Cmjv01i01p0067

Page 1

J. Comp. & Math. Sci. Vol. 1(1), 67-70 (2009).

A NOTE ON INDEX SUMMABILITY FACTORS OF FOURIER SERIES U.K. Misra1, Mahendra Misra2 and B.P. Padhy3 1

2 3

Department of Mathematics Berhampur University Berhampur-760007, Orissa (India) e-mail: umakanta_misra@yahoo.com

Principal Government Science CollegeMlkangiri, Orissa

Roland Institute of TechnologyGolanthara-760008, Orissa (India) e-mail: iraady@gmail.com ABSTRACT A theorem on index summability factors of Fourier Series has been established Key words: Summability factors, Fourier series. AMS Classification No: 40D25

1. INTRODUCTION Let

a

be a given infinite series

n

defines the sequence of the  N, p n  -mean of the sequence s n  generated by the sequence

with the sequence of partial sums s n . Let

of coefficients p n .

p n  be a sequence of positive numbers such

The series

that

n

is said to be summable

N , p n k , k  1, if n

(1.1) Pn 

p

v

  , as n   Pi 

r 0

p i  0, i  1 The sequence to sequence transformation (1.2)

a

1 tn  Pn

v 0

 Pn (1.3)   n 1  p n

  

k 1

t n  t n 1

k



In the case when p n  1 , for all n and k  1,

N, p n k summability is same as C ,1 summa-

n

p n v sv

bility. For k  1, N , pn k summability is same


[ 68 ] as N, p n - summability.. Let  n  be any sequence of positive numbers. The series  a n is said to be summable

N , p n ,  n k , k  1, if



k 1 n n

t

n

n

n

is summable

N , p n , k 1. k

We prove an analogue theorem on

N , pn ,  n

- summability, k  1 , in the following form:

(1.4)

 A (t ) P 

Fourier series

 t n 1   .

n 1

k

3. Main Theorem :

Clearly, N , p n ,

Pn is same as N , pn k , k  1 pn k

Theorem: Let p n  is a sequence of

and N , p n ,1 1 is N, pn .

positive numbers such that Pn  p1  p 2 

Let f t  be a periodic function with period 2 and integrable in the sense of Lebesgue over

negative, non-increasing sequence such that

....  p n   as n   and  n  is a non-

p    ,  . Without loss of generality, we may  n n

assume that the constant term in the Fourier series of f (t ) is zero, so that (1.5) 

f (t ) ~  (a n cos nt  bn sin nt )   An (t ) n 1

Dealing with N , p n k , k  1 , summability factors of Fourier series, Bor 1 proved the following theorem: Theorem-A : If  n  is a non-negative and non-increasing sequence such that n

n   , where p n  is a sequence

of positive numbers such that Pn   as n   n

and

P

v

v 1

n

(3.1) (i).

P

v

Av (t )  0( Pn )

v 1

m 1

(3.2) (ii).

n

k 1

n  v 1

n 1

2. Known Theorem :

p

  . If

Av (t )  0( Pn ) . Then the factored

 p n v 1  p     0 v ,  Pn1   Pv 

as m  

and

(3.3) (iii). Pn v 1 v  0 p n v v  , then the series

 A (t ) P n

n

n is summable

N , pn , n k , k  1 . and  n , a sequence of positive numbers. 4. Required Lemma : We need the following Lemma for the proof of our theorem. Lemma [1]: If  n  is a non-negative


[ 69 ] and non-increasing sequence such that

r

 pn n   , where pn  is a sequence of positive numbers such that Pn   as n  

P

then Pn n  0(1) as n   and

n

 Av ( x )  , using partial summation 

   Pv  v 1

formula with p o  0 .

 n   .

1  n 1   p n r Pn 1  pn r 1 Pn  r Pr Pn Pn 1  r 1

 p

5. Proof of the Theorem :

n 1

Let t n (x ) be the n-th N, p n  mean

 Pn 1  Pn  r  2 p n  Pr r  , using  (3.1)

n  r 1

r 1

of the series

 A ( x) P  n

n

n

, then by definition

 Tn ,1  Tn, 2  Tn, 3  Tn, 4 , say..

n 1

we have n

1 t n ( x)  Pn

v

 p  A ( x) P  n v

v0

r

r

r

r 0

In order to complete the proof of the theorem, using Minkowski's inequality, it is sufficient to show that 

n

1  Pn 

 A ( x) P   p r

r

r

r 0

n v

k 1

Tn ,i

n

 A ( x) P P r

r

n r

r .

r 0

 , for i  1,2,3, 4.

n 1

Now, we have m 1



Then

k 1 n

Tn,1

k

m 1

n 2

t n ( x)  t n 1 ( x ) 

k

vr

n

1 Pn



n

1 Pn

n

P

n r

Pr  r Ar  x 

r 0



k 1 n

n 2

m 1

 k 1

n 2

1 Pn1

1 Pn Pn 1

P

n  r 1

Pr  r Ar ( x)

r 0

 Pn r  P  n r 1  Pr r Ar ( x) Pn 1  r 1  Pn

  n

 Pnv

k

1  n 1    p n v Pvk kv  Pn  v 1 

n 1

n

1  n1    p n v Pv v  k Pn  v 1 

 1   Pn

r 1

1  n 1   Pn  r Pn 1  Pn  r 1 Pn  r  Pn Pn 1  r 1

 p n v   v 1 

k 1

, using Holder's

inequality. m 1

Pn 1  Pn  r 1 Pn  Pr r Ar ( x )

n 1

 O1   n n2

m

k 1

1 Pn

 O1 Pv  v v 1

n 1

p

n v

Pv v Pv v 

v 1

m 1

n  v 1

n

k 1

p n v Pn

k 1


[ 70 ] m

 O(1)

p

 O(1) Pv v

v 1

m 1

k

 n k 1 Tn.2

n 2

n

k 1

n 2

m 1

 O (1)  n

1 Pn 1

n2

 O (1) Pv v v 1

m 1

 n

 v , using (3.2)

k 1

Tn, 4

k

m 1

n  v 1

Pv  v ( Pv v ) k 1

 0(1)

p v v , using (3.2)

 p n v 1 Pv v  , 

k 1

n

1 Pn 1

k 1

n2

k

k

1  n1   Pnk1  v 1 n 2 using (3.3)

n

m 1

p nk Pnk Pnk1

k 1

n 2

m 1

 0(1)

p   k 1  nv1   Pn1 

n

 n1    Pv Pnv  2 v   v 1 

v 1

n  v 1

v

Finally,

n 1

p

n 2

m

 0(1)

 0(1)

 0(1) , m   .

k 1

p

m 1

m

n  v 1

v 1

1     p n v 1 Pvk kv  Pn 1  v 1 

 p n v 1   v 1  k 1

k

n 1

n 1

 1   Pn 1

 p n v 1    P  n 

n 1 n

m

1  n 1    p n  v1 Pv  v  Pnk1  v 1 

 n k 1

n2

m 1



v 1

 O(1), as m   . m 1

m 1

m

v (using 3.2)

v

n 1

p n  v 1

v 1

v 1 k

 0(1) , as m   .

Pv

v 

Now, m 1

 n

k 1

Tn ,3

k

m 1

n2

k 1

n2

m 1

n



k 1 n

n 2

1  n 1    p n v 1 Pv v  Pnk  v 1 

1  n1 k   1   pn v 1 Pv  v    Pn  v 1   Pn

m 1

 O 1   n

k 1

n 2

m 1

 O1  n n 2

1 Pn k 1

n 1

p

n  v 1

n 1

p v 1

n v 1

  

Pv v Pv v 

by the lemma

n 1

 0(1)

 n n 2

k 1

1 Pn1

n 1

 p n v 1   v 1 

k 1

n 1

p

n  v 1

Pv v

v 1

k 1

 0(1), as m   , as above This completes the proof of the theorem.

k 1

REFERENCE

v 1

1 Pn

k

 1   Pn1

n 1

p v 1

n  v 1

Pv v ,

1. Bor Huseyin: On the absolute summability factors of Fourier Series, Journal of Computational Analysis and Applications, Vol. 8, No. 3, 223-227 (2006).


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.