C3 MS Jan 2006

Page 1

January 2006

6665 Core Mathematics C3 Mark Scheme

Question Number

1.

Scheme

Marks

(a) y

(2, 7)

O

(b)

Shape unchanged Point

B1 B1

(2)

Shape Point

B1 B1

(2)

Shape (2, 4) (2, 4)

B1 B1 B1

x

y

(2, 4)

O

x

(c)

(2, 4) y

(2, 4)

O

x

1

(3) [7]


January 2006

6665 Core Mathematics C3 Mark Scheme

Question Number

Scheme

Marks

x2  x  2   x  2  x  1

2.

At any stage

x  2 x  3 2 x  3x x    2 x  3 x  2   2 x  3 x  2  x  2

B1

2

B1

x  x  1  6 2 x 2  3x 6  2   2 x  3 x  2  x  x  2  x  2  x  1

M1

x2  x  6  x  2  x  1

A1

 

 x  3 x  2   x  2  x  1

M1 A1

x3 x 1

A1

(7) [7]

Alternative method

x2  x  2   x  2  x  1

At any stage

 2 x  3 appearing as a factor of the numerator at any stage 2 x 2  3x   x  1  6  2 x  3  2 x 2  3x 6    2 x  3 x  2   x  2  x  1  2 x  3 x  2  x  1 

 x  2  2x2  9x  9   2 x  3 x  2  x  1

or

2 x3  5 x 2  9 x  18  2 x  3 x  2  x  1

 2 x  3  x 2  x  6   2 x  3 x  2  x  1

or

can be implied

 x  3  2 x 2  x  6   2 x  3 x  2  x  1

Any one linear factor × quadratic 2 x  3 x  2 x     3  Complete factors  2 x  3 x  2  x  1

x3 x 1

B1 B1 M1 A1

M1

A1 A1

2

(7)


January 2006

6665 Core Mathematics C3 Mark Scheme

Question Number

Scheme

Marks

dy 1  dx x dy 1 At x = 3,   m  3 dx 3

3.

accept

3 3x

Use of mm  1

y  ln1  3  x  3 y  3x  9

M1 A1 M1 M1

Accept y  9  3x

A1

(5) [5]

dy 1 leading to y  9 x  27 is a maximum of M1 A0 M1 M1 A0 =3/5  dx 3 x

4.

(a) (i)

d 3x2 e   3e3 x  2  or 3e2e3 x   dx dy  3 x 2 e3 x  2  2 x e 3 x  2 dx

At any stage Or equivalent

B1 M1 A1+A1 (4)

d cos  2 x3   6 x 2 sin  2 x3  dx

(ii)

At any stage

3 3 3 d y 18 x sin  2 x   3cos  2 x   dx 9x2 Alternatively using the product rule for second M1 A1 1 y   3x  cos  2 x3 

M1 A1 M1 A1 (4)

dy 2 1  3  3x  cos  2 x3   6 x 2  3x  sin  2 x3  dx Accept equivalent unsimplified forms

(b)

1  8cos  2 y  6 

dy dx

or

dx  8cos  2 y  6  dy

dy 1  dx 8cos  2 y  6  dy  dx

  1      2  16  x 2    x    8cos  arcsin     4  

M1 M1 A1

1

M1 A1 (5) [13]

3


January 2006

6665 Core Mathematics C3 Mark Scheme

Question Number

5.

Scheme

Marks

4 0 x 1 4 x2   2 2x 2 1 x      x 2 2 x2 1 

(a)

Dividing equation by x

M1

Obtaining x 2  …

M1

cso

(b) x1  1.41, x2  1.39, x3  1.39 If answers given to more than 2 dp, penalise first time then accept awrt above.

f 1.3915  3 103 , f 1.3925  7 103 Change of sign (and continuity)

M1 Both, awrt

(a)

cso

R   122  42    160

Accept if just written down, awrt 12.6

4 ,    18.43 12

awrt 18.4

7   0.5534 their R x + their   56.4 awrt 56° = … , 303.6 360  their principal value Ignore solutions out of range x  38.0, 285.2 If answers given to more than 1 dp, penalise first time then accept awrt above.

(c)(i) (ii)

A1

(3) [9]

R cos   12, R sin   4

tan  

(b)

A1

   1.3915,1.3925    1.392 to 3 decimal places 

6.

(3)

B1, B1, B1 (3)

Choosing 1.3915,1.3925 or a tighter interval

(c)

A1

cos  x  their   

minimum value is   160

ft their R

cos  x  their    1 x  161.57

4

cao

M1 A1 M1, A1(4)

M1 A1 M1 A1, A1 (5)

B1ft M1 A1

(3) [12]


January 2006

6665 Core Mathematics C3 Mark Scheme

Question Number

7.

Scheme

Marks

(a) (i) Use of cos 2 x  cos2 x  sin 2 x in an attempt to prove the identity. cos 2 x cos 2 x  sin 2 x  cos x  sin x  cos x  sin x     cos x  sin x  cos x  sin x cos x  sin x cos x  sin x (ii) Use of cos 2 x  2cos2 x 1 in an attempt to prove the identity. Use of sin 2 x  2sin x cos x in an attempt to prove the identity. 1 1 1  cos 2 x  sin 2 x    2cos2 x  1  2sin x cos x   cos2 x  cos x sin x   2 2 2 (b)

cos   cos   sin    cos 2   cos  sin  

1 2

cso

A1

tan 2  1   5 9 13  2  ,  , ,  4  4 4 4 

M1 M1 cso

A1

Using (a)(i)

M1

Using (a)(ii)

M1 A1

(3)

A1

Obtaining at least 2 solutions in range

M1

The 4 correct solutions If decimals  0.393,1.963,3.534,5.105 or degrees  22.5,112.5, 202.5, 292.5 are given, but all 4 solutions are found, penalise one A mark only. Ignore solutions out of range.

A1

 5 9 13 , , , 8 8 8 8

5

(3)

M1 any one correct value of 2



(2)

1 0 2

1  cos 2  sin 2   0 2 cos 2  sin 2  (c)

M1

(4) [12]


January 2006

6665 Core Mathematics C3 Mark Scheme

Question Number

8.

Scheme

gf  x   e

(a)

Marks

2 2 x  ln 2

e e  e4 x eln 4  4e4 x  Hence gf : x 4e4 x , x 

M1

4 x 2ln 2

M1 M1 Give mark at this point, cso A1

(4)

Shape and point

B1

(1)

B1

(1)

(b) y

4

O

(c) (d)

Range is

x Accept gf  x   0, y  0

d gf  x    16e4 x dx  3 e4 x  16 3 4 x  ln 16 x  0.418

6

M1 A1 M1 A1

(4) [10]


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.