Cmjv02i03p0505

Page 1

J. Comp. & Math. Sci. Vol.2 (3), 505-513 (2011)

Edge Bimagic Total Labelings of Certain Graphs M. A. BASKER Department of Mathematics, Loyola College, Chennai-600034, India. ABSTRACT A ( p , q ) -graph

G is said to have an edge bimagic total labeling

if there exists a bijection

f : V ∪ E → {1,2 ... p + q} such that

for each edge e = uv ∈ E (G ) , where

f (u) + f (e) + f (v) = k1 or k2 ,

k1 and k2 are two distinct constants called magic constants.

In this paper we identify classes of graphs which are edge bimagic total. Keywords: Labeling, Edge-magic total labeling.

1. INTRODUCTION A graph labeling is an assignment of integers to elements of a graph: the vertices or edges, or both, subject to certain conditions. Labeled graphs serve as useful models for a broad range of applications such as coding theory, x-ray, crystallography, radar, astronomy, circuit design, communication network addressing and data base management. In 1970, Kotzig and Rosa11 defined an edge-magic total labeling of a ( p , q ) graph G as a bijection f from V ∪ E to {1, 2, ... p + q} such that for all edges xy, the number f(x) + f(y) + f(xy) is constant. An edge-magic total labeling is called super edge-magic total if the set of vertex labels is {1, 2, ... p} . Enomoto et al.5 proved that Cn is super edge-magic total if and only if n is odd; all caterpillars are super edge-magic

total; K m, n is super edge-magic total if and only if m = 1 or n = 1 and Kn is super edgemagic total if and only if n = 1, 2 or 3. They also proved that if a (p, q)-graph G is super edge-magic total then q ≤ 2 p − 3 and they conjecture that every tree is super edgemagic total. Lee and Shan12 have verified this conjecture for trees with upto 17 vertices, using computer simulation. The concept of edge bimagic labelings introduced by Babujee3 is taken up for investigation in this paper. A ( p , q ) graph G is said to have an edge bimagic total labeling if there exists a bijection {1, 2, ... p + q} such that for each edge

e = uv ∈ E(G) , f (u) + f (e) + f (v) = k1 or k2 , where k1 and k2 are two distinct constants called magic constants. It is known that Wn has no edge magic total labeling when

Journal of Computer and Mathematical Sciences Vol. 2, Issue 3, 30 June, 2011 Pages (399-580)


506

M. A. Basker, J. Comp. & Math. Sci. Vol.2 (3), 505-513 (2011)

n ≡ 3(mod 4) . Marr et al.[1] have exhibited edge bimagic total labeling for wheels Wn , when n ≡ 3(mod 4) . They have also

three vertices v11 , v12 , v13 of Pn × C3 . We denote this graph by PY (n) . This graph has

3n + 1 vertices and 6n edges. See Figure 2.

constructed edge bimagic total labeling for one-factors and complete graphs K 4 (= W3 ) ,

K7 and K8 . The graph in the Figure 1 is edge bimagic total with magic constants 27 and 28. 8

12 15 11

24

1

16

17 2

18

22

10

7

23 4

13

14 9

20

3 21

5

19 6

Figure 1: An example for edge bimagic total

In this paper we identify three classes of graphs which are edge bimagic total. 2. Pyramid Graphs Prisms are graphs of the form Pn × Cm . These can be viewed as grids on cylinders of height n − 1 . In this paper we construct a graph, called a pyramid, from the prism Pn × C3 . Let

V ( Pn × C3 ) = {vij :1 ≤ i ≤ n,1 ≤ j ≤ 3} .

A pyramid graph is obtained from Pn × C3 by adding a new vertex v00 adjacent to the

Figure 2: The pyramid graph PY (4)

Theorem 1 Let G be PY (n) . Then G is edge bimagic total for n ≥ 3 . Proof. Let f : V ∪ E → {1, 2 ... 9n + 1} be a bijection defined by f (v00 ) = 1 ,

f (v00 v11 ) = 9n + 1 , f (v00v12 ) = 9n , f (v00 v13 ) = 9n − 1 , f (v3i − 2,1 ) = 9i − 7 , f ( v3i − 2,2 ) = 9i − 6 , f (v3i − 2,3 ) = 9i − 5 , f (v3 j −1,1 ) = 9 j − 2 , f (v3 j −1,2 ) = 9 j − 4 , f (v3 j −1,3 ) = 9 j − 3 , f ( v3 k ,1 ) = 9 k , f ( v3 k ,2 ) = 9 k + 1 , f (v3 k ,3 ) = 9 k − 1 , f (v3i − 2,1v3i − 2,2 ) = 9 n − 18i + 16 , f ( v3i − 2,2 v3i − 2,3 ) = 9 n − 18i + 14 , f ( v3i − 2,3 v3i − 2,1 ) = 9 n − 18i + 15 , f (v3 j −1,1v3 j −1,2 ) = 9 n − 18 j + 9 ,

Journal of Computer and Mathematical Sciences Vol. 2, Issue 3, 30 June, 2011 Pages (399-580)


M. A. Basker, J. Comp. & Math. Sci. Vol.2 (3), 505-513 (2011)

f ( v3 j −1,2 v3 j −1,3 ) = 9 n − 18 j + 10 , f (v3 j −1,3v3 j −1,1 ) = 9 n − 18 j + 8 , f (v3 k ,1v3 k ,2 ) = 9 n − 18 j + 2 , f (v3 k ,2 v3 k ,3 ) = 9 n − 18 k + 3 , f ( v3 k ,3 v3 k ,1 ) = 9 n − 18k + 4 , where

507

n ≡ 0(mod 3) (b) i = 1, 2...  n / 3 + 1; j , k = 1, 2...  n / 3 , when n ≡ 1(mod 3) (c) i, j = 1, 2...  n / 3 + 1; k = 1, 2...  n / 3 , when n ≡ 2(mod 3) .

(a) i, j , k = 1, 2...  n / 3 , when

Figure 3: Vertices of PY ( n ) at consecutive levels

f (v3i − 2,1v3i −1,1 ) = 9n − 18i + 12 , f (v3 j −1,1v3 j ,1 ) = 9n − 18 j + 5 , f (v3k ,1v3( k +1)−2,1 ) = 9n − 18k + 1 , f (v3i−2,2v3i −1,2 ) = 9n −18i + 13 , f (v3 j −1,2 v3 j ,2 ) = 9n − 18 j + 6 , f ( v3 k ,2 v3( k +1) − 2,2 ) = 9 n − 18k − 1 , f (v3i − 2,3v3i −1,3 ) = 9 n − 18i + 11 , f (v3 j −1,3v3 j ,3 ) = 9 n − 18 j + 7 , f (v3 k ,3 v3( k +1) − 2,3 ) = 9 n − 18k , where Journal of Computer and Mathematical Sciences Vol. 2, Issue 3, 30 June, 2011 Pages (399-580)


508

M. A. Basker, J. Comp. & Math. Sci. Vol.2 (3), 505-513 (2011)

(a)

i, j = 1, 2...  n / 3 ; k = 1, 2...  n / 3 − 1 , when n ≡ 0(mod 3)

(b)

i, j , k = 1, 2...  n / 3 , when n ≡ 1(mod 3)

(c)

i = 1, 2...  n / 3 + 1; j , k = 1, 2...  n / 3 , when n ≡ 2(mod 3) .

Figure 4: Labeling of the graph PY ( n ) in the case i = j = k

We shall prove that this labeling is edge bimagic total. Now f (v00 ) + f (v11 ) + f (v00 v11 ) = 1 + 2 + 9n + 1 = 9n + 4 . Similarly f (v00 ) + f (v12 ) + f (v00 v12 ) = f (v00 ) + f (v13 ) + f (v00 v13 ) = 9n + 4 . Journal of Computer and Mathematical Sciences Vol. 2, Issue 3, 30 June, 2011 Pages (399-580)


M. A. Basker, J. Comp. & Math. Sci. Vol.2 (3), 505-513 (2011)

509

Figure 5: Edge bimagic total labeling of PY (4)

Given n , considering appropriate values for i , j and k , we have

f ( v3i − 2,1 ) + f (v3i − 2,2 ) + f (v3i − 2,1v3i − 2,2 ) = 9i − 7 + 9i − 6 + 9 n − 18i + 16 = 9 n + 3 , f ( v3 j −1,1 ) + f (v3 j −1,2 ) + f ( v3 j −1,1v3 j −1,2 ) = 9 j − 2 + 9 j − 4 + 9 n − 18 j + 9 = 9 n + 3 and f (v3 k ,1 ) + f ( v3 k ,2 ) + f (v3 k ,1v3 k ,2 ) = 9 k + 9 k + 1 + 9 n − 18k + 2 = 9 n + 3 . It is easy to check that for any edge

uv , the sums '' f (u ) + f (v ) + f (uv ) '' equal

9n + 3 . See Figures 3 and 4. 3. SNAKE GRAPHS The motivation for the classes of graphs considered in this section is the class of triangular ular snakes introduced by Rosa11. A triangular snake is a connecte connected graph all of whose blocks are triangles and whose block blockcutpoint graph is a path. We consider a class

of snakes all of whose blocks are K 4 , the complete graphs on 4 vertices. We denote this class by nK 4 and prove that nK 4 is edge bimagic total. The vertex set of nK 4 is

{xi :1 ≤ i ≤ n + 1} ∪ { yi , wi :1 ≤ i ≤ n} and the edge set is

{ xi xi +1 , xi yi , yi xi +1 , xi wi , wi xi +1 :1 ≤ i ≤ n} .

See Figure 6.

Journal of Computer and Mathematical Sciences Vol. 2, Issue 3, 30 June, 2011 Pages (399-580))



510

M. A. Basker, J. Comp. & Math. Sci. Vol.2 (3), 505-513 (2011)

Figure 6: The graph 4k4

Figure 7 : Labeling of the k th block of nk4

Theorem 2 The graph nK 4 is edge bimagic total for n ≥ 1. Proof. Consider the k th block of nK 4 and label the vertices and edges as follows:

f ( xk ) = 3k − 2 , f ( xk +1 ) = 3k + 1 , f ( yk ) = 3k , f ( wk ) = 3k − 1 and f ( xk xk +1 ) = 9n + 5 − 6k , f ( xk yk ) = 9n + 6 − 6k , f ( yk xk +1 ) = 9n + 2 − 6k , f ( xk wk ) = 9n + 7 − 6k , f ( wk xk +1 ) = 9n + 3 − 6k . See Figure 7. It is sufficient to prove that the k th block of nK 4 is edge bimagic total,

1 ≤ k ≤ n . f ( xk ) + f ( xk +1 ) + f ( xk xk +1 ) = 3k − 2 + 3k + 1 + 9n + 5 − 6k = 9n + 4 , f ( yk ) + f ( xk +1 ) + f ( yk xk +1 ) = 3k + 3k + 1 + 9n + 2 − 6k = 9n + 3 . Journal of Computer and Mathematical Sciences Vol. 2, Issue 3, 30 June, 2011 Pages (399-580))


M. A. Basker, J. Comp. & Math. Sci. Vol.2 (3), 505-513 (2011)

511

Figure 8 : Example to illustrate Theorem 2

It can be verified that for any edge uv , the expression '' f (u ) + f (v ) + f (uv ) '' yields either 9n + 4 or 9n + 3 . We consider another class of snakes denoted nW4 , all of whose blocks are isomorphic to the wheel W4 and whose block block-cutpoint graph is a path.

Figure 9 : The snake nW4

The vertex set of nW4 is { xi :1 ≤ i ≤ n + 1} ∪ { yi , zi , wi :1 ≤ i ≤ n} and edge set is

{ xi yi , xi zi , xi wi , zi xi +1 , yi xi +1 , wi xi +1 :1 ≤ i ≤ n} . See Figure 9. Theorem 3 The graph nW4 is edge bimagic total for n ≥ 1.

Proof. Consider the k th block of nW4 and label the vertices and edges as follows:

f ( xk ) = 4k − 3 , f ( yk ) = 4k − 1 , f ( xk +1 ) = 4k + 1 , f ( zk ) = 4k − 2 , f ( wk ) = 4k , Journal of Computer and Mathematical Sciences Vol. 2, Issue 3, 30 June, 2011 Pages (399-580))


512

M. A. Basker, J. Comp. & Math. Sci. Vol.2 (3), 505-513 (2011)

f ( xk yk ) = 12n − 8k + 8 , f ( yk xk +1 ) = 12n − 8k + 3 , f ( xk zk ) = 12n − 8k + 9 , f ( xk wk ) = 12n − 8k + 6 , f ( zk xk +1 ) = 12n − 8k + 5 , f ( wk xk +1 ) = 12n − 8k + 2 , f ( zk yk ) = 12n − 8k + 7 , f ( yk wk ) = 12n − 8k + 4 . See Figure 10.

Figure 10 : The k th block of nW4 and its labeling

To settle the claim it is sufficient to prove that the k th block of nW4 is edge bimagic total,

1 ≤ k ≤ n . Consider f ( xk ) + f ( yk ) + f ( xk yk ) = 4k − 3 + 4k −1 + 12n − 8k + 8 = 12n + 4 and f ( yk ) + f ( xk +1 ) + f ( yk xk +1 ) = 4k − 1 + 4k + 1 + 12n − 8k + 3 = 12n + 3 .

Figure 11: Example to illustrate Theorem 3

Similarly it can be shown that for any edge uv , the expression '' f (u ) + f (v ) + f (uv ) '' equals either 12n + 3 or 12n + 4 . See Figure 11. Journal of Computer and Mathematical Sciences Vol. 2, Issue 3, 30 June, 2011 Pages (399-580))


M. A. Basker, J. Comp. & Math. Sci. Vol.2 (3), 505-513 (2011)

4. CONCLUSION In this paper we have constructed graphs which are edge bimagic total. The classes are derived from the prisms and snake graphs. It is interesting to identify other classes of graphs which are edge bimagic total. Two magic constants k1 and

8.

9.

k2 are involved in edge bimagic total labeling of graphs. For the graphs considered in this paper k1 − k 2 = 1 . It would be an interesting problem to construct such graphs. REFERENCES 1. Alison Marr, N. C. K. Philips, W. D. Wallis, Bimagic Labelings, Preprint. 2. M. Baca, On Magic Labelings of mPrisms, Math. Slovaca, 40, pages 11-14, (1990). 3. J. Basker Babujee, On Edge Bimagic Labeling, Journal of Combinatorics, Information & System sciences, 28, Nos. 1-4, pages 239-244, (2004). 4. Z. Chen, On Super Edge-Magic Graphs, Journal of Combinatorial Mathematics and Combinatorial Computing, 38, pages 53-64, (2001). 5. H. Enomoto, A.S.Llado, T.Nakamigawa, and G.Ringel, Super Edge-Magic Graphs, SUT J. Math., 34, pages 105109, (1998). 6. R. M. Figueroa-Centeno, R. Ichishima, and F. Muntaner-Batle, On Edge-Magic Labelings of Certain Disjoint Unions of Graphs, preprint. 7. R. Figueroa-Centeno, R. Ichishima, and

10.

11.

12.

13.

14.

15.

16.

17.

513

F. Muntaner-Batle, The Place of Super Edge-Magic Labelings among other Classes of Labelings, Discrete Math., 231, pages 53-168, (2001). R. Figueroa-Centeno, R. Ichishima, and F. Muntaner, On Super Edge-Magic Graphs, Ars Combin., 64, pages 81-95, (2002). Y. Fukuchi, A Recursive Theorem for Super Edge-Magic Labelings of Trees, SUT J.Math., 36, pages 279-285, (2000). J.Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics, 12, (2009). A. Kotzig and A. Rosa, Magic Valuations of Finite Graphs, Canad. Math. Bull., 13, pages 451-461, (1970). S. M. Lee, and Q.X.Shan, All Trees with at most 17 Vertices are Super EdgeMagic, 16th MCCCC Conference, Carbondale, University Southern Illinois, Nov. (2002). J. A. MacDougall, W. D. Wallis, Strong Edge-Magic Labeling of a Cycle with a Chord, Australasian Journal of Combinatorics, 28, pages 245–255, (2003). G. Ringel, A. S. Llado, Another Tree Conjecture, Bull.Inst.Combin.Appl.,18, pages 83-85, (1996). Slamin, M. Baca, Y. Lin, M. Miller, and R. Simanjuntak, Edge-Magic Total Labelings of Wheels, Fans and Friendship Graphs, Bull. ICA, 35, pages 89-98, (2002). Sin-Min Lee, Alexander Nien-Tsu Lee, On Super Edge-Magic Graphs with any Odd Cycles, Congressus Numerantium, 163, pages 65-80, (2003). W.D.Wallis, Magic Graphs, Birkhauser, Boston, (2001).

Journal of Computer and Mathematical Sciences Vol. 2, Issue 3, 30 June, 2011 Pages (399-580)


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.