06_mathima-themaSept09

Page 1

∆ευτέρα, 19 Οκτωβρίου 2009. Άσκηση 1 Έστω X 1 , X 2 τ.µ. από τριωνυµική κατανοµή µε σ.π.: N! N −x −x f ( x1 , x2 , p1 , p2 ) = p1x1 p2 x2 (1 − p1 − p2 ) 1 2 , µε x1 ! x2 !( N − x1 − x2 )! x1 , x2 = 0,1,..., N , x1 + x2 ≤ N , 0 < p1 , p2 < 1 και p1 + p2 < 1 . α) να δειχθεί ότι ανήκει στην Ε.Ο.Κ. β) να µετατραπεί στην κανονική µορφή, γ) να βρεθούν οι E ( X j ) ,V ( X j ) , j = 1,2 και Cov ( X 1 , X 2 ) . Λύση: α) Στήριγµα S f = { x ∈ ℝ : f ( x1 , x2 , p1 , p2 ) > 0} = 0,1, 2,..., N , δηλαδή ανεξάρτητο των παραµέτρων p1 , p2 . N! N −x −x f ( x1 , x2 , p1 , p2 ) = p1x1 p2 x2 (1 − p1 − p2 ) 1 2 = x1 ! x2 !( N − x1 − x2 )! N! (1 − p1 − p2 ) = p1x1 p2 x2 x +x x1 ! x2 !( N − x1 − x2 )! (1 − p1 − p2 ) 1 2 N

N! p1x1 p2 x2 N 1 − p1 − p2 ) = x1 x2 ( x1 ! x2 !( N − x1 − x2 )! (1 − p1 − p2 ) (1 − p1 − p2 ) x1

x2

    N! p1 p2 N     (1 − p1 − p2 ) = x1 ! x2 !( N − x1 − x2 )!  1 − p1 − p2   1 − p1 − p2  x1 x2       N! p1 p2 N exp log   + log   + log (1 − p1 − p2 )  = x1 ! x2 !( N − x1 − x2 )! 1 − p − p 1 − p − p  1 2   1 2      exp  x1 log  1−    exp  x1 log  1− 

  p1  + x2 log  p1 − p2  1−   p1  + x2 log  p1 − p2  1−

 p2 N!  =  + N log (1 − p1 − p2 )  p1 − p2   x1 ! x2 !( N − x1 − x2 )!  p2 N!  + N log 1 − p − p ( )   1 2 p1 − p2   x1 ! x2 !( N − x1 − x2 )!

άρα ανήκει στην Ε.Ο.Κ. µε: 

 p1  , T1 ( x1 , x2 ) = x1 ,  1 − p1 − p2 

η1 ( p1 , p2 ) = log 

 p2  , T2 ( x1 , x2 ) = x2 ,  1 − p1 − p2 

η 2 ( p1 , p2 ) = log 

B ( p1 , p2 ) = − N log (1 − p1 − p2 ) και h ( x1 , x2 ) =

1

N! x1 ! x2 !( N − x1 − x2 )!


β)

Κανονική Μορφή: 

 p1  = η1 ⇒  1 − p1 − p2 

η1 ( p1 , p2 ) = log 

p1 = eη1 ⇒ 1 − p1 − p2

p1 = eη1 − eη1 p1 − eη1 p2 ⇒

eη1 − eη1 p2 (1) 1 + eη1

p1 + eη1 p1 = eη1 − eη1 p2 ⇒ p1 (1 + eη1 ) = eη1 − eη1 p2 ⇒ p1 =

 p2 p2 = eη2 ⇒  = η2 ⇒ 1 − p1 − p2  1 − p1 − p2 

η 2 ( p1 , p2 ) = log 

(1)

p2 (1 + eη2 ) = eη2 − eη2 p1 ⇒

p2 = eη2 − eη2 p1 − eη2 p2 ⇒ p2 + eη2 p2 = eη2 − eη2 p1 ⇒

eη1 − eη1 p2 p2 (1 + e ) = e − e ⇒ 1 + eη1 p2 (1 + eη2 )(1 + eη1 ) = (1 + eη1 ) eη2 − eη2 ( eη1 − eη1 p2 ) ⇒ η2

η2

η2

p2 (1 + eη1 + eη2 + eη1 eη2 ) = eη2 + eη1 eη2 − eη1 eη2 + eη1 eη2 p2 ⇒

p2 (1 + eη1 + eη2 ) + p2eη1 eη2 = eη2 + eη1 eη2 p2 ⇒ p2 (1 + eη1 + eη2 ) = eη2 ⇒ p2 =

eη2 (2) 1 + eη1 + eη2

(1),(2) ⇒ p1 =

eη2 eη1 1 + eη1 + eη2 − eη1 eη2 η1 η2 1+ e + e = = 1 + eη1 1 + eη1 1 + eη1 + eη2

eη1 − eη1

(

(

)(

)

)

eη1 (1 + eη1 ) eη1 eη1 + e2η1 + eη1 eη2 − eη1 eη2 = = (1 + eη1 )(1 + eη1 + eη2 ) (1 + eη1 )(1 + eη1 + eη2 ) 1 + eη1 + eη2

Άρα η σ.π. γίνεται:   eη1 eη2 f ( x1 , x2 ,η1 ,η 2 ) = exp  x1η1 + x2η2 + N log 1 − − η1 η2 1 + e + e 1 + eη1 + eη2  

 N! =    x1 ! x2 !( N − x1 − x2 )!

  1 + eη1 + eη2 − eη1 − eη2   N! exp  x1η1 + x2η2 + N log  =  η1 η2 1+ e + e    x1 ! x2 !( N − x1 − x2 )!   1 N!   exp  x1η1 + x2η2 + N log  = η1 η2    1 + e + e   x1 ! x2 !( N − x1 − x2 )! 

{

} x !x !( NN−!x − x )! ,

f ( x1 , x2 ,η1 ,η 2 ) = exp x1η1 + x2η 2 − N log (1 + eη1 + eη2 )

1

άρα A (η1 ,η2 ) = N log (1 + eη + eη 1

2

)

2

2

1

2


∂  N log (1 + eη1 + eη2 )  ∂A (η1 ,η 2 ) E (xj ) = , j = 1, 2 ⇒ E ( x j ) = = ∂η j ∂η j

γ)

1

pj

1

η

= p1 p2 1 − p − p 1 2 1+ + 1 − p1 − p2 1 − p1 − p2 pj pj 1 1 N = N = Np j ⇒ 1 − p1 − p2 + p1 + p2 1 − p1 − p2 1 1 − p1 − p2 1 − p1 − p2 1 − p1 − p2

N

1 + eη1 + eη2

e j= N

E ( x j ) = Np j , j = 1,2

∂ 2 A (η1 ,η2 ) ∂  ∂A (η1 ,η 2 )  , j = 1, 2 ⇒ Cov ( X 1 , X 2 ) = Cov ( X 1 , X 2 ) =  = ∂η1 ⋅ ∂η 2 ∂η 2  ∂η1    1 ⋅ eη2 Neη1 eη2 ∂  1 η1  η1   = − = N e = Ne − η1 η2 2  (1 + eη1 + eη2 )2  ∂η2  1 + eη1 + eη2  1 + e + e ( )   p1 p2 p1 p2 2 1 − p1 − p2 ) ( 1 − p1 − p2 1 − p1 − p2 −N = −N = 2 2     p1 p2 1 − p1 − p2 − p1 + p2 + 1 +    1 − p1 − p2  1 − p1 − p2 1 − p1 − p2    p1 p2 2 1 − p1 − p2 ) ( −N = − Np1 p2 ⇒ 2   1    1 − p1 − p2 

Cov ( X 1 , X 2 ) = − Np1 p2

∂ 2 A (η1 ,η2 ) V ( x j ) = Cov ( x j , x j ) , j = 1, 2 ⇒ V ( x j ) = Cov ( x j , x j ) = = ∂η j 2 ∂ ∂η j N

 ∂A (η1 ,η2 )  ∂  =  ∂η j  ∂η j

1 ∂  ηi  N e = N η η  1 + e 1 + e 2  ∂η j

eηi (1 + eη1 + eη2 ) − eηi ⋅ eηi

(1 + e

η1

)

η2 2

+e

=

3

  eηi 1 + eη1 + eη2  =  


2

pj pj     p1 p2 + 1 + −  1 − p1 − p2  1 − p1 − p2 1 − p1 − p2   1 − p1 − p2  N = 2   p1 p2 + 1 +  1 − − 1 − p1 − p2  p p  1 2 2

pj pj  1 − p1 − p2 + p1 + p2    −     1 − p1 − p2  1 − p1 − p2 1 − p1 − p2    N = 2  1 − p1 − p2 + p1 + p2    1 − p1 − p2  

N

pj p j2   1  − 1 − p1 − p2  1 − p1 − p2  (1 − p1 − p2 )2 2

  1    1 − p1 − p2  N ( p j − p j 2 ) = Np j (1 − p j ) ⇒

pj = N

(1 − p1 − p2 )

V ( x j ) = Np j (1 − p j )

4

2

p j2

(1 − p1 − p2 )

  1    1 − p1 − p2 

2

2

=


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.