14 minute read

REVOLUTIONIZING TRACEABILITY WITH NATURE’S DNA

Innovative identifying tagging technology allows producers and manufacturers to securely link product to its supply chain data

BY SEAN TARRY

Advertisement

Therehave been some obvious and high-profile disruptions and disturbances to the global supply chain of late. Impacts caused by the COVID-19 pandemic, which resulted in port closures and congestion, lost containers of inventory and product, and shortages of supply all over the world, crippled supply chains everywhere, leading to intense discussions concerning the ways in which product should be moved around the globe. It also exposed many companies whose insights into their supply chains are significantly wanting, leaving them unable to properly track and trace their product or validate the authenticity of it or its guarantees. It’s a problem that poses producers and manufacturers with a potential loss of credibility and a general lack of control over their supply. And it’s one that BioTag—a unique traceability technology that leverages nature’s DNA to tag product—promises to quell.

Nature’s fingerprint

Developed by Burlington, ON-based Index Biosystems, the revolutionary technology replaces older, traditional traceability technologies that rely on packaging, leveraging microscopic fingerprints made from baker’s yeast that can be applied to just about any type of product. It’s a way by which the company has managed to securely connect the digital and physical worlds, enabling the identification and authentication of products and eliminating many of the challenges currently inherent within contemporary supply chains. And, according to David Singer, Co-Founder and VP of Sales the benefits of the technology and flexibility of its use are immense.

“Essentially, what we’re doing is creating barcodes out of baker’s yeast,” he explains. “Through a process that we refer to as inert bioengineering, we produce a unique identifying sequence of DNA to standard baker’s yeast in a way that ensures that we’re not introducing any traits or affecting the inheritable traits of the yeast itself. It’s bioengineering without any gene modification. And there is no limit to the number of unique identifiers that we can create. And because we’re using yeast as a carrier for the DNA signature, we can grow it like any other yeast product, so it’s immensely scalable. It allows us to apply a signature to products that we normally wouldn’t be able to, such as grains and romaine lettuce, to on dosage for pharmaceuticals and animal feed products. In addition, it’s incredibly versatile and allows us to trace product within supply chains, end-to-end, working independent of packaging.”

Optimized traceability

In addition, Singer goes on to explain that the tags also work independently of product aggregation as well, meaning that individual heads or leaves of lettuce, for instance, can be traced back to the field in which they were grown in order to identify whether they have been contaminated or sullied in any other way. And, this same benefit extends beyond identification to authenticate the safety of food. It can also be used to validate a brand’s sustainable claims and efforts.

“If a producer is employing certain sustainability practices on their farm and customers at the end of the supply chain want proof as to the sustainability of the product that they’re purchasing and consuming, our BioTag will allow for the labelling of grains on farm, follow them through the aggregation of an elevator, through to a mill and still be recoverable in the flour product that’s received by a company,” he says. “In this way, our technology enables brands to validate and measure the carbon footprint of their product without relying on assumptions or having to fully and completely segregate their supply chains.”

Three pillars

In fact, Singer points out that Index Biosystems, by its very nature, helps producers and manufacturers solve for three of the biggest challenges that they collectively face. It’s estimated that the value of the global grey market—the market in which fraudulent and counterfeit goods are bought and sold—is in excess of $1.5 trillion, with the transfer of counterfeit product amassing $500 billion in sales. And, the total annual cost of food fraud—food sold under misleading or false certifications or claims—is $40 billion, with 600 million people falling ill every year as a result of contaminated food. They are areas of the business and supply chain process that Singer says Index Biosystems specializes in helping producers and manufacturers modernize and optimize.

“They are definitely the three pillars that we focus on, and the areas where we think our technology presents the most benefits to the end user,” he says. “Our technology helps brands fend off the threat of counterfeiting, detecting fraudulent or counterfeit products and unauthorized sales. As mentioned, it also allows brands to verify the ethical and sustainable sourcing of their products and ingredients, and mitigates risks associated with health and safety as it relates to food.”

Connecting physical and digital

The number of products, industries and verticals that could benefit from Index Biosystem’s technology is extensive, including agrochemicals, animal feed, cannabis, commodities, energy, food, pharmaceuticals, seed, testing and certification, textiles, wine and spirit, and more. Singer goes on to explain that the innovation was borne out of a need to fill very distinct holes within blockchain in order to begin harnessing its full potential, presenting Index Biosystems with the opportunity to develop a means by which it could connect physical products with the digital world by imbedding data related to those products, linking it all to their supply chains.

“The ‘aha’ moment was when we started to consider whether or not we could use biology to imbed data onto a product in order to meaningfully connect it to supply chain data,” he says. “That was the start of the ideation phase and we’ve essentially been experiencing positive momentum since then.”

How BioTag works

The direct result of Index Biosystems’ inert bioengineering approach—part of its proprietary process—each BioTag is made to be uniquely identifiable, much like a microscopic fingerprint. And, the process, from development of the BioTag through to use by producer or manufacturer, is straightforward and involves the following steps once it’s been created:

QUALITY CONTROL The successful creation of each BioTag is confirmed using standard molecular techniques. This quality control step is an added assurance that no genes have been modified, inserted or deleted through its inert bioengineering process, and ensures the safety of each uniquely identifiable BioTag.

REGISTER Once the safety of each BioTag sequence has been confirmed, it is added to Index Biosystems’ customer portal, Trailhead. This serves as the interface between a physical product that has been tagged, and its digital supply chain. Trailhead can be easily integrated with existing traceability software through a simple API to keep all product information in one place.

GROW AND INACTIVATE At this point, BioTags are ready for production. Standard yeast manufacturing allows for reliable BioTag production at a large scale. Each batch is killed to ensure inactivation prior to any commercial application, with the yeast cell providing a natural barrier that protects the identifying sequence inside. The powdered BioTags are now ready for shipment.

APPLY Unique BioTags can be applied directly to any product at any point or multiple points along the supply chain. They can be mixed with ingredients, sprayed onto products, or integrated directly into existing manufacturing processes. Only trace amounts of BioTag are required for reliable detection, so there is no impact to the taste, colour, or odour of products they are applied to.

DETECT BioTag sequences can be detected onsite, or samples can be sent to Index or a third-party lab for authentication. Standard molecular techniques including PCR are used to detect BioTag sequences, with reliable detection significantly below parts-per-million. Sequence information can be cross-referenced with Trailhead for integrated verification at any point in the supply chain.

The digital age

The technology, in combination with Index Biosystems’ digital registry, is a complement to any contemporary supply chain, enhancing and elevating a number of different aspects across a brand’s operation. It increases dependability and, according to Singer, helps to propel many brands and their producer and manufacturer partners into the digital age.

“This is absolutely the most cutting-edge innovation and solution out there when it comes to supporting supply chain efficiency and transparency,” he says. “It’s also a way by which many brands, despite the product that they offer, can thrust themselves into a new way of doing things, digitizing their businesses and differentiating themselves from their competitors. In securing reliability and predictiveness for the brand, it also validates and authenticates everything that the end user wants validated and authenticated, often resulting in greater trust and loyalty from consumers who are increasingly looking for increased transparency into the origin and life of their products.”

BioTag benefits

In addition to the benefits received by the consumer in the way of authentication, and by the brand in the way of a clearer view into their supply chains, there are a number of other benefits to using BioTags.

SAFE Yeast is a commonly used ingredient within food and agricultural products, with a long history of safe use. Index’s proprietary design process ensures each BioTag is characteristically and nutritionally identical to standard baker’s yeast, and is inactivated to ensure the final product is incapable of any further growth. BioTags are edible and have been FDA approved for use in food.

SCALABLE Using nature’s code, DNA, allows for an unlimited number of unique BioTag sequences to be created. BioTags also benefit from the established global manufacturing processes that have been developed for yeast over several decades, which allows for the reliable production of BioTags at any scale.

SECURE The Trailhead digital registry provides a secure digital environment for sequence storage and reference, and is related to manufacturing and intended use information. Using a simple API, Trailhead can be securely integrated with existing traceability software.

CUSTOM BioTags can be added, mixed, sprayed or affixed in trace amounts to any product, allowing for seamless integration into existing production pipelines. By adding unique BioTags at multiple nodes along a supply chain, the chain of custody can be verified throughout a product’s journey. BioTags are customizable to match the strategic needs and operational realities of almost any supply chain use case.

DURABLE Using yeast provides incredible scalability to production and enables a natural durability to each BioTag, allowing for protection of the unique identifying sequence within. This durability has been proven along harsh supply chains, and allows for reliable detection and product authentication.

Tagging the future

With respect to current operations, Singer says that Index Biosystems is gaining a lot of traction and interest around its innovative BioTag solution, adding that its researchers and engineers are constantly working toward improving the product. And, he says, it’s all done with the end user in mind.

“We’re aware of the challenges that exist within today’s supply chain, and we also recognize the challenges that are inherent in securing and protecting the authenticity of product. Our BioTags offer users the broadest applications and simplest form of identification currently available, posing the potential to boost any supply chain operation and the credibility of the brands that use them.”

BY SEAN TARRY

Thedrain of using non-renewable energy sources like oil, coal and gas to power communities all over the world has clearly taken its toll on our planet and its environment. In search of alternate, renewable sources of energy, some have hypothesized that hydrogen could present a significant portion of the answer to the planet’s energy conundrum, given the fact that it can be produced from water. But its potential has been muted to date, limited by the current methods used to do so which are costly and inefficient. However, just recently, Marta Cerutti, Professor and Co-Director of the Institute for Advanced Materials at McGill University, uncovered a way by which the process could be made substantially more efficient.

Improved scaffold

Cerutti, who’s been working for a number of years with graphene as part of her research involving bone tissue engineering, was attempting to discover a way that would enable the creation of an “easy-to-handle” structure. Instead, what she found was the fact that, because of its characteristics, it could serve to aid in the process of creating hydrogen from seawater.

Graphene is a single sheet of carbon atoms that display unique properties, explains Cerutti, including its electrical conductivity and ability to support incredible amounts of weight. Working together with colleagues Gabriele Capilli and Thomas Szkopek, the team combined graphene with oxygen in a suspension with water to create reduced graphene oxide—an essentially porous, three-dimensional, electrically conductive scaffold—with graphene flakes stacked on the pore walls, creating a membrane that allows water through, without any other molecules entering. And, it was when considering environments in which to test the new and improved scaffold, and seawater electrolysis was suggested, that the team made the discovery.

“Graphene oxide is a very interesting material because you can work with it in a number of different ways,” says Cerutti. “Because sheets of graphene can be assembled at the walls of the pores, creating membranes inside the walls, it results in a filter of sorts that restricts the entry of competitor species into the pores. It prevents the poisoning of the catalyst, allowing only water molecules to enter the catalyst, facilitating the formation of oxygen, which is critical to have present when attempting to produce hydrogen from water.”

Restricting competitor species

In seawater, explains Cerutti, there are a range of different competitor species, including chloride ions that penetrate the electrode in traditional electrolysis, creating hypochlorite ions which interacts with and nullifies the catalyst. It’s actually the primary reason that explains the difficulty in producing hydrogen from seawater and why this discovery is such a significant one, with potentially far-reaching impacts.

“Energy producing companies would likely be those most interested in this discovery and technology,” she says. “Hydrogen would be an extremely clean form of energy and can be used to create the cleanest fuel possible, resulting in a relatively big breakthrough with respect to sustainability efforts currently happening around the world and attempts to find cleaner, renewable sources of energy and fuels that don’t harm the planet as much as the sources we use most predominantly today.”

Multiple applications

What’s more, the structure that’s been created using the graphene oxide can be used to house other catalysts as well, and used to have selective electro-oxidation or reduction of a number of other elements beyond water, including methanol electro-oxidation in a raw fuel mix, in addition to a number of other reactions that could benefit from the discovery.

To assist in the research that was necessary in making this discovery, Cerutti and her team leveraged the X-ray phase contrast imaging at the Canadian Light Source (CLS) at the University of Saskatchewan. Cerutti says that the CLS and its equipment was incredibly important in helping her and her team confirm the viability of the new graphene oxide structure, allowing them to consider the next steps for their discovery. However, as Cerutti points out, it’s simply a matter of figuring out how to scale the innovation at this point.

“The prototype has just been made in the lab,” says Cerutti. “We’ve made a structure that’s only a few millimetres in size. So, in order for this to be applicable, the construction of the structure needs to be scaled up. It’s feasible, because the method that we use to make the electrode leverages emulsion. Just like when mayonnaise is produced, there are ingredients—oil and lemon juice—that usually don’t stay together very well. However, because of the proteins in the egg whites, an emulsion is created. In our method, we put water and oil together, and because of the graphene oxide we’re able to create a stable emulsion in which oil droplets are surrounded by water. Then, you remove the oil and you remove the water and are left with an empty space: the pores. So, instead of creating a 1 cm 3 structure, we could make this at an industrial scale”.

Scaling the structure

Looking ahead, as Cerutti and her team continue to hypothesize the various potential uses and applications of the graphene oxide structure, they are already thinking about the testing that will be required in order to scale its production. In addition, she says that, as part of the testing, the mechanical properties of the structure will likely need to be changed and altered to evolve with its growth and ensure that the resilience and sound nature of the graphene oxide holds up at a larger size. And, with respect to its scaling, Cerutti says that she’s simply taking her research one step at a time.

“Once the discovery was announced, I received a lot of interest from a number of different companies, including some that make graphene. I think that we’d just need to find the right partner with the right people who align with our vision. If we’re approached by that company or organization, then I’ll be happy to consider the next steps in making this discovery more applicable at a larger and wider scale.”

• 2 feet x 3 feet foot print

Liquid Nitrogen Generator

• Compact Automated Fully Integrated System

• Uses room air to produce liquid Nitrogen

• Built in storage tank for ln2

• ECO “no loss” eliminates boil off

• 8L to 1,150 L per day capacity

• Cost effective and environmentally friendly

• Unattended production with annual PM

CALL 1-833 MAKELN2 if your Lab has LN2 delivered

LAB BUBBLE FUME HOODS

• PCR Clean Air for PCR prep

• No Ducting or Exhaust hookup

• HEPA filtration change 2-3 yrs.

• Powder weighing

• 5 Colours to choose from

SAFETY BUBBLE FOR PARTICULATES AND VAPORS, WORKS WITH NANOPARTICLES

“Click for demo –https://lab-bubble.com/producto/ safety-bubble-fume-hood/

GLOVE BUBBLE FOR ISOLATION

• With transfer tunnel for access

• Includes utility (gas) connection

Filtering storage cabinets

Erlab’s 50 years of expertise in research, design and manufacturing of filtered storage cabinets guarantee superior filtration to keep researchers protected when storing their chemicals. Distributed by Canadian Scientific Lab Systems, the Erlab Captair Smart ductless filtering storage cabinets provide a steady flow of air through the cabinet, capturing hazardous vapours in the filters and returning clean air back to the room. www.erlab.com

New technology boosts throughput for cryo-ET

Thermo Fisher Scientific recently unveiled its Thermo Scientific Arctis Cryo-Plasma Focused Ion Beam (CryoPFIB)—a new connected and automated microscope designed to advance the pace of cryo-electron tomography (cryo-ET) research. Cryo-ET makes it possible to study how proteins and other molecules operate together in a cellular context, at resolutions unsurpassed by other microscopy techniques, and has enormous potential for cell biology research, including the study of infectious disease, neurodegenerative disease, and other globally impactful structural biology applications. The Arctis Cryo-PFIB offers advanced automation and new connectivity capabilities within the workflow, significantly increasing throughput for fast, reproducible production of samples for cryo-ET. www.thermofisher.com

Improvements to traditional mortar and pestle

The CryoGrinder System from OPS Diagnostics is a total solution for homogenizing, chilling and transporting small samples in-house. An improvement on the traditional mortar and pestle, the CryoGrinder tools retain the strength and durability of porcelain while adapting to the scale of molecular biology. The CryoGrinder mortar and pestle are specifically designed to grind small and difficult tissues (e.g., skin, sclera) at cryogenic temperatures. Their small design allows for grinding up to 100 mg of sample without excessive sample loss.

www.opsdiagnostics.com

Next-generation sequencing

Bio-Rad’s QX600 Droplet Digital PCR System offers advanced six-colour multiplexing and absolute quantification of nucleic acid. It allows clear discrimination of multiple targets with assays that are cross-compatible with the QX200 Droplet Digital PCR System. Ideal for applications such as gene and cell therapy or water testing, the system is designed for researchers who need to quantify multiple targets with high accuracy reproducibility. www.bio-rad.com

Cellular-enabled camera trap reaches almost anywhere in the world

The Reconyx HyperFire 2 camera is now 4G LTE cellular-enabled so that users can receive images on their Android or iOS from almost anywhere in the world. The Reconyx mobile app enables users to create a custom cellular plan, manage images and check status or change camera settings from anywhere. www.reconyx.com

Laboratory oven ideal for different applications

LIST OF ADVERTISERS & WEBSITES

BioTalent page 2 ................................................................................................................ biotalent.ca

Pittcon page 15 pittcon.org

CPDN page 26 cpdn.ca

Instrucan Scientific page 29 instrucanscientific.com

California Fig page 31 californiafigs.com

BioTalent page 32 biotalent.ca/Co-OpFunds www.despatch.com

The Despatch LBB lab oven features a combination of horizontal and vertical airflow that offers excellent temperature uniformity. These ovens are recommended for a variety of laboratory applications including drying, curing, annealing, and materials and asphalt testing. The fan and heater are top-mounted to prevent damage from spills. Maximum temperature is 204°C (400ºF).

This article is from: