4.10_Cambio_de_Variable

Page 1

Lecture 32 Change of Variables in Multiple Integrals Calculus II Topic 4: Multiple Integrals

Calculus II

Santiago de Vicente

1


Remembering Change of Variable in One Variable Integrals

Calculus II

Santiago de Vicente

2


Change of Variables in Double Integrals

Calculus II

Santiago de Vicente

3


Transforming Domains by Change of Variables from Cartesian to Polar Coordinates

Calculus II

Santiago de Vicente

4


General Change of Variables in R2 đ?‘Ł

�

Calculus II

Santiago de Vicente

5


Example: Changing from Cartesian to Polar Coordinates

đ?‘‡ đ?‘–đ?‘ "đ?‘œđ?‘›đ?‘Ąđ?‘œ"

đ?‘‡ đ?‘–đ?‘ đ?‘›đ?‘œđ?‘Ą "đ?‘œđ?‘›đ?‘’ − đ?‘Ąđ?‘œ − đ?‘œđ?‘›đ?‘’"

đ?’ƒđ?’–đ?’• đ?‘ť đ?’Šđ?’” "one − to − one" đ?’Šđ?’? đ?’•đ?’‰đ?’† đ?’Šđ?’?đ?’•đ?’†đ?’“đ?’Šđ?’?đ?’“ Calculus II

Santiago de Vicente

6


Calculating the Area Element in the Cange of Variables

Calculus II

Santiago de Vicente

7


Theorem of Change of Variables for Double Integrals

Calculus II

Santiago de Vicente

8


Remembering Change of Variables from Cartesian to Polar Coordinates

đ?‘Ľ = đ?‘&#x; cos đ?œƒ đ?‘Ś = đ?‘&#x; sin đ?œƒ Calculus II

â&#x;š

đ??˝ đ?‘&#x;, đ?œƒ

=

đ?œ•(đ?‘Ľ,đ?‘Ś) đ?œ•(đ?‘&#x;,đ?œƒ)

=

đ?œ•đ?‘Ľ đ?œ•đ?‘&#x; đ?œ•đ?‘Ś đ?œ•đ?‘&#x;

Santiago de Vicente

đ?œ•đ?‘Ľ đ?œ•đ?œƒ đ?œ•đ?‘Ś đ?œ•đ?œƒ

=đ?‘&#x;

â&#x;š

đ?‘‘đ??´ = đ?‘‘đ?‘Ľ đ?‘‘đ?‘Ś = đ?‘&#x; đ?‘‘đ?‘&#x; đ?‘‘đ?œƒ

9


Example:Change of Variables for Regions between ÂŤParallelÂť Curves

Calculus II

Santiago de Vicente

10


Example: Find a Change of Variables to transform the Domain R in a Rectangle

đ?‘… Calculus II

Santiago de Vicente

2đ?‘Ľ − đ?‘Ś đ?‘‘đ?‘Ľ đ?‘‘đ?‘Ś 2 11


Example: Find a Change of Variables to transform the Domain R in a Square

Calculus II

Santiago de Vicente

12


Example: Calculate the Double Integral:

đ?‘Ľ + đ?‘Ś đ?‘Ś − 2đ?‘Ľ 2 đ?‘‘đ?‘Ľ đ?‘‘đ?‘Ś đ?‘…

Calculus II

Santiago de Vicente

13


Example: Calculate de Double Integral:

đ?‘…

Calculus II

đ?‘Ś đ?‘’ đ?‘Ľ

đ?‘Ľđ?‘Ś

đ?‘‘đ?‘Ľ đ?‘‘đ?‘Ś

Santiago de Vicente

14


Example: Find a Change of Variables to transform the Domain R in a Triangle with Sides parallel to the Axis

Calculus II

Santiago de Vicente

15


Example: Find a Change of Variables to transform the Domain R in a Rectangle with Sides parallel to the Axis

Calculus II

Santiago de Vicente

16


Change of Variables for Triple Integrals

Calculus II

Santiago de Vicente

17


Theorem of Change of Variables for Triple Integrals

Calculus II

Santiago de Vicente

18


Example: Change of Variables from Cartesian to Cylindrical Coordinates

đ??˝ đ?‘&#x;, đ?œƒ, đ?‘§

=

đ?œ•(đ?‘Ľ,đ?‘Ś,đ?‘§) đ?œ•(đ?‘&#x;,đ?œƒ,đ?‘§)

=

đ?œ•đ?‘Ľ đ?œ•đ?‘&#x; đ?œ•đ?‘Ś đ?œ•đ?‘&#x; đ?œ•đ?‘§ đ?œ•đ?‘&#x;

đ?œ•đ?‘Ľ đ?œ•đ?œƒ đ?œ•đ?‘Ś đ?œ•đ?œƒ đ?œ•đ?‘§ đ?œ•đ?œƒ

đ?œ•đ?‘Ľ đ?œ•đ?‘§ đ?œ•đ?‘Ś đ?œ•đ?‘§ đ?œ•đ?‘§ đ?œ•đ?‘§

=đ?‘&#x;

đ?‘‘đ?‘‰ = đ?‘‘đ?‘Ľ đ?‘‘đ?‘Ś đ?‘‘đ?‘§ = đ?‘&#x; đ?‘‘đ?‘&#x; đ?‘‘đ?œƒ đ?‘‘đ?‘§

Calculus II

Santiago de Vicente

19


Example: Change of Variables from Cartesian to Spherical Coordinates

đ??˝ đ?œŒ, đ?œƒ, đ?œ‘

Calculus II

=

đ?œ•(đ?‘Ľ,đ?‘Ś,đ?‘§) đ?œ•(đ?œŒ,đ?œƒ,đ?œ‘)

=

đ?œ•đ?‘Ľ đ?œ•đ?œŒ đ?œ•đ?‘Ś đ?œ•đ?œŒ đ?œ•đ?‘§ đ?œ•đ?œŒ

đ?œ•đ?‘Ľ đ?œ•đ?œƒ đ?œ•đ?‘Ś đ?œ•đ?œƒ đ?œ•đ?‘§ đ?œ•đ?œƒ

đ?œ•đ?‘Ľ đ?œ•đ?œ‘ đ?œ•đ?‘Ś đ?œ•đ?œ‘ đ?œ•đ?‘§ đ?œ•đ?œ‘

= đ?œŒ2 sin đ?œ‘

Santiago de Vicente

đ?‘‘đ?‘‰ = đ?‘‘đ?‘Ľ đ?‘‘đ?‘Ś đ?‘‘đ?‘§ = đ?œŒ2 sin đ?œ‘ đ?‘‘đ?œŒ đ?‘‘đ?œƒ đ?‘‘đ?œ‘

20


Relation between Cartesian, Cylindrical and Spherical Coordinates

Calculus II

Santiago de Vicente

21


Example: Changing Variables for Triple Integrals

đ??ˇ

Calculus II

Santiago de Vicente

2đ?‘Ľ − đ?‘Ś đ?‘§ + đ?‘‘đ?‘Ľ đ?‘‘đ?‘Ś đ?‘‘đ?‘§ 2 3

22


Find the Change of Variables for Volume

Calculus II

Santiago de Vicente

23


Homework

Calculus II

Santiago de Vicente

24


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.