Ch1

Page 1



















• Ax= B


d





1.4 Properties of matrix (AB)-1 = B-1A-1 (AT)T = A and (lA)T = l AT (A + B)T = AT + BT

(AB)T = BT AT

24


1.5 Determinants Determinant of order 2 Consider a 2  2 matrix:

 a11 A  a21

a12  a22 

Determinant of A, denoted | A | , is a number and can be evaluated by | A |

a11

a12

a21

a22

 a11a22  a12 a21

25


1.5 Determinants Determinant of order 2 easy to remember (for order 2 only).. | A | -

a11

a12

a21

a22

  a11a22  a12 a21 +

Example: Evaluate the determinant: 1 2 3 4

1 2 3 4

 1  4  2  3  2

26


1.5 Determinants The following properties are true for determinants of any order. 1. If every element of a row (column) is zero, e.g.,

1 2 0 0

 1 0  2  0  0 ,

2. |AT| = |A|

then |A| = 0.

determinant of a matrix = that of its transpose

3. |AB| = |A||B| 27


1.5 Determinants For any 2x2 matrix

 a11 A  a21

a12  a22 

Its inverse can be written as

Example: Find the inverse of The determinant of A is -2 Hence, the inverse of A is

1 A  A 1

 a22  a  21

a12  a11 

 1 0  A  1 2  

0   1 A   1/ 2 1/ 2  1

How to find an inverse for a 3x3 matrix? 28


1.5 Determinants of order 3 Consider an example:

1 2 3 A   4 5 6  7 8 9 

Its determinant can be obtained by: 1 2 3 A  4 5 6 3 7 8 9

4 5 7 8

6

1 2 7 8

9

1 2 4 5

 3  3  6  6   9  3  0

You are encouraged to find the determinant by using other rows or columns

29


Definition Examples • Let A = [ a11 ], a 1x1 matrix, then det (A) = a11 a a  A

11

12

 a a  21 22 

• Let

det (A) = a11 a22 - a12 a21


Definition Examples a11 a12 a13    • Let A  a21 a22 a23  a  31

a32 a33 

det (A) = a11 a22 a33 + a12 a23 a31 + a13 a21 a32 -a11 a23 a32 - a12 a21 a33 -a13 a22 a31


    

       

     

   

   

     


1.6 Inverse of a 33 matrix 1 2 3  A  0 4 5  1 0 6 

Cofactor matrix of

The cofactor for each element of matrix A: A11  A21  A31 

4 5 0 6 2 3 0 6 2 3 4 5

 24  12  2

A12   A22 

0 5 1 6

1 3 1 6

A32  

5

3

1 3 0 5

 5

A13 

0 4 1 0

A23   A33 

 4

1 2 1 0

1 2 0 4

2

4 33


1.6 Inverse of a 33 matrix Cofactor matrix of by:

1 2 3  A  0 4 5  1 0 6 

is then given

 24 5 4   12 3 2     2 5 4  34


1.6 Inverse of a 33 matrix Inverse matrix of

1 2 3  A  0 4 5  1 0 6 

is given by:

 24 5 4  24 12 2 1  1    1 A   12 3 2  5 3  5   A 22   2 5 4   4 2 4  T

 12 11  6 11 1 11    5 22 3 22 5 22    2 11 1 11 2 11  35


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.