenamiento basado en computador es una excelen-

de competencia tuvo un incremento del 52.2% al 80.5%; adi-

te aplicación para la formación previa de los entrenados,

cionalmente, se aplicó una encuesta final a todos los partici-

quienes luego deben cerrar las brechas de competencia a

pantes y fue del 90%. Los trabajadores encontraron el entorno

través del desarrollo de habilidades y destrezas en el pues-

del sistema bastante intuitivo e interactivo, lo que permitió

to de trabajo.

romper las barreras de la falta de motivación tan típica en sesiones de clase convencionales para trabajadores sin hábito continuo de estudio.

• El entrenamiento CBT no pretende reemplazar a los medios convencionales, ya que estudios han demostrado que no todas las personas son igualmente receptivas al uso del

La experiencia demostró que los entrenados podían revisar

CBT puesto que, el 40% de las personas aprovecha esta he-

muchas veces el material de las sesiones de clase, utilizan-

rramienta: son personas que prefieren aprender pensando,

do todos los recursos de multimedia disponibles en el en-

mirando y estudiando solos; mientras que el 60% se inclina

torno CBT, verificando con unidades de repaso su nivel de

por aprender a través de sus experiencias y de las experien-

comprensión y avance de los contenidos, haciendo uso de

cias de los demás, trabajando en grupos de discusión.

estaciones de trabajo instaladas en la planta o en cualquier computador del que pudieran disponer en su tiempo libre,

• El uso del CBT permite que los alumnos con conocimiento

gozando de la portabilidad de la información a través de la

parcial del proceso seleccionen los temas de su interés, ob-

disponibilidad del CBT en la intranet de la empresa o en ver-

viando aquellos que ya conocen.

siones monousuario. • El sistema CBT también sirve como entorno de gestión del El CBT estuvo también soportado por clases presenciales

conocimiento, ya que gran parte de la información necesa-

donde los entrenadores usaron como material de enseñanza

ria para las operaciones y el mantenimiento se encuentra

el entorno CBT. Codelco aplicó una encuesta a todo el uni-

centralizada y permanentemente actualizada en el mismo.

verso de operadores y mantenedores que participaron del entrenamiento y la aceptación fue del 90%.

REFERENCIAS

CONCLUSIONES

[1] Barajas, M. (2003). La Tecnología Educativa de la Enseñanza Superior, McGraw-Hill.

• El uso del sistema CBT permite reducir el tiempo necesario para la transferencia del conocimiento y aumentar el nivel de comprensión de los contenidos.

[2] Berrocal, F, y Pereda, S. (2006). Bases Conceptuales de Gestión del Conocimiento y Capital Intelectual. Madrid: Cepade.

• El ritmo de avance de estudio aumenta, debido a la disponibilidad y portabilidad de la información, ya que los

[3] Berrocal, F, y Pereda, S. (2006). Planificación, Implanta-

entrenados pueden disponer su tiempo libre para revisar

ción, Evaluación y Gestión Económica de la formación. Ma-

los contenidos.

drid: Cepade.

• El diseño de la herramienta CBT permite la actualización y mantenimiento de los contenidos en forma simple y transparente para el usuario.

Invest Apl Innov 3(1), 2009

[4] Castro, M. (1996). El camino fácil a multimedia. Bogotá: McGraw-Hill.

19


Salinas, Víctor. “Desarrollo y aplicación de un programa de entrenamiento basado en computador para operadores y mantenedores de una planta de electrorefinación”

ACERCA DEL AUTOR Víctor Martín Salinas Chacón es Ingeniero Electrónico, con segunda especialidad en Ingeniería de Sistemas y en Ingeniería de Proyectos. Especialista en Gestión de Recursos Humanos y con estudios de maestría en Organización y Dirección de Recursos Humanos. Posee amplios conocimientos y experiencia en Sistemas automáticos de control, Sensórica, Instrumentación Industrial, Gestión de Proyectos y Gestión de Recursos Humanos. Es Director Docente en Tecsup Arequipa.

20

Invest Apl Innov 3(1), 2009


Simulación a nivel piloto del proceso de cianuración en pilas de un mineral aurífero oxidado Pilot simulation of the heap leaching process of an oxidate auriferous mineral

Jorge Castillo

Resumen

The cyanidation tests were executed in the facilities of Tecsup in Lima. Its design, set into motion and execution had the te-

Se presentan los resultados obtenidos en las pruebas de

chnical attendance of the consultant Fima Kappes, Cassiday &

cianuración en columna alta de un mineral aurífero de una

Associates of Reno, Nevada (USA). The pilot installation consists

Compañía Minera, ubicada en la zona norte de Perú, con la

of 1 column of concrete 7.47m. of height and 1.22m of diameter,

muestra mineral del yacimiento denominado “Superficie” y

which was loaded with approximately 10 tons of mineral. The

que contienen una ley promedio de 2.56 gr/TM de oro y 3.51

period of leaching with alkaline solutions of cyanide was a total

gr/TM de plata.

of 91 days.

Las pruebas de cianuración fueron ejecutadas en las insta-

The final results of the metallurgist study, demonstrate a 90 %

laciones de Tecsup (Lima), y para el diseño, puesta en mar-

gold extraction, with a consumption of 0.98 Kg/TM of sodium

cha y ejecución se contó con la asistencia técnica de la fima

cyanide and 0.33 Kg/TM of lime.

consultora Kappes, Cassiday & Associates de Reno, Nevada (USA). La instalación piloto consta de 1 columna de concreto

The results pilot obtained high column, will be good to evalua-

de 7.47m de altura y 1.22m de diámetro, la cual fue cargada

te, in reliable form, the effect of the important variables of ope-

con aproximadamente 10 toneladas de mineral. El periodo

ration, with that which will be able to be considered the profile

de lixiviación con soluciones alcalinas de cianuro comprende

of economic feasibility of the process.

un total de 91 días.

Palabras claves

Los resultados finales del estudio metalúrgico, demuestran una extracción de oro de 90%, con un consumo de 0.98 Kg/

Lixiviación en pilas, adsorción, solución enriquecida, solución

TM de cianuro de sodio y 0.33 Kg/TM de cal.

pobre

Los resultados piloto obtenidos en columna alta, servirán

Key words

para evaluar, en forma confiable, el efecto de las variables importantes de operación, con lo cual se podrá estimar el perfil de factibilidad económica del proceso.

Heap leaching, adsortion, pregnant solution, barren solution

INTRODUCCIÓN

Abstract La lixiviación en pila (heap leaching) es una técnica de extracWe presents the results are of the tests of cyanidation in high

ción del oro que consiste en la construcción de pilas del mine-

column of an auriferous mineral of a Mining Company loca-

ral previamente triturado al tamaño de algunas pulgadas. Cada

ted in the north area of Peru with the mineral sample of the

pila puede tener decenas de metros de longitud y tiene una

location denominated “Surface” and that they contain a law

base rectangular, con altura de hasta cien metros.

average of 2.56 gr/TM of gold and 3.51 silver gr/TM.

Invest Apl Innov 3(1), 2009

21


Castillo, Jorge. “ Simulación a nivel piloto del proceso de cianuración en pilas de un mineral aurífero oxidado”

Este mineral se dispone sobre una base impermeable con

mediante una reacción química que demanda oxigeno.

cierta inclinación hacia una esquina. El mineral es regado, mediante aspersores, con una solución cianurada con la cual

La forma de cianurar los minerales depende, entre otros

se recupera una solución aurífera, que es llevada a un tanque

aspecto,s de su contenido de oro y puede distinguirse entre

de almacenamiento (tipo piscina), desde ahí se bombea a co-

cianuración por agitación, que incluye la molienda fina para

lumnas rellenas con carbón activado en donde queda reteni-

materiales con leyes altas y la cianuración en pilas o heap lea-

do el oro. Tanto en el laboratorio como en la ejecución piloto,

ching para materiales de granulometría gruesa y de bajo con-

la simulación del comportamiento del mineral del proceso

tenido de oro.

se realiza en columnas altas y con las condiciones de trabajo similares al proceso industrial.

En el ámbito de pilotaje, la cianuración en pilas se lleva a cabo en columnas de gran dimensión que se llenan de mineral a la

La tecnología de la lixiviación en pilas para el tratamiento de

granulometría de trabajo y se hace pasar una solución diluida

menas auríferas, representa en la actualidad una alternativa

de cianuro, de esta manera el cianuro puede humectar las par-

probada para la recuperación de minerales de oro y plata de

tículas de oro y plata y disolverlas. La solución cargada de oro

baja ley. La lixiviación en pilas tiene ventajas muy significa-

que fluye hacia la base de la columna es puesta en contacto

tivas respecto a la lixiviación por agitación, la cual deman-

con una cantidad determinada de carbón activado que adsor-

da molienda del mineral. Recordemos que la molienda es

be los metales valiosos, y la solución descargada previamente,

la etapa que demanda el mayor consumo energético en el

reajustada con cal y cianuro, retorna a la columna con mineral.

procesamiento de minerales, por tanto la tecnología del heap

Después de sucesivas pasadas logrará extraer la máxima canti-

leaching implica bajos costos de capital y operación.

dad de oro y plata, y se dejará un residuo sólido.

A pesar de que esta tecnología produce grados de extracción

La reacción química que se manifiesta es la siguiente:

relativamente bajos y la cinética de operación es más lenta, sus ventajas operativas son las de posibilitar la extracción de

4Au + 8NaCN + O2 + 2 H2O = 4AuNa(CN)2 + 4NaOH

yacimientos auríferos marginales con bajos contenidos de oro.

22

Preliminarmente, es necesario efectuar pruebas de cianuración por agitación, a fin de determinar en condiciones muy contro-

Sin embargo, la posibilidad de aplicar las técnicas de extrac-

ladas el grado de extracción máxima del oro y el consumo de

ción adecuadas se deberá sostener, en gran parte, en pruebas

reactivos (NaCN, Cal).

de laboratorio y de planta piloto que demuestren la factibilidad del Proyecto.

La cianuración en columna alta se vera complementada con un circuito de adsorción con carbón activado, con lo que se conse-

EI estudio metalúrgico realizado comprende ensayo de cia-

guirá extraer gradualmente el oro de las soluciones ricas.

nuración en columna alta para un mineral aurífero de baja ley con el objetivo de evaluar el grado de extracción de oro y su

EI trabajo de investigación permitirá obtener información valio-

recuperación desde las soluciones lixiviadas con carbón acti-

sa como: grado de extracción, cinética de lixiviación, consumo

vado. También se evaluó parámetros importantes en el proce-

de reactivos, concentración de soluciones ricas y barren, pH de

so y se presenta el balance metalúrgico general.

operación, grado de adsorción, permeabilidad del mineral, etc., todo lo cual contribuirá al diseño y los estudios de factibilidad

De esta manera, Tecsup participa en los proyectos más rele-

del Proyecto.

vantes del sector minero, realizando trabajos de investigación metalúrgica, que permitirán proporcionar información en la toma de decisiones para las empresas mineras

PROCEDIMIENTO

FUNDAMENTOS

Análisis químico de la porción representativa

La cianuración de minerales es una técnica de lixiviación ac-

En vista de la dificultad que ofrece el oro a ser muestreado con

tual por la cual una solución diluida de cianuro en medio al-

certeza, por el tamaño tan heterogéneo del mineral, y con el fin

calino logra disolver el oro y la plata presente en un mineral

de determinar la ley de cabeza de ambas muestras

Invest Apl Innov 3(1), 2009


Castillo, Jorge. “ Simulación a nivel piloto del proceso de cianuración en pilas de un mineral aurífero oxidado”

litológicas, se ejecutó el análisis de malla valorado del mate-

c) Un sistema de tubería plástica, que conecta los estanques

rial representativo que supone el análisis químico de cada

SR-2 (mezcla y bombeo) con una columna pequeña de car-

fracción retenida y calculo de la ley mediante un promedio

bón activado, y, desde allí, a los estanques SB-1 (solución

ponderado. Los resultados demuestran que la ley de oro es

barren).

de 2.56 g/TM y de plata 3.51 g/TM. Ver Cuadro N 1. o

d) Tres estanques plásticos SB-1 y tres estanques SB-2, respec-

Cianuración en columna alta:

tivamente conectadas en paralelo, en donde se efectúa el muestreo de la solución agotada barren, y se ajusta su

EI objetivo de la prueba de cianuración en columna alta es

contenido de reactivos (NaCN y Cal). De estos últimos, la

evaluar los parámetros de la cianuración en pilas, en condi-

solución con sus reactivos ya reajustados, se bombea nue-

ciones que se acercan al de una prospectiva pila industrial, en

vamente a la parte superior de la columna de lixiviación,

cuanto a altura y granulometría de mineral.

mediante bomba peristáltica de velocidad variable.

Es por ello que se procesará el mineral proveniente del ya-

Desarrollo de pruebas de cianuración

cimiento durante un tiempo de lixiviación determinado, y al término de la experimentación se obtendrá valiosa informa-

La metodología de la cianuración fue la siguiente:

ción que servirá de base en el balance de materia del proceso.

a. Diariamente se riega la columna con un volumen de solución barren de aproximadamente 300-320 litros, correspon-

Instalación de columnas y equipos

diente a un caudal de irrigación de 12 lt/h/m2 de superficie de columna.

EI esquema de la instalación aparece en la Figura No.1, y consta de una columna con sus respectivos circuitos. Las partes

b. Una vez medido el volumen y muestreada la solución sa-

son las siguientes:

liente pregnant, se bombea dicha solución a través de las columnas con carbón activado que adsorbe gran parte del

a. Una columna vertical formada por tres sectores de tu-

contenido de oro disuelto en la solución.

bería de concreto armado 48” (1.22 metros) de diámetro, con una altura de 8.17 pies (2.49m) por sector.

23

Dicha solución, después de la adsorción, es recibida en estanques, donde se mide su volumen, se muestrea para en-

b. La columna consta de una tubería plástica de drenaje,

sayar su ley de oro y plata, pH y contenido de NaCN, y se

con su respectiva bomba peristáltica de velocidad varia-

reajusta volumen y contenido de NaCN y cal, por adición de

ble, que conecta el fondo de la columna” con el grupo de

agua y de los compuestos respectivos.

estanques SR (Solución Rica) o pregnant.

Malla

Abertura (micras)

+6”

152,400

+4”

101,600

+3”

76,200

12.72

(%) Peso

Leyes (g/Tm)

Distribución (%)

Oro

Plata

Oro

Plata

9.38

2,58

18.65

2,05

6,38

9,46

17,05

2,70

15,19

14,58

2,81

4,40

13,97

15,95

+2”

50,800

11.84

1,99

2,48

9,21

8,37

+1”

25,400

19.27

1,83

2,35

13,78

12,93

+ 1/2”

12,700

10.84

2,54

3,00

10,76

9,27

+ 1/4”

6350

5.54

2,27

3,28

4.92

5,18

+10m

1700

4.16

2,90

3,20

4.71

3,79

7.30

6,31

6,20

18.0

12,90

100,0

2,56

3,51

100.0

100.00

-10m

Tabla 1. Análisis de malla valorado con muestra de mineral representativo

Invest Apl Innov 3(1), 2009


Castillo, Jorge. “ Simulación a nivel piloto del proceso de cianuración en pilas de un mineral aurífero oxidado”

Figura 1. Esquema de operación de las columnas de cianuración

24

c. Mientras dura la circulación de la solución anterior por

Se suspendió la lixiviación cuando el control de la extracción

carbón activado y su reajuste de volumen y composición,

de oro del mineral, por soluciones entrantes (barren) y salientes

se pasa a través del mineral un nuevo volumen de solu-

(pregnant) indicaba un aumento de extracci6n menor que 0.01

ción.

g/TM durante dos semanas seguidas.

d. Cuando los ensayes de las soluciones pregnant y barren,

Después de suspender la adición de solución de cianuro y de

indican que las columnas con carbón activado están sa-

drenar el remanente de solución saliente, se pasó los volúmenes

turadas, y que la adsorción de oro en ellas se ha reducido,

respectivos de saliente por las columnas de carbón, de manera

se procede al cambio de carbón. EI carbón saturado es

que el contenido de oro del último carbón activado saturado

pesado, secado y muestreado, para controlar la extrac-

refleje el total del oro extraído del mineral, a excepción de las

ción de oro del mineral.

siguientes cantidades: oro en la ultima solución barren más oro en soluciones salientes de lavado y estruje final. Ver Tabla 2.

e. Diariamente se registran los ensayes de oro/plata y periódicamente los ensayes cobre/fierro de las soluciones.

Manejo de soluciones Los contenidos de oro y plata de la ultima solución barren (obtenidos durante el ultimo ciclo de lixiviación y estruje solución pregnant, después de su adsorción por carbón activado), forma parte del balance metalúrgico. Asimismo, los valores disueltos de oro/plata de las soluciones de lavado mas estruje final, serán sumados a los valores de la ultima solución barren, y, ambos, representen el item de “contenidos de oro/plata en soluciones” del balance.

Figura 2.- Pruebas preliminares de cianuración por agitación

Invest Apl Innov 3(1), 2009


Castillo, Jorge. “ Simulación a nivel piloto del proceso de cianuración en pilas de un mineral aurífero oxidado”

Condiciones de la prueba\Inicio: 21.09 Final: 30.12 Columna: 24.5” pies x 48” ¢ Chancado: -8” Lixiviante: 600 ppm NaCN

Muestras: MINERAL AURIFERO

12 -48 2.56 (Promedio) 10512.76 0.371 10473.76 262.8 1.39 262.68 10913.67(Neto) 608.00 0.05%

Objetivo: Lixiviación en columna Flujo de irrigación (lt/h/m2) Etapa de curado (días) Diámetro de columna (Pulg.) Ley de cabeza oro (g/TM) Peso de mineral húmedo inicial (Kg) Porcentaje de Humedad Inicial (%) Peso de mineral seco inicial (Kg) Altura de mineral inicial (Pulg.) Densidad aparente inicial (gr/cc) Altura de mineral final (Pulg.) Peso de residuo seco (Kg) Volumen drenado (lt) (solución barren) Perdida de altura (%)

Tabla 2. Condiciones de operación de mineral

Tratamiento de ripios finales

EI criterio para cambiar de lote de carbón consistió en determinar el momento en el que la eficiencia de adsorción disminuyó

Descargado el ripio, fue ensacado y pesado “húmedo” en una

hasta menos del 50%. Ver Tabla 3.

balanza de plataforma, luego fue vaciado y extendido en el EI peso de los 10 lotes de carbón varió a lo largo del ciclo de

suelo, para secado al aire.

cianuración, en función de las observaciones que se hacía refeDespués de este secado, el total del ripio fue tamizado sobre

rente a la eficiencia de adsorción. Cada lote de carbón activado

mallas de 6”, 4”, 3”, 2”, 1”, ½” y ¼”, con lo que se obtuvo su com-

saturado, después de ser sacado del circuito y reemplazado por

posición granulométrica. El Cuadro N .3, presenta los ensayes

uno nuevo, fue “oreado” (secado al aire), pesado en estado orea-

del ripio, por mallas valoradas, y su promedio calculado.

do, muestreado cuidadosamente sacando muestras para deter-

o

minación de humedad y contenido de oro/plata.

Carbón activado saturado

RESULTADOS

La columna de lixiviación usó 10 lotes de carbón activado (denominados del C-1 al C-10) a fin de adsorber los metales

EI procedimiento para la elaboración del balance metalúrgico

nobles contenidos en las soluciones pregnant.

se explica a continuación:

Malla

Abertura (micras)

(%) Peso

Leyes (g/TM) Oro

Distribución (%)

Plata

Oro

Plata

+6”

152,400

4,60

0,18

3,0

2,83

8,43

+4”

101,600

22,30

0,31

1,1

23,63

14,98

+3”

76,200

10,58

0,29

2,8

10,49

18,09

+2”

50,800

14,94

0,27

1,8

13,79

16,43

+1”

25,400

19,64

0,28

1,6

18,80

19,19

+1/4”

6350

14,54

0,32

1,6

15,91

14,21

-1/4”

7,88

0,54

1,8

14,55

8,67

Residuo

100,0

0,31

1,637

100.0

100.00

Calculado Tabla 3. Análisis de malla valorado con ripios de mineral después de la cianuración

Invest Apl Innov 3(1), 2009

25


CAsTILLo, Jorge. “ simulación a nivel piloto del proceso de cianuración en pilas de un mineral aurífero oxidado”

a) Considerando la dificultad de obtener una ley de cabe-

Los detalles de estos resultados se presentan en el Tabla 4 .

za fiable, se optó por recalcular de acuerdo a la siguiente fórmula:

El grado de extracción de oro al final del proceso permite solubilizar el 90 % del oro total en el mineral, lo que deja un ripio

Oro en la cabeza = Oro en residuo + oro en carbón car-

con 0.31 g/TM de oro que representa un 10 % de oro. El balance

gado + oro en solución barren y solución de lavado.

metalúrgico por sólidos (cabeza mineral y ripios) permitió obtener una extracción muy similar al balance de soluciones lo

b) El oro extraído es igual al contenido de oro de los lotes

que refleja la confiabilidad de los resultados.

de carbón cargado más el oro contenido en la solución barren y de lavado.

Producto

26

Peso carbon seco (g)

Ley Au carbon g./kg

Recuper. parcial

Recuper. acumu-

giTm

lado giTm

% Recuper. oro

C-1

643.12

11.16

0.66

0.66

22.68

C-2

632.26

11.75

0.68

1.34

46.05

C-3

1189.91

4.23

0.46

1.80

61.86

C-4

2031.28

2.10

0.39

2.19

75.26

C-5

1289.94

1.43

0.17

2.36

81.10

C-6

1866.68

0.56

0.10

2.46

84.54

C-7

1932.89

0.26

0.05

2.51

86.25

C-8

1948.58

0.19

0.03

2.54

87.28

C-9

2258.17

0.05

0.01

2.55

87.63

C-10

2925.31

0.12

0.03

2.58

88.66

sol. Barren

0.01

2.59

89.00

sol. Lavado

0.03

2.62

90.03

residuo

0.31

Cab. Calculada

2.93

% Recuper.

90.03 Tabla 4. Balance metalúrgico por oro

Figura 3. Grafico de extracción de oro respecto al tiempo de cianuración

Invest Apl Innov 3(1), 2009


Castillo, Jorge. “ Simulación a nivel piloto del proceso de cianuración en pilas de un mineral aurífero oxidado”

CONCLUSIONES

ACERCA DEL AUTOR

En proyectos de cianuración en pilas, es recomendable eje-

Jorge Castillo Migone es ingeniero

cutar previamente escalamientos piloto, como es el caso de

metalúrgico. Investigador en el área

la cianuración en columnas alta. La información a obtener en

del procesamiento de los minerales.

esta operación piloto servirá de base para el procesamiento

Con experiencia laboral en investiga-

de los minerales en el ámbito industrial.

ción metalúrgica y en plantas de beneficio de minerales. Estudios de es-

Los resultados del trabajo experimental en laboratorio (agi-

pecialización en Gestión Ambiental y

tación y columna) inicialmente han demostrado que la cianu-

Recursos Naturales. Ha participado en

ración en pilas es la metodología adecuada para la extracción

programas de capacitación y pasan-

de oro de los minerales del yacimiento. Al ser necesario un

tías en diversas Unidades Mineras en el Perú. Docente del curso

escalamiento en los parámetros de operación, se ejecutó la

Procesamiento de Minerales, consultor en el área de Servicios a

prueba de cianuración en columna alta, en la que se evaluó

la Industria, Capacitación Continua y Campus virtual en Tecsup.

el efecto simultaneo de la altura de la pila y el tamaño de mi-

Expositor en eventos organizados por Instituciones del sector

neral.

minero–metalúrgico nacionales e internacionales..

De esta manera, el balance metalúrgico indica que trabajando a una altura de columna de 6.7m, con mineral chancado con una ley de cabeza de 2.56 g/TM de oro, a menos 8 pulgadas, con un ciclo de irrigación de 91 días, se obtuvo una extracciones de 90.03 % del oro total, lo que demuestra que se trata de un mineral con buena porosidad y apto para ser tratado por cianuración en pilas.

REFERENCIAS 27 [1] Fleming, C.A. y Wyslouzil B.M. (1997)

Procesamiento de Minerales Auríferos.

Gold Workshop. Las Vegas, USA

[2] Kappes, Cassiday & Associates (1996)

“Final Metallurgical Testwork Bulk Addit Sample”

Lima, Perú. (Informe Privado)

[3] “Informes de Investigación Metalúrgica realizados en el departamento de Química - Metalúrgica Tecsup”. (20002008)

Lima, Perú. (Informes Privados).

Invest Apl Innov 3(1), 2009


Ahorro de energía por control automático de máxima demanda Energy saving by maximum demand automatic control Rafael Vilca, Manuel Manyari

Resumen

and collects data by a power meter, that processes the associated data using Excel - OPC and takes action for connecting

El uso eficiente de la energía eléctrica y la auditoría energé-

or disconnecting predetermined loads by means of PLCs, ac-

tica ha tomado gran importancia en los últimos años, gracias

cording to the consumption variations during the observation

al ahorro en costos de producción que estas representan.

periods.

Auditoria energética consiste en la recolección de datos sobre el suministro y consumo de todas las formas de energía,

Palabras claves

con el propósito de evaluar y cuantificar las posibilidades de ahorro de esta. Un parámetro de medición importante es la máxima demanda que representa la potencia máxima consumida en un mes, la cual afecta de forma directa en el costo

Ahorro de energía, máxima demanda, OPC, Automatización.

Key words

de operación de un potencial cliente. Por lo antes expuesto, es importante un control de la máxima demanda y energía consumida para reducir los costos asociados al consumo de

28

energía eléctrica. En este trabajo se analizará las posibilida-

Energy saving, maximum demand, OPC, automation.

INTRODUCCIÓN

des de ahorro de energía logrado con el control de la máxima demanda, donde se implementa un sistema automático de

Debido al crecimiento industrial que ha experimentado nues-

control que adquiere datos mediante un medidor de energía,

tro país, el uso eficiente de la energía eléctrica ha tomado gran

procesa los datos asociados empleando Excel - OPC y toma

importancia por el ahorro en costos de producción que éstas

una acción de conexión o desconexión de cargas predeter-

representan en las empresas. Durante el período 2001-2008 la

minadas mediante PLCs, según las variaciones de consumo

demanda local aumentó en 32.2%, mientras que la oferta en

durante periodos de observación.

nueva generación solo creció en 11.3%, reduciéndose la reserva de manera significativa (aprox. 500 MW). La pérdida de la

Abstract

reserva eléctrica durante el mismo período de 50% a 30%, llega a menos de 10% en las horas punta, que se suman a las restric-

The efficient use of both electrical energy and the audit ener-

ciones en el suministro de gas natural a las centrales térmicas

getic has taken great importance in the last years, thanks to

en horas punta (18 a 23 horas) por la congestión en el gaseo-

the saving in production costs that these represent. Audit

ducto de Humay (Ica) a Lima, que tiene una capacidad máxima

energetic consists in the data collecting about the provision

de transporte de 290 millones de pies cúbicos. Esto representa

and consumption of all energy way, in order to evaluate and

un equivalente de 200 MW de menor generación a gas natu-

to quantify the possibilities of saving this one. An important

ral que se sustituye con los precios del diesel que cuesta entre

measurement parameter is the maximum demand that re-

20% a 25% más caro que el precio internacional del petróleo.

presents the maximum power consumed in a month, which

Por tanto, nos encontramos ante un leve problema energético,

affects directly in the operation cost of a client. Due to expo-

lo cual repercute en el consumo de los usuarios finales, hablan-

sed, a control of both the maximum demand and consumed

do específicamente del área industrial.

energy is important to reduce the associated costs to the electrical power consumption. In this paper, we will analyze

Toda industria tiene un contrato energético con las empresas

possibilities of energy saving with control of maximum de-

distribuidoras o generadoras de energía. Para ello cuentan con

mand, where an automatic control system is implemented

un contrato de máxima demanda estimada. Normalmente las

Invest Apl Innov 3(1), 2009


VILCA, Rafael, Manyari, Manuel. “Ahorro de energía por control automático de máxima demanda”

empresas no llevan un control de su máxima demanda y casi

de servicios, que muestran un consumo intensivo de energía e

siempre sobrepasan este límite establecido, por lo que se ven

inquietud de minimización de gastos en operación.

obligados de añadir un costo por exceso de consumo. Existen metodologías para el monitoreo y control de la máxiEl tiempo en que mayormente se dan estos casos de exceso

ma demanda en cumplimiento a la norma “Opciones tarifarías

son en la horas punta, pues es el momento en que la mayoría

y condiciones de Aplicación de las tarifas a usuarios final” (Osi-

de cargas ingresan en el sistema y el consumo es mayor, ade-

nerg No 236-2005 del 23-08-2005). Por lo que excederse en el

más es el momento en que la energía es más costosa, debido

consumo de la máxima demanda por un periodo mayor de 15

a que se insertan en el sistema interconectado, otras fuen-

minutos, implica un incremento de costo de facturación men-

tes de generación de menor eficiencia. Todo esto hace que

sual y que se mantendrá por un periodo de 6 meses.

la energía tenga mayor precio y también que las empresas se vean obligadas a optimizar sus sistemas para el consumo

Es de suma importancia el control de la máxima demanda y

de energía.

rechazo de carga automático a través de la implementación de un medidor de energía y enlazado a un PLC que opere la desco-

Auditoría Energética puede definirse como una actividad de

nexión de cargas preseleccionadas para que no sobrepasemos

evaluación independiente y de asesoramiento de la adminis-

la potencia máxima preajustada.

tración y de la técnica, centrada en el examen y evaluación de la adecuación, eficiencia y eficacia del consumo de todas

¿Por qué controlar la demanda?

las formas de energía, así como de la calidad del desempeño de las unidades en relación con la eficiencia energética y

La factura mensual de energía eléctrica tiene los siguientes cobros,

planes, metas, objetivos y políticas definidos para ésas. Uno

según la opción tarifaria: por energía consumida (común para

de la parámetros de medición de gran importancia en el aná-

todas las tarifas) por potencia consumida en su empalme (BT2 y

lisis de consumos energéticos es la máxima demanda, que

MT2), por la máxima demanda registrada (BT3, BT4, MT3, MT4).

representa la potencia máxima consumida durante un mes, la cual hará variar el promedio mensual de consumo y, como

¿Cómo se cobra la energía?

consecuencia, el cliente pagará un valor mayor si dicho promedio es elevado.

A continuación se realiza un ejemplo comparativo para un cliente BT3. Se ha tomado como supuesto que el perfil de con-

Por lo antes expuesto, es importante un control de la máxima

sumo de este cliente es el mismo durante todos los días del mes,

demanda y de la energía consumida para reducir los costos

según lo muestra la Tabla 1. La tarifa BT3 considera 3 cobros:

asociados al consumo de energía eléctrica. Por otro lado, las

Cargo fijo ($/mes), que es independiente del consumo; ener-

tendencias actuales de automatización pueden servir como

gía consumida ($/kWh), que corresponde gráficamente al área

herramienta de apoyo al control de máxima demanda en

bajo la curva de demanda, o sea, E[kWh]=P[kW]*T[h]; demanda

forma automática, a través del uso de PLCs y herramientas

máxima registrada durante todo el mes ($/kW/mes).

de intercambio de datos en entorno Windows como OPC. En este trabajo se analizarán las posibilidades de ahorro de energía y se aplicará el control de máxima demanda, imple-

Energía (kwh)

mentándose un sistema automático de control que adquiera

Dda. Máxima (kw)

Sin SCD

Con SCD

7,650

7,650

22

12

datos mediante un medidor de energía; procesa los datos a observar empleando una hoja de Excel y comunicación OPC para tomar una acción de conexión o desconexión de cargas predeterminadas mediante PLCs, según las variaciones de consumo durante periodos de observación y parámetros de configuración pre-establecidos.

FUNDAMENTOS El control de la máxima demanda para un ahorro de energía es principalmente importante en los sectores industriales y

Invest Apl Innov 3(1), 2009

Tabla 1. Ejemplo de perfil de consumo en un cliente.

Al implementar el Sistema de Control de Demanda “SDC”, la energía consumida no varía, debido a que el consumo se puede redistribuir en el tiempo aplanando la curva de demanda. La potencia máxima demandada disminuye, ya que se limita a un valor predefinido por el usuario. En el caso del ejemplo se utilizó un valor máximo de 12 (Kw).

29


VILCA, Rafael, Manyari, Manuel. “Ahorro de energía por control automático de máxima demanda”

Los montos que la compañía de distribución eléctrica factu-

• Disminuyendo la máxima demandada en “horas de punta”.

rará, para el caso del ejemplo, por los conceptos antes mencionados son los siguientes, (Tabla 2):

• Supliendo la demanda con grupo generador o energía alternativa.

Precio total ($) Sin SCD

Con SCD

Ahorro (%)

De las opciones presentadas, se considera factible para el usua-

689

689

0%

rio la reducción de la demanda máxima dentro y fuera de “horas

166,036

166,036

0%

punta” mediante un sistema automático que permita registrar

Cargo fijo ($/mes) Energía ($/kwh)

los datos en línea sobre el consumo instantáneo de potencia y

Cargo demanda máxima ($/kw/ mes)

169,958

94,421

44%

336,682

261,145

22%

los 15 minutos.

TOTAL

Tabla 2. Montos de facturación del ejemplo presentado.

La ley establece que el “horario punta” del sistema se extiende desde las 18h00 hasta las 23h00 todos los días hábiles. En este horario se aprecia un aumento de demanda debido principalmente a los consumos de energía para calefacción e iluminación.

PROCEDIMIENTO Las tendencias actuales de automatización, tales como controladores e interfases de comunicación, fueron elegidas como herramienta de apoyo al control de máxima demanda de un circuito de motores en forma automática, a través del uso de un PLC CompactLogix L32E de Allen Bradley, el cual posee un puerto de comunicación Ethernet.

En cumplimiento a la norma “Opciones tarifarías y condiciones de Aplicación de las tarifas a usuarios final” (Osinerg No 236-2005 del 23-08-2005), se indica: para las opciones tarifarías MT3-MT4-BT3-BT4 el medidor registra la máxima demanda en “hora punta” y en “hora fuera de punta” por un

30

proyectar la demanda máxima para poder controlar antes de

periodo de 15 minutos y determina:

También se aplicaron herramientas de intercambio de datos en entorno Windows como Ole for Process Control, OPC, el cual permite el intercambio de datos en tiempo crítico entre aplicaciones Windows. La Figura 1 muestra un diagrama del sistema de control automático de máxima demanda implementado en el presente trabajo.

Potencia Activa de Generación (PAG). Es la máxima potencia consumida durante el mes de facturación en Kw. en hora punta o fuera de punta. PAG= Máx. Demanda Potencia de Distribución (PD). La facturación de potencia por uso de las redes de Distribución será determinada por el promedio de los dos valores más altos de la máxima demanda en los últimos seis meses incluido el mes actual que se factura. PD = (Máx. Dem.1 + Máx. Dem.2)/2 en un período de 6 meses. Es decir, a máxima demanda mayor será la facturación por potencia de generación y distribución y esta será facturada por un periodo de 6 meses. Se podrá disminuir la facturación de las siguientes formas: Figura 1. Diagrama del sistema de control de máxima demanda.

• Disminuyendo la máxima demanda en “horas fuera de punta”.

Invest Apl Innov 3(1), 2009


VILCA, Rafael, Manyari, Manuel. “Ahorro de energía por control automático de máxima demanda”

Fue tomado como circuito experimental de monitoreo un

En las tareas del PLC se llevó a cabo la implementación de una

conjunto de motores trifásicos, los cuales representan una

lógica con señales comando al circuito de control de motores,

carga de 0 a 3.1 KW. El circuito de alimentación a los motores

específicamente a los contactores de 24VDC y 220VAC, lo que

depende de un sistema de mando por contactores de 220VAC

permite la conexión o desconexión de cargas progresivamen-

y 24VDC para el mando local y remoto (vía PLC), respectiva-

te, según el consumo de potencia instantáneo y proyección de

mente. El circuito de alimentación trifásica es monitoreado

máxima demanda en intervalos de tiempo, según Figura 4.

por un medidor de energía ELSTER, modelo A1500. Los datos del medidor son accesibles automáticamente a una plantilla de cálculo en Excel mediante la interfase de comunicación del medidor. En el medidor se realiza la proyección de demanda en “horas punta” y “horas fuera de punta” tomando el reloj de la PC durante periodos de observación establecidos. En dicha plantilla se pueden visualizar los principales parámetros de medida del medidor de energía, según Figura 2.

Figura 4. Gráfico de tendencias en RsView del diagrama instantáneo de cargas

RESULTADOS Empleando el sistema de control automático se consigue registrar los datos de la energía instantánea consumida, así como programar un sistema de supervisión sobre una red Ethernet, Figura 2. Aplicación en EXCEL de los parámetros del Medidor de Energía

teniendo acceso a los datos del medidor en un nivel superior de automatización. Se consideró la implementación, en el software

La plataforma de comunicación de la familia de PLCs Com-

de supervisión, de un gráfico de tendencias de las cargas ins-

pactLogix de Allen Bradley se encuentra en el Software Rs-

tantáneas, así como la programación de los límites de demanda

Linx, el cual permite la comunicación de PLCs su Servidor

permitidos (ver Figura 5), y los “horarios punta”. De tal forma se

Remoto OPC. Mediante el Software OPC DataHub se confi-

implementa un sistema de control de máxima demanda con

guró un Bridge OPC entre Excel y RsLinx, (Según Figura 3),

flexibilidad de configuración hacia el operador del circuito, me-

que permite el intercambio de datos bidireccional entre el

diante el software de supervisión RsView.

PLC CompactLogix y la plantilla de monitoreo del medidor radicada en Excel.

Figura 5: Pantalla de supervisión en RsView del sistema de control de máxima demanda Figura 3. Configuración del Bridge OPC entre RsLinx y Excel implemen-

En el sistema de mando fueron realizadas diversas pruebas con

tado en OPC Data Hub

distintas cargas, respondiendo de forma eficaz a los paráme-

Invest Apl Innov 3(1), 2009

31


VILCA, rafael, MAnYArI, Manuel. “Ahorro de energía por control automático de máxima demanda”

de configuración dados, donde el sistema desconecta cargas gradualmente en dependencia del circuito asociado con el fin de no interferir en la operación del proceso. El tiempo de respuesta del sistema de control de demanda es despreciable, luego del cálculo de la demanda proyectada según los datos adquiridos, (ver Tabla 3). Cabe destacar que la actualización de datos enviados desde el medidor hacia el sistema de control fue establecida a un tiempo de refresco de 1 min, tiempo suficiente para el procesamiento de datos de acuerdo a los intervalos de observación de 15 min para la máxima demanda.

Agradecemos el apoyo brindado a los estudiantes de Electrotecnia Industrial: sadin Valdivia, oskar Basurco, Miguel Yáñez y Guillermo Vivanco, ya que sin ellos no hubiera sido posible el desarrollo del presente trabajo.

REFERENCIAS [1] “opciones tarifarías y condiciones de Aplicación de las tarifas a usuarios final”. norma osinerg no 236-2005. Ministerio de Energía y Minas. [2] GÓMEZ, A. (2002) sistemas Eléctricos de Potencia, Pearson

Parámetro

Valor

Unidad

Voltaje Fase - neutro r

224.1

V

Voltaje Fase - neutro s

225.0

V

[3] MAnYArI, M. h. (2008). “Implementación de Controladores

Voltaje Fase - neutro T

225.5

V

en Matlab y PLC con Comunicación oPC Aplicado a Plantas

Corriente Fase - neutro r

0.487

A

Industriales”, Investigación Aplicada e Innovación I+i, TEC-

Corriente Fase - neutro s

0.501

A

sUP, Vol 2 no 2.

Corriente Fase - neutro T

0.490

A

Frecuencia

59.91

hz

Potencia Aparente

0.034

KVA

Potencia Activa

0.068

Kw

rafael Vilca es Master en Economía

Potencia reactiva

0.203

KVAr

con mención en Gestión Financiera

Prentice hall.

ACERCA DE LOS AUTORES

Empresarial e Ingeniero Mecánico Tabla 3. Valores instantáneos adquiridos del Medidor de energía,

Electricista. ha desarrollado diseño de

necesarios para la proyección de la demanda del circuito en un periodo

máquinas eléctricas, mantenimiento

de observación.

electromecánico en generadoras, lí-

32

neas de distribución y subestaciones

CONCLUSIONES

en Elecsur Industrial; fue residente electromecánico para el montaje de

• Es posible implementar sistemas automáticos de control

la planta evaporadora de leche El Alto de propiedad de GLo-

de máxima demanda usando las tecnologías existentes

rIA s.A., cuatro años como responsable de la elaboración y

en plantas industriales, tales como PLCs, medidores de

ejecución de los planes de mantenimiento de la maquinaria

energía y software compatible.

del Ministerio de Agricultura; expositor en el área de diseño y mantenimiento de sistemas de potencia en media y alta ten-

• Mediante estrategias de ahorro energético es posible disminuir costos de producción industrial de forma sencilla

sión. Actualmente es docente del departamento de Electrotecnia en Tecsup Arequipa.

y sin sustancial inversión adicional. Manuel Manyari es Ingeniero Electró• La implementación y explotación de las comunicaciones

nico y Master en Ciencias en Ingenie-

industriales es un punto importante en la integración

ría Eléctrica. ha presentado y revisado

de sistemas de control de un proceso industrial pues, en

artículos técnicos en eventos como:

ellas radica su flexibilidad y expansibilidad.

Conference on Control Applications 2007, American Control Conference 2008, InTErCon, entre otros. Desarrolló proyectos integradores para la Marina de Brasil, Petrobras y empresas mineras locales. Desde 2007, labora en TECsUP – Arequipa, está a cargo de cursos del Programa de Formación regular, Programas de Especialización y cursos a empresas industriales nacionales y extranjeras.

Invest Apl Innov 3(1), 2009


Innovación tecnológica en la fabricación de oxicloruro de cobre a partir de soluciones de lixiviación de minerales de cobre Technological innovation in the production of copper oxyclorure from leaching acid solutions Walter Montoya, Luis Sánchez

Resumen

Abstract

El objetivo de la investigación aplicada es determinar las con-

The objective of the applied research is to determine the

diciones de fabricación de oxicloruro de cobre, producto que

production conditions of copper oxychloride, product

se aplica en la agricultura como fungicida. Existen diversas

that is applied in agriculture as fungicide. There are di-

formas de su fabricación, tradicionalmente a partir de cha-

fferent ways to produce it from copper scraps materials;

tarra de cobre; el alcance del proceso de fabricación que se

the production process proposed is from solutions of lea-

propone es a partir de soluciones provenientes de lixiviación

ching acid of copper.

de minerales oxidados de cobre. The method was developed through an experimental La metodología de trabajo se desarrolló mediante un proce-

process in laboratory in three stages, using sodium chlori-

so experimental de laboratorio simulado en tres etapas, uti-

de, iron scrap and air the experimental work included the

lizando como insumos cloruro de sodio, chatarra de fierro y

determination of effects of acidity, time of reaction, NaCl

aire. El trabajo experimental incluyó la determinación de los

concentration and dosage of cement over the kinetic and

efectos de la acidez, tiempo, concentración de NaCl y dosifi-

performance of CuSO4 conversion to CuCl, for the first sta-

cación de cemento sobre la cinética y rendimiento de con-

ge of the process.

versión de CuSO4 a CuCl, para la primera etapa del proceso. En una segunda etapa se disuelve el CuCl en solución caliente de NaCl, evaluándose el tiempo, la temperatura y la concentración de la salmuera. El proceso concluye en una etapa de oxidación del CuCl para formar el precipitado de oxicloruro que es evaluado mediante pruebas de ciclo cerrado. Se determinan los efectos del circulante de CuCl y cemento, permitiendo comprobar la viabilidad técnica del proceso y

In the second stage, CuCl is dissolved into a hot solution of NaCl. We evaluated the time of reaction, temperature and concentration of sodium chloride. The process concluded with a stage of oxidation of CuCl in order to form the oxycloride that is evaluated in a locked cycle test. The effects of CuCl charge and cement are determined, allowing to probe the technical feasibility of the process and its advantages.

las ventajas con respecto de otros procesos en cuanto a los

The results obtained in the applied research are impor-

principales insumos necesarios.

tant to implement the process at an industrial level. The quality of the oxychloride is in average 55 to 58% Cu and

Los resultados obtenidos en la investigación aplicada sirven

16 to 18% Cl, with a size of minus 10 microns, complying

de base para la implementación del proceso propuesto en

with the specifications of the commercial product. Also, it

el ámbito industrial. La calidad del oxicloruro a producirse

has been calculated that 1 kilo of copper in solution gives

está en el orden del 55 – 58% Cu, 16 – 18% Cl, con granulo-

1.8 kilos of oxychloride, demanding 0.83 kilos of iron and

metría menor a 10 micrones, cumpliendo en este punto con

1.3 kilos of NaCl.

las especificaciones del producto. Además, se estima que por 1 kg de cobre en solución tratado se producirán 1.8 kg de

Palabras claves

oxicloruro, por lo que se requiere 0.83 kg de fierro y 1.3 Kg de NaCl.

Cimentación, lixiviación, conversión, pruebas de ciclo cerrado, pruebas discontinuas, precipitación, cinética.

Invest Apl Innov 3(1), 2009

33


Sánchez Luis, Montoya Walter. “Innovación tecnologica en la fabricación de oxicloruro de cobre a partir de soluciones de lixiviación de minerales de cobre”

Key words

Este método consiste en diluir en agua caliente, a 82ºC, cristales de sulfato de cobre; luego se disuelve en cloruro de

Cementation, leaching, conversion, locked cycle test, batch

sodio para formar el cloruro cúprico (CuCl2). A esta solu-

test, precipitation, kinetic.

ción caliente se le añade roca calcárea (CaCO3) finamente pulverizada para neutralizar la acidez proveniente del sul-

INTRODUCCIÓN

fato de cobre y del cloruro de sodio, con lo que se alcanza un pH entre 3.5 a 4.0. Después, se inyecta aire a la pulpa,

La alternativa de producir sales de cobre a partir de la lixivia-

para producir la precipitación de cristales de oxicloruro de

ción de minerales oxidados ha sido planteada a los produc-

cobre. La pulpa se filtra a presión, luego se lava con agua

tores mineros en los últimos años a fin de aumentar el valor

caliente a 70ºC en el mismo filtro, finalmente se seca y se

agregado del mineral. En el orbe nacional las menas oxidadas

desmenuza para luego envasar con el fin de su comerciali-

de cobre son lixiviadas para luego producir cátodos, cemento

zación.

o sulfato de cobre.

guientes reacciones:

Con respecto a los yacimientos próximos a la costa, con relativa facilidad para conseguir cloruro de sodio y chatarra de

CuSO4 +

2 Na2SO4 + 3 CuCl2 + 2 CaCO3 ➜ 4 NaCl + 2 CuO . CuCl2 + 2

fierro, se plantea un proceso no convencional con el fin de producir oxicloruro, del cual se tiene antecedentes de estudio

➜ Na2SO4

+

CuCl2

El sulfato de calcio que aún acompaña al oxicloruro en el

papas, frutales, café y otros para combatir plagas de hongos.

filtro por ser soluble en agua, se elimina durante la opera-

La aplicación de este producto es fundamentalmente como

ción de lavado. El cloruro de sodio, que también está pre-

fungicida criptogámico para eliminar algunos microorganis-

sente como impureza por ser soluble, del mismo modo se

mos que atacan a los frutales, cafetales, semillas y cultivos

elimina en la operación de lavado.

de pan llevar, otro uso es como pigmento. El uso actual en el

34

2 NaCl

CaSO4 + 2CO2

en el norte de Chile. El oxicloruro tiene aplicaciones en los cultivos de hortalizas,

La fabricación del oxicloruro de cobre se basa en las si-

orbe nacional es reducido, aunque existe, principalmente, un

Con esta metodología se obtiene un producto de oxicloruro de cobre que contiene entre 17 a 19% cobre, porcentaje

mercado potencial de exportación al grupo andino.

bajo, debido principalmente a las reacciones químicas que intervienen, calidad de la caliza y restos de sulfatos y clo-

El presente artículo constituye un estudio para determinar la

ruros insolubles que quedan con el oxicloruro después del

viabilidad técnica del proceso, evaluándose las variables y el

filtrado.

diagrama de flujo que nos permiten estimar los resultados en un circuito continuo.

b) Metodología del Ácido clorhídrico

FUNDAMENTOS

metálico con ácido clorhídrico diluido a 60 g/L, mediante la inyección de aire comprimido para agitar la solución, lo

El oxicloruro de cobre es un compuesto cristalizado confor-

que permite acelerar la reacción. Cuando la solución alcan-

mado por: aCuO, bCuCl2, cH2O, en el que varía el valor de los

za un pH=3.0, se produce la precipitación de finos cristales

coeficientes a, b y c de acuerdo al procedimiento de fabrica-

de oxicloruro de cobre por la presencia de oxígeno sumi-

ción.

nistrado por el aire. La pulpa obtenida se filtra, el queque se somete a secado, se desmenuza, y luego se envasa para su

Los métodos de fabricación dependen fundamentalmente

comercialización.

de los insumos elegidos o disponibles. Los procesos convencionales que se trabajan en las plantas instaladas en Lima parten de virutas de cobre y emplean ácido clorhídrico. A

ciones:

bles y conocidos en el país.

Invest Apl Innov 3(1), 2009

El método permite utilizar cobre electrolítico (chatarra limpia) y ácido clorhídrico, de acuerdo con las siguientes reac-

continuación resumimos brevemente los métodos disponi-

a) Metodología del Sulfato de Cobre

Este método consiste en hacer reaccionar retazos de cobre

4 Cu + 2 HCl + 2 O2 ➜ CuCl2 + 3 CuO + H2O


Sánchez Luis, Montoya Walter. “Innovación tecnologica en la fabricación de oxicloruro de cobre a partir de soluciones de lixiviación de minerales de cobre”

Esta reacción procede en medio ácido con pH menor a

CuSO4 + 2 NaCl + Cu ➜ 2 CuCl + Na2SO4 (1)

3, y si este pH mayor a 3, se produce la precipitación de cristales.

El cemento requerido para el proceso se produce de la reducción del CuSO4, remanente de (1) con chatarra de fierro que

2 [CuCl2 + 3CuO] + 7 H2O ➜ 6 CuO . 2CuCl2 .7 H2O

El oxicloruro de cobre que es insoluble en agua, al ser so-

complementa la primera etapa. Se filtra y se lava el cake de CuCl.

metido a filtración queda en la tela del filtro. El ácido clor-

b) La segunda etapa trabaja con el cake “CuCl - Cemento Co-

hídrico remanente queda en la solución y es eliminado

bre”. Consiste en una disolución caliente del CuCl con sal-

durante el filtrado.

muera de NaCl después del cual queda como residuo el exceso de cemento.

Con esta metodología se obtiene oxicloruro de cobre conteniendo entre 57 - 59% de cobre, porcentaje alto y

CuCl

+ NaCl

CuCl. NaCl

Luego de disolver, se filtra para obtener una solución rica

(2)

de gran pureza.

PROCEDIMIENTO EXPERIMENTAL

de CuCl, a fin de separar el cemento de cobre que continuará utilizándose en el proceso.

El procedimiento que presentamos es innovador respecto a los métodos tradicionales antes descritos, pues utiliza como

c) La tercera etapa consiste en la oxidación de la solución que

materia prima las soluciones obtenidas en los procesos de

contiene CuCl, empleando oxígeno del aire insuflado para

lixiviación y fue desarrollado experimentalmente.

formar el oxicloruro, que se separa por filtración.

En la Figura 1 se presenta un diagrama de bloques del proce-

so al que denominamos de “tres etapas”; una primera etapa,

6 CuCl

+

3 H2O

Cu(OH)2 CuC +

+

3/2O2

3

2 CuCl2

el cobre presente como sulfato en la solución de lixiviación se convierte parcialmente a cloruro cuproso en presencia de

La solución que contiene el cloruro cúprico y cloruro de so-

NaCl y cemento de cobre, con quien comparte en 50% la con-

dio se utiliza para cerrar el circuito en la disolución, con lo

versión. El CuCl queda como un precipitado mezclado con el

cual ocurre una reconversión del CuCl2.

exceso de cemento de cobre.

CuCl2

+

Cu(cemento)

CuCl

d) La etapa concluye con el filtrado y secado del oxicloruro al que se le debe añadir reactivos para mejorar su adhesividad a las plantas. La reacción general del proceso es:

CuSO4 +

3 Cu(OH)2 . CuCl

2 NaCl + 3 Cu + 3 H2O + 3/2 O2 ➜ + NaSO4

RESULTADOS Pruebas batch En el trabajo experimental se efectuó inicialmente la lixiviación en columnas, con solución de acido sulfúrico de un mineral oxidado que contiene 2% de cobre, del que se obtuvo soluciones cosechas con 43 y 20 g/L de cobre, que contienen impurezas de aluminio, zinc y fierro, principalmente. Figura 1. Diagrama del proceso de producción de oxicloruro

Invest Apl Innov 3(1), 2009

35


Sánchez Luis, Montoya Walter. “Innovación tecnologica en la fabricación de oxicloruro de cobre a partir de soluciones de lixiviación de minerales de cobre”

El equipo utilizado para la preparación del oxicloruro está

La concentración del NaCl, tiempo de disolución y proporción

constituido por planchas de calentamiento y agitación

de cemento, influyen en la segunda etapa, con lo que debe

magnética, agitador orbital de frascos, línea de aire compri-

mantenerse a un pH menor a 4.

mido y burbujeador, filtros a vacío y accesorios de vidrio.

Evaluación de Variables

Se efectuó una serie de pruebas discontinuas comparativas y secuenciales, para delinear las principales variables

Se seleccionan algunas variables que son de importancia para

del proceso. Los detalles se presentan en la Tabla 1.

el proceso planteado.

Los resultados obtenidos permiten apreciar que el proce-

Primera etapa

dimiento funciona igual para soluciones con 43 ó 20 g/L de Cu, con lo que se obtiene oxicloruro de composición

a) Influencia de la acidez en la conversión:

promedio de 58% Cu y 18% Cl y que corresponde, aproxi

madamente, a dos fórmulas del producto final:

Las soluciones ricas de lixiviación contienen ácido remanente en cantidades controlables en el desarrollo de la lixi-

• 3Cu(OH)2 . CuCl2

viación. Se efectuaron pruebas comparativas de conversión

con 59.5% Cu y 16.6% Cl

con contenidos de ácido sulfúrico de 3 hasta 50 g/L. • CuCl2 . 3CuO . 2H2O

con 55.1% Cu y 20.6% Cl

En la Figura 2 se muestra la variación del rendimiento de

Observamos, en el desarrollo de las pruebas, que la acidez

CuCl, a partir del Cu+2 inicial y la variación porcentual de la

inicial de la solución, la dosificación del cemento, tiempo

disolución adicional del cemento con respecto al Cu+2 ini-

de agitación, la temperatura, el pH, la granulometría del ce-

cial. Se observa que, con bajos contenidos de ácido libre,

mento, son algunas variables de consideración en la preci-

es mejor la conversión de CuCl, siendo menor la disolución

pitación de CuCl de la primera etapa.

adicional de Cu+2.

36 MUESTRA

PRUEBA BATCH o

N 1

o

N 2

No 3

No 4

No 5

Solución Lixiv. Cu (g/L)

43.00

43.00

20.10

20.0

20.10

Solución a cementacion Cu (g/L)

19.60

12.20

10.00

8.10

15.00

Solución de oxidación Cu (g/L)

8.70

9.40

12.50

19.90

5.00

Cu %

59.60

55.20

58.40

58.60

58.10

Cl %

23.00

17.70

16.50

16.80

16.90

% NaCl

6.0

5.4

7.5

2.5

2.5

Relación (Cuº/Cu+2 inicial)

1.2

1.1

1.0

1.2

1.5

Oxicloruro

CONDICIONES DE OPERACIÓN Etapa de Conversión

Tiempo de Agitación (horas)

2.0

2.0

2.0

2.0

0.4

Temperatura (ºC)

20.0

40.0

20.0

20.0

20.0

pH final

4.0

4.0

4.5

3.0

3.0

% NaCl

1.0

10.0

20.0

15.0

15.0

Tiempo de Agitación

2.0

2.0

2.0

2.0

2.0

Temperatura (ºC)

60.0

70.0

70.0

60.0

60.0

1.0

2.0

2.0

1.5

1.5

Etapa de Disolución

Etapa de Oxidación Tiempo aireación

Tabla 1. Resultados de pruebas batch de producción de oxicloruro

Invest Apl Innov 3(1), 2009


sánChEZ Luis, MonToYA walter. “Innovación tecnologica en la fabricación de oxicloruro de cobre a partir de soluciones de lixiviación de minerales de cobre”

35% 30% 25% 20% 15% 10% 5%

Cu ad. Dis/Cuº inicial

0%

Cu=1/Cu=2 inicial

10

20

30

40

50

H2SO4 (gr/lt) Figura 2. Influencia de la acidez en el rendimiento de conversión y en la disolución adicional del cemento.

se observa en las soluciones con un ph de 3, la formación

Por estequiometría del proceso se requiere convertir no

de otros compuestos de metales no deseados, en este

más del 30% Cu+2 (inicial) en la primera etapa, siendo el

caso de aluminio y fierro. En estas condiciones, se sugiere

porcentaje restante cementado a Cuº. Esta condición nos

trabajar con 5 a 8 g/L de acidez.

permite seleccionar los parámetros de R = 1.5 y el tiempo de agitación de 30 minutos.

b) Influencia del cemento de cobre c) Influencia de la concentración de naCl En la figura 3 se presenta el rendimiento de conversión de Cuso4 o CuCl, variando el tiempo de agitación de 0.5

En la Figura no 4 se aprecia la variación del rendimiento de

a 2 horas, para tres diferentes proporciones (r) de Cuº

conversión total con respecto al % naCl de la solución, para

como cemento respecto del Cu+2 inicial.

tres diferentes valores de r.

se puede apreciar que la cinética de conversión se incre-

La disminución del rendimiento, a partir del 3% de naCl,

menta notablemente con los mayores valores de r.

ocurre por la disolución del CuCl formado en el exceso de naCl. El valor de 2% naCl nos asegura la conversión con una mínima disolución en la primera etapa.

120% 100% 80% 60% 40% 20% 0% 10

20

30

40

50

60

70

80

90

100 110 120

Tiempo de Agitación (min) Figura 3. Influencia de la relación Cuª/Cu+2 en el rendimiento y cinética de la conversión CuSO4 a CuCI Invest Apl Innov 3(1), 2009

37


sánChEZ Luis, MonToYA walter. “Innovación tecnologica en la fabricación de oxicloruro de cobre a partir de soluciones de lixiviación de minerales de cobre”

Segunda Etapa

circuitos de concentración de minerales. se aplicó esta técnica en el plano de frascos, para determinar el efecto de los circulantes de Cu(cemento) y de la solución de salmuera con cloruro

a) solubilidad del CuCl en salmuera

cúprico, en la calidad del producto final, por la formación de se efectuaron pruebas para determinar la curva de solu-

algún compuesto no detectado en las pruebas discontinuas.

bilidad del CuCl por solución de naCl a temperaturas de 20 – 80ºC, con y sin presencia de iones Cu+2 . Los resulta-

Los resultados y el diagrama se presentan en la Tabla 2 y en la

dos se presentan en las Figuras 5a y 5b.

Figura 6.

• Se observa que temperaturas entre 45 a 55 ºC son sufi -

• Observamos que la solución de recirculación en el quinto

cientes para disolver el cloruro cuproso que se estima

ciclo presenta una elevada concentración de cobre, lo que

formar en la primera etapa, manteniendo la concen-

manifiesta un desbalance del circuito y que es ocasionado

tración de 12 a 15% naCl.

por un tiempo insuficiente de agitación para la reconversión de CuCl2 a CuCl en la segunda etapa.

b) Tiempo de disolución: • En el tercer ciclo y siguientes se observa la tendencia a for• En las pruebas batch se observa que el tiempo de di-

mar un compuesto del tipo hidróxido en la superficie del

solución es rápido y no tiene mucha importancia a

cemento remanente durante el lavado, que se arrastra a la

temperaturas entre 50 y 70ºC, pues ocurre en menos

etapa de oxidación, impurificando al oxicloruro.

de dos minutos. Prueba No 2 • En la primera prueba cíclica se observa que el tiempo de disolución se tiene que ampliar unos minutos más

• Luego de evaluar todas los variables de la primera prueba

para la reconversión de CuCl2 y disolución del CuCl

cíclica, definimos las condiciones óptimas de operación,

formado se estima que 5 minutos son suficientes.

efectuando una segunda prueba de ciclo sin mayor modificación en el diagrama de flujos. Ver Tabla 3.

38

Pruebas de Ciclo Cerrado

• Se observa que el sistema tiende a lograr el equilibro buscado en el quinto ciclo, manteniéndose la solución de recir-

Prueba No 1

culación con contenidos de cobre no mayores del 50% de la carga al circuito, de acuerdo a lo esperado.

Luego de las pruebas batch, se efectuó una primera prueba cíclica, método comúnmente aplicado en la evaluación de

80% 70% 60% 50% 40% 30% 20%

R = 0.5

10%

R=1

0%

R = 1.5 1

2

3

4

Figura 4. Influencia de la concentración de NaCI en obtención de CuCI para diferentes relaciones (R)

Invest Apl Innov 3(1), 2009


sánChEZ Luis, MonToYA walter. “Innovación tecnologica en la fabricación de oxicloruro de cobre a partir de soluciones de lixiviación de minerales de cobre”

7 6 5 4 3

15.0% NaCl

2

12.5% NaCl

1

10.0% NaCl

0

7.5% NaCl 10

20

30

40

50

60

70

Temperatura ºC Figura 5a. Curvas de solucibilidad CuCI en Salmuera, sin iones Cu+2

6 5 4 3 15.0% NaCl

2

12.5% NaCl

1 0

10.0% NaCl 7.5% NaCl 10

20

30

40

50

60

70

Temperatura ºC Figura 5b. Curvas de solucibilidad CuCI en Salmuera, con iones Cu+2

CONCLUSIONES

• La calidad del oxicloruro a producir está en el orden del 55– 58% de cobre, 16–18% de cloro, con granulometría menor

• Se ha probado técnicamente, en operación experimental, el proceso de fabricación de oxicloruro de cobre a partir

a 10 micrones, cumpliendo en este punto con las especificaciones comerciales del producto.

de soluciones de lixiviación ácida de minerales oxidados, empleando como materiales principales la chatarra de fierro, cloruro de sodio y aire comprimido.

• Se estima que por 1 kg de cobre en solución tratado se producirán 1.8 kg de oxicloruro, requiriéndose 0.83 Kg de Fe y 1.3 Kg de naCl.

• Las principales difi cultades observadas están relacionadas con la inestabilidad química del cemento de cobre

• Ha sido probada la ventaja de la técnica experimental de

de recirculación, después de haber sido sometido a la ac-

evaluación por ciclos (locked test), de común aplicación en

ción del naCl. Esto exige un control del ph de la solución

Mineralurgia para suplir a los requerimientos de un equipo

del lavado.

de operación continua, permitiendo delinear mejor el circuito del proceso planteado.

Invest Apl Innov 3(1), 2009

39


Sánchez Luis, Montoya Walter. “Innovación tecnologica en la fabricación de oxicloruro de cobre a partir de soluciones de lixiviación de minerales de cobre”

MUESTRA

PESO (g)

VOLUMEN (L)

LEY Cu

CONT. Cu (g)

% Rendimiento

Oxicloruro 1

8.53

56.40%

4.81

47.90

Oxicloruro 2

9.97

58.20%

5.80

58.30

Oxicloruro 3

13.10

55.20%

7.23

71.90

Oxicloruro 4

15.30

43.00%

6.58

65.50

Oxicloruro 5

13.17

54.00%

7.11

70.70

60.07

52.49%

31.53

0.53

37.50 g/L

19.88

79.20%

13.62

1.8

Relave 1

0.91

0.20 g/L

0.18

1.39

Relave 2

0.98

0.14 g/L

0.14

2.29

Soluc. Recirc. (Quinto Ciclo) Cemento

17.20

Relave 3

1.01

0.23 g/L

0.23

1.99

Relave 4

0.92

0.22 g/L

0.20

1.59

Relave 5

1.02

0.16 g/L

0.16

4.84

0.19

0.91

0.50

20.10 g/L

10.05

ALIMENTACIÓN Solución Lixiv./Ciclo

555.00

Cemento Inicial

12.50

96.00%

12.00

4to Ciclo

5.20

96.00%

3.00

CONDICIONES DE OPERACIÓN Primera Etapa: 2.5% NaCl, 1.2 R, 2horas agitación., 20ºC Segunda Etapa: 15% NaCl, 2 minutos disolución, 60ºC Tercera Etapa: 2 horas aireación Tabla 2. Resultados de prueba ciclica No 1

40

MUESTRA

PESO (g)

VOLUMEN (L)

LEY Cu

CONT. Cu (g)

% Rendimiento

Oxicloruro 1

6.50

56.50%

3.67

36.50

Oxicloruro 2

11.20

57.10%

6.40

63.70

Oxicloruro 3

14.30

55.40%

7.92

78.80

Oxicloruro 4

16.00

56.40%

9.00

89.60

Oxicloruro 5

17.20

55.80%

9.60

95.50

65.20

56.12%

36.59

12.90 g/L

5.03

90.00%

17.08

75.20%

5.26

0.20 g/L

0.17

Soluc. Recirc. (quinto ciclo) Cemento

0.39 18.98

Remanente Relave 1

0.85

1.69

Relave 2

0.93

0.12 g/L

0.11

1.09

Relave 3

0.89

0.15 g/L

0.13

1.29

Relave 4

0.91

0.11 g/L

0.10

0.99

0.94

0.15 g/L

0.14

1.39

4.52

0.14

0.65

Relave 5

ALIMENTACIÓN Solución Lixiv./Ciclo

555.00

Cemento Inicial

15.63

0.50

20.10 g/L

10.05

96.00%

15.00

CONDICIONES DE OPERACIÓN Primera Etapa: 2.0% NaCl, 1.5 R, 30 minutos agitación, 20ºC Segunda Etapa: 15% NaCl, 5 minutos disolución, 55ºC Tercera Etapa: 2 horas aireación Tabla 3. Resultados de prueba ciclica No 2

Invest Apl Innov 3(1), 2009


Sánchez Luis, Montoya Walter. “Innovación tecnologica en la fabricación de oxicloruro de cobre a partir de soluciones de lixiviación de minerales de cobre”

41

Figura 6. Diagrama de pruebas cíclicas

Invest Apl Innov 3(1), 2009


Sánchez Luis, Montoya Walter. “Innovación tecnologica en la fabricación de oxicloruro de cobre a partir de soluciones de lixiviación de minerales de cobre”

REFERENCIAS

ACERCA DE LOS AUTORES

[1] Muñiz Delgado, Juan. (1987). “Alternativas de solución

Luis Sánchez Zúñiga es ingeniero me-

para Cerro Verde. Proyecto Oxicloruro de Cobre en Mine-

talúrgico. Es investigador en el área

ro Perú”. Resúmenes del IV Simposium Nacional de Inge-

de procesamiento de los minerales.

niería Metalúrgica. Arequipa.

Tiene experiencia laboral en empresas mineras, focalizando su desarrollo

[2] Rodríguez Velarde, Jorge. (1988). “Producción de sales

profesional en la implementación de

de cobre: Una alternativa en el beneficio de los minerales

procesos metalúrgicos y supervisión

de cobre”. Convención de Ingenieros de Minas. Tacna.

de plantas concentradoras, plantas de cianuración y plantas de lixiviación de

[3] Montoya, Walter y Werner, Joseph. (1989). “Fabricación

minerales. Ha escrito artículos de su especialidad en la revista

de Oxicloruro de cobre a partir de soluciones de lixivia-

I+i. Sus áreas de interés son: hidrometalurgia del oro y diseño

ción de minerales oxidados”. (Informe privado). Lima.

de plantas metalúrgicas. Es consultor en Investigación Aplicada de los Servicios de la Industria Minera en Tecsup.

[4] Marchese, Adolfo. (2002). “Tecnología de la producción de sales de cobre”. Revista Minería (Ecuador). Cámara de

Walter Montoya es ingeniero meta-

Minería de Ecuador. Quito.

lúrgico. Tiene una muy amplia experiencia en la conducción, dirección y diseño de plantas concentradoras de minerales polimetalicos y en plantas de cianuración. Tiene amplia experiencia en el desarrollo de proyectos de implementación de las plantas metalúrgicas. Actualmente se desempeña como gerente corporativo en Hochschild Mining, te-

42

niendo a su cargo el proyecto de acreditación ISO 17025 de los laboratorios de las unidades mineras.

Invest Apl Innov 3(1), 2009


Mejora del proceso de transesterificación usando blendas: aceite de ricino y aceites residuales Improvement of the transesterification process using oils blend: castor oil and frying oil

Hugo Chirinos

Resumen

Abstract

El presente artículo presenta un método para mejorar los

This article reports a method to improve the parameters of the

parámetros del proceso de transesterificación para la fabri-

transesterification process for the fabrication of biodiesel from

cación de biodiesel usando blendas del aceite de ricino y

using waste frying oil and castor oil blends. The high viscosi-

los aceites residuales. La alta viscosidad del aceite de ricino

ty of castor oil difficults its transport because it needs very hi

dificulta su transporte, ya que necesita de bombas de gran

powered pumps, and the yield of metil ester from castor oil are

potencia, y los biodiesel fabricados a partir de él son de alta

o better quality, but its high viscosity exceeds the standard va-

calidad, pero, presentan altas viscosidades que sobrepasan

lue of quality biodiesel norm. On the other hand, the high acid

los valores recomendados por las normas de calidad. Por

index of frying oil produces low biodiesel quality. This study

otro lado, los altos índices de acidez de los aceites residuales

was aimed to find a synergy between castor oil and frying oil.

conducen a bajos rendimientos de los biodiesel producidos. Con la finalidad de encontrar un sinergismo entre estas dos

The blends methodology uses the mixture to raw materials.

materias primas, se realizó el presente estudio.

The fatty acids free and the fatty acids methyl ester from blends and original oils was analyzed. The blend and pure oils

Se utilizan técnicas de mezclado en ciertos porcentajes de

kinematics viscosity and the biodiesel from the transesterifica-

aceites residuales al aceite de ricino, con el fin de obtener

tion process were measured. This process which uses blends,

blendas. Para la fabricación del biodiesel, a partir de las blen-

provides 90% yield of methyl ester. The fatty acids free tolera-

das, se utiliza el proceso de transesterificación con metanol,

ble index regulated value was 3.5 mgKOH/g from raw mate-

usando KOH como catalizador. Se analiza el índice de esteres

rials. The biodiesel of castor oil viscosity decreases using blends

metílicos obtenidos de las blendas y de los aceites originales.

with very low percentage of waste frying oil and improved the

El cálculo del rendimiento de cada reacción se realiza en fun-

parameters process.

ción de los esteres producidos. Se complementa el análisis midiendo la viscosidad cinemática de las blendas y de los

Palabras claves

aceites puros, así como de los biodiesel producidos. Blendas, aceite de ricino, aceites residuales, biodiesel, transesLos resultados mostraron rendimientos superiores a 90%

terificación, mejoras de proceso, metanólisis, viscosidad cine-

cuando se utiliza el proceso de transesterificación de las

mática.

blendas. La padronización de las blendas mediante su índice de acidez es de gran importancia y llega a un valor máximo

Key words

de 3.5 mgrKOH/gr. Así se consigue disminuir la viscosidad de los esteres producidos, a partir de las blendas, con una

Blends, castor oil, frying oil, biodiesel, transesterification, pro-

mínima proporción del aceite residual; además, se mejoran

cess improvement, metanolysis, kinematic viscosity.

las condiciones de proceso.

Invest Apl Innov 3(1), 2009

43


Chirinos, Hugo. “Mejora del proceso de transesterificación usando blendas: aceite de ricino y aceites residuales”

INTRODUCCIÓN

de ricino es el único aceite natural soluble en alcohol; además, es el mas denso y viscoso de todos los aceites vegetales y ani-

Los aceites vegetales y aceites residuales (AR) son sustan-

males y tiene el mayor porcentaje de oxigeno en su molécula,

cias grasas, de compuestos triglicéridos o no, presentes en

cerca de 5% más que los otros aceites. Al ser transformado en

organelas celulares de frutas o granos oleaginosos, que son

biodiesel, se comporta como combustible y comburente, y la

llamados cuerpos lípidos o esferosomos [1]. Además del uso

polución atmosférica es mucho menor [5].

alimenticio, los aceites vegetales son utilizados en la industria farmacéutica, química, cosmética o como materia prima

Con relación a los AR provenientes de los restaurantes y de las

de compuestos químicos de interés. Varios aceites sirven

cocinas populares, industriales y domesticas, en las que son

como materia prima para la producción de esteres metílicos

procesadas las frituras de alimentos como papas fritas y otros

de ácidos grasos (biodiesel).

tipos de frituras, estos representan un potencial de oferta sorprendente, que supera las más optimistas expectativas.

A pesar de los posibles beneficios ambientales en el empleo de los aceites vegetales como sustituto al diesel, existen

Los AR están constituidos, mayoritariamente, de aceite de soya,

barreras del punto de vista económico que motivan la bús-

el cual contiene un alto porcentaje del ácido graso linoleico,

queda de materias primas alternativas para la producción de

y es considerado una buena fuente en la producción de bio-

bio-combustibles [2].

diesel.

Dentro de las alternativas estudiadas, la reutilización de los

Para que el proceso de transesterificación resulte satisfactorio,

aceites residuales (AR) de procesos de fritura de alimentos es

los aceites deben poseer una mínima cantidad de ácidos gra-

atractiva, pues se aprovecha el aceite vegetal como combus-

sos libres, ya que pueden reaccionar con el catalizador alca-

tible después de haberse usado en la cadena de alimentos.

lino y formar productos saponificados, lo que hace disminuir

Así, se obtiene un segundo uso o, también, en una utilización

el rendimiento en la reacción de conversión. Los aceites pu-

alternativa a un residuo de la producción de alimentos [3].

ros encontrados en el comercio poseen bajo índice de acidez entre 0.5 – 3%. Para que la reacción sea completa, en la pro-

44

Se observa además que solamente un pequeño porcentaje

ducción de biodiesel se recomienda que la concentración de

de los AR son colectados para la fabricación de jabón o como

ácidos grasos libres sea inferior a 3%.

ración para animales, dado que la mayoría todavía se elimina a través del sistema de desagües o en basurales [4].

El objetivo del presente trabajo es evaluar el rendimiento de esteres metílicos (biodiesel) después de la reacción de transes-

En general, toda sustancia que contiene triglicéridos en su

terificación en los aceites de ricino y AR, así como también en

composición se puede usar para la producción de esteres.

las mezclas de estos (blendas) en varios porcentajes, con el fin

Pero, algunos factores pueden limitar la utilización de los AR

de hacer una comparación del mejor rendimiento del produc-

como materia prima. Estos son:

to final.

Sus características física y químicas.

PROCEDIMIENTO

La competitividad con otros usos (raciones para anima-

les, lubricantes, producción de derivados grasos, etc.).

Aceite de ricino puro se obtuvo de la empresa Bom-Brasil Acei-

Su costo y disponibilidad.

te de ricino Ltda. El índice de acidez (IA) del aceite de ricino

Además de lo mencionado, hay impurezas que no pueden ser eliminadas a través de la decantación o filtrado, como son los ácidos libres, polímeros y fosfolípidos, que pueden dificultar o, incluso, inviabilizar su aprovechamiento como combustible. La higuerilla (Ricinus communis L.) es una planta especial, originaria de clima tropical, posiblemente de Etiopía, África, con elevada capacidad de resistencia a la sequía. Posee 47% de aceite en algunas especies y es, actualmente, recomendada su plantación en las regiones áridas del Perú. El aceite

Invest Apl Innov 3(1), 2009

se analizó por el método cuantitativo y fue de 0.76 mgKOH/ gr. Los AR se obtuvieron de las industrias alimenticias locales, los cuales fueron filtrados con la finalidad de disminuir las impurezas sólidas. El índice de acidez fue de 3.5 mgKOH/gr. se midieron los índices de acidez de las blendas. Se utilizó alcohol etílico P.A. (99%), NaOH, agua des-ionizada y fenolftaleina para el análisis. El KOH P.A. (85%), en la forma de pellets, y el alcohol metílico se utilizó para la reacción de alcoholisis. Los aceites de ricino y AR se mezclaron en una proporción de 25/75, 30/70, 40/60, 50/50, 60/40, 70/30, produciendo las blendas que serían analizadas. En seguida, se realiza la reacción de


ChIrInos, hugo. “Mejora del proceso de transesterificación usando blendas: aceite de ricino y aceites residuales”

transesterificación, tanto con los aceites originales como en

Determinación del IA en las Blendas

las blendas. Las muestras de biodiesel obtenidos de los aceites y de las blendas se analizaron con relación al IA y al rendi-

La ecuación 2 relaciona el IA de las mezclas aceite de ricino – Ar.

miento de esteres metílicos producidos, juntamente con su respectivas viscosidades.

IA =

IAm + ( IAo - IAm) (% M)

Reacción de metanólisis

(2)

100

donde IA, representa el IA de una cierta mezcla de aceite de La reacción de metanólisis se realizó en un reactor de 500mL,

ricino: ar; %M representa el porcentaje de aceite de ricino en la

en constante agitación y con sistema de calentamiento. se

mezcla, IAm e IAo representan los IA del aceite de ricino y del Ar

colocaron 200gr de aceite y se calentó hasta 75°C. La solu-

“puros”, respectivamente.

ción alcohólica se preparó en otro sistema, adicionando 20% en peso del metanol y en constante agitación se disolvió 1%

Determinación del índice de éster, IE

(p/p) de KOH. El IE se define como la masa de hidróxido de potasio, en miLa solución alcohólica se colocó en un embudo de adición.

ligramos, que se gasta en la saponificación de un gramo de

Cuando el sistema llega a la temperatura deseada, la solu-

muestra. En esta definición no se incluye la masa de potasio

ción alcohólica se adiciona al reactor, manteniendo el siste-

que se gasta en la neutralización de los ácidos libres presentes

ma en constante agitación durante 30 minutos.

en la muestra del biodiesel. El análisis se realizó determinando primeramente el IE de los aceites originales y, enseguida, del

El resultado de la reacción se transfiere a una pera de de-

biodiesel [1].

cantación. Después de un cierto tiempo, se observa la formación de dos fases. La fase superior que corresponde a los

se pesa 2gr de la muestra en un herlenmeyer de 60mL, se adi-

esteres metílicos formados y la fase inferior que contiene

ciona 5mL de alcohol etílico en constante agitación y, luego,

la glicerina.

2 gotas de fenolftaleína y se titula con una solución 0.1n de

Determinación del índice de acidez, IA

hidróxido de sodio hasta viraje de color de la solución. En la solución resultante de la titulación se adiciona 20mL de solución de hidróxido de potasio 4% y se calienta hasta ebullición en

El IA es la cantidad de hidróxido de potasio, en miligramos,

baño maria durante 30 minutos. Después, se adicionan 2 go-

que se gasta en la neutralización de los ácidos grasos libres

tas de fenolftaleina, y se titula con solución 0.5n de hCl hasta

presentes en un gramo de muestra [1].

que ocurra el viraje de color. se realiza una titulación en blanco

Determinación del IA en los aceites originales y en el biodiesel se pesa cerca de 2g de muestra en un herlenmeyer de 125mL y luego se adicionan 25mL de la mezcla éter etílico, alcohol etílico (2:1) en constante agitación. se adicionan 2 gotas de fenolftaleína y se titula con solución 0.1n de hidróxido de

donde estaban presentes todos los reactivos con excepción de la muestra. La diferencia entre el volumen de hCl que se gastó del blanco (Vb) y de la muestra (Va), se relaciona con la cantidad de hidróxido de potasio que se gasta en la saponificación de los ésteres presentes [1].

Determinación del IE en los aceites originales (ricino/AR) y en el biodiesel

sodio hasta la viraje de color. El IE se calcula mediante la ecuación 3: El IA se calcula mediante la ecuación 1: IA = V n 56.1

(1)

IE = (Vb -Va) n 56.1 m

(3)

m donde n es la normalidad de la solución de hCl y m es la masa donde V es el volumen de solución de naoh que se gasta en

de la muestra dada en gr. Los IE de los biodiesel provenientes

la titulación en mililitros, n es la normalidad de la solución y

de las blendas también se calculan de acuerdo con la ecuación

m es la masa de la muestra en gramos.

3. El rendimiento se determinó por la diferencia del IE del biodiesel con los respectivos IE del aceite correspondiente, dividido por el IE del biodiesel.

Invest Apl Innov 3(1), 2009

45


ChIrInos, hugo. “Mejora del proceso de transesterificación usando blendas: aceite de ricino y aceites residuales”

Determinación del IE en las blendas

en el rendimiento del proceso de transesterificación.

se puede demostrar que la relación entre los valores del IE

Al analizar la Figura 2 se observa que los IA de los biodiesel

de las mezclas del aceite de ricino y del Ar se encuentra en

formados en la transesterificación son menores a los IA de

la ecuación 4:

los aceites y blendas. Esto sugiere que la mayor parte de los ácidos grasos presentes en el aceite bruto participaron de la IE = IEm +

( IEo - IEm) (% M)

reacción en la producción de ésteres metílicos. En las blendas

(4)

hay presencia de otros tipos de ácidos grasos procedente del

100

Ar, con cadenas menores a los de los ácidos recinoleicos, predonde IE es el índice de éster de la blenda de los aceites de

dominantes de la higuerilla. Por lo tanto, independiente de la

ricino y Ar, y %M es el porcentaje de aceite de ricino en la

concentración de las blendas, los IA de los biodiesel obtenidos

mezcla; IEm y IEo representan los valores del IE de los aceites

son prácticamente constantes.

de ricino y de Ar, respectivamente.

Análisis del IE

RESULTADOS Mediante la ecuación 4, se nota que habrá una relación linear

Análisis del IA

entre el IE de la mezcla y el contenido de aceite de ricino en la misma. En esta ecuación IEm representa la intersección de la

Con la determinación del IA en los aceites es posible verificar

recta con la línea de las ordenadas y la expresión (IEm - IEo)/100

si la reacción de transesterificación será satisfactoria, en el

representa el coeficiente angular de la recta.

sentido de no ocurrir la reacción de saponificación durante el proceso. La ecuación 2 calcula la acidez en las blendas y

La Figura 3 muestra que el rendimiento de éster metílico pro-

muestra que hay una relación linear entre el IA de la mez-

ducido varía proporcionalmente en las blendas con valores

cla y el porcentaje de aceite de ricino en la misma. En este

mayores de 90%. Por lo tanto, al usarse las blendas se obtuvie-

caso, IAm representa el coeficiente linear y la expresión (IAm

ron buenos rendimientos. De esta forma se obtuvieron mejo-

- IEo)/100 representa el coefi ciente angular de la recta.

res condiciones de procesamiento en la planta piloto con el

se observa, a partir de la Figura 1, que el Ar presenta IA, aproxi-

tener cuidado en el control del IA, fijando tolerancias, que en

madamente, 4 veces mayor que el aceite de ricino, con la cual

este caso sea el valor máximo de 3.5 mg KOH/g.

uso de el aceite de ricino. Cuando el aceite sea de Ar, se debe

46

se muestra que una mezcla entre esos aceites puede favorecer

Indice de acidez, mg KOH/g

4 3.5 3 2.5 2 1.5 1 0.5 0 ricino

70/30

60/40

50/50

40/60

30/70

Aceites y blendas Figura 1. Valores del IA de los aceites bruto (ricino y AR) y sus blendas (ricino/AR)

Invest Apl Innov 3(1), 2009

AR


ChIrInos, hugo. “Mejora del proceso de transesterificación usando blendas: aceite de ricino y aceites residuales”

Indice de acidez, mg KOH/g

4

aceite bruto biodiesel

3.5 3 2.5 2 1.5 1 0.5 0 ricino

70/30 60/40 50/50 40/60 25/75 30/70

AR

Aceites y blendas

Rendimiento de esteres metilicos, (%)

Figura 2. Valores del IA de los biodiesel obtenidos a partir de los aceites puros y de las blendas e IA de los aceites bruto.

120 100

47

80 60 40 20 0 ricino 70/30 60/40 50/50 40/60 25/75 30/70

AR

Biodiesel Figura 3. Rendimiento con relación a los ésteres metílicos formados.

Así, se concluye que es posible reutilizar los aceites degrada-

mm, variando la temperatura en el intervalo de 45°C hasta

dos juntamente con aceites puros para obtener buen rendi-

75°C. Los resultados se presentan en la Figura 4.

miento y aumentar el valor agregado de la materia prima.

Viscosidad de los aceites puros y blendas

se observa una disminución de la viscosidad del aceite de ricino, en tanto se mezcla con el Ar; de tal forma que para la blenda 70/30 esa disminución llega hasta 50% de diferencia. Esto significa que, por mínimo que sea el porcentaje de la mezcla,

Para determinar la viscosidad de las muestras se utiliza el

ocurrirán resultados significativos en la viscosidad con relación

viscosímetro otswald con diámetro del capilar de 150 y 300

al aceite de ricino. Además, la tasa de variación de la viscosi-

Invest Apl Innov 3(1), 2009


Chirinos, Hugo. “Mejora del proceso de transesterificación usando blendas: aceite de ricino y aceites residuales”

dad, para bajas temperaturas, es dos veces mayor para las

La disminución significativa de la viscosidad del aceite de rici-

blendas de 70/30 y 50/50, lo que permite mayor control en

no, usando blendas aunque sea en mínimo porcentaje de AR,

el proceso.

además de mejorar las condiciones de procesamiento, produ-

Viscosidad del biodiesel a partir de las blendas y aceites

ce ésteres metílicos también de baja viscosidad. El biodiesel obtenido a partir de los aceites degradados, consigue mejorar sus propiedades con las blendas, lo cual permite

Las viscosidades de los biodiesel obtenidos a partir de las

dar mayor valor agregado a la materia prima reciclada.

blendas y aceites se determinaron en un intervalo de temperatura de 40 – 70°C. Los resultados se observan en la Figura

REFERENCIAS

5. La Figura 5 muestra que la tasa de variación de la viscosidad

[1] Vasconcelos, A. F. F., Godinho, O. E. S. (2002).“Uso de Métodos

del biodiesel, a partir del aceite de ricino, es alta a bajas tem-

Analíticos Conversionados no Estudo da Autencidade do

peraturas y se torna constante para altas temperaturas. Se

òleo de Copaíba”, Química nova, 25 (volumen) No 6b.

observa que la tasa de variación de la viscosidad del biodiesel, a partir de las blendas 60/40 y 70/30, es dos veces mayor

[2] Mittelbach, M. et. al. (1992). Production and Fuel Properties

a bajas temperaturas. Mientras tanto, para las blendas 50/50,

of Fatty Acid Methyl Ester from used Frying Oil. In: Liquid

40/60, 25/75 y AR puro, la tasa de variación de la viscosidad

Fuels from Renewable Sources. Nashville, Tennesse.

es constante en todo el intervalo de temperatura. [3] Anggraini-SÜß, A.A. (1999). Wiederverwertung von ge-

CONCLUSIONES

brauchten Speiseölenfetten im energetisch-technischen Bereich: Ein Verfahren und dessen Bewertung. (Tesis de

La obtención de biodiesel, a partir de blendas de aceite de

doctorado). Fortschr. Ber. VDI Série 15 no 219, Editora VDI.

ricino y AR, realizado en este trabajo, resulta en rendimientos

Duesseldorf.

mayores de 90% de los ésteres metílicos formados en la tran-

48

sesterificación, mostrando simplicidad en el proceso y facili-

[4] Mittelbach, M. & P. TRITTHART. (1988). “Diesel fuel derived

dad de separación de la glicerina. Es necesario mayor control

from vegetable oils, III. Emission tests using methil esters of

de IA de las blendas, estimando un valor máximo tolerable

used frying oil. JAOCS, Vol. 65, n° 7, (pp. 1185-1187).

del IA de la materia prima de 3.5 mg KOH/g.

Figura 4. Viscosidad cinemática, de los aceites puros y de las blendas.

Invest Apl Innov 3(1), 2009


Chirinos, Hugo. “Mejora del proceso de transesterificación usando blendas: aceite de ricino y aceites residuales”

Figura 5. Viscosidad cinemática de los biodiesel a partir de las blendas y aceites puros.

[5] Ferrari, R.A.; Oliveira,V.S.; Scabio, A. (2002) Biodiesel de soja – Taxa de conversão em ésteres etílicos, caracterização físico-química e consumo em gerador de energia”, Química nova, v. 28 No 1.

49 [6] Peres, J.R.R.; Elias, F.J.; Gazzoni, D.L. (2005). “Biocombustíveis Uma oportunidade para o Agronegócio Brasileiro”. Revista de Política Agrícola, Año XIV No 1 (pp. 31 – 41).

ACERCA DEL AUTOR Hugo Chirinos es Ingeniero Químico con estudios de maestría y doctorado en tecnología nuclear. Ha Participado en el proyecto de Biodiesel del gobierno brasilero como investigador responsable (2005-2007) coordinando los experimentos de laboratorio y la implementación y puesta en marcha de una planta piloto multi propósito para fabricar biodiesel a partir de diversas fuentes oleaginosas. Se desempeña como profesor del programa Procesos Químicos y Metalúrgicos de Tecsup. Sus áreas de interés son: optimización de procesos químicos; reología y caracterización de polímeros; metodología de diseño factorial en experimentos, evaluación técnica y económica de procesos químicos, nanotecnología.

Invest Apl Innov 3(1), 2009


Planeamiento operacional de transformadores de potencia: más allá de su capacidad nominal Operational planning of power transformers: beyond their nominal capacity Borsi Romero

Resumen

Key words

Un transformador de potencia —del tipo inmerso en aceite

Power transformer, overload of transformer, useful life of trans-

mineral— puede ser sometido a una sobrecarga permanen-

former

te sin que se reduzca su vida útil esperada, dependiendo de sus parámetros térmicos, el perfil del ciclo de carga y la tem-

INTRODUCCIÓN

peratura ambiente. La cuestión para el operador es, ¿hasta qué porcentaje puede sobrecargar un transformador en un

En la práctica operacional de sistemas eléctricos de potencia, se

caso particular?

observa que es usual operar los transformadores de potencia con un régimen de carga por debajo de su capacidad nominal.

50

El presente artículo resume un enfoque metodológico ba-

Algunos operadores tienen por política limitar la carga al 100%;

sado en normas y recomendaciones para la estimación de

otros, aún más conservadores, limitan la carga al 86%. En este

niveles de sobrecarga a las que pueden ser sometidos los

último caso la idea es contar con un margen de reserva que ten-

transformadores de potencia sin que su expectativa de vida

ga la capacidad para asumir cargas de subestaciones colindan-

se reduzca.

tes en caso de contingencias. El supuesto implícito en estos casos es que un transformador, operando en sobrecarga, estaría

Abstract

sacrificando su vida útil esperada (envejecimiento prematuro), lo cual no necesariamente es cierto.

Power transformer —mneral oil immersed kind— can work with a permanent overload without reducing its expected

Un transformador de potencia —del tipo inmerso en aceite

useful life, depending on its thermal parameters, load cycle

mineral— puede ser sometido a una sobrecarga permanente

profile and environmental temperature. The issue for the

sin que se reduzca su vida útil esperada, dependiendo de sus

operator is, until which percentage can you overload a trans-

parámetros térmicos, el perfil del ciclo de carga que alimenta y

former in a particular case?

la temperatura ambiente en la que se encuentra instalada.

The present article summarizes a methodological focus ba-

Un transformador de potencia no es solamente un sistema

sed on norms and recommendations for the estimation of

eléctrico diseñado para transmitir potencia entre distintos nive-

overload levels to which the power transformers can be sub-

les de tensión, es también un sistema térmico cuya implicancia

jected without expectation of life decreases.

tiene mucho que ver con su vida útil.

Palabras claves Transformador de potencia, sobrecarga de transformadores, vida útil de transformadores

Invest Apl Innov 3(1), 2009


roMEro, Borsi. “Planeamiento operacional de transformadores de potencia: mas allá de su capacidad nominal”

Figura 1. ¿Hasta cuánto se puede sobrecargar un transformador?

FUNDAMENTOS

interior del transformador es clave para estimar su expectativa de vida.

Factores que afectan la vida útil de un transformador

Expectativa de vida de un transformador

En general, la vida útil de un transformador puede ser afectado por:

Factores externos:

¿Cuánto dura un transformador? ¿Tiene una vida útil nominal? realmente no hay norma ni fabricante que presente un valor nominal de cuanto dura un transformador. El envejecimiento de un transformador es un concepto relativo. obviamente su

• Corrientes de cortocircuito • Sobretensiones • Fenómenos transitorios

Factores internos:

duración dependerá de condiciones operacionales y de mantenimiento. En la experiencia norteamericana se ha observado que un transformador de potencia dura, en promedio, 40 años. Pero este dato por si solo no es un buen indicador. Una larga duración de transformadores, si bien subutilizados, no es sinónimo

• Diseño del transformador

de una buena gestión.

• Condición del aceite, tratándose de transformadores inmersos en aceite (contenido de humedad) • Condición del papel aislante (temperatura, humedad, contenido de oxigeno) • Sobreelevación de temperaturas en el interior del transformador

Una buena gestión del activo consistirá en maximizar la cargabilidad del transformador durante su vida útil. Este enfoque implica dos aspectos: • Defi nir cuándo se da por fi nalizada la vida de un transformador.

De los factores señalados, el elemento crítico es el papel ais-

• Contar con una herramienta que permita estimar y simular

lante. Prácticamente la vida útil de un transformador del tipo

el envejecimiento del papel aislante tomando en cuenta

inmerso en aceite se define en función del envejecimiento

sus parámetros térmicos, el perfil del ciclo de carga que

del papel aislante de la bobina. Dicho papel envejece en fun-

alimenta y la temperatura ambiente en la que se encuentra

ción de la temperatura y es muy sensible a las variaciones de

instalada.

esta. En consecuencia, conocer y predecir la temperatura del

Invest Apl Innov 3(1), 2009

51


ROMERO, Borsi. “Planeamiento operacional de transformadores de potencia: mas allá de su capacidad nominal”

Criterio de finalización de la vida de un transformador La IEEE Std C57.91-1995 (recogida también por la IEC 60076-

rrollado y las normas y recomendaciones de la IEEE e IEC sintetizan lo avanzado en este asunto.

NORMAS DE SOBRECARGA

2), sugiere la vida normal en horas del papel aislante según cuatro criterios. Estos valores corresponden al papel aislante

Tanto la IEEE (Institute of Electrical and Electronics Engineers)

tipo termoestabilizado a 110 °C de referencia.

como la IEC (International Electrotechnical Commission) ofrecen guías de carga para transformadores sumergidos en aceite

Vida normal Criterio El papel aislante retiene el 50% de

papel aislante Horas

Años

65 000

7,42

135 000

15,41

150 000

17,12

180 000

20,55

su resistencia a la tracción. El papel aislante retiene el 25% de su resistencia a la tracción. El Grado de Polimerización del papel aislante ha llegado a 200. Interpretación de pruebas de vida útil de transformadores de distribución. Se debe entender por “vida normal del papel aislante” que, operando el transformador a una carga plana al 100% con una temperatura ambiente de diseño constante, al cabo de 65 000 horas la resistencia a la tracción del papel aislante ha-

52

brá llegado al 50% de su valor como nuevo; de modo similar, al cabo de 135 000 horas la resistencia a la tracción habrá alcanzado el 25% de su valor inicial. En la práctica, muchos operadores dan por finalizada la operación de un transformador cuando su papel aislante ha llegado a un Grado de Polimerización de 200. Establecido este criterio se espera que un transformador, con papel termoestabilizado de 110 °C de referencia, dure 150 000 horas (17,12 años) operando con una carga plana al 100% en un ambiente con temperatura constante de diseño (30 °C). Sin embargo, en la realidad la carga no es plana, es cíclica con un periodo de 24 horas de duración y estacional con mayor demanda, por ejemplo en el verano. Asimismo, la temperatura ambiente es variable en el día y a lo largo del año. No obstante, en ciertos casos estas variaciones pueden ser una ventaja dado que se puede sobrecargar un transformador cuidando que los límites de sus parámetros térmicos no sean superados. Lo anterior implica la necesidad de contar con modelos matemáticos que permitan simular el comportamiento térmico de un transformador. Este tema ha sido ampliamente desa-

Invest Apl Innov 3(1), 2009

mineral. En general, estas guías presentan tablas que permiten estimar el ratio de envejecimiento del papel aislante para ciclos de carga equivalente y temperaturas ambiente como datos de entrada. Asimismo, presentan modelos matemáticos que expresan el comportamiento térmico de los transformadores. Estos modelos son aún más útiles cuando se quiere estimar la velocidad de envejecimiento con mayor precisión. Las guías de carga son las siguientes: • IEEE Std C57.91™-1995 “IEEE Guide for Loading Mineral-OilImmersed Transformers”. • IEC 60354 Ed. 2.0 b:1991 “Loading guide for oil-immersed power transformers”. • IEC 60076-7 Ed. 1.0 b:2005 “Power transformers - Part 7: Loading guide for oil-immersed power transformers”. Cabe indicar que la IEC 60076-7 cancela y reemplaza a la IEC 60354, sin embargo esta última aún se sigue empleando, por ejemplo hay equipos de monitoreo de temperatura en el transformador que están diseñados con la IEC 60354.

FORMULACIÓN La formulación de los modelos de cargabilidad comprende dos aspectos: El primero se trata de la formulación del ratio de envejecimiento del papel aislante; y el segundo, de la formulación para el cálculo de la temperatura en el punto más caliente de la bobina del transformador.

Ratio de envejecimiento del papel aislante La IEC 60076-7 presenta las siguientes fórmulas para el cálculo de la velocidad de envejecimiento relativo,


roMEro, Borsi. “Planeamiento operacional de transformadores de potencia: mas allá de su capacidad nominal”

Para papel aislante Kraft (no termo-estabilizado):

N: Cantidad de intervalos de tiempo iguales si aplicamos este concepto a un ciclo de carga de 24 horas para intervalos de ¼ de hora, tendremos la siguiente fórmula:

Para papel aislante termo-estabilizado:

Donde, Donde, V: Velocidad de envejecimiento relativo (pu) θh : Temperatura del punto más caliente del bobinado (°C) ¿Cómo se interpretan estas fórmulas? Veamos una de ellas. Por ejemplo en la primera, si la temperatura del punto más

Ld: Pérdida de vida en un día (24 horas) Vh: Velocidad de envejecimiento para intervalos de tiempo de 0.25 h En el caso de periodos constantes de diferente duración se aplica la siguiente fórmula:

caliente (θh) es igual a 98 °C, la velocidad de envejecimiento relativo será igual a 1 mientras la temperatura permanece constante. En cambio, si dicha temperatura se incrementa en 6 °C (θh = 104 °C), el ratio de envejecimiento será igual a 2, es decir, la vida esperada del papel aislante se reducirá a la mitad mientras el punto más caliente se encuentre en 104 °C.

Donde,

Análogamente con θh = 92 °C, el ratio de envejecimiento será igual a 0.5, en este caso diremos que solo se ha consumido el

Leqv: Pérdida de vida relativa equivalente (acumulado)

50% de la vida normal del papel aislante. Vn: Velocidad de envejecimiento (pérdida de vida relativa) en el En la Figura 2 se muestran las curvas de relación entre la velo-

intervalo de tiempo

cidad de envejecimiento relativo y la temperatura del punto más caliente para papel tipo kraft y termo-estabilizado.

Cálculo de Pérdida de Vida Acumulada Para calcular la pérdida de vida relativa durante un periodo

∆tn: Intervalo de tiempo donde la carga y temperatura ambiente se consideran constantes

Cálculo de temperatura del punto más caliente

largo en el normalmente ni la carga ni la temperatura ambiente son constantes, lo que se hace es discretizar las curvas,

La temperatura del punto más caliente del bobinado se ob-

es decir, descomponer en tramos cortos de igual duración en

tiene sumando a la temperatura ambiente el incremento de

los que se puede asumir que la carga y la temperatura perma-

temperaturas en la parte superior del aceite y en la bobina de

necen constantes. De este modo se puede aplicar la siguiente

la parte más caliente. haciendo uso de la IEC 60354 tenemos la

fórmula:

siguiente fórmula:

Donde, Donde,

θh: Temperatura del punto más caliente del bobinado (°C)

L: Pérdida de vida

θa: Temperatura del ambiente (°C)

n: índice correspondiente a cada intervalo de tiempo de eva-

∆θo: Elevación de la temperatura del aceite (parte superior) so-

luación

bre la temperatura del ambiente (°C)

Invest Apl Innov 3(1), 2009

53


roMEro, Borsi. “Planeamiento operacional de transformadores de potencia: mas allá de su capacidad nominal”

∆θg: Elevación de la temperatura del punto más caliente del

Con respecto al límite térmico, un punto a tomar en cuenta es

bobinado sobre la temperatura del aceite (parte superior)

el de no sobrepasar la temperatura máxima del punto más

(°C)

caliente que la norma recomienda para el transformador específico. Por ejemplo, la IEC 60354 establece como límite 140 °C para transformadores trifásicos menores a 100 MVA, en ciclo de carga normal. Cabe anotar que en la norma IEC 60076-7 el

∆θoi: Elevación de la temperatura del aceite al inicio del inter-

límite es 120 °C.

valo de evaluación (°C) La idea básica del algoritmo es incrementar la carga mientras ∆θou: Incremento de temperatura final del aceite (en estado

que los valores calculados de ratio de envejecimiento y límites

estable) correspondiente a la carga aplicada en el intervalo

térmicos se encuentren por debajo o igual a los límites prefi-

de evaluación (°C)

jados.

τo: Constante de tiempo del aceite del transformador (hr)

RESULTADOS

∆t: Intervalo de tiempo de evaluación (hr)

Cálculo de consumo de vida A continuación aplicamos el concepto al caso de un transformador de potencia trifásico 60/10 kV - 25 MVA, ONAF con papel aislante kraft (98 °C), con parámetros, según IEC 60354, siguientes:

∆θor: Valor nominal de la elevación de la temperatura del aceite (parte superior) sobre la temperatura del ambiente (°C)

Hgr

R

y

x

∆θor

τo

26

6

1.6

0.9

52

2.5

R: relación de la pérdida de carga con la pérdida en vacío nominales del transformador de potencia

54

Instalado en un ambiente con el siguiente perfil diario de temperatura:

K: Factor de utilización (FU: relación entre la carga y la potencia nominal) x: Exponente de la temperatura del aceite

Hgr: Valor nominal de la diferencia de temperaturas entre el punto más caliente del bobinado y la temperatura del aceite

Figura 3. Perfil de temperatura

(parte superior) (°C) Con un ciclo de carga normal unitario de 24 horas, siguiente: y: Exponente de la temperatura del bobinado

Cálculo de límite de carga La cuestión que se ilustra en la Figura 1, en la que se quiere saber hasta cuánto se puede cargar un transformador, básicamente requiere tomar en cuenta dos aspectos: primero, los límites térmicos del transformador específico; y segundo, establecer el máximo ratio de envejecimiento para el periodo de estudio que normalmente se fija en 1. Figura 4. Ciclo de carga

Invest Apl Innov 3(1), 2009


roMEro, Borsi. “Planeamiento operacional de transformadores de potencia: mas allá de su capacidad nominal”

La velocidad de envejecimiento que resulta para factores de utilización (FU) de 90%, 100% y 110% se muestra en la siguiente tabla:

FU

Max θo

Max θh

Ratio de envejeci-

(°C)

(°C)

miento en 24 horas

90%

64,6

84,7

0,038

100%

70,8

94,5

0,101

110%

77,6

105,2

0,300

Consumo en

Pérdida de

horas

vida

90%

648,1

0,43%

99,57%

100%

2147,3

1,43%

98,57%

110%

7907,4

5,27%

94,73%

FU

Vida remanente

Cálculo de Máxima Sobrecarga Para un ratio de envejecimiento en 24 horas igual a 1, tenemos los siguientes resultados:

Para estimar el consumo de vida se debe asumir un criterio de finalización de vida. En este ejemplo asumimos en 150 000 horas (DP=200). Ahora supongamos que el transformador opera sus primeros 120 días con la misma temperatura ambiente cada día y que mantiene el mismo perfil de carga, el consumo de vida para cada FU será el siguiente:

Primer perfil de

Segundo perfil de

carga

carga

Max FU

119,97%

102,3%

Max θo (°C)

84,8

81,6

Max θh (°C)

116,5

108,0

observamos que el transformador del caso, con ciclo de carga tal como el primer perfil mostrado, puede ser sobrecargada

Consumo en

Pérdida de

Vida rema-

horas

vida

nente

90%

110,2

0,07%

99,93%

100%

290,4

0,19%

99,81%

110%

865,3

0,58%

99,42%

FU

Ahora veamos con el siguiente perfil de carga:

hasta un 20%, mientras con el segundo perfil solo se puede sobrecargar hasta 2,3%, sin acelerare su vida útil esperada. En la Figura 6 se muestra como serían las tendencias de temperaturas en el punto más caliente de la bobina y el aceite (parte superior), para un ciclo de carga según el segundo perfil. otro escenario que se puede simular es cuando se tiene otro perfil de temperatura ambiente. Veamos en el ejemplo cual sería el resultado en la cargabilidad si el perfil de la temperatura se reduce o incrementa en 5 °C. La cargabilidad (Max. FU) del transformador, si el perfil de la temperatura se reduce en 5 °C:

Figura 5. Perfil de carga con factor de utilización

En este caso los resultados son los siguientes: Max θo

Max θh

Ratio de envejeci-

(°C)

(°C)

miento en 24 horas

90%

72,7

94,3

0,225

100%

79,8

105,3

0,746

110%

87,6

117,2

2,746

FU

Invest Apl Innov 3(1), 2009

Primer perfil de

Segundo perfil de

carga

carga

Max FU

124,5%

106,8%

Max θo (°C)

83,3

80,0

Max θh (°C)

116,9

108,3

La cargabilidad (Max. FU) del transformador, si el perfil de la temperatura se incrementa en 5 °C: Primer perfil de

Segundo perfil

carga

de carga

Max FU

115,3%

97,7%

Max θo (°C)

86,4

83,1

Max θh (°C)

116,1

107,7

55


ROMERO, Borsi. “Planeamiento operacional de transformadores de potencia: mas allá de su capacidad nominal”

En el último caso se observa que, para una temperatura am-

ACERCA DEL AUTOR

biente elevada y un perfil de carga con factor de carga alto (0.84), ya no se puede sobrecargar el transformador; más aún,

Master en planificación energética.

se debe operar por debajo de su potencia nominal si no se

Actualmente trabaja en la empre-

quiere sacrificar su vida útil.

sa de distribución eléctrica Luz del

CONCLUSIONES

Sur ejecutando la gestión de activos implementando algoritmos relacionados con la ingeniería de manteni-

La aplicación de los modelos de cargabilidad de transforma-

miento de los equipos de AT. Trabajó

dores de potencia demuestra que en ciertas condiciones es

en Electrolima como ingeniero de

posible operar un transformador más allá de su capacidad

planeamiento. Los principales traba-

nominal sin sacrificar o acelerar su vida útil normal.

jos desarrollados fueron: dimensionamiento óptimo de subestaciones AT/MT, cálculo de campos electromagnéticos en líneas

Las condiciones apropiadas para sobrecargar transforma-

de transmisión, plan de expansión del sistema secundario de

dores son cuando la temperatura ambiente en la que se en-

transmisión, cálculo de vida útil de transformadores de poten-

cuentra instalada es baja y, por otro lado, cuando la relación

cia y estudio de flujo de potencia y cortocircuito.

entre la máxima demanda y el promedio de carga es alta. En consecuencia, es posible planificar la sobrecarga de transformadores siempre que se conozca a priori la temperatura ambiente de la instalación y el ciclo de carga a ser atendida.

REFERENCIAS [1] LAHOTI, B. D., y FLOWERS, D. E. “Evaluation of Transformer Loading Above Nameplate Rating”, IEEE Trans. Power

56

Apparatus and Systems, Vol. PAS-100, No. 4, April 1981. [2] GIESECKE Jon, JLG Associates, “The Aging of America’s Transformers”, Weidmann Electrical Technology, Fifth Annual Technical Conference Nov 15, 2006. [3] IEEE Std C57.91™-1995 “IEEE Guide for Loading MineralOil-Immersed Transformers” [4] IEC 60354 Ed. 2.0 b:1991 “Loading guide for oil-immersed power transformers” [5] IEC 60076-7 Ed. 1.0 b:2005 “Power transformers - Part 7: Loading guide for oil-immersed power transformers”

Invest Apl Innov 3(1), 2009


Implementacion de plataforma de envio de correos masivos Implementinga software platform for massive e-mail correspondence Resumen

Sandro García

Las ventajas generales que nos brindaría la plataforma de envío de correos masivos son las siguientes:

En la actualidad existen diferentes maneras en que las empresas hacen uso de la tecnología para realizar marketing, entre ellas: llamadas telefónicas, afiches, publicidad radial y televisiva, etc. Una de las formas que ha incrementado su uso es el envío de correos masivos.

• El usuario realiza el envío de correos desde su propia computadora. ( No hace uso de un servidor de correos ) • Los rebotes no afectan al servidor de correos, pues la cuenta de envío no es la misma que la cuenta de recepción. • Las personas que hacen uso de esta plataforma envían los

Dado que es enorme la cantidad de personas que poseen

correos en tiempo real, cambiando de esta manera la for-

correos electrónicos, estos conforman un mercado muy am-

ma en que se enviaban los correos mediante el servidor

plio para cubrir, y al que se suman las inimaginables formas

Lotus, pues se usaba el parámetro de baja prioridad, lo cual

en que puede llegar la información al potencial interesado

implicaba que el envío se hacía cuando el servidor tenía

(Flash, HTML, video, audio, etc.).

los recursos para atender el requerimiento.

Los servidores de correos comerciales, como por ejemplo: Lotus, Exchange, etc., no están preparados para cubrir estas exigencias, lo que genera fallas en el servicio de envío y recepción pues son diversas las variables que se generan durante el envío de una gran cantidad de correos (Por ejemplo, Envío con baja prioridad, rebotes, saturación del servicio) En Tecsup, nosotros hemos analizado esta problemática. Particularmente en Tecsup, solo en el año 2008, hemos sufrido interrupciones del servicio de correo en dieciséis oportunidades, incluso en algunas ocasiones se han dado dos veces en un solo día.

• Posibilidad de programar envíos de correos.

57 La plataforma en mención ya se encuentra implementada en la Dirección de Promoción y Desarrollo Empresarial de Tecsup, y hacen uso de ella las áreas de Ventas y Marketing.

Abstract Nowadays there are different ways in which companies use technology for marketing; among them we have telephone calls, posters, television and radio advertising, etc. One way that has increased its use is mass mailings. The vast amount of people who have e-mails make them a very

Esto nos ha obligado a analizar posibles soluciones para el

large market to cover, and this is added to the unimaginable

problema. Actualmente existen diferentes herramientas de

ways you can get the information to a potentially interested

envío, o llamados motores SMTP, con los cuales es posible

party (flash, HTML, video, audio, etc).

realizar envíos de gran cantidad de correos. Los motores SMTP presentan una serie de facilidades. En este artículo definiremos las diferentes características que presentan los motores SMTP, las que serán evaluadas a partir de sus ventajas y desventajas, a fin de brindar como resultado la mejor alternativa.

Invest Apl Innov 3(1), 2009

Commercial mail servers like, for example, Lotus, Exchange, etc. are not prepared to meet these requirements, which generates faults in the sending and receiving because of the diverse variables that are created during the transmission of large amounts of mail (for example, low priority item, rebounds, saturation of the service).


GARCÍA, Sandro. “Implementacion de plataforma de envio de correos masivos”

We analyzed this problem in TECSUP. In our particular case,

ben apoyarse en la tecnología como una herramienta que les

only in the year 2008, we experienced disruptions in mail

facilitará alcanzarlos.

service in sixteen occasions, sometimes more than twice in a day.

El Email Marketing es utilizado por muchas empresas con el fin de publicitar sus productos o servicios. Esto se realiza con

This forced us to discuss possible solutions to the problem.

los recursos de la empresa, en algunos casos, o con recursos de

Currently, there are different tools for sending or called SMTP

empresas dedicadas al rubro.

engines with which it is possible to send large amounts of emails. SMTP engines feature a number of facilities. This arti-

FUNDAMENTOS

cle defines the characteristics that SMTP engines have, which will be assessed by identifying the advantages and disadvan-

Nos planteamos el escenario de una empresa que cuenta con

tages of each, resulting in the best alternative.

su propio servidor de correos corporativo, en este caso un Lotus Notes de IBM que sirve para desarrollar las comunicaciones;

The general advantages that the platform would give us to

de mismo modo, se usa el mismo recurso para desarrollar el

send out mass mailings are as follows:

Emarketing.

• The user sends emails from his/her own computer. (Not

Debido a que el Emarketig es dirigido a todos los posibles clien-

using a mail server)

tes de la empresa, entre ellos compañías, fábricas, personas particulares, etc, la población es bastante amplia. En tal sentido, se

• The bounces do not affect the mail server because the sending account is not the same as the receiving account.

generan los siguientes inconvenientes en el servicio:

Saturación del Mailbox

• People who use this platform send emails in real time,

58

thus changing the manner in which the mails were sent

• Como se puede observar en la Figura 2, los mailbox son

through the Lotus server, because the low priority pa-

saturados por los correos entrantes y salientes. Una base

rameter was used, which implied that the sending was

de datos de 5 000 correos saturaría el servicio de correos.

done when the server had the resources to attend such requirements. • The possibility of scheduling the mailing.

Baja del servicio de ruteo • Cuando se saturan los mailbox, las tareas de ruteo (que son las encargadas de lanzar los mensajes a la red de in-

The platform in question is already implemented in TECSUP’s Direction of Business Promotion and Development. The area

ternet) dejan de operar y provocan la caída del servicio.

of Sales and Marketing is also using it.

Rebotes:

Palabras claves

• Al utilizar una cuenta real del servidor de correos para el envío, tenemos el inconveniente de que los rebotes (que

Servidor de Correos, Correos Masivos, Atomic Mail Sender,

son causadas por cuentas mal ingresadas, dominios tipea-

Email Marketing, Servicio de Correos.

dos erróneamente, servidores no disponibles) llegan a la misma cuenta. saturando primero los inbox y luego la

Key words Mail Server, Spam Server, Atomic Mail Sender, Email Marke-

cuenta del usuario que envió el mensaje masivo.

Envíos con baja prioridad:

ting, Mail Service • El servidor de correos Lotus permite con la posibilidad de

INTRODUCCIÓN

marcar los correos que serán enviados con el atributo de “baja prioridad”, esto se hace con el fin de que el servidor

Las empresas de hoy en día deben afrontar nuevos retos para

de correos envíe los mensajes cuando el servidor cuente

cumplir los objetivos que se han trazado, y para lograrlo de-

con los recursos para hacerlo.

Invest Apl Innov 3(1), 2009


GARCÍA, Sandro. “Implementacion de plataforma de envio de correos masivos”

Figura 1. Escenario inicial

Antes de definir cuál es la problemática encontrada, vamos

Es aquí cuando las variables mencionadas líneas arriba interac-

a detallar la manera en que se hace uso del servidor de co-

túan para causar inconvenientes en el funcionamiento normal

rreos:

de un servidor de correos.

Un usuario apertura su cliente de correo (Software instalado

En la Figura 2 se puede notar el contenido del Mailbox, que es

en PC), el cual se conecta al servidor de correos (Previa confi-

un contenedor de todos los software de servicio de correos

guración). Se dan los pasos uno y dos de la Figura 1. Cuando

electrónicos. Estos pueden almacenar información en forma

un usuario desea enviar un correo electrónico a cualquier

temporal, mientras los mensajes salen e ingresan del servidor.

59

empresa, el mensaje (correo) es depositado desde el cliente al servidor. Situado en el servidor, este será ruteado hacia el

Generalmente en los servidores de correos se tiene una manera

internet, dependiendo de los procesos pendientes que este

de enviar mensajes a grandes cantidades de cuentas de correo

posea y de la resolución dns (que no es materia de esta in-

a la vez. (Lotus Notes maneja el concepto de baja prioridad, con

vestigación). Pasos dos y tres en la Figura 1. El mensaje es en-

el que los correos son ingresados al Mailbox pero son enviados

viado al internet con la dirección de destino, la red destino lo

cuando el servidor tiene los recursos para atenderlo: memoria,

recibe, el sistema antispam hace una consulta de resolución

baja concurrencia, procesamiento).

inversa para evitar el ingreso de suplantaciones y una vez verificando el tema y luego de confirmado que la dirección

El ingreso de gran cantidad de correos al Mailbox produce un

de origen no existe en una lista negra, se procede a permitir

retraso considerable en el envío y recepción de correos.

su ingreso. Paso cuatro en la Figura 1.

Problemática

Asumiendo una totalidad de 25 000 cuentas de correos electrónicos, se puede asumir que no menos del 30% son cuentas que presentan los siguientes inconvenientes: cuentas de correo

En términos generales este es el procedimiento y la forma en

falsas, dominios mal tipiados, cuentas de usuario canceladas,

que funciona el servidor de correos, ¿pero qué sucede cuan-

cuentas de usuarios saturadas. Todo esto genera rebotes del

do esta plataforma debe enviar gran cantidad de correos; por

mensaje enviado, con lo que retornan al servidor de quien los

ejemplo 25 000 correos en un lapso corto de tiempo?

envió. Bajo de esta circunstancia se genera lo siguiente: luego

Invest Apl Innov 3(1), 2009


GARCÍA, Sandro. “Implementacion de plataforma de envio de correos masivos”

Figura 2. Mailbox

de que se satura la base de datos del usuario, los mensajes de

lo que ocasiona problemas de comunicación y malestar com-

rebote ya no pueden ingresar a ella, y lo hacen al Mailbox. Una

prensible.

elevada cantidad de mensajes en el Mailbox, los que pueden tener además documentos adjuntos en cada uno, generaría

SOLUCION PLANTEADA

saturación y caída del servicio de ruteo. En términos generales, la solución planteada es la siguiente:

Consecuencia Seleccionar un motor de envío SMTP, entre los diferentes exis-

60

Esto trae como consecuencia que los correos electrónicos

tentes, que se ajuste a las necesidades de la empresa, instalarlo

no ingresan ni salen del servidor de correos. Y en este caso

en cada uno de los equipos que hace el envío de correos a gran

no solo se ven afectados los correos que se enviaron en for-

cantidad de cuentas y crear la arquitectura lógica para que los

ma masiva sino también los correos de los demás usuarios,

correos sean enviados desde las computadoras de los clientes,

Figura 3 Esquema con motor SMTP

Invest Apl Innov 3(1), 2009


GARCÍA, Sandro. “Implementacion de plataforma de envio de correos masivos”

haciendo uso de su propio motor SMTP y no del servidor de

Se muestra el cuadro comparativo con la evaluación de cada

correos Lotus.

aplicación:

La Imagen de la Figura 3 muestra el esquema de la solución propuesta, a fin de resolver la saturación del servicio de correo electrónico.

Elección de la aplicación o motor SMT

Software

Atomic Mail Sender

Newsleter

HTML

Links WEB

No

No

No

No

No

No

No

No

No

Soporta Programación

1.- Selección de la Herramienta SMTP (motor de envío )

SendBlaster

de envíos

El mercado de software tiene diferentes opciones para esta solución; afortunadamente cada una es mejor que otra en cuanto a funcionalidades.

Reporte de no Enviados Diseño Varios envíos

La herramienta SenderBlaster es ciertamente robusta para el envío de mensajes por SMTP, pero no da la posibilidad de cargar gráficos HTML, tampoco links de páginas webs. Atomic Mail Sender soporta cargar links desde internet, crear documentos HTML, grabarlos como proyectos, he incluso generar la programación de envío de varios proyectos a la vez. La herramienta Newslatter, es muy eficiente en cuanto a cargar imágenes y armar un buen diseño, pero no soporta

por ejecución

De las tres herramientas en evaluación, la que resulta más apropiada es Atomic Mail Sender, puesto que tiene mayor flexibilidad y se amolda mejor a nuestras necesidades . El precio es 69,85 dólares por licencia.

programación de envíos .

61

Figura 4. SendBlaster

Invest Apl Innov 3(1), 2009


GARCÍA, Sandro. “Implementacion de plataforma de envio de correos masivos”

Figura 5. Atomic Mail Sender

PROCEDIMIENTO

PROBLEMAS POSTERIORES

1. Instalación de la herramienta escogida en cada PC local

El inconveniente central que se presentó en el transcurso de

o cliente.

62

la implementación fue que, cuando se realizaron pruebas con gran cantidad de correos, la dirección ip de salida de estos

2. Registro del subdominio en los DNS de Telefónica, con el nombre: ventas.tecsup.edu.pe .

mensajes era registrada en listas negras, dado el alto tránsito de información que se generaba. Con el fin de solucionar este inconveniente se hizo necesario comunicarnos con los admi-

3. Configuraciones. Es necesario realizar las siguientes con-

nistradores de listas negras y manifestar que tal dirección ip era

figuraciones:

de nuestra propiedad y que se usaba para publicidad.

Cuenta de correo de envío .

Debido a que las bases de datos que son cargadas al Atomic presentan errores en diversos campos, por ejemplo:

Cuenta de correo de recepción. • doble cuenta de correo en un campo

Cabecera de salida del mensaje. • doble arroba

3. Identificación de la dirección ip del usuario, y aplicación de configuración SNAT en el firewall, con el fin que los

• caracteres que no corresponden a una cuenta de correo

mensajes sean enviados fuera de la red de Tecsup con la cabecera de la dirección pública registrada en los DNS

• campos sin ningún arroba

de Telefónica (paso 2) . • cuentas de correo con domino incompleto, etc. 4. Carga de las bases de datos desde un archivo en Excel (solo la primera columna) o un documento en texto pla-

el programa Atomic puede dejar funcionar. Frente a esta situa-

no. El software extrae las cuentas de correo de un archi-

ción se ha desarrollado una aplicación que haga posible depu-

vo en Excel o un archivo en texto plano.

rar las bases de datos antes de cargarlas al Atomic, la aplicación puede ser ubicada en el link http://192.168.68.126:88/.

Invest Apl Innov 3(1), 2009


GARCÍA, Sandro. “Implementacion de plataforma de envio de correos masivos”

Figura 6. Newsletter

63

Figura 7. Corrector de cuentas de correo

Invest Apl Innov 3(1), 2009


GARCÍA, Sandro. “Implementacion de plataforma de envio de correos masivos”

Figura 8. Bandeja de entrada Hotmail

La entrada de esta aplicación es un archivo en Excel con in-

[3] Cáceres Meza, Jack Daniel. Implicancias del Spam (En lí-

formación en la primera columna de cuentas de correo, la

nea) Recuperado el 2 Abril del 2009 http://www.rcp.org.

salida es un archivo en extensión txt con el mismo nombre

pe/downloads/Implicancias_del_spam.pdf <http://www.

del archivo de entrada en Excel. Con esta acción se estarán

rcp.org.pe/downloads/Implicancias_del_spam.pdf>

depurando las cuentas de correo mal ingresadas y que, potencialmente, generarían inconvenientes.

RESULTADOS

ACERCA DEL AUTOR Ingeniero Electrónico. Actualmente cursa la Maestría en Seguridad In-

Como puede observarse, los correos llegan a su destino. Así,

formática. Se desempeña en el cargo

las ventajas que podemos obtener con la modalidad indica,

de Administrador de Red en Tecsup y

son:

también como docente en la carrera del Redes y Comunicaciones de Datos

• Los correos llegan en tiempo real.

64 • Luego del envío y en forma inmediata tenemos un reporte de los destinos a los cuales no ha llegado el mensaje. • Dado que no se utiliza el servidor de Correos Corporativo, no se saturan los INBOX ni el servicio de ruteo.

REFERENCIAS [1] Atompark Software. Atomic Mail Sender [En línea] Recuperado el 12 de Marzo del 2009: http://www.emailmasivo.com/bulkmail/ <http://www.email-masivo.com/ bulkmail/> [2] Técnicas Spam. Conferencias FIST ISSA España. Técnicas Anti-Spam, [En línea] Recuperado el 20 de abril del 2009: http://www.fistconference.org/data/presentaciones/ Spam-spam-spam.pdf <http://www.fistconference.org/ data/presentaciones/Spam-spam-spam.pdf>

Invest Apl Innov 3(1), 2009

del Departamento de Informática.


Eficiencia energĂŠtica con el uso de variadores de frecuencia en sistemas de aprovechamientos hĂ­drico Energy Efficient with use of variable frequency drive in uses of hydric systems Elmer Ramirez, Hermenegildo Mendoza

65

Invest Apl Innov 3(1), 2009


rAMIrEZ Elmer, MEnDoZA hermenegildo. “Eficiencia energética con el uso de variadores de frecuencia en sistemas de aprovechamientos hídrico”

el flujo (caudal) es aproximadamente proporcional a la velocidad en el eje. Con estas características se puede conseguir significativos ahorros de energía a través de la variación de la velocidad con respecto a los métodos tradicionales como el de estrangulación de válvulas para la regulación de caudal. Para el estudio del comportamiento del sistema se utilizan las relaciones de afinidad, las cuales se representan mediante ecuaciones que permiten predecir el funcionamiento de una turbina o bomba bajo condiciones diferentes. Estas son:

Donde: Q = caudal (m3/h) H = altura (m) P = potencia (Kw) si consideramos los valores de una bomba centrífuga en 1 750 rpm y que debe operar a partir de un variador de frecuencia a la mitad de su velocidad, es decir, 875 rpm, podemos apreciar en la Tabla 1 disminuciones de potencia del sistema en una relación cúbica. Estas permiten tener ahorros de energía a

66

velocidades inferiores a las nominales, siendo el variador de frecuencia el método de control que da todo rango de velocidades según sean las demandas sin equipos adicionales entre el motor y la carga. N(rpm)

Q(m3/h)

H(m)

P(Kw)

Operación

1750

2

1

10

sin variador

875

1

0,25

1,25

Con variador

Lineal

cuadrática

cúbica

Tabla 1. Comportamiento de las variables de afinidad de una carga de par variable

Métodos de regulación del flujo en bombas centrifugas son muchos los casos en que se trabaja bajo condiciones de caudal inferior al nominal y durante largos períodos de tiempo. En estas circunstancias se puede optar por métodos de regulación de caudal como:

Modificación de la curva del sistema Es el caso más común de control de flujo por estrangulamien

Invest Apl Innov 3(1), 2009


rAMIrEZ Elmer, MEnDoZA hermenegildo. “Eficiencia energética con el uso de variadores de frecuencia en sistemas de aprovechamientos hídrico”

67

Invest Apl Innov 3(1), 2009


Ramirez Elmer, Mendoza Hermenegildo. “Eficiencia energética con el uso de variadores de frecuencia en sistemas de aprovechamientos hídrico”

68

Valores medidos Operación

Punto de operación

Sin variador

Con variador

Invest Apl Innov 3(1), 2009

N(RPM)

Q

H

(m3/h)

(psi)

Disminu-

Valores calculados

ción de P (Kw)

Potencia

(N1/N2)3

P (Kw)

(Kw)

1

1773.4

100%

10

0.9

x

x

x

2

1773.0

86%

14

0.45

x

x

x

1

1773.4

100%

10

0.8

x

x

x

1’

1532.7

86%

10

0.4

0.4

0.64

0.51

2’

1303.7

74%

8

0.3

0.5

0.41

0.32


Ramirez Elmer, Mendoza Hermenegildo. “Eficiencia energética con el uso de variadores de frecuencia en sistemas de aprovechamientos hídrico”

69

Invest Apl Innov 3(1), 2009


Se terminó de imprimir en los talleres gráficos de T area A sociación G ráfica E ducativa P asaje María Auxiliadora 156 - Breña Correo e.: tareagrafica@terra.com.pe Teléf. 332-3229 Fax: 424-1582 Junio 2009 Lima - Perú




Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.