ELECTROMAGNETIC WAVES CHAPTER - 40 1.
0 dE 0 EA dt dt 4 0r 2 =
M1L3 T 4 A 2
M1L3 A 2 = (Current) 2.
E=
Kq x2
3.
A1T1 L2 1 =A 2 T L (proved).
, [from coulomb’s law]
E = EA = Id
KqA
x2 dE d kqA d = 0 0 0 KqA x 2 dt dt x 2 dt 1 dx qAv = 0 q A 2 x 3 . 4 0 dt 2x 3
E=
Q (Electric field) 0 A
= E.A. = i0 = 0
Q A Q 0 A 2 0 2
dE d Q 1 dQ 0 dt dt 0 2 2 dt td
4.
1d 1 1 t / RC E RE0 (EC e t / RC ) EC e e 2 dt 2 RC 2R
E=
Q (Electric field) 0 A
= E.A. = i0 = 0 5.
Q A Q 0 A 2 0 2
dE d Q 1 dQ 0 dt dt 0 2 2 dt
B = 0H H=
B 0
E0 B0 /(0 0 C) 1 H0 B0 / 0 0 C 1
= 376.6 = 377 . 8.85 10 3 108 1 1 1 Dimension 1 2 3 2 = M1L2T–3A–2 = [R]. 1 1 3 4 2 0 C [LT ][M L T A ] M L T A =
6.
12
E0 = 810 V/m, B0 = ? We know, B0 = 0 0 C E0 Putting the values, –7 –12 8 B0 = 4 10 8.85 10 3 10 810 –10 –6 = 27010.9 10 = 2.7 10 T = 2.7 T. 40.1
Electromagnetic Waves 7.
15
–1
B = (200 T) Sin [(4 10 5 ) (t – x/C)] a) B0 = 200 T –6 8 4 E0 = C B0 = 200 10 3 10 = 6 10 b) Average energy density =
8.
I = 2.5 10
14
E0 =
9.
2
W/m
We know, I = E02 =
1 2 (200 10 6 )2 4 10 8 1 B0 = = 0.0159 = 0.016. 7 20 2 4 10 8 10 7 20
1 0 E02 C 2
2I 0 C
2I 0 C
or E0 =
2 2.5 1014
9
8.85 10 12 3 108
8
= 0.4339 10 = 4.33 10 N/c.
B0 = 0 0 C E0 –7 –12 8 8 = 4 3.14 10 8.854 10 3 10 4.33 10 = 1.44 T. 1 Intensity of wave = 0 E02 C 2 –12 8 2 0 = 8.85 10 ; E0 = ? ; C = 3 10 , I = 1380 W/m –12
1380 = 1/2 8.85 10
E02 3 10
8
2 1380
4 = 103.95 10 8.85 3 10 4 2 3 E0 = 10.195 10 = 1.02 10 E0 = B0C
E02 =
B0 = E0/C =
1.02 103 3 108
= 3.398 10
–5
= 3.4 10
–5
40.2
T.