Sb60 aviatorscore

Page 1

Aviator Composed by Keiron Anderson An Original Composition for Superbrass.

4:00 Minutes 4 Trumpets 1 Horn in F 4 Trombones 1 Tuba 1 Drum Kit 1 Percussion 3 Percussion (Optional) Trumpet 4 doubles on Flugelhorn. Percussion section requires: Bongos or congas and Woodblocks. (Optional Percussion requires: Timps, Tambourine, Xylophone) Alternative transposed parts for Eb Soprano Cornet, Eb Tenor Horn, Bb Trombone, Euphonium or Baritone in Treble Clef and Eb & Bb Bass in Treble Clef are automatically included in both hard copy and download formats. If you require additionally transposed parts, please drop me an email at info@superbrass.co.uk

Š 2015 www.superbrass.co.uk


Aviator Aviator is a bright, lively piece, which attempts to show the fast moving and complex world of the stunt pilot who mixes simplicity and style with mad aerobatic prowess. The work shows the take off and landing but in the middle, a multiple time signature section mixes cut common and triple time signatures to take the Band on a white-knuckle ride before returning to the main theme for a safe landing. Keiron Anderson Keiron studied at the Royal Northern College of Music with Philip Jones OBE at a time when the Philip Jones Brass Ensemble was established as a real force in brass chamber music. He was fascinated by the methods used by Philip Jones to achieve the unique and sophisticated blend of the instruments and players and how to apply the techniques to other same-family instrumental groups. At the RNCM, Keiron experienced a wide range of musical styles including founding the college Big Band and Light Orchestra which involved arranging film music and jazz classics. After graduating, Keiron worked as a freelance trumpet player with many orchestras around the UK including the soon to be disbanded BBC Northern Radio Orchestra. He then spent several years with his own group as a Musical Director for Cunard Line before returning to the UK to compose, conduct and teach music. He now conducts the acclaimed Harlequin Brass Ensemble, Yorkshire Wind Orchestra, Nottingham Symphonic Winds, Phoenix Concert Band and works with many ensembles around the country. He has written music in a vast array of styles for Wind Orchestra, Brass Band, Clarinet Choir, Flute Ensemble, Brass dectet, Saxophone Groups and String Orchestra as well as several musicals and vocal works. Superbrass Music Since the start of Superbrass in early 2005, I have strived to commission new original compositions and arrangements for brass and percussion. Superbrass Music is committed to developing accessible new music for brass of the very highest quality. Illegal photocopying denies composers and publishers of their rightful revenue. A lack of revenue deters publishers from investing in new commissions. ALL MUSICIANS suffer the consequences of illegal photocopying. The future is in your hands. Now that you have the facts, you can help the future of the creative music world. If you do happen upon any errors please let me know by contacting me personally at info@superbrass.co.uk Roger Argente / Artistic Director


Superbrass Music

Aviator

Score in C

Composed by Keiron Anderson Edited by Roger Argente

h = 116

              fp f           Trumpet 2               f         Trumpet 3               f f     Flugelhorn     Trumpet 1   

f

     

   

     

                        f                Trombone 1  fp f fp fp             Trombone 2  f fp fp        Trombone 3    Horn in F

Bass Trombone

Tuba Timpani (Optional)

Drum Kit Percussion 1: Bongos or Congas and Woodblocks Percussion 2: Tambourine (Optional) Percussion 3: Xylophone (Optional)

 

 

f

fp

  

f

  f  

    

                                  

                                               

     

  

   

 

           

fp

fp

 

   

   

fp

  

Bongos or Congas

 

f

f

           

f

                  f

All Rights Reserved © 2015 Superbrass Music www.superbrass.co.uk

        fp

  fp

fp

fp

  

fp

   


2

Tpt 1

Tpt 2

             

 

 

            fp

 

 

 

 

6

fp

             fp     Flug  

Tpt 3

f

Hrn

 Tbn 1

 

Tbn 2

  

Tbn 3

B Tbn

fp

Tuba

Timps

fp

fp

 

   f





f

 f

 

      

 

 

 

                  

 

fp

 

f

                 

f

 

    

  



  

               

       

       

         

         

  

Perc 1

Perc 2

 

Drms

Xylo

 

f

  

f

             


3

Tpt 1

11





 



 

 

 



 



 

   

    



 

 

mf

Tpt 2

  

 





 

Tpt 3

  

 



  

 

 

 

   

 

 

   

 Flug   

 

 

mf

mf

mf

                              Tbn 1 Hrn

  

Tbn 2

Tbn 3



mf

 

   

 

  

               mf      

 



  

 

 

  

   



 





 

mf

  



 

 

 

mf

        

              

      

         

Perc 1

Perc 2

 

B Tbn

Tuba

Timps

Drms

Xylo

  

 

mf

mf

mf

  

mf

 


4

Tpt 1

     

     

Tpt 2

     

Tpt 3

Flug

16

        

 

 

p

      p

 



  

p

p

 Hrn              p            Tbn 1 p             

Tbn 2

Tbn 3

B Tbn

 

Tuba

 Timps 

Drms

Perc 1

Perc 2

Xylo

     



         

  

   

            

     

 

  

   

               

 

 

mp

     

mp

 

  

mp

     

mp

       mp    

mp

 

mp

  

 

 

 

 

    p

 

     

 

 

 

 

p

 

 

    

p

Wood Blocks

 

mp

mp

mp

     

    

mp

 

p


5

Tpt 1

Tpt 2

 

 

     

     

  

Tpt 3

Flug

     

22

  

 

             

Hrn

  Tbn 1



   

Tbn 2

  

Tbn 3

  

 

     



   

  

   



  B Tbn 

 

 

 

 

    

Tuba

Timps

Drms

  

        

Perc 1

Perc 2

 

 Xylo  

 

 

       

A

   

mf

  

                

mf

 

 

mf

   

 





 

   





   

  





      mf    





mf



mf

mf

mf

A





   

                                 mp

 

 

     

 

 



 

                

mf

     


6

28

Tpt 2

Tpt 3

Tpt 1

Flug

   

Hrn

   

 Tbn 1

Tbn 3

Drms

  

    

Tuba

Timps

   

Tbn 2

B Tbn

 

   

mf

      



mf



             

  

      

    

 

          

   

 

 

      

 

      

       

   

   

   

 

    

  

         

          

  

          

          

 

       

mf

                             

Perc 1

Perc 2

 

Xylo

    


7

33

Tpt 2

Tpt 3

Tpt 1

Flug

    

    Tbn 1    Tbn 2

B Tbn

    

Tuba

   

Tbn 3

Drms



                 

Hrn

Timps

  



     





  

     

  



 



 



  





 

 





cresc



cresc

             

  

     cresc        

  

    

  

   



  



cresc

cresc

     cresc cresc

                             

Perc 1

Perc 2

 

   Xylo                  mf

     

  

cresc

  


8

Tpt 1

Tpt 2

 

  

 

mf cresc

 

             

 

   

Tuba

Drms

     

Tbn 3

Timps

Tbn 2

B Tbn

   

Hrn

Tbn 1

  

Tpt 3

Flug

38

          

   

mf

f

       

f



    

  

 



    

  

 

f

f

     f    



   



 f

  



  

  



 

 

 

 f

   



   



  



 

  

  

B

                                        

Perc 1

Perc 2

 

Xylo

       

        

B  

 



mf

f

     


9

Tpt 1

 

   

Tpt 3

 Tbn 1

Tbn 3

  

B Tbn

Tuba

  

  



 

  

  

  





f

       mf

      mf

mf

  

   

       



    

     

    

         

Perc 2

 

 

mf

mf

 

mf

  

 

 

 

 









                   



                      

         

       

         

           

  





 



 

Perc 1

Xylo

  

f

 

Tbn 2

Drms

    

Hrn

Timps

                           

Tpt 2

Flug

44

  

 

 

 

 

 

 



 


10

Tpt 1

49

  mf

 

Tpt 2

mf

  

  

Tpt 3

mf

Flug

 





 



                    

mf

 

  



  



Tbn 2

 

  

Tbn 3

 

  

 

  

  

Tbn 1

B Tbn



Drms

mf

mf

mf

Tuba

Timps

mf

mf

  



mf

  

mf

 

 

 

 

 

f

           

                      

Hrn

                  

 

                   

 

 

      

 

              

  



       

             

  

f

               f       



   

 

f

  

f

f

  

f

             

 

    

       

 

 

 

 

 

  

 

f

 

 

 

Perc 1

Perc 2

 

   

Xylo

 

f


11

Tpt 1

  

         

54

C

Tpt 2

  

  

           

Tpt 3

  

  



Flug



       

Hrn

 Tbn 1 Tbn 2

  

Tbn 3

  

  

 

  B Tbn 

 

 

Tuba

Timps

Drms

Perc 1

Perc 2

  

 

        

  

   

     

  

 

   

 

  

  

   

 

 

             Xylo  

mp

  



    

  



                 mf     

mp

 

       



   



   

  



      mp    





mp

 

mp

mp

mp

C



 

 

                                

mp

   

   

Congas or Bongos mf

mf


12

Tpt 1

Tpt 2

Tpt 3

Flug

60

       

Hrn

    Tbn 1 Tbn 2

Tbn 3

B Tbn

Timps

Drms

Perc 1

Perc 2

Xylo

  

   

    

Tuba

      

 

mp

             

          

 

  

     

      

   

      

 

     



    

 

    

  

    

  

         

          

  

          

          

   

  

  

    

   

   

   

   

 

       

                                          

 

       

  


13

65

Tpt 2

Tpt 3

Tpt 1

Flug

      

    

                           Tbn 1      Tbn 2 Hrn

Tbn 3

 

   B Tbn      

Tuba

Timps

Drms

Perc 1

Perc 2

Xylo

     

  

  

  



 

 

  

   

     

 



 

  

 



 

  







mp

   

 



mp

  

 

     



    

 

  



  

       

 

      

 

         



 

                              

 

 

mf cresc

       

mf cresc

       

mf

 


14

Tpt 1

Tpt 2

     

   

 Tbn 1

  

   

Tbn 3

Timps

 

  

Tbn 2

Tuba

Hrn

B Tbn

  

mp

         

Tpt 3

Flug

D

70

 

 

 

            

 

     

mp

 

    

 

    

   

       

  



  

  



 

  

               ff

            

ff

                   ff

                   

ff

                    ff

ff

  

             ff

 

             ff

D                                         Drms                     ff

Perc 1

Perc 2

 

Xylo

 


15

Tpt 1

                                 

76

                         

Tpt 2

                                  

Tpt 3

            Flug                          

Hrn

Tbn 1

 

Tbn 2

B Tbn

Tuba

Timps

Drms

  

     

fp

fp

    

     

fp

fp

f

       

f

                   ff 

                            f 

 

 

                                                  

Perc 1

Perc 2

 

Xylo

                                            

                         

Tbn 3

    

 

f


16

Tpt 1

Tpt 2

83

  

Tpt 3

f

 Flug     f   

Hrn

    Tbn 1

     

    

                   

   

     

    

B Tbn

Timps

Drms

  

 

         



 



 



 

        

 

f

    

                        

Tbn 3

Tuba

 

f

  

f

 

Tbn 2

f

 

    

    

 f

 

 

   

    

 

f

  f

  f

                                                 





 

                                                        

Perc 1

Perc 2

 

Xylo

 


17

Tpt 1

      

88

              

Tpt 2

        

Tpt 3

   Flug    

Tuba

      

Drms

    

  

 



    



 

    



    



mf

   mf

  



 

 



 

 

 

 

  



  



 



 

 

 

  

                         

Perc 1

Perc 2

 

Xylo

   

mf

       

 

mf

mf

   

B Tbn

Timps

mf

   

   

Tbn 3

mf

      Tbn 1 Tbn 2

mf

    

Hrn

 

mf


18

93

                       

Tpt 3

     

        

Flug

       

      

 

Hrn

    

   

 

  

 

Tpt 1

Tpt 2

mf

        Tbn 1 

Tbn 2

    mf

     

Tbn 3

     

B Tbn

Drms

 

mf

Tuba

Timps



  

 

  

      

 

mp

f

mp

f

mp

                               mp f                mp

f

    

mp

           

mp

  

  



 

 

 

  

                                   

Perc 1

Perc 2

 

 

Xylo

 

f

mp


19

Tpt 1

Tpt 2

Tpt 3

Flug

99

                       

                    

                  

Hrn

         Tbn 1         

Tbn 2

Tbn 3

B Tbn

Drms

      

        

Tuba

Timps

  

mp

pp cresc

pp

cresc

                                pp cresc

                                              

pp cresc

     

                       pp cresc pp

  pp

                pp                 pp

cresc

cresc

cresc

      

       

 

           

   

 

       

   



    

       

   



    

cresc

     

                                

Perc 1

Perc 2

 

 

Xylo

    

 

pp

cresc


20

Tpt 1

                cresc

    

  f

                     f

Tpt 2

Tpt 3

 



 

Flug

E

104

mp

cresc

 

           

f

              f

 Hrn                             f    3  3         Tbn 1 Tbn 2



3

 

3

Tbn 3

B Tbn

3

Tuba

Timps

Drms

  

 

  

  

3

 

     3

Perc 2

 

 

   

3

3

3

Perc 1

Xylo

3

 

       3

   

  f

f

    

 

  

    

 

  

     

 

    

 

    

 

                   

 

   

  

  

f

f

 

 

 

E

                           

f

      


Tpt 1

109

Tpt 2

Tpt 3

Flug



    



    



  

fp

fp

21





    



   



fp

fp

  f

  f

  f

Tbn 1



  

      

   

            

  

 

Tbn 2

Tbn 3

B Tbn

Tuba

Timps

Drms

  

 

  

 

 

 



       

                 

Hrn

 

         f

f

  f

        

    



   

 

    



   

     

f

    

                              

Perc 1

Perc 2

 



Xylo

 

f


22

114

Tpt 2

       

Tpt 3

 

Tpt 1

Flug

        

mp

     Tbn 1

              mp          

   

Tbn 2

   

Tbn 3

 

     

Tuba

Timps

Perc 1

Xylo

   

  

mp

mp

    

  

   

      



   mp

      mp

  

     mp   

 

                               

          

 

                

 

                                   

 

        



 

                                           mp                                             Congas or Bongos

Perc 2

mp

        

f

Drms

   

                                

Hrn

B Tbn

  

 

mp

           

                                      mp

mp

        

 


23

Tpt 1

119





Tpt 2    

   

Tpt 3

Flug   



Tbn 1

 

Tbn 2



Tbn 3

  

 

  B Tbn   

Timps

   



         

 

               

Perc 2

Xylo

        

               mp

     mp         

mp

    

 

  

  

      

  

      

       

          

  

  

   



 

 

 

 

  

 

 

f

 



    f    f    

 

 



 



 

        





        

 



        





        



 

 

 

  

         

 



  f

f

   

       

 

                                                           

          

 

             

Drms    Perc 1  

              

Hrn    

Tuba

 

                 

                     

      

      

 

      

  

 

      

 

 

          mp


24

 Tpt 1  

  

 

 Tpt 3  

   

 Flug   

Tpt 2

124

mp

 

mp

mp

 

                                         

 



              

   Hrn         

              

mp

mp

            Tbn 1  mp        Tbn 2 

  

 



Tuba

Timps

 



Tbn 3

B Tbn

 

    



  Drms    Perc 1

Perc 2

Xylo

               

  











   

      

   

          

   

          

 





 

 

 

 



  

     





  

     





  

     





  

     



mp

  mp

  

     

                      mp

               

        





mp



              

                   

 

mp

     

mp

            

 

 





  

                     



    

                 

          

      

      

 

     

  

 

 


Tpt 1

   

129

f

   

Tpt 2

f

    

Tpt 3

f

  Flug     f    

Hrn

f

     Tbn 1 f



Tbn 2

B Tbn



 

                      

 

           

           

      

 

  

 

   

 

 

                      

     

 

 

 

 

  

 

           



  



          

 

     f f

 

 

   

 

 

 

 

   

  

   

 

 

 

  

           

  

           

mf

mf

  

   

mf

 

mf

mf

         

           

          

     mf

        

 



        

mf

 

 

     

 

   

    

               Drms        

      

                            

f

Perc 1

mf

                                       mf

f

Perc 2

Xylo

                     

f

 

     

mf

  

  

mf

 

Timps

  

f

          

f



Tuba

 

f



Tbn 3

          

25

                    


26

135

 

Tpt 2  

  



 

Tpt 1

Tpt 3



 

  

 

 

 

   

              

  

      Tbn 1

         

Tbn 2



 

Tbn 3



 



Tuba

Timps

Drms

   

Xylo



   

       

  

 

     

                   

          

        



        



  

        

       

  

   

 

mf

      

 

 

 



      



  

 

     

                                                 

Perc 1   Perc 2



        

        

 





 

 

              

 



B Tbn

           

Flug      Hrn

 

      

          

                 

                 

   

      

      

 

 

      

  

 

      

 

          mf


27

 

  

       

  

140

 Tpt 1   

mp

Tpt 2

Flug

mp

mf

mp

  

       

Tpt 3

  

mf

   mf

mf

                                             

                              Tbn 1  mp mf           Tbn 2  Hrn

mf



Tbn 3

B Tbn

 



Perc 1

Perc 2

Xylo

 

   

      

       

          f

          f

  

       f

 

 

                  f                              f                       

    

 

 

 

 

  

f

      

f



    



          

  

  

      

 

  

  

      

                          

      

      

      

mp

 

     

 

  

 

  

  

mp

Drms

 

 

 

  

mp

Timps

 

 

          



Tuba

 

  

mf

 

mf

  

f

f

f

f

                                                     

      

 

      

      

      

f

       f

                                     f


28

Tpt 1

146

 

 

  

      Tpt 2    f       Tpt 3    f    Flug     

   Tbn 1 

Tbn 2

Tbn 3

Tuba

Timps

Drms

Perc 1

Perc 2

 

   

 

 

   

     

 

  

 

 

 

 

 

              

 

                     

 

 

             



   



   

    

          

 

   

      

   

  

  

  

 

   

 

  

  

    

  

 

  

 

    





 

    

 

  

        

  

 



   

 

 

 

 

                    

 

 

            

            

Hrn

B Tbn

 



  

       

  

                                                  

                                   

        

      

          Xylo     

 

       

      

      

      

            

 


29

Tpt 1

152

   

    

Tpt 2

  

Tpt 3

   Flug        

Hrn

     Tbn 1      Tbn 2      Tbn 3 B Tbn

    

Tuba



   Timps  

Drms

Perc 1

Perc 2

Xylo

     

      

   

                     

          

      

           

 

    

                     

          fp

         fp         

                

 

fp

    

                

                  

                 



     

  

   

 

    

fp    



    

           





           





fp

fp

  fp



fp



                                                                                   

      

            

        

                    f

fp


30

Tpt 1

157

F                     

fp

ff

                                         ff              

Tpt 2

Tpt 3

fp

ff

fp

  Flug            

fp

Tbn 1



Tbn 2

 

 

fp

 

Tbn 3

 

   







fp

 

fp

 fp

     ff

fp

fp

Timps

fp

fp

 

fp

Tuba

ff

                                   

Hrn

B Tbn

        

  

 

     ff

F            Rim shot                                    Drms         fp

ff

fp

Perc 1

Perc 2

 

Xylo

 

 

  ff


31

Tpt 1

Tpt 2



  

  

   

162

   

Tpt 3

 

                             

               

 

 

        

 

         

     

                      Flug                             

Hrn

Tbn 1



Tbn 2

                             

     

      

Tbn 3

B Tbn

 

Tuba

Timps

Drms

Perc 1

Perc 2

Xylo

  

 

  

          

 

  

 

 

 

  

  

 

      

    

 

     

    

ff

 

 

 

 

 

  

 

    

  

  


32

Tpt 1

 

     

     

      fp       

   

   

 

   

 

    



 

                   

Tpt 2

Tpt 3

Flug

168

   

Hrn

Tbn 1



fp

fp

fp

  f

 

f

 

f

f

Tbn 2

 

Tbn 3

 

  

  

B Tbn

      

Tuba

 



f

  

f

             

              

                                

Perc 1

Perc 2

 

Drms

Xylo

 

f

f

f

     

Timps

f

     


33

Tpt 1

172

     

Tpt 2

f

   

     

Tpt 3

 

                 



 



 



 

Flug

 

                            

Hrn

 

                            

Tbn 1



     

Tbn 2

 

      

Tbn 3

 

          

B Tbn

  

  

  

Tuba

Timps

Drms

   

     



 

 



 

 

 

 

 

 

f

   

                                                 





 

                                             

Perc 1

Perc 2

 

Xylo

 


34

Tpt 1

G        

176

               mf

Tpt 2

  

  

  

  

    

mf

Tpt 3

               

 

  

   

 



mf

   Flug    

mf

    

Hrn



mf

      Tbn 1

    

   

Tbn 3

B Tbn

   

    

Tuba

  

    

Timps

Drms

  

 



  

mf

   

Tbn 2

  



mf

 

  

 

 









 

  

G

                         

Perc 1

Perc 2

 

Xylo

 

  



 


35

181

                       

Tpt 3

     

        

Flug

       

      

Hrn

    

 

Tpt 1

Tpt 2

mf

        Tbn 1    

     

Tbn 2

Tbn 3

     

B Tbn

Drms

 

mf

Tuba

Timps

mf



  

 

  

       

 

 

 

  

 

mp

f

mp

f

mp

                  mp f                mp

    

mp

            

f

    

mp

           

mp

  

  



 

 

 

  

                                  

Perc 1

Perc 2

 

Xylo

 

 

mp


36

Tpt 1

Tpt 2

                       

                    

      

Tpt 3

Flug

187

                  

Hrn

          Tbn 1         

Tbn 2

Tbn 3

B Tbn

Drms

      

         

Tuba

Timps

  

cresc

pp

cresc

              pp              pp

      

   

 

    

     

   



    

cresc

cresc

                                              pp

              pp 

      cresc

     

pp

cresc

 

cresc

pp

                pp                 pp

      

       

 

           

   

 

       

   



    

       

   



    

cresc

cresc

cresc

     

                                

Perc 1

Perc 2

 

 

Xylo

pp

 

pp

cresc


37

Tpt 1

                cresc

Tpt 2

Tpt 3

Flug

   

mp

      

Tbn 2



3

Tbn 3

 

B Tbn

3

Tuba

Drms

  

3

3

 3

Perc 2

 





3

3

3

3

 

cresc

mp

3

f

 

       3

 

           

             3 

  

3

Perc 1

Xylo

cresc

Timps



3

  

Tbn 1

 

                    f

  

Hrn

H

192

   

f



     

      

     

  f

f

    

   

    

f

f



    

   

 

    

          

         

   

  

   

f



  

f

H

                                 


38

Tpt 1

197

Tpt 2

Tpt 3



     



     



 Flug   



fp



fp



      fp

     

fp

  

  f

  f

  f



  f

                 

Hrn

                   Tbn 1 

Tbn 2

Tbn 3

 

B Tbn

Tuba

Timps

Drms

  

      fp

     

 

  





f

  f

fp

 

     

        

     

        

     

     

        

        

  

     

      

        

        

  

 

 







 

 







                                                

Perc 1

Perc 2

 

Xylo

 


39

Tpt 1

201

                 

Tpt 2

   ff

 







ff

   



 

  



 

     Flug              

 

 

 

 

 



 

 

 

Tpt 3

                 

Hrn

    Tbn 1   

Tbn 2

    

Tuba

 Timps 

Drms

Perc 1

Perc 2

Xylo

     

   

            

     

   

  

     

  

Tbn 3

B Tbn

     



 

 

       





ff

ff

ff

 

 

ff

 

ff



 

   

 

 

 

 

ff

ff

    ff

  

ff

f

                  

 

 

ff

 

 

 

 

                       



ff

                           

 

 

 



            

  

  

 

ff

 

 


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.