Universidad Fermín Toro Vice Rectorado Académico Facultad de Ciencias Económicas y Sociales Análisis de Problemas y Toma de Decisiones
Cesar Linares C.I 18261791 09-02-2013
Introducción Existen diferentes herramientas que nos permiten realizar pronósticos sobre el comportamiento que se va a presentar en una organización a partir de datos existentes y métodos de análisis probabilísticos y no probabilísticos, dentro de los métodos probabilísticos encontramos: las cadenas de Markov, Teoría de Colas, Programación No lineal, entre otras. El análisis de decisión proporciona un soporte cuantitativo a los tomadores de decisiones en todas las áreas tales como ingenieros, analistas en las oficinas de planificación, agencias publicas, consultores en proyectos de gerencia, planificadores de procesos de producción, analistas financieros y de economía, expertos en diagnósticos de soportes medico y tecnológicos e infinidad de otras áreas.
Metodos deterministicos La Programación Lineal (PL) es una de las principales ramas de la Investigación Operativa. En esta categoría se consideran todos aquellos modelos de optimización donde las funciones que lo componen, es decir, función objetivo y restricciones, son funciones lineales en las variables de decisión Los modelos de Programación Lineal por su sencillez son frecuentemente usados para abordar una gran variedad de problemas de naturaleza real en ingeniería y ciencias sociales, lo que ha permitido a empresas y organizaciones importantes beneficios y ahorros asociados a su utilización.
El método Simplex es un procedimiento iterativo que permite ir mejorando la solución a cada paso. El proceso concluye cuando no es posible seguir mejorando más dicha solución. Partiendo del valor de la función objetivo en un vértice cualquiera, el método consiste en buscar sucesivamente otro vértice que mejore al anterior. La búsqueda se hace siempre a través de los lados del polígono (o de las aristas del poliedro, si el número de variables es mayor). Cómo el número de vértices (y de aristas) es finito, siempre se podrá encontrar la solución El método Simplex se basa en la siguiente propiedad: si la función objetivo, f, no toma su valor máximo en el vértice A, entonces hay una arista que parte de A, a lo largo de la cual f aumenta. Deberá tenerse en cuenta que este método sólo trabaja para restricciones que tengan un tipo de desigualdad "≤" y coeficientes independientes mayores o iguales a 0, y habrá que estandarizar las mismas para el algoritmo. En caso de que después de éste proceso, aparezcan (o no varíen) restricciones del tipo "≥" o "=" habrá que emplear otros métodos, siendo el más común el método de las Dos Fases.
Metodos probabiliísticos La Teoría Bayesiana se basa en la enumeración de diferentes eventos posibles y la asociación de cada uno con una probabilidad de ocurrencia. Y se aplican Por medio de la cuantificación del impacto de cada programa y la multiplicación por su correspondiente probabilidad de ingeniosidad, se pueden calcular los daños esperados de cada factor de riesgo, es decir que los métodos bayesianos, aportan modelos teóricos que simulan la capacidad de razonamiento y es utilizada en el momento que se quiera crear condiciones de incertidumbre, cuando no se conoce con absoluta certeza la verdad o falsedad de un enunciado o hipótesis, e imprecisión, expuestos en los que se admite un rango de variación Por medio de la cuantificación del impacto de cada evento, y la multiplicación por su correspondiente probabilidad de ocurrencia, se pueden calcular los daños esperados de cada factor de riesgo que al mismo tiempo permiten resolver problemas de toma de decisiones.
La teoría de juegos es un área de la matemática aplicada que utiliza modelos para estudiar interacciones en estructuras formalizadas de incentivos (los llamados «juegos») y llevar a cabo procesos de decisión. Sus investigadores estudian las estrategias óptimas así como el comportamiento previsto y observado de individuos en juegos. Tipos de interacción aparentemente distintos pueden, en realidad, presentar estructura de incentivo similar y, por lo tanto, se puede representar mil veces conjuntamente un mismo juego. Desarrollada en sus comienzos como una herramienta para entender el comportamiento de la economía, la teoría de juegos se usa actualmente en muchos campos, como en la
biología, sociología, psicología y filosofía. Experimentó un crecimiento sustancial y se formalizó por primera vez a partir de los trabajos de John von Neumann y Oskar Morgenstern, antes y durante la Guerra Fría, debido sobre todo a su aplicación a la estrategia militar, en particular a causa del concepto de destrucción mutua garantizada. Desde los setenta, la teoría de juegos se ha aplicado a la conducta animal, incluyendo el desarrollo de las especies por la selección natural. A raíz de juegos como el dilema del prisionero, en los que el egoísmo generalizado perjudica a los jugadores, la teoría de juegos ha atraído también la atención de los investigadores en informática, usándose en inteligencia artificial y cibernética.
Metodos hibridos Es una técnica de aplicación de la programación lineal, un enfoque cuantitativo que tiene como objetivo encontrar los medios menos costosos (óptimos) para embarcar abastos desde varios orígenes (fábricas, almacenes o cualquier otro de los puntos desde donde se embarcan los bienes) hacia varios destinos (cualquiera de los puntos que reciben bienes). En los problemas de localización, este método se puede emplear para el análisis de la mejor ubicación de un nuevo centro, de varios a la vez, y en general, para cualquier reconfiguración de la red. Para utilizar el método de transportación hay que considerar los siguientes pasos: 1. Los puntos de origen y la capacidad o abasto por período, para cada uno. 2. Los puntos de destino y la demanda por período para cada uno. 3. El costo de embarque por una unidad desde cada origen hacia cada destino. El primer paso en el procedimiento de este tipo de problema es establecer una matriz de transportación, la cual tiene como objetivo resumir de manera provechosa y concisa todos los datos relevantes y continuar los cálculos del algoritmo. Para crear la matriz de transportación deben seguirse los siguientes pasos: 1. Crear una fila que corresponda a cada planta (existente o nueva) que se este considerando y crear una columna para cada almacén. 2. Agregar una columna para las capacidades de las plantas y una fila para las demandas de los almacenes, e insertar después sus valores numéricos específicos. 3. Cada celda que no se encuentre en la fila de requisitos ni en la columna de capacidad representa una ruta de embarque desde un a planta hasta un almacén. Insertar los costos unitarios en la esquina superior derecha de cada una de esas celdas.
Técnica de Montecarlo Los métodos de Montecarlo abarcan una colección de técnicas que permiten obtener soluciones de problemas matemáticos o físicos por medio de pruebas aleatorias repetidas. En la práctica, las pruebas aleatorias se sustituyen por resultados de ciertos cálculos realizados con números aleatorios. A lo largo de varias páginas se estudiará el concepto de variable aleatoria y la transformación de una variable aleatoria discreta o continua. Empezaremos a estudiar esta técnica por los ejemplos más sencillos: el mecanismo básico de la difusión y el establecimiento del equilibrio térmico entre dos sistemas que se ponen en contacto a distinta temperatura. Estos dos ejemplos nos mostrarán el significado de proceso irreversible y fluctuación alrededor del estado de equilibrio. Se incluyen entre otros ejemplos, la explicación de la ley exponencial decreciente en la desintegración de una sustancia radioactiva en otra estable. Comprender, a partir de un modelo simple de núcleo radioactivo, que su desintegración es un suceso aleatorio, con mayor o menor probabilidad dependiendo de la anchura de las barreras de potencial que mantienen confinadas a las partículas que componen el núcleo. Otros ejemplos relevantes son: el estudio de un sistema con un número pequeño de estados como paso previo al estudio del comportamiento de un material paramagnético bajo la acción de un campo magnético y a una determinada temperatura, dos ejemplos de aplicación de la transformación de una variable discreta. Por último, estudiaremos el comportamiento de un material dieléctrico como ejemplo de aplicación de transformación de una variable aleatoria continua.