C4 MS Jun 2010

Page 1

Mark Scheme (Results) Summer 2010

GCE

Core Mathematics C4 (6666)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH


Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. Through a network of UK and overseas offices, Edexcel’s centres receive the support they need to help them deliver their education and training programmes to learners. For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful. Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

Summer 2010 Publications Code UA023705 All the material in this publication is copyright Š Edexcel Ltd 2010


June 2010 6666 Core Mathematics C4 Mark Scheme

Question Number

1.

Scheme

(a)

(b)(i)

(ii)

⎛π ⎞ ⎛π ⎞ y ⎜ ⎟ ≈ 1.2247, y ⎜ ⎟ = 1.1180 ⎝6⎠ ⎝4⎠

Marks

accept awrt 4 d.p.

⎛π ⎞ I ≈ ⎜ ⎟ (1.3229 + 2 ×1.2247 + 1) ⎝ 12 ⎠ ≈ 1.249 ⎛π ⎞ I ≈ ⎜ ⎟ (1.3229 + 2 × (1.2973 + 1.2247 + 1.1180 ) + 1) ⎝ 24 ⎠ ≈ 1.257

GCE Core Mathematics C4 (6666) Summer 2010

B1 for

B1 for

π 12 cao

π 24 cao

B1 B1

(2)

B1 M1

A1 B1 M1 A1

(6) [8]


Question Number

Scheme

2.

∫ sin x e

Marks

du = − sin x dx

B1

dx = − ∫ eu du

M1 A1

cos x +1

= − eu = − ecos x+1

ft sign error

A1ft

π

⎡⎣ − ecos x +1 ⎤⎦ 2 = − e1 − ( − e 2 ) 0

or equivalent with u

M1

= e ( e − 1) ¿

cso

A1

GCE Core Mathematics C4 (6666) Summer 2010

(6) [6]


Question Number

3.

Scheme

Marks

d x 2 ) = ln 2.2 x ( dx dy dy = 2 y + 2x ln 2.2 x + 2 y dx dx

B1

M1 A1= A1

Substituting ( 3, 2 ) dy dy = 4+6 dx dx dy = 4 ln 2 − 2 dx

8ln 2 + 4

M1 Accept exact equivalents

M1 A1

(7) [7]

GCE Core Mathematics C4 (6666) Summer 2010


Question Number

4.

Scheme

(a)

dx dy = 2sin t cos t , = 2sec 2 t dt dt

B1 B1

1 ⎛ ⎞ ⎜= 3 ⎟ ⎝ sin t cos t ⎠

or equivalent M1 A1

dy sec 2 t = dx sin t cos t (b)

Marks

At t =

π 3

, x=

3 , y = 2√3 4

(4)

B1

π

sec2 dy 3 = 16 = dx sin π cos π √ 3 3 3 16 ⎛ 3⎞ y − 2√3 = ⎜x− ⎟ 4⎠ √3⎝ 3 y=0 ⇒ x= 8

M1 A1

M1 M1 A1

(6) [10]

GCE Core Mathematics C4 (6666) Summer 2010


Question Number

5.

Scheme

(a)

Marks

A=2 2 x + 5 x − 10 = A ( x − 1)( x + 2 ) + B ( x + 2 ) + C ( x − 1) x →1 −3 = 3B ⇒ B = −1 x → −2 −12 = −3C ⇒ C = 4

B1

2

(b)

2 x 2 + 5 x − 10 −1 ⎛ x⎞ = 2 + (1 − x ) + 2 ⎜ 1 + ⎟ ( x − 1)( x + 2 ) ⎝ 2⎠

(1 − x )

−1

M1 A1 A1

(4)

−1

M1

= 1 + x + x 2 + ...

B1

−1

x x2 ⎛ x⎞ + = − + + ... 1 1 ⎜ ⎟ 2 4 ⎝ 2⎠ 2 x 2 + 5 x − 10 ⎛ 1⎞ = ( 2 + 1 + 2 ) + (1 − 1) x + ⎜1 + ⎟ x 2 + ... ( x − 1)( x + 2 ) ⎝ 2⎠ ft their A − B + 12 C

= 5 + ...

= ... +

3 2 x + ... 2

0 x stated or implied

B1 M1 A1 ft A1 A1

(7) [11]

GCE Core Mathematics C4 (6666) Summer 2010


Question Number

6.

Scheme

(a)

Marks

f (θ ) = 4 cos 2 θ − 3sin 2 θ

⎛1 1 ⎞ ⎛1 1 ⎞ = 4 ⎜ + cos 2θ ⎟ − 3 ⎜ − cos 2θ ⎟ ⎝2 2 ⎠ ⎝2 2 ⎠ 1 7 = + cos 2θ ¿ 2 2 (b)

∫ θ cos 2θ dθ = 2 θ sin 2θ − 2 ∫ sin 2θ dθ 1

1

1 1 = θ sin 2θ + cos 2θ 2 4 1 2 7 7 ∫ θ f (θ ) dθ = 4 θ + 4 θ sin 2θ + 8 cos 2θ

M1 M1 cso

A1

(3)

M1 A1 A1 M1 A1

π

⎡ ⎣

...

⎡π 2 7⎤ 7 ⎤ 2 = ⎢ + 0 − ⎥ − ⎡⎢0 + 0 + ⎤⎥ ⎦0 8⎦ ⎣ 8⎦ ⎣ 16 2 π 7 = − 16 4

M1 A1

(7) [10]

GCE Core Mathematics C4 (6666) Summer 2010


Question Number

7.

Scheme

(a)

j components

3 + 2λ = 9 ⇒ λ = 3

Leading to

C : ( 5, 9, − 1)

( µ = 1) accept vector forms

JJJG JJJG Choosing correct directions or finding AC and BC

(b)

⎛1⎞ ⎛ 5⎞ ⎜ ⎟⎜ ⎟ ⎜ 2 ⎟ . ⎜ 0 ⎟ = 5 + 2 = √ 6 √ 29 cos ∠ACB ⎜1⎟ ⎜ 2⎟ ⎝ ⎠⎝ ⎠ ∠ACB = 57.95°

(c)

Marks

use of scalar product awrt 57.95°

M1 A1 A1

(3)

M1 M1 A1 A1

(4)

A : ( 2, 3, − 4 ) B : ( −5, 9, − 5 ) ⎛ 3⎞ ⎛ 10 ⎞ JJJG ⎜ ⎟ JJJG ⎜ ⎟ AC = ⎜ 6 ⎟ , BC = ⎜ 0 ⎟ ⎜ 3⎟ ⎜4⎟ ⎝ ⎠ ⎝ ⎠ 2 2 2 2 AC = 3 + 6 + 3 ⇒ AC = 3 √ 6

BC 2 = 102 + 42 ⇒ BC = 2 √ 29 1 ABC = AC × BC sin ∠ACB 2 1 = 3 √ 6 × 2 √ 29sin ∠ACB ≈ 33.5 2

M1 A1 A1

15 √ 5 , awrt 34

M1 A1

(5) [12]

Alternative method for (b) and (c) (b) A : ( 2, 3, − 4 ) B : ( −5, 9, − 5 ) C : ( 5, 9, − 1)

AB 2 = 7 2 + 62 + 12 = 86 AC 2 = 32 + 62 + 32 = 54 BC 2 = 102 + 02 + 42 = 116 Finding all three sides 116 + 54 − 86 cos ∠ACB = ( = 0.530 66 ...) 2 √ 116 √ 54 ∠ACB = 57.95° awrt 57.95° If this method is used some of the working may gain credit in part (c) and appropriate marks may be awarded if there is an attempt at part (c).

GCE Core Mathematics C4 (6666) Summer 2010

M1 M1 A1 A1

(4)


Question Number

8.

Scheme

(a)

Marks

dV = 0.48π − 0.6π h dt dV dh = 9π V = 9π h ⇒ dt dt dh 9π = 0.48π − 0.6π h dt dh Leading to 75 = 4 − 5h ¿ dt

(b)

75 dh = ∫ 1dt 4 − 5h −15ln ( 4 − 5h ) = t ( +C )

M1 A1 B1 M1 cso

A1

separating variables

M1

(5)

M1 A1

−15ln ( 4 − 5h ) = t + C

When t = 0 , h = 0.2

−15ln 3 = C t = 15ln 3 − 15ln ( 4 − 5h )

M1

When h = 0.5 ⎛ 3 ⎞ t = 15ln 3 − 15ln1.5 = 15ln ⎜ ⎟ = 15ln 2 ⎝ 1.5 ⎠

awrt 10.4

M1 A1

Alternative for last 3 marks t = ⎡⎣ −15ln ( 4 − 5h ) ⎤⎦

0.5 0.2

= −15ln1.5 + 15ln 3 ⎛ 3 ⎞ = 15ln ⎜ ⎟ = 15ln 2 ⎝ 1.5 ⎠

GCE Core Mathematics C4 (6666) Summer 2010

M1 M1 awrt 10.4

A1

(6)



Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN Telephone 01623 467467 Fax 01623 450481 Email publications@linneydirect.com Order Code UA023705 Summer 2010 For more information on Edexcel qualifications, please visit www.edexcel.com/quals Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.