http://biomedicaancona.wikispaces.com/file/view/final_formulas

Page 1

MIT OpenCourseWare http://ocw.mit.edu 6.013/ESD.013J Electromagnetics and Applications, Fall 2005

Please use the following citation format: Markus Zahn, Erich Ippen, and David Staelin, 6.013/ESD.013J Electromagnetics and Applications, Fall 2005. (Massachusetts Institute of Technology: MIT OpenCourseWare). http://ocw.mit.edu (accessed MM DD, YYYY). License: Creative Commons AttributionNoncommercial-Share Alike. Note: Please use the actual date you accessed this material in your citation. For more information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms


6.013 Final Exam Formula Sheets December 21, 2005 Cartesian Coordinates (x,y,z): ∂Ψ ∂Ψ ∂Ψ ∇Ψ = xˆ + yˆ + zˆ ∂x ∂y ∂z ∂A x ∂A y ∂A z ∇iA = + + ∂x ∂y ∂z ∂A y ⎞ ⎛ ∂A ∂A ⎞ ⎛ ∂A y ∂A x ⎞ ⎛ ∂A ∇ × A = xˆ ⎜ z − + yˆ ⎜ x − z ⎟ + zˆ ⎜ − ⎟ ∂z ⎠ ∂x ⎠ ⎝ ∂x ∂y ⎟⎠ ⎝ ∂z ⎝ ∂y 2 2 2 ∇2Ψ = ∂ Ψ + ∂ Ψ + ∂ Ψ ∂x 2 ∂y2 ∂z 2 Cylindrical coordinates (r,φ,z): ∇Ψ = rˆ ∂Ψ + φˆ 1 ∂Ψ + zˆ ∂Ψ ∂r r ∂φ ∂z ∂ ( rA r ) 1 ∂A φ ∂A z ∇iA = 1 + + ∂z r ∂r r ∂φ

rˆ r φˆ zˆ rA ∂ ⎛ ⎞ ⎛ 1 ∂A z ∂Aφ ⎞ ( ) A A A ∂ ∂ ∂ φ ⎛ ⎞ ∇ × A = rˆ ⎜ − + φˆ ⎜ r − z ⎟ + zˆ 1 ⎜ − r ⎟ = 1 det ∂ ∂r ∂ ∂φ ∂ ∂z r ⎝ ∂r ∂z ⎟⎠ ∂r ⎠ ∂φ ⎠ r ⎝ ∂z ⎝ r ∂φ A r rA φ A z

( )

2 2 ∇ 2 Ψ = 1 ∂ r ∂Ψ + 1 ∂ Ψ + ∂ Ψ r ∂r ∂r r 2 ∂φ2 ∂z 2 Spherical coordinates (r,θ,φ): ∇Ψ = rˆ ∂Ψ + θˆ 1 ∂Ψ + φˆ 1 ∂Ψ ∂r r ∂θ r sin θ ∂φ

(

)

∂Aφ ∂ r 2Ar ∂ ( sin θAθ ) ∇iA = 1 + 1 + 1 ∂r r sin θ ∂θ r sin θ ∂φ r2 ⎛ ∂ ( sin θA φ ) ∂Aθ ⎞ ⎛ 1 ∂A 1 ∂ ( rAφ ) ⎞ 1 ⎛ ∂ ( rAθ ) − ∂A r ⎞ r − ∇ × A = rˆ 1 ⎜ − ⎟ ⎟ + θˆ ⎜ ⎟ + φˆ ⎜ r sin θ ⎝ ∂θ ∂φ ⎠ r ⎝ ∂r ∂θ ⎠ ⎝ r sin θ ∂φ r ∂r ⎠ rˆ rθˆ r sin θ φˆ 1 det ∂ ∂r ∂ ∂θ = ∂ ∂φ 2 r sin θ A r rAθ r sin θA φ

(

)

(

)

∂ sin θ ∂Ψ + 1 ∂ 2Ψ ∇ 2 Ψ = 1 ∂ r 2 ∂Ψ + 1 ∂r ∂θ r 2 ∂r r 2 sin θ ∂θ r 2 sin 2 θ ∂φ2

Gauss’ Divergence Theorem: ∫ ∇iG dv = ∫ Ginˆ da

Vector Algebra: ∇ = xˆ ∂ ∂x + yˆ ∂ ∂y + zˆ ∂ ∂z A • B = A x Bx + A y By + Az Bz

Stokes’ Theorem:

∇ • ( ∇× A ) = 0 ∇× ( ∇× A ) = ∇ ( ∇ • A ) − ∇ 2 A

V

A

∫A ( ∇ × G )inˆ da = ∫ C Gid

Page 1 of 4


Basic Equations for Electromagnetics and Applications Fundamentals f = q ( E + v × μ o H ) [ N ] (Force on point charge)

E1// − E 2 // = 0

∇ × E = −∂ B ∂t

H1// − H 2 // = J s × nˆ B1⊥ − B2 ⊥ = 0

d ∫ c E • ds = − dt ∫A B • da ∇ × H = J + ∂ D ∂t

( D1⊥ − D2 ⊥ ) = ρs

∇ • D = ρ → ∫A D • da = ∫V ρdv

Electromagnetic Quasistatics E = −∇Φ ( r ) , Φ ( r ) = ∫V′ ( ρ ( r ) / 4πε | r ′ − r |) dv′

∇ • B = 0 → ∫A B • da = 0

−ρf ε C = Q/V = Aε/d [F] L = Λ/I i(t) = C dv(t)/dt v(t) = L di(t)/dt = dΛ/dt we = Cv2(t)/2; wm = Li2(t)/2 Lsolenoid = N2μA/W τ = RC, τ = L/R Λ = ∫A B • da (per turn)

∇ • J = −∂ρ ∂t

∇2 Φ =

E = electric field (Vm-1) H = magnetic field (Am-1) D = electric displacement (Cm-2) B = magnetic flux density (T) Tesla (T) = Weber m-2 = 10,000 gauss ρ = charge density (Cm-3) J = current density (Am-2)

σ = conductivity (Siemens m-1)

KCL : ∑ i Ii (t) = 0 at node

J s = surface current density (Am-1)

KVL : ∑ i Vi (t) = 0 around loop

-2

ρs = surface charge density (Cm ) εo = 8.85 × 10

Q = ω0 wT / Pdiss = ω0 / Δω

-1

Fm

ω0 = ( LC )

μo = 4π × 10-7 Hm-1

−0.5

V 2 ( t ) / R = kT

c = (εoμo)-0.5 ≅ 3 × 108 ms-1 e = -1.60 × 10-19 C ηo ≅ 377 ohms = (μo/εo)0.5 ( ∇ 2 − με∂ 2 ∂t 2 ) E = 0 [Wave Eqn.]

Electromagnetic Waves

( ∇ 2 − με∂ 2

∂t 2 ) E = 0 [Wave Eqn.]

Ey(z,t) = E+(z-ct) + E-(z+ct) = Re{Ey(z)ejωt}

( ∇ 2 + k 2 ) Eˆ = 0, Eˆ = Eˆ o e− jk ir

Hx(z,t) = ηo-1[E+(z-ct)-E-(z+ct)] [or(ωt-kz) or (t-z/c)]

k = ω(με)0.5 = ω/c = 2π/λ

∫A ( E × H ) • da + ( d dt ) ∫V ( ε E 2 + μ H 2 ) dv = − ∫V E • J dv (Poynting Theorem) 2

2

kx2 + ky2 + kz2 = ko2 = ω2με vp = ω/k, vg = (∂k/∂ω)-1

θ r = θi sin θt / sin θi = ki / kt = ni / nt

Media and Boundaries D = εo E + P

θc = sin −1 ( nt / ni )

∇ • D = ρf , τ = ε σ

θ B = tan −1 ( ε t / ε i )

∇ • ε o E = ρf + ρ p

θ > θ c ⇒ Eˆ t = Eˆ iTe +α x − jk z z

∇ • P = −ρp , J = σE

k = k ′ − jk ′′ Γ = T −1

B = μH = μo ( H + M )

(

1 2

0 = if σ = ∞

d

∫ c H • ds = ∫A J • da + dt ∫A D • da

-12

)

ε ( ω ) = ε 1 − ωp 2 ω2 , ω p = ( Ne 2 mε )

(plasma)

for TM

TTE = 2 / (1 + [ηi cos θ t / ηt cos θi ]) TTM = 2 / (1 + [ηt cos θt / ηi cos θ i ])

ε eff = ε (1 − jσ / ωε ) Skin depth δ = ( 2 / ωμσ )

0.5

0.5

0.5

[m] Page 2 of 4


Radiating Waves ∇ 2 A − 12 c 1 ∇2Φ − 2 c

A = ∫V ′

Φ = ∫V ′

Wireless Communications and Radar

∂ A = −μ J f ∂t 2 ρf ∂2Φ =− 2 ε ∂t 2

G(θ,φ) = Pr/(PR/4πr2)

PR = ∫4π Pr ( θ, φ, r ) r 2 sin θ dθdφ

μ J f ( t − rQP / c ) dV ′

Prec = Pr(θ,φ)Ae(θ,φ) Ae (θ, φ) = G(θ, φ)λ 2 4π

4π rQP

ρ f ( t − rQP / c ) dV ′

G (θ , φ ) = 1.5sin 2 θ (Hertzian Dipole)

4πε rQP

E = −∇Φ −

∂A , B = ∇× A ∂t

i 2 (t) =

R r = PR

2π μ / ε ⎛ d eff ⎞ ⎜ λ ⎟ 3 ⎝ ⎠

2

jk x + jk y y E ff ( θ ≅ 0 ) = ( je jkr λr ) ∫ E t (x, y)e x dxdy A

ˆ + ω2μεΦ ˆ = −ρˆ ε , ∇2Φ ˆ ( x, y, z ) e jωt ⎤ Φ ( x, y, z, t ) = Re ⎡⎢ Φ ⎥

− jkr Eˆ z = ∑i a i Ee i = (element factor)(array f)

ˆ + ω2μεA ˆ = −μJˆ , ∇2 A

Ebit ≥ ~4 × 10-20 [J] Z12 = Z21 if reciprocity

A ( x, y, z, t ) = Re ⎡⎢ Aˆ ( x, y, z ) e jωt ⎤⎥ ⎣

(

)

ˆ (r ) = ∫ ′ ρˆ (r )e − jk⏐r ′− r⏐ / 4πε r '− r dV′ Φ V ˆ A(r) = ∫V ' ( μ Jˆ ( r ) e − jk r '− r 4π r '− r ) dV ' μˆ ˆ 4πr ) e − jkr sin θ Eˆ ffθ = H = ( jηkId ε ffφ

Forces, Motors, and Generators J = σ ( E + v × B)

F = I × B [ Nm -1 ] (force per unit length) E = −v × B inside perfectly conducting wire (σ → ∞ )

At ωo , w e = w m ⎛

2

w e = ∫V ⎜⎝ ε Eˆ 4 ⎟⎠ dv wm = ∫

V

(μ Hˆ 2 4) dv

Qn = ωn w Tn Pn = ωn 2αn

(

2 f mnp = ( c 2 ) ⎡⎣ m a ⎦⎤ + ⎣⎡ n b ⎦⎤ + ⎡⎣ p d ⎤⎦ sn = jωn - αn 2

dw T + f dz dt dt f = ma = d(mv)/dt

∇ • u = − (1 ρo cs 2 ) ∂p ∂t

-2

vi =

0.5

P = Po + p, U = 0 + u ∇p = −ρo ∂ u ∂t

2

)

Acoustics

Max f/A = B /2μ, D /2ε [Nm ]

2

2

( ∇2 − k 2 ∂ 2 ∂t 2 ) p = 0 2

k 2 = ω2 cs = ω2 ρo γPo

P = fv = Tω (Watts) T = I dω/dt I = ∑ i mi ri 2

ηs = p/u = ρocs = (ρoγPo)0.5 or ρ 0 RT gases

FE = λ E ⎡⎣ Nm −1 ⎤⎦ Force per unit length on line charge λ

ηs = (ρoK)0.5 solids, liquids

WM ( λ , x ) =

1 λ2 1 q2 ; WE ( q, x ) = 2 L ( x) 2 C ( x)

fM (λ, x ) = −

∂WM ∂x

∂W f E ( q, x ) = − E ∂x

q

λ

1 1 dL ( x ) d = − λ 2 (1/ L ( x ) ) = I 2 2 dx 2 dx

d 1 1 dC ( x ) = − q 2 (1/ C ( x ) ) = v 2 dx 2 dx 2

cs = v p = v g = ( γPo ρo )

0.5

or ( K ρo )

0.5

RT

or

p, u ⊥ continuous at boundaries

ˆ = pˆ + e- jkz + pˆ - e + jkz , p(z, t) = Re ⎡ p(z) ˆ e jω t ⎤ p(z) ⎣ ⎦ uˆ z =ηs -1 (pˆ + e-jkz - pˆ - e+jkz ) , u z (z, t) = Re ⎡⎣ uˆ z (z) e jω t ⎤⎦

∫A up • da + ( d dt )∫V ( ρo

u

2

)

2 + p2 2γPo dV Page 3 of 4


Optical Communications E = hf, photons or phonons hf/c = momentum [kg ms-1] dn 2 dt = − ⎡⎣ An 2 + B ( n 2 − n1 )⎤⎦

Transmission Lines Time Domain ∂v(z,t)/∂z = -L∂i(z,t)/∂t ∂i(z,t)/∂z = -C∂v(z,t)/∂t ∂2v/∂z2 = LC ∂2v/∂t2 v(z,t) = V+(t – z/c) + V-(t + z/c) i(z,t) = Yo[V+(t – z/c) – V-(t + z/c)] c = (LC)-0.5 = (με)-0.5 Zo = Yo-1 = (L/C)0.5 ΓL = V-/V+ = (RL – Zo)/(RL + Zo) Frequency Domain

ˆ (d 2 /dz 2 +ω 2 LC)V(z) =0 ˆ ˆ e-jkz + V ˆ e +jkz , v( z, t ) = Re ⎡Vˆ ( z )e jωt ⎤ V(z) =V + ⎣ ⎦ ˆI(z) = Y [V ˆ e-jkz - V ˆ e +jkz ], i ( z , t ) = Re ⎡ ˆI( z )e jωt ⎤ 0 + ⎣ ⎦

k = 2π/λ = ω/c = ω(με)0.5 ˆ ˆI(z) = Zo Zn (z) Z(z) = V(z) Zn (z) = [1 + Γ (z) ] [1 − Γ (z) ] = R n + jX n

Γ(z) = ( V− V+ ) e 2 jkz = [ Zn (z) − 1] [ Zn (z) + 1]

Z(z) = Zo ( ZL − jZo tan kz ) ( Zo − jZL tan kz ) VSWR = Vmax Vmin

Page 4 of 4


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.