CHAPTER – 23 HEAT AND TEMPERATURE EXERCISES 1.
Ice point = 20° (L0) L1 = 32° Steam point = 80° (L100) L1 L 0 32 20 100 = T= 100 = 20°C L100 L 0 80 20
2.
Ptr = 1.500 × 10 Pa 4 P = 2.050 × 10 Pa We know, For constant volume gas Thermometer
4
3.
2.050 10 4 P 273.16 K = 273.16 = 373.31 Ptr 1.500 10 4 Pressure Measured at M.P = 2.2 × Pressure at Triple Point 2.2 Ptr P 273.16 = 273.16 = 600.952 K 601 K T= Ptr Ptr
4.
Ptr = 40 × 10 Pa, P = ?
T=
3
T = 100°C = 373 K,
T=
P 273 .16 K Ptr
T Ptr 373 49 10 3 3 = = 54620 Pa = 5.42 × 10 pa ≈ 55 K Pa 273.16 273.16 P1 = 70 K Pa, P2 = ? T2 = 373K T1 = 273 K, P=
5.
T= T2 =
6.
7.
8.
9.
P1 273.16 Ptr P2 273.16 Ptr
273 = 373 =
70 10 3 273.16 Ptr
P2 273
70 273.16 10 Pice point = P0° = 80 cm of Hg Psteam point = P100° 90 cm of Hg P0 = 100 cm P P0 80 100 100 = 100 = 200°C t= 90 100 P100 P0
V T0 T0 = 273, V V V = 1800 CC, V = 200 CC 1800 273 = 307.125 307 T = 1600 Rt = 86; R0° = 80; R100° = 90 R t R0 86 80 t= 100 = 100 = 60°C R100 R 0 90 80
T =
R at ice point (R0) = 20 R at steam point (R100) = 27.5 R at Zinc point (R420) = 50 2 R = R0 (1+ + ) 2 R100 = R0 + R0 +R0 R0 R 2 100 = + R0 23.1
3
Ptr
70 273.16 10 3 273
P2 =
373 70 10 3 = 95.6 K Pa 273
23.Heat and Temperature
27.5 20 = × 100 + × 10000 20 7 .5 = 100 + 10000 20 50 R 0 2 2 R420 = R0 (1+ + ) = + R0
50 20 3 = 420 × + 176400 × 420 + 176400 20 2 7 .5 3 = 100 + 10000 420 + 176400 20 2 –5 L1 = ?, L0 = 10 m, = 1 × 10 /°C, t= 35 –5 –4 L1 = L0 (1 + t) = 10(1 + 10 × 35) = 10 + 35 × 10 = 10.0035m t1 = 20°C, t2 = 10°C, L1 = 1cm = 0.01 m, L2 =? –5 steel = 1.1 × 10 /°C –5 –4 L2 = L1 (1 + steelT) = 0.01(1 + 101 × 10 × 10) = 0.01 + 0.01 × 1.1 × 10 4 –6 –6 –6 = 10 × 10 + 1.1 × 10 = 10 (10000 + 1.1) = 10001.1 –2 =1.00011 × 10 m = 1.00011 cm –5 = 11 × 10 /°C L0 = 12 cm, tw = 18°C ts = 48°C –5 Lw = L0(1 + tw) = 12 (1 + 11 × 10 × 18) = 12.002376 m –5 Ls = L0 (1 + ts) = 12 (1 + 11 × 10 × 48) = 12.006336 m L12.006336 – 12.002376 = 0.00396 m 0.4cm –2 d1 = 2 cm = 2 × 10 t1 = 0°C, t2 = 100°C –5 al = 2.3 × 10 /°C –2 –5 2 d2 = d1 (1 + t) = 2 × 10 (1 + 2.3 × 10 10 ) = 0.02 + 0.000046 = 0.020046 m = 2.0046 cm –5 Lst = LAl at 20°C Al = 2.3 × 10 /°C –5 st = 1.1 × 10 /°C So, Lost (1 – st × 20) = LoAl (1 – AI × 20)
10. 11.
12.
13.
14.
(a)
Lo st (1 Al 20) 1 2.3 10 5 20 0.99954 = = = = 0.999 Lo Al (1 st 20) 0.99978 1 1.1 10 5 20
(b)
Lo 40st (1 AI 40) 1 2.3 10 5 20 0.99954 = = = = 0.999 Lo 40 Al (1 st 40) 0.99978 1 1.1 10 5 20
=
Lo Al 1 2.3 10 5 10 0.99977 1.00092 = = 1.0002496 ≈1.00025 Lo st 273 1.00044
Lo100 Al (1 Al 100 ) 0.99977 1.00092 = = = 1.00096 Lo100St (1 st 100 ) 1.00011 15. (a) Length at 16°C = L L=? T1 =16°C, –5 = 1.1 × 10 /°C –5 L = L = L × 1.1 × 10 × 30
T2 = 46°C
L L % of error = 100 % = 100 % = 1.1 × 10–5 × 30 × 100% = 0.033% L 2 (b) T2 = 6°C
L L –5 100 % = 100 % = – 1.1 × 10 × 10 × 100 = – 0.011% % of error = L L 23.2
23.Heat and Temperature –3
16. T1 = 20°C, L = 0.055mm = 0.55 × 10 m –6 st = 11 × 10 /°C t2 = ? We know, L = L0T In our case, –3 –6 0.055 × 10 = 1 × 1.1 I 10 × (T1 +T2) –3 –3 0.055 = 11 × 10 × 20 ± 11 × 10 × T2 T2 = 20 + 5 = 25°C or 20 – 5 = 15°C The expt. Can be performed from 15 to 25°C 3 3 ƒ4°C = 1 g/m 17. ƒ0°C=0.098 g/m , ƒ 4 C 1 1 ƒ0°C = 0.998 = 1 + 4 = 1 T 1 4 0.998
1 1 = 0.0005 ≈ 5 × 10–4 0.998 -4 As density decreases = –5 × 10 18. Iron rod Aluminium rod LAl LFe –8 –8 Fe = 12 × 10 /°C Al = 23 × 10 /°C Since the difference in length is independent of temp. Hence the different always remains constant. …(1) LFe = LFe(1 + Fe × T) LAl = LAl(1 + Al × T) …(2) LFe – LAl = LFe – LAl + LFe × Fe × T – LAl × Al × T L Fe 23 = Al = = 23 : 12 L Al Fe 12 4+=
2
2
19. g1 = 9.8 m/s , T1 = 2
l1
T2 = 2
g1
Steel = 12 × 10 T1 = 20°C T1 = T2 2
g2 = 9.788 m/s
l1 g1
–6
= 2
l2 g2
= 2
l1(1 T ) g
/°C T2 = ?
l1(1 T ) g2
1 12 10 6 T 1 = 9 .8 9.788 9.788 –6 1 = 12 × 10 T 9 .8
l1 l (1 T ) = 1 g1 g2
9.788 –6 = 1+ 12 × 10 × T 9 .8 0.00122 T = 12 10 6 T2 = – 101.6 + 20 = – 81.6 ≈ – 82°C
T2 – 20 = – 101.6 20. Given dAl = 2.000 cm dSt = 2.005 cm, –6 –6 S = 11 × 10 /°C Al = 23 × 10 /°C ds = 2.005 (1+ s T) (where T is change in temp.) –6 ds = 2.005 + 2.005 × 11 × 10 T –6 dAl = 2(1+ Al T) = 2 + 2 × 23 × 10 T The two will slip i.e the steel ball with fall when both the diameters become equal. So, –6 –6 2.005 + 2.005 × 11 × 10 T = 2 + 2 × 23 × 10 T -6 (46 – 22.055)10 × T = 0.005 T =
0.005 10 6 = 208.81 23.945 23.3
Steel Aluminium
23.Heat and Temperature Now T = T2 –T1 = T2 –10°C [ T1 = 10°C given] T2 = T + T1 = 208.81 + 10 = 281.81 21. The final length of aluminium should be equal to final length of glass. Let the initial length o faluminium = l l(1 – AlT) = 20(1 – 0) –6 –6 l(1 – 24 × 10 × 40) = 20 (1 – 9 × 10 × 40) l(1 – 0.00096) = 20 (1 – 0.00036) 20 0.99964 l= = 20.012 cm 0.99904 Let initial breadth of aluminium = b b(1 – AlT) = 30(1 – 0) b =
30 (1 9 10 6 40)
(1 24 10 22. Vg = 1000 CC, VHg = ?
6
40)
=
30 0.99964 = 30.018 cm 0.99904
T1 = 20°C –4 Hg = 1.8 × 10 /°C –6 g = 9 × 10 /°C
T remains constant Volume of remaining space = Vg – VHg Now Vg = Vg(1 + gT) …(1) VHg = VHg(1 + HgT) …(2) Subtracting (2) from (1) Vg – VHg = Vg – VHg + VggT – VHgHgT Vg Hg 1.8 10 4 1000 = = VHg g VHg 9 10 6 VHG =
9 10 3
= 500 CC. 1.8 10 4 3 23. Volume of water = 500cm 2 Area of cross section of can = 125 m Final Volume of water –4 3 = 500(1 + ) = 500[1 + 3.2 × 10 × (80 – 10)] = 511.2 cm The aluminium vessel expands in its length only so area expansion of base cab be neglected. 3 Increase in volume of water = 11.2 cm 3 Considering a cylinder of volume = 11.2 cm 11.2 Height of water increased = = 0.089 cm 125 24. V0 = 10 × 10× 10 = 1000 CC 3 T = 10°C, VHG – Vg = 1.6 cm –6 –6 g = 6.5 × 10 /°C, Hg = ?, g= 3 × 6.5 × 10 /°C …(1) VHg = vHG(1 + HgT) Vg = vg(1 + gT) …(2) VHg – Vg = VHg –Vg + VHgHg T – Vgg T –6 1.6 = 1000 × Hg × 10 – 1000 × 6.5 × 3 × 10 × 10
1.6 6.3 3 10 2 –4 –4 = 1.789 × 10 1.8 × 10 /°C 10000 3 3 25. ƒ = 880 Kg/m , ƒb = 900 Kg/m –3 T1 = 0°C, = 1.2 × 10 /°C, –3 b = 1.5 × 10 /°C The sphere begins t sink when, (mg)sphere = displaced water Hg =
23.4
23.Heat and Temperature Vƒ g = Vƒb g ƒb ƒ 1 1 b
880 900 = 1 1.2 10 3 1 1.5 10 3 –3 –3 880 + 880 × 1.5 × 10 () = 900 + 900 × 1.2 × 10 () –3 –3 (880 × 1.5 × 10 – 900 × 1.2 × 10 ) () = 20 –3 (1320 – 1080) × 10 () = 20 = 83.3°C ≈ 83°C L = 100°C A longitudinal strain develops if and only if, there is an opposition to the expansion. Since there is no opposition in this case, hence the longitudinal stain here = Zero. 1 = 20°C, 2 = 50°C –5 steel = 1.2 × 10 /°C Longitudinal stain = ? L L Stain = = = L L –5 –4 = 1.2 × 10 × (50 – 20) = 3.6 × 10 2 –6 2 A = 0.5mm = 0.5 × 10 m T1 = 20°C, T2 = 0°C –5 11 2 s = 1.2 × 10 /°C, Y = 2 × 2 × 10 N/m Decrease in length due to compression = L …(1) Stress F L FL Y= = L = …(2) Strain A L AY Tension is developed due to (1) & (2) Equating them, FL F = AY L = AY -5 –5 11 = 1.2 × 10 × (20 – 0) × 0.5 × 10 2 × 10 = 24 N 1 = 20°C, 2 = 100°C 2 –6 2 A = 2mm = 2 × 10 m –6 11 2 steel = 12 × 10 /°C, Ysteel = 2 × 10 N/m Force exerted on the clamps = ?
26.
27.
28.
29.
F A = Y F = Y L L = YLA = YA L Strain L 11 –6 –6 = 2 × 10 × 2 × 10 × 12 × 10 × 80 = 384 N 30. Let the final length of the system at system of temp. 0°C = ℓ Initial length of the system = ℓ0 When temp. changes by . Strain of the system = 1 0
total stress of system But the total strain of the system = total young' s mod ulusof of system Now, total stress = Stress due to two steel rod + Stress due to Aluminium = ss + s ds + al at = 2% s + 2 Aℓ Now young’ modulus of system = s + s + al = 2s + al
23.5
1m
Steel Aluminium Steel
23.Heat and Temperature Strain of system =
2 s s s al 2 s al
0 2 s s s al = 0 2 s al
1 al al 2 s s ℓ = ℓ0 al 2 s 31. The ball tries to expand its volume. But it is kept in the same volume. So it is kept at a constant volume. So the stress arises P V =BP= B = B × V V v 11
–6
–6
7
8
= B × 3 = 1.6 × 10 × 10 × 3 × 12 × 10 × (120 – 20) = 57.6 × 19 5.8 × 10 pa. 32. Given 0 = Moment of Inertia at 0°C = Coefficient of linear expansion To prove, = 0 = (1 + 2) Let the temp. change to from 0°C T = Let ‘R’ be the radius of Gyration, 2 0 = MR where M is the mass. Now, R = R (1 + ), 2 2 2 2 Now, = MR = MR (1 + ) = MR (1 + 2) 2 2 [By binomial expansion or neglecting which given a very small value.] (proved) So, = 0 (1 + 2) 33. Let the initial m.. at 0°C be 0
K = 0 (1 + 2) T = 2
(from above question)
At 5°C,
T1 = 2
0 (1 2) = 2 K
At 45°C,
T2 = 2
(1 90 ) 0 (1 2 45) = 2 0 K K
T2 = T1
1 90 = 1 10
1 90 2.4 10 5 1 10 2.4 10
5
0 (1 25) (1 10 ) = 2 0 K K
1.00216 1.00024
T –2 % change = 2 1 100 = 0.0959% = 9.6 × 10 % T 1 T2 = 50°C, T = 30°C 34. T1 = 20°C, 5 = 1.2 × 10 /°C remains constant V V (II) = (I) = R R –5 Now, R = R(1 + ) = R + R × 1.2 × 10 × 30 = 1.00036R From (I) and (II) V V V = R R 1.00036R V = 1.00036 V (1.00036 V V ) –2 % change = × 100 = 0.00036 × 100 = 3.6 × 10 V 23.6