Professor Cícero José – Uniban 2011
1
CAPÍTULO IV Séries – Contexto Histórico Zenão de Eléa (490 – 425 a.C.) escreveu um livro com 40 paradoxos1 relativos ao contínuo e ao infinito. Pelo menos quatro dos paradoxos influenciaram o desenvolvimento da matemática para explicar os fenômenos relevantes. Infelizmente, o livro não sobreviveu até os tempos modernos, assim conhecemos estes paradoxos a partir de outras fontes. Os paradoxos de Zenão sobre o movimento desconcertaram matemáticos por séculos. No final eles envolvem a soma de um número infinito de termos positivos a um número finito, o qual é a essência da convergência de uma série infinita de números. Vários matemáticos contribuíram para o entendimento das propriedades de sequências e séries. Este ensaio destaca as contribuições de alguns daqueles matemáticos que estudaram sequências e séries. Um destes paradoxos é o de Aquiles e a tartaruga. Aquiles, o herói grego, e a tartaruga decidem apostar uma corrida de 100m. Como Aquiles é 10 vezes mais rápido que a tartaruga, esta recebe a vantagem de começar a corrida 80m na frente da linha de largada. No intervalo de tempo em que Aquiles percorre os 80m que o separam da Tartaruga, esta percorre 8m e continua na frente de Aquiles. No intervalo de tempo em que ele percorre mais 8m, a tartaruga já anda mais 0,8m... Dessa forma, não importa quanto tempo se passe, Aquiles nunca alcançará a tartaruga. A solução clássica para esse paradoxo envolve a utilização do conceito de limite e convergência de séries numéricas. O paradoxo surge ao supor intuitivamente que a soma de infinitos intervalos de tempo é infinita, de tal forma que seria necessário passar um tempo infinito para Aquiles alcançar a tartaruga. No entanto, os infinitos intervalos de tempo descritos no paradoxo formam uma progressão geométrica e sua soma converge para um valor finito, em que Aquiles encontra a tartaruga. Na nossa simbologia, temos: 1 +
n 1 1 1 + + ... = 1 + n. 10 100 i = 110
Zenão não foi o único matemático da Antiguidade a trabalhar com sequências. Vários dos matemáticos gregos da Antiguidade usaram seu método de exaustão (um argumento sequencial) para mediar áreas de figuras e regiões. Usando sua técnica refinada de raciocínio chamada de “método”, Arquimedes (287 – 212 a.C.) alcançou vários resultados importantes envolvendo áreas e volumes de várias figuras e sólidos. Na verdade, ele construiu vários exemplos e tentou explicar como somas 1
Um paradoxo é uma declaração aparentemente verdadeira que leva a uma contradição lógica, ou a uma situação que contradiz a intuição comum. Em termos simples, um paradoxo é "o oposto do que alguém pensa ser a verdade". A identificação de um paradoxo baseado em conceitos aparentemente simples e racionais tem, por vezes, auxiliado significativamente o progresso da ciência, filosofia e matemática.
Professor Cícero José – Uniban 2011
2
infinitas poderiam ter resultados finitos. Dentre seus vários resultados estavam que a área sob um arco parabólico é sempre dois terços da base vezes a altura. Seu trabalho não foi tão completo ou rigoroso, como alguns matemáticos que vieram depois dele e desenvolveram sequências e séries como Newton e Leibniz, mas foi tão impressionante quanto. Embora Arquimedes tenha sido obstruído pela falta de precisão e notação eficiente, foi capaz de descobrir muitos dos elementos da análise moderna de sequências e séries. O próximo contribuinte importante para esta área da matemática foi Fibonacci (1170 – 1240). Ele descobriu uma sequência de inteiros na qual cada número é igual à soma dos dois antecessores (1, 1, 2, 3, 5, 8,…), introduzindo-a em termos de modelagem de uma população reprodutiva de coelhos. Esta sequência tem muitas propriedades curiosas e interessantes e continua sendo aplicada em várias áreas da matemática moderna. Durante o mesmo período, astrônomos chineses desenvolveram técnicas numéricas para analisar resultados experimentais. Durante os séculos XIII e XIV, matemáticos chineses usaram a ideia de diferenças finitas para analisar tendências em seus dados. Hoje, métodos como os deles são usados para entender o comportamento a longo prazo e os limites de sequências infinitas. Este trabalho inicial na Ásia levou a mais investigação e análise de várias progressões e séries, mas teve pouca influência sobre os matemáticos europeus. Oresme (1325 – 1382) estudou taxas de variação, como velocidade e aceleração, usando uma aproximação sequencial. Seu principal trabalho, “De configurationibus”, foi o primeiro a apresentar gráficos de velocidade. O argumento que usamos para mostrar a divergência da série harmônica foi inventado por Oresme em sua publicação. Duzentos anos depois, Stevin (1548 – 1620) avançou a matemática providenciando uma simbologia mais fácil de compreender. Ele entendeu os conceitos físicos e matemáticos da aceleração devido à gravidade. Somou séries e analisou sequências, mas parou um pouco antes de definir ou explicar limites e convergência. O contemporâneo de Stevin, Galileu (1564 – 1642), aplicou matemática às ciências especialmente na astronomia. Baseado no seu estudo de Arquimedes, Galileu melhorou a compreensão de hidrostática, desenvolveu os resultados para o movimento em queda livre sob a ação da gravidade e os movimentos dos planetas. Até sugeriu que poderia existir uma terceira propriedade entre o finito e o infinito. À medida que o desenvolvimento do cálculo foi tomando forma, o progresso no entendimento de séries infinitas teve um papel no desenvolvimento do cálculo diferencial e integral. Pascal era fascinado pelos resultados impressionantes que vinham das somas infinitas, mas era confundido pelo seu conceito. Para ele, o infinito era alguma coisa para admirar, mas impossível de entender. Pascal preferiu a abordagem geométrica de St. Vincent (1584–1667) para séries e sua convergência em vez da nova abordagem analítica de Fermat e Descartes (1596–1650) que não conseguia visualizar ou entender. Apesar da limitação de Pascal para entender séries, ele, junto com Descartes e Fermat, usou cálculos com séries nas contribuições aos fundamentos do cálculo diferencial e integral.
Professor Cícero José – Uniban 2011
3
Até a metade do século XVII, matemáticos tinham desenvolvido e analisado séries de números. O tempo tinha chegado para investigar sequências e séries de funções. Tanto Newton e Leibniz desenvolveram representações de séries para funções. Usando métodos algébricos e geométricos, Newton calculou as séries para as funções trigonométricas sen(x) e cos(x) e para a função exponencial. Estes resultados são encontrados nos trabalhos de Newton intitulados “Method of Fluxions and Infinite Series” e “Analysis with Infinite Series”. Newton utilizou séries para desenvolver muitos resultados de cálculo, tais como área, comprimento de arco e volumes. Leibniz somou sequências de recíprocas de números poligonais e, seguindo o trabalho de St. Vincent somou e analisou várias sequências geométricas. Leibniz usou uma abordagem seqüencial de valores infinitamente próximos para explicar o conceito de limite. Embora nunca tenha pensado na derivada como um limite, descobriu muitos dos resultados que agora estudamos em cálculo usando limites. Brook Taylor (1685–1731) não foi o primeiro a inventar a estrutura e o processo que chamamos de série de Taylor, e a série de Maclaurin não foi desenvolvida por Colin Maclaurin (1698–1746). James Gregory (1638–1675) estava trabalhando com séries de Taylor quando Taylor tinha apenas alguns anos de idade. Gregory também publicou a série de Maclaurin para muitas funções trigonométricas antes que Maclaurin tivesse nascido. Taylor não conhecia o trabalho de Gregory quando publicou seu livro “Methodus incrementorum directa et inversa”, o qual continha o que chamamos agora de série de Taylor. Ele tinha desenvolvido independentemente um método baseado em cálculo para gerar representações de funções em séries. Posteriormente, Maclaurin citou um trabalho de Taylor em um livro de cálculo que escreveu em 1742. O livro de Maclaurin popularizou representações de funções em séries, e embora Maclaurin nunca tenha afirmado que as tinha descoberto, a série de Taylor centrada em a = 0 tornou-se posteriormente conhecida como série de Maclaurin. Johann Bernoulli (1667–1748) também fez uma descoberta independente do teorema de Taylor. Euler usou frequentemente séries infinitas em seu trabalho para desenvolver novos métodos ou para modelar problemas aplicados. Publicou “Mechanica” em 1736, onde aplicou sistematicamente o cálculo à mecânica e desenvolveu novos métodos para resolver equações diferenciais usando séries de potências. Estabeleceu a notação de somatório que usamos hoje, usando sigma para o símbolo da soma. D’Alembert (1717 – 1783) escreveu cinco artigos a respeito de métodos para integrar equações diferenciais. Embora tenha recebido pouca educação científica formal, é claro que ele conhecia os trabalhos de Newton, L’Hospital e dos Bernoullis. D’Alembert publicou muitos trabalhos sobre matemática e física matemática, culminado com seu trabalho principal, “Traité de dynamique”. Considerou a derivada como um limite da diferença de quocientes, o que o colocou à frente dos seus pares no entendimento do cálculo. Também desenvolveu o teste da razão para determinar a
Professor Cícero José – Uniban 2011
4
convergência de muitas séries. Através do trabalho de D’Alembert, a natureza da pesquisa sobre séries estava mudando de cálculos práticos para uma fundamentação mais teórica. Lagrange estendeu o trabalho de Euler nas equações de movimento e o entendimento da energia potencial. Publicou “Mécanique analytique” (1787), que aplicava cálculo ao movimento de objetos. O maior trabalho de Lagrange foi na teoria e aplicação do cálculo. Ele sentiu que a série de Taylor desempenhava um papel fundamental no entendimento do cálculo, embora ainda evitasse o limite e as propriedades de convergência de sequências e séries. Bolzano (1781–1848) confrontou este assunto, apontando que a convergência era importante para entender e usar séries. Tentou explicar convergência associando-a com a ideia de subconjuntos limitados. Bolzano acreditava no método de Lagrange para usar séries de Taylor como a base para o cálculo. Fourier (1768–1830) fez contribuição ao estudo e cálculo da difusão de calor e à solução de equações diferenciais. “Théorie analytique de la chaleur” (A Teoria Analítica do Calor, 1822) contém uso extenso de séries consistindo de funções trigonométricas que hoje chamamos de séries de Fourier. Apesar disso, contribuiu muito pouco para a teoria destas séries, as quais eram conhecidas, muito antes, por Euler, Daniel Bernoulli e Lagrange. Finalmente, a comunidade matemática foi motivada a estabelecer fundamentos mais teóricos para as idéias de limite e convergência de sequências e séries. Cauchy (1789-1857) foi o primeiro a definir por completo as ideias de convergência e convergência absoluta de séries infinitas. Este trabalho foi feito em conjunto com o desenvolvimento de uma análise rigorosa do cálculo. Também foi o primeiro a desenvolver uma teoria sistemática para números complexos e a transformada de Fourier para equações diferenciais. Contudo, ambos Cauchy e seu colega Niels Henrik Abel (1802–1829) ignoraram a utilidade das séries divergentes. Abel escreveu em 1828 “séries divergentes são a invenção do diabo, e é uma vergonha basear nelas qualquer demonstração”. Runge (1856 – 1927) desenvolveu o método de resolução baseado em sequências para solucionar numericamente equações diferenciais junto com M. W. Kutta (1867 – 1944). Sequências e séries tornaram-se ferramentas padrão para aproximar funções e calcular resultados em computação numérica. O matemático indiano autodidata Srinivasa Ramanujan (1887 – 1920) usou sequências e séries de potências para desenvolver resultados em teoria de números. O trabalho de Ramanujan era teórico e produziu numerosos resultados importantes usados por matemáticos no século XX. Seus colaboradores britânicos Godfrey Harold (G.H.) Hardy (1877 – 1947) e John Littlewood (1885 – 1977) usaram seu conhecimento de séries para produzir avanços importantes em teoria de números e estenderam a utilidade das séries para muitas áreas da matemática.
Professor Cícero José – Uniban 2011
5
CAPÍTULO V Séries 1. Definição Se tentarmos adicionar os termos de uma sequência infinita a1 + a2 + a3 + ... + a n + ... que é denominada uma série infinita (ou apenas uma série) e é denotada, por abreviação, pelo símbolo: ∞ n=1
ou
an
an
Para definir a soma de infinitas parcelas, consideram-se as somas parciais. S1 = a1 S2 = a1 + a2 S3 = a1 + a2 + a3 e, em geral, Sn = a1 + a2 + a3 + ... + an – 1 + a n =
n i=1
ai
2. Sequências das somas parciais Essas somas parciais formam uma nova sequência {Sn}, que pode ou não ter um limite. Se lim Sn = S existir (como um número finito), então chamaremos soma da série infinita
n →∞
Definição 1: Dada uma série
∞ n=1
Sn =
n i=1
an .
a n = a1 + a2 + a3 + ..., denotamos por Sn sua n-ésima soma parcial:
a i = a1 + a2 + a3 + ... + a n
Se a sequência {Sn} for convergente e lim Sn = S existir como um número real, então a série n →∞
a n é denominada convergente, e escrevemos: a1 + a2 + a3 + ... + a n = S
ou
∞ n=1
an = S
Professor Cícero José – Uniban 2011
6
O número S é chamado soma da série. Caso contrário, a série é dita divergente. Assim, quando escrevemos
∞ n=1
a n queremos dizer que, adicionando um número suficiente de
termos da série, podemos chegar tão próximo quanto quisermos do número S. Note que: ∞ n=1
a n = lim
n →∞
n i=1
ai
3. Série Geométrica Um exemplo importante de uma série infinita é a série geométrica. Série Geométrica é toda série escrita na forma a + ar + ar2 + ar3 + ar4 + ... + arn – 1 + ... =
∞
ar n −1 , com a
0 e r é a razão.
n=1
Cada termo é obtido a partir do anterior pela multiplicação dele por uma razão em comum r.
3.1. Soma de uma série geométrica Se r = 1, então Sn = a + a + ... + a = na → ± ∞ . Como lim Sn = S não existe, a série geométrica n →∞
diverge neste caso. Se r
1, temos: Sn = a + ar + ar2 + ar3 + ar4 + ... + arn – 1
e rSn = ar + ar2 + ar3 + ar4 + ar5 + ... arn – 1 + arn
Subtraindo essas equações, obtemos: Sn – rSn = a – arn Sn(1 – r) = a(1 – rn) Sn =
a (1 − r n ) 1− r
Se –1 < r < 1, temos que rn lim Sn = lim
n →∞
n →∞
a (1 − r n ) 1− r
0 quando n =
a 1− r
; assim,
Professor Cícero José – Uniban 2011
7
Então, quando r < 1 (–1 < r < 1) a série geométrica converge e tem soma S =
a . 1− r
Para r > 1 ( r < –1 ou r > 1), a série diverge, pois a sequência {rn} é divergente.
Resumindo
A série geométrica
∞
ar n −1 = a + ar + ar2 + ...
n=1
•
é convergente se r < 1 e suam soma é
∞
ar n −1 =
n=1
•
a . 1− r
é divergente se r > 1.
Vejamos alguns exemplos:
Exemplo 1: Encontre a soma da série geométrica 5 −
10 20 40 + − + ... 3 9 27
2 2 Resolução: O primeiro termo é a = 5 e a razão é r = − . Como r = < 1, a série é convergente e 3 3 sua soma é: 5−
10 20 40 + − + ... = 3 9 27
Exemplo 2: A série
∞
5 1− −
2 3
=
5 =3 5 3
2 2n 31− n é convergente ou divergente?
n=1
Resolução: Vamos reescrever o n-ésimo termo da série na forma arn – 1: ∞ n=1
2n 1− n
2 3
=
∞ n=1
(2 )
2 n
−( n −1)
3
4n = = n −1 n=13 ∞
4n = n −1 n=13 3 ∞
∞
4 3 3 n=1
n
Reconhecemos essa série como uma série geométrica com a = 4 e r = diverge.
4 . Como r > 1, a série 3
Professor Cícero José – Uniban 2011
8
Exemplo 3: Escreva o número 2,317 = 2,3171717... como uma razão de inteiros. Resolução: Temos que 2,3171717... = 2,3 +
17 17 17 + 5 + 7 + ... 3 10 10 10
Depois do primeiro termo temos uma série geométrica com a =
17 1 e r = 2 . Portanto: 3 10 10
17 17 3 23 17 1147 2,317 = 2,3 + 10 = 2,3 + 1 000 = + = 1 99 10 990 495 1− 2 10 100
Exemplo 4: Uma bola é solta a uma distância de 1 metro do chão. Supondo que a cada queda suba
2 3
da altura anterior, determine a distância total percorrida pela bola até parar.
Resolução:
1m
2 3
Note que, a partir do segundo termo, a=
1=
2 3
2 3
2 4 = 3 9
2 4 + + ... é uma série como uma série geométrica com 3 9
2 2 e r = . Como a bola, quando jogada, sobe e desce a mesma altura temos: 3 3 2 4 D=1+2 + + ... = 1 + 2 3 9 D=1+2
2 3
2 1− 3
=1+2
2=5
Portanto, a distância total percorrida é de 5 metros.
2 3 1 3
Professor Cícero José – Uniban 2011
9
4. Teste da divergência Teorema 1: Se a série
a n converge, então lim an = 0. x→∞
Prova: Seja Sn = a1 + a2 + ... + a n . Então an = Sn – Sn – 1. Como é convergente. Seja lim Sn = S . Como n – 1 n →∞
a n é convergente, a sequência {Sn}
quando n
, também temos lim Sn −1 = S . n →∞
Portanto:
lim a n = lim ( Sn − Sn −1 ) = lim Sn − lim Sn −1 = S – S = 0 n →∞
n →∞
n →∞
n →∞
A recíproca desse teorema não é verdadeira em geral. Se lim a n = 0 , não podemos concluir que n →∞
a n seja convergente.
Teste da divergência Se lim a n não existir ou se lim a n ≠ 0 , então a série n →∞
n →∞
∞ n=1
a n é divergente.
O Teste para Divergência vem do Teorema 1, porque, se a série não for divergente, ela é convergente e, assim, lim a n = 0 . n →∞
Vejamos mais um exemplo:
n2 Exemplo 5: Mostre que a série diverge. 2 n = 1 5n + 4 ∞
n2 = lim n →∞ 5n 2 + 4 n →∞
Resolução: lim a n = lim n →∞
n2 n
2
4 5+ 2 n
=
1 1 = 5+0 5
Desse modo, a série diverge pelo Teste para Divergência.
0
Professor Cícero José – Uniban 2011
10
4.1. Teorema de séries convergentes an e
Se
∞
(i)
n=1
ca n = c
∞
(ii)
n=1
(an
∞
(iii)
n=1
b n forem séries convergentes, então também o serão:
∞ n=1
an
+ bn ) =
( a n − bn ) =
∞ n=1
an +
∞ n=1
an –
∞ n=1 ∞ n=1
bn bn
Exercícios 95) Qual é a diferença entre uma sequência e uma série? 96) O que é uma série convergente? O que é uma série divergente? ∞
97) Explique o significado de se dizer que
n=1
98) Seja a n =
a n = 5.
2n . 3n + 1
a) Determine se { a n } é convergente. b) Determine se
∞ n=1
a n é convergente.
99) Determine se as séries abaixo são convergentes ou divergentes. Se for convergente, calcule sua soma. a) 3 + 2 + b) −3 +
5 25 125 − + − ... 2 8 32
∞
2 c) 5 3 n=1 d)
∞ n=1
4 8 + + ... 3 9
( −3) 4n
e)
n=0
f)
n −1
g) n −1
∞
n
3n + 1
∞
n n=1n + 5 ∞
2 2 n = 2 n −1
k2 h) 2 k = 2 k −1 ∞
3n + 2n i) 6n n=1 ∞
j)
∞
n
2
n=1
k)
∞ n=1
arc tg n
Professor Cícero José – Uniban 2011
11
100) Expresse os números abaixo como uma razão de inteiros, usando o conceito de série geométrica. a) 0,2 = 0,2222...
b) 3,417 = 3,417417417...
c) 0,123456
101) Encontre os valores de x para os quais a série converge. Calcule a soma da série para aqueles valores de x.
xn a) n n=1 3 ∞
b)
∞
c)
n=1
4n x n
d)
n=0
102) Qual é o valor de c se
∞
∞ n=0
∞
( x − 4)
n
( x + 3)
n
2n
(1 + c) − n = 2 ?
n=2
103) Um triângulo ABC é dado com BAC =
e AC = 10. CD é desenhado perpendicularmente a
AB, DE é desenhado perpendicularmente a BC, EF ⊥ AB, e esse processo continua indefinidamente, como mostrado na figura abaixo:
10
Calcule o comprimento total de todas as retas perpendiculares CD + DE + EF + FG + ...
Professor Cícero José – Uniban 2011
12
5. Tipos de Testes 5.1. Teste da Integral Nem sempre conseguimos encontrar a soma exata de uma série. Conseguimos fazer isso para as séries geométricas. Geralmente não é fácil calcular lim Sn . Por isso vamos apresentar algumas teses n →∞
que nos permitam determinar se uma série é convergente ou divergente sem encontrar sua soma explicitamente, porém, tais métodos nos fornecerão boas estimativas de somas. Nosso primeiro teste envolve as integrais impróprias. Vejamos dois exemplos:
Exemplo 1: Seja a série
∞
1 , cujos termos são os recíprocos dos quadrados de inteiros positivos. 2 n=1n
∞
1 1 1 1 1 1 = 2 + 2 + 2 + 2 + 2 + ... 2 1 2 3 4 5 n=1n Não existe uma fórmula simples para a soma Sn dos n primeiros termos, mas a tabela abaixo sugere que as somas parciais estão se aproximando de um número próximo de 1,64 n
e, assim,
parece que a série é convergente. n
Sn =
n
1 2 i=1i
5
1,4636
10
1,5498
50
1,6251
100
1,6350
500
1,6429
1 000
1,6439
5 000
1,6447
Podemos confirmar geometricamente tal afirmação analisando a área dos retângulos sob a curva y=
1 (ver figura 5.1.). Nela, a base de cada retângulo é um intervalo de comprimento 1 e a altura é x2
igual ao valor da função y = f(x) =
1 no extremo direito do intervalo. x2
Professor Cícero José – Uniban 2011
Figura 5.1. Área sob a curva y =
13
1 x
2
Excluindo-se o primeiro retângulo, a área total dos retângulos remanescentes será menor do que a área sob a curva y =
∞
1
∞ 1
1 para x x2
1 dx = lim b →∞ x2
b 1
1, que é o valor da integral
1 dx = lim b →∞ x2
1 1 dx = lim − 2 b →∞ x x
b
= − lim 1
b →∞
b 1
∞
1
1 dx . Calculando temos: x2
b
x
−2
x −1 dx = lim b →∞ −1 1
1 − 1 = –(0 – 1) = 1 b
Assim temos que a figura mostra que todas as somas parciais são menores do que: 1+
∞ 1
1 dx = 2 x2
Então as somas parciais são limitadas. Sabemos também que as somas parciais são crescentes (porque todos os termos são positivos). Portanto as somas parciais convergem (pelo Teorema da
Sequência Monotônica) e, dessa maneira, a série é convergente. Logo, a soma da série (o limite das somas parciais) é também menor que 2: ∞
1 1 1 1 1 1 = 2 + 2 + 2 + 2 + 2 + ... < 2 2 1 2 3 4 5 n=1n
NOTA: A soma exata dessa série foi calculada pelo matemático suíço Leonhard Euler (1707–1783) e é 2
6
.
Professor Cícero José – Uniban 2011
Exemplo 2: Vamos analisar agora a série
∞ n=1
14
1 1 1 1 1 1 = + + + + + ... n 1 2 3 4 5
∞
1 1 1 1 1 1 = 2 + 2 + 2 + 2 + 2 + ... 2 1 2 3 4 5 n=1n Analogamente ao exemplo 1, temos a tabela abaixo que nos dá uma ideia do comportamento da série. n
Sn =
n i=1
1 i
5
3,2317
10
5,0210
50
12,7524
100
18,5896
500
43,2834
1 000
61,8010
5 000
139,9681
A tabela de valores de Sn sugere que as somas parciais não estão se aproximando de um número; assim, suspeitamos que essa série possa ser divergente. Vamos, novamente, fazer uma análise gráfica (ver figura 5.2.), porém desta vez, usaremos retângulos cujos topos estão acima da curva y = com base de comprimento 1 e altura y = f(x) =
1 , à esquerda do intervalo. x
Figura 5.2. Área sob a curva y =
1 x
1 , x
Professor Cícero José – Uniban 2011
1 1 1 1 1 + + + + + ... = 1 2 3 4 5
Logo, a soma das áreas dos retângulos é 1 para x x
do que a área sob a curva y =
1 dx = lim b →∞ x
∞ 1
1
1 dx = 2 x
∞ 1
lim
b →∞
∞
A integral imprópria
1
1, que é igual a
1 dx = lim b →∞ x
b
(
b 1
)
b− 1 = 2
15
x
(
−
1 2
∞ 1
n=1
1 , maior n
1 dx . Calculando, temos: x
1 2
x b →∞ 1 2
dx = lim
∞
b
1
)
∞ −1 =
1 dx é divergente, ou seja, a área sob a curva é infinita, isto conclui x
que, a série estudada é divergente.
Resumindo Teste da Integral Suponha que f seja um função contínua, positiva e decrescente em [1, f(n). Então a série
∞ n=1
[ e seja an =
a n é convergente se, e somente se, a integral imprópria
∞ 1
f ( x) dx
for convergente. Em outras palavras: ∞
i) Se
1
ii) Se
∞
f ( x) dx for convergente, então
n=1 ∞
1
∞
f ( x) dx for divergente, então
n=1
a n é convergente.
a n é divergente.
NOTA: Quando você usar o Teste da Integral, lembre-se de que não é necessário começar a série ou a integral em n = 1. Por exemplo, testando a série ∞
1 2 n = 4 (n − 3)
usamos
∞ 4
1 dx (x − 3)2
Professor Cícero José – Uniban 2011
16
Também não é necessário que f seja sempre decrescente. O que é importante é que f seja ∞
finalmente decrescente, isto é, decrescente para x maior que algum número N. Então,
n=N ∞
convergente, e assim
n=1
an é
a n é convergente.
Vejamos mais dois exemplos:
Exemplo 3: Teste a série
∞
1 para convergência ou divergência. n=1n + 1 2
Resolução: A função f(x) =
1 é contínua, positiva e decrescente em [1, x +1 2
[ e assim usamos o
teste da Integral. ∞ 1 ∞ 1
1 dx = lim b →∞ x +1 2
∞ 1
1 b dx = lim (arc tg x) 1 b →∞ x +1 2
1 dx = lim ( arc tg b − arc tg 1) = − = b →∞ x +1 2 4 4 2
Como a integral
∞ 1
1 dx é convergente, temos que pelo teste da integral, a série 2 x +1
∞
1 n=1n + 1 2
é convergente.
Exemplo 4: Teste a série
∞
ne− n para convergência ou divergência.
n=1
Resolução: A função f(x) = xe− x é contínua, positiva e decrescente em [1,
[ e assim usamos o teste
da Integral. ∞ 1
xe− x dx = lim
b
b →∞ 1
xe − x dx
Resolvendo separadamente a integral u=x
dv = e–x dx
du =1 dx
dv = e− x
du = dx
v=
e− x = −e − x −1
(I) b 1
xe − x dx por partes temos:
Professor Cícero José – Uniban 2011
17
Voltando a integral temos: b 1 b 1 b 1
xe − x dx = x ( −e− x ) – b
1
xe − x dx = –(be–b – 1
b 1
( −e ) dx −x
e–1) + ( −e− x )
b 1
xe − x dx = –be–b + e–1 – (e–b – e–1) = –be–b + e–b + 2e–1
Substituindo o resultado da integral em (I) vem: ∞ 1
xe− x dx = lim ( − be − b + e − b + 2e −1 ) = 2e–1 =
Como a integral
b →∞
b 1
2 e
xe − x dx é convergente, temos que pelo teste da integral, a série
convergente.
Exercícios 104) Use o Teste da Integral para determinar se a série é convergente ou divergente. a) b) c)
∞
1 4 n=1n ∞
1 n = 1 3n + 1 ∞
ne− n
n=1
d) 1 + e) f)
1 1 1 1 + + + + ... 8 27 64 125
5−2 n n3 n=1 ∞
∞
ne− n
2
n=1
g) h)
∞
1 k = 2 n ln n ∞
1 n=1n + n 3
∞ n=1
ne− n é
Professor Cícero José – Uniban 2011
18
105) A medida do lado de um triângulo equilátero mede 10 cm. Unindo-se os pontos médios de seus lados, obtém-se um segundo triângulo equilátero. Unindo-se os pontos médios dos lados do novo triângulo equilátero obtém-se um terceiro, e assim por diante, indefinidamente. Calcule a soma dos perímetros de todos esses triângulos. 106) Divide-se um segmento de comprimento m em três partes iguais e retira-se a parte central. Para cada um dos segmentos restantes repete-se o processo, retirando-se suas partes centrais e assim sucessivamente. Determine a soma dos comprimentos retirados. 107) (UEL-PR) Na figura abaixo, a aresta do cubo maior mede a, e os outros cubos foram construídos de modo que a medida da respectiva aresta seja a metade do cubo anterior.
Imaginando que a construção continue indefinidamente, determine a soma dos volumes de todos os cubos será: a3 a) 2
7a 3 b) 8
8a 3 c) 7
1 1 1 1 + + + ... + n + ... 2 4 8 2 108) Quando n cresce, a fração tende a: 1 1 1 1 1+ + + + ... + n + ... 3 9 27 3 a) 3 c) 4 b) 3
d) 2a3
1+
109) O limite da soma S = 1 − 2 +
d) zero
1 2 1 2 + + − + ... quando o número de parcelas tende ao 2 2 4 4
infinito é: a) 2 + 2 2
b) 2 – 2 2
c) 4 2
d) 2 −
2 2 3
Professor Cícero José – Uniban 2011
19
5.2. Teste da Razão (Teste de D’Alembert) Dada qualquer série ∞ n=1
a n , podemos considera a série correspondente
a n = a1 + a 2 + a 3 + ...
cujos termos são os valores absolutos dos termos da série original.
Definição: Uma série
a n é chamada absolutamente convergente se a série de valores
a n for
convergente. Note que, se
a n for uma série com termos positivos, então a n = an e assim a convergência
absoluta é a mesma coisa que a convergência nesse caso.
Teste da Razão
Seja
∞ n=1
a n uma série de termos não nulos e seja L = lim
n →∞
a n +1 . Então: an
i) Se L < 1, a série é absolutamente convergente, logo convergente. ii) Se L > 1, (incluindo L = ), a série é divergente. iii) Se L = 1, o teste não é conclusivo; isto é, nenhuma conclusão pode ser tirada sobre a convergência ou divergência de
an .
Demonstração (i) A ideia é comparar a série dada com uma série geométrica convergente. Como L < 1, podemos escolher um número r tal que L < r < 1. Como lim
n →∞
a n +1 a = L e L < r, o quociente n + 1 será an an
Professor Cícero José – Uniban 2011
finalmente menor que r; isto é, existe um inteiro N tal que
20
a n +1 < r sempre que n an
N, ou,
equivalentemente,
a n + 1 < a n r sempre que n
N
(1)
Colocando n sucessivamente igual a N, N + 1, N +2, ... em (1), obtemos
a N +1 < a N r a N + 2 < a N + 1 r < a N r2 a N + 3 < a N + 2 r < a N r3 e, em geral,
a N + k < a N rk
para todo k
1
(2)
Agora a série ∞ k=1
a N r k = a N r + a N r2 + a N r3 + ...
é convergente porque é uma série geométrica com 0 < r < 1. Assim a desigualdade (2), mostra que a série ∞ n=N+1
an =
∞ k=1
a N + k = a N + 1 + a N + 2 + a N + 3 + ...
é convergente também. Segue-se que a série
∞ n=1
a n é convergente. (Lembre-se de que um número
finito de termos não afeta a convergência.) Portanto,
(ii) Se
a n +1 an
L > 1 ou
existe um inteiro N tal que e assim lim a n n →∞
a n +1 an
, então o quociente
a n +1 > 1 sempre que n an
0. Portanto,
a n é absolutamente convergente.
a n +1 será finalmente maior que 1; isto é, an
N. Isso significa que a n + 1 > a n quando n
a n diverge pelo Teste da Divergência.
N,
Professor Cícero José – Uniban 2011
21
NOTA A parte (iii) do Teste da Razão diz que, se lim
n →∞
informação. Por exemplo, para a série convergente
lim
n →∞
a n +1 an
1 n2 n2 n2 (n + 1) 2 lim lim = lim = lim = = n →∞ n 2 + 2n + 1 n →∞ n →∞ n →∞ (n + 1) 2 1 2 1 n2 1 + + 2 2 n n n
Enquanto a série divergente
lim
n →∞
a n +1 an
a n +1 = 1, o Teste da Razão não dá nenhuma an 1 , temos: n2
1 , obtemos: n
1 n n = lim n + 1 = lim = lim n →∞ n →∞ n →∞ 1 1 n+1 n 1+ n n
Portanto, se lim
n →∞
a n +1 = 1, a série an
=1
a n pode convergir ou divergir. Nesse caso, o Teste da
Razão falha e devemos usar algum outro teste.
Vejamos alguns exemplos:
Exemplo 1: Teste a convergência da série
∞
n . n n=12
n+1 n+1 an + 1 n+1 Resolução: Temos que = 2 = n+1 n an 2 n 2
Então: lim
n →∞
2n n+1 = n n 2 2
a n +1 n+1 n+1 = lim = lim = lim n →∞ n →∞ n →∞ an 2n 2n
Portanto, a série
∞
=1
n é convergente. n n=12
n 1+ 2n
2n n+1 = . n 2n 1 n
=
1 <1 2
Professor Cícero José – Uniban 2011
22
n3 Exemplo 2: Teste a convergência da série . n n=13 ∞
Resolução: Temos que
an + 1 an
(n + 1)3 n+1 (n + 1)3 = 3 3 = n 3n + 1 3n
a 1 n+1 Então: lim n + 1 = lim n →∞ a n →∞ 3 n n
Portanto, a série
3
3
=
1 3
1=
3n
3
=
1 n+1 3 n
1 <1 3
n3 é convergente. n n=13
Resolução: Temos que
n →∞
1 1 = lim 1 + 3 n →∞ n
3n
∞
Exemplo 3: Teste a convergência da série
Então: lim
3n (n + 1)3 = n3 n3
an + 1 an
∞
1 . n=1n
1 1 = n+1 = 1 n+1 n
n n = . 1 n+1
a n +1 n n = lim = lim = lim n →∞ n →∞ an n + 1 n →∞ n+1
n 1 n 1+ n
=1
Portanto, nada podemos concluir a respeito da série.
3n Exemplo 4: Teste a convergência da série . n = 1 n! ∞
Resolução: Temos que
Então: lim
n →∞
an + 1 an
3n + 1 3n + 1 (n + 1)! = = 3n (n + 1)! n!
n! 3n 3 = 3n (n + 1) n!
a n +1 3 3 3 = lim = lim = =0<1 n →∞ n →∞ an n+1 ∞ n+1
Portanto, a série
3n é convergente. n = 1 n! ∞
n! 3 = n 3 (n + 1)
3
Professor Cícero José – Uniban 2011
23
nn Exemplo 5: Teste a convergência da série . n = 1 n! ∞
Resolução: Temos que
(n + 1) n + 1 (n + 1) n + 1 (n + 1)! = = nn (n + 1)! n!
an + 1 an
n! (n + 1) n (n + 1) = nn (n + 1) n!
a n +1 (n + 1)n (n + 1)n n+1 Então: lim = lim = lim = lim n n n →∞ a n →∞ n →∞ n →∞ n n n n
Portanto, a série
n
n! (n + 1)n = nn nn
1 = lim 1 + n →∞ n
n
=e>1
nn é divergente. n = 1 n! ∞
1 Observação: lim 1+ n →∞ n
n
=e
Exercícios a n em cada um dos seguintes casos?
110) O que você pode dizer sobre a série a) lim
n →∞
a n +1 =8 an
b) lim
n →∞
a n +1 = 0,8 an
c) lim
n →∞
a n +1 =1 an
111) Use o Teste da Razão para determinar se a série é convergente ou divergente. a)
10n n = 0 n! ∞
d)
g)
∞
1 b) 4 n=1 n ∞
n n=15 + n
112) Encontre a soma da série
1 n = 1 (2n)!
e1/n e) 3 n=1 n
∞
c)
∞
f)
h)
10n 2n + 1 k = 2 (n + 1)4 ∞
∞
n=1
nn 31 + 3n
n 3n n −1 n=1 4 ∞
22n + 1 . n n=1 5 ∞
113) Expresse a dízima periódica 4,17326326326... como uma razão de números inteiros.
Professor Cícero José – Uniban 2011
24
6. Séries atribuídas a matemáticos 6.1. Série de Taylor Publicado em 1715 em seu “Methodus incrementorum directa et inversa”. Taylor era graduado em Cambridge e era um entusiástico admirador de Newton e secretário da Royal Society. Interessavase muito por perspectiva: sobre este assunto publicou dois livros em 1715 e 1719, no segundo dos quais deu o primeiro enunciado geral do princípio dos pontos de desaparecimento. No entanto, seu nome hoje é lembrado quase exclusivamente em conexão com a série x2 x3 xn (n) f (x + a) = f (a) + f’(a) x + f” (a) + f´” (a) + ... + f (a) + ... 2! 3! n! que apareceu em seu “Methodus incrementorum”.
6.2. Série de Maclaurin A chamada série de Maclaurin, que aparece em seu “Treatise of Fluxions” de 1742 é apenas um caso especial da série de Taylor, publicada por Brook Taylor. Essa série se torna a familiar série de Taylor substituindo a por zero. A série de Taylor geral era conhecida já por Gregory muito antes, e em essência também por Jean Bernoulli; mas Taylor não sabia disso. Além disso, a série de Maclaurin tinha aparecido no “Methodus differentialis” de Stirling mais de uma dúzia de anos antes de ser publicada por Maclaurin. f (x) = f (0) + f’(0) x + f” (0)
x2 x3 xn + f´” (0) + ... + f (n) (0) + ... 2! 3! n!
6.3. Série de Fourier Existe uma enorme diferença entre estudar séries de Fourier e séries de potências, pois uma série de Fourier funciona como um processo global enquanto que uma série de potências é local. Apresentaremos alguns problemas mostrando que nem sempre é viável trabalhar com séries de potências, mas pelo contrário, temos a necessidade de trabalhar com Séries de Fourier em sistema práticos. Jean B. Fourier (1768–1830) foi pioneiro na investigação destes problemas. No livro “Théorie Analytique de la Chaleur”, escrito em 1822, ele introduziu o conceito conhecido atualmente como Série de Fourier, que é muito utilizado nas ciências em geral, principalmente nas áreas envolvidas com:
Professor Cícero José – Uniban 2011
25
Matemática, Engenharia, Computação, Música, Ondulatória, Sinais Digitais, Processamento de Imagens, etc. Sua série é: a f(x) = 0 + 2
∞
n =1
a n cos
n x n x + b n sen L L
Observe que no intervalo –L < x < L é simétrico em relação à origem. A equação acima é chamada de série de Fourier de f no intervalo (–L, L).
7. Aplicações das séries de Taylor / Maclaurin Através desta série podemos escrever funções trigonométricas, logarítmicas, exponenciais, em forma de uma função polinomial. Com a aplicação das séries, podemos demonstrar uma belíssima relação matemática, que une em uma só fórmula, o número de Euler, os números complexos e as funções trigonométricas seno e
co-seno. Essa relação é conhecida como fórmula de Euler, e é definida por eit = cos t + i sen t, onde i representa um número complexo definido por i2 = −1. Leonhard Euler (1707–1783) foi um homem com uma memória prodigiosa e um poder de concentração fenomenal. Euler teve interesses universais; foi teólogo, físico, astrônomo, linguista, psicólogo, conhecedor dos clássicos e, principalmente matemático. Euler foi considerado um verdadeiro gênio do século. Em Matemática, fez contribuições permanentes para a Álgebra, Trigonometria, Geometria Analítica, Cálculo, Cálculo das Variações, Equações Diferenciais, Variável Complexa, Teoria dos Números e Topologia. Sua produção matemática parece não ter sido afetada pelos 13 filhos ou pela cegueira que o acometeu em seus 17 últimos anos de vida. Euler escreveu mais de 700 trabalhos e 32 livros sobre matemática e foi responsável pela introdução de muitos símbolos (tais como e,
ei=
−1 ) e notações que ainda são usadas (como f(x), , sen x e cos x). Euler nasceu
em Basileia, Suíça, em 15 de abril de 1707 e morreu de derrame cerebral em São Petersburgo em 18 de setembro de 1783, quando trabalhava na corte da imperatriz russa Catarina, a Grande. Veja a seguir a demonstração da importante Relação de Euler.
Professor Cícero José – Uniban 2011
26
8. Relação de Euler Vamos provar que eit = cost + i sen t. f(t) = sen t
f(0) = 0
f’”(t) = –cos t
f’”(0) = –1
f’(t) = cos t
f’(0) = 1
fiv(t) = sen t
fiv(0) = 0
f’’(t) = –sen t
f’’(0) = 0
fv(t) = cos t
fv(0) = 1
Desenvolvendo a função seno temos: sen t = 0 + 1(x – 0) +
sen t = x –
0 (−1) 0 1 (x – 0)2 + (x – 0)3 + (x – 0)4 + (x – 0)5 + … 2! 3! 4! 5!
x x5 x7 x9 + – + + ……… + (–1) n 3! 5! 7! 9!
x 2n + 1 (2n + 1)!
f(t) = cos t
f(0) = 1
f’”(t) = sen t
f’”(0) = 0
f’(t) = –sen t
f’(0) = 0
fiv(t) = cos t
fiv(0) = 1
f’’(t) = –cos t
f’’(0) = –1
fv(t) = –sen t
fv(0) = 0
Desenvolvendo a função cosseno temos: cos t = 1 + 0 . (x – 0) +
cos t = 1 –
(−1) 0 1 0 (x – 0)2 + (x – 0)3 + (x – 0)4 + (x – 0)5 + … 2! 3! 4! 5!
x2 x4 x6 x8 + – + + ……… + (–1) n 2! 4! 6! 8!
x 2n (2n)!
Desenvolvendo a função exponencial temos: f(t) = eit
f(0) = 1
f’”(t) = i3eit
f’”(0) = i3
f’(t) = ieit
f’(0) = i
fiv(t) = i4eit
fiv(0) = i4
f’’(t) = i2eit
f’’(0) = i2
fv(t) = i5eit
fv(0) = i5
eit = 1 + i
(x – 0) +
eit = 1 + xi +
i2 i3 i4 i5 i6 (x – 0)2 + (x – 0)3 + (x – 0)4 + (x – 0)5 + (x – 0)6 + … 2! 3! 4! 5! 5!
x 2 2 x3 3 x 4 4 x5 5 x6 6 i + i + i + i + i +… 2! 3! 4! 5! 6!
Professor Cícero José – Uniban 2011
27
Mas: i0 = 1
i4 = 1
i1 = i
i5 = i
i 2 = –i
i 6 = –1
i 3 = –i
Então: eit = 1 + xi + (–1)
x2 + (–i) 2!
x3 +1 3!
x4 4 i +i 4!
x2 x4 x3 x5 e = 1 + xi – + + ……. + xi – i+ i … 2! 4! 3! 5! it
Portanto: x2 x4 x3 x5 e = 1− + + ... + i x − + + ... 2! 4! 3! 5! it
cos t
sen t
eit = cos t + i sen t Se fizermos t = , obtemos a bela identidade de Euler: eit = cos t + i sen t eit = ei = – 1 ei + 1 = 0
x5 + (–1) 5!
x6 +… 6!
Professor Cícero José – Uniban 2011
28
CAPÍTULO VI Equações Diferenciais 1. O que é uma equação diferencial? Em Matemática, uma equação diferencial é uma equação cuja incógnita é uma função que aparece na equação sob a forma das respectivas derivadas. As equações diferenciais são essenciais para o campo da Física. As equações diferenciais dividem-se em dois tipos: a) Uma equação diferencial ordinária (EDO) contém apenas funções de uma variável e derivadas daquela mesma variável. b) Uma equação diferencial parcial (EDP) contém funções com mais do que uma variável e suas derivadas parciais. As Equações Diferenciais têm as seguintes propriedades: I) a solução pode existir ou não; II) caso exista, a solução é única ou não.
Exemplos de equações diferenciais ordinárias 1. y” + 3y´ + 6y = sin (x)
3. y” + 3y y = ex
2. (y”)3 + 3y + 6y = tg (x)
4. y´ = f(x, y)
5. M(x, y)dx + N(x, y)dy = 0
Exemplos de Equações Diferenciais Parciais a) Equação do calor : ut = a2uxx
e) Equação de Laplace : uxx + uyy = 0
b) Equação do calor : ut = a2(uxx + uyy)
f) Equação de Laplace : uxx + uyy + uzz = 0
c) Equação da Onda : utt = a2uxx
g) ux = x + y
d) Equação da Onda : utt = a2(uxx + uyy)
h) uxxx + 2 y uxx + x ux uy + (ux)2 = sin (xy)
2. Ordem e grau A ordem da equação diferencial é a ordem da mais alta derivada da função incógnita que ocorre na equação. Grau é o valor do expoente para a derivada mais alta da equação, quando a equação tem a “forma” de um polinômio na função incógnita e em suas derivadas como, por exemplo: A y(3) + B y(2) + C y(1) + D y(0) = 0
Professor Cícero José – Uniban 2011
29
Exemplos: 1. y” + 3y´ + 6y = sen (x) e y” + 3y y´ = ex têm ordem 2 e grau 1 2. (y”)3 + 3(y´)10 + 6y = tg (x) tem ordem 2 e grau 3 3.
dy = 5x + 3 tem ordem 1 e grau 1 dx
d2y dy 4. e +2 2 dx dx y
d2y 5. dx 2
3
2
dy + 3y dx
= 1 tem ordem 2 e grau 1 7
3
+y
dy dx
2
= 5x tem ordem 2 e grau 3
3. Notação Usam-se frequentemente os símbolos y’, y”, y’”, y(4), ..., y(n) para representar as derivadas de ordem, respectivamente, primeira, segunda, terceira, quarta, ..., enésima de y em relação à variável independente x. Assim, y” representa
d2 y d2 y se a variável independente é x, mas representa se a dx 2 dp 2
variável independente é p. Se a variável independente é o tempo, usualmente denotada por t, é comum •
••
substituírem-se as linhas por pontos. Assim, y , y e
•••
y
representam
d2 y dy , dt dt 2
e
d3 y , dt 3
respectivamente. Observe-se o uso dos parênteses em y(n) para distinguir da potência yn.
4. Definição de solução Uma solução de uma equação diferencial na função incógnita y e na variável independente x, no intervalo I, é uma função y(x) que verifica identicamente a equação para todo x em I. Vejamos alguns exemplos:
Exemplo 1: Determine se y = x2 – 1 é uma solução da equação diferencial (y’)4 + y2 = –1. Resolução: Notemos, de início, que o primeiro membro da equação deve ser não-negativo para toda função real y(x) e todo x, pois é a soma de potências pares, enquanto o segundo membro é negativo. Como nenhuma função y(x) satisfaz tal equação, a equação diferencial dada não tem solução.
Professor Cícero José – Uniban 2011
30
Exemplo 2: Determine se y = c1 sen 2x + c2 cos 2x, com c1 e c2 constantes arbitrárias, é solução de y” + 4y = 0?
Resolução: Diferenciando y, obtemos: y’ = c1 cos 2x
2 + c2 (–sen 2x)
2
y’ = 2c1 cos 2x – 2c2 sen 2x y” = 2c1 (–sen 2x) 2 – 2c2 cos 2x
2
y” = –4c1 sen 2x – 4c2 cos 2x Substituindo na equação, vem: y" + 4y = (–4c1 sen 2x – 4c2 cos 2x) + 4(c1 sen 2x + c2 cos 2x) = –4c1 sen 2x – 4c2 cos 2x + 4c1 sen 2x + 4c2 cos 2x = (–4c1 + 4c1) sen 2x + (– 4c2 + 4c2) cos 2x = 0 Assim, y = c1 sen 2x + c2 cos 2x satisfaz a equação diferencial para todos os valores de x, sendo, por conseguinte, uma solução no intervalo (– , ).
5. Solução Particular e Solução Geral Uma solução particular de uma equação diferencial é qualquer solução da mesma. A solução
geral da equação diferencial é o conjunto de todas as suas soluções. Por exemplo, a solução geral do exemplo 2, item 4, é y = c1 sen 2x + c2 cos 2x. Isto é, toda solução particular da referida equação tem esta forma geral. Algumas soluções particulares são:
•
y = 5 sen 2x – 3 cos 2x (com c1 = 5 e c2 = –3)
•
y = sen 2x (com c1 = 1 e c2 = 0)
•
y = 0 (com c1 = c2 = 0)
6. Resolução de Equações Diferenciais Ordinárias de ordem n > 1 Resolver ou integrar uma equação diferencial é determinar todas as funções que, sob a forma finita, verificam a equação, ou seja, é obter uma função de variáveis livres que, substituída na equação, transforme-a numa identidade. Aprenderemos, aqui, dois tipos de equações diferenciais: Equações diferenciais de variáveis separáveis e Equações diferenciais lineares homogêneas.
Professor Cícero José – Uniban 2011
31
6.1. Equações separáveis de primeira ordem Seja uma equação diferencial M(x, y) dx + N(x, y) dy = 0. Se M é uma função apenas da variável x, isto é M = M(x) e N é uma função apenas da variável y, isto é N = N(y), então a equação dada fica na forma: M(x) dx + N(y) dy = 0 e ela é chamada equação separável. Isto é motivado pelo fato que é possível separar as funções de modo que cada membro da igualdade possua uma função com apenas uma variável. Desse modo, podemos realizar a integração de cada membro por um processo “simples”. Vejamos alguns exemplos:
Exemplo 1: Resolva a equação diferencial y’ =
x . y
Resolução: Podemos escrever a equação diferencial dada como: x dy = dx y y dy = x dx Integrando cada termo independentemente, teremos: y dy = x dx y2 x2 + C1 = + C2 2 2 e reunindo as constantes em uma constante C, teremos x2 – y2 = C, e esta relação satisfaz à equação diferencial dada.
Exemplo 2: Resolva a equação y’= xy. Resolução: Reescrevendo a equação diferencial dada temos: dy = xy dx dy = x dx y Integrando cada termo independentemente, teremos: dy = x dx y
Professor Cícero José – Uniban 2011
ln y =
32
x2 +C 2
Aplicando a definição de logaritmos vem:
y =e y= ± e
x2 +C 2 x2 2
e = ± Ce C
x2 2
x2 2
Explicitamente, a solução é y = Ce , onde C = ± eC .
Observação: Será omitido doravante o sinal de valor absoluto em todas as operações em que intervenham logaritmos, ficando subentendido, todavia, que tal operação só tem sentido para os valores absolutos das funções a que se aplica.
Exemplo 3: Resolva a equação eydx – x2dy = 0 Resolução: Separando os diferenciais e reescrevendo a equação diferencial dada temos: ey dx = x2 dy dx dy = y 2 x e Integrando cada termo independentemente, teremos: e − y dy = x −2 dx e–y = x–1 + C
e− y x −1 = +C −1 −1 e–y = −
1 +C x
Calculando o logaritmo em ambos os membros vem: ln e–y = ln − –y
1 +C x
ln e = ln −
–y = ln −
1 +C x
y = – ln −
1 +C x
1 +C x (ln e = 1)
Professor Cícero José – Uniban 2011
33
Exemplo 4: Resolva a equação y’ = 2x. Resolução: Reescrevendo a equação diferencial dada temos: dy = 2x dx dy = 2x dx Integrando cada termo independentemente, teremos: dy = 2x dx y=
2x 2 +C 2
y = x2 + C
6.2. Curvas Integrais Geometricamente, a solução geral de uma equação diferencial representa uma família de curvas que recebem o nome de curvas integrais. Essa solução denomina-se primitiva ou integral da equação diferencial. Por exemplo, a solução y = x2 + C (ver exemplo 4) fornece uma família de parábolas de concavidades voltada para o eixo y positivo, conforme mostra a figura seguinte.
Figura 6.1. Curvas Integrais
Professor Cícero José – Uniban 2011
34
Exercícios 114) Nas seguintes equações diferenciais, determine a ordem e o grau. a) y’” – 5xy’ = ex + 1 d2t dt b) s + st =s 2 ds ds 2
d4 y c) 5 dx 4 d) y
5
+7
dy dx
10
+ y7 – y5 = x
d2 y = y2 + 1 2 dx
e) (y”)7 – 3yy’ + xy = 0 115) Verifique se a função dada é uma solução da equação diferencial.
Função
Equação Diferencial
a) y = 2e–x + xe–x
y” + 2y’ + y = 0
b) y = 1
y” + 2y’ + y = x
c) y = ex
y” – y = 0
d) y = xe2x
y” – 4y’ + 4y = ex
e) 2y’ + y = 0
y = ex/2
f) y’ – 2y = e3x
y = e3x + 10e2x
g) y’ = 25 + y2
y = 5 tg 5x
116) Mostre que y = ln x é uma solução de xy” + y’ = 0 em I = (0, I = (– , ). 117) Resolva as seguintes equações diferenciais: a) dx =
1 dy 2y + 3
x2 b) y’ = 2x 3 + 1 c)
dy =x dx
d) y’” = x
ln x
) mas não é solução em
Professor Cícero José – Uniban 2011
e) y” = e –2x f) y’ = x3
sen (5x4 – 1)
g) y” = sen 2x – cos 4x h) y’ = x2 (x3 + 1)8 i) y’ =
x2 x +1
x2 − 9 j) y’ = x −3
118) Resolva as seguintes equações de variáveis separáveis: a) y dx – x dy = 0 b) (1 + y) dx – (1 – x) dy = 0 c) xy y’ = 1 – x2 d) (3xy + 3x – y – 1) dx – xy dy = 0 e) (xy – 2x – y + 2) dx + xy dy = 0 f) 4x dy – y dx = 0 g) e2x – 3y dy = dx h) y2cos(ln x) dx = x e1/y dy i) (x2 + x) dy = (x + 2) dx j) y’ = x3 sec2(5x4 – 1)
35
Professor Cícero José – Uniban 2011
36
6.3. Equações diferenciais lineares homogêneas de ordem 2 Uma equação diferencial linear homogênea de segunda ordem tem a forma P(x)
d2 y dy + Q(x) + R(x) y = 0 2 dx dx
(1)
onde P, Q e R são funções contínuas. Dois fatos básicos permitem-nos resolver equações lineares homogêneas. O primeiro estabelece que, se conhecermos duas soluções y1 e y2 de tal equação, então a combinação linear y = c1y1 + c2y2 é também uma solução.
Teorema 1: Se y1(x) e y2(x) são soluções da equação linear homogênea (1) e c1 e c2 são constantes quaisquer, então a função y(x) = c1y1(x) + c2y2(x) é também uma solução da equação (1).
Demonstração: Uma vez que y1 e y2 são soluções da equação (1), temos: P(x) y1" + Q(x) y1' + R(x)y1 = 0 e P(x) y"2 + Q(x) y '2 + R(x)y2 = 0 Portanto, usando as regras básicas para diferenciação, temos: P(x)y” + Q(x)y’ + R(x)y = P(x) (c1y1 + c2y2)” + Q(x) (c1y1 + c2y2)’ + R(x) (c1y1 + c2y2) = P(x) (c1 y1" + c2 y"2 ) + Q(x) (c1 y1' + c2 y '2)’ + R(x) (c1y1 + c2y2) = c1 y1" P(x) + c2 y"2 P(x) + c1 y1' Q(x) + c2 y '2 Q(x) + c1y1 R(x)+ c2y2 R(x) = c1 y1" P(x) + c1 y1' Q(x) + c1y1 R(x) + c2 y"2 P(x) + c2 y '2 Q(x) + c2y2 R(x) = c1[P(x) y1" + Q(x) y1' + R(x) y1] + c2[P(x) y"2 + Q(x) y '2 + R(x)y2) = c1(0) + c2(0) = 0 Assim, y = c1y1 + c2y2 é uma solução da equação (1).
Professor Cícero José – Uniban 2011
37
O outro fato que precisamos é dado pelo seguinte teorema, provado em cursos mais avançados. Dizemos que a solução geral é uma combinação linear de duas soluções linearmente independentes y1 e y2. Isso significa que nem y1 nem y2 é um múltiplo constante do outro. Por exemplo, as funções
f(x) = x2 e g(x) = 5x2 são linearmente dependentes, mas f(x) = ex e g(x) = xex são linearmente independentes.
Teorema 2: Se y1 e y2 forem soluções linearmente independentes da equação (1), então a solução geral é dada por y(x) = c1y1(x) + c2y2(x), onde c1 e c2 são constantes arbitrárias.
O teorema 2, muito útil; diz que, se conhecermos duas soluções particulares linearmente independentes, então conheceremos todas as soluções. Em geral, não é fácil descobrir soluções particulares para uma equação linear de segunda ordem. Mas é sempre possível fazer isso se as funções P, Q e R forem funções constantes, isto é, se a equação diferencial tiver a forma: ay" + by’ + cy = 0 onde a, b e c são constantes e a
(2) 0.
Não é difícil pensar em alguns prováveis candidatos para as soluções particulares da equação (2) se enunciarmos verbalmente. Estamos examinando para uma função y tal que uma constante vezes sua segunda derivada y” mais outra constante vezes y’ mais a terceira constante vezes y é igual a 0. Sabemos que a função exponencial y = emx (onde m é uma constante) tem a propriedade que sua derivada é uma constante múltipla dela mesma: y’ = memx. Além disso, y” = m2emx. Substituindo essas derivadas na equação (2) veremos que v = emx é uma solução se am2emx + bmemx + cemx = 0 ou (am2 + bm + c)emx = 0 Mas emx é diferente de zero. Assim, y = emx é uma solução da equação (2) se m é uma raiz da equação am2 + bm + c = 0
(3)
Professor Cícero José – Uniban 2011
38
A equação (3) é denominada equação auxiliar (ou equação característica) da equação diferencial ay” + by’ + cy = 0. Note que ela é uma equação algébrica que foi obtida da equação diferencial substituindo-se y” por m2, y’ por m, e y por 1. Separamos em três casos de acordo com o sinal do discriminante b2 – 4ac.
1º caso: Raízes reais distintas ( > 0) Nesse caso as raízes m1 e m2 da equação auxiliar são reais e distintas; logo y1 = e m1x e y2 = e m 2 x são duas soluções linearmente independentes da equação (2). (Note que e m 2 x não é um múltiplo constante de e m1x ). Portanto, pelo teorema 2, temos o seguinte fato:
Se as raízes m1 e m2 da equação auxiliar am2 + bm + c = 0 são reais e diferentes, então a solução geral de ay” + by’ + cy = 0 é: y = c1 e m1x + c2 e m 2 x Vejamos alguns exemplos:
Exemplo 1: Resolva a equação y” + y’ – 6y = 0. Resolução: A equação auxiliar é m2 + m – 6 = 0, onde temos (m – 2)(m + 3) = 0, cujas raízes são m = 2, –3. Portanto, a solução geral da equação diferencial dada é y = c1e2x + c2e–3x.
OBSERVAÇÃO: Podemos verificar que isso é de fato uma solução diferenciando e substituindo na equação diferencial.
Exemplo 2: Resolva a equação 3
d2 y dy + – y = 0. 2 dx dx
Resolução: A equação auxiliar é 3m2 + m – 1 = 0. Neste caso aqui recorremos à fórmula resolutiva. = 12 – 4(3)(–1) = 1 + 12 = 13 m=
−1 ± 13 6
Uma vez que as raízes são reais e distintas, a solução geral é y = c1 e
( −1 +
)
13 x/6
+ c2 e
( −1− 13 ) x/6
.
Professor Cícero José – Uniban 2011
39
2º caso: Raízes reais com multiplicidade maior que 1 ( = 0) Nesse caso m1 = m2, isto é, as raízes da equação auxiliar são reais e iguais. Vamos denotar por m os valores comuns m1 e m2. Como
= 0, de m =
−b ±
b b 2 − 4ac , logo 2am + b = 0. temos m = − 2a 2a
Sabemos que y1 = emx é uma solução da equação (2). Agora verifiquemos que y2 = xemx é também uma solução. a y"2 + b y '2 + cy2 = a(2memx + m2xemx) + b(emx + mxemx) + cxemx = 2amemx + am2xemx + bemx + bmxemx + cxemx = 2amemx + bemx + am2xemx + bmxemx + cxemx = (2am + b)emx + (am2 + bm + c)xemx = 0(emx) + 0(xemx) = 0 O primeiro termo é 0, pois 2am + b = 0; o segundo termo é 0, pois m é uma raiz da equação auxiliar. Uma vez que y1 = emx e y2 = xemx são soluções linearmente independentes, o teorema 2 nos fornece a solução geral. Se a equação auxiliar am2 + bm + c = 0 tem apenas uma raiz real m, então a solução geral de ay” + by’ + cy = 0 é: y = c1emx + c2xemx
Exemplo 3: Resolva a equação 4y” + 12y’ + 9y = 0. Resolução: A equação auxiliar é 4m2 + 12m + 9 = 0, que fatorada fica (2m + 3)2 = 0, cuja única raiz é m= −
3 . Portanto, a solução geral da equação diferencial dada é y = c1e–3x/2 + c2e–3x/2. 2
Exemplo 4: Resolva a equação y’” – 2y” – 4y’ + 8y = 0. Resolução: A equação auxiliar é m3 – 2m2 – 4m + 8 = 0. Fatorando por agrupamento temos: m2(m – 2) – 4(m – 2) = 0 (m – 2) (m2 – 4) = 0 (m – 2) (m – 2) (m + 2) = 0 (m – 2)2 (m + 2) = 0 Temos que raiz m = 2 tem multiplicidade 2, e a raiz m = –2 tem multiplicidade 1. Portanto, a solução geral da equação diferencial dada é y = c1e2x + c2xe2x + c3e–2x.
Professor Cícero José – Uniban 2011
40
3º caso: Raízes não reais ( < 0) Nesse caso as raízes m1 e m2 da equação são números complexos. Podemos escrever m1 = e
onde
+ i
e
m2 =
– i
são números reais.
Usando a equação de Euler ei =cos + i sen , escrevemos a equação diferencial como: y = C1 e m1x + C2 e m 2 x = C1e( y = C 1e
x
ei x + C 2 e
x
e–i
+ i)x
+ C 2 e(
– i)x
x
y = C1e x (cos x + i sen x) + C2e x (cos x – i sen x) y = e x [C1 (cos x + i sen x) + C2 (cos x – i sen x)] y = e x (C1 cos x + i C1 sen x + C2 cos x – C2 i sen x) y = e x (C1 cos x + C2 cos x + i C1 sen x – C2 i sen x) y = e x [(C1 + C2) cos x + i (C1 – C2) sen x] y = e x [(C1 + C2) cos x + i (C1 – C2) sen x] y = e x (c1 cos x + i c2 sen x) onde c1 = C1 + C2, c2 = i(C1 – C2). Isso nos dá todas as soluções (reais ou complexas) da equação diferencial. As soluções são reais quando as constantes c1 e c2 são reais. Resumindo temos:
Se as raízes da equação auxiliar am2 + bm + c = 0 forem os números complexos m1 =
+ ie
m2 =
– i, então a solução geral de ay” + by’ + cy = 0 será
y = e x (c1 cos x + c2 sen x)
Exemplo 5: Resolva a equação y” – 6y’ + 13y = 0. Resolução: A equação auxiliar é m2 – 6m + 13 = 0. Utilizando a fórmula resolutiva temos: = (–6)2 – 4(1)(13) = 36 – 52 = –16 m=
6 ±
−16 2
=
6 ± 4i = 3 ± 2i 2
Logo, a solução geral da equação diferencial é y = e3x (c1 cos 2x + c2 sen 2x).
Professor Cícero José – Uniban 2011
41
Exemplo 6: Resolva a equação y” – 2y’ + 10y = 0. Resolução: A equação auxiliar é m2 – 2m + 10 = 0. Utilizando a fórmula resolutiva temos: = (–2)2 – 4(1)(10) = 4 – 40 = –36 m=
2 ±
−36 2
=
2 ± 6i = 1 ± 2i 2
Logo, a solução geral da equação diferencial é y = ex (c1 cos 3x + c2 sen 3x).
6.4. Equações diferenciais lineares homogêneas de ordem n > 2 A resolução de equações diferenciais homogêneas de ordem n > 2 é análoga à de ordem 2. Vejamos alguns exemplos:
Exemplo 7: Resolva a equação y’” – y” – 4y’ + 4y = 0 Resolução: Essa equação diferencial é de ordem 3. Temos como equação auxiliar (ou equação característica): m3 – m2 – 4m + 4 = 0 Fatorando por agrupamento vem: m2(m – 1) – 4(m – 1) = 0 (m – 1) (m2 – 4) = 0 (m – 1) (m + 2) (m – 2) = 0 m = 1, m = – 2, m = 2 Portanto, a solução geral da equação diferencial dada é y = c1ex + c2e–2x + c3e2x.
Exercícios 119) Resolva as seguintes equações diferenciais: a) y” – 6y’ + 8y = 0 b) y” + 8y’ + 41y = 0 c) y” – 2y’ + y = 0 d) 4y” + y = 0 e) 4y” + y’ = 0
d2y dy f) 2 – 2 –y=0 dt dt
d2y dy i) –8 + 16y = 0 2 dx dx
d2y dy g) 2 + +y=0 dt dt
d2y dy j) –2 + 5y = 0 2 dx dx
d2y dy – 2y = 0 h) 6 2 – dx dx
Professor Cícero José – Uniban 2011
42
d3 y d2y dy 120) Resolva a equação + 3 2 − 4 − 12y = 0 . 3 dx dx dx 121) Resolva a equação
d4 y d3 y + = 0. dx 4 dx 3
122) Mostre que y” – y’ – 2y = 0 tem 2 soluções distintas do tipo y = eax. d3 y dy – 6x + 12y = 12 lnx – 4. 3 dx dx
123) Verifique que y = ln x é solução de x3
124) Determine se as séries abaixo são convergentes ou divergentes. Se for convergente, calcule sua soma. ∞
3 a) n n = 0 10
1 − 2n b) n n=0 3 ∞
c)
∞ n=0
(−5) n −1 d) 4n n=0
2n + 3 e) n n=0 3
∞
1 2n + 2
∞
125) Deixa-se cair uma bola de borracha de uma altura de 6 metros sobre uma superfície plana. Cada vez que a bola atinge o plano, caindo de uma altura h, ela retorna a uma altura
1 h. Determine a 4
distância total percorrida pela bola. 126) Use o teste da integral para determinar se cada série abaixo converge ou diverge: a)
∞ n=1
1 n3 n
b)
∞
1 2 n=1n + 4
c)
3n 2 3 n = 1 n + 16 ∞
d)
∞ n=1
1000 n
2
127) Use o teste da razão para determinar se cada série abaixo converge ou diverge:
5n a) 4n n=1n ∞
n3 + 1 b) n! n=1 ∞
7n c) n = 1 n! ∞
1 + en d) n n=1 2 ∞
128) Aplicando o teste da divergência, verifique se as séries abaixo convergem ou divergem. a)
∞
100 n=1 n
n2 b) 2 n = 1 5n + 1 ∞
5n 2 c) n = 1 3n + 1 ∞
2n 2 + 1 d) 2 n = 1 9n + 5 ∞
Professor Cícero José – Uniban 2011
43
CAPÍTULO VII Aplicações das Equações Diferenciais As equações diferenciais são usadas para construir modelos matemáticos de fenômenos físicos tais como na dinâmica de fluidos e em mecânica celeste. Deste modo, o estudo de equações diferenciais é um campo extenso na matemática pura e na matemática aplicada. Equações diferenciais têm propriedades intrinsecamente interessantes tais como:
•
solução pode existir ou não.
•
caso exista, a solução é única ou não. As equações diferenciais têm inúmeras aplicações práticas em Medicina, Engenharia, Química,
Biologia, Psicologia e outras diversas áreas do conhecimento. As soluções destas equações são usadas, por exemplo, para projetar pontes, automóveis, aviões e circuitos elétricos. Vejamos algumas situações problemas envolvendo equações diferenciais.
Exemplo 1: Uma curva é definida pela condição de ter em todos os pontos (x, y), a inclinação dy igual ao dobro da soma das coordenadas do ponto. Expresse a condição por meio de uma equação dx diferencial.
Resolução: A equação é:
dy = 2(x + y) dx
Exemplo 2: Determine a curva y = f(x) cuja tangente (tem inclinação) em cada ponto é proporcional à abscissa do ponto.
Resolução: A equação da curva é:
dy = kx dx
Exemplo 3: Em uma comunidade de 45 000 pessoas, a taxa de crescimento de uma epidemia de gripe é conjuntamente proporcional ao número de pessoas y que a contraíram e ao número de pessoas que não a contraíram.
Resolução: A equação é:
dy = ky(45 000 – y) dx
Professor Cícero José – Uniban 2011
44
Exemplo 4: Em um campus universitário com 5 000 alunos, onde se esperava uma assembleia estudantil um aluno ouviu que certo estudante polêmico iria fazer, durante a assembleia, um discurso explosivo. Essa informação foi transmitida para amigo que, por sua vez, a transmitiram a outros. A taxa com que se espalhou essa informação é conjuntamente proporcional ao número de pessoas y que a ouviram e ao número de pessoas que não a ouviram.
Resolução: A equação é:
dy = ky(5 000 – y) dx
1. Aplicações da função exponencial natural Modelos matemáticos envolvendo potências de e ocorrem em muitos campos, tais como Química, Física, Biologia, Psicologia, Sociologia, Administração e Economia. Os modelos que envolvem, por exemplo, as leis de crescimento e decaimento, surgem quando a taxa de variação de uma quantidade em relação ao tempo é proporcional à quantidade existente num dado instante. Por exemplo, é possível que a taxa de crescimento da população de uma comunidade seja proporcional à população existente num dado instante. Em Biologia, sob certas circunstâncias, a taxa de crescimento de uma cultura de bactérias é proporcional à quantidade de bactérias presentes em qualquer instante dado. Numa reação química é frequente o caso em que a velocidade da reação é proporcional à quantidade da substância presente; por exemplo, sabe-se experimentalmente que a taxa de decaimento do rádio é proporcional à quantidade de rádio existente num dado momento. Uma aplicação em Administração ocorre quando os juros são compostos continuamente. Em tais casos, se o tempo for representado por t unidades e se y unidades representar o total da quantidade presente em qualquer instante, então t
dy = kt, onde k é uma constante e y > 0 para todo dt
0. Se y cresce com o aumento de t, então k > 0 e temos a lei de crescimento natural. Se y decresce
quando t aumenta então k < 0 e temos a lei do decaimento natural. Vejamos dois exemplos.
Exemplo 5: A taxa de crescimento da população de uma certa cidade é proporcional ao número de habitantes. Se a população em 1950 era de 50 000 e em 1980, de 75 000, qual a população esperada em 2020?
Resolução: Seja t o tempo em anos, decorrido desde 1950. Seja y a população em t anos. Temos os seguintes dados: Para 1950, t = 0
y = 50 000
e
Para 1980, t = 30
y = 75 000
Professor Cícero José – Uniban 2011
45
Queremos determinar o valor de y para t = 70 (ano de 2020). A equação diferencial é: dy = ky dt dy = y
dy = k dt y
ln y = kt + C
k dt
y = ekt + C
y = ekt
ec
y = Cekt Substituindo os valores conhecidos na última função vem: 50 000 = Cek . 0
75 000 = 50 000ek . 30
50 000 = Ce0
e30k = 1,5
50 000 = C C = 50 000 Então, a temos a seguinte função: y = 50 000ekt t
y = 50 000 ( e30k ) 30 t
y = 50 000 (1,5) 30 Substituindo t por 70, vem: 70
y = 50 000 (1,5) 30 y = 128 780
Resposta: Portanto, a população esperada em 2020 é de 128 780 habitantes. Exemplo 6: A taxa de decaimento do rádio é proporcional à quantidade presente em qualquer instante. Se houver 60 mg de rádio agora e sua meia vida for de 1690 anos, qual a quantidade de rádio daqui a 100 anos? (Em problemas envolvendo a lei do decaimento natural, a meia vida de uma substância
é o tempo para que ela seja reduzida à metade da quantidade inicial). Resolução: Seja t o tempo em anos, decorrido desde 1950. Seja y o número de miligramas de rádio presentes em t anos. Temos os seguintes dados: t=0
y = 60
e
t = 1960
y = 30
Professor Cícero José – Uniban 2011
46
Queremos determinar o valor de y para t = 100. A equação diferencial é: dy = ky dt dy = y
dy = k dt y
ln y = kt + C
k dt
y = ekt + C
y = ekt
ec
y = Cekt Substituindo os valores conhecidos na última função vem: 60 = Cek . 0
30 = 60ek . 1960
60 = Ce0
e1960k = 0,5
60 = C C = 60 Então, a temos a seguinte função: y = 60ekt t
y = 60 ( e1960k )1960 t
y = 60 ( 0,5)1960 Substituindo t por 70, vem: 100
y = 60 ( 0,5)1960 y = 57,9
Resposta: Portanto, daqui a 100 anos haverá 57,9 mg de rádio.
2. Lei de Resfriamento de Newton Outra aplicação das equações diferenciais na Física é a lei do resfriamento de Newton, que estabelece que a razão na qual um corpo varia de temperatura é proporcional à diferença entre a
temperatura do corpo e a do meio ambiente que o cerca. Por exemplo, antes de tomar um café, geralmente esperamos um pouco até que o líquido esfrie. Uma xícara de café fica quase intragável se esfriar até chegar à temperatura ambiente.
Professor Cícero José – Uniban 2011
47
Suponha, então, que T(t) denote a temperatura de um corpo no instante t e que a temperatura do meio ambiente seja constante, igual a Tm. Se
dT representa a taxa de variação da temperatura do dt
corpo, então a lei de resfriamento de Newton poderá ser expressa matematicamente da seguinte forma: dT = k(T – Tm), dt em que k é uma constante de proporcionalidade. Como, por hipótese, o corpo está esfriando, devemos ter T > Tm; logo, k < 0. Vejamos um exemplo.
Exemplo 7: Se um corpo estiver no ar, cuja temperatura é 35º e resfria-se de 120º a 60º em 40 min, use a lei do resfriamento de Newton para determinar a temperatura do corpo depois de 100 min.
Resolução: Seja t o tempo decorrido desde que o corpo começou a esfriar. Seja y graus a temperatura do corpo em t min. Temos os seguintes dados: t=0
y = 120
e
t = 40
y = 60
Queremos determinar o valor de y para t = 100. A equação diferencial é: dy = k(y – 35) dt dy = y − 35
dy = k dt y − 35
ln y − 35 = kt + C
k dt
y – 35 = ekt + C
y – 35 = ekt
y – 35 = Cekt
y = 35 + Cekt
Substituindo os valores conhecidos na última função vem: 120 = 35 + Cek . 0
60 = 35 + 85ek . 40
85 = Ce0
25 = 85e40k
C = 85
e40k =
5 17
ec
Professor Cícero José – Uniban 2011
48
Então, a temos a seguinte função: y = 35 + 85ekt t
y = 35 + 85 ( e40k ) 40
5 y = 35 + 85 17
t 40
Substituindo t por 100, vem: y = 35 + 85
5 17
2,5
y = 39
Resposta: Portanto, após 100 minutos a temperatura do corpo será 39º.
Exercícios 129) Em qualquer ponto (x, y) de uma determinada curva, a reta tangente tem uma inclinação igual a 4x – 5. Se a curva contém o ponto (3, 7), determine sua equação. 130) A função custo marginal2 C’ é dada por C’(x) = 4x – 8 quando C(x) é o custo total da produção de x unidades. Se o custo da produção de 5 unidades for de R$ 20,00, ache a função custo total. 131) O ponto (3, 2) está numa curva e em qualquer ponto sobre a curva a inclinação da reta tangente é igual a 2x – 3. Ache uma equação da curva.
132) A inclinação da reta tangente num ponto qualquer (x, y) da curva é 3 x . Se o ponto (9, 4) está na curva, determine uma equação para ela. 133) Uma partícula move-se ao longo de uma linha reta, no SI. Se a = 2t – 1 e v = 3 e s = 4 quando t = 1, determine as funções espaço e velocidade em funções de t.
2
Em economia e finanças, custo marginal é a mudança no custo total de produção advinda da variação em uma unidade da quantidade produzida.
Professor Cícero José – Uniban 2011
49
134) Um operário recém-contratado realiza uma tarefa com maior eficiência a cada dia que passa; de tal forma que se y unidades forem produzidas por dia após t dias no trabalho, então onde k é uma constante positiva e y < 80 para todo t
dy = k(80 – y), dx
0. O empregado produz 20 unidades no primeiro
dia de trabalho e 50 unidades por dia após 10 dias de trabalho. Quantas unidades por dia ele estará produzindo após 30 dias de trabalho? 135) Ache uma equação da reta tangente à curva y = ln x no ponto de abscissa 2. 136) Numa certa cultura a taxa de crescimento das bactérias é proporcional à população presente. Se existirem 1 000 bactérias inicialmente e a quantidade dobrar em 12 minutos, quanto tempo levará até que haja 1 000 000 de bactérias? 137) A taxa de crescimento natural da população de certa cidade é proporcional à população. Se a população aumenta de 40 000 para 60 000 em 40 anos, quando a população será de 80 000? 138) O crescimento das bactérias numa certa cultura se faz segundo uma taxa proporcional ao número de bactérias presentes. Se inicialmente existem 1 000 bactérias e o número dobra em 30 minutos, quantas bactérias haverá em 2 horas? 139) Se a meia vida do rádio for de 1 690 anos, que porcentagem da quantidade presente agora restará após: a) 100 anos?
b) 1 000 anos?
140) A mortalidade no inverno de uma certa espécie de animal selvagem numa dada região do hemisfério norte apresenta uma taxa proporcional ao número de indivíduos presentes em qualquer momento. Havia 2 400 indivíduos da espécie em 21 de dezembro (primeiro dia de inverno) e 30 dias depois havia 2 000. Quantos indivíduos da espécie deverão sobreviver ao inverno? Isto é, quantos estarão vivendo 90 dias após 21 de dezembro? 141) Um peru assado é retirado do forno quando sua temperatura alcança 85ºC e é colocado em uma mesa onde a temperatura é de 24ºC. a) Se a temperatura do peru for de 66ºC depois de meia hora, qual será a temperatura dele após 45 minutos? b) Quando terá o peru se resfriado a uma temperatura de 38ºC?
(Use a lei do resfriamento de Newton)
Professor Cícero José – Uniban 2011
50
142) Use a lei do resfriamento de Newton para determinar a temperatura de um corpo num ambiente onde a temperatura é 40ºC, se 30 minutos atrás a temperatura do corpo era 150ºC e 10 minutos atrás era 90ºC. 143) Um aluno que está estudando uma língua estrangeira tem 50 verbos para serem memorizados. A taxa a qual o estudante pode memorizar esses verbos é proporcional ao número de verbos que restam a ser memorizados, isto é, se o estudante memoriza y verbos em t minutos, então
dy = k(50 – y). dx
Suponha que inicialmente nenhum verbo tenha sido memorizado e que nos primeiros 30 minutos 20 verbos foram memorizados. Quantos verbos serão memorizados em: a) 1 hora? b) 2 horas? c) Após quantas horas restará apenas um verbo para ser memorizado? 144) Determine os valores de m para que y = emx seja uma solução para cada equação diferencial abaixo: a) y” – 5y’ + 6y = 0 b) y” + 10y’ + 25y = 0 145) Determine os valores de m para que y = xm seja uma solução para cada equação diferencial abaixo: a) x2y” – y = 0 b) x2y” + 6xy’ + 4y = 0
Professor Cícero José – Uniban 2011
51
Respostas dos exercícios CAPÍTULO V Séries 95) Uma sequência é uma lista ordenada de números, ao passo que uma série é a soma de uma lista de números.
96) Uma série é convergente se a sequência de somas parciais for uma sequência convergente. Uma série é divergente se ela não convergir. ∞
97)
n=1
a n = 5 significa que adicionando suficientemente uma quantidade de termos da sequência, a
série chegará próximo do número 5. Em outras palavras, significa que lim Sn = 5, onde Sn é a soma n →∞
parcial.
98a) É convergente 99a) 9 b) divergente c) 15 1 d) 7 100a)
e) divergente f) divergente 3 g) 2 h) divergente
2 9
b)
101a) –3 < x < 3; c) 3 < x < 5;
102)
b) É divergente 3 2 j) divergente k) divergente i)
1138 333
x 3− x
c)
b) −
x−4 5−x
41 111 333 000
1 1 1 <x< ; 4 4 1 − 4x
d) 1 < x < 5; −
2 x+1
103) 10
3 −1 2
104a) convergente
d) convergente
g) divergente
b) divergente
e) convergente
h) convergente
c) convergente
f) convergente
105) 60
106) m
Professor Cícero José – Uniban 2011
107) Alternativa C
108) Alternativa A
110a) A série é divergente
b) A série é convergente
111a) convergente b) convergente
52
109) Alternativa D c) Pode convergir ou divergir
c) divergente
e) convergente
g) convergente
d) convergente
f) convergente
h) divergente
112) 8
113)
416 909 99 900
CAPÍTULO VI Equações Diferenciais 114a) Ordem 3 e grau 1 b) Ordem 2 e grau 1
c) Ordem 4 e grau 5 d) Ordem 2 e grau 1
115a) É solução e) Não é solução
116) Em (0,
b) Não é solução
c) É solução
f) É solução
g) É solução
) temos que y’ =
obtemos: xy” + y’ = x −
1 x2
e) Ordem 2 e grau 7
+
d) É solução
1 1 e y” = − 2 . Levando esses valores na equação diferencial, x x
1 1 1 = − + =0 x x x
Assim, pois, y = ln x é solução em (0,
). Mas y = ln x não poder ser solução em (– ,
logaritmo não é definido para valores não positivos.
117a) y = b) y =
ce 2x − 3 2 ln 2x 3 + 1 6
+C
f) y = −
cos(5x 4 − 1) +C 20
g) y = −
sen 2x cos 4x + + C 1x + C 2 4 16
x 2 ln x x 2 c) y = – +C 2 4
h) y =
(x 3 + 1)9 +C 27
x4 x2 d) y = + C1 + C 2x + C 3 24 2
i) y =
x2 – x + ln x + 1 + C 2
e −2x + C 1x + C 2 e) y = 4
j) y =
x2 + 3x + C 2
) pois
Professor Cícero José – Uniban 2011
118a) y = Cx b) y =
g) e −3y =
C –1 1− x
h) e = –sen(ln x) + C
d) y – ln y + 1 = 3x – ln x + C e) y + 2 ln y − 2 = –x + ln x + C 1
f) y = C x 4 ou y4 = Cx
119a) y = c1e2x + c2e4x b) y = e
(c1 cos 5x + c2 sen 5x)
c) y = c1ex + c2xex d) y = c1 cos e) y = c1 + c2e f) y = c1e
x 2
+ c2 sen
+ c1e
x2 i) y = ln +C x+1 tg(5x 4 − 1) j) y = +C 20
g) y = e − x/2
c1 cos
3 t + c1 sen 2
3 t 2
h) y = c1e–x/2 + c2e2x/3 x 2
–x/4
(1 + 2 )t
3 −2x e +C 2
1 y
c) y 2 = 2ln x − x 2 + C
–4x
53
i) y = c1e4x + c2xe4x j) y = ex (c1 cos 2x + c2 sen 2x)
(1− 2 ) t
120) y = c1e2x + c2e–3x + c3e–2x
121) y = c1 + c2x + c3x2 + c4e–x
122) Demonstração
123) Demonstração
10 3 3 b) − 2
1 4 d) diverge e) 24
124a)
c)
125) 10 metros 126a) converge
b) converge
127a) diverge
d) converge
c) converge absolutamente d) diverge
b) converge absolutamente
128a) converge
c) diverge
b) converge
c) diverge
d) converge
Professor Cícero José – Uniban 2011
54
CAPÍTULO VII Aplicações das Equações Diferenciais 129) y = 2x2 – 5x + 4
130) C(x) = 2x2 – 8x + 10
131) y = x2 – 3x + 2
132) y = 2 x 3 – 7
133) v = t2 – t + 3 1 1 7 S = t3 – t2 + 3t + 3 2 6 134) O empregado estará produzindo 72 unidades por dia. 135) y =
x − 1 + ln 2 6
136) 119,6 min
138) 16 000 141a) 59ºC 143a) 32
139a) 96% b) 118 min
b) 43,5
144a) m = 2 e m = 3 144a) m =
1 ± 5 2
137) 68,4 anos b) 66%
140) 1 389
142) 73,7º
c) 3,83 b) m = –5 b) m = –1 e m = –4
Professor Cícero José – Uniban 2011
55
Bibliografia AVILA, G. Análise Matemática para Licenciatura. 3ª Ed. São Paulo: Edgard Blücher, 2009. 246 p. ISBN: 8521203950 COURANT, R.; ROOBINS, H. O que é Matemática? São Paulo: Ciência Moderna, 2000. 621 p. ISBN: 8573930217 GUIDORIZZI, H. L. Curso de Cálculo, vol. 2. Rio de Janeiro: 2001. HOFFMANN, L. D.; BRADLEY, G. L. Cálculo: um curso moderno e suas aplicações. Rio de Janeiro: LTC, 2002. ISBN: 9788521616525 LIMA, E. L. Curso de Análise, vol. 1. Coleção Projeto Euclides. 12ª ed. Rio de Janeiro: IMPA, 2008. 431 p. ISBN: 978-85-244-118-3 LIMA, E. L. Análise Real. Vol. 1. 10ª ed. Coleção Matemática Universitária. Rio de Janeiro: IMPA, 2008. 431 p. ISBN: 978-85-244-0048-3 STEWART, J. Cálculo. Vol. 1. 6ª ed. São Paulo: Cengage Learning, 2010. STEWART, J. Cálculo. Vol. 2. 5ª ed. São Paulo: Cengage Learning, 2010. THOMAS, G. B. Cálculo vol.1. 10ª ed. São Paulo: Pearson, 2005. ZILL, D. G. e CULLEN, M. R. Equações Diferenciais, Volume 1. Tradução Antonio Zumpano. 3ª ed. São Paulo: Pearson Makron Books, 2001.
Professor Cícero José – Uniban 2011
56
Anexo I Caos Por John H. Hubbard (Departamento de Matemática – Cornell University) Uma história famosa de ficção cientifica conta que um político, após ter ganho uma eleição, realizou uma viagem em uma máquina do tempo de volta à era dos dinossauros. Enquanto estava lá, tomou todo o cuidado para não perturbar nada. Mesmo assim, ele pisou sem querer em uma folha de grama e a entortou. Quando voltou ao seu tempo, descobriu que neste mundo modificado ele tinha perdido a eleição. Isto é que os matemáticos têm em mente quando dizem que um sistema apresenta caos: mínimas variações na condição inicial de um sistema podem decisivamente afetar o resultado. Estamos falando do efeito borboleta. O bater das asas de uma borboleta no Japão pode ter um efeito decisivo no tempo, um mês depois, nos Estados Unidos? A maioria das pessoas consideraria essa questão absurda, ridícula, sem pensar duas vezes. Mas eu acho que é uma questão relevante, se o intervalo de tempo for de pelo menos seis meses, e proponho aqui dar algumas razoes quantitativas para minhas conclusões. Uma justificativa para o efeito borboleta não é de maneira alguma óbvia. Não temos uma máquina do tempo disponível; não podemos voltar no tempo seis semanas, pegar uma borboleta (sem perturbar nada, qualquer que seja o significado disto) e então retornar e observar as consequências. Precisamos tomar outro caminho. Para ajudá-lo a acompanhar a ideia, descreverei um “modelo lúdico” que mostra claramente o “efeito borboleta”, através do qual as ideias que serão apresentadas podem ser entendidas. Considere o sistema (puramente matemático) no qual, a cada tique do relógio, um ângulo é dobrado. Um estado do sistema é um ângulo, e ele evolui dobrando seu valor a cada instante. Em símbolos, você pode descrever o sistema como uma sequência de ângulos estado inicial do sistema e
n+1
=2
n
0
,
1
, ..., em que
0
éo
.
Esse sistema representa o comportamento do efeito borboleta. Se
0
for perturbado por um
bilionésimo de uma volta, então o estado após 30 tiques do relógio é completamente desconhecido. Na verdade, a incerteza em nosso conhecimento sobre o estado do sistema dobra a cada tique; após 30 tiques, nossa incerteza é agora de
230 . Ou seja, mais de um volta; nada mais sabemos. 1 000 000 000
O exemplo acima traz uma noção-chave em todas as descrições de caos: entropia. Isso é essencialmente a taxa de dissipação de informação. Há várias maneiras de descrever essa taxa com precisão, e elas têm vários nomes (por exemplo, exponencial de Lyapunov), mas, para o propósito
Professor Cícero José – Uniban 2011
57
deste texto, vou me contentar com o tempo de duplicação: o tempo necessário para uma pequena
incerteza se duplicar. Como faríamos para estimar esse tempo no sistema formado pelos fatores meteorológicos? É claro que não podemos “escolher dois estados iniciais separados um do outro por um épsilon e medir a taxa em que divergem”, mas podemos fazer alguma coisa parecida com isso. Podemos verificar épocas passadas com condições meteorológicas semelhantes. Então podemos ver quanto tempo levou para uma mudança dessas condições. Isso tem sido feito, proporcionando o cálculo de um tempo de duplicação de dois dias e meio. Você também pode ir ao departamento de meteorologia de um grande instituto de pesquisa e perguntar qual é o tempo de duplicação calculado por suas melhores simulações computacionais. Você obterá o mesmo valor. A próxima questão com que devemos nos deparar é: o que corresponde ao número um bilionésimo acima? Qual proporção do sistema (a atmosfera) representa nosso distúrbio (uma borboleta)? Uma maneira (talvez contestável) de estimar isso é simplesmente medir a razão das massas. O peso de uma borboleta grande é cerca de 1 grama, e a massa da atmosfera pesa 5
1021
gramas. A pressão atmosférica é de aproximadamente 1 kg/cm2, ou seja, há 1 kg de ar acima de todo centímetro quadrado da terra. A área de uma esfera de raio r é 4 r2, e o raio da terra é de cerca de 6 000 km. Então, o peso da massa atmosférica é 1 000
4
(6
108)2 gramas. Logo, uma borboleta
não é um bilionésimo do tamanho do sistema; ela é precisamente mil-bilhão-bilionésimo. Como 5
1021 é aproximadamente 272, deve levar cerca de 72 períodos de duplicação para os
efeitos de uma única borboleta induzirem perturbações em uma escala global. Uma consequência dessa análise é que previsões do tempo para períodos longos são completamente impossíveis. É inconcebível que alguém possa saber o estado da atmosfera como consequência do efeito de uma borboleta, ou mesmo em uma escala mil bilhões de vezes maior. Perturbações dessa escala decisivamente afetam a atmosfera em um mês. Físicos, químicos, astrônomos e matemáticos estão mostrando agora que uma enorme quantidade de sistemas apresentam “caos”, no sentido de que estão se expandindo e têm um tempo de duplicação para erros. Um exemplo foi dado pelo meteorologista E. Lorenz, cuja descoberta pode ter sido o começo dessa linha inteira. Em 1961, ele estava realizando uma simulação meteorológica. Os computadores da época eram primitivos, por isso os dados tinham de ser drasticamente simplificados, para tornar possível o trabalho computacional. Ele observou vários comportamentos a partir de seu modelo, aparentemente bem satisfatórios, até o dia em que decidiu examinar alguma coisa que ele já tinha computado durante um período de tempo mais longo. Ele registrou o que pensou ser as condições
Professor Cícero José – Uniban 2011
58
iniciais originais, foi tomar uma xícara de café e quando voltou percebeu que seu novo tempo não estava de acordo com a previsão anterior de seu modelo. Ele notou que registrara as condições iniciais com menos decimais que as condições iniciais da simulação anterior; e isso causara a discrepância. Após simplificar ainda mais seu modelo, Lorenz descobriu que o seguinte sistema de equações diferenciais exibia o mesmo tipo caótico de comportamento: x’ = 10(y – x) y’ = 28x – y – xz z’ =
8 z + xy 3
Trabalhos posteriores nessas equações e outras em R3 mostraram que comportamento caótico e atratores fractais são comuns. A presença de caos tem um efeito devastador sobre as previsões, mas algumas vezes é útil; às vezes, o caos pode ser controlado. A NASA não é capaz de construir foguetes com combustível suficiente para alcançar grandes distâncias. Então, eles fizeram com que o foguete tocasse delicadamente em Vênus, roubando dele um pouco da energia potencial necessária para alcançar a fantástica velocidade requerida. Apenas uma pequena variação na trajetória pode provocar uma grande variação na velocidade do foguete, e trajetória é um projeto factível. Mas imagine como isso dificulta previsões para longas trajetórias como órbitas de cometas, por exemplo. A presença de caos também tem consequência filosóficas, como, por exemplo, o conflito entre determinismo e contingência. Como o ser humano pode ser livre se o universo é completamente governado por leis determinísticas? Se as equações exibem caos, então segue-se que você não pode saber se são determinísticas, não importa o tempo que observe o sistema. Se você fosse observar uma sequência de ângulos, cada um com 15 decimais, nunca poderia saber se está observando uma sequência de duplicações exatas de um ângulo ou o mesmo sistema perturbado em uma escala menor que 10–15 (tal como erro de arredondamento). Analogamente, se o cérebro não estivesse seguindo exatamente as leis da física, mas se encontrasse perturbado (por forças espirituais, liberdade, deus) em uma escala imensurável, sem afetar drasticamente o sistema (eu duvido que alguém reaja da mesma forma com eletrodos em seu cérebro), então, embora você nunca soubesse, em talvez 4 segundos, poderia decisivamente alterar todas as decisões. Precisamente, seria necessário o conhecimento sobre o tempo de duplicação do cérebro. A introspecção me diz que isso deve ser talvez 0,1 segundo, o tempo de uma compreensão elementar.
Professor Cícero José – Uniban 2011
59
Talvez, algum dia, os neurologistas cheguem a uma estimativa mais confiável. Se isso for acurado, então 4 segundos serão os 40 tempos de duplicação, e 240 ≈ 1012 é aproximadamente o número de neurônios do cérebro. Pessoalmente, não acho que haja um deus atrapalhando as leis físicas em meu cérebro, mas isso não é possível saber. O caos nos impede de saber tais coisas. De modo mais geral, embora eu tenho a segurança que você poderia esperar um cientista, acho que o mundo é essencialmente incompreensível, com toda sorte de pequenos eventos tendo enormes consequências sem nenhuma esperança de previsão ou entendimento. Se você acha absurda a ideia de que suas menores ações provavelmente influenciam todo o mundo futuro, pense no seguinte fato: a menor variação no comportamento sexual de qualquer pessoa no ano 800 d.C., teria certamente afetado o mundo de várias maneiras incalculáveis.
Fonte: Zill, Dennis G. Equações Diferenciais, volume 1. tradução: Antonio Zumpano. 3.ed. São Paulo: Pearson Makron Books, 2001. pp. 221-224.
Professor Cícero José – Uniban 2011
60
Anexo II O colapso da ponte Tacoma Narrows Por Gilbert N. Lewis (Departamento de Matemática e Ciência da Computação – Michigan Technological University) As oscilações no caso de ressonância tornam-se muito grande após um certo período de tempo. Em um sistema físico, isso seria catastrófico, pois o aumento contínuo das amplitudes de oscilação quebrariam o sistema. Como exemplos, podemos citar as asas de um avião e soldados marchando
sobre uma ponte. Nesses exemplos, as forças periódicas com frequência igual à frequência natural das estruturas foram impressas na direção das vibrações, ocasionando a destruição das estruturas por ressonância. Outro exemplo usado para ilustrar o fenômeno de ressonância é o colapso da ponte Tacoma Narrows no estado de Washington. A ponte foi aberta ao tráfego no verão de 1940. Grandes oscilações da pista foram logo observadas, sempre quando havia vento. A ponte passou a ser chamada de “Galloping Gertie” (ponte galopante) e tornou-se uma atração turística. As pessoas gostavam de observar as vibrações e mesmo dirigir através da ponte em uma excitante montanha-russa. Finalmente, em 7 de novembro de 1940, toda a estrutura do vão foi fragmentada pelas grandes vibrações e houve o colapso. (Ver figura 1)
Figura 1 Durante 50 anos, a ressonância foi responsabilizada pelo colapso. Pensava-se que, quando o vento soprava horizontalmente, formavam-se vórtices de vento alternados de baixo para cima e de cima para baixo, criando então uma força vertical periódica que agia na mesma direção da vibração da ponte. (ver figura 2). Ainda, supunham que a frequência dessa força periódica era exatamente igual à frequência natural da ponte, ocasionado então grande amplitude de vibrações e causando a queda da ponte. Essa explicação foi (talvez erroneamente) atribuída ao notório engenheiro von Karman. Em sua autobiografia, ele explicou que o colapso da ponte foi realmente devido aos vórtices de von Karman.
Professor Cícero José – Uniban 2011
61
Porém, em um relatório técnico enviado à “Federal Works Agency”, ele e seus co-autores concluíram que “é pouco provável que ressonância devido a vórtices alternados tenha desempenhado um papel importante nas oscilações de pontes suspensas”. Infelizmente, a ressonância permaneceu firme como uma explicação na literatura popular e matemática.
Figura 2 Ressonância é um fenômeno linear. Além do mais, é inteiramente dependente da coincidência da frequência de alguma força externa periódica. Ainda, a ressonância requer absoluta ausência de amortecimento no sistema. Não é de surpreender, portanto, que a ressonância não tenha sido o fator dominante no colapso da Ponte Tacoma Narrows.
Professor Cícero José – Uniban 2011
62
Se não foi ressonância, então qual é a explicação? Uma pesquisa recente forneceu uma explicação alternativa para o colapso da ponte. Lazer e McKenna argumentam que efeitos não-lineares, e não ressonância linear, foram os principais fatores que provocaram grandes oscilações da ponte. Não há dúvida de que o vento através da pista proporcionou a força externa que causou o movimento. Essa força poderia mesmo se dever parcialmente aos vórtices, como von Karman sugeriu. Porém, interações não-lineares entre a ponte e as forças externas são causas mais prováveis para o colapso.
Compare
a
reforçada
estrutura
da
ponte
Tacoma nessa fotografia, mostrando
a
reconstruída, estrutura
ponte com
a
delicada
de
1940, bem visível nas fotografias anteriores.
Na teoria linear, os cabos agem como uma mola elástica. Assim, o modelo matemático leva à uma equação diferencial do tipo
d2x dx +2 + 2 dt dt
2
x = F(t) , ou à equação
d2x + dt 2
2
x + F0 sen t , se
não há presença de amortecimento. Este último caso, em que há ressonância, é a única situação possível na teoria linear, em que pequenas forças externas poderiam causar grandes amplitudes de vibrações. Como mencionamos antes, esse cenário é pouco provável. Por outro lado, efeitos não-lineares podem causar grandes amplitudes de vibrações com forças de pequenas amplitudes. Podem também explicar a transição de oscilações unidimensionais para oscilações transversais (torção), as quais foram as principais responsáveis pelo colapso da ponte.
Professor Cícero José – Uniban 2011
63
A ideia básica no modelo de Lazer-McKenna é a seguinte. Quando os cabos verticais estão sob tensão (o peso da ponte está puxando-os para baixo), eles agem como uma mola elástica, e neste caso a equação diferencial é linear. Porém, quando forças externas provocam oscilações na ponte (ventos e possivelmente tremores de terra), os cabos não estarão sempre sob tensão, e haverá somente a gravidade atuando. Em outras palavras, o termo da lei de Hooke,
k x na equação m
d2x dx k f(t) + + x= , não estará presente. Essa transição de um tipo de equação diferencial 2 dt m dt m m linear para outro é uma fonte de não-linearidade. Outras fontes de não-linearidade em pontes suspensas devem ser incluídas no modelo não-linear e não-simétrico ou interações dos cabos verticais com os cabos principais ou com as torres de suporte. Essa não-linearidade é combinada pelo fato de que cabos diferentes podem estar sob tensão em instantes diferentes. O resultado dessa não-linearidade, argumentam Lazer e McKenna, podem ser oscilações de grandes amplitudes sob moderadas forças externas. Um outro aspecto das equações não-lineares é a imprevisibilidade. Isso pode explicar, por exemplo, por que a ponte experimentou oscilações de grande amplitude sob a ação de pequenos ventos e ficou perfeitamente estável sob a ação de fortes ventos. Como Lazer e McKenna observaram a teoria não-linear de pontes suspensas ainda não foi completamente desenvolvida. Porém, simulações numéricas do modelo estão de acordo com as observações. Parece que essa abordagem proporcionará explicações mais precisas para o colapso da Ponte Tacoma Narrows.
Fonte: Zill, Dennis G. Equações Diferenciais, volume 1. tradução: Antonio Zumpano. 3.ed. São Paulo: Pearson Makron Books, 2001. pp. 270-273.