Portfolio of Cristina Garza Lasierra

Page 1

ARCH HITECTU TURE + DESIGN Portfolio 2010-2020

CRISTINA GARZA LASIERRA Architect specialized in digital manufacturing


CV

ARB ARCHITECT SPECIALIZED IN DIGITAL MANUFACTURING. Contact :

Phone : +447565233874

31A Kensinton Church street W84LL, London.

Email : cgarzalasierra@gmail.com

+ EDUCATION September 2017 - December 2018

MArch Design for Manufacture. Graduated with Distinction. Bartlett School of Architecture, UCL. London, UK. Specialization in digital manufacturing, digital analysis and computational design.

PERSONAL SKILLS Fast learner Self-motivation

September 2010 - September 2016

Hard working Adaptability

SOFTWARE _2D DRAWING: Autocad Revit Photoshop After Effects In Design Illustrator

Bachelor in Architecture + Master in Theory and Design. University of Navarra, Spain. Final thesis master’s project with distinction.

+ WORKSHOPS August 2017 - September 2018

DLAB course, Architectural Association (AA). London, UK. Learning of digital software and digital manufacturing tools to develop parametric complex designs. Research of a novel manufacturing technique, Incremental Sheet Forming for the manufacturing of variable bespoke metal components to build a 1.1 canopy installation. July 2014 - August 2014

Product Design Course at Parson The New School of Design. _3D MODELLING Rhinoceros : Grasshopper Karamba/Kangaroo Robots (GH plugin) Fusion 360 Maya Cinema 4D _DIGITAL MANUFACTURING:. 3D printing CNC: Drawing, execution and running of GCode. Robots (KUKA/ABB): Coding, execution and set-up.

LANGUAGES Spanish.

2

English.

New York, EEUU. Inmerse course in the product industry through the development of a 1.1 prototype of an utilitarian object. The project aimed to provide a solution to spacial issues of the microliving houses in overpopulated cities. July 2013 - August 2013

Summer School Course at Architectural Association (AA). London, UK. “Inverse London”- Urban research laboratory focus on the analysis of city models to generate a gentrification of an utopic London based on the implementation of data analysis software and new infrastructure development.

+REFERENCES Peter Scully Director of BMADE at the Bartlett School of Architecture, UCL. London. Director MArch Design for Manufacture, UCL. London. Email: p.scully@ucl.ac.uk

Tim Lucas Partner at Price & Myers, London. Structure advisor at MArch Design for Manufacture, UCL. London. Email: p.scully@ucl.ac.uk


2010-2019

Architect at Arup

Februrary 2019 - Current

London, UK - Designer and digital specialist in a confidential project for the design and building of a commercial building in central london. - Automation of digital processes for the integration of different consultance within the same parametric workflow to solve the complex parametric facade. Work in Grasshopper, Revit and Dynamo.

Research Assistant at the Bartlett School of Architecture

September 2019 - Current

Portfolio Cristina Garza

+ EXPERIENCE

- Further development of my final master project, Roboforming, for the manufacturing of highly bespoke metal panels. - Collaboration with UK artists for the realization of large scale projects.

Architect Assistant -Part II at EASTWEST ARCHITECTURE

September 2016 - July 2017

London, UK. - Project manager and designer in the development of a broad range of projects, mostly residential and retailing. - Responsible to carry out the different RIBA stages in a project, from the concept design stage, production of tender package, compilation of building permits to the final construction works stage. - Development of comunication and problem solving skills to coordinate tasks and technical information between client, consultants and suppliers for a correct execution of the project.

Collaboration with Izaskun Chinchilla Architects.

November 2016

Madrid, Spain. - Collaboration in several competitions for Madrid council in Spain. - Design and preparation of general drawings and technical details. Generation of infographies to show the final design result. - Coordination of a team of two people to deliver the work on time.

Internship architecture at Architekten Cie.

September 2015 - June 2016

Amsterdam, Netherlands. - Development of public and retailing projects in the design stage. Drawing of the required information for the client, such as technical drawings, 3D modelling and rendering images of the final design, Building of physical models to show designs. - Participation in an urban planning development with Amsterdam council, for the construction of a new icon tower in the skyline of Rotterdam.

Internship at Izaskun Chinchilla architects.

May 2015 - September 2015

Madrid, Spain. - Urban research project in collaboration with the Space Syntax department at the Bartlett School of Architecture, UCL. London. to improve the cycling movility of children in Sommerstown area. - Focusing on the generation of new cycling routes to improve the movility of children in Sommestown area.

+ EXTRA CURRICULAR ACTIVITIES Technical assistant in Digital manufacturing Laboratory, ARCHLAB.

September 2014 - June 2015

University of Navarra, Spain. - Control of digital tools, such as CNC, lasercut machines and 3D printers. - Assistance to students for their studio design projects to develop physical models that explain their designs. - Training of students in different digital skills modules, such as 3D modelling and drafting software.

Volunteering work at “Tantaka” (Architectural non-profit organization).

September 2014 - June 2015

Pamplona, Spain. Collaboration in “Refurbishment of unfinished houses by the crisis”. The project focused on the assitance of people who lived with low living standards, due to the economic spanish crisis, to improve and finish building their houses to reach the minimum of habitability condition.

Teacher assistant in Architectural Design Department.

September 2012 - June 2013

University of Navarra, Spain.

3

Teaching Architectural Design module in 1st year of the Bachelor’s degree of Architecture.


06

Tt


2010-2019 Portfolio Cristina Garza

01

DIGITAL MANUFACTURING

07

Interest in new emergent technologies and computational design as tools to push the boundaries of design and achieve new formal complexities and tectonic intrincacies. As well as rethinking traditional construction methods through a negotiation between the digital and analog tools to provide more sustainable and efficient solutions to the building environment.


Roboforming 01_Digital Fabrication

1.0

IncreMENTAL Phase II Arup Exhibition space. Location: London, UK

July 2019 - September 2019

This project is based on previous research which explored the application of Robotic Incremental Sheet Forming in the fabrication of structures and architectural components. The complex and free-form shape of the structure developed for the Arup exhibition is composed of more than one hundred individually customised metal components. The smart interlocking system allows the blocks to work compositely. It also allows the control of the flow of forces throughout the double curvature of the structure. Using first principles, the analysis of the assembly has been combined with an extensive finite element analysis of the building blocks (the metal components) and physical tests. The influence of the different geometrical properties of the blocks on their strength, for example, overall depth, diameter of the contact area, curvature, has been investigated. The values

4

obtained have informed the final shape of the components as well as of the general structure.

200 bespoke metal panels conform the double curve sculpture.


5

Portfolio Cristina Garza

2010-2019


6


7

Portfolio Cristina Garza

2010-2019


Roboforming 01_Digital Fabrication

1.1

ROBOFORMING. Robotic Incremental Sheet Forming (RISF) to enhance structural performance of thin metal panels.

MArch Design for Manufacture, Bartlett School of Architecture, UCL. Location: London, UK

September 2017 - December The research project focuses on the implementation of a novel manufacturing technique, Robotic Incremental Sheet Forming to explore the material behaviour of thin metal sheets when it is exposed to gradual deformation, as a result enhancing the structural performance of the metal surface. A digital parametric workflow is developed which combines the different stages of digital fabrication - from design, analysis and toolpath algorithm to generate the required design data to the final manufacturing of the metal component, in order to provide the designer with full control over the process. The interweaving of this innovative manufacturing technique with the design computational software is aimed for a mass customized production of variable and bespoke metal components.

Sample of a structural metal component after Incremental Sheet Forming process.

Robot set-up 06. Metal sheet 01.Blank holder frame 02.Steel plate frame to hold metal 03.Toolpath 01- Forming stage 1 05. Step height 04.Toolpath 02- Forming stage 2

Target plane 07. Robot 08.Tool changer for to connect ISF tool holder 09. Tool holder forISF 10. Tool for ISF

08

11. Rotary table

Robot set-up and toolpath definition for Incremental Sheet Forming process.


09

Portfolio Cristina Garza

2010-2019


Roboforming

TOOLPATH GENERATION FOR ISF PROCESS.

01_Digital Fabrication

First pass: Ribs geometry. Stress the metal panel to reduce elasticity.

Second pass: Pocket geometry. Form the diagonal of the squarepanel to avoid bending.

Third pass: Pocket geometry. Details of formed geometries

Rigidize central area exposed to more stresses.

10

Robotic Incremental Sheet Forming _ The concept of incremental forming refers to a gradually localised plastic deformation to generate a 3D geometry form into a 2D metal sheet, directly from design data.


Output GH Script

01. POCKET

Grasshopper Script

2010-2019 Portfolio Cristina Garza

TOOLPATH GENERATION BY TOPOLOGY CLASSIFICATION OF THE 3D GEOMETRIES

02. RIB

Topographical toolpath

03. BUMP

Linear toolpath

Feed In Feed Out Contouring toolpath

Contour

01. Pocket Geometry

01. Ribs Geometry

01. Bump Geometry

11

Physical Result


1kN

x3 8x

WIND Load = 1kN

Karamba analysis to generate general forming geometry for RISF

Displacement

Principal Moment lines

Support and Load conditions.

Utilisation

Roboforming 01_Digital Fabrication

STRUCTURAL ANALYSIS to inform pattern geometries.

FINAL GEOMETRY.

12

From the analysis: Extract stress lines to generate main ribs geometries which rigidize the structure.


2010-2019 Portfolio Cristina Garza

FINAL PROTOTYPE 1.1

13

Manufacturing process


Flexible formwork 01_Digital Fabrication

1.2

SINGLE POUR HOUSE Flexible formwork for concrete structures.

MArch Design for Manufacture, Bartlett School of Architecture, UCL. September 2017 - December

Location: London, UK

The project addresses the need to find an alternative solution to the high cost falseworks traditionally employed in the casting of curve concrete structures in order to be reusable in different scenarios. In this sense, a modular flexible formwork system is developed which can adapt to different situations. In this case, we established a house to test the system proposed being able the falsework to generate several core situations (one, two, three). An algorithm definition analyses a solid shape to a mesh with equal edge lengths in order to achieve a mesh that describes the initial solid shape with node to node distance fixed but v ariable angles. The final aim is to create a whole algorythm that would allow the user to select different characteristics of the house being able to generate all the information needed for the manufacture process. Some kind of do

14

it yourself.

Diagram of Karamba simulation to obtain grisdshells.


15

Portfolio Cristina Garza

2010-2019


Flexible formwork 01_Digital Fabrication

PROPOSED SYSTEM OF FLEXIBLE FORMWORK Mixed materials. Textile + Foam: Use as bottom formwork a cable net with a textile pattern on top and for the bottom formwork, use of foam blocks with tension wire running into them to keep them in steel pipes wires foam block

textile textile ďŹ xture

steel pipes

place.

steel pipes wires steel joint

steel beam tension anchor bolts

steel pipes

wires

wires

foam block

steel joint

System proposed based on the study of tension gridshells depending on the formwork material.

textile

16

textile ďŹ xture

steel beam tension anchor bolts


2010-2019 Portfolio Cristina Garza

House Design _One core.

HOUSE DESIGN +4.50

+3.70

+0.85

0

0.5

1

2

5

17

+0.00


Flexible formwork 01_Digital Fabrication

MANUFACTURING PROCESS

Hot wire cutting. Manufacturing of foam formwork. We used a KUKA robot to hot wire cut the polysterene foam blocks. The robot enables the easy manufacture of variable foam blocks as a standard product. We simplified the geometry into a ruled surface and split it into 4 pieces for our first casting experiment.Then the algorythm that generates the gridshell shape would produce

18

the organization and division of the different foam blocks.


2010-2019 Portfolio Cristina Garza

1.1 PROTOTYPE

Textile and wire net ready for casting.

Preparation of foam cut blocks for casting.

Final concrete cast after one week of curing.

19

Assemble on cable wire net


DLAB Course 01_Digital Fabrication

1.3

DLAB Summer course. Architectural Association (AA)

September 2015 - June 2016

Location: London, UK

- Introduction to the world of complex computational design implementing generative modelling software for the design of a canopy pavillion completly informed by the constraints of the site, weight and structural capability. - Implementation of Incremental sheet forming as a fast prototyping technique to produce the metal components that of the canopy pavilion. - The project evolved in a negotiation between physical prototypes and the digital tools in order to understand the possibilities of the digital tools to expand the boundaries of the physical. - The canopy consisted on two layers of metal components with the shape of a cone which connected together through the deeper area of the cone. Through an analysis software KARAMBA, the utilisation of the surface was obtained, reducing the use of metal components and introducing plastic elements which brought light to the interior of the cover area.

Section proposed geometry

20

Manufacturing process

Source: DLAB team 2017


2010-2019

Assembly process 2nd stage:

Portfolio Cristina Garza

1st stage:

3rd stage:

4th stage:

Source: DLAB team 2017

Top view of final pavilion.

Pavilion details.

Source: Eliff Erdine & Alexandro Kallegias.

21

The completion of the project took one week from the first robotically manufactured metal component to the last tighten bolt.


EASTWEST Architecture 01_Digital Fabrication

1.4

SHED Coffe shop. Interior refurbishment. Architect at EASTWEST Architecture.

September 2016 - July 2017

Team: Adriana Cabello, Eel Tseng. Location: Hackney,London.

- Refurbishment of a coffeshop and coworking space in Hackney. The design of Shed was constraint by the budget and the short time frame to deliver. Then we proposed a shelf that would work as a link of the upper and down areas providing the stair a new character as a space for interaction. Some chairs were design to be located on the stair steps as sitting area. - To accomplish with the constraints requirements we decided to self-fabricated the customized design of the shelf using a CNC-machine. The assemble of the self was completed in two days of work with two workers thanks to the smart labelling of the pieces.

ADDITIONAL JOINERY JOINERY ADDITIONAL 24 mm plywood 24 mm plywood

15 Wooden boxes 15 Wooden boxes 2 pieces (450x520)2 pieces (450x520)

22

24 mm plywood

ADDITIONAL JOINERY

2 pieces (450x450)2 pieces (450x450)

10 Seats 10 Seats 1 piece (400x450) 1 piece (400x450)

2 pieces (280x450) 2 pieces (280x450)

1 piece (220x400) 1 piece (220x400)


The material used for the shelf was Birch plywood of 18mm. We designed the pieces to be cut and then they were assembled in two days by two workers.

2010-2019 Portfolio Cristina Garza

Documentation for CNC manufacturing

BACK PART OF THE JOINERY 2 Pieces of 18mm plywood

JOINERY ELEVATION

23

Vertical pieces: 38 mm plywood or 50mm plywood. Horizontal pieces: 24 mm plywood.


Cycle to School 01_Digital Fabrication

1.5

“Cycle to School Gates”- Urban research. In collaboration with the Bartlett School of Architecture and Camdem Council. Team: Adriana Cabello, Alejandro Espargallas, Paula Mena.

Internship in Izaskun Chinchilla architects May 2015 - September 2015

Location: Madrid, Spain. It is an urban research project in colaboration with The Barttlet School of Architecture and Camden Council. In the last years the free movement of children in the city was a concerning to the community of Sommerstown in London. In this way we designed an urban strategy to encourage children that live and study within the locale to feel safe enough to use implemented cycle routes from a young age. CYCLE-BUS GATEWAYS: The Gateways are customized and movable structure designed to be located at the start and end of a routes. They are designed as a bench for waiting and can be trasformed into table for childrens´ workshops. Their canopy formed of kitesurfing kites works as a shelter where the children can wait until the monitor arrives.

24

Signal Drawings For CNC

All the pieces were cut by a CNC, enabling the mass-customization of different designs for a reasonable price and the evolution of the design through prototypes digitally produced.


2010-2019 Portfolio Cristina Garza

25

- 1.1 Prototype of urban gadgets. -


26

Tt


2010-2019 Portfolio Cristina Garza

02

ARCHITECTURAL SCALE

Development of severalprojects in different architecture studios which varies in different scales, from small interventions such as restaurants or art installation to house extensions to on site completion of residentail buildings and office buildings.

27

Getting to know the requirements in England for building (RIBA stages).


CIE Architekten 02_Architectural Scale

2.1

OVG OFFICE BUILDING. Team Leaders: Eric Van Noord, Igor Sladoljev.

Architect intership at CIE Architekten September 2015 - June 2016

Location: Amsterdam, Netherlands

This project was a restoration of an existing building where we needed to preserve the essential elements of it, such as the structure. In this way we rebuilt the facades, extended the building adding a west wing to the existing area and a cristal prisma on the top where all the public events would take place.

28

I participated actively in this project during most of my internship, participating in the general design, distribution of uses and facade. My tasks included drawing of the general layout and construction details of facade panels. Modelling of the proposal and 3D representation of client’s images.


2010-2019

South Elevation Fragment

Portfolio Cristina Garza

West Elevation Fragment

L4

L3

L2

L1

L0

Facade construction detail.

29

Building axonometric deconstructed by levels.


Izaskun Chinchilla 02_Architectural Scale

2.2

CENTRO CENTRO MADRID. Public competition for Cibeles center refurbishment in Madrid, Spain.

Collaboration with Izaskun chinchilla architects. November 2016

Location: Madrid, Spain.

In this competition I was the leading architect of the design and representation, working with two other architects to finish the competition in a time frame of two weeks. The competition consisted in refurbishing the emblematic post office center, a neoclasic building in one of the main squares of Madrid. The aim of the project was to create an open and free space for the citizens where they could talk and share their interest for the city. Our proposal wanted to bring together two important points for us, reusing existing material, such as the city furniture that you could find in the streets or parks, and keep the identity and spatiality of the existing building, as it is one of the most relevant examples of neoclasic architecture in Madrid. In this way we took elements from the city furniture, such as benches, market stalls, bins.. and we tuned them to create our different scenaries.

Collage bench

30

Meeting area furniture.

Exterior view in the entrance area


Portfolio Cristina Garza

Centre Madrid furniture proposal to organize and conform the interior areas distribution. Made of recycable objects. Conference stands

Information point

Bench - Let’s be together -

2010-2019

Furniture to organize interior spaces.

Market stall

31

Interior view workshop area.


Izaskun Chinchilla 02_Architectural Scale

- 1. MEETING AREA -

- 2. MARKET AREA -

2.

3.

32

- 3. WORKSHOPS AREA -


33

Portfolio Cristina Garza

1.

General floorplan 2010-2019


Mofle. Adaptable furniture.

2.3

Albion Drive. House extension. EASTWEST Architecture

September 2017 - August 2018

Location: London, UK.

My role in EASTWEST Architecture consisted: - Management of projects from the design concept stage to the preparation of the technical drawings and infographies for clients’ presentations. - Acknowledge of RIBA Stages and preparation of the documentation required for the application of the different permits for building in UK, such as planning permissions and tender package. The project I developed were mostly residential, an extension in Walthamstow and Albion Drive, a refurbishment of a Victorian House in Notting Hill and retailing projects, such the interior design of Shed or the design for our new office.

34

- Communication with the client dealing and coordinating the different parties involved in the project such as the client, structural engineers, material suppliers and contractors in order to achieve the best execution of the project. This experience enabled to improve my communication and project management skills.


6-16 Arbutus Street Haggerston London E8 4DT projects@eastwestarchitecture.co.uk www.eastwestarchitecture.co.uk 









 



A

A

A

h=180

CG

 SD



12/05/2017



1:50 @ A3

Client:



Project:



Portfolio Cristina Garza

h=160

+300 mm



A

+ 0.0 mm

2010-2019

020 7148 0668 -75 mm

h=170 h=180

h=170 h=170

h=180

h=170 h=180 h=170 h=180

h=170



h=170

Hall

-1050 mm

Shower

-1450mm

Hall + 1150 mm

Title:

-1350 mm  

No.



Rev.

MANUFACTURERS Follow manufacturer's guidelines and recommendations for storage and installations.

Flexible room

h=180

SIMILAR APPROVED For construction materials ONLY. Similar Approved construction materials must have equal performance or better at a lower cost. Inform CA before purchase to gain approval.

Dining room Toilet

14,4 m² 1000

1000

NBS REFERENCE SPECIFICATION For all building components and work use the National Building Specification for Workmanship, EU and British Standards.

N

Kitchen

W E

Storage

18,06 m²

Living room 14,20 m²

1500

-1450 mm

S

1515 2955

Studio 6,7 m²

Dining room

-1850 mm

3250

15,5 m²

1350 5920

Exterior dining area

-1850 mm

Lower Ground Floor Plan

Ground Floor Plan -385 mm

Garden

Architecture | Interior Design | Product Planning | Project Management + 4190 mm

PROPOSAL Decking area

-45 mm 3500

+1150 mm

+0.0 mm

Exterior terrace 2695

Dining room

2995

Lower ground floorKitchen Flexible room

Do not scale from this drawing. Contractor to take and check all dimensions on site before work commences. Discrepancies to be reported to architect. Subcontractors to verify all dimensions on site before making shop drawings or commencing manufacture. This drawing is copyright.

35

-1450 mm

PROPOSAL

Architecture | Interior Design | Product Planning | Project Management

E

S

N

W

NBS REFERENCE SPECIFICATION For all building components and work use the National Building Specification for Workmanship, EU and British Standards.

SIMILAR APPROVED For construction materials ONLY. Similar Approved construction materials must have equal performance or better at a lower cost. Inform CA before purchase to gain approval.

Rev.

 No.

MANUFACTURERS Follow manufacturer's guidelines and recommendations for storage and installations.

 Project:

  





1:100 @ A3

Client:

Title:

12/05/2017









 SD



CG











B 

B

020 7148 0668

B

6-16 Arbutus Street Haggerston London E8 4DT projects@eastwestarchitecture.co.uk www.eastwestarchitecture.co.uk

1705

EASTWEST ARCHITECTURE

8,5 m²

Do not scale from this drawing. Contractor to take and check all dimensions on site before work commences. Discrepancies to be reported to architect. Subcontractors to verify all dimensions on site before making shop drawings or commencing manufacture. This drawing is copyright.

2770

B

und floor

EASTWEST ARCHITECTURE


36

Ttt


2010-2019 Portfolio Cristina Garza

03

ACADEMIC PROJECTS

Collection of design projects developed in the Architecture degree to different

37

workshops performed during my university period.


Final Master’s design project 03_Academic projects

3.1

Dwells on high.

Creativity Hub for social interaction.

Final master’s design project.

Master in Architecture & Theory at University of Navarra, Spain. September 2015 - September 2016

LIVING ON THE TOP Location: Amsterdam, Netherlands

Laboratory for Art and Social research Effective use of inhabitated areas to introduce social urban space. Amsterdam, Netherlands

project ofinthe My final thesis focuses on the research ofFinal building a master and degree in Architecture. density city with a lack of land and a population that rise every year taking as case scenario the city of Amsterdam. CONCEPT

The plot chosen for study is situated in the historical cenMy final tesis project was a research about how to ter of Amsterdam,build which is alsocityone theofmost dense in a density withof a lack land and a populationThe that rise every a metropoli like areas mostly dwellings. area hasyear. an being important histoLondon of Berlin. rical character.

It is located in one of the most emblematics areas of the city. It use to be the limit of the first settle-

The project proposed a Hub for social encounter, where ment of the city. This area was really affected people can enjoy during and learn from bringing tothe war so itseach layoutother, changed with the new urban developments the 20th gether the multicultural and artistic of profile ofcentury. the city. In all this area there is a need of social services that

38

satisfy some social needs working The project analyses the living areas ofsuch the as plot and space confor young entrepeneurs or libraries and leisure nects with platform the different empty spaces. This platareas for old and retire people. form not only communicate thembuilding but provides I develope a social container new whichuses is supperposed over the existing buildings to reto the existing buildings. The building appears as trying a parasit estructure and extend an old empty building of that colonize the top of the dwellings. design the area andexisting provide the new space The needed in the city. is a radical intervention that pretends to add value to the historical background, integrating a symbol of the architectural style of our decade.

Exterior view of access area to interior courtyard.


2010-2019 Portfolio Cristina Garza Urban regeneration . Aereal view of new plot design.

USES FLOORPLAN DISTRIBUTION.

Art centre and exhibition areas.

Dwellings for temporary artists.

Dwellings for temporary artists.

Education space.

39

Restore old building. Social centre.


Final Master’s design project 03_Academic projects

40

View from interior courtyard. Access to exhibition space.


2010-2019 Portfolio Cristina Garza

Section of old building and new extesion.

41

Interior view of hanging platform.


Final Master’s design project 03_Academic projects

ble cubierta

se concibe coo un único ente, una cubierta lo que irá recubierta por arriba y por abajo o acabado que homogeinice el conjunto. Se ha nio alucobond en placas que le de una cierta bado exterior.

Construction The building hang over the existing buildings through a complex linear skeleton of 3D steel trusses that generate a rigid body. The supports of the platform + PFC + are adapted to the different conditions of the floor area. Then three differents supports have ‘’Viviendo en been las alturas’’developed: The main cores which provide access to the extension Centro de desarrollo artístico y social building and are placed in the most stressed areas withing the building. Universidad de Navarra 2016

Amsterdam, Binnengasthuis area. Cristina Garza Lasierra

CONSTRUCCIÓN Second, the portico colums which overflight the existing building surrounding it. Third, the bridge supports that compensate the high bending forces from the cantilever of the main entrance to the patio.

Detalle constructivo zona museo

CONSTRUCTIVE AXO SECTION. Art exhibition area.

1. 2.

3.

ansparencia y luz

plásticos y los distintos tipos de vidrios odo el proyecto para formar las fachadas ra conformar las particiones interiores, de

onsigue un caracter ligero y jugar con las el espectador y el visitante.

4.

o técnico sobre plots

suelo técnico para ocultar todo el cableado eléctrico espacio interior más limpio. Utilizamos dos tipos de n el proyecto para diferenciar la zona pública de la a primera con acabado cerámico tipo cemento y el árima de madera de de roble claro.

5.

tructura metálica

licos que sustentan la plataforma a cota que es necesaria. Formada por se une al suelo por medio de uniones ara transmitir mejor al suelo los esfuerzos .

42

1. Milky polycarbonate facade. 2. Metal cladding roof over substructure. 3.IPE 600. 3D Metal truss. 4.Technical floor for installation and plumbing. 5. Metal structural colums to overhang existing building.


+ PFC +

Universidad de Navarra 2016

‘’Viviendo en las alturas’’ Centro de desarrollo artístico y social Amsterdam, Binnengasthuis area. Cristina Garza Lasierra

Structure level: +13.50m

Structure level: +17.50m

12800

12420

49696 4137

4137

4137

1049

2200

4141

4141

4141

4141

4147

4141

4141

4141

4141

4141

4141

4141

4147

4141

4141

5287 6180

MALLAZO ANTIFISURACIÓN

2200

HORMIGÓN

4141

4141

4141

4141

4141

4141

4141

4141

4977

1651

5294 5287

∅12

∅16

∅20

∅25

POSICIÓN I

25

30

35

45

65

100

POSICIÓN II

35

40

45

60

85

135

∅10

∅8

DÍAMETRO 8

268 6378

19080

1651

100 cm 100 cm

EN CERCOS

6

100xØ < 200 cm

6370

378

Ø10

Ø12

Ø25

Ø32

40

50

60

80

120

190

310

90

120

170

260

430

30

Ø16

40

60

95

155

85

130

215

60

70

HA-25

20

25

HA-25

30

35

45

60

COMPRESION POSICION II

4

Ø8

HA-25

COMPRESION POSICION I

Ø20

2615

2368

2089

2400

4794 3301

371

7479

7479

8910

7479

12280

30

16,67

50

30 30

VARIABLE

YG =0,00

YG =1,50

3262

4347

3869

LÍMITE ELÁSTCO 235 N/mm2

4755

435

1,15

435

COEFICIENTES PARCIALES DE SEGURIDAD (E.L.U.) NIVEL DE CONTROL Efecto favorable Efecto desfavorable

TIPO DE ACCIÓN

NORMAL

YG =1,00

YG =1,35

PERMANENTE DE VALOR NO CONSTANTE NORMAL

YG =1,00

YG =1,50

VARIABLE

YG =0,00

YG =1,50

NORMAL

A C E R O

e1

e1

E S T R U C T U R A L

L A M I N A D O CLASE

S-275-JR

LÍMITE ELÁSTCO 275 N/mm2

CLASE

S-275-JR

LÍMITE ELÁSTCO 275 N/mm2

C O N F O R M A D O CLASE

S-235-JR

CLASE

S-235-JR

LÍMITE ELÁSTCO 235 N/mm2 LÍMITE ELÁSTCO 235 N/mm2

U N I O N E S SOLDADURAS

f =420N/mm2

PERNOS

B-400-S

C A R A C T E R I S T I C A S N D B - S E - A

D I S P O S I C I O N E S

D E

a

e2

Structure level: +24.00m Planta Forjado +17.50

LOS CORDONES DE SOLDADURA SERAN CONTINUOS Y DE PENETRACION COMPLETA

e1

a

S E G U

S O L D A D U R A

a

e1

[ e 1:200 ]

4558

4410

e2

e1 > e2

a>

e1

e1 > e2

a>

e1

a

4857

2681

2323

1,15

NORMAL

A C E R O

3299

4725

NORMAL

B 500 S

Coeficientes parciales de seguridad para la resistencia según apartado 2.3.3 del DB-SE-A

Structure level: +21.50m 1049

B 500 S

A C E R O 3234

a>

a>

30 30 30 30

VIGAS Y SOPORTES LOSAS Y FORJADOS

PERFILES

3951 3320

e1 > e2

e1 > e2

16,67 16,67 16,67

e1

e2

50

16,67

1,50

16,67

PLACAS / PANELES 5136

LOS CORDONES DE SOLDADURA SERAN CONTINUOS Y DE PENETRACION COMPLETA

[ e 1:200 ]

30

16,67

1,50 1,50 1,50 1,50

PERFILES

5136

S O L D A D U R A

e1

a

1,50

ESTADÍSTICO ESTADÍSTICO ESTADÍSTICO ESTADÍSTICO ESTADÍSTICO

CHAPAS

3245

e2

ESTADÍSTICO

HA-25/B/20/IIa HA-25/B/20/IIa

HA-25/B/20/IIa

COEFICIENTE PARCIAL RESISTENCIA DE El acero a utilizar TIPO DE HORMIGÓNNIVEL DE CONTROL 2 DE SEGURIDAD (Ys) CÁLCULO (N/mm en ) las armaduras debe estar B 500 S NORMAL 435 1,15 garantizado por 435 B 500 S NORMAL 1,15 la Marca AENOR 435 B 500 S NORMAL 1,15

PERMANENTE

5803

S E G U

4402

Planta Forjado +13.00

40x∅

RESISTENCIA DE RECUBRIMIENTO COEFICIENTE PARCIAL TIPO DE HORMIGÓNNIVEL DE CONTROL 2 MÍNIMO (mm) ) DE SEGURIDAD (Yc) CÁLCULO (N/mm

LOSAS Y FORJADOS HA-25/B/20/IIa SOLERAS

EJECUCIÓN

4347

D E

LOCALIZACIÓN

LOCALIZACIÓN

VIGAS Y SOPORTES HA-25/B/20/IIa

3989

a

48P+184

HORMIGONES

ACERO

CIMENTACIÓN

4345

D I S P O S I C I O N E S

215

NOTA

23(*48)P+184

3392

LÍMITE ELÁSTCO 235 N/mm2

S-235-JR

Ø20

EN TODA LA OBRA

3524

S-235-JR

CLASE

Ø16

1. LOS EMPALMES DE BARRAS MOTIVADOS POR CORTES DE LA MISMA, SE REALIZARÁN MEDIANTE UN SOLAPE MÍNIMO DE 40 VECES EL DIÁMETRO

2∅16

MUROS

Coeficientes parciales de seguridad para la resistencia según apartado 2.3.3 del DB-SE-A

C A R A C T E R I S T I C A S N D B - S E - A

155

2∅16

EN TODA LA OBRA HA-25/B/20/IIa

3902

3902

4757

LÍMITE ELÁSTCO 275 N/mm2

CLASE

f =420N/mm2 B-400-S

Ø12

1. LA LONGITUD DE ANCLAJE SERÁ LA MAYOR DE LAS DOS (*)

4123

C O N F O R M A D O

SOLDADURAS

430

130

13024

S-275-JR

5268

1651

8276

U N I O N E S

PERNOS

310

95

85

MUROS

7470

CLASE

A C E R O

PLACAS / PANELES

190 260

60

60

3392

CHAPAS

PERFILES

19273

120 170

40

45

CIMENTACIÓN

LÍMITE ELÁSTCO 275 N/mm2

Ø10

CUADRO DE CARACTERÍSTICAS SEGÚN LA INSTRUCCIÓN EHE-08

4977

E S T R U C T U R A L S-275-JR

Ø8

DOBLANDO LA BARRA POR LA CARA INFERIOR. EJEMPLO:

5904

1651

L A M I N A D O CLASE

80 120

30

35

3392

A C E R O

60 90

25

30

3392

13024

NORMAL

50 70

20

HA-25

5268 FORJADO COTA + 17,50 m

YG =1,35 YG =1,50

PERFILES

4347

435

YG =1,00 YG =1,00

HORMIGON

4793

30 30

16,67 16,67

435

1,15

7470

16,67 16,67

1,15

NORMAL

4755

1,50 1,50

NORMAL NORMAL

COEFICIENTES PARCIALES DE SEGURIDAD (E.L.U.) NIVEL DE CONTROL Efecto favorable Efecto desfavorable

A C E R O 3262

1,50 1,50

ESTADÍSTICO ESTADÍSTICO

5663

7470

4755

4755 8276

3869

16,67

1,50

ESTADÍSTICO ESTADÍSTICO

7470

5363

5663 7470

4757

B 500 S

PERMANENTE

Ø32

40 60

HA-25

COMPRESION POSICION II

3392

7470

B 500 S

TIPO DE ACCIÓN

PERMANENTE DE VALOR NO CONSTANTE NORMAL

Ø25

HA-25 HA-25

COMPRESION POSICION I

3392

VIGAS Y SOPORTES

100xØ < 200 cm

PARA LAS ARMADURAS QUE, DURANTE EL HORMIGONADO, NO SE ENCUENTRAN EN NINGUNO DE LOS CASOS ANTERIORES.

3392

MUROS

LOSAS Y FORJADOS

100 cm

TRACCION POSICION II

3392

CIMENTACIÓN

EJECUCIÓN

100 cm

EN CERCOS

POSICION II:

3181

HA-25/B/20/IIa

COEFICIENTE PARCIAL RESISTENCIA DE El acero a utilizar TIPO DE HORMIGÓNNIVEL DE CONTROL 2 DE SEGURIDAD (Ys) CÁLCULO (N/mm en ) las armaduras debe estar B 500 S NORMAL 1,15 435 garantizado por B 500 S NORMAL 1,15 435 la Marca AENOR 435 B 500 S NORMAL 1,15

LOCALIZACIÓN

EN TODA LA OBRA

1651

50xØ < 50 cm 50xØ < 50 cm

EN ESTRIBOS

NOTA

3181

LOSAS Y FORJADOS HA-25/B/20/IIa SOLERAS

1,50

ESTADÍSTICO

VIGAS Y SOPORTES HA-25/B/20/IIa

ACERO 5904

4347

ESTADÍSTICO

HA-25/B/20/IIa HA-25/B/20/IIa

MUROS

5268

3800 4977

50xØ < 100 cm

ENTRE EMPARRILLADOS

TRACCION POSICION I

2870

EN TODA LA OBRA HA-25/B/20/IIa CIMENTACIÓN 3500

1651

135

DISTANCIA MAXIMA

CADA EMPARRILLADO

PARA LAS ARMADURAS QUE DURANTE EL HORMIGONADO FORMAN CON LA HORIZONTAL UN ANGULO COMPRENDIDO ENTRE 45° y 90° ó QUE EN EL CASO DE FORMAR UN ANGULO INFERIOR A 45°, ESTAN SITUADAS EN LA MITAD INFERIOR DE LA SECCION ó A UNA DISTANCIA IGUAL ó MAYOR A 30 cm DE LA CARA SUPERIOR DE UNA CAPA DE HORMIGONADO.

COEFICIENTE PARCIAL RESISTENCIA DE RECUBRIMIENTO TIPO DE HORMIGÓNNIVEL DE CONTROL 2 DE SEGURIDAD (Yc) CÁLCULO (N/mm ) MÍNIMO (mm)

LOCALIZACIÓN

85

FORJADO COTA + 17,50 m

CUADRO DE CARACTERÍSTICAS SEGÚN LA INSTRUCCIÓN EHE-08 HORMIGONES

60

DESCRIPCION EMPARRILLADO SUPERIOR

POSICION I:

3392

2

523

40x∅

3917

3917

2

48P+184

45

2960

NOTA 1. LOS EMPALMES DE BARRAS MOTIVADOS POR CORTES DE LA MISMA, SE REALIZARÁN MEDIANTE UN SOLAPE MÍNIMO DE 40 VECES EL DIÁMETRO

2∅16

40

EMPARRILLADO INFERIOR

SOPORTES (MINIMO 3 POR TRAMO)

NOTA: SEGUN EL ART.66.5 DE LA EHE SE DEFINE: 3805

523

7479

5385 2400

9

NOTA

35

VIGAS (MINIMO 3 POR VANO)

ACERO: B500S

5385

PARA LAS ARMADURAS QUE, DURANTE EL HORMIGONADO, NO SE ENCUENTRAN EN NINGUNO DE LOS CASOS ANTERIORES.

23(*48)P+184

100

POSICIÓN II

LONGITUDES BASICAS DE SOLAPO EN cm SEGUN EHE 4608

PARA LAS ARMADURAS QUE DURANTE EL HORMIGONADO FORMAN CON LA HORIZONTAL UN ANGULO COMPRENDIDO ENTRE 45° y 90° ó QUE EN EL CASO DE FORMAR UN ANGULO INFERIOR A 45°, ESTAN SITUADAS EN LA MITAD INFERIOR DE LA SECCION ó A UNA DISTANCIA IGUAL ó MAYOR A 30 cm DE LA CARA SUPERIOR DE UNA CAPA DE HORMIGONADO.

POSICION II:

2∅16

∅25

65

NOTA: Ø ES EL DIAMETRO DE LA ARMADURA A LA QUE SE ACOPLA EL SEPARADOR

5385

NOTA: SEGUN EL ART.66.5 DE LA EHE SE DEFINE:

1. LA LONGITUD DE ANCLAJE SERÁ LA MAYOR DE LAS DOS (*) DOBLANDO LA BARRA POR LA CARA INFERIOR. EJEMPLO:

∅20

45

ZAPATAS, LOSAS O ENCEPADOS

POSICION I:

3500

7

∅16

35

MUROS

4763

413

6

417

4

485

∅12

30

ELEMENTO

3305 3364

6

750

HA-25

TRACCION POSICION II

6370

HORMIGON

TRACCION POSICION I

∅10

25

DISPOSICION DE SEPARADORES (ART. 66.2.):

2319

LONGITUDES BASICAS DE SOLAPO EN cm SEGUN EHE ACERO: B500S

∅8

POSICIÓN I

DÍAMETRO

3402

579

EN ESTRIBOS

NOTA: Ø ES EL DIAMETRO DE LA ARMADURA A LA QUE SE ACOPLA EL SEPARADOR

1800

-

P A S I V A S

POSICIÓN II adherencia deficiente POSICIÓN I buena adherencia

533

6378

50xØ < 50 cm

ENTRE EMPARRILLADOS

SOPORTES (MINIMO 3 POR TRAMO)

1851

4833

3

CADA EMPARRILLADO

VIGAS (MINIMO 3 POR VANO)

2000

1,0 0,7

A R M A D U R A S

4026

50xØ < 50 cm

EMPARRILLADO SUPERIOR

MUROS

4

485

2,5

-

A N C L A J E S

50xØ < 100 cm

EMPARRILLADO INFERIOR

ZAPATAS, LOSAS O ENCEPADOS

6

417

2615 4866

DISTANCIA MAXIMA

2,8

1,0 5,0 / 3,0

NIEVE 4609

1651

3156

306

DESCRIPCION

CUBIERTA

2,8 1,1

SOBRECARGA TABIQUERÍA SOBRECARGA USO / MANTENIMIENTO

4977

DISPOSICION DE SEPARADORES (ART. 66.2.): ELEMENTO

PLANTA

COBERTURA PAVIMENTO

4763

10946

3667

2264

5187

2427 6000

POSICIÓN II adherencia deficiente POSICIÓN I buena adherencia

1 5037

P A S I V A S

8160

A R M A D U R A S

3082

A N C L A J E S

1651

PESO PROPIO FORJADO

FORJADO COTA + 17,50 m

0,7

9

359

4977

2689

0

1651

TECHO DE:

2681

1,0

-

2613

450

19080

5186

MALLAZO ANTIFISURACIÓN

2681 6981

-

1,0 5,0 / 3,0

6831

8

198 6831

-

13285

9

0

420

2613

0

813

185

2,5

1,1

SOBRECARGA TABIQUERÍA

490

479

HORMIGÓN

EVALUACIÓN DE CARGAS - CTE-DB-SE-AE

2,8

-

PAVIMENTO SOBRECARGA USO / MANTENIMIENTO

NIEVE

6000

CUBIERTA

2,8

PESO PROPIO FORJADO COBERTURA

5287

13285

0 185

FORJADO COTA + 13,00 m

6

2613

PLANTA

TECHO DE: 2681

3

421

687

0

506

5

276

2057

0

Structure drawing plans for construction.

EVALUACIÓN DE CARGAS - CTE-DB-SE-AE

4

5

3184

155

2613

6981

5294

5

1

276

ARMADURA MOMENTOS POSITIVOS

2681

815

703

307

3

178

ARMADURA MOMENTOS NEGATIVOS

2681 1651

APOYO SOBRE EDIFICIO EXISTENTE

4

CHAPA COLABORANTE

4141

5294

1651

7

484

4725

4530

5294

ARMADURA MOMENTOS POSITIVOS

2200

ARMADURA MOMENTOS NEGATIVOS

CHAPA COLABORANTE

5294

4977

2613

1651

1049

FORJADO COTA + 13,00 m

5294

2194

2701

7

4137

26455

2184

7

484

2681

4141

484

4137

4137

8380

6180

6180 5294

2613

2200

2200

2200

4141

4137

4146

FORJADO COTA + 17,50 m

4141 4141

4146

2200

2200

2200

5287 2681 10580

6180

4141

2681

6180 FORJADO COTA + 13,00 m

4141

12800 49696

4141

2681

2200

2200

2200 8380

6180

6180

12420

4725

4530

Portfolio Cristina Garza

4137

4146

5294

4146

26455

4141

2200

4141

4141

2681

4141

4147

2681

4147

4141

6180

4141

4141

10580

4141

4141

2681

4141

4141

2613

4141

4141

2200

4141

4141

4141

1894

4141

4684

12420

2613

12420

2010-2019

ESTRUCTURAS

2681

5287

5343

4530

ARMADURA MOMENTOS NEGATIVOS

2681

CHAPA COLABORANTE

ARMADURA MOMENTOS POSITIVOS

HORMIGÓN

MALLAZO ANTIFISURACIÓN

ARMADURA MOMENTOS POSITIVOS

HORMIGÓN

MALLAZO ANTIFISURACIÓN

FORJADO COTA + 21,50 m

5343

2613

5294

2681

2613

5294

5343

ARMADURA MOMENTOS NEGATIVOS

CHAPA COLABORANTE

FORJADO COTA + 21,50 m

2681

EVALUACIÓN DE CARGAS - CTE-DB-SE-AE 5294

5343

PLANTA

TECHO DE:

2613 2681

5287 2613

9686

A N C L A J E S

3082

∅12

∅10

∅16

∅20

POSICIÓN I

25

30

35

45

65

100

POSICIÓN II

35

40

45

60

85

135

533

NIEVE A N C L A J E S

4684

100xØ < 200 cm

40

Ø10 50 70

60

Ø12

Ø16

Ø20

Ø25

Ø32

260

60

95

155

VIGAS (MINIMO 3 POR VANO)

60

85

130

215

SOPORTES (MINIMO 3 POR TRAMO)

35

45

310 2615

430

MUROS 2368

4763

PARA LAS ARMADURAS QUE DURANTE EL HORMIGONADO FORMAN CON LA HORIZONTAL UN ANGULO COMPRENDIDO ENTRE 45° y 90° ó QUE EN EL CASO DE FORMAR UN ANGULO INFERIOR A 45°, ESTAN SITUADAS EN LA MITAD INFERIOR DE LA SECCION ó A UNA DISTANCIA IGUAL ó MAYOR A 30 cm DE LA CARA SUPERIOR DE UNA CAPA DE HORMIGONADO.

45 60

∅25

65

100

85

135

DISTANCIA MAXIMA

EMPARRILLADO INFERIOR

50xØ < 100 cm

EMPARRILLADO SUPERIOR

50xØ < 50 cm

CADA EMPARRILLADO

50xØ < 50 cm

ENTRE EMPARRILLADOS

100 cm

EN ESTRIBOS

100 cm

EN CERCOS

100xØ < 200 cm

NOTA: Ø ES EL DIAMETRO DE LA ARMADURA A LA QUE SE ACOPLA EL SEPARADOR

ACERO: B500S

HORMIGON

Ø8

HA-25

40

TRACCION POSICION I

3301

4794

PARA LAS ARMADURAS QUE, DURANTE EL HORMIGONADO, NO SE ENCUENTRAN EN NINGUNO DE LOS CASOS ANTERIORES.

TRACCION POSICION II

HA-25

Ø10 50 70

60

Ø12

Ø16

Ø20

Ø25

Ø32

60

80

120

190

90

120

170

260

30

40

60

95

155

60

85

130

215

COMPRESION POSICION I

HA-25

20

25

COMPRESION POSICION II

HA-25

30

35

45

310 430

NOTA: SEGUN EL ART.66.5 DE LA EHE SE DEFINE:

3805

NOTA

3392

2∅16

POSICION I:

NOTA

PARA LAS ARMADURAS QUE DURANTE EL HORMIGONADO FORMAN CON LA HORIZONTAL UN ANGULO COMPRENDIDO ENTRE 45° y 90° ó QUE EN EL CASO DE FORMAR UN ANGULO INFERIOR A 45°, ESTAN SITUADAS EN LA MITAD INFERIOR DE LA SECCION ó A UNA DISTANCIA IGUAL ó MAYOR A 30 cm DE LA CARA SUPERIOR DE UNA CAPA DE HORMIGONADO.

1. LOS EMPALMES DE BARRAS MOTIVADOS POR CORTES DE LA MISMA, SE REALIZARÁN MEDIANTE UN SOLAPE MÍNIMO DE 40 VECES EL DIÁMETRO

2∅16 48P+184

POSICION II:

PARA LAS ARMADURAS QUE, DURANTE EL HORMIGONADO, NO SE ENCUENTRAN EN NINGUNO DE LOS CASOS ANTERIORES.

40x∅

2870

8910

4608

POSICION II:

1. LA LONGITUD DE ANCLAJE SERÁ LA MAYOR DE LAS DOS (*) DOBLANDO LA BARRA POR LA CARA INFERIOR. EJEMPLO:

23(*48)P+184

NOTA

CUADRO DE CARACTERÍSTICAS SEGÚN LA INSTRUCCIÓN EHE-08 3181

HORMIGONES

LOCALIZACIÓN

RESISTENCIA DE RECUBRIMIENTO COEFICIENTE PARCIAL TIPO DE HORMIGÓNNIVEL DE CONTROL 2 MÍNIMO (mm) ) DE SEGURIDAD (Yc) CÁLCULO (N/mm

3181

EN TODA LA OBRA HA-25/B/20/IIa

4123

HA-25/B/20/IIa

CIMENTACIÓN

4793

HA-25/B/20/IIa

MUROS

VIGAS Y SOPORTES HA-25/B/20/IIa 3392

LOSAS Y FORJADOS HA-25/B/20/IIa HA-25/B/20/IIa

SOLERAS

3392

ACERO FORJADO COTA + 21,50 m

LOCALIZACIÓN

MUROS 3392

3392

EJECUCIÓN

ESTADÍSTICO

1,50 1,50 1,50

ESTADÍSTICO

1,50

ESTADÍSTICO

1,50

B 500 S

LOSAS Y FORJADOS

B 500 S

2∅16

50

16,67 16,67

2∅16 23(*48)P+184

435

1,15

435

30

CUADRO DE CARACTERÍSTICAS SEGÚN LA INSTRUCCIÓN EHE-08

30

HORMIGONES

LOCALIZACIÓN

ACERO

LOCALIZACIÓN

YG =1,35

PERMANENTE DE VALOR NO CONSTANTE NORMAL

YG =1,00

YG =1,50

VARIABLE

YG =0,00

YG =1,50

NORMAL

E S T R U C T U R A L EJECUCIÓN

PERFILES 3392

CHAPAS

3392

A C E R O

CLASE

S-275-JR

LÍMITE ELÁSTCO 275 N/mm2

CLASE

S-275-JR

LÍMITE ELÁSTCO 275 N/mm2

3234

S-235-JR

LÍMITE ELÁSTCO 235 N/mm2

S-235-JR

LÍMITE ELÁSTCO 235 N/mm2

3245

SOLDADURAS

f =420N/mm2

PERNOS

B-400-S

VIGAS Y SOPORTES

B 500 S

LOSAS Y FORJADOS

B 500 S

3299

3320

D E

a e2

435

1,15

435

30 30 30 30

NORMAL

YG =1,00

YG =1,35

YG =1,00

YG =1,50

VARIABLE

YG =0,00

YG =1,50

A C E R O

NORMAL

E S T R U C T U R A L

L A M I N A D O

PERFILES

CLASE CLASE

S-275-JR

LÍMITE ELÁSTCO 275 N/mm2

S-275-JR

LÍMITE ELÁSTCO 275 N/mm2

C O N F O R M A D O

PERFILES

CLASE

S-235-JR

LÍMITE ELÁSTCO 235 N/mm2

CLASE

S-235-JR

LÍMITE ELÁSTCO 235 N/mm2

U N I O N E S

S O L D A D U R A

SOLDADURAS

f =420N/mm2

PERNOS

B-400-S

Coeficientes parciales de seguridad para la resistencia según apartado 2.3.3 del DB-SE-A

LOS CORDONES DE SOLDADURA SERAN CONTINUOS Y DE PENETRACION COMPLETA

e1

a

1,15

NORMAL

PERMANENTE DE VALOR NO CONSTANTE NORMAL

PLACAS / PANELES S E G U

NORMAL

COEFICIENTES PARCIALES DE SEGURIDAD (E.L.U.) NIVEL DE CONTROL Efecto favorable Efecto desfavorable

TIPO DE ACCIÓN

A C E R O

D I S P O S I C I O N E S

Planta Forjado +21.50

16,67

CHAPAS

C A R A C T E R I S T I C A S N D B - S E - A

50

16,67 16,67 16,67 16,67

1,50

A C E R O

CLASE CLASE

U N I O N E S

30

16,67

1,50

1,50

ESTADÍSTICO

PERMANENTE

Coeficientes parciales de seguridad para la resistencia según apartado 2.3.3 del DB-SE-A

1,50 1,50 1,50

ESTADÍSTICO

HA-25/B/20/IIa

COEFICIENTE PARCIAL RESISTENCIA DE El acero a utilizar TIPO DE HORMIGÓNNIVEL DE CONTROL 2 DE SEGURIDAD (Ys) CÁLCULO (N/mm en ) las armaduras debe estar B 500 S NORMAL 1,15 435 EN TODA LA OBRA garantizado por B 500 S NORMAL 435 1,15 CIMENTACIÓN la Marca AENOR 435 B 500 S NORMAL 1,15 MUROS

C O N F O R M A D O

PERFILES PLACAS / PANELES

ESTADÍSTICO ESTADÍSTICO ESTADÍSTICO ESTADÍSTICO

LOSAS Y FORJADOS HA-25/B/20/IIa SOLERAS

L A M I N A D O

4402

HA-25/B/20/IIa HA-25/B/20/IIa

MUROS

3392

3392

A C E R O

RESISTENCIA DE RECUBRIMIENTO COEFICIENTE PARCIAL TIPO DE HORMIGÓNNIVEL DE CONTROL 2 MÍNIMO (mm) ) DE SEGURIDAD (Yc) CÁLCULO (N/mm

EN TODA LA OBRA HA-25/B/20/IIa CIMENTACIÓN

VIGAS Y SOPORTES HA-25/B/20/IIa

YG =1,00

A C E R O

40x∅

30

16,67 16,67

1,15

NORMAL

NORMAL

PERMANENTE

48P+184

30

16,67

NORMAL

COEFICIENTES PARCIALES DE SEGURIDAD (E.L.U.) NIVEL DE CONTROL Efecto favorable Efecto desfavorable

TIPO DE ACCIÓN

1. LOS EMPALMES DE BARRAS MOTIVADOS POR CORTES DE LA MISMA, SE REALIZARÁN MEDIANTE UN SOLAPE MÍNIMO DE 40 VECES EL DIÁMETRO

DOBLANDO LA BARRA POR LA CARA INFERIOR. EJEMPLO:

30

16,67

1,50

ESTADÍSTICO ESTADÍSTICO ESTADÍSTICO

COEFICIENTE PARCIAL RESISTENCIA DE El acero a utilizar TIPO DE HORMIGÓNNIVEL DE CONTROL 2 DE SEGURIDAD (Ys) CÁLCULO (N/mm en ) las armaduras debe estar B 500 S NORMAL 1,15 435 garantizado por B 500 S NORMAL 435 1,15 la Marca AENOR 435 B 500 S NORMAL 1,15

VIGAS Y SOPORTES

NOTA

1. LA LONGITUD DE ANCLAJE SERÁ LA MAYOR DE LAS DOS (*)

EN TODA LA OBRA CIMENTACIÓN

3524

35 45

∅20

LONGITUDES BASICAS DE SOLAPO EN cm SEGUN EHE

POSICION I:

2960

FORJADO COTA + 21,50 m

30 40

DESCRIPCION

190

170

40

25

30

4794

35

ZAPATAS, LOSAS O ENCEPADOS

120

120

20

HA-25

5385

25

ELEMENTO

80

90 30

HA-25

COMPRESION POSICION II

NOTA: SEGUN EL ART.66.5 DE LA EHE SE DEFINE: 4608

5385

POSICIÓN I POSICIÓN II

60

COMPRESION POSICION I

3364

3364

5385

HA-25

10946

2689

Ø8

HA-25

TRACCION POSICION II

∅16

DISPOSICION DE SEPARADORES (ART. 66.2.): 2319

HORMIGON

TRACCION POSICION I

∅12

∅10

100 cm

EN CERCOS

LONGITUDES BASICAS DE SOLAPO EN cm SEGUN EHE

3402

3402

10946

50xØ < 50 cm 100 cm

EN ESTRIBOS

NOTA: Ø ES EL DIAMETRO DE LA ARMADURA A LA QUE SE ACOPLA EL SEPARADOR

ACERO: B500S

4763

∅8

DÍAMETRO

50xØ < 50 cm

ENTRE EMPARRILLADOS

SOPORTES (MINIMO 3 POR TRAMO)

4972

P A S I V A S

POSICIÓN II adherencia deficiente POSICIÓN I buena adherencia 3156

3156

50xØ < 100 cm

CADA EMPARRILLADO

VIGAS (MINIMO 3 POR VANO)

FORJADO COTA + 21,50 m

2368

DISTANCIA MAXIMA

EMPARRILLADO SUPERIOR

MUROS

2319 5239

1,0 0,7

A R M A D U R A S

4866

FORJADO COTA + 24,00 m

DESCRIPCION EMPARRILLADO INFERIOR

ZAPATAS, LOSAS O ENCEPADOS

2,5

-

4609

DISPOSICION DE SEPARADORES (ART. 66.2.): ELEMENTO

2,8

1,0 5,0 / 3,0

SOBRECARGA USO / MANTENIMIENTO 4763

CUBIERTA

1,1

SOBRECARGA TABIQUERÍA

2427

∅25

4026

8160

1894

2264

4026

2057

∅8

DÍAMETRO 4866

4833

COBERTURA PAVIMENTO

P A S I V A S

POSICIÓN II adherencia deficiente POSICIÓN I buena adherencia 4609

2,8

PESO PROPIO FORJADO

0,7

A R M A D U R A S

PLANTA

TECHO DE:

1,0

-

4763

2615

3184

EVALUACIÓN DE CARGAS - CTE-DB-SE-AE

-

1,0 5,0 / 3,0

5956 2427

2615

2,5

1,1

SOBRECARGA TABIQUERÍA SOBRECARGA USO / MANTENIMIENTO

NIEVE

6000

1771

2,8

-

PAVIMENTO

1851

CUBIERTA

2,8

PESO PROPIO FORJADO COBERTURA

C A R A C T E R I S T I C A S N D B - S E - A

S E G U

e1

[ e 1:200 ] e2

e1 > e2

a>

e1

e1 > e2

a>

e1

D I S P O S I C I O N E S

D E

a e2

a

Planta Forjado +24.00

S O L D A D U R A LOS CORDONES DE SOLDADURA SERAN CONTINUOS Y DE PENETRACION COMPLETA

e1

a

e1

[ e 1:200 ] e2

e1 > e2

a>

e1

e1 > e2

a>

e1

a

Espina dorsal estructural

Axonometric of structure skeleton. 3D steel truss

Estructura rígida del edificio, todos los elementos tienen una sujección a esta. Elemento en voladizo anexos a la espina estructural Elementos apoyados sobre edificios preexistentes

Main gantry colum to support extension building over existing ones. Núcleos

Bridge structure to support the long catilever of the entrance canopy.

43

Comunication core to access new building.

Núcleos, totalmente arriostrados, ejercen el papel de pilares de grandes dimensiones que soportan los esfuerzos del edificio.


Mofle. Adaptable furniture. 03_Academic projects

44

3.2

MĂ–FLE. Adaptable furniture for Microliving spaces. Product Design Course.

July 2014 - August 2014

Inmerse course in the product industry through the development of a 1.1 prototype of an utilitarian object. The project aimed to provide a solution to spacial issues of the microliving houses in overpopulated cities. The design process was explored through problem solving, development of a market survey, digital tools to represent the design, material research and manufacturing of the final 1.1 prototype.

Parson’s the New School of Design. Location: New York, EEUU.


2010-2019 Portfolio Cristina Garza

WHAT IS A Mร FLE? It is multifunctional and flexible furniture which covers all those necessities of the living room life. Since it is a single object, a lot of space is free, allowing a more flexible use of space. Mรถfle consists in a C unit which can be used single or double as it connects to an adjacent unit through a magnet integrated in the edges. Made in plastic aims to be light for easy transportation. The unit can be easily assemble and combined to provide solutions to different needs, being a stool, shelf, side table or even a coach. The Mรถfle unit has been created with two additional features to provide more possibilities such a structure to be turned into a sofa and a mat.

2/Structure

3/Coach

Three elements that you arrange in different ways to create infinitive possibilites. You can buy them individually or on a set.

45

1/Mรถfle unit


Market Analyses

Mofle. Adaptable furniture. 03_Academic projects

What already exists

My proposal

13/25

First sketches of diverse position arrangements.

46

First mock-ups.


Ephimeral and movable. A furniture that adapts to the needs of the new millenians that have a nomadic style life and don’t want to belong expensive or solid furnitures.

2010-2019 Portfolio Cristina Garza

Possible variations

Easy to use and tranform. Just with four movemets you can create the design that you prefer. It adapts to everyone needs!

47

Four different positions


THANK YOU CRISTINA GARZA LASIERRA Architect + Master in Design for Manufacture Phone : +447565233874 Email : cgarzalasierra@gmail.com Linkedin : Cristina Garza Lasierra


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.