ARCH HITECTU TURE + DESIGN Portfolio 2010-2020
CRISTINA GARZA LASIERRA Architect specialized in digital manufacturing
CV
ARB ARCHITECT SPECIALIZED IN DIGITAL MANUFACTURING. Contact :
Phone : +447565233874
31A Kensinton Church street W84LL, London.
Email : cgarzalasierra@gmail.com
+ EDUCATION September 2017 - December 2018
MArch Design for Manufacture. Graduated with Distinction. Bartlett School of Architecture, UCL. London, UK. Specialization in digital manufacturing, digital analysis and computational design.
PERSONAL SKILLS Fast learner Self-motivation
September 2010 - September 2016
Hard working Adaptability
SOFTWARE _2D DRAWING: Autocad Revit Photoshop After Effects In Design Illustrator
Bachelor in Architecture + Master in Theory and Design. University of Navarra, Spain. Final thesis master’s project with distinction.
+ WORKSHOPS August 2017 - September 2018
DLAB course, Architectural Association (AA). London, UK. Learning of digital software and digital manufacturing tools to develop parametric complex designs. Research of a novel manufacturing technique, Incremental Sheet Forming for the manufacturing of variable bespoke metal components to build a 1.1 canopy installation. July 2014 - August 2014
Product Design Course at Parson The New School of Design. _3D MODELLING Rhinoceros : Grasshopper Karamba/Kangaroo Robots (GH plugin) Fusion 360 Maya Cinema 4D _DIGITAL MANUFACTURING:. 3D printing CNC: Drawing, execution and running of GCode. Robots (KUKA/ABB): Coding, execution and set-up.
LANGUAGES Spanish.
2
English.
New York, EEUU. Inmerse course in the product industry through the development of a 1.1 prototype of an utilitarian object. The project aimed to provide a solution to spacial issues of the microliving houses in overpopulated cities. July 2013 - August 2013
Summer School Course at Architectural Association (AA). London, UK. “Inverse London”- Urban research laboratory focus on the analysis of city models to generate a gentrification of an utopic London based on the implementation of data analysis software and new infrastructure development.
+REFERENCES Peter Scully Director of BMADE at the Bartlett School of Architecture, UCL. London. Director MArch Design for Manufacture, UCL. London. Email: p.scully@ucl.ac.uk
Tim Lucas Partner at Price & Myers, London. Structure advisor at MArch Design for Manufacture, UCL. London. Email: p.scully@ucl.ac.uk
2010-2019
Architect at Arup
Februrary 2019 - Current
London, UK - Designer and digital specialist in a confidential project for the design and building of a commercial building in central london. - Automation of digital processes for the integration of different consultance within the same parametric workflow to solve the complex parametric facade. Work in Grasshopper, Revit and Dynamo.
Research Assistant at the Bartlett School of Architecture
September 2019 - Current
Portfolio Cristina Garza
+ EXPERIENCE
- Further development of my final master project, Roboforming, for the manufacturing of highly bespoke metal panels. - Collaboration with UK artists for the realization of large scale projects.
Architect Assistant -Part II at EASTWEST ARCHITECTURE
September 2016 - July 2017
London, UK. - Project manager and designer in the development of a broad range of projects, mostly residential and retailing. - Responsible to carry out the different RIBA stages in a project, from the concept design stage, production of tender package, compilation of building permits to the final construction works stage. - Development of comunication and problem solving skills to coordinate tasks and technical information between client, consultants and suppliers for a correct execution of the project.
Collaboration with Izaskun Chinchilla Architects.
November 2016
Madrid, Spain. - Collaboration in several competitions for Madrid council in Spain. - Design and preparation of general drawings and technical details. Generation of infographies to show the final design result. - Coordination of a team of two people to deliver the work on time.
Internship architecture at Architekten Cie.
September 2015 - June 2016
Amsterdam, Netherlands. - Development of public and retailing projects in the design stage. Drawing of the required information for the client, such as technical drawings, 3D modelling and rendering images of the final design, Building of physical models to show designs. - Participation in an urban planning development with Amsterdam council, for the construction of a new icon tower in the skyline of Rotterdam.
Internship at Izaskun Chinchilla architects.
May 2015 - September 2015
Madrid, Spain. - Urban research project in collaboration with the Space Syntax department at the Bartlett School of Architecture, UCL. London. to improve the cycling movility of children in Sommerstown area. - Focusing on the generation of new cycling routes to improve the movility of children in Sommestown area.
+ EXTRA CURRICULAR ACTIVITIES Technical assistant in Digital manufacturing Laboratory, ARCHLAB.
September 2014 - June 2015
University of Navarra, Spain. - Control of digital tools, such as CNC, lasercut machines and 3D printers. - Assistance to students for their studio design projects to develop physical models that explain their designs. - Training of students in different digital skills modules, such as 3D modelling and drafting software.
Volunteering work at “Tantaka” (Architectural non-profit organization).
September 2014 - June 2015
Pamplona, Spain. Collaboration in “Refurbishment of unfinished houses by the crisis”. The project focused on the assitance of people who lived with low living standards, due to the economic spanish crisis, to improve and finish building their houses to reach the minimum of habitability condition.
Teacher assistant in Architectural Design Department.
September 2012 - June 2013
University of Navarra, Spain.
3
Teaching Architectural Design module in 1st year of the Bachelor’s degree of Architecture.
06
Tt
2010-2019 Portfolio Cristina Garza
01
DIGITAL MANUFACTURING
07
Interest in new emergent technologies and computational design as tools to push the boundaries of design and achieve new formal complexities and tectonic intrincacies. As well as rethinking traditional construction methods through a negotiation between the digital and analog tools to provide more sustainable and efficient solutions to the building environment.
Roboforming 01_Digital Fabrication
1.0
IncreMENTAL Phase II Arup Exhibition space. Location: London, UK
July 2019 - September 2019
This project is based on previous research which explored the application of Robotic Incremental Sheet Forming in the fabrication of structures and architectural components. The complex and free-form shape of the structure developed for the Arup exhibition is composed of more than one hundred individually customised metal components. The smart interlocking system allows the blocks to work compositely. It also allows the control of the flow of forces throughout the double curvature of the structure. Using first principles, the analysis of the assembly has been combined with an extensive finite element analysis of the building blocks (the metal components) and physical tests. The influence of the different geometrical properties of the blocks on their strength, for example, overall depth, diameter of the contact area, curvature, has been investigated. The values
4
obtained have informed the final shape of the components as well as of the general structure.
200 bespoke metal panels conform the double curve sculpture.
5
Portfolio Cristina Garza
2010-2019
6
7
Portfolio Cristina Garza
2010-2019
Roboforming 01_Digital Fabrication
1.1
ROBOFORMING. Robotic Incremental Sheet Forming (RISF) to enhance structural performance of thin metal panels.
MArch Design for Manufacture, Bartlett School of Architecture, UCL. Location: London, UK
September 2017 - December The research project focuses on the implementation of a novel manufacturing technique, Robotic Incremental Sheet Forming to explore the material behaviour of thin metal sheets when it is exposed to gradual deformation, as a result enhancing the structural performance of the metal surface. A digital parametric workflow is developed which combines the different stages of digital fabrication - from design, analysis and toolpath algorithm to generate the required design data to the final manufacturing of the metal component, in order to provide the designer with full control over the process. The interweaving of this innovative manufacturing technique with the design computational software is aimed for a mass customized production of variable and bespoke metal components.
Sample of a structural metal component after Incremental Sheet Forming process.
Robot set-up 06. Metal sheet 01.Blank holder frame 02.Steel plate frame to hold metal 03.Toolpath 01- Forming stage 1 05. Step height 04.Toolpath 02- Forming stage 2
Target plane 07. Robot 08.Tool changer for to connect ISF tool holder 09. Tool holder forISF 10. Tool for ISF
08
11. Rotary table
Robot set-up and toolpath definition for Incremental Sheet Forming process.
09
Portfolio Cristina Garza
2010-2019
Roboforming
TOOLPATH GENERATION FOR ISF PROCESS.
01_Digital Fabrication
First pass: Ribs geometry. Stress the metal panel to reduce elasticity.
Second pass: Pocket geometry. Form the diagonal of the squarepanel to avoid bending.
Third pass: Pocket geometry. Details of formed geometries
Rigidize central area exposed to more stresses.
10
Robotic Incremental Sheet Forming _ The concept of incremental forming refers to a gradually localised plastic deformation to generate a 3D geometry form into a 2D metal sheet, directly from design data.
Output GH Script
01. POCKET
Grasshopper Script
2010-2019 Portfolio Cristina Garza
TOOLPATH GENERATION BY TOPOLOGY CLASSIFICATION OF THE 3D GEOMETRIES
02. RIB
Topographical toolpath
03. BUMP
Linear toolpath
Feed In Feed Out Contouring toolpath
Contour
01. Pocket Geometry
01. Ribs Geometry
01. Bump Geometry
11
Physical Result
1kN
x3 8x
WIND Load = 1kN
Karamba analysis to generate general forming geometry for RISF
Displacement
Principal Moment lines
Support and Load conditions.
Utilisation
Roboforming 01_Digital Fabrication
STRUCTURAL ANALYSIS to inform pattern geometries.
FINAL GEOMETRY.
12
From the analysis: Extract stress lines to generate main ribs geometries which rigidize the structure.
2010-2019 Portfolio Cristina Garza
FINAL PROTOTYPE 1.1
13
Manufacturing process
Flexible formwork 01_Digital Fabrication
1.2
SINGLE POUR HOUSE Flexible formwork for concrete structures.
MArch Design for Manufacture, Bartlett School of Architecture, UCL. September 2017 - December
Location: London, UK
The project addresses the need to find an alternative solution to the high cost falseworks traditionally employed in the casting of curve concrete structures in order to be reusable in different scenarios. In this sense, a modular flexible formwork system is developed which can adapt to different situations. In this case, we established a house to test the system proposed being able the falsework to generate several core situations (one, two, three). An algorithm definition analyses a solid shape to a mesh with equal edge lengths in order to achieve a mesh that describes the initial solid shape with node to node distance fixed but v ariable angles. The final aim is to create a whole algorythm that would allow the user to select different characteristics of the house being able to generate all the information needed for the manufacture process. Some kind of do
14
it yourself.
Diagram of Karamba simulation to obtain grisdshells.
15
Portfolio Cristina Garza
2010-2019
Flexible formwork 01_Digital Fabrication
PROPOSED SYSTEM OF FLEXIBLE FORMWORK Mixed materials. Textile + Foam: Use as bottom formwork a cable net with a textile pattern on top and for the bottom formwork, use of foam blocks with tension wire running into them to keep them in steel pipes wires foam block
textile textile ďŹ xture
steel pipes
place.
steel pipes wires steel joint
steel beam tension anchor bolts
steel pipes
wires
wires
foam block
steel joint
System proposed based on the study of tension gridshells depending on the formwork material.
textile
16
textile ďŹ xture
steel beam tension anchor bolts
2010-2019 Portfolio Cristina Garza
House Design _One core.
HOUSE DESIGN +4.50
+3.70
+0.85
0
0.5
1
2
5
17
+0.00
Flexible formwork 01_Digital Fabrication
MANUFACTURING PROCESS
Hot wire cutting. Manufacturing of foam formwork. We used a KUKA robot to hot wire cut the polysterene foam blocks. The robot enables the easy manufacture of variable foam blocks as a standard product. We simplified the geometry into a ruled surface and split it into 4 pieces for our first casting experiment.Then the algorythm that generates the gridshell shape would produce
18
the organization and division of the different foam blocks.
2010-2019 Portfolio Cristina Garza
1.1 PROTOTYPE
Textile and wire net ready for casting.
Preparation of foam cut blocks for casting.
Final concrete cast after one week of curing.
19
Assemble on cable wire net
DLAB Course 01_Digital Fabrication
1.3
DLAB Summer course. Architectural Association (AA)
September 2015 - June 2016
Location: London, UK
- Introduction to the world of complex computational design implementing generative modelling software for the design of a canopy pavillion completly informed by the constraints of the site, weight and structural capability. - Implementation of Incremental sheet forming as a fast prototyping technique to produce the metal components that of the canopy pavilion. - The project evolved in a negotiation between physical prototypes and the digital tools in order to understand the possibilities of the digital tools to expand the boundaries of the physical. - The canopy consisted on two layers of metal components with the shape of a cone which connected together through the deeper area of the cone. Through an analysis software KARAMBA, the utilisation of the surface was obtained, reducing the use of metal components and introducing plastic elements which brought light to the interior of the cover area.
Section proposed geometry
20
Manufacturing process
Source: DLAB team 2017
2010-2019
Assembly process 2nd stage:
Portfolio Cristina Garza
1st stage:
3rd stage:
4th stage:
Source: DLAB team 2017
Top view of final pavilion.
Pavilion details.
Source: Eliff Erdine & Alexandro Kallegias.
21
The completion of the project took one week from the first robotically manufactured metal component to the last tighten bolt.
EASTWEST Architecture 01_Digital Fabrication
1.4
SHED Coffe shop. Interior refurbishment. Architect at EASTWEST Architecture.
September 2016 - July 2017
Team: Adriana Cabello, Eel Tseng. Location: Hackney,London.
- Refurbishment of a coffeshop and coworking space in Hackney. The design of Shed was constraint by the budget and the short time frame to deliver. Then we proposed a shelf that would work as a link of the upper and down areas providing the stair a new character as a space for interaction. Some chairs were design to be located on the stair steps as sitting area. - To accomplish with the constraints requirements we decided to self-fabricated the customized design of the shelf using a CNC-machine. The assemble of the self was completed in two days of work with two workers thanks to the smart labelling of the pieces.
ADDITIONAL JOINERY JOINERY ADDITIONAL 24 mm plywood 24 mm plywood
15 Wooden boxes 15 Wooden boxes 2 pieces (450x520)2 pieces (450x520)
22
24 mm plywood
ADDITIONAL JOINERY
2 pieces (450x450)2 pieces (450x450)
10 Seats 10 Seats 1 piece (400x450) 1 piece (400x450)
2 pieces (280x450) 2 pieces (280x450)
1 piece (220x400) 1 piece (220x400)
The material used for the shelf was Birch plywood of 18mm. We designed the pieces to be cut and then they were assembled in two days by two workers.
2010-2019 Portfolio Cristina Garza
Documentation for CNC manufacturing
BACK PART OF THE JOINERY 2 Pieces of 18mm plywood
JOINERY ELEVATION
23
Vertical pieces: 38 mm plywood or 50mm plywood. Horizontal pieces: 24 mm plywood.
Cycle to School 01_Digital Fabrication
1.5
“Cycle to School Gates”- Urban research. In collaboration with the Bartlett School of Architecture and Camdem Council. Team: Adriana Cabello, Alejandro Espargallas, Paula Mena.
Internship in Izaskun Chinchilla architects May 2015 - September 2015
Location: Madrid, Spain. It is an urban research project in colaboration with The Barttlet School of Architecture and Camden Council. In the last years the free movement of children in the city was a concerning to the community of Sommerstown in London. In this way we designed an urban strategy to encourage children that live and study within the locale to feel safe enough to use implemented cycle routes from a young age. CYCLE-BUS GATEWAYS: The Gateways are customized and movable structure designed to be located at the start and end of a routes. They are designed as a bench for waiting and can be trasformed into table for childrens´ workshops. Their canopy formed of kitesurfing kites works as a shelter where the children can wait until the monitor arrives.
24
Signal Drawings For CNC
All the pieces were cut by a CNC, enabling the mass-customization of different designs for a reasonable price and the evolution of the design through prototypes digitally produced.
2010-2019 Portfolio Cristina Garza
25
- 1.1 Prototype of urban gadgets. -
26
Tt
2010-2019 Portfolio Cristina Garza
02
ARCHITECTURAL SCALE
Development of severalprojects in different architecture studios which varies in different scales, from small interventions such as restaurants or art installation to house extensions to on site completion of residentail buildings and office buildings.
27
Getting to know the requirements in England for building (RIBA stages).
CIE Architekten 02_Architectural Scale
2.1
OVG OFFICE BUILDING. Team Leaders: Eric Van Noord, Igor Sladoljev.
Architect intership at CIE Architekten September 2015 - June 2016
Location: Amsterdam, Netherlands
This project was a restoration of an existing building where we needed to preserve the essential elements of it, such as the structure. In this way we rebuilt the facades, extended the building adding a west wing to the existing area and a cristal prisma on the top where all the public events would take place.
28
I participated actively in this project during most of my internship, participating in the general design, distribution of uses and facade. My tasks included drawing of the general layout and construction details of facade panels. Modelling of the proposal and 3D representation of client’s images.
2010-2019
South Elevation Fragment
Portfolio Cristina Garza
West Elevation Fragment
L4
L3
L2
L1
L0
Facade construction detail.
29
Building axonometric deconstructed by levels.
Izaskun Chinchilla 02_Architectural Scale
2.2
CENTRO CENTRO MADRID. Public competition for Cibeles center refurbishment in Madrid, Spain.
Collaboration with Izaskun chinchilla architects. November 2016
Location: Madrid, Spain.
In this competition I was the leading architect of the design and representation, working with two other architects to finish the competition in a time frame of two weeks. The competition consisted in refurbishing the emblematic post office center, a neoclasic building in one of the main squares of Madrid. The aim of the project was to create an open and free space for the citizens where they could talk and share their interest for the city. Our proposal wanted to bring together two important points for us, reusing existing material, such as the city furniture that you could find in the streets or parks, and keep the identity and spatiality of the existing building, as it is one of the most relevant examples of neoclasic architecture in Madrid. In this way we took elements from the city furniture, such as benches, market stalls, bins.. and we tuned them to create our different scenaries.
Collage bench
30
Meeting area furniture.
Exterior view in the entrance area
Portfolio Cristina Garza
Centre Madrid furniture proposal to organize and conform the interior areas distribution. Made of recycable objects. Conference stands
Information point
Bench - Let’s be together -
2010-2019
Furniture to organize interior spaces.
Market stall
31
Interior view workshop area.
Izaskun Chinchilla 02_Architectural Scale
- 1. MEETING AREA -
- 2. MARKET AREA -
2.
3.
32
- 3. WORKSHOPS AREA -
33
Portfolio Cristina Garza
1.
General floorplan 2010-2019
Mofle. Adaptable furniture.
2.3
Albion Drive. House extension. EASTWEST Architecture
September 2017 - August 2018
Location: London, UK.
My role in EASTWEST Architecture consisted: - Management of projects from the design concept stage to the preparation of the technical drawings and infographies for clients’ presentations. - Acknowledge of RIBA Stages and preparation of the documentation required for the application of the different permits for building in UK, such as planning permissions and tender package. The project I developed were mostly residential, an extension in Walthamstow and Albion Drive, a refurbishment of a Victorian House in Notting Hill and retailing projects, such the interior design of Shed or the design for our new office.
34
- Communication with the client dealing and coordinating the different parties involved in the project such as the client, structural engineers, material suppliers and contractors in order to achieve the best execution of the project. This experience enabled to improve my communication and project management skills.
6-16 Arbutus Street Haggerston London E8 4DT projects@eastwestarchitecture.co.uk www.eastwestarchitecture.co.uk
A
A
A
h=180
CG
SD
12/05/2017
1:50 @ A3
Client:
Project:
Portfolio Cristina Garza
h=160
+300 mm
A
+ 0.0 mm
2010-2019
020 7148 0668 -75 mm
h=170 h=180
h=170 h=170
h=180
h=170 h=180 h=170 h=180
h=170
h=170
Hall
-1050 mm
Shower
-1450mm
Hall + 1150 mm
Title:
-1350 mm
No.
Rev.
MANUFACTURERS Follow manufacturer's guidelines and recommendations for storage and installations.
Flexible room
h=180
SIMILAR APPROVED For construction materials ONLY. Similar Approved construction materials must have equal performance or better at a lower cost. Inform CA before purchase to gain approval.
Dining room Toilet
14,4 m² 1000
1000
NBS REFERENCE SPECIFICATION For all building components and work use the National Building Specification for Workmanship, EU and British Standards.
N
Kitchen
W E
Storage
18,06 m²
Living room 14,20 m²
1500
-1450 mm
S
1515 2955
Studio 6,7 m²
Dining room
-1850 mm
3250
15,5 m²
1350 5920
Exterior dining area
-1850 mm
Lower Ground Floor Plan
Ground Floor Plan -385 mm
Garden
Architecture | Interior Design | Product Planning | Project Management + 4190 mm
PROPOSAL Decking area
-45 mm 3500
+1150 mm
+0.0 mm
Exterior terrace 2695
Dining room
2995
Lower ground floorKitchen Flexible room
Do not scale from this drawing. Contractor to take and check all dimensions on site before work commences. Discrepancies to be reported to architect. Subcontractors to verify all dimensions on site before making shop drawings or commencing manufacture. This drawing is copyright.
35
-1450 mm
PROPOSAL
Architecture | Interior Design | Product Planning | Project Management
E
S
N
W
NBS REFERENCE SPECIFICATION For all building components and work use the National Building Specification for Workmanship, EU and British Standards.
SIMILAR APPROVED For construction materials ONLY. Similar Approved construction materials must have equal performance or better at a lower cost. Inform CA before purchase to gain approval.
Rev.
No.
MANUFACTURERS Follow manufacturer's guidelines and recommendations for storage and installations.
Project:
1:100 @ A3
Client:
Title:
12/05/2017
SD
CG
B
B
020 7148 0668
B
6-16 Arbutus Street Haggerston London E8 4DT projects@eastwestarchitecture.co.uk www.eastwestarchitecture.co.uk
1705
EASTWEST ARCHITECTURE
8,5 m²
Do not scale from this drawing. Contractor to take and check all dimensions on site before work commences. Discrepancies to be reported to architect. Subcontractors to verify all dimensions on site before making shop drawings or commencing manufacture. This drawing is copyright.
2770
B
und floor
EASTWEST ARCHITECTURE
36
Ttt
2010-2019 Portfolio Cristina Garza
03
ACADEMIC PROJECTS
Collection of design projects developed in the Architecture degree to different
37
workshops performed during my university period.
Final Master’s design project 03_Academic projects
3.1
Dwells on high.
Creativity Hub for social interaction.
Final master’s design project.
Master in Architecture & Theory at University of Navarra, Spain. September 2015 - September 2016
LIVING ON THE TOP Location: Amsterdam, Netherlands
Laboratory for Art and Social research Effective use of inhabitated areas to introduce social urban space. Amsterdam, Netherlands
project ofinthe My final thesis focuses on the research ofFinal building a master and degree in Architecture. density city with a lack of land and a population that rise every year taking as case scenario the city of Amsterdam. CONCEPT
The plot chosen for study is situated in the historical cenMy final tesis project was a research about how to ter of Amsterdam,build which is alsocityone theofmost dense in a density withof a lack land and a populationThe that rise every a metropoli like areas mostly dwellings. area hasyear. an being important histoLondon of Berlin. rical character.
It is located in one of the most emblematics areas of the city. It use to be the limit of the first settle-
The project proposed a Hub for social encounter, where ment of the city. This area was really affected people can enjoy during and learn from bringing tothe war so itseach layoutother, changed with the new urban developments the 20th gether the multicultural and artistic of profile ofcentury. the city. In all this area there is a need of social services that
38
satisfy some social needs working The project analyses the living areas ofsuch the as plot and space confor young entrepeneurs or libraries and leisure nects with platform the different empty spaces. This platareas for old and retire people. form not only communicate thembuilding but provides I develope a social container new whichuses is supperposed over the existing buildings to reto the existing buildings. The building appears as trying a parasit estructure and extend an old empty building of that colonize the top of the dwellings. design the area andexisting provide the new space The needed in the city. is a radical intervention that pretends to add value to the historical background, integrating a symbol of the architectural style of our decade.
Exterior view of access area to interior courtyard.
2010-2019 Portfolio Cristina Garza Urban regeneration . Aereal view of new plot design.
USES FLOORPLAN DISTRIBUTION.
Art centre and exhibition areas.
Dwellings for temporary artists.
Dwellings for temporary artists.
Education space.
39
Restore old building. Social centre.
Final Master’s design project 03_Academic projects
40
View from interior courtyard. Access to exhibition space.
2010-2019 Portfolio Cristina Garza
Section of old building and new extesion.
41
Interior view of hanging platform.
Final Master’s design project 03_Academic projects
ble cubierta
se concibe coo un único ente, una cubierta lo que irá recubierta por arriba y por abajo o acabado que homogeinice el conjunto. Se ha nio alucobond en placas que le de una cierta bado exterior.
Construction The building hang over the existing buildings through a complex linear skeleton of 3D steel trusses that generate a rigid body. The supports of the platform + PFC + are adapted to the different conditions of the floor area. Then three differents supports have ‘’Viviendo en been las alturas’’developed: The main cores which provide access to the extension Centro de desarrollo artístico y social building and are placed in the most stressed areas withing the building. Universidad de Navarra 2016
Amsterdam, Binnengasthuis area. Cristina Garza Lasierra
CONSTRUCCIÓN Second, the portico colums which overflight the existing building surrounding it. Third, the bridge supports that compensate the high bending forces from the cantilever of the main entrance to the patio.
Detalle constructivo zona museo
CONSTRUCTIVE AXO SECTION. Art exhibition area.
1. 2.
3.
ansparencia y luz
plásticos y los distintos tipos de vidrios odo el proyecto para formar las fachadas ra conformar las particiones interiores, de
onsigue un caracter ligero y jugar con las el espectador y el visitante.
4.
o técnico sobre plots
suelo técnico para ocultar todo el cableado eléctrico espacio interior más limpio. Utilizamos dos tipos de n el proyecto para diferenciar la zona pública de la a primera con acabado cerámico tipo cemento y el árima de madera de de roble claro.
5.
tructura metálica
licos que sustentan la plataforma a cota que es necesaria. Formada por se une al suelo por medio de uniones ara transmitir mejor al suelo los esfuerzos .
42
1. Milky polycarbonate facade. 2. Metal cladding roof over substructure. 3.IPE 600. 3D Metal truss. 4.Technical floor for installation and plumbing. 5. Metal structural colums to overhang existing building.
+ PFC +
Universidad de Navarra 2016
‘’Viviendo en las alturas’’ Centro de desarrollo artístico y social Amsterdam, Binnengasthuis area. Cristina Garza Lasierra
Structure level: +13.50m
Structure level: +17.50m
12800
12420
49696 4137
4137
4137
1049
2200
4141
4141
4141
4141
4147
4141
4141
4141
4141
4141
4141
4141
4147
4141
4141
5287 6180
MALLAZO ANTIFISURACIÓN
2200
HORMIGÓN
4141
4141
4141
4141
4141
4141
4141
4141
4977
1651
5294 5287
∅12
∅16
∅20
∅25
POSICIÓN I
25
30
35
45
65
100
POSICIÓN II
35
40
45
60
85
135
∅10
∅8
DÍAMETRO 8
268 6378
19080
1651
100 cm 100 cm
EN CERCOS
6
100xØ < 200 cm
6370
378
Ø10
Ø12
Ø25
Ø32
40
50
60
80
120
190
310
90
120
170
260
430
30
Ø16
40
60
95
155
85
130
215
60
70
HA-25
20
25
HA-25
30
35
45
60
COMPRESION POSICION II
4
Ø8
HA-25
COMPRESION POSICION I
Ø20
2615
2368
2089
2400
4794 3301
371
7479
7479
8910
7479
12280
30
16,67
50
30 30
VARIABLE
YG =0,00
YG =1,50
3262
4347
3869
LÍMITE ELÁSTCO 235 N/mm2
4755
435
1,15
435
COEFICIENTES PARCIALES DE SEGURIDAD (E.L.U.) NIVEL DE CONTROL Efecto favorable Efecto desfavorable
TIPO DE ACCIÓN
NORMAL
YG =1,00
YG =1,35
PERMANENTE DE VALOR NO CONSTANTE NORMAL
YG =1,00
YG =1,50
VARIABLE
YG =0,00
YG =1,50
NORMAL
A C E R O
e1
e1
E S T R U C T U R A L
L A M I N A D O CLASE
S-275-JR
LÍMITE ELÁSTCO 275 N/mm2
CLASE
S-275-JR
LÍMITE ELÁSTCO 275 N/mm2
C O N F O R M A D O CLASE
S-235-JR
CLASE
S-235-JR
LÍMITE ELÁSTCO 235 N/mm2 LÍMITE ELÁSTCO 235 N/mm2
U N I O N E S SOLDADURAS
f =420N/mm2
PERNOS
B-400-S
C A R A C T E R I S T I C A S N D B - S E - A
D I S P O S I C I O N E S
D E
a
e2
Structure level: +24.00m Planta Forjado +17.50
LOS CORDONES DE SOLDADURA SERAN CONTINUOS Y DE PENETRACION COMPLETA
e1
a
S E G U
S O L D A D U R A
a
e1
[ e 1:200 ]
4558
4410
e2
e1 > e2
a>
e1
e1 > e2
a>
e1
a
4857
2681
2323
1,15
NORMAL
A C E R O
3299
4725
NORMAL
B 500 S
Coeficientes parciales de seguridad para la resistencia según apartado 2.3.3 del DB-SE-A
Structure level: +21.50m 1049
B 500 S
A C E R O 3234
a>
a>
30 30 30 30
VIGAS Y SOPORTES LOSAS Y FORJADOS
PERFILES
3951 3320
e1 > e2
e1 > e2
16,67 16,67 16,67
e1
e2
50
16,67
1,50
16,67
PLACAS / PANELES 5136
LOS CORDONES DE SOLDADURA SERAN CONTINUOS Y DE PENETRACION COMPLETA
[ e 1:200 ]
30
16,67
1,50 1,50 1,50 1,50
PERFILES
5136
S O L D A D U R A
e1
a
1,50
ESTADÍSTICO ESTADÍSTICO ESTADÍSTICO ESTADÍSTICO ESTADÍSTICO
CHAPAS
3245
e2
ESTADÍSTICO
HA-25/B/20/IIa HA-25/B/20/IIa
HA-25/B/20/IIa
COEFICIENTE PARCIAL RESISTENCIA DE El acero a utilizar TIPO DE HORMIGÓNNIVEL DE CONTROL 2 DE SEGURIDAD (Ys) CÁLCULO (N/mm en ) las armaduras debe estar B 500 S NORMAL 435 1,15 garantizado por 435 B 500 S NORMAL 1,15 la Marca AENOR 435 B 500 S NORMAL 1,15
PERMANENTE
5803
S E G U
4402
Planta Forjado +13.00
40x∅
RESISTENCIA DE RECUBRIMIENTO COEFICIENTE PARCIAL TIPO DE HORMIGÓNNIVEL DE CONTROL 2 MÍNIMO (mm) ) DE SEGURIDAD (Yc) CÁLCULO (N/mm
LOSAS Y FORJADOS HA-25/B/20/IIa SOLERAS
EJECUCIÓN
4347
D E
LOCALIZACIÓN
LOCALIZACIÓN
VIGAS Y SOPORTES HA-25/B/20/IIa
3989
a
48P+184
HORMIGONES
ACERO
CIMENTACIÓN
4345
D I S P O S I C I O N E S
215
NOTA
23(*48)P+184
3392
LÍMITE ELÁSTCO 235 N/mm2
S-235-JR
Ø20
EN TODA LA OBRA
3524
S-235-JR
CLASE
Ø16
1. LOS EMPALMES DE BARRAS MOTIVADOS POR CORTES DE LA MISMA, SE REALIZARÁN MEDIANTE UN SOLAPE MÍNIMO DE 40 VECES EL DIÁMETRO
2∅16
MUROS
Coeficientes parciales de seguridad para la resistencia según apartado 2.3.3 del DB-SE-A
C A R A C T E R I S T I C A S N D B - S E - A
155
2∅16
EN TODA LA OBRA HA-25/B/20/IIa
3902
3902
4757
LÍMITE ELÁSTCO 275 N/mm2
CLASE
f =420N/mm2 B-400-S
Ø12
1. LA LONGITUD DE ANCLAJE SERÁ LA MAYOR DE LAS DOS (*)
4123
C O N F O R M A D O
SOLDADURAS
430
130
13024
S-275-JR
5268
1651
8276
U N I O N E S
PERNOS
310
95
85
MUROS
7470
CLASE
A C E R O
PLACAS / PANELES
190 260
60
60
3392
CHAPAS
PERFILES
19273
120 170
40
45
CIMENTACIÓN
LÍMITE ELÁSTCO 275 N/mm2
Ø10
CUADRO DE CARACTERÍSTICAS SEGÚN LA INSTRUCCIÓN EHE-08
4977
E S T R U C T U R A L S-275-JR
Ø8
DOBLANDO LA BARRA POR LA CARA INFERIOR. EJEMPLO:
5904
1651
L A M I N A D O CLASE
80 120
30
35
3392
A C E R O
60 90
25
30
3392
13024
NORMAL
50 70
20
HA-25
5268 FORJADO COTA + 17,50 m
YG =1,35 YG =1,50
PERFILES
4347
435
YG =1,00 YG =1,00
HORMIGON
4793
30 30
16,67 16,67
435
1,15
7470
16,67 16,67
1,15
NORMAL
4755
1,50 1,50
NORMAL NORMAL
COEFICIENTES PARCIALES DE SEGURIDAD (E.L.U.) NIVEL DE CONTROL Efecto favorable Efecto desfavorable
A C E R O 3262
1,50 1,50
ESTADÍSTICO ESTADÍSTICO
5663
7470
4755
4755 8276
3869
16,67
1,50
ESTADÍSTICO ESTADÍSTICO
7470
5363
5663 7470
4757
B 500 S
PERMANENTE
Ø32
40 60
HA-25
COMPRESION POSICION II
3392
7470
B 500 S
TIPO DE ACCIÓN
PERMANENTE DE VALOR NO CONSTANTE NORMAL
Ø25
HA-25 HA-25
COMPRESION POSICION I
3392
VIGAS Y SOPORTES
100xØ < 200 cm
PARA LAS ARMADURAS QUE, DURANTE EL HORMIGONADO, NO SE ENCUENTRAN EN NINGUNO DE LOS CASOS ANTERIORES.
3392
MUROS
LOSAS Y FORJADOS
100 cm
TRACCION POSICION II
3392
CIMENTACIÓN
EJECUCIÓN
100 cm
EN CERCOS
POSICION II:
3181
HA-25/B/20/IIa
COEFICIENTE PARCIAL RESISTENCIA DE El acero a utilizar TIPO DE HORMIGÓNNIVEL DE CONTROL 2 DE SEGURIDAD (Ys) CÁLCULO (N/mm en ) las armaduras debe estar B 500 S NORMAL 1,15 435 garantizado por B 500 S NORMAL 1,15 435 la Marca AENOR 435 B 500 S NORMAL 1,15
LOCALIZACIÓN
EN TODA LA OBRA
1651
50xØ < 50 cm 50xØ < 50 cm
EN ESTRIBOS
NOTA
3181
LOSAS Y FORJADOS HA-25/B/20/IIa SOLERAS
1,50
ESTADÍSTICO
VIGAS Y SOPORTES HA-25/B/20/IIa
ACERO 5904
4347
ESTADÍSTICO
HA-25/B/20/IIa HA-25/B/20/IIa
MUROS
5268
3800 4977
50xØ < 100 cm
ENTRE EMPARRILLADOS
TRACCION POSICION I
2870
EN TODA LA OBRA HA-25/B/20/IIa CIMENTACIÓN 3500
1651
135
DISTANCIA MAXIMA
CADA EMPARRILLADO
PARA LAS ARMADURAS QUE DURANTE EL HORMIGONADO FORMAN CON LA HORIZONTAL UN ANGULO COMPRENDIDO ENTRE 45° y 90° ó QUE EN EL CASO DE FORMAR UN ANGULO INFERIOR A 45°, ESTAN SITUADAS EN LA MITAD INFERIOR DE LA SECCION ó A UNA DISTANCIA IGUAL ó MAYOR A 30 cm DE LA CARA SUPERIOR DE UNA CAPA DE HORMIGONADO.
COEFICIENTE PARCIAL RESISTENCIA DE RECUBRIMIENTO TIPO DE HORMIGÓNNIVEL DE CONTROL 2 DE SEGURIDAD (Yc) CÁLCULO (N/mm ) MÍNIMO (mm)
LOCALIZACIÓN
85
FORJADO COTA + 17,50 m
CUADRO DE CARACTERÍSTICAS SEGÚN LA INSTRUCCIÓN EHE-08 HORMIGONES
60
DESCRIPCION EMPARRILLADO SUPERIOR
POSICION I:
3392
2
523
40x∅
3917
3917
2
48P+184
45
2960
NOTA 1. LOS EMPALMES DE BARRAS MOTIVADOS POR CORTES DE LA MISMA, SE REALIZARÁN MEDIANTE UN SOLAPE MÍNIMO DE 40 VECES EL DIÁMETRO
2∅16
40
EMPARRILLADO INFERIOR
SOPORTES (MINIMO 3 POR TRAMO)
NOTA: SEGUN EL ART.66.5 DE LA EHE SE DEFINE: 3805
523
7479
5385 2400
9
NOTA
35
VIGAS (MINIMO 3 POR VANO)
ACERO: B500S
5385
PARA LAS ARMADURAS QUE, DURANTE EL HORMIGONADO, NO SE ENCUENTRAN EN NINGUNO DE LOS CASOS ANTERIORES.
23(*48)P+184
100
POSICIÓN II
LONGITUDES BASICAS DE SOLAPO EN cm SEGUN EHE 4608
PARA LAS ARMADURAS QUE DURANTE EL HORMIGONADO FORMAN CON LA HORIZONTAL UN ANGULO COMPRENDIDO ENTRE 45° y 90° ó QUE EN EL CASO DE FORMAR UN ANGULO INFERIOR A 45°, ESTAN SITUADAS EN LA MITAD INFERIOR DE LA SECCION ó A UNA DISTANCIA IGUAL ó MAYOR A 30 cm DE LA CARA SUPERIOR DE UNA CAPA DE HORMIGONADO.
POSICION II:
2∅16
∅25
65
NOTA: Ø ES EL DIAMETRO DE LA ARMADURA A LA QUE SE ACOPLA EL SEPARADOR
5385
NOTA: SEGUN EL ART.66.5 DE LA EHE SE DEFINE:
1. LA LONGITUD DE ANCLAJE SERÁ LA MAYOR DE LAS DOS (*) DOBLANDO LA BARRA POR LA CARA INFERIOR. EJEMPLO:
∅20
45
ZAPATAS, LOSAS O ENCEPADOS
POSICION I:
3500
7
∅16
35
MUROS
4763
413
6
417
4
485
∅12
30
ELEMENTO
3305 3364
6
750
HA-25
TRACCION POSICION II
6370
HORMIGON
TRACCION POSICION I
∅10
25
DISPOSICION DE SEPARADORES (ART. 66.2.):
2319
LONGITUDES BASICAS DE SOLAPO EN cm SEGUN EHE ACERO: B500S
∅8
POSICIÓN I
DÍAMETRO
3402
579
EN ESTRIBOS
NOTA: Ø ES EL DIAMETRO DE LA ARMADURA A LA QUE SE ACOPLA EL SEPARADOR
1800
-
P A S I V A S
POSICIÓN II adherencia deficiente POSICIÓN I buena adherencia
533
6378
50xØ < 50 cm
ENTRE EMPARRILLADOS
SOPORTES (MINIMO 3 POR TRAMO)
1851
4833
3
CADA EMPARRILLADO
VIGAS (MINIMO 3 POR VANO)
2000
1,0 0,7
A R M A D U R A S
4026
50xØ < 50 cm
EMPARRILLADO SUPERIOR
MUROS
4
485
2,5
-
A N C L A J E S
50xØ < 100 cm
EMPARRILLADO INFERIOR
ZAPATAS, LOSAS O ENCEPADOS
6
417
2615 4866
DISTANCIA MAXIMA
2,8
1,0 5,0 / 3,0
NIEVE 4609
1651
3156
306
DESCRIPCION
CUBIERTA
2,8 1,1
SOBRECARGA TABIQUERÍA SOBRECARGA USO / MANTENIMIENTO
4977
DISPOSICION DE SEPARADORES (ART. 66.2.): ELEMENTO
PLANTA
COBERTURA PAVIMENTO
4763
10946
3667
2264
5187
2427 6000
POSICIÓN II adherencia deficiente POSICIÓN I buena adherencia
1 5037
P A S I V A S
8160
A R M A D U R A S
3082
A N C L A J E S
1651
PESO PROPIO FORJADO
FORJADO COTA + 17,50 m
0,7
9
359
4977
2689
0
1651
TECHO DE:
2681
1,0
-
2613
450
19080
5186
MALLAZO ANTIFISURACIÓN
2681 6981
-
1,0 5,0 / 3,0
6831
8
198 6831
-
13285
9
0
420
2613
0
813
185
2,5
1,1
SOBRECARGA TABIQUERÍA
490
479
HORMIGÓN
EVALUACIÓN DE CARGAS - CTE-DB-SE-AE
2,8
-
PAVIMENTO SOBRECARGA USO / MANTENIMIENTO
NIEVE
6000
CUBIERTA
2,8
PESO PROPIO FORJADO COBERTURA
5287
13285
0 185
FORJADO COTA + 13,00 m
6
2613
PLANTA
TECHO DE: 2681
3
421
687
0
506
5
276
2057
0
Structure drawing plans for construction.
EVALUACIÓN DE CARGAS - CTE-DB-SE-AE
4
5
3184
155
2613
6981
5294
5
1
276
ARMADURA MOMENTOS POSITIVOS
2681
815
703
307
3
178
ARMADURA MOMENTOS NEGATIVOS
2681 1651
APOYO SOBRE EDIFICIO EXISTENTE
4
CHAPA COLABORANTE
4141
5294
1651
7
484
4725
4530
5294
ARMADURA MOMENTOS POSITIVOS
2200
ARMADURA MOMENTOS NEGATIVOS
CHAPA COLABORANTE
5294
4977
2613
1651
1049
FORJADO COTA + 13,00 m
5294
2194
2701
7
4137
26455
2184
7
484
2681
4141
484
4137
4137
8380
6180
6180 5294
2613
2200
2200
2200
4141
4137
4146
FORJADO COTA + 17,50 m
4141 4141
4146
2200
2200
2200
5287 2681 10580
6180
4141
2681
6180 FORJADO COTA + 13,00 m
4141
12800 49696
4141
2681
2200
2200
2200 8380
6180
6180
12420
4725
4530
Portfolio Cristina Garza
4137
4146
5294
4146
26455
4141
2200
4141
4141
2681
4141
4147
2681
4147
4141
6180
4141
4141
10580
4141
4141
2681
4141
4141
2613
4141
4141
2200
4141
4141
4141
1894
4141
4684
12420
2613
12420
2010-2019
ESTRUCTURAS
2681
5287
5343
4530
ARMADURA MOMENTOS NEGATIVOS
2681
CHAPA COLABORANTE
ARMADURA MOMENTOS POSITIVOS
HORMIGÓN
MALLAZO ANTIFISURACIÓN
ARMADURA MOMENTOS POSITIVOS
HORMIGÓN
MALLAZO ANTIFISURACIÓN
FORJADO COTA + 21,50 m
5343
2613
5294
2681
2613
5294
5343
ARMADURA MOMENTOS NEGATIVOS
CHAPA COLABORANTE
FORJADO COTA + 21,50 m
2681
EVALUACIÓN DE CARGAS - CTE-DB-SE-AE 5294
5343
PLANTA
TECHO DE:
2613 2681
5287 2613
9686
A N C L A J E S
3082
∅12
∅10
∅16
∅20
POSICIÓN I
25
30
35
45
65
100
POSICIÓN II
35
40
45
60
85
135
533
NIEVE A N C L A J E S
4684
100xØ < 200 cm
40
Ø10 50 70
60
Ø12
Ø16
Ø20
Ø25
Ø32
260
60
95
155
VIGAS (MINIMO 3 POR VANO)
60
85
130
215
SOPORTES (MINIMO 3 POR TRAMO)
35
45
310 2615
430
MUROS 2368
4763
PARA LAS ARMADURAS QUE DURANTE EL HORMIGONADO FORMAN CON LA HORIZONTAL UN ANGULO COMPRENDIDO ENTRE 45° y 90° ó QUE EN EL CASO DE FORMAR UN ANGULO INFERIOR A 45°, ESTAN SITUADAS EN LA MITAD INFERIOR DE LA SECCION ó A UNA DISTANCIA IGUAL ó MAYOR A 30 cm DE LA CARA SUPERIOR DE UNA CAPA DE HORMIGONADO.
45 60
∅25
65
100
85
135
DISTANCIA MAXIMA
EMPARRILLADO INFERIOR
50xØ < 100 cm
EMPARRILLADO SUPERIOR
50xØ < 50 cm
CADA EMPARRILLADO
50xØ < 50 cm
ENTRE EMPARRILLADOS
100 cm
EN ESTRIBOS
100 cm
EN CERCOS
100xØ < 200 cm
NOTA: Ø ES EL DIAMETRO DE LA ARMADURA A LA QUE SE ACOPLA EL SEPARADOR
ACERO: B500S
HORMIGON
Ø8
HA-25
40
TRACCION POSICION I
3301
4794
PARA LAS ARMADURAS QUE, DURANTE EL HORMIGONADO, NO SE ENCUENTRAN EN NINGUNO DE LOS CASOS ANTERIORES.
TRACCION POSICION II
HA-25
Ø10 50 70
60
Ø12
Ø16
Ø20
Ø25
Ø32
60
80
120
190
90
120
170
260
30
40
60
95
155
60
85
130
215
COMPRESION POSICION I
HA-25
20
25
COMPRESION POSICION II
HA-25
30
35
45
310 430
NOTA: SEGUN EL ART.66.5 DE LA EHE SE DEFINE:
3805
NOTA
3392
2∅16
POSICION I:
NOTA
PARA LAS ARMADURAS QUE DURANTE EL HORMIGONADO FORMAN CON LA HORIZONTAL UN ANGULO COMPRENDIDO ENTRE 45° y 90° ó QUE EN EL CASO DE FORMAR UN ANGULO INFERIOR A 45°, ESTAN SITUADAS EN LA MITAD INFERIOR DE LA SECCION ó A UNA DISTANCIA IGUAL ó MAYOR A 30 cm DE LA CARA SUPERIOR DE UNA CAPA DE HORMIGONADO.
1. LOS EMPALMES DE BARRAS MOTIVADOS POR CORTES DE LA MISMA, SE REALIZARÁN MEDIANTE UN SOLAPE MÍNIMO DE 40 VECES EL DIÁMETRO
2∅16 48P+184
POSICION II:
PARA LAS ARMADURAS QUE, DURANTE EL HORMIGONADO, NO SE ENCUENTRAN EN NINGUNO DE LOS CASOS ANTERIORES.
40x∅
2870
8910
4608
POSICION II:
1. LA LONGITUD DE ANCLAJE SERÁ LA MAYOR DE LAS DOS (*) DOBLANDO LA BARRA POR LA CARA INFERIOR. EJEMPLO:
23(*48)P+184
NOTA
CUADRO DE CARACTERÍSTICAS SEGÚN LA INSTRUCCIÓN EHE-08 3181
HORMIGONES
LOCALIZACIÓN
RESISTENCIA DE RECUBRIMIENTO COEFICIENTE PARCIAL TIPO DE HORMIGÓNNIVEL DE CONTROL 2 MÍNIMO (mm) ) DE SEGURIDAD (Yc) CÁLCULO (N/mm
3181
EN TODA LA OBRA HA-25/B/20/IIa
4123
HA-25/B/20/IIa
CIMENTACIÓN
4793
HA-25/B/20/IIa
MUROS
VIGAS Y SOPORTES HA-25/B/20/IIa 3392
LOSAS Y FORJADOS HA-25/B/20/IIa HA-25/B/20/IIa
SOLERAS
3392
ACERO FORJADO COTA + 21,50 m
LOCALIZACIÓN
MUROS 3392
3392
EJECUCIÓN
ESTADÍSTICO
1,50 1,50 1,50
ESTADÍSTICO
1,50
ESTADÍSTICO
1,50
B 500 S
LOSAS Y FORJADOS
B 500 S
2∅16
50
16,67 16,67
2∅16 23(*48)P+184
435
1,15
435
30
CUADRO DE CARACTERÍSTICAS SEGÚN LA INSTRUCCIÓN EHE-08
30
HORMIGONES
LOCALIZACIÓN
ACERO
LOCALIZACIÓN
YG =1,35
PERMANENTE DE VALOR NO CONSTANTE NORMAL
YG =1,00
YG =1,50
VARIABLE
YG =0,00
YG =1,50
NORMAL
E S T R U C T U R A L EJECUCIÓN
PERFILES 3392
CHAPAS
3392
A C E R O
CLASE
S-275-JR
LÍMITE ELÁSTCO 275 N/mm2
CLASE
S-275-JR
LÍMITE ELÁSTCO 275 N/mm2
3234
S-235-JR
LÍMITE ELÁSTCO 235 N/mm2
S-235-JR
LÍMITE ELÁSTCO 235 N/mm2
3245
SOLDADURAS
f =420N/mm2
PERNOS
B-400-S
VIGAS Y SOPORTES
B 500 S
LOSAS Y FORJADOS
B 500 S
3299
3320
D E
a e2
435
1,15
435
30 30 30 30
NORMAL
YG =1,00
YG =1,35
YG =1,00
YG =1,50
VARIABLE
YG =0,00
YG =1,50
A C E R O
NORMAL
E S T R U C T U R A L
L A M I N A D O
PERFILES
CLASE CLASE
S-275-JR
LÍMITE ELÁSTCO 275 N/mm2
S-275-JR
LÍMITE ELÁSTCO 275 N/mm2
C O N F O R M A D O
PERFILES
CLASE
S-235-JR
LÍMITE ELÁSTCO 235 N/mm2
CLASE
S-235-JR
LÍMITE ELÁSTCO 235 N/mm2
U N I O N E S
S O L D A D U R A
SOLDADURAS
f =420N/mm2
PERNOS
B-400-S
Coeficientes parciales de seguridad para la resistencia según apartado 2.3.3 del DB-SE-A
LOS CORDONES DE SOLDADURA SERAN CONTINUOS Y DE PENETRACION COMPLETA
e1
a
1,15
NORMAL
PERMANENTE DE VALOR NO CONSTANTE NORMAL
PLACAS / PANELES S E G U
NORMAL
COEFICIENTES PARCIALES DE SEGURIDAD (E.L.U.) NIVEL DE CONTROL Efecto favorable Efecto desfavorable
TIPO DE ACCIÓN
A C E R O
D I S P O S I C I O N E S
Planta Forjado +21.50
16,67
CHAPAS
C A R A C T E R I S T I C A S N D B - S E - A
50
16,67 16,67 16,67 16,67
1,50
A C E R O
CLASE CLASE
U N I O N E S
30
16,67
1,50
1,50
ESTADÍSTICO
PERMANENTE
Coeficientes parciales de seguridad para la resistencia según apartado 2.3.3 del DB-SE-A
1,50 1,50 1,50
ESTADÍSTICO
HA-25/B/20/IIa
COEFICIENTE PARCIAL RESISTENCIA DE El acero a utilizar TIPO DE HORMIGÓNNIVEL DE CONTROL 2 DE SEGURIDAD (Ys) CÁLCULO (N/mm en ) las armaduras debe estar B 500 S NORMAL 1,15 435 EN TODA LA OBRA garantizado por B 500 S NORMAL 435 1,15 CIMENTACIÓN la Marca AENOR 435 B 500 S NORMAL 1,15 MUROS
C O N F O R M A D O
PERFILES PLACAS / PANELES
ESTADÍSTICO ESTADÍSTICO ESTADÍSTICO ESTADÍSTICO
LOSAS Y FORJADOS HA-25/B/20/IIa SOLERAS
L A M I N A D O
4402
HA-25/B/20/IIa HA-25/B/20/IIa
MUROS
3392
3392
A C E R O
RESISTENCIA DE RECUBRIMIENTO COEFICIENTE PARCIAL TIPO DE HORMIGÓNNIVEL DE CONTROL 2 MÍNIMO (mm) ) DE SEGURIDAD (Yc) CÁLCULO (N/mm
EN TODA LA OBRA HA-25/B/20/IIa CIMENTACIÓN
VIGAS Y SOPORTES HA-25/B/20/IIa
YG =1,00
A C E R O
40x∅
30
16,67 16,67
1,15
NORMAL
NORMAL
PERMANENTE
48P+184
30
16,67
NORMAL
COEFICIENTES PARCIALES DE SEGURIDAD (E.L.U.) NIVEL DE CONTROL Efecto favorable Efecto desfavorable
TIPO DE ACCIÓN
1. LOS EMPALMES DE BARRAS MOTIVADOS POR CORTES DE LA MISMA, SE REALIZARÁN MEDIANTE UN SOLAPE MÍNIMO DE 40 VECES EL DIÁMETRO
DOBLANDO LA BARRA POR LA CARA INFERIOR. EJEMPLO:
30
16,67
1,50
ESTADÍSTICO ESTADÍSTICO ESTADÍSTICO
COEFICIENTE PARCIAL RESISTENCIA DE El acero a utilizar TIPO DE HORMIGÓNNIVEL DE CONTROL 2 DE SEGURIDAD (Ys) CÁLCULO (N/mm en ) las armaduras debe estar B 500 S NORMAL 1,15 435 garantizado por B 500 S NORMAL 435 1,15 la Marca AENOR 435 B 500 S NORMAL 1,15
VIGAS Y SOPORTES
NOTA
1. LA LONGITUD DE ANCLAJE SERÁ LA MAYOR DE LAS DOS (*)
EN TODA LA OBRA CIMENTACIÓN
3524
35 45
∅20
LONGITUDES BASICAS DE SOLAPO EN cm SEGUN EHE
POSICION I:
2960
FORJADO COTA + 21,50 m
30 40
DESCRIPCION
190
170
40
25
30
4794
35
ZAPATAS, LOSAS O ENCEPADOS
120
120
20
HA-25
5385
25
ELEMENTO
80
90 30
HA-25
COMPRESION POSICION II
NOTA: SEGUN EL ART.66.5 DE LA EHE SE DEFINE: 4608
5385
POSICIÓN I POSICIÓN II
60
COMPRESION POSICION I
3364
3364
5385
HA-25
10946
2689
Ø8
HA-25
TRACCION POSICION II
∅16
DISPOSICION DE SEPARADORES (ART. 66.2.): 2319
HORMIGON
TRACCION POSICION I
∅12
∅10
100 cm
EN CERCOS
LONGITUDES BASICAS DE SOLAPO EN cm SEGUN EHE
3402
3402
10946
50xØ < 50 cm 100 cm
EN ESTRIBOS
NOTA: Ø ES EL DIAMETRO DE LA ARMADURA A LA QUE SE ACOPLA EL SEPARADOR
ACERO: B500S
4763
∅8
DÍAMETRO
50xØ < 50 cm
ENTRE EMPARRILLADOS
SOPORTES (MINIMO 3 POR TRAMO)
4972
P A S I V A S
POSICIÓN II adherencia deficiente POSICIÓN I buena adherencia 3156
3156
50xØ < 100 cm
CADA EMPARRILLADO
VIGAS (MINIMO 3 POR VANO)
FORJADO COTA + 21,50 m
2368
DISTANCIA MAXIMA
EMPARRILLADO SUPERIOR
MUROS
2319 5239
1,0 0,7
A R M A D U R A S
4866
FORJADO COTA + 24,00 m
DESCRIPCION EMPARRILLADO INFERIOR
ZAPATAS, LOSAS O ENCEPADOS
2,5
-
4609
DISPOSICION DE SEPARADORES (ART. 66.2.): ELEMENTO
2,8
1,0 5,0 / 3,0
SOBRECARGA USO / MANTENIMIENTO 4763
CUBIERTA
1,1
SOBRECARGA TABIQUERÍA
2427
∅25
4026
8160
1894
2264
4026
2057
∅8
DÍAMETRO 4866
4833
COBERTURA PAVIMENTO
P A S I V A S
POSICIÓN II adherencia deficiente POSICIÓN I buena adherencia 4609
2,8
PESO PROPIO FORJADO
0,7
A R M A D U R A S
PLANTA
TECHO DE:
1,0
-
4763
2615
3184
EVALUACIÓN DE CARGAS - CTE-DB-SE-AE
-
1,0 5,0 / 3,0
5956 2427
2615
2,5
1,1
SOBRECARGA TABIQUERÍA SOBRECARGA USO / MANTENIMIENTO
NIEVE
6000
1771
2,8
-
PAVIMENTO
1851
CUBIERTA
2,8
PESO PROPIO FORJADO COBERTURA
C A R A C T E R I S T I C A S N D B - S E - A
S E G U
e1
[ e 1:200 ] e2
e1 > e2
a>
e1
e1 > e2
a>
e1
D I S P O S I C I O N E S
D E
a e2
a
Planta Forjado +24.00
S O L D A D U R A LOS CORDONES DE SOLDADURA SERAN CONTINUOS Y DE PENETRACION COMPLETA
e1
a
e1
[ e 1:200 ] e2
e1 > e2
a>
e1
e1 > e2
a>
e1
a
Espina dorsal estructural
Axonometric of structure skeleton. 3D steel truss
Estructura rígida del edificio, todos los elementos tienen una sujección a esta. Elemento en voladizo anexos a la espina estructural Elementos apoyados sobre edificios preexistentes
Main gantry colum to support extension building over existing ones. Núcleos
Bridge structure to support the long catilever of the entrance canopy.
43
Comunication core to access new building.
Núcleos, totalmente arriostrados, ejercen el papel de pilares de grandes dimensiones que soportan los esfuerzos del edificio.
Mofle. Adaptable furniture. 03_Academic projects
44
3.2
MĂ&#x2013;FLE. Adaptable furniture for Microliving spaces. Product Design Course.
July 2014 - August 2014
Inmerse course in the product industry through the development of a 1.1 prototype of an utilitarian object. The project aimed to provide a solution to spacial issues of the microliving houses in overpopulated cities. The design process was explored through problem solving, development of a market survey, digital tools to represent the design, material research and manufacturing of the final 1.1 prototype.
Parsonâ&#x20AC;&#x2122;s the New School of Design. Location: New York, EEUU.
2010-2019 Portfolio Cristina Garza
WHAT IS A Mร FLE? It is multifunctional and flexible furniture which covers all those necessities of the living room life. Since it is a single object, a lot of space is free, allowing a more flexible use of space. Mรถfle consists in a C unit which can be used single or double as it connects to an adjacent unit through a magnet integrated in the edges. Made in plastic aims to be light for easy transportation. The unit can be easily assemble and combined to provide solutions to different needs, being a stool, shelf, side table or even a coach. The Mรถfle unit has been created with two additional features to provide more possibilities such a structure to be turned into a sofa and a mat.
2/Structure
3/Coach
Three elements that you arrange in different ways to create infinitive possibilites. You can buy them individually or on a set.
45
1/Mรถfle unit
Market Analyses
Mofle. Adaptable furniture. 03_Academic projects
What already exists
My proposal
13/25
First sketches of diverse position arrangements.
46
First mock-ups.
Ephimeral and movable. A furniture that adapts to the needs of the new millenians that have a nomadic style life and donâ&#x20AC;&#x2122;t want to belong expensive or solid furnitures.
2010-2019 Portfolio Cristina Garza
Possible variations
Easy to use and tranform. Just with four movemets you can create the design that you prefer. It adapts to everyone needs!
47
Four different positions
THANK YOU CRISTINA GARZA LASIERRA Architect + Master in Design for Manufacture Phone : +447565233874 Email : cgarzalasierra@gmail.com Linkedin : Cristina Garza Lasierra