http://biomedicaancona.wikispaces.com/file/view/formula_sheet1

Page 1

MIT OpenCourseWare http://ocw.mit.edu 6.013/ESD.013J Electromagnetics and Applications, Fall 2005

Please use the following citation format: Markus Zahn, Erich Ippen, and David Staelin, 6.013/ESD.013J Electromagnetics and Applications, Fall 2005. (Massachusetts Institute of Technology: MIT OpenCourseWare). http://ocw.mit.edu (accessed MM DD, YYYY). License: Creative Commons AttributionNoncommercial-Share Alike. Note: Please use the actual date you accessed this material in your citation. For more information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms


6.013 Formula Sheet # 1 Cartesian Coordinates (x, y, z) ηf ηf ηf ix + iy + iz ηx ηy ηz

ηAx ηAy ηAz

�·A = + + ηx ηy ηz „ « „ « „ « ηAz ηAy ηAx ηAz ηAy ηAx − − − + iy + iz � × A = ix ηy ηz ηz ηx ηx ηy �f =

Cartesian x y z ix

= = = =

Cylindrical r cos � r sin � z cos �ir − sin �i�

= = = =

iy

=

sin �ir + cos �i�

=

iz

=

iz

=

Cylindrical r � z ir i� iz

= = = = = =

Cartesian p x2 + y 2 y tan−1 x z cos �ix + sin �iy − sin �ix + cos �iy iz

= = = = = =

Spherical r sin σ � r cos σ sin σir + cos σiφ i� cos σir − sin σiφ

Spherical r σ

= =

= =

Cylindrical � r2 + z 2 cos−1 � z

= =

� sin σir + cos σiz

=

cos σir − sin σiz

η2f η2f η2f � f = + + 2 2 ηx ηy ηz 2

Spherical r sin σ cos � r sin σ sin � r cos σ sin σ cos �ir + cos σ cos �iφ − sin �i� sin σ sin �ir + cos σ sin �iφ + cos �i� cos σir − sin σiφ

2

Cylindrical Coordinates (r, �, z) ηf 1 ηf ηf ir + i� + iz ηr r η� ηz

1 η 1 ηA� ηAz

�·A = (rAr ) + + r ηr r η� ηz

" ` # ´ „ « „ « ηA� 1 ηAz ηAr ηAz 1 η rA� ηAr − − + i� + iz � × A = ir − r η� ηz ηz ηr r ηr η� „ « 2f 2 f

1 η η η ηf 1 r + 2 + �2 f = r ηr ηr r η�2 ηz 2

�f =

Spherical Coordinates (r, σ, �) ηf 1 ηf 1 ηf ir + iφ + i� ηr r ησ r sin σ η� 1 η (sin σAφ ) 1 η ` 2 ´ 1 ηA� �·A = 2 r Ar + + r ηr r sin σ ησ r sin σ η� # " ` ´ η sin σA� 1 ηAφ

− � × A = ir r sin σ ησ η�

" ` ´# » – η rA� 1 1 ηAr 1 η (rAφ ) ηAr − − + iφ + i� r sin σ η� ηr r ηr ησ „ « „ « 1 η ηf 1 1 η ηf η 2 f

r2 + 2 sin σ + 2 �2 f = 2 r ηr ηr r sin σ ησ ησ r sin2 σ η�2

�f =

pCartesian x2 + y 2 + z 2 z cos−1 �

x2 +y 2 +z 2

cot−1 x y sin σ cos �ix + sin σ sin �iy + cos σiz iφ = cos σ cos �ix + cos σ sin �iy − sin σiz i� = − sin �ix + cos �iy Geometric relations between coordinates and unit and spherical coordinate systems. � ir

1

= =

r 2 +z 2

= i� vectors for Cartesian, cylindrical,


6.013 Formula Sheet # 1 Vector Identities

Maxwell’s Equations Integral Differential Boundary Conditions Faraday’s Law R H � � � d � × E = − σB n × (E2 − E1 ) = 0 L E · dl = − dt S B · dS σt HAmpere’s Law R with Maxwell’s R Displacement Current Correction d H · dl = S Jf · dS + dt D · dS � × H = Jf + σD n × (H2 − H1 ) = Kf L S σd HGauss’s Law R � · D = �f n · (D2 − D1 ) = �f H S D · dS = V �f dV B · dS = 0 �·B= 0 n · (B2 − B1 ) = 0 S Conservation of Charge H R σ� σ� d � · Jf + σtf = 0 n · (J2 − J1 ) + σtf = 0 S Jf · dS + dt V �f dV = 0 Usual Linear Constitutive Laws D = πE B = µH � Jf = �(E + v × B) = �E [Ohm’s law for moving media with velocity v]

(A × B) · C = A · (B × C) = (C × A) · B A × (B × C) = B(A · C) − C(A · B)

� · (� × A) = 0 � × (�f ) = 0

�(f g) = f �g + g�f

�(A · B) = (A · �)B + (B · �)A + A × (� × B) + B × (� × A) � · (f A) = f � · A + (A · �)f

� · (A × B) = B · (� × A) − A · (� × B)

� × (A × B) = A(� · B) − B(� · A) + (B · �)A − (A · �)B

� × (f A) = �f × A + f � × A

1 �(A · A) 2 � × (� × A) = �(� · A) − �2 A (� × A) × A = (A · �)A −

Physical Constants Constant Symbol Value Speed of light in vacuum c 2.9979 × 108 � 3 × 108 Elementary electron charge e 1.602 × 10−19 Electron rest mass me 9.11 × 10−31 Electron charge to mass ratio me 1.76 × 1011 e Proton rest mass mp 1.67 × 10−27 Boltzmann constant k 1.38 × 10−23 Gravitation constant G 6.67 × 10−11 Acceleration of gravity g 9.807 −9 Permittivity of free space π0 8.854 × 10−12 � 10 36ρ −7 Permeability of free space µ0 4φ × 10 Planck’s constant h 6.6256 × 10−34 q µ0 Impedance of free space ρ0 = 376.73 � 120φ π

Integral Theorems Line Integral of a Gradient Z b �f · dl = f (b) − f (a) a

Divergence Theorem: Z I � · AdV = A · dS V

S

Corollaries Z I �f dV = f dS S ZV I � × AdV = − A × dS V

0

Avogadro’s number

S

Stokes’ Theorem: I Z A · dl = (� × A) · dS L

S

Corollary I Z f dl = − �f × dS L

S

2

N

6.023 × 1023

units m/sec coul kg coul/kg kg joule/� K nt-m2 /(kg)2 m/(sec)2 farad/m henry/m joule-sec ohms atoms/mole


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.