HEKSAGONAL SÄ°STEM SÄ°METRÄ°
Diheksagonalpi ramidal (Hol. Hemmor) 6mm Ditrigonal bipiramidal (Trigonal he.) 6 m2 Heksagonalbipi ramidal(hemie dri) 6 đ?‘š Heksagonalbipi ramidal(hc.hem orfizmi) 6
Merkez
a : ∞n : a : mc {h 0ℎ l }
2a : 2a : a : mc {h h 2â„Ž l }
na : pa : a : mc {h k i l }
a : ∞a : a : ∞c {h 0ℎ 0 }
2a : 2a : a : ∞n {1 1 2 0 }
na : pa : a : ∞c {h k i 0 }
∞a : ∞a : ∞a : c {0 0 0 l }
Ara Kesit
6 2 2 đ?‘š đ?‘š đ?‘š Heksagonaltrap ezoeder (Trapezoedrikh e.) 6 2 2
Yatay
Aksiyal
Diheksagonal bipiramidal
FORM
Eksen DĂźĹ&#x;ey
Aksiyal
DĂźzlem SÄąnÄąf, Sembol Yatay DĂźĹ&#x;ey (Hermann Mauguin)
1
3
3
1
-
3+3
+
Heksagonalbipir amit i. Ord. (12)
Heksagonal bipiramit ii. Ord. (12)
Diheksagonal bipiramit (24)
Heksagonal prizma i. Ord. (6)
Heksagonal prizma ii. Ord. (6)
Diheksagonal prizma (12)
Bazal pinakoid (2)
-
-
-
1
-
3+3
-
Heksagonalbipir amit i. Ord. (12)
Heksagonal bipiramit ii. Ord. (12)
(SaÄ&#x;,Sol) Heksagonal trapezoeder (6)
Heksagonal prizma i. Ord. (6)
Heksagonal prizma ii. Ord. (6)
Diheksagonal prizma (12)
Bazal pinakoid (2)
-
-
-
(Ăœst,Alt) Heksagonal bipiramit ii. Ord. (6)
(Ăœst,Alt) Diheksagonal piramit (12)
Heksagonal prizma i. Ord. (6)
Heksagonal prizma ii. Ord. (6)
Diheksagonal prizma (12)
(Ăœst,Alt) Bazal pinakoid (1)
?
3 Polar
-
(Ăœst,Alt) Heksagonalbipir amit i. Ord. (6) (Âą) Trigonal bipiramit i. Ord. (6)
Heksagonal bipiramit ii. Ord. (12)
(Âą) Ditrigonal bipiramit (12)
(Âą) Trigonal prizma i. Ord. (3)
Heksagonal prizma ii. Ord. (6)
(Âą) Ditrigonal prizma (6)
Bazal pinakoid (2)
+
Heksagonalbipir amit i. Ord. (12)
Heksagonal bipiramit ii. Ord. (12)
Heksagonal prizma i. Ord. (6)
Heksagonal prizma ii. Ord. (6)
(Âą) Heksagonal prizma iii. Ord. (6)
Bazal pinakoid (2)
-
(Ăœst,Alt) Heksagonalbipir amit i. Ord. (6)
(Ăœst,Alt) Heksagonal bipiramit ii. Ord. (6)
Heksagonal prizma i. Ord. (6)
Heksagonal prizma ii. Ord. (6)
(Âą) Heksagonal prizma (6)
(Ăœst,Alt) Bazal pinakoid (1)
-
3
3
1 Polar
1
-
3
-
1
-
-
-
-
1
-
1 Polar
-
-
-
-
(Âą) Heksagonal bipiramit iii. Ord. (12) (Ăœst,Alt) Âą Âą Heksagonal piramit iii. Ord. (6)
HEKSAGONAL SÄ°STEM SÄ°METRÄ°
Trigonal bipiramidal (Trigonal Tetar.)
FORM
Yatay
Merkez
Eksen DĂźĹ&#x;ey
Ara Kesit
Aksiyal
Aksiyal
DĂźzlem SÄąnÄąf, Sembol Yatay DĂźĹ&#x;ey (Hermann Mauguin)
Trigonal trapezoeder (Trapezoedrik Tetar.) 32
Ditrigonal piramidal (Tri. He. Hemimorfizm) 3m
Trigonal Romboeder (Romboedrik tetar) 3
Trigonal piramidal 3
2a : 2a : a : mc {h h 2â„Ž l }
na : pa : a : mc {h k i l}
a : ∞a : a : ∞a {h 0 ℎ 0 }
(Âą) Trigonal bipiramit ii. Ord. (6)
(Âą,SaÄ&#x;,Sol) Trigonal bipiramit iii. Ord. (6)
(Âą) Trigonal prizma i. Ord. (3)
2a : 2a : a : ∞c {1 12 0 }
na : pa : a : ∞c {h k i o }
∞a : ∞a : ∞a : c {0 0 0 l }
(Âą) Trigonal prizma ii. Ord. (3)
(Âą,SaÄ&#x;,Sol) Trigonal prizma iii. Ord. (3)
Bazal Pinakoid (2)
1
-
-
-
1
-
-
(Âą) Trigonal bipiramit i. Ord. (6)
-
-
3
-
1
3
+
(Âą) Romboeder (6)
Heksagonal bipiramit ii. Ord. (12)
(Âą) Skalenoeder (12)
Heksagonal prizma i. Ord. (6)
Heksagonal prizma ii. Ord. (6)
Diheksagonal prizma (12)
Bazal Pinakoid (2)
-
-
-
-
1
3 Polar
-
(Âą) Romboeder (6)
(Âą) Trigonal bipiramit ii. Ord. (6)
(1,SaÄ&#x;,Sol) Trigonal Trapezoeder (6)
Heksagonal prizma i. Ord. (6)
(Âą) Trigonal prizma ii. Ord. (3)
(Âą) Ditrigonal prizma (6)
Bazal Pinakoid (2)
-
-
(Âą,Alt,Ăœst) Trigonal piramit i. Ord. (3)
(Alt,Ăœst) Heksagonal bipiramit ii. Ord. (6)
(Âą,Ăœst,Alt) Ditrigonal Piramit (6)
Heksagonal prizma ii. Ord. (6)
(Âą) Ditrigonal prizma (6)
(Ăœst,Alt) Bazal pinakoid (1)
-
+
(Âą) Romboeder i. Ord. (6)
(Âą) Romboeder ii. Ord. (6)
(Âą,SaÄ&#x;,Sol) Romboeder (6)
Heksagonal prizma ii. Ord. (6)
(Âą) Heksagonal prizma iii. Ord. (6)
Bazal Pinakoid (2)
(Âą) Trigonal prizma ii. Ord. (3)
(Âą,SaÄ&#x;,Sol) Trigonal prizma iii. Ord. (3)
(Ăœst,Alt) Bazal pinakoid (1)
6
Ditrigonal skalenoeder (Romboedrik he.) 2 3 đ?‘š
a : ∞a : a : mc {h 0ℎ l }
-
-
3
-
1 Polar
-
-
-
-
1
-
1 Polar
-
-
-
-
-
(Âą) Trigonal prizma i. Ord. (3)
Heksagonal prizma i. Ord. (6)
(Âą) (Âą,Alt,Ăœst) (Âą,Alt,Ăœst) (Âą,Ăœst,Alt,SaÄ&#x;,Sol) Trigonal prizma Trigonal piramit Trigonal bipiramit Trigonal piramit i. Ord. i. Ord. ii. Ord. iii. Ord. (3) (3) (3) (3)
KĂœP SÄ°STEMÄ° SÄ°METRÄ°
FORM
3
6
Merkez
Eksen Diyagonal
DĂźzlem Aksiyal
SÄąnÄąf, Sembol (Hermann Mauguin)
a : a : ∞a {1 1 0 }
a : ∞a : ∞a {1 0 0 }
a : a : ma {h h 1 }
+
Oktaeder Rombikdo (8) dekaeder + (12) +
Heksaeder (6)
Trijakisokta Deltoidikosi Tetrakishekt Heksakisokta eder tetraeder aeder eder (24) (24) (24) (48) + + + +
Heksaeder (6)
(SaÄ&#x;, Sol) Trijakisokta Deltoidikosi Tetrakishekt Pentagoniko eder tetraeder aeder sitetraeder (24) (24) (24) (24)
Heksakisoktaeder 4 2 3 đ?‘š đ?‘š Pentagonikositetra der 432 (Jiroidal sÄąnÄąf)
3
4
6
a:a:a {1 1 1 }
-
3
4
6
-
-
6
-
4 Polar
3
-
Rombikdo (Âą) Tetraede dekaeder r (4) (12)
Heksaeder (6)
(Âą) (Âą) (Âą) Tetrakishekt Deltoidikosi Trijakistetr Heksakistetr aeder tetraeder aeder aeder (24) (12) (12) (24)
+
Kombikdo Oktaeder dekaeder (8) (12)
Heksaeder (6)
(Âą) (Âą) Trijakisokta Deltoidikosi Pentagondo Diyakisdode eder tetraeder dekaeder kaeder (24) (24) (12) (24)
-
Rombikdo (Âą) Tetraede dekaeder r(4) (12)
Heksaeder (6)
(Âą SaÄ&#x;, Âą Sol) (Âą) (Âą) (Âą) Tetraedrikpe Deltoidikosi Trijakistetr Pentagondo ntagondode tetraeder aeder dekaeder kaeder (12) (12) (12) (12)
3
-
-
4
3
(Diploidal sÄąnÄąf)
Tetraedrikpentago ndodekaeder 23 (Tetartoidal sÄąnÄąf)
a : na : ma {h k l }
-
Diyakisdodekaeder
2 3 đ?‘š
a : ma : ∞a {h k 0 }
Kombikdo Oktaeder dekaeder (8) (12)
Heksakistetraeder 4
a : a : ma {h 1 1 }
-
-
-
4 Polar
3
MONOKLİNAL SİSTEM SİMETRİ
Monoklinal prizmatik (Holoedri)
Monoklin Sfenoidal (Hemimorfi) 2
Monoklinal (Domatik hemiedri) m
1
-
1
1
1 Polar
-
FORM Merkez
Mauguin)
Aksiyal
Sınıf, Sembol Düzlem Eksen (Hermann
na : b : mc
na : b : ∞c
∞a : b : mc
a : ∞b : mc
∞a : b : ∞c
a : ∞b : ∞c
∞a : ∞b : c
{h k l }
{h k 0 }
{0 k l }
{h 0 l }
{0 k 0 }
{h 0 0 }
{0 0 l }
+
(±) Monoklinal hemipiramit (4)
Monoklinal dikprizma (4)
(±) Monoklinal Monoklinal Monoklinal Monoklinal klinoprizma hemiortodom klinopinakoid ortopinakoid (4) a (2) (2) (2)
Bazal pinakoid (2)
-
(±,Sağ,Sol) Monoklinal (Sağ,Sol) Tetartopirami Monoklinal t hemiprizma (Sfenoid) (2) (2)
(Sağ,Sol) (±) Monoklinal Monoklinal Monoklinal Monoklinal hemiklinodo hemiortodom klinopinakoid ortopinakoid ma a (2) (2) (2) (2)
Bazal pinakoid (2)
-
(±,Sağ,Sol) Monoklinal (Ön,Sağ) Tetartopirami Monoklinal t hemiprizma (Sfenoid) (2) (2)
(Üst,Alt) (±,Üst,Alt) (Ön, Sağ) Monoklinal Monoklinal Monoklinal Monoklinal hemiklinodo tetartoklinodo klinopinakoid ortopinakoid ma ma (2) (1) (2) (1)
(Üst,Alt) Monoklinal Bazal pinakoid (1)
ROMBUSAL SİSTEM Düzlem
(Hermann Mauguin)
Rombusal bipiramidal (Holodedri.)
1+1+1
Eksen
1+1+1
FORM Merkez
Sınıf, Sembol
Aksiyal
SİMETRİ
na : b : mc
+
Rombusal bipiramit (6)
-
(Sağ,Sol) Bisfenoid (4)
-
(Üst,Alt) Rombusal piramit
Rombusal bisfenoid (Sfenoidal he.) 222 -
1+1+1
1+1
1 Polar
Rombusal piramidal (Hemimorfi) mm2
na : b : ∞c
∞a : b : mc
a : ∞b : mc
∞a : b : ∞c
a : ∞b : ∞c
∞a : ∞b : c
{h k l }
{h k 0 }
{0 k l }
{h 0 l }
{0 1 0 }
{h 0 0 }
{0 0 l }
Rombusal Rombusal Rombusal Rombusal Rombusal Barahipinakoi Makropinak dikprizma brahiprizma makroprizma d oid (4) (4) (4) (2) (2)
Bazal pinakoid (2)
Rombusal dikprizma (4)
Rombusal Rombusal Rombusal Rombusal Barahipinakoi Makropinak brahiprizma makroprizma d oid (4) (4) (2) (2)
Bazal pinakoid (2)
Rombusal dikprizma (4)
(Üst,Alt) (Üst,Alt) Rombusal Rombusal Rombusal Rombusal Barahipinakoi Makropinak brahidoma makroprizma d oid (2) (4) (2) (2)
(Üst,Alt) Bazal pinakoid (1)
TETRAGONAL SÄ°STEM SÄ°METRÄ°
Tetragonal trapezoeder (Trapezoedrik he.) 422
Ditetragonal piramidal (Holo. Hemimorfisi) 4mm Tetragonal skalenoeder (Stenoidal he.) 42m Tetragonal bipiramidal (hemiedri) 4 đ?‘š
Tetragonal bipiramidal [pira.Hemi(hemim oflin)] 4 Tetragonal bisfenoid (tetartoedri)
2
2
-
-
Merkez
Ara Kesit
1
1
2
-
-
-
-
-
-
-
1
1 Polar
1
-
-
-
a : ∞a : ∞c {h 0 0 }
a : na : ∞c {h k 0 }
∞a : ∞a : c {0 0 l }
Bazal pinakoid (2)
-
Tetragonal bipiramit i. Ord. (8)
Tetragonal bipiramit ii. Ord. (8)
(SaÄ&#x;,Sol) Tetragonal Tetragonal prizma Trapezoeder i. Ord. (8) (4)
Tetragonal Ditetragonal prizma prizma ii. Ord. (8) (4)
Bazal pinakoid (2)
(Ăœst,Alt) Tetragonal piramit i. Ord. (4) (Âą) Tetragonal bisfenoid i. Ord. (4)
(Ăœst,Alt) Tetragonal piramit ii. Ord. (4)
(Ăœst,Alt) Tetragonal Ditetragonal prizma piramit i. Ord. (8) (4)
Tetragonal Ditetragonal prizma prizma ii. Ord. (8) (4)
Bazal pinakoid (2)
Tetragonal bipiramit ii. Ord. (8)
(Âą) Tetragonal skalenoeder (8)
Tetragonal prizma i. Ord. (4)
Tetragonal Ditetragonal prizma prizma ii. Ord. (8) (4)
Bazal pinakoid (2)
+
Tetragonal bipiramit i. Ord. (8)
Tetragonal bipiramit ii. Ord. (8)
Tetragonal bipiramit iii. Ord. (8)
Tetragonal prizma i. Ord. (4)
Tetragonal prizma ii. Ord. (4)
Tetragonal prizma iii. Ord. (4)
Bazal pinakoid (2)
-
(Ăœst,Alt) Tetragonal piramit i. Ord. (4)
(Ăœst,Alt) Tetragonal piramit ii. Ord. (4)
(Âą,Ăœst,Alt) Tetragonal piramit iii. Ord. (4)
Tetragonal prizma i. Ord. (4)
Tetragonal prizma ii. Ord. (4)
(Âą) Tetragonal prizma iii. Ord. (4)
Bazal pinakoid (2)
-
(Âą) Tetragonal bisfenoid i. Ord. (4)
(Âą) Tetragonal bisfenoid ii. Ord. (4)
(Âą,SaÄ&#x;,Sol) Tetragonal bisfenoid iii. Ord. (4)
Tetragonal prizma i. Ord. (4)
Tetragonal prizma ii. Ord. (4)
(Âą) Tetragonal prizma iii. Ord. (4)
Bazal pinakoid (2)
-
-
a : a : ∞c {h h 0 }
Tetragonal Ditetragonal prizma prizma ii. Ord. (8) (4)
1+2
-
a : na : mc {h k l }
Tetragonal Tetragonal Ditetragonal prizma bipiramit bipiramit ii. Ord. i. Ord. (16) (8) (4)
-
2
a: ∞a : mc {h 0 l }
Tetragonal bipiramit i. Ord. (8)
-
2
-
2+2
a : a : mc {h h l }
+
1
-
1
2+2
-
1 Polar
-
4
DĂźĹ&#x;ey Aksiyal
Ditetragonal bipiramidal (Holoedri)
Yatay
FORM
Eksen
Aksiyal
SÄąnÄąf, Sembol (Hermann Mauguin)
DĂźzlem
TRİKLİNAL SİSTEM Eksen
Merkez
FORM
Düzlem
Sınıf, Sembol (Hermann Mauguin)
SİMETRİ
-
-
1
Triklinal Pinakoidal (Holoedri)
Asimetrik (Pedial) (Hemiedri) 1
-
-
-
na : b : mc {h k l }
na : b : ∞c {h k 0 }
∞a : b : mc {0 k l }
a : ∞b : mc {h 0 l }
∞a : b : ∞c {0 k 0 }
a : ∞b : ∞c {h 0 0 }
∞a : ∞b : c {0 0 l }
(Üst, Sağ, Sol) (Alt, Sağ, Sol) Tetarto bipiramit (2)
(Sağ,Sol) Hemiprizma (2)
(Sağ,Sol) Hemibrahido ma (2)
(Üst,Alt) Hemimakro doma (2)
Brahipinakoid (2)
Makropinakoi d (2)
Bazal pinakoid (2)
(Üst,Alt) (Sağ,Sol) Tetartoprizma (1)
(Üst,Alt) (Sağ,Sol) Tetartobrahidoma (1)
(Üst,Alt) (Ön,Arka) Tetartomakrodoma (1)
(Sağ,Sol) Brahipinakoid (1)
(Ön,Arka) Makropinakoid (1)
(Üst,Alt) Bazal pinakoid (1)
(Üst, Sağ, Sol) (Alt, Sağ, Sol) Ogdo.piramit (1)