M2 MS Jun 2010

Page 1

Mark Scheme (Results) Summer 2010

GCE

GCE Mechanics M2 (6678/01)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH


Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. Through a network of UK and overseas offices, Edexcel’s centres receive the support they need to help them deliver their education and training programmes to learners. For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful. Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

Summer 2010 Publications Code UA024472 All the material in this publication is copyright Š Edexcel Ltd 2010


Summer 2010 Mechanics M2 6678 Mark Scheme Question Number

Scheme

Q1

Marks

3t + 5

dv = 3t + 5 dt v = ∫ ( 3t + 5 ) dt

M1*

v = 32 t 2 + 5t ( + c) t =0 v=2 ⇒ c=2 v = 32 t 2 + 5t + 2

A1

t =T

DM1*

6 = 32 T 2 + 5T + 2

12 = 3T 2 + 10T + 4 3T 2 + 10T − 8 = 0 ( 3T − 2 )(T + 4 ) = 0

T=

2 3

(T = −4 )

∴T =

2 3

(or 0.67)

B1

M1

A1 [6]

GCE Mechanics M2 (6678) Summer 2010


Question Number

Scheme

Q2

Marks

0 m s-1

4 m s-1 R

F

12 m

30

0.6g (a)

K.E gained = 12 × 0.6 × 42 P.E. lost = 0.6 × g × (12 sin 30) Change in energy = P.E. lost - K.E. gained M1 A1 A1

= 30.48 Work done against friction = 30 or 30.5 J (b)

R (↑ )

A1

R = 0.6 g cos 30

B1

30.48 12 F = µR 30.48 µ= 12 × 0.6 g cos 30 µ = 0.4987 µ = 0.499 or 0.50

B1ft

F=

GCE Mechanics M2 (6678) Summer 2010

(4)

M1 A1

(4) [8]


Question Number

Scheme

Q3

Marks

A 10 cm

10 cm

B (a)

mass ratio dist. from BC

C

12 cm AB

AC

BC

frame

10 4

10 4

12 0

32 x

Moments about BC:

10 × 4 + 10 × 4 + 0 = 32x 80 x= 32 x = 2 12 (2.5)

(b)

B1 B1

M1 A1

A1

(5)

B

θ D A

C Mg Moments about B:

Mg

Mg × 6sin θ = Mg × ( x cos θ − 6sin θ )

12sin θ = x cos θ x tan θ = 12 θ = 11.768..... = 11.8º Alternative method : C of M of loaded frame at distance

x from D along DA 1 x tan θ = 2 6 θ = 11.768..... = 11.8º 1 2

M1 A1 A1

A1

(4)

B1 M1 A1 A1 [9]

GCE Mechanics M2 (6678) Summer 2010


Question Number

Scheme

Q4

Marks

a m s-2 20 m s-1

T

θ

R

750g (a)

15000 = 750 20 R(parallel to road) T = R + 750 g sin θ R = 750 − 750 × 9.8 × 151 R = 260 * T=

(b)

M1 M1 A1 A1

(4)

a m s-2 20 m s-1

260N

T’

θ 750g

T′ =

18000 = 900 20

900 − 260 − 750 × 9.8 × 151 a= 750 a = 0.2

GCE Mechanics M2 (6678) Summer 2010

M1 M1 A1

A1

(4) [8]


Question Number

Scheme

Marks

Q5 (a)

I = mv − mu = 0.5 × 20i − 0.5 (10i + 24 j) = 5i − 12 j 5i − 12 j = 13 Ns

(b)

θ

M1 A1 M1 A1

(4)

5 12

12 5 θ = 67.38 θ = 67.4°

tan θ =

(c)

K.E.lost = 12 × 0.5 (102 + 242 ) − 12 × 0.5 × 202

= 69 J

GCE Mechanics M2 (6678) Summer 2010

M1 A1

(2)

M1 A1 A1

(3) [9]


Question Number

Scheme

Q6

D

Marks

θ

2a T

F A

R

a

2a mg

(a)

M(A)

a mg M1 A1 A1

3a × T cos θ = 2amg + 4amg

B1

A1

* (b)

3a × T × cos θ = 2amg + 4aMg

(5)

M1 A1

*

cso

A1

(3) [8]

GCE Mechanics M2 (6678) Summer 2010


Question Number

Scheme

Marks

Q7 (a)

(b)

Vertical motion:

v 2 = u 2 + 2as

M1 A1

θ = 22.54 = 22.5° (accept 23)

A1

(3)

Vert motion P → R : s = ut + 12 at 2 M1 A1 A1

t = 4.694... Horizontal P to R:

A1 M1

= 173 m

( or 170 m)

(c) Using Energy:

A1

(6)

M1 A1

v 2 = 2 ( 9.8 × 36 + 12 × 40 2 )

v = 48.0….. v = 48 m s -1 (accept 48.0)

A1

(3) [12]

GCE Mechanics M2 (6678) Summer 2010


Question Number

Scheme

Q8

u

u

A v

3m

Marks

m

B w

e=

1 2

(a) (i) Con. of Mom: 3mu − mu = 3mv + mw 1 2

N.L.R: (1) – (2)

2u = 3v + w (u + u ) = w − v u = w−v u = 4v v = 14 u

(ii) In (2)

(1) (2)

u = w − 14 u w = 54 u

(b) B to wall: N.L.R:

5 4

M1# A1 M1# A1 DM1# A1

A1

u × 52 = V V = 12 u

(7)

M1 A1ft

(2)

(c)

u A 1 4

1 2

u B

5 16a time = 4a ÷ u = 4 5u 1 16a 4 Dist. Travelled by A = u × = a 4 5u 5 1 1 In t secs, A travels ut , B travels ut 4 2

B to wall:

Collide when speed of approach = 4a − 54 a 16a 4 64a = × = 3 5 3u 15u 4u 16a 64a 112a Total time = + = 5u 15u 15u * ∴t=

GCE Mechanics M2 (6678) Summer 2010

B1ft B1ft

, distance to cover =

M1$

DM1$ A1 A1

(6) 15



Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN Telephone 01623 467467 Fax 01623 450481 Email publications@linneydirect.com Order Code UA024472 Summer 2010 For more information on Edexcel qualifications, please visit www.edexcel.com/quals Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.