Pruebas del paquete listings I 1 2 3
\begin{displaymath} \oint_{S}\vec{E}\cdot d\vec{S}=\frac{q}{\ epsilon_{0}} \end{displaymath}
S
~ ¡ dS ~= q E 0
\begin{trivlist} \item\input{\jobname.exa} \end{trivlist}
1 2 3
Let H be a Hilbert space, C be a closed bounded convex subset of H, T a nonexpansive self map of C. Suppose that as n ∞, an,k → 0 for each k, and Îłn = P→ ∞ )+ → 0. Then for k=0 (an,k+1 − an,kP k each x in C, An x = ∞ k=0 an,k T x converges weakly to a fixed point of T .
Let $H$ be a Hilbert space, $C$ be a closed bounded conve a nonexpansive self map of $C$. Suppose that as $n\righta $a_{n,k}\rightarrow0$ for each $k$, and $\gamma_{n}=\sum_ a_{n,k+1}-a_{n,k}\right) ˆ{+}\rightarrow0$. Then for eac $A_{n}x=\sum_{k=0}ˆ{\infty}a_{n,k}Tˆ{k}x$ converges weakl $T$ .
The numbered equation
The numbered equation \begin{equation} u_{tt}-\Delta u+uˆ{5}+u\left| u\right| ˆ{p-2}=0\text{ i ˆ{3}\times\left[ 0,\infty\right[ \label{eqn1}% \end{equation} is automatically numbered as equation \ref{eqn1}.
utt −∆u+u5 +u |u|p−2 = 0 in R3 Ă—[0, ∞[ (1) is automatically numbered as equation 2.
1
2 3
4 5
6
Let $H$ be a Hilbert space, $C$ be a closed bounded convex subset of $H$, $T$ a nonexpansive self map of $C$. Suppose that as $n\rightarrow\infty$, $a_{n,k}\rightarrow0$ for each $k$, and $\gamma_{n}=\sum_{k=0}ˆ{\infty}\left ( a_{n,k+1}-a_{n,k}\right) ˆ{+}\rightarrow 0$. Then for each $x$ in $C$, $A_{n}x=\sum_{k=0}ˆ{\infty}a_{n,k}Tˆ{k}x$ converges weakly to a fixed point of $T$ .
7 8 9 10 11 12 13
The numbered equation \begin{equation} u_{tt}-\Delta u+uˆ{5}+u\left| u\right| ˆ{p-2}=0\text{ in }\mathbf{R} % ˆ{3}\times\left[ 0,\infty\right[ \label{ eqn1} % \end{equation} is automatically numbered as equation \ ref{eqn1}.
1
Let H be a Hilbert space, C be a closed bounded convex subset of H, T a nonexpansive self map of C. Suppose that as n ∞, an,k → 0 for each k, and Îłn = P→ ∞ )+ → 0. Then for k=0 (an,k+1 − an,kP k each x in C, An x = ∞ k=0 an,k T x converges weakly to a fixed point of T . The numbered equation utt −∆u+u5 +u |u|p−2 = 0 in R3 Ă—[0, ∞[ (2) is automatically numbered as equation 2.
1 2 3 4
1 2 3 4
∀x ∈ R :
\begin{equation} \forall x \in \mathbf{R}: \qquad xˆ{2} \geq 0 \end{equation}
x2 ≥ 0
\begin{displaymath} xˆ{2} \geq 0\qquad \textrm{para todo }x\in\mathbb{R} \end{displaymath}
C´odigo de este archivo \documentclass{article} \usepackage{amsmath} \usepackage{amsthm} \usepackage[latin1]{inputenc} \usepackage[normalbf,normalem]{ulem} \usepackage{titlesec} \usepackage{titletoc} \usepackage{amsbsy} \usepackage{multicol} \usepackage{fancyhdr} \usepackage{extramarks} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{times} \usepackage[activeacute,spanish]{babel} \usepackage{color} \usepackage{verbatim} \usepackage{listings} \definecolor{gray97}{gray}{.97} \definecolor{gray85}{gray}{.95} \definecolor{gray75}{gray}{.75} \definecolor{gray45}{gray}{.45} \definecolor{yellow57}{rgb}{1.00,1.00,0.84} \lstset{ frame=Ltb, framerule=0pt, aboveskip=0.5cm, framextopmargin=3pt, framexbottommargin=3pt, framexleftmargin=0.4cm, framesep=0pt, 2
x2 ≥ 0
para todo x ∈ R
(3)
rulesep=.4pt, backgroundcolor=\color{gray97}, rulesepcolor=\color{black}, % stringstyle=\ttfamily, showstringspaces = false, basicstyle=\small\ttfamily, commentstyle=\color{gray45}, keywordstyle=\bfseries, % numbers=left, numbersep=15pt, numberstyle=\tiny, numberfirstline = false, breaklines=true, } %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % minimizar fragmentado de listados \lstnewenvironment{listing}[1][] {\lstset{#1}\pagebreak[0]}{\pagebreak[0]} \lstdefinestyle{consola} {basicstyle=\scriptsize\bf\ttfamily, backgroundcolor=\color{blue57}, } \lstdefinestyle{L} {language=TeX, } % y en la derecha la composici’on. % % \begin{example} % \Large Esto es grande % \end{example} % % Esta parte procede de verbaim.sty de FMi %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \makeatletter \newwrite\solution@stream \openout\solution@stream=\jobname.solutions \newcounter{problem} \newcommand*{\problemname}{Problem} \newcommand{\problem}[1]{% \refstepcounter{problem}% \problemname˜\theproblem:\enskip#1\par
3
} \newcommand{\solution}[1]{% \protected@write\solution@stream{}{% \protect\print@solution{\theproblem}{#1}% }% } \newcommand*{\printsolutions}{% \closeout\solution@stream \makeatletter \InputIfFileExists{\jobname.solutions}{}{}% \makeatother } \newcommand*{\solutionname}{Solution} \newcommand{\print@solution}[2]{% \solutionname˜#1:\enskip#2\par } %\makeatother %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %\makeatletter %\def\ThisFile{\yorname} %\let\OldInput\input %\renewcommand{\input}[1]{% % \renewcommand{\ThisFile}{#1}% % \OldInput{#1}% %} \newwrite\ejercicio@out \newenvironment{ejercicio}% {\begingroup% Lets Keep the Changes Local \@bsphack \immediate\openout \ejercicio@out \jobname.exa \let\do\@makeother\dospecials\catcode‘\ˆˆM\active \def\verbatim@processline{% \immediate\write\ejercicio@out{\the\verbatim@line}}% \verbatim@start}% {\immediate\closeout\ejercicio@out\@esphack\endgroup% % % Y aqu’i lo que se ha a˜nadido % 4
\par\small\addvspace{3ex plus 1ex}\vskip -\parskip \noindent \makebox[0.45\linewidth][l]{% \begin{minipage}[t]{0.45\linewidth} \vspace*{-2ex} \setlength{\parindent}{0pt} \setlength{\parskip}{1ex plus 0.4ex minus 0.2ex} \begin{trivlist} \item\input{\jobname.exa} \end{trivlist} \end{minipage}}% \hfill% \makebox[0.5\linewidth][l]{% \begin{minipage}[t]{0.50\linewidth} \vspace*{-1ex} \verbatiminput{\jobname.exa} \end{minipage}} \par\addvspace{3ex plus 1ex}\vskip -\parskip } %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \newwrite\example@out \newenvironment{example}% {\begingroup% Lets Keep the Changes Local \@bsphack \immediate\openout \example@out \jobname.exa \let\do\@makeother\dospecials\catcode‘\ˆˆM\active \def\verbatim@processline{% \immediate\write\example@out{\the\verbatim@line}}% \verbatim@start}% {\immediate\closeout\example@out\@esphack\endgroup% \makeatother %% Y aqu’i lo que se ha a˜nadido % \par\small\addvspace{3ex plus 1ex}\vskip -\parskip \noindent \makebox[0.5\linewidth][l]{% \hspace*{+2ex} \setlength{\parindent}{0pt} \setlength{\parskip}{1ex plus 0.4ex minus 0.7ex} \begin{minipage}[t]{0.50\linewidth} % \vspace*{-1ex} \vspace*{-2ex}
5
\lstinputlisting[style=L, basicstyle=\scriptsize\bf\ttfamily, backgroundcolor=\color{yellow57},]{\jobname.exa} %\verbatiminput{\jobname.exa} \end{minipage}} \hfill \hspace{10pt}% \makebox[0.45\linewidth][l]{% \begin{minipage}[t]{0.45\linewidth} \vspace*{-2ex} \setlength{\parindent}{0pt} \setlength{\parskip}{1ex plus 0.4ex minus 0.7ex} \begin{trivlist} \item\input{\jobname.exa} \end{trivlist} \end{minipage}}% \par\addvspace{3ex plus 1ex}\vskip -\parskip }
\begin{document} Pruebas del paquete listings \begin{example} $$\oint_{S}\vec{E}\cdot d\vec{S}=\frac{q}{\epsilon_{0}} $$ \end{example} \begin{lstlisting}[style=L] \begin{trivlist} \item\input{\jobname.exa} \end{trivlist} \end{lstlisting} \begin{ejercicio} Let $H$ be a Hilbert space, $C$ be a closed bounded convex subset of $H$, $T$ a nonexpansive self map of $C$. Suppose that as $n\rightarrow\infty$, $a_{n,k}\rightarrow0$ for each $k$, and $\gamma_{n}=\sum_{k=0}ˆ{\infty}\left( a_{n,k+1}-a_{n,k}\right) ˆ{+}\rightarrow0$. Then for each $x$ in $C$, $A_{n}x=\sum_{k=0}ˆ{\infty}a_{n,k}Tˆ{k}x$ converges weakly to a fixed point of $T$ . The numbered equation \begin{equation} u_{tt}-\Delta u+uˆ{5}+u\left| u\right| ˆ{p-2}=0\text{ in }\mathbf{R}% ˆ{3}\times\left[ 0,\infty\right[ \label{eqn1}% \end{equation} is automatically numbered as equation \ref{eqn1}. 6
\end{ejercicio} \begin{example} Let $H$ be a Hilbert space, $C$ be a closed bounded convex subset of $H$, $T$ a nonexpansive self map of $C$. Suppose that as $n\rightarrow\infty$, $a_{n,k}\rightarrow0$ for each $k$, and $\gamma_{n}=\sum_{k=0}ˆ{\infty}\left( a_{n,k+1}-a_{n,k}\right) ˆ{+}\rightarrow0$. Then for each $x$ in $C$, $A_{n}x=\sum_{k=0}ˆ{\infty}a_{n,k}Tˆ{k}x$ converges weakly to a fixed point of $T$ . The numbered equation \begin{equation} u_{tt}-\Delta u+uˆ{5}+u\left| u\right| ˆ{p-2}=0\text{ in }\mathbf{R}% ˆ{3}\times\left[ 0,\infty\right[ \label{eqn1}% \end{equation} is automatically numbered as equation \ref{eqn1}. \end{example} \begin{example} \begin{equation} \forall x \in \mathbf{R}: \qquad xˆ{2} \geq 0 \end{equation} \end{example} \begin{example} \begin{displaymath} xˆ{2} \geq 0\qquad \textrm{para todo }x\in\mathbb{R} \end{displaymath} \end{example}
7