FP2 MS Jun 2007

Page 1

Mark Scheme (Results) Summer 2007

GCE

GCE Mathematics Further Pure Mathematics FP2 (6675)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH


June 2007 6675 Further Pure Mathematics FP2 Mark Scheme Question Number

Scheme

Marks

x 2 + 4 x − 5 = ( x + 2) 2 − 9

1.

∫ √ ((

1 x + 2) − 9 2

)

dx = arcosh

x+2 3

B1 M1 A1ft

ft their completing the square, requires arcosh

x + 2⎤ 5 ⎡ ⎢⎣arcosh 3 ⎥⎦ = arcosh 3 ( −arcosh 1) 1 ⎛5 25 ⎞ ⎛5 4⎞ = ln ⎜⎜ + − 1 ⎟⎟ = ln ⎜ + ⎟ = ln 3 9 ⎝3 3⎠ ⎝3 ⎠ 3

M1 A1

(5) [5]

Alternative x 2 + 4 x − 5 = ( x + 2) 2 − 9 dx = 3sec θ tan θ dθ

Let x + 2 = 3sec θ ,

∫ √ ((

1 x + 2) − 9 2

)

dx =

3sec θ tan θ dθ 2 √ ( 9sec θ − 9 )

= sec θ dθ 5 arcsec ⎛5 4⎞ ⎡⎣ ln ( sec θ + tan θ ) ⎤⎦ arcsec13 = ln ⎜ + ⎟ = ln 3 ⎝3 3⎠

B1

M1 A1ft M1 A1

(5)


Question Number 2.

Scheme (a)

Marks

y 3

O

E

D

2

5

x

One ellipse centred at O Another ellipse, centred at O, touching on y-axis Intersections: At least 2, 5, and 3 shown correctly (b)

Using b 2 = a 2 (1 − e 2 ) , or equivalent, to find e or ae for D or E. 4 , 5

For S: a = 5 and b = 3 ,

e=

For T: a′ = 3 and b′ = 2 ,

5 e′ = √ , 3

ae = 4

a′e′ = √ 5

ST = √ (16 + 5) = √ 21

B1 B1 B1

(3)

M1

ignore sign with ae

A1

ignore sign with a′e′

A1 M1 A1

(5) [8]


Question Number

Scheme

3.

dy 1 ⎛ 1⎞ = ⎜ 4x − ⎟ dx 4 ⎝ x⎠

1

⎛ ⎛ d y ⎞2 ⎞ ⎜ 1 + ⎜ ⎟ ⎟ dx = ⎜ dx ⎟ ⎝ ⎝ ⎠ ⎠ 2

=

=

x 2 ln x + 2 4

⎛ ⎛ 1 ⎞ ⎜⎜1 + ⎜ x − ⎟ 4x ⎠ ⎝ ⎝ 1

2

1 1⎞ ⎛ 2 − ⎟ dx = ⎜1 + x + 2 16 x 2 ⎠ ⎝

1

2

Marks

B1

2

⎞ dx ⎟⎟ ⎠

M1 1

2

2 ⎛⎛ 1 ⎞ ⎞ ⎜⎜ ⎜ x + ⎟ ⎟⎟ dx = 4x ⎠ ⎠ ⎝⎝

1 ⎞ ⎛ ⎜ x + ⎟ dx 4x ⎠ ⎝

M1 A1

A1 2

⎡ x 2 ln x ⎤ ln 2 1 ln 0.5 15 1 − − = + ln 2 ⎢ + ⎥ = 2+ 4 8 4 8 2 2 4 ⎣ ⎦ 0.5 15 1⎞ ⎛ ⎜a = , b = ⎟ 8 2⎠ ⎝

M1 A1

(7) [7]


Question Number 4.

Scheme

Marks

(a) ⎛ e A + e− A ⎞ ⎛ e B + e− B ⎞ ⎛ e A − e− A ⎞ ⎛ e B − e− B ⎞ cosh A cosh B − sinh A sinh B = ⎜ ⎟⎜ ⎟−⎜ ⎟⎜ ⎟ 2 2 2 2 ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ 1 = e A+ B + e− A+ B + e A− B + e− A− B − e A+ B + e− A+ B + e A− B − e− A− B 4 1 e A− B + e−( A− B ) = 2e − A + B + 2e A − B = = cosh( A − B) ¿ cso 4 2

(

)

(

)

cosh x cosh1 − sinh x sinh 1 = sinh x

(b)

M1

M1

cosh x cosh 1 = sinh x(1 + sinh 1) ⇒ tanh x =

e + e−1 e + e−1 e2 + 1 2 tanh x = = = e − e−1 2 + e − e −1 e 2 + 2e − 1 1+ 2

M1 A1 (3)

cosh 1 1 + sinh 1

M1

¿

M1 A1 (4)

cso [7]

Alternative for (b) e x −1 + e 2

Leading to

−( x −1)

e x − e− x 2 2 e +e e2 x = e −1 =

e x − e − x e 2 x − 1 e 2 + e − (e − 1) e2 + 1 tanh x = x = = = ¿ e + e − x e 2 x + 1 e 2 + e + (e − 1) e 2 + 2e − 1

M1 M1 cso

M1 A1 (4)


Question Number 5.

Scheme

Marks

(a) x = t − sin 2t ⇒ x& = 1 − 2 cos 2t ⇒ && x = 4 sin 2t y = cos 2t ⇒ y& = −2 sin 2t ⇒ && y = − 4 cos 2t

either both

&&& − &&& Obtaining x& 2 + y& 2 and xy xy in terms of t 2 2 2 x& + y& = 1 + 4 cos 2t − 4 cos 2t + 4sin 2 2t = 5 − 4 cos 2t &&& − &&& xy xy = −4 cos 2t (1 − 2 cos 2t ) − 4sin 2t ( −2sin 2t ) = 8 − 4 cos 2t

( 5 − 4 cos 2t ) ρ=

3

M1 A1 A1

2

8 − 4 cos 2t

(b)

M1 A1

A1

The least value of y ( cos 2t ) is −1

B1

(5 + 4) ρ=

B1

8+ 4

3

2

=

9 4

accept equivalent fractions or 2.25

(6)

(2) [8]


Question Number

Scheme 8

6.

Marks

4 4 3 I n = − 3 ⎡ x n (8 − x) 3 ⎤ + nx n −1 (8 − x) 3 dx 4 ⎣⎢ ⎥⎦ 0 4

(a)

=

∫ nx

n −1

3 4

4

nx n −1 (8 − x) 3 dx

M1 A1

ft numeric constants only A1ft

(8 − x )(8 − x) 3 dx = ∫ nx n −1 8(8 − x) 3 dx − ∫ nx n −1 x (8 − x) 3 dx 1

1

1

24n 3 I n = 6nI n −1 − nI n ⇒ I n = I n −1 ¿ 4 3n + 4

(b)

I0 =

8 0

I=

(8 − x )

8 0

1

cso

A1

(6)

8

3

4 ⎤ 3 4 ⎡ 3 dx = ⎢ − (8 − x) 3 ⎥ = × 8 3 = 12 ⎣ 4 ⎦0 4

M1 A1

1

x( x + 5)(8 − x) 3 dx = I 2 + 5I1

⎛ 576 ⎞ I0 ⎟ ⎜= ⎝ 35 ⎠ 168 ⎞ ⎛ I0 ⎟ ⎜ The previous line can be implied by I = I 2 + 5 I1 = 5 ⎝ ⎠ 24 ⎞ 2016 ⎛ 576 I =⎜ + 5 × ⎟ × 12 = ( = 403.2 ) 7 ⎠ 5 ⎝ 35 I1 =

M1 A1

48 48 24 24 I1 = × I 0 I0 , I2 = 10 10 7 7

M1 M1 A1

A1

(6) [12]


Question Number

7.

Scheme

(a)

(b)

Marks

)

(

1 d 1 1 −1 × x 2 arsinh x 2 = dx √ (1 + x ) 2 dy 1 At x = 4 , = dx 4 √ 5

⎛ ⎞ 1 ⎜⎜ = ⎟⎟ ⎝ 2 √ x √ (1 + x ) ⎠

accept equivalents

A1

(3)

dx = 2sinh θ cosh θ dθ

x = sinh 2 θ ,

∫ arsinh √ x dx = ∫ θ × 2 sinh θ cosh θ dθ

M1 A1

cosh 2θ dθ 2 2 sinh 2θ = ... − 4

= ∫ θ sinh 2θ dθ =

⎡θ cosh 2θ sinh 2θ ⎤ − ⎢⎣ 2 4 ⎥⎦ 0

M1 A1

θ cosh 2θ

M1 A1 + A1 M1

arsinh 2

= …

attempt at substitution M1

⎡θ (1 + 2sinh 2 θ ) 2sinh θ cosh θ ⎤ 1 4 5 ⎥ = arsinh 2 × (1 + 8 ) − √ =⎢ − 2 4 4 ⎢⎣ ⎥⎦ 2 9 = ln 2 + √ 5 − √ 5 2

(

)

M1 A1 A1

(10) [13]

Alternative for (a) x = sinh 2 y,

2sinh y cosh y

dy =1 dx

M1

⎛ ⎞ dy 1 1 1 = = ⎜⎜ = ⎟ 2 dx 2sinh y cosh y 2sinh y √ ( sinh y + 1) ⎝ 2 √ x √ (1 + x ) ⎟⎠ At x = 4 ,

dy 1 = dx 4 √ 5

An alternative for (b) is given on the next page

accept equivalents

A1 A1

(3)


Question Number 7.

Scheme

Marks

Alternative for (b)

∫ 1× arsinh √ x dx = x arsinh √ x − ∫ x × 2 √ x √ (1 + x ) dx 1

= x arsinh √ x −

Let x = sinh 2 θ ,

√ x dx = √ (1 + x )

arsinh 2

4 0

√x dx 2 √ (1 + x )

dx = 2sinh θ cosh θ dθ

sinh θ × 2sinh θ cosh θ dθ cosh θ

= 2 ∫ sinh 2 θ dθ = 2 ⎡ sinh 2θ ⎤ ⎢⎣ 2 − θ ⎥⎦ 0

M1 A1 + A1

M1 A1

cosh 2θ − 1 sinh 2θ −θ dθ , = 2 2

⎡ 2sinh θ cosh θ ⎤ =⎢ −θ ⎥ 2 ⎣ ⎦0

arsinh 2

=

2× 2× √ 5 − arsinh 2 2

⎞ 9 1 ⎛ 2× 2× √ 5 − arsinh 2 ⎟ = ln 2 + √ 5 − √ 5 arsinh √ x dx = 4 arsinh 2 − ⎜ 2⎝ 2 ⎠ 2

(

)

M1, M1 M1 A1 A1

The last 7 marks of the alternative solution can be gained as follows Let x = tan 2 θ ,

√ x dx = √ (1 + x )

dx = 2 tan θ sec 2 θ dθ

tan θ × 2 tan θ sec 2 θ dθ sec θ

dependent on first M1

M1 A1

= ∫ 2sec θ tan 2 θ dθ

∫ ( sec θ tan θ ) tan θ dθ = sec θ tan θ − ∫ sec θ dθ = sec θ tan θ − ∫ sec θ (1 + tan θ ) dθ 3

M1

2

1 1 Hence ∫ sec θ tan 2 θ dθ = sec θ tan θ − sec θ dθ 2 2 1 1 = sec θ tan θ − ln ( sec θ + tan θ ) 2 2 1 1 arctan 2 [ ... ] 0 = × √ 5 × 2 − ln √ 5 + 2 2 2 4 1 9 ∫ 0 arsinh √ x dx = 4 arsinh 2 − √ 5 + 2 ln 2 + √ 5 = 2 ln 2 + √ 5 − √ 5

(

)

(

)

(

)

M1 M1 A1 A1

(10)


Question Number 8.

Scheme

Marks

2ap − 2aq 2 Can be implied = 2 2 ap − aq p+q Use of any correct method or formula to obtain an equation of PQ in any form. Leading to ( p + q ) y = 2 ( x + apq ) ¿ (a)

Gradient of PQ =

(b) Gradient of normal at P is − p . Given or implied at any stage Obtaining any correct form for normal at either point. Allow if just written down. y + px = 2ap + ap 3 y + qx = 2aq + aq 3 Using both normal equations and eliminating x or y. Allow in any unsimplified form. ( p − q ) x = 2a ( p − q ) + a ( p 3 − q 3 ) Any correct form for x or y 2 2 Leading to x = a( p + q + pq + 2) ¿ cso ¿ cso y = − apq ( p + q ) (c)

0 = 2 ( 5a + apq ) ⇒

pq = −5

Using pq = −5 in both x = a( p + q + pq + 2) and y = − apq ( p + q ) . x = a ( p 2 + q 2 − 3) y = 5a( p + q) Any complete method for relating x and y, independently of p and q. A correct equation in any form. ⎛ ⎛ y ⎞2 ⎞ 2 x = a ( p + q ) − 2 pq − 3 = a ⎜ ⎜ ⎟ + 10 − 3 ⎟ ⎜ ⎝ 5a ⎠ ⎟ ⎝ ⎠ 2 Leading to y = 25a ( x − 7a ) Accept equivalent forms of f ( x ) 2

(

2

B1 M1 A1

(3)

B1 M1 A1

M1 A1 A1 A1

(7)

B1 M1 M1 A1

)

The algebra above can be written in many alternative equivalent forms.

A1

(5) [15]


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.