M3 MS Jan 2007

Page 1

January 2007 6679 Mechanics M3 Mark Scheme Question Number 1.

Marks

Scheme

(a) Maximum speed when accel. = 0 (o.e.)

B1 (1)

(b)

1 (30 − x ) = v dv (acceln = … + attempt to integrate) dx 12 dv v2 x2 ⎞ 1⎛ ⎜ ⎟ ( + c) : Use of v = 30 x − dx 2 12 ⎜⎝ 2 ⎟⎠

M1 ↓ M1 A1

Substituting x = 30, v = 10 and finding c (= 12.5), or limits

↓ M1

v 2 = 25 + 5 x − 121 x 2 (o.e.)

A1 (5)

(a) Allow “acceln > 0 for x < 30, acceln < 0 for x > 30” Also “accelerating for x < 30, decelerating for x > 30” But “acceln < 0 for x > 30” only is B0 (b) 1st M1 will be generous for wrong form of acceln (e.g. dv/dx)! 3rd M1 If use limits, they must use them in correct way with correct values Final A1. Have to accept any expression, but it must be for v2 explicitly (not 1/2v2), and if in separate terms, one can expect like terms to be collected. Hence answer in form as above, or e.g. 121 300 + 60 x − x 2 ; also 100 − 121 (30 − x) 2

(

)

78


A 2.

a G

h Height of cone = Hence h =

3 4

a = 3a tan α

a

a 4 tan θ = 3 = ⇒ θ = 53.1° 3 4a 1st M1 (generous) allow any trig ratio to get height of cone (e.g. using sin) 3rd M1 For correct trig ratio on a suitable triangle to get θ or complement (even if they call the angle by another name – hence if they are aware or not that they are getting the required angle)

79

M1 A1 ↓ M1

↓ M1 A1 (5)


3

(a)

(b)

E.P.E. =

1 3.6mg 2 1 3.6mg ⎛ a ⎞ x = ⎜ ⎟ 2 a ⎝3⎠ 2 a = 0.2 mga

2

⎛ 4a ⎞ Friction = µmg ⇒ work done by friction = µ mg ⎜ ⎟ ⎝ 3 ⎠ 1 (3 relevant terms) Work-energy: 2 m.2 ga = µ mgd + 0.2 mga Solving to find µ :

µ = 0.6

(b) 1st M1: allow for attempt to find work done by frictional force (i.e. not just finding friction). 2nd M1: “relevant” terms, i.e. energy or work terms! A1 f.t. on their work done by friction

80

M1 A1 A1 (3) M1 A1 M1 A1√ ↓ M1 A1 (6)


4.

(a) Energy:

1 2

m.3ag − 12 mv 2 = mga(1 + cosθ )

M1 A1

v 2 = ag (1 − 2 cosθ ) (o.e.) (b)

A1 (3) M1 A1

v2 T + mg cosθ = m a

A1 cso (3)

Hence T = (1 − 3 cosθ )mg (*) (c)

Using T = 0 to find cos θ

M1

Hence height above A =

4 3

a

Accept 1.33a (but must have 3+ s.f.)

A1 (2)

v = ag 2

(d)

consider vert motion: sin 2 θ =

8 9

(o.e.)

1 3

(v sin θ )2 = 2 gh

f.t. using cosθ =

1 3

in v

2

(with v resolved)

(or θ = 70.53, sin θ = 0.943) and solve for h (as ka)

h= OR consider energy:

1 2

4 27

2

Sub for v, θ and solve for h

h=

4 27

a or 0.148a (awrt)

81

M1 A1 ↓ M1 A1

a or 0.148a (awrt)

m(v cosθ ) + mgh = 12 mv 2

B1√

(3 non-zero terms)

M1 A1 ↓ M1 A1


Question Number 5.

Marks

Scheme

(a)

b T cosθ = mg

B1

↔ T + T sin θ = mrω 2

M1 A1

(3 terms)

B1

r = h tan θ 2 mg (1 + sin θ ) = mω h sin θ cosθ cos θ

(eliminate r)

g ⎛ 1 + sin θ ⎞ ω = ⎜ ⎟ (*) h ⎝ sin θ ⎠

(solve for ω

2

(b)

(c)

ω2 =

g⎛ 1 ⎞ + 1⎟ ⎜ h ⎝ sin θ ⎠

>

3g g ⎛ 1 + sin θ ⎞ = ⎜ ⎟ h h ⎝ sin θ ⎠

2g ( sin θ < 1) ⇒ h

⇒ sin θ =

ω>

2

)

2g (*) h

1 2

2 3 T cosθ = mg ⇒ T = mg or 1.15mg (awrt) 3 (a) Allow first B1 M1 A1 if assume different tensions (so next M1 is effectively for eliminating r and T. (b) M1 requires a valid attempt to derive an inequality for ω . (Hence putting sin θ = 1 immediately into expression of ω 2 [assuming this is the critical value] is M0.)

82

↓ M1 ↓ M1 A1 (7) M1 A1 (2) M1 A1

↓ M1 A1 (4)


6.

(a) Moments: π

2

2

1

1

2

1

xy 2 dx = V x or

y 2 dx =

xy 2 dx =

1

2

xy 2 dx = x ∫ y 2 dx

2

1

9 7

7 ) 96

(either)

(=

3 ) 32

(both)

⇒ required dist =

)

H 3

2 ⎛1⎞ π⎜ ⎟ , 3 ⎝2⎠ ⎡ 1 ⎤ ⎢⎣= 12 ( ρ )π ⎥⎦

( ρ)

( ρ)

9 7

− 1 = m (*) 2 7

S

T

7π 96

H + S ⎡ 5 ⎤ ⎢⎣= 32 ( ρ )π ⎥⎦

19 m 16 ⎡ 1 ⎤ ⎛ 19 ⎞ ⎢⎣= 12 ( ρ )π ⎥⎦ ⎜⎝ 16 ⎟⎠ + ( ρ ) 29 m x = 30

Dist of CM from base Moments:

(=

2

1 ⎡ 1 ⎤ dx = ⎢− 2 ⎥ 3 4x ⎣ 8 x ⎦1

(b) Mass

M1

1

2

1

Solving to find x (=

2

1 ⎡ 1 ⎤ dx = ⎢− 4 3 4x ⎣ 12 x ⎥⎦ 1

2

5 m x 7 7π ⎛ 5 ⎞ ⎡ 5 ⎤ ⎜ ⎟ = ⎢ ( ρ )π ⎥ x 96 ⎝ 7 ⎠ ⎣ 32 ⎦ or 0.967 m (awrt)

Allow distances to be found from different base line if necessary

83

M1 A1 A1

↓ M1 A1 cso (6)

B1, M1

B1 B1 M1 A1 A1 (7)


7.

(a)

A

T=

λ=

0.8

λ 0.8

(0.05) = 0.25g

M1

(0.8)(0.25g) = 39.2 (*) 0.05

A1 (2)

0.05

x 39.2 ( x + 0.05) 0.8 mg – T = ma

M1

T =

(b)

(3 term equn)

39.2 ( x + 0.05) = 0.25 &x& (or equivalent) 0.8 &x& = – 196 x 2π 2π π SHM with period = = s (*) ω 14 7

0.25g –

v = 14 √{(0.1) 2 − (0.05) 2 }

(c)

= 1.21(24…) ≈ 1.21 m s–1 (3 s.f.) Accept 7√3/10 1.21.. ( = 0.1237 s ) g Complete method for time T ′ from B to slack.

(d) Time T under gravity =

[ ↑ e.g.

π

+ t, where 0.05 = 0.1sin 14t 28 OR T ′ , where – 0.05 = 0.1 cos 14 T ′ ]

A1 A1

↓ M1 A1 cso (6) M1 A1√ A1 (3) B1√

M1 A1 A1

T'' = 0.1496s

A1

Total time = T + T ′ = 0.273 s (b)

M1

(5)

1st M1 must have extn as x + k with k ≠ 0 (but allow M1 if e.g. x + 0.15), or must justify later For last four marks, must be using &x& (not a)

(c) Using x = 0 is M0 (d) M1 – must be using distance for when string goes slack. Using x = – 0.1 (i.e. assumed end of the oscillation) is M0

84


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.