Hypersonic Airplane Space Tether Orbital Launch -- HASTOL NASA Institute for Advanced Concepts 3rd Annual Meeting NASA Ames Research Center, San Jose, CA June 6, 2001
John E. Grant The Boeing Company, 5301 Bolsa Ave., Huntington Beach, CA92647-2099 Phone 714-372-5391 john.e.grant@boeing.com www.boeing.com
NIAC Subcontract No. 07600-040
HASTOL Phase II Study Team The Boeing Company John Grant, Phantom Works, Huntington Beach, CA Kimberly Harris, Phantom Works, Huntington Beach, CA Jim Martin, Phantom Works, Huntington Beach, CA Dan Nowlan, Phantom Works, Huntington Beach, CA Karl Oittinen, Expendable Launch Systems, Huntington Beach, CA Don Johnson, Phantom Works, St. Louis, MO Steve Hollowell, Phantom Works, Long Beach, CA Mike Bangham, Space and Communications, Huntsville, AL Beth Fleming, Space and Communications, Huntsville, AL John Blumer, Space and Communications, Huntsville, AL Ben Donahue, Space and Communications, Huntsville, AL Brian Tillotson, Space and Communications, Seattle, WA Tethers Unlimited, Inc. Rob Hoyt, Seattle, WA Bob Forward, Seattle, WA
HASTOL Contract funded by NASA Institute for Advanced Concepts Dr. Robert Cassanova, Atlanta, Georgia
HASTOL Concept of Operation
HASTOL Phase I Results Showed Concept Feasibility • Top -Level Requirements Developed; Top-Level Trades Conducted to Define Basic Design Approaches • Selected Hypersonic Aircraft Concept (DF-9) • Validated Overlap of Tether Tip and Hypersonic Aircraft Velocity and Geometry Envelopes for Capture – Defined Aircraft Apogee Altitude/Velocity Envelope – Tether Tip Can Withstand Thermal Loads as it Dips into the Atmosphere • Tether Boost Facility Concept Defined • Rotovator Tether Concept Selected • Simplified Grapple Concept Identified
HASTOL Phase II Study Approach P h a se I R es ults
• R o to va to r co nce pt • T echno lo g y R ea dine ss Le ve l 2 syste m s (h yp e rson ic a irplane , te ther co n tro l station, te ther, grapp le a ssem b ly, pa yload accom m o da tion a ssem b ly) • T ra de stud y re su lts: d isco ve ry tha t re n de zvou s p oin t ca n be a ch ieved by e xistin g airp la ne (X -4 3) w itho u t o ve rhe a tin g te th e r tip • S e lected con cep ts - D F -9 h yp e rson ic ve h icle - R e nd ezvous p o in t a t M a ch 10 , 10 0-km altitude - H o yte therTM w ith S p e ctra2 00 0T M m a te ria l a nd PB O tip m a te ria l H yp e rs on ic A irp lan e S pa ce T ethe r O rb ita l L aun ch (H A ST O L ) S tud y P rog ra m , P hase II
T a s k 1 M iss io n O pp o rtu nitie s D e fin itio n • D eve lo p con ta ct p la n • C on du ct kick-o ff w ith p o ten tia l cu sto m ers a nd N IA C • M ee t w ith cu stom e rs to a sse ss p ote n tia l m issio ns a nd nea r-te rm ap p lications • Id en tify o p po rtunities to in tegra te into N A S A p rog ram s
T a s k 2 S y s te m R e q uire m en ts D e fin itio n C an dida te list o f m ission nee ds
• D erive pre lim ina ry syste m re q uirem e nts fo r ea ch o f th e H A S T O L syste m s • D ete rm ine pa yloa d cha racte ristics, traffic rate, g uid an ce and co n tro l, g -fo rce lim itations, in itia l a nd life cycle co sts, a n d syste m in te rface re qu ire m en ts • Id en tify, de fin e, allo ca te , a nd tra de m a jo r syste m re qu ire m en ts
T a s k 3 C o n c e ptu al D e sig n • Integ rate in to system arch itectu re • C onduct tra de stud ie s • D e velop R O M co st e stim a te
T a s k 5 Tec h n o lo g y D e ve lo p m e n t P la n n ing • • -
Ide n tify te chn o lo gy ne ed s D e velop techno log y de velop m e nt roa dm ap F lig ht te st p lan L a bo ra tory tests
P h a s e II D elive ra b le s • •
•
T a sk 4 S y s tem A n a lys is • C onduct m od e ling and sim ula tio n s • C onduct pre lim ina ry te chn ica l a sse ssm ent - Ide n tify h igh-risk are a s - D e velop m itiga tion p lan s
F ina l P ha se II p rog ram review P ha se II fin a l repo rt – S ystem re quirem ents – A na lyze key tech n ica l issu es – C om p le te system de sig n con cep t to T R L 3 ✔ GN&C – A rea s o f d eve lop m e n t w ork n eed ed ✔ P ayloa d transfe r op era tion s – T e chnolog y ro ad m ap ✔ T e th er de sign an d d yn am ics – C o st m ode ls ✔ M aterial se le ction P ha se III cu sto m e r fun d ing co m m itm en t ✔ S im u la tion re su lts
Markets Drive Requirements • Current & Emerging Markets – GEO Comsats – US Civil Satellites – US Military Satellites – Small-Vehicle Tourism – Mission Requirements at IOC • Future Markets – Human Exploration & Development of Space – Solar Power Satellites – Large-Vehicle Tourism – Mission Requirements for Extended Operation Capability
Total Existing Markets • Dominated by GEO Comsats => size HASTOL for that market – GEO destination matches HASTOL well – Aggressive pricing required • Other markets offer targets of opportunity, not core business – Extra revenue – Protection from non-US competition allows higher prices GEO Comsats 12
• Total 2010 Market – ~33 Launches / yr – $1.5 B / yr revenue – 50% revenue capture? 2020
8 6 4 2
14000
10000
8000
4000
2000
2015
6000
mass (lb)
900
700
500
300
0
100
number
10
2010
year
Surveys Show Space Adventure Travel Is Large And Elastic Market
Seat Price 10K 100K
1M
Market likely stronger than data suggest • Survey data several years old • Economy has grown since then • Wealth more concentrated in top strata • Upper strata include more young & adventurous people than in the past
1K
Annual Passengers
100
1K
10K 100K Annual Passengers
1M
10M
Ivan Bekey, Economically Viable Public Space Travel, Space Energy and Transportation, vol 4, No 1,2, 1999.
Tourism Market Projection
Comsat and Passenger Flights Drive IOC Mission Requirements • Payload mass: 5500 kg • Release orbits: GTO + assured safe re-entry orbit • Release orbit insertion error to GTO: < Ariane 5 and Delta 4 error • Passenger orbit insertion error: not to exceed safe entry limits • Epoch: 2015 to 2025 • Mission reliability: 98% for comsats, 99% for passengers • Mission safety: – 99% chance that comsat payloads will be undamaged – 99.99% chance that passengers will survive • Orbital debris produced: zero • Collision avoidance: “shall not endanger any tracked operational spacecraft”
Extended Operational Capability Mission Requirements HEDS and SPS Drive Requirements • Payload mass: 36,000 kg • Release orbits: GTO + transfer orbit to Earth-Moon L1 • Release orbit insertion error: < Saturn V error • Rate: 1000 SPS flights / yr, 15 HEDS flights / yr • Epoch: 2020 to 2030 • Mission reliability: 98% for HEDS & SPS • Mission safety: 99% chance that HEDS & SPS payloads will be undamaged • Orbital debris produced: zero (incl. lunar downmass)
HASTOL Phase I Hypersonic Aircraft Concept: Boeing-NASA/LaRC DF-9 Dual-Fuel Aerospaceplane
Takeoff Wt: Payload: Length: Apogee:
270 MT (590,000 lb) 14 MT (30,000 lb) 64 m (209 ft) 100 km
Speed at Apogee: 3.6 km/sec (approx. Mach 12) 4.1 km/sec (inertial) Turboramjets up to Mach 4.5 Ram-, Scramjets above Mach 4.5 Linear Rocket for Pop-Up Maneuver
Variation with Rendezvous Velocity â&#x20AC;˘ Determined System Design for Hypersonic Airplane Apogee Velocities of Mach 10-19 HASTOL Tether Facility Parameter Variations with Initial Payload Parameter Variations - 600 km - TCS 10X Fixed Parameters Tether length TCS Mass Payload Mass Tether Safety Factor
Run 3111 3007 3010 3015 3032 3031 3030 3027 3029 3028
Velocity (Mach) (m/s) 19.0 5791 18.0 5486 17.0 5182 16.0 4877 15.0 4572 14.0 4267 13.0 3962 12.0 3658 11.0 3353 10.0 3048
600km 150 Mg (10X payload mass) 15 Mg 3.0 along entire length Rendezvous Altitude (km) (n.mi.) 113 61 110 60 110 60 110 60 110 80 110 60 110 60 110 60 110 60 110 60
Accel (gees) 0.88 1.18 1.55 1.96 2.40 2.86 3.33 3.82 4.33 4.87
CM Peri (km) 549 540 522 512 509 511 517 524 533 542
Facility CM Apo (km) 1314 1012 835 701 612 559 531 524 533 542
Tip Vel (m/s) 1977 2229 2502 2780 3064 3353 3645 3941 4241 4541
TCS (ratio) 10 10 10 10 10 10 10 10 10 10
Mass Ratio Tether Total (ratio) (ratio) 16 26 28 38 51 61 94 104 175 185 331 341 638 648 1253 1263 2515 2525 5108 5118
Tip Altitude Perigee Apogee (km) (km) 80 186 88 80 97 80 102 80 106 80 108 80 109 80 109 85 110 97 110 103
GTO Apogee (X Geo) 1.00 1.44 2.76 13.51 -8.66 -2.49 -1.68 -1.31 -1.09 -0.95
Broad Range of Mission Profiles and Propulsion Systems Considered Vertical Launch, Downrange Land
Vertical Launch, Flyback Rocket B u rn o u t a t M a c h 1 7 , 1 5 0 k m
Burnout at Mach 17, 150 km
Rocket
Gliding Entry
G lid in g E n try w ith T u rn
Air-Turborocket
Burnout at Mach 17, 150 km
Burnout at Mach 17, 150 km
Launch
Airplane Cruiseback
Gliding Entry with Turn
Airturborocket Launch Turn
Uprange Cruise
Horizontal Takeoff
Switch at Mach 6
Horizontal Landing
Rocket Airplane Cruiseback
Uprange Horizontal Cruise Takeoff
Air Launched RBCC Burnout at Mach 17, 150 km RBCC rocket Gliding RBCC Mach 10 Entry with airbreathing Switch Turn Airplane Launch Cruiseback Turn Uprange Horizontal Horizontal Cruise Landing Takeoff
F ly b a c k H o riz o n ta l L a n d in g
Air Launched Rocket
Rocket
Turn
V e rtic a l T a k e o ff
Horizontal Landing
Vertical Takeoff
Turboramjet Booster and Rocket Burnout at Mach 17, 150 km
Rocket
Gliding Entry with Turn
Launch at Mach 4 Turn
Horizontal Landing
Turboramjet Cruiseback
Turboramjet Horizontal Uprange Takeoff Cruise MAGLEV
Single Stage Airbreather (RBCC) Burnout at Mach 17, 150 km RBCC Rocket High-Speed Turn
Gliding Entry with Turn
Mach 10 Switch
Uprange Acceleration Horizontal Takeoff MAGLEV
Mach 4 Flyback Horizontal Landing
Gliding Entry with Turn
Horizontal Landing
HASTOL Phase II Hypersonic Aircraft Concept: Air Launched Turbo-Rocket
Burnout at Mach 17, 150 km
Airturborocket
138’ 11’’
54’ 2’’
Takeoff Wt: Payload: Payload bay: Apogee:
Switch at Mach 6
Launch Turn
Rocket Airplane Cruiseback
Uprange Horizontal Cruise Takeoff
Gliding Entry with Turn
Horizontal Landing
17’ 5’’
177 MT (390,883 lb) 7 MT (15,000 lb) 3 m dia x 9.1 m (10 ft x 30 ft) 150 km
Speed at Apogee: 5.2 km/sec (approx. Mach 17) 5.7 km/sec (inertial) Air-turborocket to Mach 6 Linear Rocket above Mach 6
HASTOL Tether Facility Design Mass Ratios: • Control Station 10x payload • Tether 58.8x • Grapple 0.12 • TOTAL: ~ 69 x payload Tether Length: 630 km Orbit: • 582x805 km ->569x499
System Masses Tether mass CS Active Mass
323,311 51,510
CS Ballast Mass
3490 kg
Grapple mass Total Facility Mass
650 378,961
kg kg
Total Launch Mass
375,471
kg
Payload Mass
5,500
Positions & Velocities resonance ratio perigee altitude apogee altitude perigee radius apogee radius perigee velocity apogee velocity CM dist. From Station CM dist. To Grapple ²V to Reboost ²V to Correct Apogee ²V to Correct Precess. ²V To Circularize
636,300 58.78 2,517 2,481 0.00583 0.73 1.48 1.50
m m/s m/s rad/s g g g
kg Joined System Pre-Catch Payload Tether Post-catch 41 20 -4603 582 576 150 805 650 1775 6960 6954 6528 7183 7028 18789 7627 7591 5110 7390 7511 204469 210647 431831 425653
km km km km m/s m/s m m m/s m/s m/s m/s
Basic Orbital Parameters semi-major axis eccentricity inclination semi-latus rectum sp. mech. energy vis-viva energy period period station rotation period rotation ratio
Maximum Total ∆V ~ 5 km/s Capability to toss payload to 107,542 km Tosses to GTO by releasing off-vertical
Tether Characteristics Tether Length Tether mass ratio Tether tip velocity at catch Tether tip velocity at toss Tether angular rate Gravity at Control Station Gravity at payload Rendezvous acceleration
kg kg
km rad km m2/s2 m2/s2 sec min sec
4152 0.6 0 2792 -4.80E+07 -9.60E+07 2662 44.4
7072 0.016 0 7070 -2.82E+07 -5.64E+07 5918 98.6 1077.8 5.5
Post-Toss Tether Payload 1 26.0 569 1001 499 107542 6948 7379 6877 113921 7555 10073 7632 652 204469 431831 72 -484 416 1218
6991 6912 0.005 -0.005 0 0 6991 6912 -2.85E+07 -2.88E+07 -5.70E+07 -5.77E+07 5817 5720 97.0 95.3 1077.8 1077.8 5.4 5.3
60650 0.878 0 13861 -3.29E+06 -6.57E+06 148647 2477.5
2.00E+01 1.00E+01
Radius (mm)
0.00E+00 630000
598500
567000
535500
504000
472500
441000
409500
378000
346500
315000
283500
-1.00E+01 -2.00E+01
Distance From Control Station
252000
220500
189000
157500
126000
94500
63000
31500
0
Boost Facility Concept Power Expansion Module w/ PV arrays
Control Station w/ Power Expansion Modules
Tether Expansion Module
Tether Length/Dia not to scale
Grapple Assembly
Operational HASTOL Control Station Initial Subsystem Mass Allocations Control Station massâ&#x2030;&#x2C6; 55,000 kg Subsystems
Mass, kg.
Thermal Control Cabling/Harnesses Structure Electrical Power (EPS) & Tether Power Command & Data Handling (C&DH) and Communication Attitude Determination & Control (ADCS) and Guidance & Navigation (GN&C) Tether Deployment and Control (TDCS) Docking
1,970 1,380 4,730 9,060 200 590
Ballast
35,300
1,380 390
Phase I Results Show Feasibility of Payload Capture
• Tether-Payload Rendezvous Capability is a Key Enabling Technology • TUI Developed Methods for Extending Rendezvous Window – Works in Simulation – Validation Experiments Needed
Relative Position of Grapple and Payload Relative Position of Grapple 1,000 Km Tether Case, 4,100 m/s Rendezvous; Hypersonic A/C Coordinate System 70000 60 Seconds
60 Seconds 60000
Vertical Distance - Ft
50000 Before Grapple
After Grapple
40000 30000 Time Before Grapple
Time After Grapple
20000 30 10000
30 Seconds 20 10 Seconds
10
0
Hypersonic Aircraft Pop-Up Apogee is at 335,000 Feet; 13,450 Ft/Sec (Mach 15.2)
Aft
-10000 -4000
-3000
-2000
-1000
0
1000
Horizontal Distance - Ft
2000
Forward 3000
4000
Relative Position of Grapple and Payload Relative Position of Grapple 1,000 Km Tether Case, 4,100 m/s Rendezvous; Hypersonic A/C Coordinate System 2000 Time Before Grapple 10 Seconds
Vertical Distance - Ft
1600
Time After Grapple
Distances 26 Ft, 1680 Ft
10 Seconds
1200
800
400
5 Seconds
5 Seconds
6 Ft, 420 Ft
1 Second
1 Second
1 Ft, 17 Ft
0 Aft -400 -2000
0 Ft, 0 Ft
Hypersonic Aircraft Pop-Up Apogee is at 335,000 Feet; 13,450 Ft/Sec (Mach 15.2) -1600
-1200
-800
-400 0 400 Horizontal Distance - Ft
800
Forward 1200
1600
2000
Visual 6-DOF Simulation Validates Rendezvous and Capture Scenario
R&C Scenario Timeline/Sequence of Events Time (sec)
Event
0
Start R&C scenario
5
Initiate guidance predictions
15
Issue P/L bay door discrete
30
Issue P/L rotation mechanism commands
45
P/L rotation complete
58
Issue grapple assembly release discrete
60
Nominal capture point
65
End grapple assembly freefall
120
End R&C scenario
Possible Follow-on Projects and Tasks • Ground-Based Rendezvous and Capture Demo • Detailed rendezvous and capture simulation and analysis. • More detailed design of operational grapple • Detailed design of demo hardware • Sub-Scale Electrodynamic Tether Dynamics Experiments • Secondary payload • 4-5 km long ED tether; assess tether dynamics, survivability • Sub-scale tether system to capture and toss payloads • Four phase program: • Design • Fabrication and ground testing • Flight experiment • 1st, tether is in circular orbit just a little higher than payload and hanging. Then, tether and payload rendezvous and capture (low relative speed). Tether then uses thrust to start rotating and throw payload. • 2nd, tether is in a higher elliptic orbit and rotating slowly. It rendezvous with payload (moderate relative speed), rotates, and tosses. • 3rd, demo at maximum rotation. • Limited operation system for paying customers.
Aggressive Development Plan Leads to a 2015 IOC
Remaining Phase II Tasks • Complete Boost Facility Concept Definition • Complete Operational System Deployment Concept • Define Grapple Requirements Using Rendezvous and Capture Simulation • Define Grapple Concept • Complete Survivability and Collision Avoidance Analyses • Complete Follow-on Program Plans • Estimate System Cost
Tether Systems Have the Potential to Enable Low Cost Access to Space • Concept feasibility study already completed. • Key targets for technical risk reduction have been identified. • Tether experiments have already flown in space. • Near term experiments further reduce potential system risks. • Phase II analyses reveal near term demonstrations and flight experiments required for full scale system development. • Commercial development path will probably be required.
Modest near term government investment is encouraged to fund demos and experiments.