Sb21 soulbossanovafullscore

Page 1

Superbrass Music

Composed by Quincy Jones Arranged by Andy Duncan Edited by Roger Argente

Soul Bossa Nova

Score in C

Tempo di Bossa Nova q = 142

  

Trumpet 2

  

Trumpet 3

  

Flugelhorn

  

Horn in F

  

Trombone 1

  

Trombone 2

  

Trombone 3

  

Bass Trombone

  

  

Trumpet 1

Tuba

   Perc 1:      Triangle & Vibraslap  Triangle

p

Perc 2: Cabassa & Cow Bell Drum Kit

                                 

  

 

Cabasa p

All Rights Reserved © 2013 Superbrass Music www.superbrass.co.uk

 

 

  


2

5



Tpt 2



Tpt 3



Flug



Hrn



Tpt 1

Tbn 1

Tbn 2

 

 

Tbn 3

B Tbn

                      

Tuba

Perc 1

Perc 2

Drms

   

 

 

 

       

  

 

 



     

mp

mp

   

mp

 

 

 

 

   

       

 

   

        

  

   

 

 

  

Bucket Mute (or Cup Mute)

p

mp

mp Bucket Mute (or Cup Mute)

 



  

mp

mp


Tpt 1

Tpt 2

Tpt 3

Flug

3 9







  

      

mf

Tbn 1

       

 

Tbn 2

          

          

mf

mf

                  

mf

      

mf

mf

      B Tbn        mf       Tuba        

Drms

     

                      

Tbn 3

Perc 2

                    mf                         

Hrn

Perc 1

mf

 

 

  

 

  

                               

  

  

  



  

   

 

                                             

 

                     

           

  

  

 

  

  

  

 

  

mf

mf


4

Tpt 1

Tpt 2

Tpt 3

            

                 

                 mf              

                  

13

  

  

Flug

  

Hrn

  

Tbn 1

 

Tbn 2

mf

                     

 

 

        

Tbn 3

      B Tbn          Tuba       Perc 1

Perc 2

Drms

 

 

 

 

ff

                   ff               

  

  

 

 

 



                

     

ff

       

ff

           

ff

     

     ff      

     

       

ff

                 

ff

ff

     

                

                          

 

 

ff

ff

ff

 

ff

 

 

      

   

    

 

   

  

   


Tpt 1

Tpt 2

     

     

      

16

sfz

sfz

Tpt 3

sfz

Flug

5

A

Tbn 1

mp

       

       

       

       

       

mp

Soli                

      

     

     

     

   Tuba           Perc 1 

Drms

mp

      

sfz

Perc 2

      

sfz

B Tbn

         

      

sfz

Tbn 3

         

                                              mf                             sfz

Tbn 2

       

mf Soli

Hrn

  

         

     

mp

mp

     

    

      

  

mp

Cowbell mp

     

mp

     

       

     

     

   

  


6

Tpt 1

20



Tpt 2

          

       

       

       

Tpt 3

          

       

       

       

Flug

Hrn

    

                             

      

      

                          

    

           

     

     

  

Tbn 2

        

     

     

     

Tbn 3

 

B Tbn

 

     Tuba    

    

    

     

Tbn 1

     

Perc 2

    

Drms

 

Perc 1

4

          

      

       

     

  

   

  


Tpt 1

Tpt 2

Tpt 3

Flug

Hrn

Tbn 1

Tbn 2

Tbn 3

B Tbn

24



      

            mf

    

  

     

    

      

    

   



     

            

mf

mf

Drms

 

mf

     

    

  

 

mf

        

   

  

  

mf

  

mf

f

        

       

f

f

  f  

     

   

      



      

 

f

  

        

f

       

     

               

7

f

f



8

    

  

  

mf

          

 

mf open

  

mf open

  

 

mf

     Tuba           Perc 1  Perc 2

      

f

f

       

f

  

    

f

f


8

Tpt 1

28



  

Tpt 2

  

Tpt 3

Flug

Hrn





B

     mp

   mp

 

    mf

       

    

  

     

       

   

   

   

   

   

   

   

   

   

   

   

   

  

mp

   

mp

 

 

   

 

   

 

   

 Tuba  

     

     

Tbn 1

Tbn 2

Tbn 3

B Tbn

Perc 1

Perc 2

Drms

 

 

    12

   

mf

mf

mf

mf

mp

     

  

   

   

   

   

     

     

  

 

                    

mp

  

mp

         

mp

  


Tpt 1

32



       

     

Tpt 2

Tpt 3

Flug

Tbn 1

Tbn 2

     

       

   

       

       

   

   

    

   

       

   

   

 

 

  

  

  

  

          

  

 

 

   

B Tbn

  

 

     Tuba     

Perc 2

Drms

 

    

 

     

    

     

  

       

     

Tbn 3

Perc 1

  

     



Hrn

 

9

  

  

    

     

  

                          

  

 4

    

    


10

Tpt 1

Tpt 2

Tpt 3

Flug

Hrn

Tbn 1

Tbn 2

Tbn 3

B Tbn

36



Drms

           

      

mf

       

   

  

mf

    

 

   

    

   

 

  



  

        

  Tuba       Perc 1  Perc 2

  

mf

 

mf

                 

  



   

  

     

mf

8

 

mf

     

 

 

  

mf

mf

                 

       

f

f

  f  

  

     



      

 

f

  

   

   

f

      

 

f

f

  

mf

  

mf

  



mf

      

f

       

     

f

        

f

   

f

  

f

f

        


Tpt 1

Tpt 2

Tpt 3

40

 

 

 

 





Flug

Hrn

 

Tbn 1

 

Tbn 2

Tbn 3

B Tbn

Tuba

Perc 1

Perc 2

Drms

 

 

mf

 

 

    

mf

   

    12

mf

        mf       

   

     

 

       

   

mf

   

mf

 

   

11

C

   

mf

mf

  



  

  



  



 

  

              

 



 

       

 

       

          

       

          

   

  

mf

mf

mf

 

mf

 rim

      

               

   

 


12

Tpt 1

43



       

Tpt 2

       

Tpt 3



Flug

 

     

  

Hrn

 

Tbn 1

                



  

 

   

    

  

 

   

  

   



 

  

              

 



Tbn 2

 

Tbn 3

   

       

B Tbn

   

       

          

       

          

   

Tuba

 

  

Perc 2

Drms

 

Perc 1

4

     

               

 

   

    

 

     

   

 

          

   

   

   

    

           


Tpt 1

Tpt 2

Tpt 3

Flug

Hrn

Tbn 1

Tbn 2

Tbn 3

B Tbn

46



                   

   

      

           

Drms

 

f

ff

mp

f

ff

mp

f

ff

                       

             f            

    f

              

 

f

 

 

   

 

f

f

   

sfz

ff



sfz

      ff             

  



ff

      

f

f

ff

ff       

f

 

   

ff         

f

 

      

  

ff

                     

    

  

f

                 

       

  Tuba       Perc 1  Perc 2

                

D

    mf

                          

mp

        mp     mf

    mf

    mf

    mf

     

mp

         

ff

mp

     

mp

 

ff

13

         

mp

    


14

Tpt 1

50



Tpt 3

Flug

Tbn 1

Tbn 2

     

     

       

     

   

   

   

   

   

       

    

   

   

   

   

   

  

 

 

   

  

  

  

  

B Tbn

  

     Tuba     

Perc 2

Drms

 

     

  

     

    

          

Tbn 3

     

  

  

Perc 1

       



Hrn

 

       

     

Tpt 2

  

 

     

    

   

                           

   

   

  

 4


Tpt 1

54



    

Tpt 2

     

Tpt 3

Flug

Hrn

Tbn 1

Tbn 2

Tbn 3

                 

          

   

Perc 2

Drms

   

mf

   

   

  



  

 

  

  

 

   

 

       

 

       

 

     

   

  

           

   

   

mf

    

  

 

  



mf

  

  



   

  

mf

mf

   

 

mf

                    

mf

       

 

        

 

     Tuba     Perc 1

  

           

 

B Tbn

15

mf

8

 

mf

      

 

 

  

mf

  

mf

mf

  


16

Tpt 1

Tpt 2

Tpt 3

Flug

Hrn

Tbn 1

Tbn 2

Tbn 3

B Tbn

       

58

   

          f

      

           f

     

          f

  f  



     

  

      

         

      

         

       f

f

f

           

f

  

   

 

3

f

 

f

 

     

  



 

    

       

    

3

f

f

                 Perc 1 

Drms

      

     

 

 

f

Tuba

Perc 2

f

    

E

    

f

f

       

f

f

        

f

f

 

f

            f      

f

   

f

       

f


Tpt 1

      

62

 

 

    

              3

             

Tpt 3



Flug

          

Hrn

Tbn 1

   

Tbn 2

       

Tbn 3



   

17

              3

           

Tpt 2

 

 

 

        

      

                

   

 

        

      

       

                

           

           Perc 1 

                          

                 

   

   

B Tbn

Tuba

Perc 2

Drms

 

   

  4


18

Tpt 1

     

66

 

              

Tpt 2

              

Tpt 3

Flug



          

Hrn

Tbn 1

    

Tbn 2

      

Tbn 3

     

B Tbn

         

 

  

  

          mp

 

solo

  

  



  



  

     

 

     

    

           Perc 1 

 

                            

Tuba

Perc 2

Drms

  

    

3


Tpt 1

69

19

F 

Tpt 2



Tpt 3



B¨7

         

Flug

   

Hrn

 

 

   

 

 

   

    



   

 



   

 



   

   



   





   





   

p

p

Tbn 3

p

B Tbn

Tuba

Perc 1

Perc 2

Drms

 



   

  

Tbn 2

3

   

 

p

Tbn 1

             

       

 

p



   

   



 



   

   

  

 

 

     

  

p

p

            p

 

 

     

    





   

       

 

  


20

72



Tpt 2



Tpt 3



        

        

 

 

Tpt 1

     

Flug

   

Hrn

  

Tbn 1

Tbn 2

Tbn 3

B Tbn

Tuba

Perc 1

 

 

 

3

  

E¨7

 

   



   

    



   





   



   



   





   

 

   

   

   

  

Perc 2

Drms

 



3

 

     

   





      

  



  





  

 

    

     

     

   

  

    4



 

      

 

      


21 75



Tpt 2



Tpt 3



Tpt 1

G7(b5)

                        

Flug

    

Hrn

  

Tbn 1

Tbn 2

Tbn 3

B Tbn

Tuba

B¨7

  

  

 

 

  

 

   

  

 

  



  





  





   

  





  





 

    

 

   

  

    



   



   

   

 



   

 

     

Perc 2

  

Drms

 

 8



   

 

 

 

Perc 1

        

C7(b9)

     

 

 

  


22

Tpt 1

Tpt 2

78





Tpt 3

 



 F7

Flug

          

Tbn 1

Tbn 2

Tbn 3

Perc 1

Perc 2

Drms

 

     

  

     

  

 gliss.

         

  

     

3

        

 

     

 

     

f

f

 

        

f

    

      

  

           

            f      

               

     

f

     

 



       

        

3

 

f

  

 

f

 

   

        

       

B Tbn

Tuba

B¨7

           

Hrn

           

G

   

f

f

f

   

f

       

f


Tpt 1

      

82

 

 

     

            3

             

Tpt 3



Flug

          

Hrn

Tbn 1

   

Tbn 2

       

Tbn 3

 

   

23

            3

           

Tpt 2

 

 

 

        

      

                

   

 

        

      

       

                

           

           Perc 1 

                          

                 

   

   

B Tbn

Tuba

Perc 2

Drms

 

   

  4


24

Tpt 1

     

86

 

              

Tpt 2

              

Tpt 3



Flug

          

Hrn

Tbn 1

    

Tbn 2

      

Tbn 3

     

B Tbn

   

   

   

  

         

 

  



  



  

       

 

   

   

    mf

     

    

mf

           Perc 1 

 

                        BIG SOLO Vibraslap           

Tuba

Perc 2

Drms

  

ff

    

 


Tpt 1

89

25

H 

       

Tpt 2

mf

       

Tpt 3

mf



Flug

 

  

Hrn

 

Tbn 1

 

Tbn 2

     

mf

         mf        

   

mf

mf



  

 

   

    

  

 

   

  



 

  

              

 



Tbn 3

   

       

B Tbn

   

       

          

       

          

   

Tuba

Perc 1

Perc 2

Drms

 

 

  

mf

 

 

mf

mf

 

mf

 rim

      

     

               

 

   

    

 

     

   

 

          

   

   

   

    

           


26

Tpt 1

92



Tpt 2

      

  

 

Tpt 3

       

  

 

Flug

Hrn

Tbn 1

Tbn 2

         

 

   

    

   



 



 

 

             

 

   

 

   



  

    

  

  

   

    



   

 

 



 

 



 

   

    

 

       

  

 

        Perc 1 

       

          

   

          

       

   

Tbn 3

B Tbn

Tuba

Perc 2

Drms

 

    

   

 4

   

    

 

  

     

           

    

   

 


       95           Tpt 1    f

ff

f

ff

f

ff

f

ff

                          

Tpt 2

mp                            

Tpt 3

                  

Flug

                  ff f                        

Hrn

Tbn 1

f

 

Tbn 2

f

 

Tbn 3

ff

        

 

ff

       

 

f

  

B Tbn

f

  Tuba    Perc 1

Perc 2

Drms

I

f

 

 

f

f

f

  



ff sfz

      

 ff            ff              sfz

 

  

ff

 

ff

   

ff

mp

27

   

Tin Mute

  

mf

  

               

       

mp

         

       

                Tin Mute mp        mf

 Tin Mute   

  

 Tin Mute   

Tin Mute    

mf

mf

mf 

 

 

     mp        

             

   

   

mp

mp

     

mp

    


28

Tpt 1

99

  

  

Tpt 3

Flug

     

     

     

   

   

   

       

       

    

   

   

   

        

 

 

  

Tbn 1

  

Tbn 2

       



Hrn

       

     

Tpt 2

 

     

     

          

 

 

   

Tbn 3

  

  

B Tbn

  

  

     Tuba    

     

       

 

     

    

   

 

       

 

    

                         

Perc 2

  

Drms

 

Perc 1

  

 4

    


Tpt 1

      

103

     

Tpt 2

     

Tpt 3

Flug

Hrn

Tbn 1

                     mf

               mf

             

                

        mf      mf

        

B Tbn

mf

     

Tbn 3

     Tuba     Perc 1

Perc 2

Drms

  

          

     

Tbn 2

                 



  



   

  

mf

mf

     f

     f

     f

  f  

  

   



    

  

    

f

f

 

  

  

 

   8

mf

mf

mf

 

       mf             

 

    

                      

f

f

mf

   



  

  

29     

 

f

 

f

 

  


30

Tpt 1

Tpt 2

  

   

Tbn 1

   

Tbn 2

       

Tbn 3

           

   

  

   

    

   

  



mf

mf

mf

   

    

  





    

   

  

  

   

 

mf

   

 

mf

mf

f



    

       

    

  

 

 

  

  

f

   

  

    

     

 

mf

f

            

      

B Tbn

Drms

     

Hrn

Perc 2

     

     

Flug

Perc 1

      

Tpt 3

Tuba

J     

107

mf

   

  12

mf

mf

mf

mf

   

   

 

   

   

   

        



  

   


Tpt 1

31 111



 

            

     

    

    

    

    

   

   



    

  

       

  



     

    

mp

      

Tpt 3

mp

     

Flug

mp

     

Hrn

mp

    

Tbn 1

mp

Tbn 2

mp

Tbn 3

mp

B Tbn

      

     

mp

Tuba

Perc 1

Perc 2

Drms

 

     

Tpt 2

mp

 

 

p

p

p

p

   

mp

p

p

                 

mp



p

 

mp

 

p

    

      

   

p

p

16

    

p

     

   

   


32

Tpt 1

Tpt 2

Tpt 3

Flug

114



   



   

 

    

 

    

Hrn

Tbn 1

Tbn 2

Perc 2

Drms

pp



  

  

 

  Tuba    Perc 1



   

B Tbn

   

solo

   

Tbn 3

 

 

 

solo 

pp

 

 

 

 

  

 



  ff  

 

 

ff

ff

ff

ff

ff

ff

ff

ff

ff

 

 

 

 

ff

    ff

 


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.