lec3_LU

Page 1


[A] = [L][U] Where: [L] = lower triangular matrix [U] = upper triangular matrix


How can this be used? Given [A][X] = [B] 1. Decompose [A] into [L] and [U] 2. Solve [L][Y] = [B] 3. Solve [U][X] = [Y]


a [ A] = [ L][U ] =  b d

0 c e

0  1 0  0 f  0

g 1 0

h i  1 

[U] is the same as the coefficient matrix at the end of the forward elimination step. [L] is obtained using the multipliers that were used in the forward elimination process


1 0 0  d [ A] = [ L][U ] = a 1 0  0 b c 1  0

e g 0

f h  i 

0 0 1  d [ A] = [ L][U ] = 0 1 a   g 1 b c   i

e h 0

f 0  0 

OR

etc..


ag ah a  b bg + c bh + ci  d dg + e dh + ei +

   f 


Consider the system of equations below

2 x1 + x2 − 3 x3 = −9

− x1 + 2 x2 + 4 x3 = 27 3 x1 − 2 x2 + 5 x3 = 7 

Ax=B

1 − 3  x1  − 9 2 − 1 2   x  =  27  4    2    3 − 2 5   x3   7 


ag ah a  =  b bg + c bh + ci d dg + e dh + ei +  Solving

a=2 b = −1 d =3

for the variables:

ag = 1 2g = 1

ah = −3 2 h = −3

1 g= 2

−3 h= 2

   f 


bg + c = 2

dg + e = −2

1 (1)( ) + c = 2 2 5 c= 2

1 (3)( ) + e = −2 2 −7 e= 2


bh + ci = 4 −3 5 (−1)( ) + i = 4 2 2 i =1 dg + ei + f = 5 −3 −7 (3)( ) + (1) + f = 5 2 2 f = 13


 By

 2  −1  3  

0 5 2 7 − 2

 0 y1  −9    0 y 2  =27    y   7   3   5  

forward substitution:

2 y1 = − 9 9 y1 = − 2 5 − y1 + y 2 = 27 2 y2 = 9

7 3 y1 − y 2 +13 y3 =7 2 y3 =4


 1 0  0    By

1 2 1 0

3  9 −  x1  −  2   2    1 x = 9 2     1  x3   4       

backward substitution:

x3 = 4 x2 + x3 = 9 x2 = 5

1 3 9 x1 + x2 − x3 = − 2 2 2 x1 = −1 x1  −1  = 5  ∴ x  2    4   x3   


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.