Parametric Equation

Page 1

Parametric Equation Parametric Equation In mathematics, parametric equation is a method of defining a relation using parameters. A simple kinematic example is when one uses a time parameter to determine the position, velocity, and other information about a body in motion. Abstractly, a parametric equation defines a relation as a set of equations. Therefore, it is somewhat more accurately defined as a parametric representation. It is part of regular parametric representation. The first two types are known as analytical or nonparametric representations of curves, and, in general tend to be unsuitable for use in CAD applications. For instance, both are dependent upon the choice of coordinate system and do not lend themselves well to geometric transformations, such as rotations, translations, and scaling. In addition, the implicit representation is awkward for generating points on a curve because x values may be chosen which do not actually lie on the curve. These problems are eliminated by rewriting the equations in parametric form.

Know More About :- The Area Of A Circle

Tutorcircle.com

Page No. : ­ 1/4


In plane, parametric equation is a pair of Functions which is given by: ⇒x = f (s) and y = g (s); which is used to define the ‘x’ and ‘y’ coordinate graph of the given curve in the plane. In mathematics, a set of equations which is used to represent a set of quantities as unambiguous Functions of a number of independent variables, said to be parameters. For example, Circle equation in the Cartesian coordinate is given by: r2 = x2 + y2, and Circle equation for the Parametric Equations is given by: ⇒x = r cos s; ⇒y = r sin s; Basically the parametric equation is represented as non unique, so the same quantities are defined by number of different parameterizations. Now we will see two dimensional and three dimensional parametric equations. In the two dimensional parametric equations Parabola and circle are involved. Parabola: The equation of parabola is given by: ⇒y = x2; The given equation is parameterising using the other parameter, when we use another parameter then the equation of parabola is: ⇒x = s and, ⇒y = s2.

Learn More :- Area Triangle

Tutorcircle.com

Page No. : ­ 2/4


In case of circle, the ordinary Equation of Circle is given by: ⇒x2+ y2 = 1; Here we obtained the equation which is parameterized. Using the parameterize version it is very easy to get points on a plot. Let’s talk about the three dimensional parametric equations. ‘Helix’ include in the three dimensional parametric equation. Generally parametric equation is used to define the curve in higher- dimensional space. For example: x = a cos (s), ⇒y = a sin (s); ⇒z = bs;

Tutorcircle.com

Page No. : ­ 2/3 Page No. : ­ 3/4


Thank You For Watching

Presentation


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.