Cmjv05i01p0015

Page 1

J. Comp. & Math. Sci. Vol.5 (1), 15-21 (2014)

A Summation Formula for Multivariable H-Function Neelam Pandey1 and Reshma Khan2 1

Mathematics, Model Science College Rewa, M.P., INDIA. 2 University Teaching Department, A P S University Rewa, M.P., INDIA. (Received on: January 2, 2014) ABSTRACT In the present work, we establish a summation formula for H-function of `r’ variable defined by Shrivastava and Panda. some particular cases have also been discussed. In one particular case, the formula reduces to a result involving multivariable H-function and Jacobi polynomial or chebyshev polynomial. The formula is of general character and can be applied to obtain a large number of results. Keywords: Chebyshev polynomial, Multivariable H-function, Jacobi polynomial.

I. INTRODUCTION

z1 ....z r was introduced by variables Shrivastava and Panda1. It is represented by

H-function of several complex

 z1  .   [(a ;  1 .... ( r ) ) : (c '  ' ) ....(c ( r ) 1 )  m r , nr j j j 1, p j j 1, p1 j j 1, pr .  H [ z1 ....z r ]  H p0,,nq::mp1 ,,nq1 .... 1 (r ) ( r ) (r ) 1 1 .... pr , qr  (b j ;  j .... j )1,Q ; (d 'j 'j )1,q1 ....(d j  j )1, qr  .  z   r 

1 (2 ) r

(1)

r

 ( ) z ....z  d ....d

 

....  (1.... r )

L1

i

i

1

r

r

1

r

where    1

(2)

i 1

Lr mi

and i ( i ) 

1

ni

(d (ji )   (ji ) i )

(1  d (ji )

j 1 qi

j  mi 1

 (1  c

(i ) j

  (ji ) i )

j 1

where i  1....r

pi

  (j i ) i )

(c (ji ) j  ni 1



(i ) j i )

Journal of Computer and Mathematical Sciences Vol. 5, Issue 1, 28 February, 2014 Pages (1-122)

(3)


16

Neelam Pandey, et al., J. Comp. & Math. Sci. Vol.5 (1), 15-21 (2014)

The parameters a j , j  1.... p, c (ji ) , j  1.... pi ; b j , j  1....q, d (ji ) , j  1....qi  i  1....r are complex numbers and  (ji ) j  1.... p,  (ji ) , j  1.... pi  (j i ) j  1....q,  (j i ) , j  1....qi  i  1....r pi

p

i 

 (ji ) 

j 1

  i  

j 1

 (ji ) 

j 1

 (j i ) 

j 1

ni

p

qi

q

 (ji ) 



 j 1

(i ) j

0

j 1 qi

q

 (ji ) 

 (ji ) 

j 1



(i ) j

1 (6)  i  i  1....r 2 The contour L i in the complex  i plane runs arg( zi ) 

from    to   with indentatio ns , if necessary to seperate poles of  (d



(i) j i )

from  (1 

c (ji )



(i) j i )

r

and  (1  a (ji ) 

 

(5)

0

j 1

The multiple Mellin –Barnes contour integral representing the multivariable Hfunction converges absolutely under the conditions (4) and (5) when

(i ) j

(4)

(i) j i )

.

2 2 u (n  k )! (n  2  2u ) (k  u ) sin(n  2k  1) (1  u )(u )k!n!(n  k  2  u ) k 0

(7) provided u  1,0     and n is a non negative int eger.

(c) Rainville 1 (i )   ( 2 z )  2 2 z 1  ( z ) ( z  ) 2

(8)

n

( 2  ) n  m ( z  1) m (9) 1 m m  0 2 m!( n  m)!(   ) m 2 where (a) n is the pochhamer symbol defined by

(ii ) Pn ( z ) 

i 1

(a) n  a (a  1) ....(a  n  1) 

II. RESULTS AND FORMULA USED

(a  n) ( a )

(d) Shrivastava, Gupta and Goel The following results will be used in our investigation. (a) Richard Askey2

sin 12u pn1u (cos )

(i ) Pn( ) ( x) (1   ) n 1 x ] 2 F1[ n,1      n;1   ; n! 2 provided Re(  1)  0, Re(   1  1)  0, 

2 2u ( n  k )! ( n  2  2 u) ( k  u ) sin(n  2 k  1) (1  u )( u) k! n! (n  k  2  u ) k 0 provided u  1,0    

Pn( ) ( x ) is the Jacobi Polynomial.

and n is a non negative int eger .

(ii)



U n ( x)

(b) Rainville

sin  1 2u p1nu (cos  ) 

sin[(n  1) cos 1 x] sin(cos 1 x)

,n  0

where

Journal of Computer and Mathematical Sciences Vol. 5, Issue 1, 28 February, 2014 Pages (1-122)


17

Neelam Pandey, et al., J. Comp. & Math. Sci. Vol.5 (1), 15-21 (2014) U n ( x ) is the chebychev

(iii ) U n ( x) 

( n  1)! 3    2 n

polynomial

of

sec ond kind .

(e) Erdelyi

1 1 ( , ) pn2 2 ( x)

sin nz 1  n 1  n 3   n sinz 2 F1  , , ; sin 2 z  ; sin z  1 2 2 2  

III. MAIN RESULT  2

n

(sin  ) 2 v 1

 (cos  ) m  0, N 1:m1 ,n1 ....mr ,nr  m  H p 1,Q 1: p1 , q1 .... p r , qr  2 m!(n  m)! m0 

 (n  k )!  m r , nr sin(n  2k  1)  H 0p,N1,Q1:m1:1p,n1, .... 1 q1 .... pr , q r n ! k !  k 0

 

 z1   . [1  n  2v;2 ....2 ], ( a ;  1 .... ( r ) ) , [1  v;  .... ] : (c '  ' ) ....(c ( r ) 1 )  1 r j j j 1, p 1 r j j 1, p1 j j 1, pr    . [ k  1  v; 1....r ], (b j ;  1j .... (j r ) )1,Q ,  n  k  v, 1 ....r  : (d 'j  'j )1, q ....(d (jr ) (j r ) )1,q  1 r   zr  provided ' n' is non  negative int eger,

i  0, i  1....r (all i are not zero simul tan eously), 0    arg zi 

1  i where i is given by (5) 2

[1  n  2v  m;21 ....2r ], ( a j ;  1j .... (jr ) )1, p : (c 'j 'j )1, p ....(c (jr )  1j )1, p  1 r  21 2 r  z1 sin  ....z r sin    (b ;  1 .... ( r ) ) ,  1  m  v,  .... ; (d '  ' ) ....(d ( r ) ( r ) ) j j j 1,Q  1 r j j 1, q1 j j 1,q r   2 

IV. PROOF 22u (n  k )!(n  2  2u) (k  u) sin(n  2k  1) (1  u)(u)k!n!(n  k  2  u) k 0 

(sin )12u p1nu (cos )   r

replacingu by (1  v   ii ), we get i 1 r

r

2v 1 2

(sin )

r

ii

i1

ii

v

pn

i1

r r ii )  (n  2v  2 ii )  (k  1  v   ii )(n  k )!sin(n  2k  1) i1 2 i 1 i 1 (cos )  . . r r r k  0 (v   ii ) (1  v   ii ) k!n!(n  k  1  v   ii ) 2(1v 

i 1

i 1

i 1

Since

Journal of Computer and Mathematical Sciences Vol. 5, Issue 1, 28 February, 2014 Pages (1-122)


18

Neelam Pandey, et al., J. Comp. & Math. Sci. Vol.5 (1), 15-21 (2014) 

(sin  )1 2u p1n u (cos  ) 

2 2u (n  k )! (n  2  2u ) (k  u ) sin( n  2k  1)  (1  u ) (u)k!n!(n  k  2  u ) k 0

r

replacing u by (1  v 

   ), we get i i

i 1 r

r

2 v 1 2

(sin  )

2(1 v 

r

 ii

v

pn

i 1

  i i i 1

(cos  ) 

2

 i i ) (n  2v  2 r i i ) i 1 .

r

 (v    i  i ) i 1

i 1

r

(1  v   i i )

r

 (k  1  v   i i )(n  k )!sin( n  2k  1)

.

k 0

i 1

r

k!n! (n  k  1  v   i i )

i 1

i 1

Since 2l

 (cos   1) m  0, N 1:m ,n ....m , n  H p 1,Q 1:1p11, q1 ....rp r ,rqr m m!(2l  m)!  m 0

  2

 z sin 21    1 [1  2l  2v  m;21....2r ], ( a j ;  1j .... (jr ) )1, p : (c 'j 'j )1, p1 ....(c (jr ) 1j )1, pr  .   1   (b j ;  1j .... (j r ) )1,Q ,   m  v, 1....r ; ( d 'j  'j )1, q1 ....(d (jr ) (j r ) )1, qr  .   2   z1 sin 21   m r , nr  B ( ) H 1p,N1,Q1:m11:,pn1,.... q .... p , q 1

r

1

r

 z1   [1  2l  2v  m;21....2r ], ( a j ;  1j .... (jr ) )1, p 1  v, : (c 'j 'j )1, p1 ....(c (jr ) 1j )1, pr  .  1  .  (b j ;  1j .... (j r ) )1,Q ,   m  v, 1 ....r ; ( d 'j 'j )1,q1 ....(d (jr ) (j r ) )1,q r   2   z r  n

(2 ) n  m ( z  1) m 1 m m  0 2 m! ( n  m )!(   ) m 2 r   r (cos   1) m n  2 (v   i  i )  v   i  i i  1   n  m  Pn i1 (cos  )  r 1 m m  0 2 m!( n  m)!( v   i  i  ) m 2 i 1 Since Pn ( z ) 

r

(n  m  2v  2  i i )(cos   1) m

n

 

i 1

r

2v  2  i i 1

r

r 1 m 0 i1 2 (v   i  i ) (  m  v   i i ) 2 m m!(n  m)! 2 i 1 i 1 (a  m) 1  (a) m  and  (2 z )  2 2 z 1  ( z ) ( z  ) ( a ) 2 r

v

Substituing the value of Pn

i  i  i1

(cos  ) our result becomes

Journal of Computer and Mathematical Sciences Vol. 5, Issue 1, 28 February, 2014 Pages (1-122)


19

Neelam Pandey, et al., J. Comp. & Math. Sci. Vol.5 (1), 15-21 (2014) r

(cos   1) m (n  m  2v  2  i i ) i 1

 sin      2 

2v 1 2

 i i i 1

r

r 1 2 m!(n  m)!(v   i i ) (  m  v   i  i ) 2 i 1 i 1 m

r

n

r

2 v 1 2

m 0

2

r

 i i

 ( n  2v  2  i  i )

i 1

i 1

.

r

r

 (v  2   i  i )

(1  v   i i )

i 1

i 1

r    ( k  1  v   i  i )    ( n  k )!  i 1 .  sin( n  2k  1)  r k! n! ( k  1  v    )  k 0   i i   i 1

Multiplying both sides by r

1 ( 2 )

 ( 1 .... r )

r

r

r

  ( ). ( v     )  z 2   2

i

i

i i

i 1

i 1

i

i

i

, where  ( 1 .... r ) and  i ( i ) are given by () and ()

i 1

and Integratin g ' r ' times along the contours L1 .... L r between    to   , we get r

 sin     ( 2 ) r  2  1

2 v 1

r

 

....  ( 1 .... r )

L1

Lr

  ( ) z sin i

i 1

i

i

n

2 i

 

(cos   1) m  ( n  2 v  m  2

 

m0

1 2 m m! ( n  m )!  (  m  v  2

 ) i i

i 1 r

d  1 .... d  r

i i )

i 1

Changing the order of integration and summation and interpreting the result as H-function of r-variables, the result follows. On the L.H.S the change in the order of integration and summation is justified because series is finite and integral exist on R.H.S it is justified r

because the series converges uniformly w.r.t. i ( i ) z i  i 

(n  2v  m  2 i i ) i 1

r

(1  v   i i ) i 1

continuous and integral is absolutely convergent when the given conditions are satisfied. V. SPECIAL CASES Case 1: When n is even (n=2l) our result takes the form 2l

 (cos   1) m  0, N 1:m , n ....m , n  H p 1,Q 11: p11,q1 ....rp r ,rqr m m ! ( 2 l  m )!  m 0

  2

Journal of Computer and Mathematical Sciences Vol. 5, Issue 1, 28 February, 2014 Pages (1-122)

is


20

Neelam Pandey, et al., J. Comp. & Math. Sci. Vol.5 (1), 15-21 (2014)

 z sin 21    1 [1  2l  2v  m;21....2r ], ( a j ;  1j .... (jr ) )1, p : (c 'j 'j )1, p1 ....(c (jr ) 1j )1, pr  .   1   (b j ;  1j .... (j r ) )1,Q ,   m  v, 1....r ; ( d 'j  'j )1, q1 ....(d (jr ) (j r ) )1, qr  .   2   z1 sin 21   m r , nr  B ( ) H 1p,N1,Q1:m11:,pn11,.... q1 .... pr , qr

 z1   [1  2l  2v  m;21....2r ], ( a j ;  1j .... (jr ) )1, p 1  v, : (c 'j 'j )1, p1 ....(c (jr ) 1j )1, pr  .  1  .  (b j ;  1j .... (j r ) )1,Q ,   m  v, 1....r ; ( d 'j 'j )1,q1 ....(d (jr ) (j r ) )1,q r   2   z r 

B( ) 

  (2l  k )!  (sin  ) 2 2v   U 2l  2 k (cos )  k  0  k! 2l! 

2

or   1 1 ( ,  )   (2l  k )!(l  k )! 2 2 B( )  2 (sin  ) 2 2v   Pl  k (cos 2 ) 1 k 0   k! 2l! (l  k  )  2  

Provided validity conditions (as stated) are satisfied for n=2l. Case 2: When n is odd (say n=2l+1) ,our result takes the form 2l 1 m 0

(cos   1) m

  2

m

 0 , N 1:m1 , n1 ....mr ,nr  H p 1,Q 1: p1 ,q1 .... p r , qr m!(2l  1  m)!

 z sin 21    1 [ 2l  2v  m;21....2r ], (a j ;  1j .... (jr ) )1, p : (c 'j 'j )1, p1 ....(c (jr ) 1j )1, p r  .   1  ' ' 1 (r) (r) (r)  (b j ;  j .... j )1,Q ,   m  v, 1 ....r ; (d j  j )1, q1 ....(d j  j )1, qr  .   2   z1 sin 21   1, N 1:m ,n ....m , n

 A( ) H p  2,Q 12: p11 ,q1 ....r prr ,qr  z1    1 (r ) ' ' (r) 1  . [2l  2v  m;21 ....2r ], (a j ;  j .... j )1, p 1  v, 1....r  : (c j j )1, p1 ....(c j  j )1, pr   . k  1  v,  .... (b ;  1 .... (r ) ) ,  2l  1  k  v,  .... ; (d '  ' ) ....(d ( r ) ( r ) )  1 r j j j 1,Q 1 r j j 1,q1 j j 1, qr   z  r  Journal of Computer and Mathematical Sciences Vol. 5, Issue 1, 28 February, 2014 Pages (1-122)


Neelam Pandey, et al., J. Comp. & Math. Sci. Vol.5 (1), 15-21 (2014)

A( ) 

21

  (2l  k  1)!  (sin  ) 2 2v   U 2l  2 k 1 (cos )  k  0  k! ( 2l  1)! 

2

or A( ) 

  (2l  k  1)!  sin 2 (sin  )12v   U l  k (cos 2 )  k  0  k! ( 2l  1)! 

2

Provided validity conditions (as stated) are satisfied for n=2l+1. REFERENCES 1. H.M. Shrivastava and R. Panda. Some bilateral generating function for a class of generalized Hypergeometric polynomials. J. Reine Math. 283/284, p.265-274 (1976). 2. Richard Askey:``Orthogonal expansions with positive coefficients’’ Proc. Amer. Math. Soc. 16,1191-1194 (1965).

3. Rainville, E.D. ``Special Functions’’ Macmillan publishers, New York (1963). 4. Shrivastava H.M, Gupta K.C., Goel S.P. The H-function of one and two variables with applications. South Asian publishers, New Delhi (1982). 5. Erdélyi A-Higher Transcendental Functions, Vol1. Macgraw Hill Book company New York.

Journal of Computer and Mathematical Sciences Vol. 5, Issue 1, 28 February, 2014 Pages (1-122)


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.