CHAPTER 28
HEAT TRANSFER 1.
2.
3.
4.
t1 = 90°C, t2 = 10°C –3 l = 1 cm = 1 × 10 m 2 –2 2 A = 10 cm × 10 cm = 0.1 × 0.1 m = 1 × 10 m K = 0.80 w/m-°C
10 cm
KA (1 2 ) 8 10 1 1 10 2 80 Q = = = 64 J/s = 64 × 60 3840 J. t l 1 10 2 2 t = 1 cm = 0.01 m, A = 0.8 m 1 = 300, 2 = 80 K = 0.025, KA(1 2 ) Q 0.025 0.8 (30030 ) = = = 440 watt. t l 0.01 2 K = 0.04 J/m-5°C, A = 1.6 m t1 = 97°F = 36.1°C t2 = 47°F = 8.33°C l = 0.5 cm = 0.005 m
10
1 cm
KA (1 2 ) 4 10 2 1.6 27.78 Q = = = 356 J/s t l 5 10 3 2 –4 2 A = 25 cm = 25 × 10 m –3 l = 1 mm = 10 m K = 50 w/m-°C Q = Rate of conversion of water into steam t 10 1 2.26 10 6 100 10 3 2.26 10 6 4 = = = 0.376 × 10 1 min 60 KA (1 2 ) 50 25 10 4 ( 100 ) Q 4 = 0.376 ×10 = t l 10 3 =
5.
6.
7.
10 3 0.376 10 4 50 25 10
4
=
10 5 0.376 = 30.1 ≈ 30 50 25
K = 46 w/m-s°C l=1m 2 –6 2 A = 0.04 cm = 4 × 10 m 5 Lfussion ice = 3.36 × 10 j/Kg
46 4 10 6 100 Q –8 –5 = = 5.4 × 10 kg ≈ 5.4 × 10 g. t 1 A = 2400 cm2 = 2400 × 10–4 m2 –3 ℓ = 2 mm = 2 × 10 m K = 0.06 w/m-°C 1 = 20°C 2 = 0°C
0°C
KA(1 2 ) Q 0.06 2400 10 4 20 –1 = = = 24 × 6 × 10 × 10 = 24 × 6 = 144 J/sec 3 t 2 10 144 144 3600 m Q = = Kg/h = Kg/s = 1.52 kg/s. Rate in which ice melts = t t L 3.4 10 5 3.4 10 5 –3 ℓ = 1 mm = 10 m m = 10 kg 2 –2 2 A = 200 cm = 2 × 10 m 6 Lvap = 2.27 × 10 J/kg K = 0.80 J/m-s-°C 28.1
100°C
Heat Transfer 6
dQ = 2.27 × 10 × 10,
2.27 10 7 dQ 2 = = 2.27 × 10 J/s dt 10 5 Again we know
dQ 0.80 2 10 2 ( 42 T ) = dt 1 10 3 So,
8.
3
= 2.27 × 10
2
10 16 × 42 – 16T = 227 T = 27.8 ≈ 28°C K = 45 w/m-°C –2 ℓ = 60 cm = 60 × 10 m 2 –4 2 A = 0.2 cm = 0.2 × 10 m Rate of heat flow, =
9.
8 2 10 3 ( 42 T )
Q2 = 20°
Q1 = 40°
KA (1 2 ) 45 0.2 10 4 20 –3 = = 30 × 10 0.03 w 60 10 2 2
A = 10 cm ,
h = 10 cm
KA(1 2 ) Q 200 10 3 30 = = = 6000 t 1 10 3 Since heat goes out from both surfaces. Hence net heat coming out. Q Q = = 6000 × 2 = 12000, = MS t t t –3 –1 6000 × 2 = 10 × 10 × 1000 × 4200 × t 72000 = = 28.57 t 420 So, in 1 Sec. 28.57°C is dropped 1 Hence for drop of 1°C sec. = 0.035 sec. is required 28.57 –2 10. ℓ = 20 cm = 20× 10 m 2 –4 2 A = 0.2 cm = 0.2 × 10 m 1 = 80°C, 2 = 20°C, K = 385 KA(1 2 ) Q 385 0.2 10 4 (80 20) –4 –3 = = = 385 × 6 × 10 ×10 = 2310 × 10 = 2.31 (a) t 20 10 2 (b) Let the temp of the 11 cm point be Q = 20°C l tKA 2.31 11 cm = l 385 0.2 10 4 20 2.31 = 2 11 10 385 0.2 10 4
2.31 10 4 11 10 2 = 33 385 0.2 = 33 + 20 = 53 11. Let the point to be touched be ‘B’ No heat will flow when, the temp at that point is also 25°C i.e. QAB = QBC C KA(100 25) KA(25 0) So, = 100 x x 75 x = 2500 – 25 x 100 x = 2500 x = 25 cm from the end with 0°C
80°C
– 20 =
28.2
100 cm B x
A 100–x
Heat Transfer 12. V = 216 cm a = 6 cm,
3 2
Surface area = 6 a = 6 × 36 m Q = 100 W, t
t = 0.1 cm
2
KA(1 2 ) Q = t 100 = K=
K 6 36 10 4 5 0.1 10 2 100
= 0.9259 W/m°C ≈ 0.92 W/m°C 6 36 5 10 1 13. Given 1 = 1°C, 2 = 0°C –3 K = 0.50 w/m-°C, d = 2 mm = 2 × 10 m –2 2 v = 10 cm/s = 0.1 m/s A = 5 × 10 m , Power = Force × Velocity = Mg × v KA(1 2 ) dQ = Again Power = dt d KA(1 2 ) So, Mgv = d
M
KA(1 2 ) 5 10 1 5 2 1 = = 12.5 kg. dvg 2 10 3 10 1 10 3 14. K = 1.7 W/m-°C ƒw = 1000 Kg/m 5 –2 Lice = 3.36 × 10 J/kg T = 10 cm = 10 × 10 m KA(1 2 ) KA(1 2 ) KA (1 2 ) Q 10 cm = = = (a) t t Q mL KA (1 2 ) 1.7 [0 ( 10)] = = At ƒ w L 10 10 2 1000 3.36 10 5 M=
–0°C
0°C
17 –7 –7 10 7 = 5.059 × 10 ≈ 5 × 10 m/sec 3.36 (b) let us assume that x length of ice has become formed to form a small strip of ice of length dx, dt time is required. dQ KA ( ) dmL KA ( ) Adx ƒL KA ( ) = = = dt x dt x dt x xdxƒL dx ƒL K ( ) = dt = x dt x K ( ) =
t
dt =
0
l
ƒ L t xdx K( ) 0
Putting values
t=
ƒ L l 2 ƒ L x 2 = K( ) 2 K 2
dx
o
2
3.36 10 6 1000 3.36 10 5 10 10 2 3.36 = 10 6 sec. = hrs = 27.45 hrs ≈ 27.5 hrs. 1.7 10 2 2 17 2 17 3600 15. let ‘B’ be the maximum level upto which ice is formed. Hence the heat conducted at that point from both the levels is the same. A Let AB = x –10°C K ice A 10 K water A 4 Q Q x ice = water = i.e. 1 cm t t x (1 x ) t=
1.7 10 17 2 5 10 1 4 = = x 1 x x 1 x 17 17 – 17 x = 2x 19 x = 17 x = = 0.894 ≈ 89 cm 19
28.3
1–x C
4°C
Heat Transfer 16. KAB = 50 j/m-s-°c A = 40°C B = 80°C KBC = 200 j/m-s-°c KAC = 400 j/m-s-°c C = 80°C –2 Length = 20 cm = 20 × 10 m 2 –4 2 A = 1 cm = 1 × 10 m (a)
Q AB K A ( B A ) 50 1 10 4 40 = AB = = 1 W. t l 20 10 2
(b)
Q AC K A(C A ) 400 1 10 4 40 –2 = AC = = 800 × 10 = 8 t l 20 10 2
QBC K A ( B C ) 200 1 10 4 0 = BC = =0 t l 20 10 2 KA(1 2 ) 17. We know Q = d KA (1 2 ) KA (1 2 ) Q1 = , Q2 = d1 d2 (c)
KA (1 1 ) Q1 2r 2 r = = = [d1 = r, d2 = 2r] KA (1 1 ) Q2 r 2r 18. The rate of heat flow per sec. dQ A d = = KA dt dt The rate of heat flow per sec. dQB d = KA B = dt dt This part of heat is absorbed by the red. Q ms d = where = Rate of net temp. variation t dt dt d d d msd d d = KA A KA B ms = KA A B dt dt dt dt dt dt
r
r
d –4 = 200 × 1 × 10 (5 – 2.5) °C/cm dt d -4 0 .4 = 200 × 10 × 2.5 dt 0 .4
200 2.5 10 4 d –2 = °C/m = 1250 × 10 = 12.5 °C/m dt 0.4 10 2 19. Given T2 - T1 = 90°C Krubber = 0.15 J/m-s-°C We know for radial conduction in a Cylinder 2Kl(T2 T1 ) Q = ln(R 2 / R1 ) t
= 20.
2 3.14 15 10 2 50 10 1 90 = 232.5 ≈ 233 j/s. ln(1.2 / 1)
dQ = Rate of flow of heat dt Let us consider a strip at a distance r from the center of thickness dr. dQ K 2rd d = [d = Temperature diff across the thickness dr] dt dr 28.4
120°C
50 cm
Heat Transfer C=
K 2rd d dr
d c dr
dr r
dr = K2d d r Integrating C
r2
C
r1
dr = K2d r
r1
2
r2
Clog r r2 = K2d (2 – 1) r
d
1
1
r C(log r2 – log r1) = K2d (2 – 1) C log 2 = K2d (2 – 1) r1 K 2d( 2 1 ) C= log(r2 / r1 ) 21. T1 > T2 2 2 A = (R2 – R1 ) 2
2
KA (T2 T1 ) KA (R 2 R1 )(T2 T1 ) = l l Considering a concentric cylindrical shell of radius ‘r’ and thickness ‘dr’. The radial heat flow through the shell dQ d = – KA [(-)ve because as r – increases H= dt dt decreases] d H = –2rl K A = 2rl dt
So, Q =
R2
or
R1
2LK dr = H r
T2
R1
R2 T1
l
T2
d
T1
Integrating and simplifying we get 2KL(T2 T1 ) 2KL( T2 T1 ) dQ = = H= dt Loge(R 2 / R1 ) ln(R 2 / R1 ) 22. Here the thermal conductivities are in series, K 1A(1 2 ) K 2 A(1 2 ) KA (1 2 ) l1 l2 = K 1A(1 2 ) K 2 A(1 2 ) l1 l2 l1 l2
K1 K 2 l l2 1 K1 K 2 l1 l2
L1 L2
=
K l1 l 2
K 1K 2 (K 1K 2 )(l1 l2 ) K = K= K 1l 2 K 2l1 l1 l2 K 1l2 K 2l1
23. KCu = 390 w/m-°C KSt = 46 w/m-°C Now, Since they are in series connection, So, the heat passed through the crossections in the same. So, Q1 = Q2 K A ( 0) K A (100 ) Or Cu = St l l 390( – 0) = 46 × 100 – 46 436 = 4600 4600 = = 10.55 ≈ 10.6°C 436 28.5
0°C
Cu
Steel °C
100°C
Heat Transfer 24. As the Aluminum rod and Copper rod joined are in parallel
Q Q Q = t t 1 Al t Cu
40°C 80°C
Cu
Al
80°C
KA(1 2 ) K A(1 2 ) K 2 A(1 2 ) = 1 l l l K = K1 + K2 = (390 + 200) = 590
KA (1 2 ) 590 1 10 4 (60 20) Q –4 = = = 590 × 10 × 40 = 2.36 Watt t l 1 KCu = 400 w/m-°C 25. KAl = 200 w/m-°C 2 –5 2 A = 0.2 cm = 2 × 10 m –1 l = 20 cm = 2 × 10 m Heat drawn per second K Al A(80 40) K Cu A(80 40) 2 10 5 40 = [200 400] = 2.4 J l l 2 10 1 Heat drawn per min = 2.4 × 60 = 144 J 26. (Q/t)AB = (Q/t)BE bent + (Q/t)BE KA (1 2 ) KA (1 2 ) (Q/t)BE bent = (Q/t)BE = 70 60 (Q / t )BE bent 60 6 = = D (Q / t )BE 70 7 = QAl + QCu =
0°C F
(Q/t)BE bent + (Q/t)BE = 130 (Q/t)BE bent + (Q/t)BE 7/6 = 130
7 1 (Q/t)BE bent = 130 6 27.
(Q/t)BE bent =
20 cm
A 100°C
B 60 cm
20 cm
130 6 = 60 13
Q 780 A 100 bent = t 70 Q 390 A 100 str = t 60 (Q / t ) bent 780 A 100 60 12 = = (Q / t ) str 70 390 A 100 7
28. (a)
E
C
KA(1 2 ) Q 1 2 1( 40 32) = = = 8000 J/sec. t 2 10 3
60 cm 5 cm 20 cm
5 cm 20 cm
1 mm
(b) Resistance of glass = ak g ak g Resistance of air = Net resistance =
g
ak a
ak g ak g ak a =
1 2 2k a k g = a kg ka a K gk a
=
1 10 3 2 0.025 1 2 0.025
1 10 3 1.05 0.05 8 0.05 = = 380.9 ≈ 381 W 1 10 3 1.05 =
2 Q = 1 t R
28.6
a
g
Heat Transfer 29. Now; Q/t remains same in both cases K A (100 70) K A (70 0) = B In Case : A 30 KA = 70 KB K A (100 ) K A ( 0) In Case : B = A 100KB – KB = KA 70 KB 100KB – KB = 30 7 300 = = 30°C 100 = 3 10 30. 1 – 2 = 100 2 Q 0°C = 1 t R 1 2 R = R1 + R2 +R3 = = = aK Al aK Cu aK Al a 200 400
100°C
100°C
Al
70°C A
0°C
B
°C B
0°C
A
Al
Cu
100°C
1 4 1 = a 400 a 80
100 Q a = 40 = 80 × 100 × / a 1 / 80 t a 1 = 200 For (b)
l l l R CuR Al R CuR Al AK Al AK Cu AK Al R = R1 + R2 = R1 + = RAl + = l l R Cu R Al R Cu R Al A Cu A Al =
R2
2 100 Q 100 600 A 100 600 1 = 1 = = = = 75 l / A 4 / 600 t R 4 l 4 200 For (c) 1 1 1 1 1 1 1 = = l l l R R1 R 2 R 3 aK Al aK Cu aK Al
Al
T T3 T T2 T1 T = l 3l / 2 3l / 2
– 7T = – 3T1 – 2(T2 + T3)
3T1 – 3T = 4T – 2(T2 + T3)
3T1 2(T2 T3 ) T= 7 28.7
Al
Al 0°C
a a a (K Al K Cu K Al ) = 2 200 400 = 800 l l l l 1 R= a 800 2 Q 100 800 a = 1 = t R l 100 800 = = 400 W 200 31. Let the temp. at B be T Q QA Q KA(T1 T ) KA(T T3 ) KA(T T2 ) = B C = t t t l l (l / 2) l (l / 2) =
R 100°C
Cu
R1
l l l l 4 l 1 1 = = AK Al A K Al K Cu A 200 200 400 A 600
Cu
100°C
Al T2
T3
E
F QB
QC B
C
D QA T1
A
T2
T3
E
F QB
QC C
D QA T1
A
Heat Transfer 32. The temp at the both ends of bar F is same Rate of Heat flow to right = Rate of heat flow through left (Q/t)A + (Q/t)C = (Q/t)B + (Q/t)D K (T T )A K C (T1 T )A K (T T2 )A K D (T T2 )A A 1 = B l l l l 2K0(T1 – T) = 2 × 2K0(T – T2) T1 – T = 2T – 2T2 T 2T2 T= 1 3 y r1 r2 r1 33. Tan = = L x xr2 – xr1 = yL – r1L Differentiating wr to ‘x’ Ldy r2 – r 1 = 0 dx r r dyL dy = 2 1 dx = …(1) r2 r1 dx L
Q
(r2 – r1) r2 r1
L
QLdy (r2 r1 )Ky 2
Integrating both side 2
d =
1
QL r2 r1 k
r2
r1
dy y r
1 2 QL (2 – 1) = r2 r1 K y r 1
1 1 QL (2 – 1) = r2 r1 K r1 r2 (2 – 1) =
r r QL 2 1 r2 r1 K r1 r2
Kr1r2 ( 2 1 ) L d 60 = = 0.1°C/sec dt 10 60 dQ KA 1 2 = dt d KA 0.1 KA 0.2 KA 60 ....... = d d d KA KA 600 = (0.1 0.2 ........ 60) = (2 0.1 599 0.1) d d 2 [ a + 2a +……….+ na = n/2{2a + (n – 1)a}]
Q= 34.
=
200 1 10 4
300 (0.2 59.9) =
20 10 2 = 3 × 10 × 60.1 = 1803 w ≈ 1800 w
x
Ky 2 d Q dx 2 = = ky d T dx T Ldy 2 = Ky d from(1) r2r1
200 10 2 300 60.1 20
28.8
d
y
Now
d
dx
Heat Transfer 35. a = r1 = 5 cm = 0.05 m b = r2 = 20 cm = 0.2 m 1 = T1 = 50°C 2 = T2 = 10°C Now, considering a small strip of thickness ‘dr’ at a distance ‘r’. 2 A = 4 r d 2 H = – 4 r K [(–)ve because with increase of r, decreases] dr b dr 4K 2 = On integration, = d 2 a r H 1 4ab(1 2 ) dQ H= = K dt (b a) Putting the values we get
20 cm
K 4 3.14 5 20 40 10 3 K=
15 10 2 15
dr
= 100
a
b
r
= 2.985 ≈ 3 w/m-°C 4 3.14 4 10 1 KA (T1 T2 ) KA (T1 T2 ) Q 36. = Rise in Temp. in T2 t L Lms KA (T1 T2 ) KA(T1 T2 ) Fall in Temp in T1 = Final Temp. T1 T1 Lms Lms KA (T1 T2 ) Final Temp. T2 = T2 Lms KA(T1 T2 ) KA (T1 T2 ) T Final = T1 T2 dt Lms Lms = T1 T2 Ln 37.
2KA(T1 T2 ) 2KA(T1 T2 ) dT = = Lms dt Lms
(T1 T2 ) / 2 2KAt = (T1 T2 ) Lms
ln (1/2) =
KA(T1 T2 ) Q = t L Fall in Temp in T1
( T1 T2 )
( T1 T2 )
2KAt Lms
Rise in Temp. in T2
KA (T1 T2 ) Lm 2 s 2
Final Temp. T2 = T2
Final Temp. T1 = T1
2KA dt = dt Lms (T1 T2 )
ln2 =
2KAt Lms
t = ln2
KA (T1 T2 ) Lm1s1 KA(T1 T2 ) Lm1s1
KA (T1 T2 ) Lm1s1
KA(T1 T2 ) KA (T1 T2 ) KA(T1 T2 ) KA (T1 T2 ) T T2 = T1 = T1 T2 dt Lm1s1 Lm 2 s 2 Lm 2 s 2 Lm1s1
KA T1 T2 1 dT 1 = dt L m1s1 m 2 s 2
lnt =
dT KA m 2 s 2 m1s1 dt = T1 T2 L m1s1m 2 s 2
KA m2 s 2 m1s1 t C L m1s1m2 s 2
At time t = 0, T = T0, ln
5 cm
T = T0
T T KA m 2 s 2 m1s1 t = = e T0 T0 L m1s1m 2 s 2
T = T0 e
KA m1s1 m2s2 t L m1s1m2s2
= T2 T1 e
C = lnT0 KA m1s1 m2s2 t L m1s1m2s2
KA m1s1 m2s2 t L m1s1m2s2
28.9
Lms 2KA
Heat Transfer 38.
KA(Ts T0 ) nCP dT KA(Ts T0 ) Q = = t x dt x KA(Ts T0 ) 2LA n(5 / 2)RdT dT = = (TS T0 ) 5nRx dt x dt dT 2KAdt 2KAdt = ln(TS T0 )TT0 = (TS T0 ) 5nRx 5nRx
ℓ
x
2KAt
ln
TS T 2KAdt = TS – T = (TS T0 )e 5nRx TS T0 5nRx
T = TS ( TS T0 )e
2KAt 5nRx
= TS (TS T0 )e
T = T – T0 = (TS T0 ) (TS T0 )e
2KAt 5nRx
2KAt 5nRx
2KAt = (TS T0 ) 1 e 5nRx
2KAt Pa AL P AL = (TS T0 ) 1 e 5nRx [padv = nRdt PaAl = nRdt dT = a ] nR nR 2KAt nR L= (TS T0 ) 1 e 5nRx Pa A 2 –8 2 4 39. A = 1.6 m , T = 37°C = 310 K, = 6.0 × 10 w/m -K Energy radiated per second 4 –8 4 –4 = AT = 1.6 × 6 × 10 × (310) = 8865801 × 10 = 886.58 ≈ 887 J 2 –4 2 40. A = 12 cm = 12 × 10 m T = 20°C = 293 K –8 2 4 e = 0.8 = 6 × 10 w/m -k Q 4 –4 –8 4 12 –13 = Ae T = 12 × 10 0.8 × 6 × 10 (293) = 4.245 × 10 × 10 = 0.4245 ≈ 0.42 t 41. E Energy radiated per unit area per unit time Rate of heat flow Energy radiated (a) Per time = E × A
So, EAl =
eT 4 A 4
=
4r 2 2
4(2r ) eT A (b) Emissivity of both are same m1S1dT1 =1 = m 2S 2 dT2
=
1 4
1:4
dT1 m S s 4r 3 S 2 1 900 = 2 2 = 1 13 = =1:2:9 dT2 m1S1 3 . 4 8 390 s 2 4r2 S1
Q 4 = Ae T t 100 4 4 T = T = teA 0.8 2 3.14 4 10 5 1 6 10 8 T = 1697.0 ≈ 1700 K 2 –4 2 43. (a) A = 20 cm = 20× 10 m , T = 57°C = 330 K 4 –4 –8 4 4 E = A T = 20 × 10 × 6 × 10 × (330) × 10 = 1.42 J E 4 4 2 –4 2 (b) = Ae(T1 – T2 ), A = 20 cm = 20 × 10 m t –8 = 6 × 10 T1 = 473 K, T2 = 330 K –4 –8 4 4 = 20 × 10 × 6 × 10 × 1[(473) – (330) ] 10 10 = 20 × 6 × [5.005 × 10 – 1.185 × 10 ] –2 from the ball. = 20 × 6 × 3.82 × 10 = 4.58 w
42.
28.10
Heat Transfer –3
44. r = 1 cm = 1 × 10 m –2 2 –4 2 A = 4(10 ) = 4 × 10 m –8 E = 0.3, = 6 × 10 E 4 4 = Ae(T1 – T2 ) t –8 –4 4 4 = 0.3 × 6 × 10 × 4 × 10 × [(100) – (300) ] –12 12 = 0.3 × 6 × 4 × 10 × [1 – 0.0081] × 10 –4 = 0.3 × 6 × 4 × 3.14 × 9919 × 10 –5 = 4 × 18 × 3.14 × 9919 × 10 = 22.4 ≈ 22 W 45. Since the Cube can be assumed as black body e=ℓ –8 2 4 = 6 × 10 w/m -k –4 2 A = 6 × 25 × 10 m m = 1 kg s = 400 J/kg-°K T1 = 227°C = 500 K T2 = 27°C = 300 K d 4 4 ms = eA(T1 – T2 ) dt
4
eA T1 T2 d = dt ms
4
1 6 10 8 6 25 10 4 [(500 ) 4 (300) 4 ] 1 400 36 25 544 –4 = 10 4 = 1224 × 10 = 0.1224°C/s ≈ 0.12°C/s. 400 4 4 46. Q = eA(T2 – T1 ) For any body, 210 = eA[(500)4 – (300)4] For black body, 700 = 1 × A[(500)4 – (300)4] 210 e Dividing = e = 0.3 700 1 2 2 AB = 80 cm 47. AA = 20 cm , (mS)A = 42 J/°C, (mS)B = 82 J/°C, TA = 100°C, TB = 20°C KB is low thus it is a poor conducter and KA is high. Thus A will absorb no heat and conduct all =
E 4 4 = AA [(373) – (293) ] t A
d mS A = dt A
B A
4
4
AA [(373) – (293) ]
A a (373 ) 4 (293 ) 4 6 10 8 (373 ) 4 (293 ) 4 d = = = 0.03 °C/S (mS ) A 42 dt A
d Similarly = 0.043 °C/S dt B 48.
Q 4 4 = eAe(T2 – T1 ) t Q –8 4 4 –8 8 8 = 1 × 6 × 10 [(300) – (290) ] = 6 × 10 (81 × 10 – 70.7 × 10 ) = 6 × 10.3 At KA (1 2 ) Q = t l K(1 2 ) Q K 17 K 17 6 10.3 0.5 = = = 6 × 10.3 = K= = 1.8 tA l 0 .5 0 .5 17 28.11
Heat Transfer –8
2
4
49. = 6 × 10 w/m -k L = 20 cm = 0.2 m, K=? KA(1 2 ) 4 4 E= = A(T1 – T2 ) d s(T1 T2 ) d 6 10 8 (750 4 300 4 ) 2 10 1 K= = 1 2 50 K = 73.993 ≈ 74. 50. v = 100 cc = 5°C t = 5 min For water mS KA = dt l
100 10 3 1000 4200 KA = 5 l For Kerosene ms KA = at l
100 10 3 800 2100 KA = t l
100 10 3 800 2100 100 10 3 1000 4200 = t 5 5 800 2100 T= = 2 min 1000 4200 51. 50°C 45°C 40°C Let the surrounding temperature be ‘T’°C 50 45 Avg. t = = 47.5 2 Avg. temp. diff. from surrounding T = 47.5 – T 50 45 Rate of fall of temp = = 1 °C/mm 5 From Newton’s Law 1°C/mm = bA × t 1 1 bA = = …(1) t 47.5 T In second case, 40 45 Avg, temp = = 42.5 2 Avg. temp. diff. from surrounding t = 42.5 – t 45 40 5 Rate of fall of temp = = °C/mm 8 8 From Newton’s Law 5 = bAt B 1 5 = ( 42.5 T ) 8 ( 47.5 T ) By C & D [Componendo & Dividendo method] We find, T = 34.1°C
28.12
300 K
750 K
800 K 20 cm
Heat Transfer 52. Let the water eq. of calorimeter = m
(m 50 10 3 ) 4200 5 = Rate of heat flow 10 (m 100 10 3 ) 4200 5 = Rate of flow 18 (m 50 10 3 ) 4200 5 (m 100 10 3 ) 4200 5 = 10 18 –3 –3 (m + 50 × 10 )18 = 10m + 1000 × 10 –3 –3 18m + 18 × 50 × 10 = 10m + 1000 × 10 –3 8m = 100 × 10 kg –3 m = 12.5 × 10 kg = 12.5 g 53. In steady state condition as no heat is absorbed, the rate of loss of heat by conduction is equal to that of the supplied. i.e. H = P m = 1Kg, Power of Heater = 20 W, Room Temp. = 20°C d = P = 20 watt (a) H = dt (b) by Newton’s law of cooling d = K( – 0) dt –20 = K(50 – 20) K = 2/3 d 2 20 = K( – 0) = (30 20) = w Again, 3 dt 3 20 10 dQ dQ dQ = (c) = 0, = 3 3 dt 20 dt 30 dt avg T = 5 min = 300
10 300 = 1000 J 3 Net Heat absorbed = Heat supplied – Heat Radiated = 6000 – 1000 = 5000 J Now, m = 5000 5000 5000 –1 –1 S= = = 500 J Kg °C m 1 10 54. Given: Heat capacity = m × s = 80 J/°C Heat liberated =
d = 2 °C/s dt increase d = 0.2 °C/s dt decrease
d = 80 × 2 = 160 W (a) Power of heater = mS dt increa sin g d = 80 × 0.2 = 16 W (b) Power radiated = mS dt decrea sin g d = K(T – T0) (c) Now mS dt decrea sin g 16 = K(30 – 20)
K=
16 = 1.6 10
d = K(T – T0) = 1.6 × (30 – 25) = 1.6 × 5 = 8 W dt (d) P.t = H 8 × t
Now,
28.13
30°C
T 20°C
t
Heat Transfer 55.
d = – K(T – T0) dt Temp. at t = 0 is 1 (a) Max. Heat that the body can loose = Qm = ms(1 – 0) ( as, t = 1 – 0) (b) if the body loses 90% of the max heat the decrease in its temp. will be ( 0 ) 9 Q m 9 = 1 10ms 10 If it takes time t1, for this process, the temp. at t1 101 91 90 9 0 9 = 1 (1 0 ) = = 1 1 10 10 10 d Now, = – K( – 1) dt Let = 1 at t = 0; & be temp. at time t
t
d K dt o
0
0 or, ln = – Kt 1 0 –kt
…(2) or, – 0 = (1 – 0) e Putting value in the Eq (1) and Eq (2) 1 90 –kt 0 (1 – 0) e 10 ln 10 t1 = k
28.14